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ABSTRACT OF THE DISSERTATION 
 
 
 
 
 

by 
 
 

Jennifer Anne Semrau 
 
 

Doctor of Philosophy in Neuroscience 
 
 

Washington University in Saint Louis, 2011 
 
 

Professor Kurt A. Thoroughman, Chairperson 
 
 
 

On a day-to-day basis we use visual information to guide the execution of our movements 

with great ease.  The use of vision allows us to guide and modify our movements by 

appropriately transforming external sensory information into proper motor commands.  

Current literature characterizes the process of visuomotor adaptation, but fails to consider 

the incremental response to sensed errors that comprise a fully adaptive process.  We 

aimed to understand the properties of the trial-by-trial transformation of sensed visual 

error into subsequent motor adaptation. In this thesis we further aimed to understand how 

visuomotor learning changes as a function of experienced environment and how it is 

impacted by Parkinson’s disease.   

 

Recent experiments in force learning have shown that adaptive strategies can be flexibly 

and readily modified according to the demands of the environment a person experiences.  
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In Chapter 2, we investigated the properties of visual feedback strategies in response to 

environments that changed daily.  We introduced visual environments that could change 

as a function of the likelihood of experiencing a visual perturbation, or the direction of 

the visual perturbation bias across the workspace.  By testing subjects in environments 

with changing statistics across several days, we were able to observe changes in the 

visuomotor sensitivity across environments.  We found that subjects experiencing 

changes in visual likelihood adopted strategies very similar to those seen in force field 

learning.  However, unlike in haptic learning, we discovered that when subjects 

experienced different environmental biases, adaptive sensitivity could be effected both 

within a single training day as well as across training days. 

 

In Chapter 3, we investigated the properties of visuomotor adaptation in patients with 

Parkinson’s disease.  Previous experiments have suggested that patients with Parkinson’s 

disease have impoverished visuomotor learning when compared to healthy age-matched 

controls.  We tested two aspects of visuomotor adaptation to determine the contribution 

of visual feedback in Parkinson’s disease: visual extent – thought to be mediated by the 

basal ganglia, and visual direction – thought to be cortically mediated.  We found that 

patients with Parkinson’s disease fully adapted to changes in visual direction and showed 

more complete adaptation compared to control subjects, but adaptation in Parkinson’s 

disease patients was impaired during changes of visual extent.  Our results confirm the 

idea that basal ganglia deficits can alter aspects of visuomotor adaptation.  However, we 

have shown that part of this adaptive process remains intact, in accordance with 

hypotheses that state visuomotor control of direction and extent are separable processes. 
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We possess the ability to generate seemingly simple movements to interact with our 

environment on a daily basis. While movement may seem effortless, it is in fact far more 

complicated, requiring the integration of information from multiple sensory modalities to 

achieve the desired outcome.  Human motor learning is characterized by a unique 

flexibility that allows us to perform an infinite number of movements.  We can learn to 

drive a car, learn to play baseball, or learn to use a computer mouse, all with relative 

ease.  To produce these skilled movements, we depend on the integration of visual 

information with bodily information to plan, compute and execute movement.   

 

When we are using a computer to run a specific program, we must navigate the mouse 

cursor to the appropriate desktop icon, our desired location or target.  This movement 

requires calibration of our visual sense of the speed and position of the mouse cursor with 

internal motor programming that generates and guides hand and arm movements (Ghez et 

al., 1995).  If you are using a computer and mouse that you use everyday, you are well 

adapted to this visuomotor relationship.  When you replace the familiar mouse with a 

new one; the visuomotor dynamics of the new mouse may be different.  For example, the 

ratio of cursor speed to physical mouse movement (gain) may be dissimilar from your 

original mouse.  This can cause initial difficulty using the new mouse, resulting in 

increased reaction and movement time during operation.  This difficulty is the result of a 

visuomotor mismatch between expected (old mouse) and experienced (new mouse) 

sensory feedback.    
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Conveniently, our visuomotor system is highly flexible and allows for quick learning of 

this new association, allowing us to become highly adept at using the new computer 

mouse with minimal practice.  However, if you have difficulty with movement 

production, learning these new eye-hand coordinations may present significant difficulty.  

The purpose of this thesis is to investigate visuomotor relationships resulting from 

environmentally induced errors requiring adaptation and recalibration of the visuomotor 

system. 

 

 

VISUOMOTOR CONTROL OF MOVEMENT 

 

When we reach for an object in our environment it requires the visual identification of the 

desired target.  These visual coordinates are subsequently transformed to hand-centered 

space in order to be translated and executed by internal motor programming (Ghez et al., 

2000; Ghez et al., 2007).  All of these neural computations are necessary before we can 

interact with our environment; without access to visual information we are unable to 

complete accurate and timely movements (Ghez et al., 1995).  During movement 

execution we receive feedback from multiple sensory sources that indicates the success or 

failure of the movement (Wolpert et al.,1995; Paz and Vaadia, 2009).  These sensory 

feedback errors inform future iterations of movement to the adjustments that need to be 

made in order to accurately execute a movement.  This feedback can be proprioceptive, 

such as hitting your arm on a table, or visual, as in the previous computer mouse 

example.  Each of these modes of sensory feedback provides unique information to the 
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production of movement.  However, with the elimination of either input (Ghez et al. 

1995) or a mismatch in sensory feedback (Block and Bastian 2011), movement becomes 

difficult. 

 

Reaching movements require the integration of proprioception and vision; however, the 

properties of visual control are distinctly different from that of proprioceptive control.   

Proprioception relies on muscle and receptor based feedback to gauge limb position as 

well as input from external visual information (Goodbody and Wolpert 1999; Graziano 

1999), while vision relates environmentally driven position information about limb state 

and object control (Sober and Sabes 2003, Sarlegna and Sainburg 2009).  It has been 

shown that with elimination of proprioception, movement can be compensated through 

vision, while the reverse is not true (Ghez et al. 1995a, Ghez et al. 1995b). 

 

PROPERTIES OF VISUOMOTOR ADAPTATION 

 

Our ability to adapt to new visuomotor conditions allows us to acquire new skills on a 

short-term basis (Martin et al. 1996a, Martin et al. 1996b, Pine et al. 1997, Krakauer et al. 

2000, Seidler et al. 2006), or longer term through consistent practice (Richter et al. 2002, 

Marinelli et al. 2010, Trempe and Proteau 2010).  This adaptation is highly flexible and 

mediated by the nature of the visual errors that we experience in our environment 

(Ghahramani and Wolpert 1997, Kagerer et al. 1997).  Early studies of visuomotor 

control utilized prism lenses to distort visuomotor relationships. These lenses acted to 

displace the visual world from executed motor action, typically in a lateral direction.  
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These studies found that when people face a new visuomotor relationship they make 

large initial errors, but quickly adapt over time and can accurately hit a target under the 

new conditions.  The most profound result of these studies was that after subjects adapted 

and the prisms were removed, the experimenters saw significantly large errors in the 

opposite direction of the initial error, referred to as after-effects (Martin et al. 1996a; 

Martin et al. 1996b).  Researchers have used visuomotor after-effects to their advantage, 

because they are a cardinal sign of adaptation resulting from recalibration of the 

visuomotor system (Hamilton and Bossom 1964).   

 

While studies using prism glasses were introduced in the early 1960’s, techniques have 

advanced to utilize computerized virtual environments that allow researchers to displace 

bodily movement from what a participant sees on a computer monitor (Ghilardi et al. 

1995, Krakauer et al. 2000, Seidler et al. 2001).  This new methodology has been a 

powerful tool for examining the integration of visual and motor information.  Operating 

on the same scientific principles as prism glasses, computerized methods allow for 

greater experimental control and flexibility of visuomotor perturbations and parameters.  

We can now test a variety of visuomotor perturbations types (Kagerer et al. 1997, Pine et 

al. 1997, Gowen and Miall 2007, Messier et al. 2007) as well as change the visual 

perturbation on a trial-by-trial basis (Wei and Kording 2009). 
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TRIAL-BY-TRIAL ADAPTATION 

 

When people learn new skills or experience novel perturbations, adaptation to these new 

conditions is not a discrete process.  Rather, adaptation is a process that increments over 

time, each prior experience adding to the resulting adaptation.  This idea of trial-by-trial 

motor adaptation is an effective way to not only examine incremental motor learning, but 

it also allows us to determine the magnitude of effect that single error inducing trials can 

have on the subsequent movements (Thoroughman and Shadmehr 2000, Scheidt et al. 

2001, Thoroughman and Taylor 2005).  The process of trial-by-trial adaptation has been 

extensively investigated in the field of haptic motor control (Thoroughman and Shadmehr 

2000, Thoroughman and Taylor 2005, Fine and Thoroughman 2007), whereas little 

attention has been focused on this type of error transformation in the field of visuomotor 

control and adaptation.  Recent studies have focused on the neural correlates of trial-by-

trial visuomotor learning (Grafton et al. 2007), visuomotor response to random 

perturbations (Wei et al. 2010), and the weighting of relative visual responses and 

subsequent dependence on the error magnitude (Wei and Kording 2009).   None of these 

studies have been able to make direct comparisons between properties of motor 

adaptation in visuomotor and proprioceptive control of movement.  Importantly, visual 

feedback is not only used for the programming of movements, it also provides feedback 

regarding limb state conditions (Sober and Sabes 2003, Scheidt et al. 2005). 
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In Chapter 2 of this thesis, a visuomotor correlate of Fine and Thoroughman (2007), we 

investigate the trial-by-trial properties of visuomotor adaptation when subjects experience 

environments with changing statistics across several days.  We were interested in the 

transformation of experienced visual error into adaptive sensitivity.  We discovered that 

not only does the environment in which a person learns affect the resulting adaptive 

sensitivity, but that adaptive information learned in one environment can affect the 

outcome of adaptation in a subsequently experienced environment.   

 

THE BASAL GANGLIA, PARKINSON’S DISEASE, AND VISUOMOTOR 

CONTROL 

 

For another subject population, the ability to move and interact with their daily 

environments not taken for granted.  Patients with Parkinson’s disease (PD) have 

significant difficulty with movement on a daily basis that is marked by several 

symptoms: bradykinesia (slowness of movement), tremor, muscular rigidity, and 

instability of posture.  These difficulties are the result of a specific loss of dopamine 

producing neurons within the substantia nigra, pars compacta; one of the nuclei 

comprising the basal ganglia (Albin et al. 1989, Mink 1996).   

 

The basal ganglia are traditionally thought of as structures necessary for the production 

and maintenance of movement.  Motor behavior is thought to be modulated by activity 

within the basal ganglia by allowing wanted signals through, while suppressing unwanted 

motor signals (Mink 1996).  Changes to the balance of this gating mechanism can be seen 
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most profoundly in movement disorders resulting from abnormalities in the basal ganglia 

such as PD and Huntington’s disease that exhibit hypokinesia (too little movement) or 

hyperkinesia (too much movement), respectively (Albin et al. 1989).   

 

In addition to being involved in the production and maintenance of movement, the basal 

ganglia have been shown to have significant involvement in motor sequence learning 

(Lehericy et al. 2005), procedural learning (Hikosaka et al. 1999), and the processing of 

visuomotor control and adaptation (Graybiel et al. 1994, Nakahara et al. 2001, Contreras-

Vidal et al. 2003, Krakauer et al. 2004, Seidler et al. 2006).  Researchers have speculated 

that the basal ganglia are involved in the trial-by-trial processing of sensorimotor error 

(Brown et al. 2006, Kempf et al. 2007).  This speculation has lead to the belief that 

learning new visuomotor transformations can be impaired in PD as a result of deficient 

basal ganglia function (Contreras-Vidal et al. 2003, Fernandez-Ruiz et al. 2003, Paquet et 

al. 2008, Venkatakrishnan et al. 2011). 

 

Learning these new visuomotor transformations for the production and execution of 

movements relies on the integration of two independent components of movement 

planning (Ghez et al. 1991, Pine et al. 1997, Desmurget et al. 2003).  These movement 

components are a separable vectorial process in which movements are planned as a 

function of movement direction and a function of movement extent.  The idea that 

reaching movements require independent calculation of extent and direction is a widely 

accepted idea, and is supported by behavioral data (Pine et al. 1996, Krakauer et al. 

2000), as well as neuroanatomical data (Krakauer et al. 2004).  Differences in adaptation 
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to each component manifest behaviorally as differences in time scales of adaptation (Pine 

et al. 1996), differences in generalization patterns after adaptation (Krakauer et al. 2000), 

and differences in movement variability (Gordon et al. 1994).   

 

The neuroanatomical correlates of visuomotor adaptation reinforce the belief that 

planning of extent and direction are separable processes.  During the early phase of 

adaptation neural activation has correlated to separate neuroanatomical structures 

depending on what type of visual perturbation subjects experience.  Cortical areas have 

been correlated to adaptation to changes in visual direction, while subcortical areas 

including the basal ganglia, have been correlated to adaptation to changes in visual extent 

(Ghilardi et al. 2000, Krakauer et al. 2006).  However, another group studying neural 

correlates of visuomotor adaptation has observed neural activation of the basal ganglia in 

response to learning visuomotor perturbations of direction (Seidler et al. 2006).  

Substantial evidence exists to suggest that the basal ganglia play a major role in 

adaptation to new visuomotor environments; however it is unclear whether or not that 

role is specific to particular types of visual perturbations. 

  

Current studies suggest that patients with PD have difficulty with sensorimotor 

integration requiring the combination of motor control with other sensory signals.  

Difficulties utilizing proprioceptive feedback to maintain posture (Brown et al. 2006), 

estimate limb and joint position (Zia et al. 2000, Contreras-Vidal and Gold 2004), as well 

as incorporating proprioceptive feedback into visual tasks (Schettino et al. 2006) have 

specifically been noted as sensorimotor deficits. 
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These sensorimotor integration deficits have been thought to specifically affect 

visuomotor adaptation in PD patients.  However, the range of visuomotor impairments is 

not agreed upon.  These impairments have been described as overall difficulty with 

adaptation with impaired after-effects (Contreras-Vidal and Buch 2003), less robust after-

effects post-adaptation (Fernandez-Ruiz et al. 2003) or no impairment during the 

adaptation process whatsoever (Agostino et al. 1996, Marinelli et al. 2009).  It is obvious 

that a large disparity exists in the current literature that fails to characterize how 

neurodegeneration in PD affects visuomotor ability to adapt to new visuomotor 

environments.   

 

In Chapter 3 of this thesis, we investigate the trial-by-trial properties of visuomotor 

control and adaptation in patients with Parkinson’s disease.  Additionally we aimed to 

determine if PD patients exhibited deficits in adaptation to visual perturbations of extent 

and direction.  We discovered that PD patients have intact adaptation for perturbations of 

direction, with more complete adaptation than control subjects.  However, adaptation to 

changes in visual extent were impaired.  Our results suggest that basal ganglia 

functionality is imperative to intact visuomotor adaptation to perturbations that affect 

reach magnitude. 
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Semrau JA, Daitch AL, and Thoroughman KA.  Experienced environmental dynamics 

influence both immediate and eventual adaptive strategy to visuomotor perturbations.   
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ABSTRACT 

 

The use of vision allows us to guide and modify our movements by appropriately 

transforming external sensory information into proper motor commands.  We 

investigated how people learned visuomotor transformations in different visual feedback 

environments.  These environments presented perturbations of visual sense of movement 

direction.  Across experiments and training days, we altered the likelihood of visual 

perturbation occurrence and the distribution of sign and magnitude of visual perturbation 

angles.  We then observed how transformation of sensed error into incremental 

adaptation depended on visual perturbation angle and on environmental experience. We 

found that environmental context affected adaptive responses within a day and across 

days.  The across-day effect was profound enough that people exhibited very weak or 

very strong adaptive sensitivity to identical stimuli, dependent solely on prior days’ 

experience.  We conclude that trial-by-trial adaptation to visual feedback is not fixed, but 

dependent on environmental experiences on both short and long time scales. 
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INTRODUCTION 

 

Human subjects can easily adapt to changing visual feedback and task demands in motor 

behavior.  We make constant adjustments to eye-hand coordination when we drive a car, 

play sports or reach for objects in our environment.  Previous studies have investigated 

the mechanisms behind visuomotor adaptation using prism glasses to displace vision 

from hand position (Hamilton and Bossom 1964; Fernandez and Ruiz 1999; Fiorentini et 

al. 1972).  These studies demonstrated that subjects were very good at adapting to the 

new visual feedback conditions while wearing prism glasses, but when the glasses were 

removed, subjects overthrew the target in the opposite direction of the initial error 

(Martin et al. 1996).  More recent experiments have used computers to produce a greater 

variety of visual perturbations.  In order to examine the effects of altered feedback, 

experimenters rotated the displacement of cursor feedback from the true hand path 

(Ghilardi et al. 1995; Pine et al. 1996; Krakauer et al. 2004).  Subjects that adapted to the 

rotated feedback generated substantial aftereffects after removal of the perturbation 

(Krakauer et al. 2000; Seidler et al. 2006).  While these studies elucidate how altered 

feedback of the visuomotor system can lead to short-term recalibration of eye-hand 

coordination, they failed to consider how the visuomotor system compensates on a 

shorter trial-by-trial time scale.  

 

Trial-by-trial learning has generated a useful and unique perspective that allows for 

examination of how sensorimotor error is transferred from one movement to the next 

(Thoroughman and Shadmehr 2000; Scheidt et al. 2001; Thoroughman and Taylor 2005).  
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Examining adaptation on a trial-by-trial basis allows for understanding how individually 

sensed errors are transformed into an incrementally adaptive process.  In addition, these 

trial-by-trial processes are far closer to real-time neurophysiological signals than 

adaptation across hundreds of movements.  By investigating these properties of the 

visuomotor system, we can come closer to understanding how the brain computes error 

and how that error is transferred across individual movements.   

 

Recently, we have found that people are capable of changing their adaptive strategy 

depending on the type of environment that they experience (Fine and Thoroughman 

2007; Thoroughman et al. 2007).  These studies induced adaptation using robotic 

manipulanda that exert force pulses (Fine and Thoroughman 2006) and viscous forces 

(Fine and Thoroughman 2007).  In order to gain a better understanding of how 

visuomotor adaptation occurs, we aim to characterize trial-by-trial sensorimotor 

transformations used to incrementally reduce visuomotor error. 

 

We studied how visuomotor learning changes as a function of environment in human 

subjects.  In these experiments, we hypothesized that, as in our haptic learning studies, 

visuomotor learning strategies would change as a function of the statistics of visual 

feedback perturbations that subjects experienced.  Twenty-four subjects (two groups of 

12 subjects) made 10 cm reaching movements in a virtual reality environment where 

visual feedback could be varied on a trial-by-trial basis.  Subjects performed one of two 

experiments: the first experiment changed the likelihood of experiencing a visual rotation 

across days; the second experiment changed the directional bias of visual rotations across 
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days.  We analyzed the trial-by-trial behavior for each experiment and determined that 

visuomotor trial-by-trial adaptation was dependent on the characteristics of the 

environment in which the subject was learning on a particular day and on previous days.  

The latter result surprisingly suggests that the elemental transformation of error into 

adaptation is sensitive to experience on short and long time scales.   

 

 

METHODS 

 

Twenty-four right-handed young adult subjects made free, unsupported movements in 

two separate experiments.  In both experiments, subjects experienced a virtual reality 

environment, in which hand movement was monitored through a Flock of Birds position 

sensor (Ascension Technology Corporation, Milton, VT) grasped in the right hand by the 

subject (Fig. 2.1).  In the Likelihood Experiment, we altered the likelihood of the visual 

rotations (Fig. 2.2, A-C), and in the Bias Experiment, we changed the distribution of the 

visual rotations (Fig. 2.2, D-F).   

 

Subjects 

 

Twelve participants for the Likelihood Experiment ranged in age from 18 to 35 years old 

with an average and standard deviation (SD) of 23.25 ± 6.18 (8 male, 4 female); twelve 

participants for the Bias Experiment ranged in age from 22 to 33 with an average and SD 
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of 25.75 ± 2.77 (2 male, 10 female).  All protocols were approved by the Washington 

University Human Research Protection Office (HRPO).   

 

 

 

 

 

 

 

 

 

 

 

 

Task  

 

Subjects viewed the virtual environment through a half-silvered mirror that reflected a 

monitor display of the environment.  The mirror and the dark room obstructed the 

subjects’ vision of their hand and arm, so subjects received visual feedback solely from 

the monitor (Fig. 2.1).  Subjects stood on a platform and stabilized their head with a chin 

rest mounted on the mirror.  The platform was set to a height where subjects could hold 

their arm, elbow bent, at a comfortable 90° angle.  Subjects performed 6 sets of 60 (total 
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Figure 2.1: Schematic of the virtual reality set up used to generate visual feedback.  
Subjects experienced veridical feedback where the visual cursor directly represented 
the position of the hand, a clockwise visual rotation where the visual cursor is rotated 
off the subjects’ hand trajectory to the right, and a counterclockwise visual rotation 
where the visual cursor is rotated off the subjects’ hand trajectory to the left. 
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360) unsupported arm movements on each day, allowing for rest time between sets to 

counter arm fatigue.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The task was to begin at a start position (a red sphere) and make a 10 cm reach, directly 

away from the torso in the horizontal plane, to a second sphere (yellow).  A movement of 

this size is akin to everyday tasks, such as using a hair brush or making movements with 

a computer mouse.  Subjects were to make outward reaching movements within 500 ms ± 

50 ms.  If subjects satisfied this condition, the yellow sphere would turn green; if subjects 

moved slower than 550 ms, the target turned blue; and if the subject moved faster than 
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Figure 2.2:  Distribution of rotations for the Likelihood Experiment (A-C), and 
the Bias Experiment (D-F).  Subjects in the Likelihood Experiment experienced 
variations in the likelihood of experiencing a visual rotation across days, so that 
subjects experienced rotations, A: 20%, B: 50%, C: 80% of the time.  Subjects in 
the Bias Experiment experienced changes in the distribution of visual rotations 
across the workspace that varied from D: unbiased (zero bias), E: weakly biased 
to the left (weak bias), or F: strongly biased to the left (strong bias). 
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450 ms, the target would turn red.  The experimenter instructed the subject to “get as 

many green targets as possible.”  After the outward reach, subjects returned to the start 

position at their own pace.  Subjects had full visual feedback throughout the outward 

portion of the movement, but during the return, visual feedback was eliminated until 

subjects were within a 3 cm radius of the start target, where visual feedback was 

presented as experienced initially in that particular trial.   

  

All subjects performed a four day experiment.  On the first day of the experiment, 

subjects experienced a baseline training condition where they received veridical 

feedback, where visual cursor position displayed true hand position.  On the three 

subsequent days, subjects received altered visual feedback, where the position of the 

visual cursor was rotated with the following positional displacement:   

where x and y are hand coordinates, θ is the angle of rotation, and x’ and y’ are the 

resulting transformed visual coordinates.  The center of rotation coincided with the start 

position. For both experiments the perturbation angle (θ) changed on a trial-by-trial basis, 

beginning with the presentation of the target sphere. 

 

In the Likelihood Experiment, subjects experienced the baseline condition on day 1, 

followed by three subsequent test days.  On each of the test days, the likelihood of 

experiencing a visual rotation was varied across test days.  The test conditions on the 

three test days presented subjects with visual rotations [θ ∈  {30º, 25º, 20º, 15º, 10º, 5º, 

θθ
θθ

cossin'
sincos'

yxy
yxx

+=
−=

 (2.1) 
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0º}].  For each of the tests (days 2-4), subjects were trained in visually perturbing 

environments where they experienced non-zero cursor rotations during 20%, 50%, or 

80% of the trials (Fig. 2.2, A-C).  The order of visual rotations for each test day was 

chosen pseudo-randomly and presented identically to all subjects.   

 

In the Bias Experiment, subjects experienced the veridical baseline condition on day 1, 

followed by three subsequent test days.  Test conditions on the three subsequent test days 

presented subjects with visual environments that all had equal likelihood of experiencing 

a rotation (80%), but varied in the bias of the rotation distribution.  The three test days 

were unbiased (zero bias), weakly biased to the left side of the workspace (weak bias), or 

strongly biased to the left side of the workspace (strong bias).   In the zero bias condition 

each of the angles of visual cursor rotation was drawn from a distribution [θ ∈  {30º, 20º, 

10º, 0º, -10º, -20º, -30º}], where there was an equal chance that a subject received a 

clockwise cursor rotation or a counterclockwise cursor rotation.  The distribution of the 

weak bias condition [θ ∈  {30º, 22.5º, 15º, 7.5º, 0º, -7.5º, -15º}] was weakly biased 

towards counterclockwise rotations; and the distribution of the strong bias condition 

(identical to the 80% likelihood condition) [θ ∈  {30º, 25º, 20º, 15º, 10º, 5º, 0º}] was 

strongly biased towards counterclockwise rotations and contained no clockwise rotations 

(Fig. 2.2, D-F).  The order of visual rotations for each test day in both experiments was 

chosen pseudo-randomly and presented identically to all subjects. 
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The order of presentation of test days was shuffled in each experiment using a Latin 

square approach in order to counterbalance any across day learning effects.  This ensured 

that each possible test day combination was represented twice in each experiment.  

 

Analysis 

 

In each of our experiments, our goal was to understand how single trial errors influenced 

predictive control of subsequent movements.  The overall movement generated by 

subjects resulted from a combination of feedback and predictive control.  In order to 

analyze these movements we employed two techniques, subtraction of full movement 

trajectories (Triplet analysis) and state space modeling, to identify and remove feedback 

components to isolate and quantify predictive control.  We used perpendicular 

displacement at position at peak speed as a scalar metric to evaluate visuomotor 

adaptation.  This measure is a quantitative assessment of the feedforward or predictive 

control of movement (Thoroughman and Shadmehr, 2000).   

 

Triplet Analysis 

 

Our first analysis implemented a qualitative metric for full trajectory adaptation.  The 

goal of this analysis was to determine how feedback obtained from the previous 

movement was applied to the next movement.  To complete this analysis we averaged 

full cursor trajectories across all subjects, and computed a subtraction to examine the 

predictive portion of the trajectory: 11 −+ −= nnn movementmovementtriplet .  To remove 
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the effect of feedback control induced by individual rotation strengths (Fig. 2.3, A), we 

subtracted the mean cursor response corresponding to the rotation strengths experienced 

on movement n-1 and movement n+1, (Fig. 2.3, B).  Lastly, we subtracted the mean 

adjusted movement n-1 from mean adjusted movement n+1 to identify the effect of the 

perturbation in movement n on movement n+1.   

 

 

 

 

 

 

 

 

 

 

We reduced the data and tested hypotheses by examining adaptation of mid-movement 

hand position; which was identified as displacement of the hand position perpendicular to 

the target direction at the time of peak speed.  These scalars were averaged and subtracted 

as described above to calculate the dependence of adaptation on perturbation strength.  

Linear fits were performed to calculate slope of perpendicular displacement change as a 

function of rotation strength. Slopes were calculated for each of these adaptation 

functions and tested for significance across bias and likelihood conditions. 
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Figure 2.3: Triplet analysis: A: Cursor trajectories as viewed by the participant, B: mean 
subtracted trajectories, C: Resulting trajectories after (n+1)-(n-1) triplet subtraction. 
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State-space Analysis 

 

We also analyzed adaptation using a state-space model (similar to the one described in 

Fine and Thoroughman 2007).    The two equations of the state-space model parameterize 

how error within a movement and how adaptation across movements depend on 

perturbation strength.   

)(ˆˆ
)ˆ(

1 iSRAR

RRDx

nn

nnn
v

+∗=

−=

+

 (2.2) 

The hidden state of the model, R̂ , represents the subjects’ expectation of the visual 

rotation.  The model output (x) represents the movement error and depends on the scalar 

parameter D and the difference between the actual rotation value on a single trial )( nR  

and the subjects’ expectation of rotation )ˆ( nR . The updated expectation of rotation )ˆ( 1+nR  

on the next movement depended on two terms: multiplying the previous modeled 

estimation by a scalar “forgetting” factor A, and a sensitivity vector S
v

 (1 x 7) which 

parameterizes how adaptation depends on each visual rotation strength.  Each component 

of the sensitivity vector corresponded to a rotation strength; for each particular 

movement, i indexes a particular perturbation type, including a component for the zero 

degree (veridical) condition.    
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We used the Gauss-Jordan method to optimize for D, A, and S
v

 that minimized the 

square-difference between predicted and actual participant performance (Fine and 

Thoroughman 2007).  The model-generated response to perturbations relied on all of 

these parameters, so we used the best-fitting parameters to construct a generative model. 

 We used this model to transform a time-series of perturbation strengths into movement 

error (as in Scheidt et al. 2001).  We then repeated our triplet analysis (detailed above) on 

this generated movement error to create a sensitivity metric.  We then bootstrapped 

(described below) triplets of model output (x) to determine significance. 

 

Model performance was evaluated by computing variance accounted for (VAF).  VAF 

was calculated as a function of the residual error (model – data) to original data error. 

2

2

1
data

residualVAF
σ
σ

−=  (2.3) 

We observed that our model accounted for over 98% of the variance observed in each of 

the six original data conditions, with small amounts of residual error (RE).  (Residuals 

error (cm) Likelihood: 20% = 0.0121, 50% = 0.0109, 80% = 0.0119; Bias: zero = 0.0195, 

weak = 0.0217, strong = 0.0121). 

 

 Statistical significance 

 

We tested statistical significance using standard t-tests, repeated measures ANOVA, 

mixed effects ANOVA, and bootstrapping (to calculate significance within a group or 

across conditions).  A repeated measures ANOVA was used to analyze statistical 

significance between experienced test conditions.  A mixed effects ANOVA was used to 
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analyze interactions between test day experienced and the order in which subjects 

experienced test days.  Tukey post-hoc tests were completed for all ANOVAs to 

determine level of significance. 

 

The bootstrap was used to identify whether a single group had a summary metric 

significantly different than zero.  To compute the bootstrap we randomly selected a 

subject from a pool of 12 subjects, then replaced that subject and selected again to build a 

resampled group of 12 subjects.  We then averaged the magnitude of subject response 

across our resampled group.  From this resampled group data we then computed 

sensitivities ( S
v

) as described above for our state-space model.  In order to calculate 

adaptation, we subtracted the movements before and after each perturbation type to 

obtain a value of the strength of induced adaptation.  These calculations were then 

repeated 1,000 times and performed linear fits on the resulting sensitivities to calculate 

1,000 slope values.  With these 1,000 slope values we then sorted the distributions of the 

resulting slope values to obtain our p values and 95% confidence intervals (Efron and 

Tibshirani 1998).        

 

All metric ranges indicate 95% confidence intervals of the mean. 

 

 

RESULTS 
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We observed that subjects experiencing changes in likelihood distribution adopted 

adaptive strategies that scaled with the magnitude and likelihood of the experienced 

rotation.  In contrast when we varied the distribution of bias across testing days, we 

observed that adaptive sensitivity not only depended on what type of visual environment 

the subject experienced on that immediate testing day, but could also be influenced by 

adaptive strategies learned in prior days’ environments.   

 

Likelihood Experiment Results – Effects of Likelihood 

 

The first group of 12 subjects experienced visual perturbations of the same 

counterclockwise rotation but with varying likelihoods (Fig. 2.2, A-C).  We averaged 

individual cursor trajectories across all subjects for each visual rotation strength to 

characterize the central tendency for group behavior during each test day (Fig. 2.4, A-C).  

This average revealed that subjects experienced kinematic errors that scaled with the 

magnitude of the visual rotation.  We then calculated full trajectory triplet adaptation by 

subtracting the full trajectory before and after a single movement.  These responses were 

then averaged across subjects and rotation strengths for each experimental day (Fig. 2.5, 

A-C).  We observe that a change in counterclockwise rotations elicited a change of 

response in the clockwise direction from subjects in all three conditions, but as we 

increased likelihood from 20% to 80%, subjects became more sensitive to individual 

rotation strengths, as shown by the clustering of adaptive hand trajectories in the 20% 

likelihood condition and the splaying of hand trajectories in the 80% likelihood condition 

(Fig. 2.5, A-C). 
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Mid-movement adaptation was calculated using triplet analysis of perpendicular 

displacement at peak speed (Fig. 2.6). By performing a linear fit for each likelihood 

condition (mean slope ± CI: 20%: 0.0049 ± 0.0015; 50%: 0.0061 ± 0.0017; 80%  

 

 

 

 

 

 

 

 

 

 

likelihood: 0.0089 ± 0.0021) we found that the slope changed significantly as a function 

of test day experienced (repeated measures ANOVA, p = 0.004).  A tukey post-hoc 

analysis revealed a significant difference between 20% and 80% likelihood (p < 0.05) and 

non-significant differences between 50% and 80% likelihood (p > 0.05), and 20% and 

50% likelihood (p > 0.05).  

 

Figure 2.4: Visual cursor trajectories averaged across all movements and subjects for individual 
visual rotation strengths as a function of likelihood.  Asterisks indicate the average position at peak 
speed for each visual rotation strength. 
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To increase the sensitivity of our measurements we utilized a state-space model to 

quantify trial-by-trial adaptation.  The main advantage of using this model is that this 

method of system identification utilizes the full history of trial-by-trial movements 

experienced by subjects, taking into account all movements that subjects experienced up 

to that time point.  Processing the full history of movements through the state-space 

equation allows for precise identification of sensitivity.   

 

 

 

 

 

 

 

 

 

We found the parameters D, A, and S
v

that best fit our data.  Since the evolution of error 

depended on all three parameters (Eq. 2.2), we generated a time series of error using the 

intact model and calculated a triplet analysis parallel to our analysis of the subject data.  

When we performed this analysis across all 12 subjects, we observed significant 

differences between 20% (slope: 0.0050 ± 0.0014) and 80% likelihood (slope: 0.0077 ± 

0.0021), and 50% (slope: = 0.0060 ± 0.0016) and 80% likelihood (bootstrap: p = 0.009, p 

= 0.008, respectively).  We did not observe a significant difference between 20% and 

50% likelihood.   
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Figure 2.5: Full trajectory adaptation for subjects experiencing visual rotations.  Adaptation was 
calculated as the difference in displacement before and after a single movement.  Adaptation is 
shown to be increasingly proportional as subjects experience a greater likelihood of visual 
rotations from 20% likelihood to 50% to 80% of the time.  Asterisks indicate the location of the 
average position at peak speed. 
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Figure 2.6:  A and B: Triplet adaptation result for subjects experiencing 20%, 50%, and 80% 
likelihoods. We observed significant differences between the slopes of 20% (0.0049 ± 0.0014) and 
80% (0.0089 ± 0.0020) likelihood (repeated measures ANOVA, p = 0.0004, tukey p < 0.05). No 
significant differences were observed between 20% and 50% (0.0061 ± 0.002) or 50% and 80% 
likelihood.  The difference in these slopes indicates increased adaptive sensitivity with increased 
exposure to rotations.  C and D: Triplet adaptation using state-space quantification for subjects 
experiencing 20%, 50% and 80% likelihoods.  We observe significant differences between the 
slopes of 20% (0.0050 ± 0.0014) and 80% likelihood (0.0077 ± 0.0021), and 50% (0.0060 ± 
0.0016) and 80% likelihood (bootstrap: p = 0.009, p = 0.008, respectively). Error bars indicate 95% 
CI of the mean (*p < 0.05, **p < 0.01). 
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Bias Experiment Results – Effects of Bias 

 

The second group of 12 subjects experienced visual rotations that always occurred with 

80% likelihood, but with varying directional biases (Fig. 2.2, D-F).  We averaged 

individual cursor trajectories across all subjects for individual visual rotation strengths 

(Fig. 2.7).  The average of all cursor trajectories revealed that subjects experienced 

kinematic errors that scaled with the magnitude of the visual rotation.   

 

 

 

 

 

 

 

 

 

Just as in our analysis for the Likelihood Experiment (Fig, 2.4), we calculated adaptation 

by subtracting the full trajectory before and after a single movement.  These responses 

were then averaged across subjects and rotation strengths for each experimental day (Fig. 

2.8).  We found that the adaptive response to each perturbation was complexly dependent 

on both perturbation strength and within-day perturbation bias.  Subjects adapting to the 

zero bias condition and the weak bias condition elicited large errors with large rotation 

strengths and smaller errors with small rotation strengths (Fig. 2.8, A-B).  However, the 
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Figure 2.7: Visual cursor trajectories averaged across all movements and all subjects for 
individual visual rotation strengths as a function of bias.  Asterisks indicate the position at peak 
speed for each visual rotation strength. 
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adaptive trajectories of strong bias appeared to be relatively insensitive to rotation 

strength, as shown by a clustering of adaptive responses independent of visual rotation 

magnitude (Fig. 2.8, C). 

 

 

 

 

 

 

 

 

 

 

In order to more closely investigate our observations in Fig. 2.8, we examined adaptive 

behavior at perpendicular displacement at peak speed across all movements.  We 

calculated adaptation by averaging over triplets of movements:  for each instance of 

rotation strength, we subtracted movement error in the previous movement (m-1) from 

the subsequent movement (m+1).  When we calculated the linear fit for adaptation (mean 

slope ± CI: zero bias = 0.0048 ± 0.0013, weak bias = 0.0063 ± 0.0012, strong bias = 

0.0045 ± 0.0025), we observed non-significant effects of bias (repeated measures 

ANOVA, p = 0.3110, Fig. 2.9, A-B).  
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Figure 2.8: Full trajectory adaptation for subjects experiencing visual rotations.  Adaptation was 
calculated as the difference in the amount of positional error experienced before and after a single 
movement.  Adaptation is shown to be highly proportional in the zero bias and weak bias conditions, 
but less so in the strong bias condition.  Asterisks indicate the location of the average position at 
peak speed. 
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To increase the sensitivity of our measurements we utilized a state-space model to 

quantify trial-by-trial adaptation.  We found the parameters for D, A, and S
v

that best fit 

our data.  Since the evolution of error depended on all three parameters (Eq. 2.2), we 

generated a time series of error using the intact model and calculated a triplet analysis  

Rotation (deg)

Rotation (deg)

A
da

pt
at

io
n 

(c
m

)

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

Zero
Weak
Strong

A

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

A
da

pt
at

io
n 

(c
m

)

Zero
Weak
Strong

C

Zero Weak Strong
0

0.002

0.004

0.006

0.008

B

S
lo

pe
 (c

m
/d

eg
)

*

S
lo

pe
 (c

m
/d

eg
)

Zero Weak Strong
0

0.002

0.004

0.006

0.008

0.01

D *
**

Rotation (deg)

Rotation (deg)

A
da

pt
at

io
n 

(c
m

)

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

Zero
Weak
Strong

A
da

pt
at

io
n 

(c
m

)

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

Zero
Weak
Strong

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

Zero
Weak
Strong

Zero
Weak
Strong

A

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

A
da

pt
at

io
n 

(c
m

)

Zero
Weak
Strong

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

A
da

pt
at

io
n 

(c
m

)

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

-30 -20 -10 0 10 20 30
-0.2

-0.1

0

0.1

0.2

A
da

pt
at

io
n 

(c
m

)

Zero
Weak
Strong

Zero
Weak
Strong

C

Zero Weak Strong
0

0.002

0.004

0.006

0.008

B

S
lo

pe
 (c

m
/d

eg
)

Zero Weak Strong
0

0.002

0.004

0.006

0.008

B

Zero Weak Strong
0

0.002

0.004

0.006

0.008

Zero Weak Strong
0

0.002

0.004

0.006

0.008

B

S
lo

pe
 (c

m
/d

eg
)

*

S
lo

pe
 (c

m
/d

eg
)

Zero Weak Strong
0

0.002

0.004

0.006

0.008

0.01

D *
***

S
lo

pe
 (c

m
/d

eg
)

Zero Weak Strong
0

0.002

0.004

0.006

0.008

0.01

D

Zero Weak Strong
0

0.002

0.004

0.006

0.008

0.01

Zero Weak Strong
0

0.002

0.004

0.006

0.008

0.01

D *
**

Figure 2.9: A and B: Triplet adaptation results for subjects experiencing zero, weak, and strong 
biases. We observed non-significant differences between slopes of the Bias Experiment (zero 
slope = 0.0041 ± 0.0012, weak slope = 0.0063 ± 0.0012, strong slope = 0.0043 ± 0.0025).  C and 
D: Triplet adaptation using state-space quantification for subjects experiencing zero, weak and 
strong biases.  We observed significant differences between the slopes of all three conditions: 
zero (0.0047 ± 0.0015), weak (0.0063 ± 0.0018), and strong (0.0024 ± 0.0020) (bootstrap: zero-
weak, p = 0.0127, zero-strong, p = 0.0464, weak-strong, p = 0.003).  Error bars indicate 95% CI 
of the mean (*p < 0.05, **p < 0.01). 
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parallel to our analysis of the subject data.  When we performed this analysis across all 

12 subjects, we observed significant differences across all three bias conditions (mean 

slope ± CI: zero: 0.0047 ± 0.0015, weak: 0.0063 ± 0.0018, strong: 0.0024 ± 0.0020; 

bootstrap: zero vs. weak bias, p = 0.0127, zero vs. strong bias, p = 0.0464, and weak vs. 

strong bias, p = 0.003, Fig. 2.9, C-D).  Our results show that the adaptive strategies that 

subjects adopt are dependent on environmental statistics, despite experiencing some of 

the same magnitude of visual rotations across days.   

 

Compared to the zero and weak bias conditions, we see a marked flatness of slope in the 

strong bias condition.  This suggests that subjects adopt different adaptation strategies 

across days, and are least sensitive to individual visual rotations within the strong bias 

condition than compared to the zero and weak bias conditions (Fig. 2.9, C-D).   The 

decreased sensitivity in the strong bias condition is unusual in its inversion of our 

previous findings in haptic learning: strong bias in force perturbations induced 

heightened, not lessened, sensitivity (Fine and Thoroughman 2007). 

 

These results led us to consider the post-hoc establishment of a hypothesis that different 

daily experiences could influence adaptive strategy on a subsequent day.  Comparing 

results from our two experiments we observed a discrepancy in behavior exhibited by 

two groups of subjects experiencing the same condition: the 80% likelihood condition in 

the likelihood and the strong bias condition in the Bias Experiment.  Both of these 

conditions presented subjects with identical pseudo-random sequences of visual rotations. 
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To investigate this discrepancy we separated our subjects into subgroups based on order 

of bias and likelihood presentation to investigate possible across day effects. 

 

Across day effects 

 

In our two experiments, the conditions of the 80% likelihood day of the Likelihood 

Experiment and the strong bias day of the Bias Experiment were identical; both groups of 

subjects experienced the same sequence of the same perturbations.  The observed cursor 

trajectories of the two experiments are qualitatively similar (Figs. 2.3, C and 2.6, C), but 

when we assess full trajectory adaptation to individual rotation strengths, we see a 

strongly sloped adaptive profile in the 80% likelihood condition, compared to a far 

shallower adaptive profile in the strong bias condition, suggesting that subjects 

participating in the strong bias condition display reduced adaptation (Figs. 2.4, C and 2.7, 

C).   

 

To draw across experiment comparisons, we compared our prior triplet analyses across 

80% likelihood and the strong bias condition (Figs. 2.6, A and 2.9, A).  When we directly 

compare the slopes of the adaptation responses from the Likelihood Experiment (Fig. 2.6, 

A-B), to those from the Bias Experiment (Fig. 2.9, A-B) we see subjects adopt a more 

strongly sloped error response during the 80% likelihood day (slope = 0.0089 ± 0.0020), 

while subjects de-emphasized rotation strength in their adaptation response shown by a 

decrease in adaptive slope during the strong bias day (slope = 0.0045 ± 0.0025, t-test p = 

0.0056) (Fig. 2.10).  This was a striking result, because the sole difference between these 
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two conditions was the perturbations experienced in other training days.  This suggested 

that the adaptive strategy that subjects were using was being altered across days. 

 

 

 

 

 

 

 

 

The difference between strong bias and 80% likelihood demonstrates that adaptive 

behavior could be influenced by previous days’ experience.  We suspected that the 

flatness in the adaptive response of our strong bias condition was due to across day 

effects resulting from adaptive processes being transferred beyond a single day of 

learning.  We then investigated our results from Fig. 2.10 by separating our subjects from 

the Bias Experiment into two groups of four subjects based on the order that they 

experienced the test days.  The first group of four subjects experienced the strong bias 

day on the first test day, and the second group of four subjects experienced the strong 

bias day on the last test day.  We performed a triplet analysis and linearly fit adaptation 

mapped to experience rotation and compared slopes across groups (Fig. 2.11).  We found 
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Figure 2.10: Adaptation response for subjects experiencing strong bias 
and 80% likelihood conditions.  We observed a significant difference (t-
test, p = 0.0056) between the slopes of these two identical days, 
suggesting that their adaptive responses were context driven in these two 
separate experiments.  
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a significant interaction of testing condition (zero, weak, strong) and the order in which 

test days were presented (strong first vs. strong last) (mixed effects ANOVA, p = 

0.0026).  Additional post-hoc analyses revealed a significant interaction of the steeply 

sloped strong bias condition for subjects that experienced strong bias first (slope: 0.0086 

± 0.0015, Fig. 2.11, A) when compared to the shallowly sloped strong bias condition for 

subjects that experienced strong bias last (slope: 0.0017 ± 0.0026, p < 0.05, Fig. 2.11, B).   

 

 

 

 

 

 

 

 

Our results demonstrate that adaptation to changes in bias can be affected by across day 

experience.  We see a significant decrease in adaptive sensitivity for the strong bias 

condition when subjects experience the strong bias day on the last day of their testing 

experience (Fig. 2.11, A).  However, when we examine adaptive responses for subjects 

experiencing the strong day on the first day of testing, we see that the strong bias 
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Figure 2.11: Triplet adaptation for subject groups experiencing strong bias on the first 
experimental day (A) and on the last experimental day (B).  We found significant decreases in 
adaptation to the strong bias condition when subjects experienced strong bias on the last day 
(mixed effects ANOVA, p = 0.0026, tukey p < 0.05).  
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condition demonstrates a highly sloped adaptive response, similar to that observed for 

80% likelihood in the Likelihood Experiment (Figs. 2.11, B and 2.6, A). 

 

 

 

 

 

 

 

 

 

 

 

 

We also investigated the presence of across day effects during the 80% likelihood day in 

the Likelihood Experiment by separating our subject groups into two four subjects groups 

based on the order they experienced the experimental days.  One group of four 

experienced the 80% likelihood on the first experimental day and the second group 

experienced 80% likelihood on the last experimental day.  We found no significant 

effects of day order when we compared adaptive slope responses for 20%, 50%, and 

80%, but a significant effect of likelihood condition (mixed effects ANOVA, p = 0.7827, 

p = 0.0488, respectively, Fig. 2.12).  We conclude that subjects experiencing differences 

in environmental biases adopt visuomotor strategies highly susceptible to across day 
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Figure 2.12: Triplet adaptation for subject groups experiencing 80% likelihood on the first day 
of experimental training (A) and 80% likelihood on the last day (B). We found no significant 
interaction of day order and likelihood condition (mixed effects ANOVA, p = 0.7827), but 
observed a significant effect of likelihood condition, p = 0.0488, tukey > 0.05).  
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effects, whereas subjects adapting to changes in environmental likelihood do not change 

their adaptive strategy according to across-day experiences.    

  

  

DISCUSSION 

 

In order to adapt to new visuomotor experiences it is necessary to integrate error 

responses from both vision and proprioceptive signals.  In our current study we have 

established that, as in learning with haptic perturbations (Fine and Thoroughman 2007), 

the neural processes underlying these adaptive changes are not fixed, but instead change 

rapidly with the demands of the environment.  However, we see that the visuomotor task 

demands can quickly influence not only adaptation within a day, but across days.  We 

found in the Likelihood Experiment that when subjects experienced an increase in the 

likelihood of forces we saw a stronger mapping of sensed error into incremental 

adaptation.  The analysis of all subjects in our Bias Experiment revealed unusual results, 

including reduced sensitivity when subjects experienced the strong bias condition.  In our 

similar study using haptic perturbations (Fine and Thoroughman, 2007), we found that in 

both the bias and likelihood manipulations, the environments with larger average 

deviation from baseline induced larger sensitivity.  We term “saliency” this magnitude of 

deviation.  Here, in our visuomotor task, the Likelihood Experiment generated similar 

results, but the Bias Experiment generated very dissimilar results.   
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We discovered that our two experimental groups responded differently to identical 

training sets with very different adaptive sensitivities (Fig. 2.10).  This difference 

suggested that environments experienced on other training days could influence trial-by-

trial adaptation.  Once we separated our experimental groups into subgroups based on 

order of training day presentation, we found that subjects who experienced the strong bias 

condition first responded with highly sloped sensitivities.  We interpret the response of 

rotations experienced on the first experimental day to be a naïve state.  This result, 

coupled with the result from our Likelihood Experiment, now fully correlates with our 

haptic findings: larger saliency, which induces a larger change in behavior on average, 

induces stronger trial-by-trial adaptation.  The subgroup of subjects who experienced the 

strong bias perturbations on the last day, however, produced shallowly sloped 

sensitivities which drove the overall group response (Figs. 2.9, C-D) to be shallow.  The 

entirety of our subgroup results reveal that the shallow sensitivity we observe when 

subjects experience the strong bias condition last arises primarily from prior days’ 

experience, within which subjects have previously experienced both zero and weak 

perturbations. 

 

Consideration of visuomotor control vs. haptic control 

  

While the adaptation patterns we observed in our experiments closely resemble those 

described in Fine and Thoroughman (2007), we also observe significant across day 

effects that were not present in the haptic experiment.  This brings to light obvious 

systemic differences between visuomotor and proprioceptive adaptive processing in 
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humans.  There is evidence that sensory representation of force perturbations and 

subsequent errors are learned in the natural time scale of spindle afferents acting to 

encode limb state (Hwang and Shadmehr 2005).  In addition, when humans do adapt to 

these haptic perturbations, the limb faces a host of biomechanical filters that act to 

transform sensed error into motor output (Valero-Cuevas 2005).  When subjects adapt to 

visuomotor rotations, they do not face the same physiological constraints as when people 

adapt to haptic perturbations.  Instead, in visuomotor tasks, incoming visual signals act to 

plan and update movement performance in extrinsic coordinates on a moment-by-

moment basis (Sarlegna and Sainburg 2009; Sober and Sabes 2003).   

 

Across day effects 

 

We observed significant across day effects for adaptation to the strong bias condition.  

The adaptive responses for subjects experiencing the strong condition first (Fig. 2.11, A) 

and the strong condition last (Fig. 2.11, B) were likely masked by a blurring of response 

that occurred when we averaged subjects in our triplet analysis (Fig. 2.9, A).  When we 

separated our subjects into subjects that experienced strong bias first and subjects that 

experienced strong bias last, we see a far clearer picture of the magnitude of across day 

effects in the strong bias condition (Fig. 2.11).  We did not observe any across day effects 

in experiment one (Fig. 2.12), which suggests something particularly significant about the 

nature of the environmental dynamics presented in the Bias Experiment.   
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In a single sitting, people have demonstrated a nonlinear mapping of visually sensed 

reaching error into subsequent adaptation. This nonlinear mapping can be explained by 

the adoption of a credit assignment strategy by the brain; credit is assigned for self and 

environmentally generated errors: small errors emerging more naturally from self-

generated sensorimotor noise (Wei and Kording 2009).  In the Bias Experiment 

experiment, people generated stronger or weaker adaptation to the same stimuli 

depending on prior day’s experience.  We see no evidence of lessened linearity across 

days, suggesting that credit assignment does not likely change with previous experience.    

 

Implications of across-day effects 

 

In haptic and visuomotor learning, several studies have characterized the quantitative 

features of motor memory that carry across training days.  Some of these studies 

investigated the “savings” or retained learning (Krakauer et al. 1999; Zarahn et al. 2008; 

Smith et al. 2006; Joiner and Smith 2008); some investigated the transfer across tasks; 

and others investigated the fragility or robustness of motor memory when subjects train 

in opposing tasks (Tong and Flanagan 2003; Donchin et al. 2002; Caithness et al. 2004). 

Our present finding characterizes not the motor memory carried across days, but 

alterations to the adaptive process itself.  In haptic adaptation we found that environments 

could, within a training day, induce either categorical or (more traditional) proportional 

adaptive strategies.  Here, we observed noticeably decreased adaptation with an 

interaction between across-day experiences when the strong bias environment occurred 

last, but more traditional proportional adaptation when strong occurred on the first 
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experimental training day.  The insight we gained from our haptic studies was that 

learning processes are not fixed, as postulated by the delta rule and its progeny 

(Rumelhart et al. 1985, Pouget and Snyder 2000) but rather are fluid and quickly adjusted 

within environmental demands.  Here we have gained the additional insight that learning 

processes can retain information from prior day’s experiences, combine that information 

with current environmental demands, and shape the real valued transformation of error 

into adaptation. 

 

Cognitive strategies for behavioral control 

 

Adaptation to visuomotor stimuli may be more susceptible to the use of cognitive 

strategies by subjects than those who experience haptic perturbations.  Sudden visual 

rotations are highly detectable to the observer, and instead of adopting adaptive strategies 

that involve motor adaptation, subjects may engage cognitive strategies to combat their 

new experiences (Kagerer et al. 1997, Malfait and Ostry 2004, Michel et al. 2007, Saijo 

and Gomi 2010, Taylor and Ivry 2011).  When we observe across-day effects, it is 

possible that when these subjects experience strong bias on the last day, the rotations in 

the strong bias are less detectable, because they are cognitively less distinct after having 

already experienced the zero and weak bias day which have larger rotation distributions.  

 

Alternatively, it is possible that these cognitive strategies may be the result of a type of 

“learned helplessness”.  Subjects exhibited trial-by-trial learning on the zero bias day, but 

the lack of bias meant that every small positive learning step was balanced by a negative 
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one, adding to zero overall memory built.  We believe that this experience might relate to 

cognitive behavior modeled by Huys and Dayan (2009) in which failure to succeed, 

perform, or learn on one task diminishes effort and processing in subsequent tasks.  The 

lessened sensitivity to perturbation when strong bias is experienced last may reflect a 

quantitative consequence of "helplessness" avoided when strong bias is experienced first.   

 

Sensorimotor transformations of error require the brain to be predictive in that it requires 

the use of past knowledge to update and improve new and existing adaptive strategies.  

However, we see that we can influence the adaptive process itself across days, and that 

information from one adaptive experience can influence processing on a subsequent day.  

This effect is dependent on surrounding environmental context, and suggests that the 

brain is continually modifying adaptive processes dependent on past and current 

experiences.   
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ABSTRACT 

 

In order to perform simple everyday tasks, we use visual feedback from our external 

environment to effortlessly generate and guide our movements.  However, the effects of a 

disease resulting in motor impairment, like Parkinson’s disease (PD), can make everyday 

tasks like reaching for a cup extremely difficult.  It is unclear what the effects of PD are 

on sensorimotor integration, specifically the integration of visual and proprioceptive 

signals.  We tested adaptation to changes in visual feedback in patients with PD and age-

matched controls to determine the effects of PD on the visual control of movement.  

Subjects were tested on two classes of visual perturbations: visual rotations and visual 

gains, allowing us to test adaptive sensitivity to changes in different types of visual 

feedback.  In addition, we also tested trial-by-trial error learning via pseudo-randomly 

introduced catch-trials, designed to induce transient visual errors.  We found that PD 

subjects more completely adapted to visuomotor rotations compared to controls.  In 

contrast, we discovered that PD subjects display significantly reduced adaptation to 

changes in visuomotor gain when compared to control subjects.  We conclude that 

damage to the basal ganglia can negatively impact ability to adapt to visuomotor gains, 

while adaptation to rotations remains intact.  Our results support the theory that 

adaptation to visual gains and rotations are separable processes. 
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INTRODUCTION 

 

Everyday we use visual information to inform the planning and production of movement.  

Human motor control can be disrupted in a variety of neurodegenerative disease, which 

can have deleterious effects on motor production and maintenance.  Parkinson’s disease 

(PD) is the second most prevalent neurodegenerative disease, affecting approximately 1 

million individuals across the United States (Lees et al. 2009, de Lau and Breteler 2006).  

The cause of PD is largely unknown, but deficits in motor control manifest due to 

significant loss of dopaminergic neurons in the substantia nigra, pars compacta (Albin et 

al. 1989, Mink, 1996).; one of the nuclei comprising the basal ganglia.  The basal ganglia 

are a set of deep brain nuclei involved in the production and execution of movement 

(Horak and Anderson 1984a, 1984b), motor learning (Graybiel et al. 1994, Vaillancourt 

et al. 2001), motor sequence learning (Lehericy et al. 2005), and visuomotor control of 

movement (Turner et al. 2003, Vaillancourt et al. 2003, Krakauer et al. 2004, Nixon et al. 

2004, Seidler et al. 2006).  The motor symptoms that characterize PD are often only 

partially alleviated by traditional dopamine replacement therapies.  Additionally, these 

medications have negative side effects on movement time (Kwak et al. 2010), tracking 

ability (Au et al. 2010), and motor learning (Mongeon et al. 2009).  Aversive side-effects 

and incomplete understanding of PD pathophysiology make it imperative to understand 

the underlying mechanisms that govern motor learning and adaptation in people with PD. 

 

The basal ganglia are thought to contribute to sensorimotor transformations necessary for 

integrating information across multiple sensory domains (Graybiel et al. 1994, Jobst et al. 
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1997, Doyon et al. 2003, Desmurget et al. 2003, Contreras-Vidal and Gold 2004, Nowak 

and Hermsdorfer 2006).  These transformations are necessary for the combination of 

sensory signals received from visual and motor feedback.  It is believed that these 

sensorimotor integration mechanisms can be impaired in patients with PD (Abbruzzese 

and Berardelli 2002, Messier et al. 2007, Paquet et al. 2008), specifically affecting 

adaptation to changes in visual feedback (Contreras-Vidal et al. 2003, Fernande-Ruiz et 

al. 2003, Messier et al. 2007).  While these studies suggest that the integration of visual 

feedback with motor information is impaired in PD, it is unclear what area of the brain 

mediates the moment-to-moment update of these signals to drive visuomotor adaptation.  

Current literature suggests that the basal ganglia are essential to updating these types of 

sensory errors on a trial-by-trial basis (Brown et al. 2006, Kempf et al. 2007, den Ouden 

et al. 2010).   

 

While these studies attribute visuomotor adaptation and function to the modulation of 

activity in the basal ganglia, it is unclear whether there is a direct contribution of the 

basal ganglia to visuomotor adaptation.  Current literature does not consistently 

characterize impairment of visuomotor learning in PD.  Visuomotor adaptation has been 

ill-defined in PD, and has been described in a variety of ways ranging from completely 

intact during continuous visual feedback (Inzelberg et al. 2008, Marinelli et al. 2009); 

intact adaptation, but with impaired after-effects during prism learning (Fernandez-Ruiz 

et al. 2003), and with completely impaired adaptation and subsequent after-effects during 

continuous visual feedback (Contreras-Vidal and Buch 2003).  While these studies were 

designed to ask questions about visuomotor function in PD they fail to ask how these 
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visuomotor transformations take place, or what neural mechanisms are responsible for 

behavioral output.  Additionally, these studies have all evaluated patients with PD on 

their daily levodopa medication.  We feel that by testing patients off medication, we will 

observe a truer representation of visuomotor adaptation and degeneration in the basal 

ganglia.  In total, these studies fail to paint a cohesive story of the ability or impairments 

present in visuomotor adaptation in PD patients.  We believe that by observing how 

subjects with PD learn these perturbations and then experience unexpected errors, we can 

better understand the mechanisms by which learning occurs, while observing error 

responses that are more ecologically valid.  By utilizing people with PD as a model to 

investigate problems of visuomotor control we will be better able to understand the 

underlying mechanisms of visuomotor error control and the contribution of the basal 

ganglia to visuomotor adaptation.   

 

Performing a reaching movement while using visual feedback requires the vectorized 

planning of two components of the visual target: direction (angle of reach) and extent 

(amplitude of reach) (Ghez et al. 1991, Gordon et al. 1994, Pine et al. 1996, Krakauer et 

al. 2000).  This theory has been well-characterized and supported via the discovery of 

differences in rates of adaptation to visual perturbations of extent and direction, as well as 

differences in the generalization of motor behavior for each of these modalities of 

visuomotor information across multiple targets (Pine et al. 1996, Krakauer et al., 2000).  

Visuomotor extent and direction can also be distinguished by their neuroanatomical 

differences, which can be seen through separate neural activation patterns (Krakauer et al. 

2004).  These activation patterns are differentially characterized by cortical activations in 
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response to changes in visuomotor direction (rotations), and subcortical activations in the 

basal ganglia in response to changes in visuomotor extent (visual gain).  Alternatively, 

activation of the basal ganglia has also been found for adaptation to visuomotor rotations 

(Seidler et al. 2006); suggesting that the underlying neural mechanisms governing these 

separate elements of visuomotor planning are not well-defined.   

 

Overall, there is a host of evidence that characterizes both impaired and intact visuomotor 

adaptation in PD, but several aspects are unclear: 1.) whether the basal ganglia are 

directly involved in the process of visuomotor adaptation, 2.) whether or not visuomotor 

adaptation mediated via the basal ganglia would result in impaired visuomotor processing 

in patients with PD, and 3.) whether the planning aspects of visuomotor control are 

differentially affected due to basal ganglia mediated visuomotor control. 

 

In order to investigate the properties of visuomotor adaptation in patients with PD, we 

examined reaching kinematics in the presence and subsequent absence of unexpected 

visual perturbations of rotation (direction) and gain (extent).  We hypothesized that 

patients with PD will show impaired adaptation to visuomotor perturbations compared to 

their age-matched counterparts, with these deficits being more pronounced during 

adaptation to perturbations of extent due to behavioral and neural separability of 

visuomotor extent and direction.  

 

To test our hypotheses, we trained patients with PD on visuomotor perturbations and 

subsequently presented them with pseudorandomly interspersed trials where the 
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perturbation was removed.  We aimed to characterize adaptation, magnitude of error and 

unlearning from prior adaptation.  These techniques and methods allow us to elucidate 

differences in the mechanisms driving visuomotor adaptation and the ability or 

impairments stemming from PD. 

 

METHODS 

 

Subject Groups 

 

Our experiment tested visuomotor adaptation in two groups of participants: Group 1, 

patients with PD off levodopa therapy (N = 8); Group 2, age-matched control subjects (N 

= 9) with no prior history of neurological deficits.  All subjects were required to have 

normal or corrected-to-normal vision, as well as the ability to make a 10 cm reaching 

movement.  Subjects in the PD group made reaching movements with the arm that 

corresponded to the side of the body of initial motor symptom manifestation; all subjects 

tested had symptoms that presented unilaterally.  Subjects in the control group were 

matched for handedness and side of task performance for our PD group (Table 3.1).   

 

All patient participants were referred by the Neurology department at the Washington 

University School of Medicine.  Inclusion criteria required that all patient subjects have 

mild to moderate Parkinson’s disease (Hoehn and Yahr, stage 2-3), as diagnosed by their 

referring neurologist.   

 



  Chapter 3. 

 61

 

 

 

 

 

 

 

 

 

Subjects in the PD group had motor impairments evaluated on each of two study visits by 

a certified clinical evaluator.  Motor impairments were rated by the Unified Parkinson’s 

Disease Rating Scale (UPDRS), motor evaluation section.  Patients in the PD group were 

taking daily levodopa or carbidopa therapy and were required to abstain from their 

therapy 12 hours prior to each testing session for purposes of the study (Khor and Hsu 

2007).  Subjects in both groups were evaluated for cognitive impairments using the mini-

mental state exam (MMSE).  Inclusion criteria required that study participants score at 

least a 24 out of 30 possible points.  All subjects tested scored at least 28 out of 30 (Table 

3.1). 

 

All protocols were approved by the Washington University Human Research Protection 

Office (HRPO), and all subjects provided signed consent.  Subject demographics are 

listed in Table 3.1. 

 

29.5 ± 0.929.4 ± 0.7MMSE score
24 ± 6.5-----------UPDRS exam score

7 Right/1 Left8 Right/ 1 LeftHandedness
6 Right/2 Left7 Right/2 LeftSide of task performance
6 Right/2 Left-----------Side of disease onset

11.1 ± 4.4-----------Disease duration (years)
4 Female/4 Male5 Male/4 FemaleSex

71.4 ± 7.471.1 ± 5.4Age
PD OFF (n=8)Control (n=9)

29.5 ± 0.929.4 ± 0.7MMSE score
24 ± 6.5-----------UPDRS exam score

7 Right/1 Left8 Right/ 1 LeftHandedness
6 Right/2 Left7 Right/2 LeftSide of task performance
6 Right/2 Left-----------Side of disease onset

11.1 ± 4.4-----------Disease duration (years)
4 Female/4 Male5 Male/4 FemaleSex

71.4 ± 7.471.1 ± 5.4Age
PD OFF (n=8)Control (n=9)

Table 3.1: Demographics from both subject groups.  PD subjects performed the 
reaching task on the side where their Parkinson’s began.  UPDRS scores demonstrate 
impairment in motor performance for the PD group.  Cognitive ability (MMSE) was 
normal in both groups (p > 0.6).  Values are mean ± standard deviation. 
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Apparatus and task 

 

Subjects performed horizontal reaching movements in a virtual environment.  Reaching 

movements were performed and recorded using a digitizing tablet and pen (Wacon 

Intuous; Wacom Company Ltd. Tokyo, Japan).  Subjects were seated with their elbow 

level to the digitizing tablet and viewed the visuomotor environment through a 

horizontally mounted half-silvered mirror.  Testing was completed in a darkened room so 

that vision of the hand and arm was completely obstructed by light-level and the mirror.   

 

The task required subjects to make ballistic reaching movements from a starting target 

located in the middle of the tablet to an end target 10 cm away from the body.  A 

movement this size is akin to everyday movements, such as using a hairbrush or 

controlling a computer mouse.  Subjects were to make outward reaching movement with 

a time specification of 650 ± 100 ms in order to maintain duration consistency across all 

subjects.  During the task, if the subject satisfied this condition, the end target would turn 

green to signify a “correct” reach.  If the subject moved slower than 750 ms, the end 

target would turn blue, and if the subject moved faster than 550 ms, the end target would 

turn red.  The experimenter instructed each subject to make outward reaching movements 

upon target appearance and that the end target would change color according to the above 

parameters.  Subjects were encouraged to get as many green targets as possible.   
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Subjects made outward movements and were instructed to pause at the end target until it 

disappeared, which signified they could return to the start target.  Visual feedback was 

eliminated during the return portion of the movement until subjects were within 3 cm of 

the start target, where visual feedback was experienced as it had been initially presented 

in that trial. 

 

Participants experienced a variety of perturbations that altered visual feedback by either 

direction (visual rotations) or extent (visual gains) of movement.  All subjects performed 

a two day experiment, where they experienced all of the following visual perturbations: 

clockwise rotation (-30°), counterclockwise rotation (30°), minifying gain (0.5), and a 

magnifying gain (1.5).  Positional displacement was generated using the following 

equation: 

where x and y correspond to values of x and y hand position, θ is angle of rotation, and x’ 

and y’ are the transformed visual coordinates.  Gain displacements were multiplicative of 

hand position and either increased (magnifying) or decreased (minifying) the hand to 

cursor ratio.  The center of both rotational and gain displacements coincided with the 

initial start position (Fig. 3.1).   

 

 

 

 

θθ
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On each testing day, all subjects performed 600 reaching movements that consisted of 

reaching in a baseline condition, a visual rotation, and visual gain.  During testing on Day 

A, subjects first performed 100 baseline reaching movements where visual feedback 

matched hand position.  Subjects then experienced 200 movements in a clockwise 

rotation environment.  Presentation of the second half of all visually perturbing trials 

contained 20% catch-trials where the visual perturbation was pseudorandomly removed 

so that the subjects experienced veridical feedback.  Subjects then experienced 50 

baseline trials to wash-out the effect of the visual rotation, followed by 200 trials in a 

minifying gain condition that contained 20% catch-trials in the last 100 movements, 

followed by 50 baseline trials.  The structure of Day B was identical to Day A, except for 

Minifying Gain Magnifying Gain

Visual Cursor

Hand Position

Counterclockwise RotationClockwise Rotation Minifying GainMinifying Gain Magnifying GainMagnifying Gain

Visual Cursor

Hand Position

Visual Cursor

Hand Position

Counterclockwise RotationCounterclockwise RotationClockwise RotationClockwise Rotation Minifying GainMinifying Gain Magnifying GainMagnifying Gain

Visual Cursor

Hand Position

Visual Cursor

Hand Position

Counterclockwise RotationCounterclockwise RotationClockwise RotationClockwise Rotation Minifying GainMinifying Gain Magnifying GainMagnifying Gain

Visual Cursor

Hand Position

Visual Cursor

Hand Position

Counterclockwise RotationCounterclockwise RotationClockwise RotationClockwise Rotation

Figure 3.1: Depiction of hand paths with the corresponding visual cursor rotations and 
visual gains as seen on the monitor display.  Clockwise cursor rotations rotated 
trajectories in a clockwise direction, counterclockwise cursor rotations rotated 
trajectories in a counterclockwise direction.  Minifying gains decreased the cursor to 
hand ratio, requiring longer reaches, magnifying gains increased the cursor to hand 
ratio, requiring shorter reaches. 
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perturbations experienced.  In Day B subjects experienced a magnifying gain followed by 

a counterclockwise rotation (Fig. 3.2).  All movements were performed in 50 trial blocks 

with a rest between each block of movements to counter arm fatigue.   

 

 

 

 

 

 

 

 

 

 

 

Testing of Day A and Day B were completed one week apart.  Subjects in each group 

were counterbalanced to control for effect of day order presentation.  Half of the subjects 

in each group experienced Day A first, and Day B second (Control group: 5 subjects: Day 

A/Day B, 4 subjects: Day B/Day A; PD group: 4 subjects: Day A/Day B; 4 subjects: Day 

B/Day A).  Due to lack of adaptive signal in both the control group and PD group for the 

magnifying gain condition, we will focus our results and discussion on the minifying gain 

condition. 

 

 

20% catch-trials

Veridical Feedback

(VF)

Visual perturbation
20% catch-trials

Visual perturbationVF VF

Day A

Day B

Clockwise

CounterclockwiseMagnifying

Minifying

Veridical Feedback

(VF)

Visual perturbation Visual perturbationVF VF

Clockwise

CounterclockwiseMagnifying

Minifying

Visual Rotation

Baseline

Visual Gain 

20% catch-trials

Veridical Feedback

(VF)

Visual perturbation
20% catch-trials

Visual perturbationVF VF

Day A

Day B

Clockwise

CounterclockwiseMagnifying

Minifying

Veridical Feedback

(VF)

Visual perturbation Visual perturbationVF VF

Clockwise

CounterclockwiseMagnifying

Minifying

Visual Rotation

Baseline

Visual Gain 

Visual Rotation

Baseline

Visual Gain 

Figure 3.2: Block presentation of visual cursor perturbations across 2 days.  Day A, subjects 
experienced a clockwise rotation and minifying gain.  Day B, subjects experienced a 
magnifying gain and counterclockwise rotation.   In all visually perturbing conditions, 
subjects experienced 20% catch-trials during the second half of perturbation presentation. 
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Analysis 

Measures of adaptation 

 

In this experiment, our goal was to determine the characteristics of visuomotor learning 

and trial-by-trial visuomotor adaptation in patients with PD.  We aimed to determine 

differences in adaptation to visual perturbations of extent and direction to characterize 

how visuomotor error responses influence motor behavior on subsequent movements.  

We examined characteristics of full-trajectory responses and velocity traces to 

qualitatively compare averaged movement responses to visual perturbations.  For 

quantitative analyses, we reduced data to lateral displacement at peak speed and peak 

velocity to analyze the influence of a single movement in a subsequently experienced 

movement (Thoroughman and Shadmehr 2000). 

 

For all subjects and all movements, we calculated position at peak speed.  From these 

values we calculated baseline performance for individual subjects as an average of 

baseline experience (movements 90 to 100) during subjects’ performance on Day A.  For 

each subject, we normalized all positional data by subtracting the calculated baseline 

from position at peak speed for all perturbed movements.  We examined both x and y 

displacement at position at peak speed for experienced rotations and gains, respectively.  

Upon data examination, we determined that x position at peak speed failed to capture the 

lateral displacement induced by the visual rotation.  To more accurately capture the effect 

of the visual rotation, we converted positional data to polar coordinates, then analyzed 

angle of position at peak speed from the new line, connecting start to goal.  
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We observed distinct adaptive differences for asymptote between the PD and control 

groups for rotation experience.  In order to capture the full strength of adaptive 

performance for individual subjects, we computed the amount of adaptation induced by 

the visual rotations by calculating the difference between the immediate response to the 

perturbation (first movement) and the adapted response before the onset of catch-trials 

(average of movements 90-100).  Acquired adaptation for each subject was calculated by 

computing the difference from initial displacement (movement 1) to the perturbation to 

adaptation 100 movements later.  Percentage change was then calculated as acquired 

adaptation divided by the amount of initial displacement. 

 

For analyzing responses to the minifying gain, we computed positional and velocity 

derived adaptation metrics. Metrics for the minifying gain condition utilized y position at 

peak speed to determine the amount of y positional displacement across movements.  

Examination of fuller data sets for individual subjects and individual movements 

indicated that y positional data does not directly capture the true effect of the induced 

gain displacement.  Time series of data revealed velocity-based metrics to capture true 

adaptive changes in response to displacements of gain.  Adaptation was computed as a 

function of change in velocity breadth (movement time) and peak movement velocity.  

Our breadth metric was calculated as the time from the beginning to end for each 

movement.  The threshold for the beginning and end of each movement was indicated by 

the first and last point of the velocity trace where velocity exceeded 0.03 m/s. 
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Exponential fits 

 

We computed exponential fits to characterize asymptotic behavior of error responses over 

the first 100 movements experienced in each visual perturbation type (Eq. 3.1).  Each 

term in our exponential fit corresponded to a distinct aspect of the adaptive process: a 

was the asymptotic value of the curve, b was the learning rate, and 
c
1−  was the time 

constant.  a = 0.01, b = 0.01, c = 0.01, to generate the best fitting exponential to the data.  

Each curve was fit to the original data by minimizing the square-difference between 

predicted and actual performance.   

 

Trial-by-trial metric 

 

We evaluated the influence of single catch-trials on adaptation for each subject by 

calculating maximum displacement for each movement immediately prior to a catch-trial 

(pre-catch response) and for each movement immediately subsequent to a catch-trial 

(post-catch response).  We then determined the visuomotor error induced by the catch-

trial in the subsequent movement by subtracting the post-catch response from the pre-

catch response using the the following equation, where movement(n) is a single catch trial:  

 

 

)(
*)( c

t

ebatx
−

−=  
(3.2) 

Induced-errorn = Movement(n+1) – Movement(n-1)  (3.3) 
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Statistical significance 

 

We tested data significance by using standard t-tests and permutation tests.  For data 

derived from exponential fits, we performed permutation tests to test for statistical 

significance.  Due to the highly non-linear nature of fit from the exponential function, 

parametric tests were no longer appropriate.  

 

Our permutation test performed resampling to analyze the distribution of the null 

hypothesis to determine whether two groups or conditions had significantly different 

metrics.  In the case of our experiment, we determined asymptotic values for each subject 

derived from our exponential fits for our two subject groups.  The null hypothesis was 

then examined by randomly assigning 8 subjects to group A and 9 subjects to group B, 

irrespective of original subject group.  Values were shuffled and compared for groups A 

and B.  The distribution of these resampled values created a distribution of the null 

hypothesis.  Where the actual difference between our two groups fell on this distribution 

determined the p value of our experimental results. 

 

All error bars are reported as 95% confidence interval of the mean. 
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RESULTS 

 

In this study, we observed that our PD subjects were highly capable of adapting to newly 

experienced visual rotations when compared to age-matched controls.  We observed a 

large change in the amount of adaptation achieved by the PD group, suggesting they are 

learning a larger amount of visually derived motor information.  Along with observing 

intact adaptive responses, we also see intact catch-trial responses in PD, characterized by 

similar error responses to the control group.  These results suggest that PD subject are 

more keenly accessing visual information in response to changes in the direction of 

movement.  In contrast, we see that adaptation to the minifying gain is impaired in PD 

subjects, characterized by slower adaptation compared to control subjects.  These results 

suggest that not only are the processes of adaptation to visual rotations and gains 

separable, but they are differentially impaired in PD.  The neural machinery necessary for 

unencumbered adaptation to visual gains does not appear to circumvent impaired basal 

ganglia circuitry in PD.  While certain aspects of adaptation are impaired, we observed 

intact trial-by-trial learning responses in both types of visual perturbations.  This result 

suggests that visual feedback monitoring of current visuomotor states is intact for 

sensorimotor error derived from visual information. 

 

Baseline behavior 

 

To determine each groups’ response to experiencing the visual environment, we first 

assessed baseline behavior during veridical movement.  We averaged velocity and cursor 
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trajectories across subjects within each group to characterize baseline behavior (Fig. 3.3).  

We observed no significant differences between the two groups for peak speed (p = 

0.6751, t-test) or movement breadth (p = 0.6600, t-test) during baseline performance. 

 

 

 

 

 

 

 

 

 

 

 

 

Adaptation to visual rotations 

 

We characterized average kinematic reaching behavior for initial and adaptive responses 

in the rotation environments (Fig. 3.4).  Across all subjects, we averaged the first 

exposure to the rotation (Fig. 3.4, A and C) and the last 10 movements before 

experiencing a catch-trial (Fig. 3.4, B and D).  This qualitative analysis allows us to 

determine trends across all subjects.  We observed similar initial responses for PD and 

control for the first exposure to the rotation (Fig. 3.4, A and C).  However, we see that our 
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Figure 3.3: Average baseline response for cursor trajectories (A and B), and 
velocity profiles (C and D).  No significant differences were observed between 
baseline profile of control (A and C) and the PD group (B and D).  In A and B, 
asterisks indicate the average position at peak speed. 
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PD group achieves a straighter cursor trajectory during adaptation compared to the 

control group, suggesting more complete adaptation in PD (Fig. 3.4, B and D). 
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Figure 3.4: Average cursor trajectories for the initial and adapted response to 
clockwise (A and B), and counterclockwise (C and D) visual rotations.  The 
initial rotation experience similarly displaces cursor trajectories for both 
control and PD (A and C).  After 90 movements in the environment, both 
groups display straighter cursor trajectories in response to the rotation 
environment.  We see that PD displays more complete adaptation than control 
(B and D). 
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In order to quantify and characterize adaptive rates and amount of adaptation achieved by 

each of our subject groups, we reduced data to lateral coordinate displacement (theta) at 

peak speed to determine adaptation across the first 100 movements.  We fit an 

exponential function (Eq. 3.2) to this data to derive asymptotic values.  We then 

calculated differences in the asymptotic behavior of our two groups (Fig. 3.5).  By 

examining difference in asymptote magnitude, we observed no significant effect of 

asymptotic value for the clockwise rotation (control: -0.1652 ± 0.08994; PD: -0.0491 ± 

0.0760, permutation test: p = 0.079, Fig. 3.5B), or the counterclockwise rotation (control: 

0.2320 ± 0.1431; PD: 0.1329 ± 0.1178, permutation test: p = 0.1510, Fig. 3.5D).   

 

It was noted that the PD group consistently displayed asymptotic values closer to 

idealized adaptation (zero).  We then calculated the magnitude of change from initial 

rotation exposure on the first movement to the asymptotic value calculated from the last 

10 movements before experiencing a catch-trial.  Calculating adaptation as a percentage 

change of adaptation from initial exposure allowed us to capture true induced adaptation 

for each subject. We observed a significant difference in the percent magnitude of 

adaptation for the clockwise rotation (control: 55.6% ± 21.07%, PD: 96% ± 23.63%, p < 

0.05, Fig. 3.6A).  For the counterclockwise rotation we observed a non-significant change 

in the magnitude of adaptation (control: 34.92% ± 46.23%, PD: 74.79% ± 26.67%, p = 

0.27, Fig. 3.6B).  However, the observed difference in the counterclockwise rotation for 

PD and control follows a similar trend to that observed for the clockwise rotation, where 

we see a larger magnitude of adaptive change for the PD group.  We believe these trends 
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indicate that PD patients have intact use of visual information to inform motor control 

when experiencing changes in visual direction. 
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Figure 3.5: Exponentials fits of lateral displacement prior to catch-trial experience, for subjects 
experiencing clockwise (A-B) and counterclockwise (C-D) visual rotations.  We saw non-
significant changes in asymptote for clockwise (p = 0.079, permutation test) and 
counterclockwise (p = 0.151, permutation test). 
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Trial-by-trial adaptation to rotations 

 

We observed the effect of catch-trials by subtracting the average x cursor trajectories as 

described in (Eq. 3.3).  We plotted these error responses against the average y cursor 

trajectory for all subtracted movements to depict the strength of unlearning induced by 

catch-trials (Fig. 3.7, A and B).  We observe that the PD group performs similarly to the 

control group when presented with unexpected visuomotor errors in both the clockwise 

and counterclockwise rotations.   
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Figure 3.6: Average percent change from initial exposure to visual rotation to adapted behavior 
achieved over 100 movements.  Clockwise rotation (A): we observe a significant change in 
adaptive behavior in the clockwise condition, with the PD group gaining a larger percentage of 
adaptive information over 100 movements (p < 0.05, t-test).  Counterclockwise rotation (B): we 
observe a non-significant change between control and PD that trends similarly to the observation in 
clockwise rotation. 
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We quantified this error by calculating the average amount of polar theta displacement at 

peak speed during the catch-trial (Fig. 3.7C) and as a result of catch-trial experience (Fig. 

3.7D, Eq. 3.3).  We observed that catch-trial responses were similar in magnitude for PD 

and control, for both clockwise and counterclockwise rotations (clockwise: control = 

0.2552 ± 0.1347; PD = 0.3696 ± 0.0506, t-test; p = 0.1585; counterclockwise: control = -
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Figure 3.7:  Average trial-by-trial cursor trajectory responses for clockwise (A) and 
counterclockwise (B), asterisks indicate the position at peak speed.  The magnitude of 
the error response for control and PD was similar for catch-trial induced unlearning (C 
and D).   C: Average lateral displacement at peak speed for catch-trial experiences; D: 
average trial-by-trial error response.  We observed no significant difference between our 
two groups for the magnitude of catch-trial response (C), or the resulting error response 
due to experiencing a catch-trial (D). 
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0.1896 ± 0.1391; PD = -0.2715 ± 0.0909, t-test; p = 0.3624, Fig. 3.8A).  The subsequent 

trial-by-trial error responses as a result of experiencing a catch-trial were also similar 

between the two groups (clockwise: control = -0.0691 ± 0.0237; PD = -0.0701 ± 0.0204, 

t-test; p > 0.5; counterclockwise: control = 0.0659 ± 0.0237; PD = 0.0735 ± 0.0236, t-

test; p > 0.5, Fig. 3.7D). 

 

Adaptation to changes in visual extent 

 

We initially assessed adaptation to minifying gain using y position at peak speed.  We fit 

each subjects’ data using an exponential fit to derive asymptote of adaptation (Fig. 3.8, 

Eq. 3.2).  We observed non-significant effects of asymptote (control = -0.0079 ± 0.3485; 

PD = -0.2802 ± 0.3696, permutation test; p = 0.18, Fig. 3.8B), but observed that the 

control group asymptotes more closely to zero, where zero would be ideal adaptation.   
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Figure 3.8:  A: Exponential fits to y position at peak speed across the first 100 movements 
performed in the minifying gain.  B: We observed non-significant differences in 
asymptotic response between PD and control (p = 0.18). 
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While we saw no significant effect of adaptation derived from exponential fits in the 

minifying gain condition, we suspected that this error metric did not fully capturing the 

adaptive elements during exposure to minifying gain.  We explored time series of 

velocity traces to calculate velocity dependent metrics.  We evaluated the properties of 

the velocity profiles in our two groups, and derived two metrics to characterize behavior 

in the gain condition: breadth of movement and peak velocity.  We observed velocity 

properties across the first five movements to evaluate initial characteristics during the 

first phase of exposure to the minifying gain (Fig. 3.9).   

 

We observed similar baseline velocity behavior in both groups (Fig. 3.3 and 3.9), 

suggesting that patients in the PD group had no difficulty performing the task without the 

presence of a gain modulation.  However, we do observe differences in the velocity 

profile of the PD group when they are faced with the minifying gain.  Qualitatively, we 

see a wider breadth of movement, as well as a reduction in peak velocity in the PD group 

when contrasted with the performance of the control group (Fig. 3.9B). 
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From our velocity traces we reduced data to examine individual subject values of breadth 

and peak velocity.  We evaluated movement breadth across the first ten movements (Fig. 

3.10A), and averaged across 10 movement groupings for all 100 movements (Fig. 3.10B).  

We observe that initial exposure to minifying gain results in significantly longer breadth 

of movement across the average of the first ten movement in PD compared to control 

(Control: 85.31 ± 2.89; PD: 108.22 ± 16.68; t-test: p = 0.0131; Fig. 3.10, A and C).  We 

did not observe this same difference in breadth during the last ten movements before the 

onset of catch-trials (Control: 74.21 ± 2.91; PD: 75.55 ± 4.57; t-test: p = 0.6275; Fig. 

3.10C).  The rate of adaptation was significantly different between PD and control when 

we compared each set of ten movements, demonstrating that it took PD subjects over 20 

movements to achieve adaptation (movement sets 1-10, 11-20, p < 0.02, t-test, Fig 

Figure 3.9: Average velocity traces for the first 5 movements of the baseline condition on day 1 (A), 
and the first 5 movements during the minifying gain condition (B).  We find no baseline differences 
between control and PD, but observe a lower max velocity and a wider breadth of movement in the 
PD group indicating initial difficulty with learning the minifying gain. 
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3.10B). This indicates that PD adapts at a slower rate, but is able to achieve similar 

adaptation to controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to changes in breadth between PD and control we also observe differences in 

peak velocity behavior between control and PD (Fig. 3.11).  We calculated peak velocity 

similarly to the breadth measurements, to evaluate behavior during the initial phase of 

adaptation (first 10 movements, Fig. 3.11A) and across all movements (10 movement 

Figure 3.10:  Breadth calculations for subjects experiencing the minifying gain.  Average subject 
responses across the first 10 movements (A) shows that control subjects quickly adapt to the induced 
gain while PD subjects respond more slowly.  B: Breadth profiles across all 100 movements.  C: We 
observed a significant difference in the breadth responses for control and PD during the first 10 
movements.  By adaptation (last 10 movements), PD subjects reach similar breadth responses when 
compared to control. 
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subsets, Fig. 3.11B).  We observe that it takes longer for PD to achieve peak velocity 

associated with adapted movement (Fig. 3.11, A and C), but that the peak velocity 

response achieves similar magnitudes at the end of adaptation (Fig. 3.11B).  We see a 

significant difference in the amount of change from initial exposure, the average of the 

first ten movements, to adapted exposure, the average of the last ten movements between 

control (First 10: 0.4318 ± 0.0308; Last 10: 0.3751 ± 0.0568, p = 0.6648) and PD (First 

10: 0.4492 ± 0.0206; Last 10: 0.4827 ± 0.0307, p = 0.0056, Fig. 3.11).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Peak velocity calculations for subjects experiencing minifying gains.  Average subject 
response across the first 10 movements (A) shows that PD subjects display lower peak velocity 
magnitudes, but they achieve similar magnitudes of peak velocity near the end of adaptation (B).  We 
observe a significant difference in the peak velocity between the average first and last 10 movements in the 
PD group, which is absent in controls (C), suggesting that it takes the PD group longer to reach adaptation 
during gain experiences.  
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We observe that the trial-by-trial response to catch-trials during minifying gain was intact 

(Fig. 3.12).  We determined magnitude of catch response (Fig. 3.12A) as well as trial-by-

trial error (Fig. 3.12B, Eq. 3.3).  We observed no significant differences between our two 

groups for catch magnitude (Control: 2.29 ± 0.69; PD: 2.20 ± 0.74, p = 0.86), or trial-by-

trial error (Control: -0.29 ± 0.18; PD: -0.18 ± 0.31, p = 0.54). 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

 

Our original hypotheses were designed to test visuomotor adaptation in Parkinson’s 

disease from a mechanistic viewpoint.  We believe that due to basal ganglia impairment, 

visuomotor adaptation as a whole would be impaired in PD.  Additionally, we believe 
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Figure 3.12: (A): Average subject response to the presentation of catch-trials in the 
minifying gain condition.  (B): Average trial-by-trial error response to the presentation of 
catch-trials, we see that the error effect is smaller, but not significant in PD. 
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that this impairment would be more profound for adaptation to visual changes of extent 

than to changes in direction.  We see that PD subjects can possess both intact and 

impaired visuomotor adaptation depending on the type of task they are presented.   

 

Effects of visual rotation and visual gain 

 

Despite significant motor impairments, we discovered that PD subjects have intact 

visuomotor adaptation to visual rotations, and show stronger adaptation than our control 

subjects, marked by an overall larger magnitude of acquired adaptive information (Fig. 

3.6).  In contrast we observed significant deficits in adaptation to visuomotor gains, 

marked by decreases in movement time and velocity during the adaptive process (Fig. 

3.9-3.11).  Not only do our results highlight the behavioral separability of adaptation to 

changes in extent and direction, but they provide evidence that intact basal ganglia 

circuitry is necessary for intact adaptation to visuomotor gains.   

 

In a patient population that has marked difficulty with production and maintenance of 

movement, it is surprising to see such strong adaptive effects in response to visual 

rotations.  In other tablet experiments, adaptation to changes in visual direction have 

described PD ability to adapt to changes in direction as impaired (Contreras-Vidal et al. 

2003, Paquet et al. 2008, Venkatakrishnan et al. 2011).   Although these studies used 

similar methods to test and perturb visual feedback to a rotated cursor, we believe that we 

more accurately characterize adaptation to rotations by evaluating multiple rotation 

exposures and testing visuomotor error on a trial-by-trial basis.  In our experiment, we 
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observe that PD is highly capable of learning new visuomotor rotations, as indicated by 

more ideal movement trajectories (Fig. 3.4), and a larger magnitude of adaptive change 

compared to controls (Fig. 3.6).   

 

In contrast to the positive results observed for adaptation to rotations, we see that 

adaptation to changes in visual gain is impaired.  While it has been suggested that gain 

adaptation is intact in PD (Contreras-Vidal et al. 2002), we determined that while 

subjects with PD and control subjects achieve similar adaptive plateaus, the adaptive 

process needed to reach adaptation differs.  We see that PD made longer and slower 

movements during early phases of the movement.  We believe that this impairment exists 

because neural machinery necessary for visuomotor adaptation to gains does not 

circumvent the basal ganglia, as is the case in visuomotor rotations.  This idea is 

supported by previous evidence from gain modulated drawing studies (Fucetola and 

Smith 1997, Teulings et al. 2002).   

 

The separation of adaptive effects that we see for rotations and gains in our PD subjects 

act to support the original theory of vectorized planning of reaching movements (Ghez et 

al. 1991, Gordon et al. 1994).  Additionally, the deficits we observe in PD during gain 

adaptation confirm that basal ganglia circuitry is necessary for proper visuomotor 

adaptation to changes in gain (Krakauer et al. 2004).  We believe that our experiment 

provides a model of visuomotor adaptation that is differentially affected depending on 

whether visual feedback is accessing cortical circuitry (rotations) or basal ganglia 

circuitry (gains).   



  Chapter 3. 

 85

 

Trial-by-trial visuomotor learning 

 

We observed no impairments in PD trial-by-trial responses to catch-trials in any of our 

visuomotor perturbations.  The consistency of intact trial-by-trial learning across all 

conditions suggests that the ability of PD subjects to apply feedback from previous 

movements is not impaired, as indicated by similar magnitudes of visuomotor error and 

unlearning responses as a result of catch-trial experience in both of our groups.  This 

result suggests that the ability to extract useful feedback information from ongoing 

movement performance is not impaired in our PD group, despite observing deficits in the 

adaptive process. 

  

Importance of visual feedback in PD 

 

The idea that patients with PD utilize visual information to their benefit is well-known.  

The use of visual feedback has been associated with facilitation of postural response, 

(Brown et al. 2006b), exercise (Sage and Almeida 2010), visually guided reaching (Myall 

et al. 2008), in response to visuomotor perturbations that modulate movement amplitude 

during drawing tasks (Fucetola and Smith 1997) and modulation of reaching movements 

in response to visuomotor feedback (Ghilardi et al. 2000).  In our experiment, we 

observed that in response to visual rotations, PD subjects adapt more fully than our 

control group.  This result suggests that they may be using an increased amount of visual 

information to guide their movements.   
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In contrast, we see that PD subjects display deficits in response to adaptation of 

visuomotor gains.  While this deficit is noticeable, PD subjects achieve similar levels of 

adaptation compared to controls, but at a slower rate.  It is likely that in both types of 

perturbing environments PD subjects are utilizing visual information to their advantage.  

In the case of gain adaptation, it is likely that impairment in visuomotor adaptation is 

severely impaired, but is improved due to the presence of continual visual feedback.  It 

has been suggested that visual guidance aids in tasks requiring movement amplitude 

(Fucetola and Smith 1997); however, visual feedback is not enough to overcompensate 

for the damaged basal ganglia circuitry and deficits in the adaptive process are evident.  

 

We suspect that PD patients are able to amplify the use of visual information in order to 

combat internally noisy motor production.  Typically, these aspects of sensorimotor noise 

are integrated in a statistically optimal fashion (Ernst and Banks 2002).  When we 

consider how our PD subjects respond to visual perturbations we believe that the input 

they receive from external visual signals is intact and similar to that of control subjects.  

However, we assume that internal motor control in PD is very noisy due to degeneration 

of circuitry involved in movement maintenance and production.  This noisy input from 

motor control forces PD patients to rely more heavily on less variable external visual 

input.   

 

In order to produce movements being informed by visual feedback, it is necessary to 

process movement via the basal ganglia (Graybiel et al. 1994).  When we consider 
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adaptation to visuomotor stimuli, we must receive external visual information, compute 

the visual error feedback signals, and then plan and produce the movement.  For 

adaptation to visuomotor rotations, we see this error feedback signal represented 

cortically while for changes in visual gains it is represented in the basal ganglia 

(Krakauer et al. 2004).  The computations occurring during adaptation to rotations allow 

visuomotor error signals to guide movement production. While movement production 

may be mediated via the basal ganglia, the adaptive mechanisms governing learning are 

mediated cortically and not accessing the basal ganglia in response to visually derived 

errors, allowing for amplified usage of visual information to drive movement.  In the case 

of the gain condition, both movement production and the underlying adaptive mechanism 

utilize basal ganglia circuitry (Krakauer et al., 2004).  While gain adaptation may in fact 

utilize more externally guided feedback to guide movement, the internal processing of 

this information is faulty, leading it to be less reliable.  This impairment comes through 

during the adaptive phase of gain perturbations, where we see decreases in adaptive 

ability suggesting that the use of external visual information cannot override the impaired 

visuomotor machinery.   

 

A mix of circuitry and neural plasticity likely result in the increased amounts of 

adaptation we see in our PD group to visual rotations.  Cortical reorganization resulting 

in an increased reliance on visual control of movement in PD is likely.  These types of 

cortical plasticity have been seen as compensatory behavior in other sensory deficits; 

such as deafness, where unused or defunct cortical territories are overtaken by visual 

sensory information processing (Finney et al. 2003).   It has been suggested that in PD 
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patients, cortical remapping takes place in response to Parkinsonian changes of the brain 

(Helmich et al. 2010), and has been seen specifically to affect remapping of visual 

cortical areas (Helmich et al. 2007).  Remapping of some motor information to visual 

areas in PD is possible, suggesting that the amplification of visual error signals we see 

during adaptation to visual rotations results from additional recruitment of cortical areas 

responsible for processing visual information.  This similar mode of cortical remapping 

to visual areas is possible for PD patients to utilize and rely more on visual information 

than noisy internal motor control.  It may be more difficult for gain error signals to recruit 

information from visual areas to aid adaptation due to the localization of visual feedback 

error signals to the basal ganglia 

 

Conclusions 

 

We have shown evidence that suggests that the separation of visuomotor adaptation to 

direction and extent can be mechanistically modeled via Parkinson’s patients.  We see 

that PD patients display intact adaptation to visual rotations that is amplified via visual 

information; while adaptation to gains may be impaired due to degenerated basal ganglia 

circuitry.  These results suggest that visuomotor movement planning requires the 

specification of direction and extent, as well as a distinct ability in PD to use visual 

information to their advantage when visuomotor error mechanisms do not rely on basal 

ganglia circuitry.  Tailoring therapeutic techniques to avoid the use of gain modulation 

for learning in PD may provide assistance and alleviation of some of the motor symptoms 

that characterize PD. 
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Chapter 4: Discussion and Future Directions 

 

The goal of this thesis was to characterize trial-by-trial use of visual feedback during 

visuomotor learning in young adults, older adults, and in Parkinson’s disease.  In Chapter 

2 we determined that in normal young adults, current adaptive strategies can be 

influenced by environmental experience within a single day and on prior days.   Our 

discovery provides important insights into visual control of movement as well as 

presenting a direct correlate to existing haptic literature (Fine and Thoroughman 2007).  

Not only do these results suggest similarly flexible adaptation as seen in the force 

learning study, but they suggest inherent differences in the way that these two types of 

adaptation occur.  While we see some similarities between the force learning and 

visuomotor learning, it is likely that visuomotor adaptation is influenced by more 

cognitively salient experiences within the constraints of the environment to drive the 

adaptive strategy (Kagerer et al. 1997, Michel et al. 2007, Taylor and Ivry 2011). 

 

In Chapter 3 we discovered that visuomotor adaptation is differentially impaired in 

Parkinson’s disease (PD), providing a mechanistic model by which the basal ganglia 

interacts with and controls visuomotor adaptation.  In addition to providing evidence for 

the separation of visuomotor extent and direction (Gordon et al. 1994, Pine et al. 1996, 

Krakauer et al. 2000), we surprisingly discovered that our PD patients displayed more 

complete adaptation to visuomotor rotations.  This result contradicts several other studies 

that describe aspects of visuomotor adaptation in PD as impaired (Contreras-Vidal et al. 

2003, Fernandez-Ruiz et al. 2003, Messier et al. 2007, Marinelli et al. 2009).  However, 
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in the majority of these studies, PD subjects remained on their levodopa treatment.  To us 

this suggests that these studies are not a true representation of visuomotor behavior in 

PD.  Levodopa treatment in PD has been suggested to result in visuomotor deficits during 

visually guided reaching (Au et al. 2010) and sequence learning (Kwak et al. 2010).  This 

suggests that the normal usage of levodopa therapy during experiments may in fact mask 

the true underlying behavior of basal ganglia activity in PD driving visuomotor 

adaptation, as well as altering the process of visuomotor control.  We feel that the ability 

to accurately identify abilities and disabilities present during the control of movement are 

important to not only discerning the mechanisms by which visuomotor adaptation 

operates, but to provide and identify appropriate rehabilitative and therapeutic 

interventions that may be able to help these patients in everyday tasks.   

 

FLEXIBLE VISUOMOTOR LEARNING 

 

Our discoveries of across-day visuomotor effects in Chapter 2 have shown that 

visuomotor adaptation is a highly flexible process that be influenced by immediate 

environmental conditions and previously learnt adaptive information.  More importantly, 

this experiment also characterizes distinct differences between motor adaptation 

processes that engage visuomotor adaptation mechanisms and proprioceptive adaptation 

mechanisms.   

 

Fine and Thoroughman (2007) discussed the flexibility of adaptive strategies in terms of 

being able to adapt to particular environmental conditions.  The results that we see in 
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Chapter 2 suggest that not only are the mechanisms by which visuomotor adaptation 

operate flexible, they remain modifiable to account for previously learned information.   

While we see similarities between our study and Fine and Thoroughman (2007), we also 

see fundamental differences that highlight and emphasize that in each of these studies 

feedback informing motor control is derived from different mechanisms.  Visuomotor 

tasks rely solely on visual information to drive motor planning and behavior, while 

response to force feedback requires an integration of vision and proprioception to drive 

behavior.  This dissociation has been seen by eliminating proprioceptive signaling and 

testing adaptation to both force and visual feedback tasks (Bock and Thomas 2011).   

 

VISUOMOTOR LEARNING: EFFECT OF DISEASE  

 

We have also identified important aspects of visuomotor adaptation in Parkinson’s 

disease.  We see that PD patients can easily adapt to newly experienced visuomotor 

perturbations.   We have observed that this process is highly dependent on the type of 

visual feedback experience PD subjects receive.  Surprisingly when adapting to 

visuomotor rotations, we saw a greater amount of change in the amount of adaptation, 

suggesting that despite basal ganglia injury, these subjects could reliably use visual 

information to guide their movements.  In contrast, when experiencing visual gains, we 

observed a diminished ability to adapt compared to control subjects.  This result supports 

theory for the separation of visual and extent and direction necessary for planning of 

visually guided movements (Gordon et al. 1994, Pine et al. 1996, Krakauer et al. 2000).   
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It is known that PD patients have significant difficulties with slowness and freezing of 

gait; however, it has been shown that visual cues can improve gait performance (Brown 

et al. 2006, Sidaway et al. 2006).  We find that similar properties of visual guidance are 

present when we examine the visual control of reaching movements.  Our results from 

adaptation to visual rotations and evidence from gait studies suggest that some forms of 

visuomotor adaptation are able to circumvent the basal ganglia through use of alternative 

neural pathways.  It is likely that adaptation to visual rotations and certain forms of visual 

feedback during gait access neural signals not impacted by damaged basal ganglia 

circuitry.  It has been suggested that in patients with PD, visuomotor signals are rerouted 

to the cerebellum via cerebral cortex (Glickstein and Stein 1991).   While this is a 

plausible idea, it only explains our result from adaptation to rotation.  We believe that this 

plasticity may be minimal, and that the visual error feedback mechanisms for rotation and 

gain reside in cortical and subcortical areas, respectively (Krakauer et al. 2004).  If PD 

subjects were able to use plasticity to reroute their signals, we would see overall 

improvement of visuomotor behavior.   

 

FLEXIBLE ADAPTATION FOR DISEASE 

 

We have shown in Chapter 2 that visuomotor control can be a flexible, fluid process; 

while in Chapter 3 we have shown clear ability during visuomotor control for PD subjects 

with significant movement difficulties.  These results combined suggest that if we better 

understand the strategies by which people learn and continue to learn beyond the initial 

session, we may be able to customize adaptive processes to optimize transfer of 
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visuomotor information.  While we have shown that PD patients have certain forms of 

intact adaptation, Marinelli et al. (2009) has shown that while forms of PD adaptation can 

be intact, motor consolidation across days is impaired.  Using adaptive strategies to 

initially improve movement performance without inducing a formal change in motor 

behavior are a disservice to improve patient stability.  Long-term cues have been shown 

to be useful in ameliorating gait behavior (Sidaway et al. 2006), but will similar 

mechanisms work for visually guided reaching?  We believe that using customizable 

adaptive strategies with real-world visual feedback paradigms aimed at accessing PD 

patient ability to use visually guided movement may help with environmental navigation 

and everyday tasks.  Many PD patients are uncomfortable doing everyday tasks even on 

levodopa therapy, such as driving, due to movement difficulties leading to reduced 

reaction times for foot operated pedals (Rascol et al. 2003).  To make tasks as these 

utilize additional sources of visual guided movement may allow for greater freedom for 

these patients.   

 

FUTURE DIRECTIONS 

 

We have discovered two important factors that influence the visual control of movement.  

The first shows us that environments can be tailored to adaptive outcome.  This suggests 

that if we better understand the strategies by which people learn and continue to learn 

beyond an initial session, we may be able to customize the adaptive process to optimize 

transfer of visuomotor information.  This framework is useful when we think about 

rehabilitation and therapeutic intervention for patients with motor difficulties.  PD is a 
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degenerative disease that affects each person differently.  Differences in presentation of 

motor symptoms in the clinic often make PD hard to diagnose, but even harder to treat 

residual motor symptoms that are not treated via medication (Rao et al. 2003).  By 

utilizing and exploiting intact aspects of functional sensory modalities in these patients, it 

is possible to reinforce and aid motor performance.   

 

We have currently characterized kinematic behavior of adaptation in patients with 

Parkinson’s disease.  However, we do not know if these adaptive mechanisms transfer 

from the experimental setting to the real world.  While using a computer mouse or pen is 

fairly ecological from an experimental standpoint, it still does not replicate the 

interactions these patients have in the real-world.  In home feedback tasks can be used to 

better assess abilities and disabilities, and improve movement performance.  Such tasks 

have been recently used to show improvement in PD patient gait (Espay et al. 2010).   

 

In order for feedback based therapy to be effective, it is necessary to consider the 

dominant motor symptom or symptoms in each subject.  It is likely that a subject with 

large amounts of tremor and smaller amounts of bradykinesia will respond to therapies 

differently than a patient who exhibits large amount of bradykinesia and stiffness.  

Through clearer identification of ability and disability in these patients we can tailor 

rehabilitative strategies to disease sub-symptoms. 
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