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Amyotrophic lateral sclerosis (ALS) is fatal neurodegenerative disease for which there is 

no cure. The only treatment available extends survival by only a matter of months. There are 

over 20 genes that are known to cause ALS. Over half of the ALS cases with a family history of 

disease (FALS) can be explained by mutations in known ALS genes with hexanucleotide repeat 

expansions in C9ORF72 accounting for 40% of families. However roughly 90% of cases have no 

family history of disease (sporadic ALS or SALS) and a much smaller proportion (10%) of these 

cases can be explained by mutations in known ALS genes. Understanding the genetic factors that 

cause ALS or influence its progression will help us understand the cellular pathways involved in 

disease and identify potential therapeutic targets. 

We used a pooled-sample sequencing approach to identify mutations in 17 ALS genes in 

a cohort of FALS and SALS patients to investigate the contribution of these genes to SALS, 

including the role of rare variants and the effect of mutations in multiple ALS genes in an 

individual. We identified potentially pathogenic mutations in 64.3% of familial and 27.8% of 
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sporadic subjects. 3.8% of subjects had mutations in more than one ALS gene and these 

individuals on average had onset 10 years earlier than those with mutations in only one ALS 

gene (p=0.0046). There were no individual rare variants that were significantly associated with 

sporadic ALS, but rare variants in SOD1 were cumulatively more common in SALS subjects.  

In addition we investigated the genetic background and stability of C9ROF72 repeat 

expansions in ALS. The presence of a risk haplotype shared between all expansion-carriers led to 

the prevailing idea of a founder expansion event, however this shared haplotype also supports the 

hypothesis of a genetic background that is more prone to expansion. We identified a rare variant 

rs147599399 on this genetic background that is present in some expansion carriers and some 

non-expansion carriers, indicating that the expansion arose on at least two separate occasions. 

This raises the possibility that C9ORF72 repeat expansions in sporadic ALS could be the result 

of de novo expansions on the risk haplotype. Furthermore we showed that expansion carriers 

with rs147599399 minor allele had longer survival than expansion carriers without the SNP 

(p=0.00047), indicating that the genetic background surrounding the C9ORF72 influences the 

effects of the expansion.  

We performed Southern blotting to explore the size and stability of C9ORF72 repeat 

expansions. There was a high degree of somatic instability and instability in transmissions 

between families. There was no difference between expansion sizes in symptomatic and 

asymptomatic expansion carriers in families an there was no correlation between expansion size 

in any patient tissues and any clinical characteristics. These results need to be confirmed in a 

larger sample cohort, but suggest that expansion size alone doesn’t determine pathogenicity of 

C9ORF72 repeat expansions.  
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Lastly we examined the candidate gene TREM2 as a risk factor for ALS. This gene is 

involved in regulation of microglial activity, which is a known component of ALS pathogenesis, 

and the rare variant p.R47H was recently associated with risk Alzheimer’s disease. We found 

that the same p.R47H variant was significantly associated with ALS in our cohort and that 

expression of TREM2 was increased in ALS patients and SOD1 mutant mice compared to 

controls. A variant in the related gene TREML4 was marginally associated with ALS, but the 

effect of this variant is unknown. Mutations in the TREM genes provide a genetic link between 

to the neuro-inflammatory component of ALS and suggest other genes involved in microglial 

activation are good candidates for novel variant identification.   

 



Chapter 1 

Background and significance 

1.1 Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease is the most 

common form of motor neuron disease. Motor neurons in the brain and spinal cord are affected 

resulting in loss of motor function, paralysis, muscle wasting, and difficulty breathing and 

swallowing. Death typically occurs after 3-5 years due to respiratory failure.1–5 The disease can 

have either limb onset, affecting the arms or legs first or bulbar onset, affecting speech, 

swallowing and breathing first.  There is no cure for ALS. Riluzole is the only available 

treatment and only slows the progression of symptoms.6 

Average age of symptom onset ranges from 40-70, however this can vary greatly with 

cases in their 20’s and even cases of juvenile onset.7–12 ALS is diagnosed according to the El 

Escorial criteria13 which include the presence of signs of upper motor neuron degeneration 

(weakness, wasting, and fasciculations), signs of lower motor neuron degeneration (increased 

reflexes, spasticity), progressive spread of symptoms, and the absence of other disease that could 

explain the clinical findings.  The diagnosis can be definite, probable, possible, or suspected 

depending on the strength of clinical evidence.  

Disease progression is typically measured using the ALS functional rating scale 

(ALSFRS)14. This scale ranks the patient’s functional impairment using a five-point scale on 12 

different tasks with 4 being no loss of function and 0 being complete loss of function. These 
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score are summed across all 12 tasks to obtain the ALSFRS score. The highest possible score is 

48 and the lowest is 0.  

Cognitive changes are common in ALS ranging from mild cognitive impairment to 

frontotemporal dementia (FTD). ALS and FTD, also called frontotemporal lobar degeneration 

(FTLD), are considered to fall on a spectrum. FTD is present is roughly 25% of cases of ALS 

while about 50% of FTD cases also have motor neuron degerentation.15 Even within families, 

some members can develop either pure ALS, ALS with FTD or pure FTD. 

Estimates of the prevalence vary by population with a systematic literature review 

reporting a range of 1-11.3/100,000 (median =4.48).16 Prevalence in the United States was 2.9-

3.9/100,00017–19. Incidence ranged from 0.3-3.6 (median=1.9) worldwide with two studies in the 

U.S reporting 1.7 and 1.8.16 When comparing retrospective and prospective studies, prospective 

studies tended to result in higher estimates of both prevalence and incidence.16 

 There is a family history of disease (typically with an affected first or second degree 

relative) in 5-10% of cases (FALS)20–22, although this can difficult to ascertain. The late onset of 

disease increases the likelihood of death from unrelated causes before developing symptoms, 

obscuring possible inheritance patterns and there are no clinical distinctions between patients 

with and without a family history. Other factors such as non-paternity, small family size, 

incomplete penetrance, and incomplete family history can make familial cases appear to be 

sporadic (SALS). The heritability of SALS is estimated to be 61% in a twin study23, but 

estimates were much lower (12-21%) in genome-wide association studies (GWAS). 24,25  

1.2 Genetics of familial ALS 

1.2.1 SOD1 
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The first genetic cause of ALS to be discovered was the Cu/Zn superoxide dismutase 

SOD1. Linkage to the chr21q region was shown in ALS families26,27 where the causative gene 

was later discovered to be SOD1 with 11 different mutations  identified in 13 families28. There 

are now 175 distinct mutations in SOD1 that have been submitted to the ALS mutation database 

ALSoD29 (http://alsod.iop.kcl.ac.uk/). These mutations are distributed across the entire gene, 

including some codons that have many different variants. For instance, six different mutation of 

the glycine at amino acid position 94 have been reported (p.G94A, p.G94S, p.G94V, p.G94R, 

p.G94D, p.G94C).  

All reported mutations in SOD1 are dominant or dominant with reduced penetrance with 

the exception p.D91A which is recessive30 or compound heterozygous with p.D96N.31 Multiple 

studies have identified heterozygous p.D91A mutations as well32,33 suggesting that the mutation 

can act in a dominant fashion as well. A proposed mechanism was that all recessive p.D91A 

mutations share a cis-acting protective factor that is absent from dominant p.D91A 

mutations.34,35 

Mutations in SOD1 account for roughly 20% of FALS cases and 2% of SALS. Estimate 

of SOD1 contribution to FALS in different populations ranged from 1.8% in the Netherlands to 

50% in Scotland (only including studies with 10 or more subjects).36 One study in an Irish 

population found no mutations in SOD1.37 In SALS populations, SOD1 accounted for 0-11.3% 

of cases.36 In the United States, 23.4% of FALS cases had mutations in SOD138. There were no 

studies in the US looking specifically at the contribution of SOD1 in SALS, but analyses of 

mixed SALS/FALS cohorts showed SOD1 mutations in around 7.5% overall.39,40 

The protein product of the SOD1 gene is responsible for converting toxic superoxide 

anions, a byproduct of oxidative phosphorylation, to hydrogen peroxide. SOD1 protein is 
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ubiquitously expressed and is predominantly located in the cytoplasm. Mutations in SOD1 result 

in protein mis-folding and aggregations.41,42 The cellular effects of mutant SOD1 are widespread 

including dysregulation of autophagy43, ER stress44, impaired axonal transport45, and disruption 

of mitochondrial function.46  

1.2.2 TARDBP and FUS  

 TAR DNA-binding protein (TARDBP) and fused-in sarcoma/translated in liposarcoma 

(FUS/TLS or FUS) each account for about 4% of FALS and 1% of SALS.47 Both proteins are 

structurally similar; they each possess a nuclear localization signal (NLS), glycine-rich domains, 

RNA-repeat binding motifs (RRMs) and prion-like domains. Both TDP-43 (the protein product 

of TARDBP) and FUS can bind to DNA and RNA and are involved in RNA transcription, 

splicing, and transport.48 TDP-43 and FUS are normally located in the nucleus but can also 

translocate to the cytoplasm. Ubiquitinated TDP-43 and FUS are found in cytoplasmic inclusions 

in ALS patients.48  

TARDBP was first selected as a candidate due to the presence of TDP-43 in cytoplasmic 

inclusions in ALS patients.49 Sequencing of the gene in patients identified p.A315T50, and six 

additional variants51 as a pathogenic mutations. A total of 52 mutations in TARDBP have been 

reported in ALSoD, most of which lie in the C-terminal glycine-rich domain. The C-terminal 

domain interacts with heterogeneous nuclear ribonucleoproteins (hnRNP) to modulate 

alternative-splicing of mRNA transcripts.52  

Mutations in FUS were first discovered in families with linkage53 or loss of 

heterozygosity54 on chromosome 16. There are currently 79 FUS mutations listed in ALSoD. 

These mutations are predominantly located in either the C-terminal NLS or in the glycine-rich 
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domain.55,56 Mutations in the C-terminal domain were shown to prevent FUS from entering the 

nucleus resulting in the formation of cytoplasmic aggregates.57   

1.2.3 C9ORF72 

Linkage to the chromosome 9p.21 region was first shown in 2006 in a large Scandinavian 

family58. Additional linkage studies in Dutch59, Australian60, French61, Belgian62, Welsh63, North 

American64, and French Canadian65 families identified the same locus.  Genome-wide 

association studies in sporadic ALS subjects showed association with the same region66,67, 

however none of these groups were able to identify causative gene. The underlying cause of 

chromosome 9p.21 ALS wasn’t discovered until 2011 when DeJesus Hernazdez et al.68 and 

Renton et al.69 both identified a hexanucleotide (GGGGCC) repeat expansion in a non-coding 

region of C9ORF72 (Figure 1.1).  

 
Figure 1.1 The C9ORF72 gene and its three transcript variants. The gene has two alternate 5'UTR exons (1a and 1b). 

Transcript 1 uses exon 1b and the expansion lies in the upstream promoter region. Transcript variants 2 and 3 use 
exon 1a and the repeat is in the intron between exon 1b and exon 2. 

 

Non-pathogenic alleles of the C9ORF72 repeat are most commonly 2 repeats with a 

maximum around 25 repeats.68,70,71 The pathogenic size of repeat expansions is still being 
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determined, but there is a clear distinction between expanded and unexpanded alleles as 

determined by repeat-primed PCR (RP-PCR). Southern blots must be used to size expansions 

larger than 30 repeats and show expansions of roughly 400-8000 repeats.68,72,73 Expansions in the 

intermediate range of larger than 20 repeats but smaller than full expansions are seen as well, but 

their role in pathogenesis is unclear.72,74–76 

Full repeat expansions are found in 40% of FALS and 7% of SALS cases world-wide.77 

Prevalence of the repeat expansion varies greatly by population with the highest rates in the 

Finnish population (21% of SALS)69,77 and lowest rates in Asian populations (0-1.5% of SALS 

in Japan, China, Korea, and Taiwan).77–83 In the United States, the C9ORF72 repeat expansion 

accounts for about 36% of FALS and 6% of SALS.77 Full expansions are rare in control 

populations. Most studies do not find any full expansions in neurologically normal controls 

however a few have found expansions in a very small number of samples (0.15%-0.4%).69,72,77 

The pathogenic mechanism of C9ORF72 repeat expansion is still not fully understood, 

but is possibly a combination of RNA toxicity68,84–86, loss of C9ORF72 function68, formation of 

G-quadruplex structures87–89 and aggregation of di-peptide repeats  produced through repeat-

associated non-ATG initiated (RAN) translation.90–92 It is unclear if the toxic effects of RNA foci 

and di-peptide aggregates are due to the aggregates themselves or the sequestrations of RNA-

binding proteins93,94 and proteins of the ubiquitin-proteasome pathway95,96, preventing them from 

carrying out their normal functions. The normal function of C9ORF72 protein is not fully 

known, but it shares structural similarities with the DENN family of proteins involved in 

endosomal trafficking.97,98  

1.2.4 Less common ALS genes 
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 Mutations in over 15 other genes have been identified in ALS, each of which is the cause 

of less than 1% of ALS cases. The evidence regarding the role of these genes in summarized in 

table 1.1. The number of mutations reported in ALSoD is included in this table, however it is 

important to note that this database contains user submitted mutations, some of which are not 

functional (including intronic and synonymous variants and variants found in controls) and not 

all mutations that have been identified are submitted. With the exceptions of UBQLN2, SETX 

and ALS2, mutations in all of these genes were identified in typical adult onset ALS. Mutations 

in SETX were originally found in juvenile-onset ALS99 but are also found in adult-onset 

cases.37,100,101 ALS2 was also identified in juvenile-onset ALS102,103,  however no association has 

been found between ALS2 and typical ALS.104  

Table 1.1 Additional genes that cause ALS. 

Gene Discovery Method Protein function Evidence # ALSoD 
mutations 

OPTN  Homozygosity 
mapping105 

Mediation of 
apoptosis through 

TNFα/NFκB 
pathway106, 

maintenance of Golgi 
complex/ vesicle 

trafficking107, 
ubiquitin binding 

Missense mutations 
results in neuronal cell 
death through NFκB 

pathway108, truncation 
mutations unable to bind 
ubiquitin105, autophagy-
mediated degredation of 

misfolded proteins 
impaired109 

37 

ANG  
Association, 

candidate gene110–

112 

Ribonuclease, 
ribosomal RNA 

synthesis113 

Mutations result in 
decreased ribonuclease 
activity and decreased 
nuclear translocation114 

29 

DAO Linkage analysis115 

D-amino-acid 
oxidase, degredation 
of NMDA receptor 

agonist D-serine 
which accumulates 

with age 

Mutation results in 
reduced enzymatic 

activity and increased 
apoptosis115 

2 

DCTN1  Candidate gene116 

Forms complex which 
acts as motor for 
transport along 
microtubules 

Disruption of 
DCNT1/DNCHC1 

complex inhibits axonal 
transport in motor 

neurons117 

7 
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FIG4 Candidate gene 118 

Phosphatase, 
regulation of 

membrane bound 
signaling lipid 
PI(3,5)P2

119 

Mutations reduce FIG4 
activity resulting in 

enlarge vacuoles when 
transfected in yeast118, 

mutations cause 
neurodegeneration in 

mouse120 

10 

EWSR1  Candidate gene 121 RNA binding protein, 
same family as FUS 

Mutations result in mis-
localization from nucleus 
to cytoplasm in cultured 

cells.121 

1 

TAF15  Candidate 
gene122,123 

RNA binding protein, 
same family as FUS 

Mutations result in 
cytoplasmic foci in culture 

and patient spinal cord, 
cause neurodegeneration 

in fruit flies123 

7 

SETX Linkage analysis99 

DNA/RNA helicase, 
involved in pre-

mRNA processing124 
and DNA damage 

response125 

Mutation results in altered 
gene expression126 8 

SQSTM1 Candidate gene127 
Ubiquitin binding128, 
mediation of NFκB 

signaling129 

Aggregates of protein 
product p62 co-localized 
with TARDBP and FUS 

in ubiquitinated inclusions 
is ALS patients130, 

Zebrafish knockdown has 
motor neuron 
phenotype131 

16 

VAPB Linkage analysis132 

Vesicle-binding 
protein, involved in 

ER functions 
including unfolded 

protein response 
(UPR)133 

Mutations result in 
aggregate formation and 
neurodegenation in fruit 

flies134 and induce 
ubiquitinated inclusions in 
mice135, mutations disrupts 

UPR133 

2 

VCP 
Linkage analysis, 

exome 
sequencing136 

ATP-binding protein 
involved in vesicle 

transport, required for 
transport of proteins 
from ER to cytosol137 

Transgenic mice have 
progressive weakness and 

ubiquitinated 
inclusions.138 

7 

ALS2 Linkage 
analysis102,103 

Modulation of 
endosome139 

Interacts with SOD1140, 
axonal degeneration in 

mice141 
27 

UBQLN2 Linkage analysis142 

Binds to proteasome 
and ubiquitinated 
proteins, delivers 

proteins marked for 
degradation to 

proteasome142,143 

Present in ubiquitinated 
inclusions in spinal cord 

from ALS patients142, 
mutations disrupt 

hnRNPA1 binding144 

6 
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CHMP2B Candidate gene145 

Component of 
Endosomal Sorting 

Complex Required for 
Transport III 
(ESCRT-III), 

involved in recycling 
of cell surface 

receptors146  

Mutations result in 
downregulation of genes 

involved in axonal 
transport and translation 

initiation factors, 
inhibition of autophagy147 

6 

PFN1 Exome 
sequening148 

Regulation of actin 
dynamics149 

Mutations result in 
insoluble ubiquitinated 
aggregates and inhibit 

axon growth148 

4 

TUBA4A Rare variant 
burden analysis150 Microtubule subunit 

Mutations result in 
aggregates and de-

stabilization of 
microtubule networks150 

12 

MATR3 Exome 
sequencing151 

Nuclear matrix 
protein involved in 

mRNA processing152 

Mutations result in altered 
cellular distribution, 

shown to interact with 
TDP-43151 

4 

hnRNPA1, 
hnRNPA2B1 

Linkage analysis, 
exome 

sequencing153 

RNA-binding protein 
involved in RNA 
processing and 

shuttling between 
nucleus and 
cytoplasm154 

Interact with TDP-4352, 
mutations promote 
formation of fibrils, 

enhance recruitment of 
hnRNPA1, hnRNPA2 to 

stress granules153 

2 

ERBB4 
Linkage analysis, 

exome 
sequencing155 

Epidermal growth 
factor family of 
receptor tyrosine 

kinases, stimulated by 
neuregulin and 

involved in synaptic 
plasticity156 

Expressed in motor 
neurons in rats157, knock-
out mice have defects in 

motor neuron 
development158 

2 

 

1.3 Genetics of sporadic ALS 

1.3.1 Known FALS genes in SALS 

 As previously stated, the heritability of SALS is as high as 61%23, meaning there is still a 

significant genetic component to sporadic disease. Mutations in many of the genes described 

above have been identified in SALS as well as in familial forms.37,159–161 The majority of these 
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studies have focused only on the most commonly involved genes (C9ORF72, SOD1, TARDBP, 

and FUS) and the extent to which additional FALS genes cause SALS is relatively unexplored.  

It is possible that mutations that have been found in SALS in Mendelian ALS genes are 

not fully penetrant and require additional genetic and environmental factors to cause disease. The 

idea of oligogenic inheritance, where mutations in more than one ALS gene are needed for 

disease to develop, has recently been investigated as a mechanism for sporadic ALS.37,159,161 It 

has also been proposed that ALS is a multistep process requiring an average of 6 different steps 

or processes involved in disease development.162  

Another possibility is that mutations may arise de novo in sporadic ALS patients. De- 

novo mutations have been reported in in both adult and juvenile onset SALS cases FUS, 163–165 

SOD1166, and ERBB4.155 Exome sequencing of SALS trios with unaffected parents identified de 

novo mutations in the CREST(SS18L1) gene.167 Identification of de novo mutations can be 

difficult because DNA from parents is often unavailable due to the late onset of disease.   

1.3.2 Risk loci 

In addition to the known FALS genes, intermediate length CAG repeat expansions in the 

ATXN2 gene are associated with increased risk for sporadic ALS.168 Expansions larger than 34 

repeats are the cause of Spinocerebellar Ataxia type 2 (OMIM 183090), but CAG tracts in the 

intermediate range of 27-33 repeats were associated with SALS. A meta-analysis showed that the 

optimal cutoff to distinguish between ALS and controls was actually 29.169  

 Several genome-wide association studies (GWAS) have been performed in attempts to 

identify common genetic variants that increase the risk of sporadic ALS. The only consistently 

replicated genome-wide associations are with C9ORF72  and UNC13A.66,67,170,171 Associations 
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were identified in DDP6 in an Irish population,172 FGGY (FLJ10986) in a North American 

population of European descent173, ITPR2 in the Netherlands174, and ELP3 in the UK.175 These 

signals have all failed to replicate in additional studies.115–120 It is likely that this is due to genetic 

heterogeneity and that the effects of these variants is population specific. 

 With the failure of GWAS to identify variants that explain a significant portion of SALS, 

researchers have started investigating the role of rare variants in disease. Rare variants are more 

likely to have a larger effect size than common variants and while each individual variant may 

not contribute a significant amount to the heritability of disease, the cumulative effects of rare 

variants across entire genes can be significant. Associations of rare variants in SALS have been 

reported in the nicotinic acetylcholine receptors182,183 and in protein disulfide isomerase genes.184 

A recent whole exome sequencing study identified an excess of variants in TBK1, which is 

involved in phosphorylation of OPTN and SQSTM1.185  

1.3.3 Genes that modify phenotype 

 Three genes have been identified that modify ALS phenotype. A genome-wide 

association study showed that rs1541160 in KIFAP3 was significantly associated with survival 

and reduced expression of KIFAP3.186 Other studies have failed to replicate this 

association187,188, so additional study is required to determine the significance of this gene in 

survival. The genome-wide susceptibility locus UNC13A was also found to be significantly 

associated with survival in two independent studies.171,189 rs12608932 was the associated SNP in 

both studies which was the same SNP that was significantly associated with disease 

susceptibility. A morpholino screen of genes that rescued the motor neuron degeneration in 
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zebrafish model of SOD1 identified EPHA4.  Rare mutations in this gene were subsequently 

identified in a handful of individuals with unusually long survival from ALS.190 

1.3.4 Environmental risk factors 

 With around 60% of ALS being inherited genetically, up to 40% could be accounted for 

by environmental causes. Many studies have investigated possible environmental exposures and 

the risk of ALS, however these studies often have methodological issues. There are hundreds of 

possible environmental factors to investigate and the importance of the timing during 

development of such exposures is unknown Some commonly studied factors include smoking, 

physical fitness, heavy metals, pesticides, service in the armed forces, and occupations.191,192 

These studies have produced conflicting results with some smoking studies, for instance, 

showing increased risk, some showing increased risk only in women, and some showing no 

increased risk.191 High levels of physical fitness have also been reported as a risk factor for ALS 

with varying results depending on the measurement of physical fitness (i.e. prevalence of ALS in 

former varsity athletes193 or population studies of occupational vs. leisure activity194). It was 

proposed that the increase in ALS risk with leisure activity but not with occupational activity 

means that an active lifestyle rather than fitness level is a risk factor.194 Meta-analyses will is 

difficult or impossible due to differences in measurements of risk factors and outcomes between 

studies. It is also likely environmental risk factors are dependent upon genetic background, 

diluting our ability to identify relevant exposures. Increasing our understanding of the underlying 

genetics of the disease will allow us to determine biologically plausible environmental risk 

factors to perform a more directed analysis.  

1.4 Neuroinflammation  
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 The identification of genes that cause ALS has shed light on many of the pathogenic 

mechanisms of neurodegeneration, but pathological features of disease can provide us with 

candidate genes for novel variant detection. The inflammatory response in the nervous system is 

as important component of neurodegeneration195 yet no mutations in genes that regulate this 

response have been identified in ALS patients.  Microglia are the main immune cells of the CNS 

and have a vital role in ALS. Mice that express mutant SOD1 only in the motor neurons have 

delayed or no neurodegeneration compared to mice with ubiquitous mutant SOD1 expression.196–

198  Activated microglia are detected in sites of motor neuron injury in the motor cortex and 

spinal cord of ALS patients.195,199,200 

In addition to responding to pathogens, microglia are required for clearance of cellular 

debris including injured neurons. Microglia have two different activation states: M1 which is 

cytotoxic and M2 which can be protective. It is unclear whether dysregulated microglial 

activation in ALS is detrimental due to a loss of the neuroprotective effects of removal of cellular 

debris or an over-activation of the cytotoxic effects resulting in damage to healthy neurons. 

There is evidence that microglia start in the neuroprotective state and transition to a neurotoxic 

state as disease progresses.201 Genes that are involved in the mediation of microglial activity are 

excellent candidates for identification of variants that increase the risk of ALS. 

1.5 Summary 

 Previous genetic studies in ALS have been vital to our understanding of disease 

pathogenesis. The genes that have been identified in families with ALS implicate several 

important pathways including oxidative stress, RNA processing, protein misfolding and 

aggregation, and inability to remove proteins targeted for degradation. Identification of novel 
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genetic causes of disease can help us find new pathways and can also refine our understanding of 

the pathways we already know.    

Of particular interest is mechanism of the C9ORF72 repeat expansion which is the most 

common cause of familial and sporadic ALS. There are several pathologic features associated 

with the repeat expansion, but it is unknown which ones are the driving force behind 

pathogenesis and which ones are byproducts of defects in other pathways. Understanding what 

characteristics of the repeat effect disease presentation (i.e. expansion size, somatic instability, 

and cis-acting modifiers) could give us clues about how they are causing ALS.  

A higher than expected portion of SALS is caused by the hexanucleotide expansion in 

C9ORF72 despite the fact that this mutation is also the most common cause of familial ALS. It is 

presently unclear if these sporadic C9ORF72 cases are due to incomplete penetrance of the 

expansion and small family sizes, or if they are de novo expansions. The expansions are known 

to be unstable, therefore an asymptomatic “pre-expansion” carrier could pass on a pathogenic 

expansion. Distinguishing between these mechanisms of inheritance will be important to our 

understanding of how expansions cause disease.  

Based on heritability studies in sporadic ALS, there is still a large genetic component of 

SALS that has yet to be discovered. The higher heritability estimates from twin studies compared 

to GWAS suggests that rare variants, which are not captured by GWAS play a significant role. 

Mutations in genes that cause FALS have also been found in sporadic ALS, but they do not 

account for a large portion of disease. The possibility of oligogenic inheritance in sporadic ALS 

has been supported by a few studies. Identification of additional cases with mutations in multiple 

ALS genes might reveal patterns in genes that are commonly mutated together which could 

isolate pathways that work together in neurodegeneration. 
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Chapter 2 

Clinical characterization of a North American ALS cohort 

2.1 Abstract 

 ALS is a clinically heterogeneous disease with variant in age of onset, site of symptom 

onset, survival, and rate of progression. Understanding the factors that lead to variation in the 

disease phenotype, for instance factors that lead to onset at a younger age or decrease survival 

time, is important for understanding disease pathogenesis. It is also valuable information for 

designing clinical trials in determining which demographic variables should be taken into 

account for patient stratification and which variables to control for in determining treatment 

outcomes. We analyzed the clinical characteristics of our ALS cohort and found that gender was 

a significant predictor of site of onset with women more likely to have bulbar onset. Site of onset 

was the most significant predictor of age of onset and subjects with bulbar onset had later age of 

onset. Age of onset was the most significant predictor of both rate of progression and survival. A 

younger age of onset was associated with slower progression and longer survival. Site of onset 

was also significant to progression, as those with bulbar onset had more rapid progression than 

those with limb onset. It will be important to take factors in consideration when analyzing the 

impact of genetic and environmental factors in disease and in evaluation of treatment options. 

2.2 Introduction 

Amyotrophic lateral sclerosis is a universally fatal neurodegenerative disease. Onset 

typically occurs in mid-to late life with age of onset typically ranging from 40-70 with an 

average in the mid-60s.1–6 Death occurs within 3-5 years generally due to respiratory failure.7–11 
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There is no cure for the disease and the only treatment available, Riluzole, only extends survival 

by 2-3 months.12 

Understanding the clinical characteristics and what influences them will not only aid in 

patient counseling, but can provide insight into pathogenesis.  Furthermore, knowing which 

factors influence clinical aspects such as age of onset, survival, and progression will be crucial in 

evaluation of novel therapies as they move to clinical trials.  To delineate the clinical 

characteristics of our ALS cohort, we looked at the relationships between family history, gender, 

ethnicity, and site of onset, age of onset, survival, and progression.  

2.3 Methods 

2.3.1 Subjects 

The work presented here includes a total of 873 subjects collected by the Washington 

University Neuromuscular Genetics Project.  Contributing sites included the Neuromuscular 

Disease Center in St. Louis, Missouri (WUSM), the Virginia Mason Medical Center (VMMC), 

Houston Methodist Hospital, University of Utah, and Cedars Sinai Medical Center. Subjects 

from the Neuromuscular Genetics Projects were utilized for different studies included in this 

work, including poooled-sample sequencing (n=391), exome sequencing (n=724), TREM2 

(n=522), C9ORF72 discovery (n= 389), and C9ORF72 haplotype analysis (n=101). Most of the 

subjects were included in multiple studies. Only subjects that were diagnosed with definite or 

probable ALS according to El Escorial criteria were included in the analysis of clinical 

characteristics (n=778). 
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2.3.2 Data analysis 

 All analysis was performed in R version 3.1.1. Fisher’s exact tests were used to compare 

categorical variables (gender, family history, site of onset, C9ORF72 status, ethnicity and 

progression). Wilcoxon rank-sum tests were used to compare age of onset. Survival analysis was 

performed using a multivariate Cox propotional hazards model with family history, gender, site 

of onset, ethnicity, C9ORF72 status, and age of onset as covariates. Kaplan Meier curves were 

generated for variables that were significantly associated with survival in the Cox proportional 

hazard model. Age of onset was divided into quartiles for graphing (<50 years, 50-60 years, 60-

68 years, and >68 years). Spearman’s correlation was used to assess the relationship between 

progression and age of onset. 

2.4 Results 

2.4.1 General characteristics 

 Clinical characteristics the 778 subjects diagnoses with definite or probable ALS are 

summarized in table 2.1.  Age of onset and survival were within previously reported ranges. 

Here, survival was calculated for subjects who were deceased only. The male to female ratio was 

1.3, which was also typical.13,14 Our cohort was predominantly of white, non-Hispanic origin. 

The rate of family history and C9ORF72 repeat expansions in this cohort are not representative 

of the ALS population as a whole since some sub-cohorts were ascertained based on either the 

presence or absence of these characteristics. C9ORF72 was the only genetic factor we were able 

to include since mutations in other genes are not common enough to perform analysis.  
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Table 2.1 Clinical characteristics of 778 ALS patients. 

% FALS (n=497) 39.2% 
% C9ORF72 positive (n=773) 8.92% 

% Male (n=778) 56.56% 
Ethnicity (n=761) 

White (non-Hispanic) 
African American 

Hispanic 
Other 

 
691 (91%) 
21 (2.8%) 
32 (4.2%) 
17 (2%) 

Age of onset, yrs. (n=766, median; range) 60; 14-85.9 
Site of onset (n=769) 

Spinal 
Bulbar 

Respiratory 
FTD 

Diffuse 

 
532 (69%) 
213 (28%) 
11 (1.4%) 
6 (0.8%) 
2 (0.3%) 

Survival, mo. (n=295, median; range )* 30; 6-220 
 

2.4.2 C9ORF72 

There were a total of 69 expansion carriers. The C9ORF72 expansion is significantly 

more common in subjects with a family history of disease. 44/65 expansion carriers had a family 

history of disease compared to 151/429 non-expansion carriers (only including subjects for 

which C9ORF72 status and family history were known). The expansion was also slightly more 

common in females compared to males (38/69 expansion carriers and 407/704 non expansion 

carriers were men (Table2.2)). 

Table 2.2 Differences in C9ORF72 expansion rates by demographic categories. 

 Expanded Not expanded p-value 
Gender (%Male) 44.9% 57.8% 0.04222 

Ethnicity (%White, non-Hispanic) 95.6% 90.3% 0.1889 
Family History (%+) 67.7% 35% 1.077x10-6 
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2.4.3 Site of onset  

To analyze site of onset, all subjects with non-spinal onset (bulbar, diffuse, FTD, and 

respiratory) were combined into a single category (Table 2.3). Non-spinal onset was significantly 

more common in females compared to males. Non-spinal onset was also more common in FALS 

compared to SALS, but was not significant when the same analysis was performed in only non-

C9 expansion carriers. There was a trend toward non-spinal onset in C9 expansion carriers, but 

this was not statistically significant on its own. 

Table 2.3 Differences in site of onset by demographic categories. 

 Spinal Not Spinal P-value 
Family History 35.6% 45.6% 0.04282 

Family History (C9-) 32.3% 39.5% 0.1729 
C9ORF72 8.0% 11.5% 0.1338 

Male 60% 48.5% 0.003557 
White, non-Hispanic 93.1% 89.8% 0.1095 

 

Table 2.4 shows the site of first limb affected for subjects with spinal onset. There were 3 

individuals whose onset was listed as “spinal” with no further information, and 2 with initial 

symptoms in the trunk that are not listed in this table. The most common site of onset was in the 

right upper limb and overall, upper limb onset was more common than lower limb. It was not 

uncommon for subjects to have symptoms begin in both right and left limbs simultaneously, but 

only 2 subjects had symptoms begin in both upper and lower limbs simultaneously. Women were 

significantly more likely to have lower limb onset with 60% of women having lower limb onset 

compared to 38% of men (p=1.319x10-6). 
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Table 2.4 Site of initial symptoms in cases with spinal onset. 

 Left Right Both Unspecified Total 
Upper 80 100 31 64 275 
Lower 76 69 38 64 247 

Both 1 0 1 0 2 
Unspecified 0 0 0 3 3 

Total 157 169 70 131 527 
 

 Within subjects with spinal onset, upper vs lower limb and right vs left limb had no effect 

on age of onset, progression, or survival (data not shown). Progression rate was however 

significantly associated with onset in left and right limbs simultaneously compared to onset in 

either a left or right limb (p=0.007399). There was a higher prevalence of rapid progression, but 

also a higher prevalence of very slow progression in those with both right and left onset (Figure 

2.1).  

 

Figure 2.1 Progression rate in patients with either left or right or left and right limb onset. 
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2.4.4 Age of Onset 

Age of onset significantly differed for all categories tested (gender, family history, 

C9ORF72 expansion status, ethnicity, and site of onset) except for C9ORF72 expansion status 

(Figure 2.2). Interestingly, there was a significantly earlier onset in FALS subjects compared to 

SALS; however the difference was due mostly to the higher proportion of C9ORF72 expansion 

carriers in the FALS cohort, despite the fact that there was no significant association with 

C9ORF72 status alone (Figure 2.2 A, B, C). The later onset in females compared to males was 

due to the later onset in non-spinal onset, which is more common in females (Figure 2.2 D, E, F). 

We also observed later onset in white, non-Hispanic subjects compared to other ethnicities 

(Figure2.2 G).    
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Figure 2.2 Age of onset by A. Family history of ALS, B. C9ORF72 expansion status, C. Family history stratified by 
C9ORF72 status, D. Gender, E. Site of onset, F. Gender stratified by site of onset, and G. Ethnicity. The median is age of 

onset in years is shown on the boxplots.
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Figure 2.2 continued. 

2.4.5 Progression 
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Progression rates were available for 637 subjects. However, rates were derived from three 

different metrics. Subjects that had ALSFRS measured at multiple time-points were calculated as 

change in ALSFRS/time between visits (in months). When this was unavailable, progression was 

calculated for subjects who were deceased as 48/duration in months. Subjects collected at 

VMCC were assigned to categories slow, typical-slow, typical, typical-fast, and fast based on 

expert evaluation. In order to combine these data, ALSFRS/time and 48/duration were assigned 

to categories 1 (slow), 2(typical-slow), 3 (typical), 4 (typical-fast), and 5 (fast) based on 

percentile of their respective distributions such that the up to 10% = 1, 10-20% = 2, 20-80% = 3, 

80-90% = 4, and 90-100% = category 5.  The distribution of the proportion of subjects falling 

into each category was roughly the same for all methods of calculation (Figure 2.3). 

 

Figure 2.3 Proportion of subjects falling into each progression category stratified by method of calculating progression. 
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The distribution of progression categories differed between C9ORF72 expansion carriers 

and non- expansion carriers (p=0.03057). C9ORf72 carriers had a higher proportion with typical 

progression (category 3), while non-expansion carriers had more with slower progression 

(category 1 and 2). Expansion carriers also had a higher proportion of rapid progression 

(category 5) (Figure 2.4 A). There was also a significant difference between males and females 

(p=0.008689). Females appeared to have a higher proportion of category 3 compared to males, 

however males had a higher proportion in both categories 2 and 5 (Figure 2.4 B). There was a 

clear association between site of onset and progression (p=0.003356) with a higher proportion of 

cases with non-spinal onset in categories 4 and 5 (more rapid progression) and more cases with 

spinal onset in categories 1 and 2 (slower progression) (Figure 2.4 C). We observed no 

associations with family history or ethnicity (Figure 2.4 D, E). 

 

Figure 2.4 Proportion of subjects falling into each progression category stratified by A. Gender, B. Family history of ALS, C. 
C9ORF72 expansion status, D. Ethnicity, and E. Site of onset. 
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Figure 2.4 continued. 

There was a significant correlation between age of onset and progression (p=3.92x10-4, 

spearman’s rho=0.14) with more rapid progression in subjects with later onset (median age of 

onset for category1: 54yrs, category2: 60yrs, category3: 63.65yrs, category4: 61yrs). 
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The relationship between progression and survival was not assessed since survival time was used 

to calculate progression for many of the cases. Furthermore, there was no survival data for those 

whose progression was determined by expert analysis. 

2.4.6 Survival 

The median survival time for subjects with known disease duration (due to documented 

death) was 30 months. Using a Kaplan Meier survival analysis including all subjects (Figure 

2.5), the median survival was estimated to be 42 (95% CI: 39-46).  

Figure 2.5 Kaplan Meier Survival curve of whole ALS cohort. Dotted lines represent 95% confidence interval. 

We fit a multivariate Cox proportional hazards model to determine which variables 

significantly impacted survival times (Table 2.5). Age of onset was the most statistically 

significant predictor of survival time with earlier age of onset resulting in longer survival (Figure 

2.6 A). C9ORf72 expansions also significantly impacted the probability of death with a hazard 
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ratio over 2 meaning death was greater than twice as likely for expansion carriers compared to 

non-expansion carriers (Figure 2.6 B). Spinal onset was significantly associated with longer 

survival (Figure 2.6 C); however we have also shown that subjects with non-spinal onset have a 

later age of onset. Therefore, when age of onset is included in the multivariate model, the p-value 

is barely significant. Ethnicity was also significant in this model with longer survival in non-

white subjects, (Figure 2.6 D). 

Table 2.5 Cox-proportional hazards model. Median survival is calculated from Kaplan Meier curves 

 Median Survival    
Variable Yes No Hazard Ratio P-value 
Family History 41 48 1.062 0.69 

Male 48 39 0.785 0.09 
C9ORF72 (+) 32 43 2.159 1.6x10-5 
Spinal Onset 48 30 0.742 0.05 

White, not Hispanic 41 NA 2.252 0.037 
Age of onset -- -- 1.039 4x10-10 
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Figure 2.6 Kaplan Meier survival curves stratified by A. Age of onset, B. C9ORF72 expansion status, C. Site of onset, and D. 
Ethnicity.  

 

2.5 Discussion 

Here we have provided an analysis of the some of the clinical characteristics of 

amyotrophic lateral sclerosis in a North American cohort. The patients included in this analysis 

45



were derived from multiple centers and were included in a variety of genetic studies described in 

subsequent chapters. There is some amount of ascertainment bias for certain characteristics. For 

instance, family history of ALS is more likely to be recorded when it is positive, but is left blank 

rather than recorded as “sporadic” otherwise. This artificially inflates the rate of FALS in our 

cohort, but should not affect the relationship between family history and clinical presentation.   

We initially found bulbar onset to be more common in cases with a family history of 

ALS, however there was no difference in site of onset when we stratified for C9ORF72 status 

despite the fact that there was not a significant difference in site of onset between expansion 

carriers and non-expansion carriers. This is consistent with our previously reported finding that 

bulbar onset is more common in expansion carriers with FALS but not in expansion carriers with 

SALS.15 Gender was the only characteristic that had a significant association with site of onset 

with women more likely to have bulbar onset than men, an association that is well known.13,14,16–

19 Further stratifying spinal onset by limb showed that women with spinal onset were more likely 

to have lower limb onset than men. To our knowledge, this association has not been previously 

reported.  

Site of onset was the factor most significantly associated with age of onset with subjects 

with spinal onset having earlier onset than those with bulbar and other onset. While it appeared 

that onset was later in women, this effect was due to the increase in bulbar onset in women 

compared to men. Similarly, the later onset we observed in familial cases was due to the increase 

in bulbar onset in FALS expansion carriers. We also noted that the age of onset was earlier in 

non-White subjects.  
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We found age of onset to be the most important indicator of survival as other studies have 

also shown (reviewed by Chiò et al.7).We also noted that C9ORF72 expansions were 

significantly associated with shorter survival time. Ethnicity and site of onset were associated 

with survival, although less so, even when controlling for age of onset. Studies have consistently 

shown shorter survival times in bulbar onset.20–26 The studies investigating the role of ethnicity 

in survival times have conflicting results however most have shown no difference in survival 

times between ethnicities.8,10,27 It is possible that the association we see is due to the low 

numbers of non-white subjects, but differences in follow-up play a role as well. Obituaries are 

often used to determine survival since many patients don’t return to the same clinic and non-

white patients are less likely to have obituaries published, resulting in more censored data. 

Progression rate was significantly associated with both age and site of onset which was 

consistent with the association with survival. In addition to more rapid progression in patients 

with bulbar onset, we also showed that within subjects with spinal onset, there progression was 

more rapid in when symptoms began in right and left limbs simultaneously. We also saw an 

association with C9ORF72 with non-expansion carriers having higher numbers of slower 

progression, however there were also more non-expansion carriers in the most rapid category. 

This is possibly caused by specific mutations in other genes, such as SOD1, that are associated 

with rapid progression, however we did not include mutations other than the C9ORF72 

expansion in this analysis. We did not examine the relationship between progression and survival 

since survival time was used to calculate progression rate in many cases.  

 There were other clinical characteristics, such as frontotemporal dementia, and used of 

Riluzole we did not include in analysis due to differences in data collection. Patients in this 

cohort were collected from four different centers, all of which collected different information. 
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We noted that cognitive changes were not always recorded and assessment methods were not 

consistent. While this analysis is not completely comprehensive, we did find several significant 

associations that need to be taken into account in further analysis. 
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Chapter 3 

Genetic Characterization of a North American ALS cohort 

The work presented in this chapter resulted in the following publications 

1. Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants in known 

amyotrophic lateral sclerosis genes. Cady J, Allred P, Bali T, Pestronk A, Goate A, Miller 

TM, Mitra RD, Ravits J, Harms MB, Baloh RH.Ann Neurol. 2015 Jan;77(1):100-13 

2. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in 

amyotrophic lateral sclerosis. Harms MB, Cady J, Zaidman C, Cooper P, Bali T, Allred 

P, Cruchaga C, Baughn M, Libby RT, Pestronk A, Goate A, Ravits J, Baloh RH. 

Neurobiol Aging. 2013 Sep;34(9):2234.e13-9 

 

3.1 Abstract 
 

To define the genetic landscape of amyotrophic lateral sclerosis (ALS) and assess the 

contribution of possible oligogenic inheritance, we comprehensively analyzed 17 known ALS 

genes in 391 ALS patients from the United States. Targeted pooled-sample sequencing was used 

to identify variants in 16 ALS genes and repeat-primed PCR was used to detect expansions in 

C9ORF72 and ATXN2.  64.3% of familial and 27.8% of sporadic subjects carried potentially 

pathogenic novel or rare coding variants in the genes under investigation. 3.8% of subjects had 

variants in more than one ALS gene, and these individuals had disease onset ten years earlier 

(p=0.0046) than subjects with variants in a single gene.  The number of potentially pathogenic 
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coding variants did not influence disease duration or site of onset. The rates of subjects carrying 

variants were significantly higher than previous reports using less comprehensive sequencing 

approaches.  A significant number of subjects carried variants in more than one gene, which 

influenced the age of symptom onset and supports oligogenic inheritance as relevant to disease 

pathogenesis.   

 

3.2 Introduction 
Amyotrophic lateral sclerosis (ALS) is caused by degeneration of upper and lower motor 

neurons which results in progressive paralysis and ultimately death. As the most common motor 

neuron disease, the incidence of ALS is 0.44-3.2/100,000 person years1 and data from the 

National ALS Registry demonstrates a prevalence of 3.9/100,000 cases in the US.2  5-10% of 

ALS patients have a family history of the disease (FALS)3–5  and the genetic analysis of these 

FALS pedigrees has fueled the discovery of more than 20 ALS genes, some with high-

penetrance and others with lower penetrance or tentative associations to disease (reviewed in 

Harms and Baloh, Andersen and Al-Chalabi).6,7  Mutations in many of these genes are also 

found in patients without a family history of ALS (sporadic ALS [SALS]), with high-penetrance 

mutations found in ~10%.8–14 Recently, the heritability of SALS has been estimated to be 12-

21% from genome-wide association studies15,16 and as high as 61% in twin studies17 suggesting 

additional genetic influences on ALS risk remain to be identified.  

The emergence of next-generation sequencing techniques has driven down sequencing 

costs and made it feasible for studies to abandon sequential candidate gene sequencing in favor 

of analyzing larger numbers of genes simultaneously.  One of the more powerful and cost-

effective sequencing techniques for screening moderate number of genes in medium sized 

52



cohorts is termed pooled-sample or pooled-DNA sequencing (Figure 3.1).18  In this method, 

DNA samples from multiple patients are pooled prior to PCR amplification of target regions. 

PCR products are then combined and sequenced en masse using short-read/next-generation 

sequencing platforms.18 Analysis programs such as SPLINTER utilize statistical algorithms to 

identify potential variants with high sensitivity, and are capable of detecting single alleles in 

pools of up to 500 individuals.19  Pooled-sample sequencing therefore overcomes the resource 

and time-intensive draw-backs of traditional Sanger sequencing approaches at a fraction of the 

cost.18,19 

As a result of next-generation sequencing advances, studies have begun addressing the 

relative contributions of individual genes in ALS subjects with and without family histories, 

revealing significant heterogeneity between populations.8–12,20 Furthermore, screening multiple 

ALS genes in parallel has also uncovered a number of patients that carry potentially pathogenic 

variants in more than one known ALS gene.12 The unexpected frequency of this phenomenon has 

raised the hypothesis that some fraction of apparently sporadic ALS8,12 could be caused by the 

co-occurrence of two or more genetic variants with additive or synergistic deleterious effects.   

Each variant alone could be tolerated but when combined with a second variant would exceed 

the threshold required for neurodegeneration.  Although several papers have reported cases with 

multiple variants in ALS genes, no effect on phenotype or disease manifestations has been 

noted.9,12 

We have used pooled-sample sequencing as the major technique to analyze 17 ALS-

associated genes in 391 ALS subjects from a United States clinic-based cohort.  In creating the 

most comprehensively-sequenced North American ALS cohort to date, this study measures the 

burden of rare and novel variants in known ALS genes and defines the frequency of potential 
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oligogenic cases.  Importantly, we demonstrate that subjects with rare or unique variants in more 

than one ALS gene have earlier ages of disease onset. 

 

3.3 Methods 

3.3.1 Subjects 

   Between 2005 and 2011, patients diagnosed with ALS at the Washington University 

Neuromuscular Disease Center in St. Louis, Missouri (WUSM) or at the Virginia Mason 

Medical Center (VMMC) were systematically asked to participate in genetic studies.  All 

subjects provided informed and written consent for clinical-genetic correlation studies of ALS 

that had been approved by institutional ethics review boards.  At WUSM, subjects with or 

without a family history of ALS were included, while only sporadic cases were enrolled at 

VMMC.  All subjects had been evaluated by neuromuscular specialists and diagnosed with 

probable or definite ALS according to El Escorial criteria.21    A subset of included subjects 

(mostly with FALS) also underwent sequencing for one or more ALS genes at commercial 

reference laboratories, which identified 6 subjects with SOD1 or TARDBP mutations. 

3.3.2 Genetic investigations 

Sequencing of ALS-associated genes:   All coding exons and 20 flanking bases of SOD1, FUS, 

TARDBP, ANG, OPTN, VCP, VAPB,  DAO, DCTN1, FIG4,SETX, TAF15, EWSR1, UBQLN2 , 

SQSTM1,  and C9ORF72 were sequenced in our cohort using the pooled-sample method as 

previously described in detail and schematized in Figure 1.18,22   Genomic DNA was extracted 

from whole blood or saliva of individual subjects according to standard protocols.  Double-
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stranded DNA was carefully quantified by fluorimetry based on SYBR gold fluorescence.  

Pooled-sample gDNA pools were then created by combining equimolar amounts of DNA from 

multiple individuals:  two pools containing 21 samples each were used to validate the method, 

while the remaining samples were divided into 8 pools of 30-50 samples each.   

 

Figure 3.1 Schema of pooled-sample sequencing workflow 
 

Primer pairs for all coding exons and at least 20bp of flanking sequence were designed 

using Primer3 (http://biotools.umassmed.edu/bioapps/primer3_www.cgi) and the RefSeq gene 

annotations found in GRCh37/hg19 (accession numbers NM_000454.4, NM_004960.3, 

NM_007375.3, NM_001145.4, NM_001008211.1, NM_007126.3, NM_004738.4, 

NM_001917.4, NM_004082.4, NM_014845.5, NM_015046.5, NM_139215.1, NM_013986.3, 

NM_013444.3, NM_003900.4, and NM_001256054).  Primer sequences are available upon 

request.  Amplicons from each pool were sequenced on one lane of HiSeq2000 (Illumina), with 

single-end 42bp reads.  UBQLN2, SQSTM1, and C9ORF72 were reported after initial sequencing 
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was underway and all subjects were sequenced as part of 6 pools across two lanes of Illumina 

HiSeq2000.  Exon 1 of SQSTM1 was not sufficiently covered using pooled-sample methods and 

required Sanger sequencing of each individual subject.  Mutations in PFN1 were reported after 

analysis was already underway so this gene was not assessed.23 

Bioinformatic analysis:   Sequence alignment and variant calling were performed using "short 

indel prediction by large deviation inference and nonlinear true frequency estimation by 

recursion" (SPLINTER).19 The SPLINTER program generates an error model based on the 

negative control for each run. The error model is used to calculate a p-value for each SNP that is 

detected. SPLINTER calculates the p-value cutoff that has the highest sensitivity and specificity 

to distinguish true variants in the positive control vector and uses the ratio of sequencing reads 

with and without variant nucleotides to estimate the frequency of a given variant within a pool.  

All variants called by SPLINTER were filtered for variants within exons or the 10 

flanking bases and then visually inspected using Integrated Genomics Viewer(IGV)24,25 after 

realignment to Hg19 using Novoalign (http://www.novocraft.com) and SAMtools.26  Variants 

were annotated using SeattleSeq (http://sngs.washington.edu/SeattleSeqAnnotation131/), SIFT 

(http://sift.jcvi.org/), MutationTaster (http://www.mutationtaster.org/), and PolyPhen2 

(http://genetics.bwh.harvard.edu/pph2/). The effect of splice-site mutations was predicted by 

Human Splicing Finder (http://www.umd.be/HSF).  Population frequencies for each variant were 

determined in dbSNP, the 1000 Genomes Project, and the NHLBI Exome Sequencing Project 

version ESP6500 exome variant server (ESP6500)  

(http://ESP6500.gs.washington.edu/ESP6500/ [1 Dec 2013]).  

Variant validation and classification:  Novel and rare (<1% MAF in ESP6500) non-

synonymous and splicing variants that passed visual inspection were genotyped in individual 
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DNA samples by either Sequenom or Sanger sequencing to both validate the variant and 

determine which subject(s) carry them.  Validated variants were assigned to four categories 

based on their presence in the ALS literature and frequencies in population databases.  Category 

1 variants have been previously reported in ALS patients but are absent from population 

databases.  Category 2 variants have been reported in ALS patients but are present in population 

databases.  Category 3 variants are novel (i.e. they have not been reported in ALS patients or 

population databases).  Category 4 variants have not been reported in ALS patients but are 

present in population databases.  Pathogenicity prediction algorithms were not utilized for 

category assignments because of their poor track-record in predicting disease-causing 

mutations.27,28  All four categories of variants were considered to be potentially pathogenic 

mutations. 

C9ORF72 repeat expansion detection:  All subjects were also screened for C9ORF72 repeat 

expansions using standard repeat-primed PCR.29  Identification of a decrementing saw-tooth 

pattern with 6-bp periodicity and more than 30 peaks was considered positive for an expanded 

repeat, as in previous applications of this assay. In practice, however, all samples considered 

positive in this study showed more than 60 peaks. 

ATXN2 repeat size:  The CAG repeat region was amplified using primers 5’ FAM-CCC CGC 

CCG GCG TGC GAG CCG GTG TAT G 3’ and 5’ CGG GCT TGC GGA CAT TGG 3’. PCR 

was performed with PhusionHigh-Fidelity PCR Master Mix with HF Buffer (New England 

BioLabs) with cycles as follows: 30 seconds 98°C, 35 cycles (10 seconds 98°C, 30 seconds 

72°C),  and 2 minutes 72°C. Repeat lengths were determined by fluorescent capillary gel 

electrophoresis. While intermediate-length alleles were originally considered to be 27-33 

repeats30, subsequent meta-analysis has shown 29 repeats to be the optimal cutoff to distinguish 
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ALS subjects from controls.31 Therefore we considered repeat sizes of 29-33 to be of 

intermediate length. 

3.3.3 Statistical Analysis 

Statistical tests comparing patient characteristics were performed in R v3.0.1. Wilcoxon 

rank-sum tests were used to assess age of onset and survival, and Fisher’s exact tests were used 

to analyze site of symptom onset, family history, gender, and ethnicity. 

To identify rare and novel SNPs that might be over-represented in sporadic ALS subjects, 

we used Fisher's exact tests to compare each candidate SNV’s allele frequency in sporadic ALS 

versus controls. By genotyping variants across a range of frequencies, we found that SPLINTER 

predicted frequencies and genotyped frequencies were highly correlated (r2=0.9596) as in prior 

studies19 (data not shown). Therefore SPLINTER-predicted frequencies were used for ALS SNPs 

that were not genotyped.  We included only SALS samples with self-reported non-Hispanic 

white backgrounds (n=309) and used subjects with European ancestry in ESP6500 and the 1000 

Genomes Project (1000genomes.org)32 as our control population(n=4679). Variants were 

selected for replication based on p-values and potential functional significance. Selected variants 

were genotyped in 552 ALS cases and 464 neurologically normal controls from the Coriell DNA 

repository. Tests were performed in R v3.0.1. 

Gene-based tests comparing the burden of rare variants in cases compared to controls 

were performed using SKAT-O.33  We included the same individuals as were used for single-

variant testing. Only missense and nonsense variants with MAF<0.1 in the control cohort were 

included in analysis. We used a Bonferonni correction to account for multiple testing 
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(α=0.0036). UBQLN2 was excluded from analysis since SKAT does not handle data from the X-

chromosome. 

3.4 Results  

3.4.1 Subject Characteristics 

Demographic and disease characteristics for the 391 sequenced subjects with ALS are 

shown in Table 3.1.  Age at onset, site of first symptom, and overall disease survival were 

similar to other population-based and referral center-based cohorts (reviewed in Harms and 

Baloh).6  42 subjects (10.7%) had a family history of ALS, which is comparable to other ALS 

referral center-based cohorts.  

Table 3.1 Subject demographics and disease characteristics. Data for aethnicity, bsite of onset, and cage at onset was missing for 
14, 5, and 4 subjects respectively.  dSurvival data was available for 172 subjects. 

Total ALS cases 391 

Subjects with family history of ALS 10.7% 

Self-reported Caucasian (%)a 93.1% 

Male sex (%) 57% 

Limb Onset (%)b 69.2% 

Age at Onset (mean, stdev)c 59.7±12.8 

Age at Onset (median, range) 61,14-85 

Survival in months (mean, stdev)d 41.3±27.7 

Survival in months (median, range) 34, 7-147 

 

3.4.2 Sequencing Results 

In total, 152 PCR amplicons were required to amplify 203 exons of the 16 genes analyzed 

by pooled-sample sequencing.  Twelve lanes of next-generation sequencing yielded 1.2 billion 



total reads (~3 million per subject) to produce a coverage depth exceeding 67x per allele for all 

amplicons across all pools.  Most amplicons showed considerably higher coverage (range: 67-

987, median=458.68, IQR=355.98-560.51).  

Sensitivity for single alleles (i.e. heterozygous variants present in a single individual 

within a given pool) was 98% (100% in 12 of 16 pools and 92% in the remainder), as determined 

by the detection rate of positive control singleton variants.  We also compared pooled-sample 

results to whole-exome data for 35 subjects and found no missed variants in targeted genes.  

Finally, we detected all six previously-found mutations with the correctly assigned singleton 

frequencies.   

To assess the false positive rate at the low allele frequencies in which we were interested, 

we performed validation genotyping of 100 allele calls for 67 non-synonymous or splice-site 

variants that were either rare (<1% minor allele frequency) or absent in population databases.  13 

of 100 calls (8 SNPs, including 4 SNPs that were identified and validated in other pools) were 

not validated by subsequent genotyping, resulting in a false-positive rate of 13%. The false-

positives included 5 calls that were true in other pools.  

After filtering and validation, 67 rare or novel coding variants were identified (65 by pooled-

sample sequencing and two by direct sequencing of exon 1 of SQSTM1). Variants were 

identified in all sequenced genes except for UBQLN2. 

3.4.3 Variant Identification and Classification   

Coverage of targeted bases was ≥130 fold for each subject.  Sensitivity for detecting a 

variant present as a single allele within the pool of normal alleles averaged 98% (100% in 12 of 
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16 pools and 92% in the remainder).  Based on validation genotyping, 13% of variants were 

determined to be false-positives.   

In total, we found 66 rare or novel coding or splice-site variants (Table 3.2).  One-third of 

these (n=23) were previously reported in ALS patients.  Ten of these ALS-associated variants 

were not found in population databases of genetic variation (Category 1) and review of the 

literature showed that all of them are well-established causal mutations.  The remainder of 

variants previously reported in ALS (n=13) were found to be present in population databases 

(Category 2).  With the exception of SOD1 D91A (where causality is clear), these variants 

lacked conclusive evidence of causation in the literature.  Two-thirds (n=43) of variants we 

identified have not been previously reported in ALS, including 17 that are absent from 

population databases (Category 3) and 26 that are rare in population databases (Category 4). 
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Table 3.2 Novel and rare coding variants identified in ALS genes.  Rare was considered a global minor allele frequency <1%.  aGRCh37/hg19 bdbSNP138 
ccDNA location and predicted protein changes refer to isoforms listed in Methods. dAllele counts are listed as alternate alleles found/total alleles assayed. eFor all 

but the ATXN2 and C9ORF72 repeats, global allele counts were calculated from all subjects in the 1000 Genomes and NHLBI Exome Sequencing Projects. 
Global allele counts for C9ORF72 repeat expansions were derived from34 while intermediate CAG repeats in ATXN2 were derived from 30,31. fPopulation allele 
count refers to the population most closely matching that of the ALS subjects(s) carrying the variant.  Unless indicated by a symbol, this is European ancestry 

(EA subjects from ESP6500 and 1000genomesEUR). Symbols used to denote other populations:  †African American (AA subjects from 
ESP6500+1000genomesAFR); ‡Hispanic (1000genomesAMR) §Asian (1000genomesASN). *indicates at least one subject carrying that specific variant also 

carried another variant(s) in an analyzed ALS gene 

 

 
Gene 
Name 

Genomic 
locationa dbSNP IDb 

Predicted 
Predicted 
protein 
changec 

Allele Countsd 
cDNA 

changec FALS SALS Globale Populationf 

Expansions 
ATXN2 12:112036785 rs193922927 c.532_534CAG Q188(29-33) 1/84 11/698* 19/2982 19/2982 

C9ORF72 9:27573539 - 
  

14/84* 21/698 11/7598 11/7598 

Category 1: FUS 16:31202739 rs121909668 c.1561C>G R521G 1/84 0/698 0/15190 0/9358 

 
FUS 16:31202752 - c.1574C>T P525L 0/84* 1/698 0/15190 0/9358 

-Reported in ALS SOD1 21:33032096 rs121912442 c.14C>T A5V 1/84* 1/698 0/15190 0/9358 

-Not in databases SOD1 21:33036142 rs121912431 c.112G>A G38R 1/84* 0/698 0/15190 0/9358 

 
SOD1 21:33038821 - c.229G>T D77Y 1/84 0/698 0/15190 0/9358 

 
SOD1 21:33039600 - c.269C>T A90V 0/84 1/698 0/15190 0/9358 

 
SOD1 21:33039672 rs121912441 c.341T>C I114T 1/84 1/698 0/15190 0/9358 

 
TARDBP 1:11082325 rs80356719 c.859G>A G287S 0/84 1/698* 0/15190 0/9358 

 
TARDBP 1:11082409 rs80356726 c.943G>A A315T 1/84 0/698 0/15190 0/9358 

 
VCP 9:35065360 rs121909329 c.464G>A R155H 1/84 0/698 0/15190 0/9358 

Category 2: ANG 14:21161845 rs121909536 c.122A>T K41I 0/84 1/698* 27/15190 23/9358 
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ANG 14:21162130 rs121909543 c.407C>T P136L 1/84* 0/698 1/15190 1/9358 

-Reported in ALS DCTN1 2:74588717 rs72466496 c.3746C>T T1249I 2/84* 1/698* 44/15190 39/9358 

-Rare in databases DCTN1 2:74592252 rs72659383 c.3146G>A R1049Q35 0/84 1/698* 22/15190 21/9358 

 
FIG4 6:110036336 rs121908287 c.122T>C I41T36 0/84 1/698 17/15190 16/9358 

 
OPTN 10:13166053 rs142812715 c.941A>T Q314L 0/84 1/698 3/15190 3/9358 

 
SETX 9:135140020 rs151117904 c.7640T>C I2547T 2/84 8(1hom)/698* 76/15190 71/9358 

 
SETX 9:135202325 rs112089123 c.4660T>G C1554G 0/84 6/698* 47/15190 40/9358 

 
SOD1 21:33039603 rs80265967 c.272A>C D91A 1/84 2(1hom)/698 9/15190 9/9358 

 
SQSTM1 5:179248034 rs200396166 c.98T>T A33V 0/84 2/698 6/15190 6/9358 

 
SQSTM1 5:179251013 rs145056421 c.457G>A V153I 1/84* 0/698 9/15190 9/9358 

 
SQSTM1 5:179252184 rs11548633 c.712A>G K238E 0/84 5/698* 41/15190 32/9358 

 
TAF15 17:34171525 rs200175347 c.1222C>T R408C 0/84* 1/698 2/15190 2/9358 

Category 3: DAO 12:109278977 - c.194+1G>A Splice donor 0/84 1/698 0/15190 0/9358 

 
DCTN1 2:74588653 - c.3810C>A H1270Q 0/84 1/698* 0/15190 0/9358 

-Not reported in ALS DCTN1 2:74590527 - c.3239C>T S1080F 0/84 1/698 0/15190 0/4898† 

-Not in databases EWSR1 22:29682932 - c.620C>G T207S 0/84 1/698 0/15190 0/9358 

 
FIG4 6:110087935 - c.1588_1589delTT F530Ter 0/84 1/698 0/15190 0/9358 

 
FUS 16:31202282 - c.1394-2delA Splice site 1/84 0/698 0/15190 0/9358 

 
OPTN 10:13160964 - c.703C>T Q235Ter 0/84 1/698 0/15190 0/9358 

 
SETX 9:135202223 - c.4762G>A A1588T 0/84 1/698 0/15190 0/572§ 

 
SETX 9:135203632 - c.3353C>A T1118K 0/84 1/698 0/15190 0/9358 

 
SETX 9:135206694 - c.980A>T E327V 0/84 1/698 0/15190 0/9358 
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SETX 9:135210013 - c.820A>G M274V 0/84 1/698* 0/15190 0/9358 

 
SETX 9:135211743 - c.658A>C K220Q 0/84 1/698 0/15190 0/9358 

 
SETX 9:135211898 - c.503G>A R168Q 0/84 1/698* 0/15190 0/9358 

 
SETX 9:135224775 - c.41C>T T14I 0/84 1/698 0/15190 0/9358 

 
SOD1 21:33038791 - c.199C>G P67A 1/84* 0/698 0/15190 0/9358 

 
SQSTM1 5:179248079 - c.143T>T L48P 0/84 1/698 0/15190 0/9358 

 
TARDBP 1:11082589 - c.1123A>G S375G 0/84 1/698 0/15190 0/9358 

Category 4: ANG 14:21161973 rs17560 c.250A>G K84E 0/84 1/698 70/15190 69/4898† 

 
DAO 12:109294259 rs4262766 c.992G>A G331E 0/84 1/698 4/15190 0/9358 

-Not reported in ALS DAO 12:109294301 rs143732132 c.1034C>T S345F 1/84* 0/698 3/15190 3/9358 

-Rare in databases DCTN1 2:74593101 rs145130328 c.2805C>G I935M 0/84 1/698 4/15190 0/362‡ 

 
DCTN1 2:74598723 rs55862001 c.586A>G I196V 1/84 4/698* 77/15190 70/9358 

 
DCTN1 2:74604801 rs374419252 c.332C>G S111C 0/84 1/698 1/15190 0/9358 

 
EWSR1 22:29682919 rs144503053 c.607T>A S203T 0/84 1/698 1/15190 1/9358 

 
FIG4 6:110081543 rs142463699 c.1228A>C T410P 0/84 1/698 1/15190 0/362‡ 

 
FIG4 6:110107636 rs143531641 c.2080A>G M694V 0/84 1/698* 3/15190 3/9358 

 
FIG4 6:110113852 rs375414729 c.2444T>C F815S 0/84 1/698 1/15190 1/9358 

 
FUS 16:31201719 rs186547381 c.1292C>T P431L 0/84 1/698 3/15190 2/9358 

 
FUS 16:31202343 rs201772423 c.1453C>T R485W 0/84 1/698* 1/15190 1/9358 

 
SETX 9:135140063 rs202121071 c.7597C>T H2533Y 1/84 0/698 1/15190 1/9358 

 
SETX 9:135147182 rs150673589 c.7114G>A D2372N 0/84 1/698 19/15190 6/362‡ 

 
SETX 9:135202120 rs140781535 c.4865C>T P1622L 0/84 1/698 1/15190 0/9358 

 
SETX 9:135204004 rs149546633 c.2981A>G D994G 0/84 1/698 31/15190 0/9358 

 
SETX 9:135204235 rs376022544 c.2750T>C M917T 0/84 1/698 1/15190 1/9358 
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SETX 9:135205116 rs139200312 c.1869A>C E623D 0/84 1/698 3/15190 3/9358 

 
SETX 9:135205594 rs200614765 c.1391C>T S464L 0/84 1/698 11/15190 6/9358 

 
SETX 9:135206706 rs372193033 c.968G>A S323N 0/84 2/698* 1/15190 1/9358 

 
SETX 9:135218103 rs145438764 c.472T>G L158V 0/84 1/698 53/15190 48/9358 

 
SQSTM1 5:179263547 rs201239306 c.1277C>T A426V 0/84 1/698 1/15190 0/9358 

 
TAF15 17:34171358 rs140268553 c.1163G>A R388H 0/84 1/698 7/15190 7/9358 

 
VAPB 20:57014075 rs146459055 c.390T>G D130E 0/84 1/698 11/15190 11/9358 

 
VAPB 20:57016076 rs143144050 c.510G>A M170I 0/84 5/698* 19/15190 18/9358 
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3.4.4 Variant Data by Gene 

ANG 

 Three ANG variants were identified in ALS patients, all of which were also present in 

controls. Two variants have previously been associated with ALS. p.P136L (P112L) was 

identified in an FALS subject with an established SOD1 variant and was in 0.006% of controls. 

The variant was previously shown to have a deleterious effect on ANG function in cells.37 pK41I 

(K17I) was found in ALS subjects in several studies 37–40 however it was also identified in a 

healthy control and a subject with a FUS variant. The variant was shown to have a deleterious 

effect on protein function37, but is also present in 0.1% of public database controls. The p.K84E 

was previously unidentified in ALS, but is in 0.046% of controls. Only p.P136L was predicted to 

be damaging by at least two algorithms. 

ATXN2 

Twelve patients (11 SALS) had one intermediate length ATXN2 alleles of 30-33 CAG 

repeats. One of these patients had alleles of 27 and 30 repeats, while the rest had 22 or 23 repeats 

on their second allele. A patient with a de novo FUS p.P525L variant had an ATXN2 allele of 31 

repeats which was inherited from the unaffected father. An additional 11 patients had one allele 

of 27 repeats. Interestingly, two patients with 27 repeats also tested positive for the C9ORF72 

repeat expansion. Clinical characteristics of the group carrying intermediate expansions did not 

differ from the sporadic ALS cohort as a whole (Table 3.3).  
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Table 3.3 Comparison of patient characteristics of ATXN2 intermediate-length expansion carriers 
an=375, bn=365, cn=7, dn=165 

 Intermediate (n=12) Normal (n=379) p-value 
Age of onset (median,range) 63.5, 14-79 61,  21-85a 0.764 
%FALS 8.3 10.8 1 
%Self-reported Caucasian 91.7 93.2b 0.61 
%Male 50 57.3 0.77 
Survival in months (median, range) 34, 18-61c 34, 7-147d 0.95 

 

C9ORF72 

There were 35 subjects that tested positive for the full hexanucleotide repeat expansion in 

C9ORF72 (14 FALS, 21 SALS). In addition, we identified one missense variant by pooled-

sample sequencing, p.T49R in an FALS subject who also carried the known FUS p.R521G 

variant (Table 3.4). We were unable to test for segregation of p.T49R; however an affected 

family member was later confirmed by commercial sequencing to carry the R521G mutation.  

This variant is present in EVS and 1000genomes at a frequency of 0.01% combined. The p.T49R 

variant is predicted to be pathogenic by MutationTaster, but not by PolyPhen2. SIFT was unable 

to give a prediction.  We did not consider this variant to be pathogenic since there is no 

indication that point mutations in C9ORF72 are causative. 

DAO 

A novel splice-site variant in DAO was discovered in an SALS subject. The c.194+1G>A 

variant is predicted to destroy the splice donor site the first coding exon, but tissue from this 

individual was not available to determine DAO levels or effects on splicing. We identified two 

additional rare variants in the gene: p.G331E in one SALS and p.S345F in one FALS subject. 

Both were damaging in at least two predictions. 

DCTN1 
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We detected two novel variants in DCTN1, both in SALS subjects. The p.S1080F variant 

was predicted to be pathogenic by two of three algorithms, while p.H1270Q variant was 

predicted to be benign by all three. The p.T1249I variant, which was found in 2 FALS and 1 

SALS subjects, was originally considered pathogenic. It has since been shown that the variant 

does not segregate with disease and is present in multiple control cohorts (0.29% in ESP6500 

and 1000genomes combined) 35. The p.R1049Q variant was identified in patients with 

Parkinson’s disease and patients with frontotemportal lobar degeneration35 and is predicted to be 

damaging by MutationTaster and PolyPhen2. There was one SALS subject in our cohort with 

this variant and 0.14% of controls. We identified three more rare variants were found in our 

cohort; p.I935M was found in 1 SALS subject and 4 controls (0.026%) and has two damaging 

predictions, p.S111C was found in 1 SALS subject and 1 control (0.006%) and has three 

damaging predictions, and p.I196V was found in 1 FALS and 4 SALS subjects and 77 controls 

(0.51%). p.I196V is only predicted to be damaging by MutationTaster. 

EWSR1 

We identified only two variants in EWSR1: a novel variant (p.T207S) in an SALS patient 

and a rare variant (p.S203T) also in an SALS patient. Previous studies of EWSR1 have focused 

on the C-terminal domain, where pathogenic variants in the related genes TARDBP, FUS, and 

TAF15 are found.41 Both of these variants fall within the prion domain, a regions that has not 

previously been screened for variants. The novel variant is not predicted as damaging, but the 

rare variant (present in 1 control out of 7595) is predicted damaging by MutationTaster and 

PolyPhen2. 

FIG4 
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Five variants were identified in FIG4. A novel 2bp deletion, c.1588_1589delTT, in an 

SALS subject results in the formation of a stop codon (ttaTTTgag->ttaTGAg) and is predicted to 

cause nonsense-mediated decay. The p.I41T variant identified in an SALS patient was reported 

in a compound heterozygous CMT4J patient 36, and is found at a MAF of 0.11% in controls. 

p.I41T was predicted to be damaging by all three predictions. Three additional variants have not 

been reported in SALS and were very rare in controls. p.T410P and p.F815S were each only 

found in one control (0.006%) but had less than two damaging predictions and p.M694V was 

found in three (0.02%) and had two damaging predictions. 

FUS  

Five patients had variants of interest in FUS. The known FUS p.R521G42 variant was 

found in an FALS subject. This variant was confirmed in an additional affected family member 

by commercial testing. A patient with disease onset at age 14 had the p.P525L variant. Both 

parents were negative for the variant. This variant has been previously identified in juvenile 

onset cases as a de novo variant.42 We identified a novel deletion c.1394-2delA in the splice 

acceptor site of exon 13. An A>G substitution has been reported in the same position and was 

shown to cause skipping of exon 14.43 DNA from the affected father was unavailable to test for 

segregation. Two variants in FUS p.R485W and p.P431L were present in controls but at very 

low frequencies (only 1 sample and 3 samples respectively out of 7595). pR485W was predicted 

to be damaging by SIFT and MutationTaster, but not PolyPhen2 while p.P431L was predicted to 

be damaging by all three. 

OPTN 
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We found a novel OPTN nonsense variant (p.Q235X) in an apparently sporadic subject.  

Nonsense variants both upstream and downstream of this codon have been reported in other 

subjects with ALS.  p.Q23X and p.Q165X were both dominantly inherited and predicted by 

SIFT to undergo nonsense-mediated decay (NMD).44,45 The downstream variant p.Q398X was 

recessively inherited and NMD was experimentally observed.46,47 We also identified the variant 

p.Q314L in one SALS subject. This variant was reported as a disease variant44, but is now 

present in controls at a very low frequency (0.02%). It is predicted to be damaging by all three 

algorithms.  

SETX 

A notable finding was the abundance of novel SETX variants. We found 18 SETX 

variants in 30 subjects. Seven of the variant were novel. Two variants were novel, but in the 

same residue as a previously reported variant. We identified a p.T1118K variant (p.T1118I was 

identified in a Chinese cohort48) and a p.M274V variant (p.M274I was reported in an autosomal 

recessive ataxia with peripheral neuropathy49) both in SALS patients. The remaining 5 novel 

variants (p.E327V, p. T14I, p.R168Q, p.A1588T, and p.K220Q) were identified in SALS 

patients as well. Only p.A1588T and p.M274V were not damaging in at least two predictions. 

There were 8 SALS and 2 FALS subjects that carried the p.I2547T variant which has 

previously been reported in ALS.50 One SALS subject was homozygous for the variant. 

Recessive mutations in SETX are the cause of ataxia-ocular apraxia 2 (AOA2)51 and to our 

knowledge, this is the first report of a possibly recessive mutations in SETX causing ALS. 

Another patient was compound heterozygous for the p.I2547T variant along with the novel 

p.T14I variant, however they also carried a pathogenic p.R408C variant in TAF15. The variant is 

present at a MAF of 0.5% in controls with one homozygous subject out of 7595. It is predicted to 
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be damaging by MutationTaster, but not SIFT or PolyPhen2. The variant p.C1554G was also 

reported as pathogenic50 and is present in controls (MAF=0.3%). One subject was compound 

heterozygous for this variant and a novel p.R168Q variant. It was found in 5 additional SALS 

subjects and is predicted to be damaging by all three predictions.  

Nine of the SETX variants were never reported in ALS and are rare in controls. Five of 

these (p.H2533Y (0.006%), p.D2372N (0.1%), p.P1622L (0.006%), p.D994G (0.2%), and 

p.M917T (0.006%)) were predicted to be damaging in fewer than two predictions. p.E623D 

(0.02%), p.S464L (0.07%) and p.S323N (0.006%) were predicted to be damaging by two 

algorithms and p.L158V (0.3%) was predicted to be damaging by all three. Despite the high 

number of variants in SETX, we did not find a significant association with individual SNPs or 

combined across the gene. 

SOD1 

We identified 7 different SOD1 variants in 10 subjects: p.A5V(A4V)52, p.G38R(G37R)52, 

p.D77Y(D76Y)53, p.A90V(A89V)54, p.D91A(D90A)55, p.I114T(I113T)52, and the novel variant 

p.67S. The 6 known variants were all predicted to be damaging by at least two predictions, 

except for p.D91A, which was not predicted to be damaging in any. The p.D91A variant has 

been observed in both  recessive and  dominant inheritance.55 We identified one SALS subject 

that was homozygous for the variant. One individual with definite FALS was heterozygous for 

the p.D91A variant, but two affected family members in their pedigree that were also included in 

the study did not possess this variant.  Instead, those two individuals were positive for the 

C9ORF72 repeat expansion. Previously known p.A5V and p.I114T variants were detected in 

SALS subjects. DNA from family members was unavailable for segregation testing in both 

cases. We also discovered a novel p.P67A variant in a subject with probable FALS that is likely 
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causative. This variant segregated with disease in additional affected family members and is 

predicted to be damaging by PolyPhen2, SIFT, and MutationTaster. Furthermore, two variants in 

the same amino-acid (p.P67S(P66S)56 and p.P67R(P66R)40) have previously been reported to 

cause disease. 

SQSTM1 

Four variants in SQSTM1 were identified in SALS patients and one in an FALS patient. 

p.L48P and was novel and predicted pathogenic in two out of three predictions. The p.A33V (2 

SALS), p.V153I (1 FALS), and p.K283E (5 SALS) variants were previously identified as 

pathogenic57,58, but were seen in 0.04%, 0.06%, and 0.27% of controls respectively. p.A33V and 

p.K283E were both predicted damaging at least twice, but p.V153I was only predicted to be 

damaging once. One more variant with a MAF of 0.006% in controls, p.A46V, was identified in 

an SALS subject. This variant was predicted to be damaging twice. 

TAF15 

Two TAF15 variants, p.R408C and p.R388H, were present in SALS subjects. Both of 

these variants were previously found in ALS patients; however p.R388H was identified in 

controls at the same time and was not considered pathogenic. The p.R408C variant has now also 

been found in controls, but was previously shown to result in cytoplasmic foci in transfected 

cells.59 Both variants were predicted to be damaging in at least two predictions. 

TARDBP 

We identified three TARDBP variants, one of which is novel.  A subject from a 

previously reported family was found to carry p.A315T variant.60 A sporadic subject was found 

to carry a known pathogenic variant, p.G287S.61  Finally, a novel variant, p.S375G, was found in 
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another SALS subject. The variant was inherited from a parent who was unaffected at age 80 

while the subject with ALS had age of onset of 41. It is unclear whether this variant is benign or 

pathogenic and incompletely penetrant. The p.S375G was not predicted to be damaging by any 

of the three algorithms used, however the two known pathogenic variants are both only predicted 

to be damaging by MutationTaster. 

VAPB 

There were no novel or disease-associated variants in VAPB. Two variants, p.D130E and 

p.M170I, were rare in controls (0.072% and 0.13% respectively). p.D130E was in 1 SALS 

subject and was not predicted to be damaging. p.M170I was found in 5 SALS subjects and was 

predicted to be damaging by MutationTaster and PolyPhen2. 

VCP 

One known VCP variant p.R155H62 was detected in a subject with FALS and segregated 

with disease among siblings, one of whom has Paget's disease. Their affected parent died of ALS 

complicated by non-Alzheimer dementia. 

3.4.5 Prevalence of variants in ALS genes   

We considered 65 of the rare and novel variants identified by sequencing to be potentially 

pathogenic.  83 subjects (21.2% overall, 35.7% in FALS and 19.5% in SALS) carried at least one 

of these variants.  The C9ORF72 repeat expansion (found in 8.7% of subjects, n=34) and ATXN2 

intermediate-length CAG repeats (found in 3.1% of subjects, n=12) were also considered to be 

potentially pathogenic.  In total, 124 subjects (31.7% overall; 64.3% across all categories of 

FALS, 27.8% in SALS) carried one or more of these potentially pathogenic variants 

(Supplementary Table S1), a higher number than reported in many prior studies.8–12,14 
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The proportion of subjects carrying a potentially pathogenic variant was heavily 

influenced by the strength of evidence for familial transmission of ALS (Table 3.4), with the 

highest rate of variant discovery in definite FALS (81.6%).  The frequency of variants declined 

with less evidence for transmission, but even 27.8% of sporadic/simplex subjects were carriers. 

Table 3.4 Prevalence of variants in ALS genes by family categorization. Familial ALS categories were assigned 
according to recently proposed criteria.13,63 Definite FALS (38% of families): at least 2 first- or second-degree 

relatives with ALS. Probable A FALS (7% of families): 1 first-degree relative with ALS. Probable B FALS (43% of 
families): 1 second-degree relative with ALS. Possible FALS (12% of families): 1 distant relative with ALS. 

Sporadic ALS (89% of entire cohort): all subjects not meeting criteria for any FALS category. ALS = amyotrophic 
lateral sclerosis; FALS = familial ALS. 

 Sporadic All 
FALS Definite Probable A Probable B Possible 

Total Subjects 349 42 16 3 18 5 
ANG 2 1 1 - - - 

ATXN2 11 1 - - 1 - 
C9ORF72 21 15 8 1 6 - 

DAO 2 1 1 - - - 
DCTN1 10 3 2 - - 1 
EWSR1 2 - - - - - 
FIG4 5 - - - - - 
FUS 3 2 1 - - 1 

OPTN 2 - - - - - 
SETX 29 3 1 - 2 - 
SOD1 4 6 4 - 2 - 

SQSTM1 9 1 - - 1 - 
TAF15 2 - - - - - 

TARDBP 2 1 1 - - - 
UBQLN2 - - - - - - 

VAPB 6 - - - - - 
VCP - 1 - 1 - - 

Total Variants 110 35 19 2 12 2 
Subjects with any variant 97 27 13 2 10 2 
% Subjects with variants 27.8% 64.3% 81.3% 66.7% 55.6% 40.0% 

 

We identified 4 sporadic subjects with potentially recessive causes of their ALS (Table 

3.5).  One subject was homozygous for SOD1 p.D91A (D90A), while three others carried two 

mutations in SETX.  One subject tested homozygous for SETX p.I2547T, but we did not exclude 
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the possibility of a deletion on one allele.  The two additional subjects could each be compound 

heterozygotes comprised of a rare variant (p.C1554G or p.I2547T with 0.3% and 0.5% MAF in 

population database respectively) and a novel variant (p.R168Q or p.T14I respectively).  The 

subject carrying p.I2547T and p.T14I was also heterozygous for TAF15 p.R408C which has 

previously been reported in a subject with SALS.59  Due to the absence of additional family 

members for segregation or tissue for cDNA sequencing, we were unable to determine if these 

SETX variants are in cis or trans.  Because recessive mutations in SETX are associated with 

ataxia-ocular apraxia type 2 (OMIM 606002) and SETX-associated ALS is dominantly inherited, 

we reviewed the medical records of these 3 individuals.  All three showed typical ALS disease 

course without clinically apparent eye movement abnormalities or ataxia. 

We also identified a pedigree with FALS with independently-segregating causative 

mutations (Figure 2).  The proband, three affected siblings and a first cousin once-removed all 

tested positive for the C9ORF72 repeat expansion.  Another first cousin once-removed was 

diagnosed with ALS at another center test but tested negative for the expansion, including by 

Southern blot (See figure X in chapterX).  Instead, this individual was found to carry a 

heterozygous SOD1 p.D91A mutation detected by pooled-sample sequencing.  

 

Figure 3.2 Segregation of independent mutations in an ALS family 
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 3.4.6 Prevalence of potential oligogenic subjects 

We assessed the number of genes with potentially pathogenic rare variants in each 

individual.  Fifteen subjects (3.8% overall, 14% in FALS, 2.6% in SALS) harbored potentially 

pathogenic variants in at least two ALS genes:  11 with variants in two ALS genes, while 4 had 

variants in three genes each (Table 3.5). Although one subject had a FUS p.R521G variant and a 

C9ORF72 p.T49R variant, they were not included as potentially oligogenic since we did not 

consider point mutations in C9ORF72 as pathogenic.   

Six potentially oligogenic subjects had a family history of ALS subjects and in all cases 

one of their variants was either the C9ORF72 repeat expansion or a missense variant in SOD1 in 

combination with additional rare or novel variant(s), several of which have also been previously 

reported in ALS subjects.  Interestingly, one FALS proband carried 3 variants, each of which has 

previously been reported as pathogenic:  SOD1 p.G38R, ANG p.P136L, and DCTN1 p.T1249I.  

Nine apparently sporadic subjects had variants in multiple genes (Table 3.5), but only 

two were well-established ALS mutations: TARDBP p.G287S was found in combination with 

VAPB p.M170I while a subject with juvenile-onset ALS carried a de novo FUS p.P525L 

mutation with a paternally-inherited intermediate-sized CAG expansion in ATXN2.  Two SALS 

patients carried multiple ALS-associated variants that are rare in population databases (ANG 

p.K41I with VAPB p.M170I and TAF15 p.R408C with SETX p.I2547T and SETX p.T14I). 

To compare the frequency of “oligogenic” cases in ALS to other populations, we used 

exomes from 114 subjects diagnosed with CMT1 (n=4), dHMN (n=1), EA (n=5), EVO (n=2), 

GSM1 (n=7), IBM (n=40), LGMD (n=5), MDC (n=11), MELAS (n=1), MFM (n=6), MPD 
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(n=8) , NVS (n=1), SFN (n=20), SMA (n=3). We compared these exomes to 614 ALS subjects 

(some of which were also included in pooled-sample sequencing). Since the non-ALS subjects 

were not screened for repeat expansions in C9ORF72 and ATXN2, we performed our comparison 

using only the 15 other genes under investigation. The proportion of subjects carrying variants in 

more than one gene was not higher in ALS subjects (6.02%) compared to non ALS subjects 

(6.1%).  

Table 3.5 Subjects with multiple variants in ALS genes 
  Variant 1 Variant 2 Variant 3 Possible model 

Sporadic SOD1(p.D91A) SOD1(p.D91A) - Homozygous recessive 
Sporadic SETX(p.I2547T) SETX(p.I2547T) - Homozygous recessive 
Sporadic SETX(p.C1554G) SETX(p.R168Q) - Potential compound het 
Familial SOD1(p.A5V) DAO(p.S345F) - Oligogenic 
Familial SOD1(p.P67A) SETX(p.I2547T) - Oligogenic 
Familial C9ORF72  DCTN1(p.I196V) - Oligogenic 
Familial C9ORF72  SQSTM1(p.V153I) - Oligogenic 
Familial C9ORF72  SETX(p.I2547T) - Oligogenic 
Familial FUS(p.R521G) C9ORF72(p.T49R) - - 
Sporadic ANG(p.K41I) VAPB(p.M170I) - Oligogenic 
Sporadic ATXN2(22/31) SQSTM1(p.K238E) - Oligogenic 
Sporadic FUS(p.R485W) SETX(p.I2547T) - Oligogenic 
Sporadic DCTN1(p.R1049Q) SETX(p.S323N) - Oligogenic 
Sporadic FUS(p.P525L) ATXN2(23/31) - Oligogenic 
Sporadic TARDBP(p.G287S) VAPB(p.M170I) - Oligogenic 
Familial SOD1(p.G38R) ANG(p.P136L) DCTN1(p.T1249I) Oligogenic 
Sporadic ATXN2(22/32) DCTN1(p.T1249I) SETX(p.M274V) Oligogenic 
Sporadic TAF15(p.R408C) SETX(p.I2547T) SETX(p.T14I) Oligogenic, potential 

compound het 
Sporadic SETX(p.C1554G) DCTN1(p.H1270Q) FIG4(p.M694V) Oligogenic 

 

3.4.7 Correlation of variant genes with disease characteristics 

  In an oligogenic model of disease, the additive or synergistic effects of multiple variants 

can influence not only the risk of developing disease, but also phenotypic manifestations of the 
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disease.  Age at symptom onset was significantly earlier in cases carrying variants in multiple 

genes (median=46, IQR=39-61) compared to all other subjects (median=61, IQR=51-70, 

p=0.0046) and when compared to cases with mutations in just one gene (median=60, IQR=48-

60, p=0.017).  Even when the subject with juvenile onset was removed a difference of 10 years 

earlier remained (median=50.5, IQR=40.25-61.5, p=0.013 against all others and p=0.041 against 

other single-gene variant carriers).  Furthermore, there was a weak, but statistically significant 

negative correlation between age of onset and the number of genes with variants (spearman’s 

rho=-0.11, p=0.024).  The number of ALS genes with variants did not influence disease duration 

or site of onset in our cohort. 

3.4.8 Rare variants as modifiers of ALS risk   

We also used our sequencing results to search for single variants in known ALS genes 

that increased or decreased ALS risk.  To do so, we analyzed all coding variants found in our 

ALS cohort and also present in population databases (n=61, with 47 having a population MAF 

<1%).  Three SNPs in SETX (rs1183768, rs543573, and rs2296871) were in perfect linkage 

disequilibrium and were considered to be one signal represented by rs2296871.  We included 

only ALS subjects of European ancestry and compared to controls of European ancestry from 

ESP6500 and the 1000 Genomes Project.  SPLINTER-predicted allele frequencies were used for 

common variants that were not confirmed by genotyping in ALS subjects.  Using a Bonferonni-

corrected significance level of 8.2x10-4, 3 variants were significantly more common in our ALS 

discovery cohort (rs3739927 and rs882709 in SETX, and rs41311143 in EWSR1).  To follow up, 

we genotyped these 3 SNPs and 28 additional candidate variants in a validation cohort of 552 

sporadic ALS cases and 464 controls from Coriell reference panels. However, none of the 31 
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tested variants showed a significant association with ALS in either direction (Supplementary 

Table S2). 

We also asked whether the burden of rare coding variants in any of the tested ALS genes 

was higher in sporadic subjects compared to controls using SKAT (Table 3.6).33  After correcting 

for multiple tests (α=3.57x10-3), SOD1 was the only gene that showed a significant association 

(p=1.59x10-5) while TARDBP and VAPB approached statistical significance (p=5.57x10-3 and 

p=5.99x10-3 respectively). 

Table 3.6 Gene-based rare variant association tests. Association tests were performed with SKAT using the 
optimal.adj method and the default linear, weighted kernel, with significance level=3.57x10-3. Only coding variants 
with minor allele frequencies <1% were included in the analysis.  Only subjects of European Ancestry were used 

from our cohort and controls (ESP6500+1000genomesEUR). 
Gene P-value # Markers 

SOD1 1.59x10-3 4 

TARDBP 5.57x10-3 10 

VAPB 5.99x10-3 8 

SQSTM1 0.126 39 

SETX 0.165 125 

FUS 0.323 25 

DAO 0.425 26 

DCTN1 0.443 58 

EWSR1 0.450 21 

ANG 0.487 9 

TAF15 0.573 34 

VCP 0.693 5 

OPTN 0.765 20 

FIG4 0.863 32 
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3.5 Discussion  

Rapid progress toward defining the genetic landscape of ALS has been fueled by the 

emergence of next-generation sequencing.  In this study, we used the efficiency and power of 

pooled-sample sequencing to investigate the frequency of pathogenic and potentially-pathogenic 

variants in known ALS genes in a large cohort of US patients.  Our approach produced highly 

accurate sequence data for 16 known genes in a time, sample, and cost-efficient manner.  We 

estimated that this study required 83% less DNA per subject and cost 10% of performing the 

equivalent study by traditional Sanger sequencing.  In doing so, we have generated the most 

comprehensively sequenced North American cohort to date.   

In this group of subjects we identified 27 novel variants (i.e. not found in databases of 

variation) and an additional 39 that are very rare in control populations. Not surprisingly, the 

highest rate of variant detection occurred in families with the strongest ALS histories:  we found 

explanatory mutations in 80% of these pedigrees.  This rate is higher than many previous reports 

of all FALS8–14 and partially stems from our use of a strict definition of familial ALS favoring 

pedigrees with clearly dominant transmission patterns that undoubtedly enrich for Mendelian 

genes.  Our elevated variant detection rate is also influenced by the large number genes analyzed 

in each family.  Because our cohort was a clinic-based, we cannot address whether differences in 

populations are also involved.   

Although the frequency of variant detection in our sporadic ALS subjects was lower than 

in familial ALS, it was still 28%.  This is considerably higher than other studies 8–12,14, likely due 

in part to the large number of genes we sequenced.  In support of this, we note that the frequency 

of variants in commonly sequenced genes (e.g. C9ORF72, SOD1, TARDBP) was within 
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previously reported ranges.  To directly compare our findings with a similar study of an Irish 

population9, we limited both data sets to genes shared between the two studies and only included 

novel variants (i.e. not seen in any population database).  The total number of subjects found 

with at least one potentially pathogenic mutation was 16.4% in this study compared to 12.8% in 

the Irish population.  This difference is not statistically significant (p=0.12) and was driven by 

the absence of SOD1 mutations in the Irish cohort.  These broad differences in populations need 

to be given appropriate consideration when genetic testing or counseling is being provided to 

patients.       

Based on previous reports of oligogenic inheritance in ALS, we looked for subjects with 

potentially pathogenic variants in more than one ALS gene. We found mutations in at least two 

ALS genes in 3.8% of our subjects (14% in FALS, 2.6% in SALS).  In most cases, 1 of the 

identified variants is a known mutation with clearly established pathogenicity; however, many of 

the additional variants are of unknown significance. It is possible that these additional variants 

co-occur with pathogenic mutations by chance. However, the finding that subjects with 

potentially pathogenic variants in >1 gene had disease onset 10 years earlier than other subjects 

supports a model of ALS where the additive or synergistic effects of multiple defective genes 

increase risk and influence disease phenotype.  

The rate of potentially oligogenic cases in our cohort is higher than in prior reports, but 

direct comparisons are prevented by differences in i) which genes were sequenced, ii) how 

complete variant ascertainment was, iii) relative numbers of familial and sporadic cases, and iv) 

which variants were considered to be potentially pathogenic. We were able to use exome 

sequencing from subjects with ALS to compare the frequency of subjects with mutations in more 

than one ALS gene to other non-ALS disorders. Both cohorts had a rate of ~6% overall. 
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Although this is higher than the rate we discovered in our pooled-sample sequencing cohort, this 

could be explained by the different sequencing techniques. In contrast to the ALS cohort the 

majority of non-ALS cases did not carry a well-established ALS mutation.  An equal rate of 

oligogenic cases in ALS and non-ALS cases supports the hypothesis that carrying mutations in 

multiple genes is not a risk factor for disease, but influences disease progression. 

This study evaluated known ALS genes only.  With many efforts underway to generate 

exome and genome-wide variant data on large numbers of ALS patients, these types of 

interactions should become easier to detect and validate.  These large datasets should also allow 

unbiased searches for new ALS genes using rare variant burden testing.  As a test of this 

principle, we asked whether rare variant burden testing would identify any of the known ALS 

genes we sequenced.  In our modestly-sized cohort we demonstrated a significant association for 

SOD1 and suggestive associations for TARDBP and VAPB.  We also noticed an abundance of 

variants in the SETX gene, an intriguing finding that was also evident in a prior study.9  These 

findings predict that well-powered genome-wide studies will identify new ALS genes. 

Our study also highlights important lessons regarding mutation screening in ALS.  First, 

a significant number of individuals will harbor more than one potentially pathogenic mutation.  

This fact dramatically influences estimates of transmission risk and even prognosis.  Therefore, 

comprehensive screening of known genes is preferable to single-gene testing and made more 

cost-effective by next-generation approaches to sequencing.  Second, as our pedigree with 

independently segregating SOD1 and C9ORF72 mutations demonstrates, even once a causative 

mutation has been identified in a pedigree, each affected individual should be sequenced for 

confirmation.  Third, despite the frequency with which our study found variants in ALS subjects, 
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36% of FALS and 74% of SALS subjects had no variants in any of 17 ALS genes we analyzed.  

Efforts are therefore needed to identify additional genes influencing ALS risk.   

Finally, we note that many of the novel and rare variants identified by this study and 

others are of unknown significance and will require further study to validate a possible 

contribution to ALS pathogenesis.  The complexity of determining pathogenicity of variants is 

highlighted by the 13 variants we identified that had been previously associated with ALS but 

have since been found in control databases at rates higher than expected for moderate or high 

penetrance mutations.  Although these variants could represent mutations with reduced 

penetrance, or the presence of pre-symptomatic individuals in control populations, they most 

likely result from including limited controls in the original studies.  In fact, many variants 

previously reported as pathogenic for ALS and other diseases are now found in the 1000 

Genomes Project or the Exome Sequencing Project at frequencies exceeding those expected for 

moderately or highly penetrant mutations.64  To prevent the literature from becoming confused 

with disease-associated variants that are not pathogenic, we support increased attention to 

variants are reported in disease populations, including the creation of levels of genetic evidence 

for pathogenicity as recently proposed.65 
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3.6 Supplementary tables 

Table S1. Clinical characteristics of variant carriers. 

Patient Variant(s) Family Type Ethnicity Sex 
Age of Onset 

(years) 
Site of onset Survival (months) 

ANG(p.K41I), 

VAPB(p.M170I) 
Simplex Caucasian Female 45 Limb unknown 

ANG(p.K84E) Simplex African American Female 43 Limb >78 

ATXN2(22/30) Simplex Caucasian Male 65 Limb unknown 

ATXN2(22/30) Simplex Caucasian Female 57 Unknown unknown 

ATXN2(22/30) Simplex Caucasian Male 66 Limb 61 

ATXN2(22/31) Simplex Caucasian Female 79 Limb unknown 

ATXN2(22/31) Probable B Caucasian Male 70 Bulbar 33 

ATXN2(22/31) Simplex Caucasian Female 47 Limb 42 

ATXN2(22/32) Simplex Caucasian Male 71 Limb 30 

ATXN2(23/30) Simplex African American Male 41 Limb >25 

ATXN2(27/30) Simplex Caucasian Female 67 Bulbar 22 

C9ORF72 Simplex Unknown Female 58 Limb unknown 

C9ORF72 Simplex Caucasian Female 60 Limb unknown 

C9ORF72 Simplex Caucasian Female 59 Limb unknown 

C9ORF72 Simplex Caucasian Male 59 Limb unknown 

C9ORF72 Simplex Caucasian Male 72 Limb unknown 

C9ORF72 Simplex Caucasian Female 44 Bulbar 29 

C9ORF72 Simplex Caucasian Male 58 Bulbar 25 

C9ORF72 Definite Caucasian Male 57 Bulbar 37 

C9ORF72 Simplex Caucasian Male 50 Limb 29 

C9ORF72 Probable B Caucasian Female 63 Limb 12 

C9ORF72 Definite Caucasian Male 45 Limb >71 

C9ORF72 Definite Caucasian Male 46 Limb 57 

C9ORF72 Definite Caucasian Male 64 Limb 62 

C9ORF72 Simplex Caucasian Male 53 Limb 31 

C9ORF72 Probable B Caucasian Male 46 Limb >40 
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C9ORF72 Simplex Caucasian Male 69 Limb 19 

C9ORF72 Simplex Caucasian Male 48 Bulbar 28 

C9ORF72 Definite Caucasian Female 51 Bulbar 29 

C9ORF72 Simplex Caucasian Female 57 Limb 21 

C9ORF72 Simplex African American Female 52 Limb 24 

C9ORF72 Simplex Caucasian Male 65 Limb 54 

C9ORF72 Probable B Caucasian Female 48 Bulbar 41 

C9ORF72 Simplex Caucasian Female 57 Limb 42 

C9ORF72 Simplex Caucasian Female 51 Limb 27 

C9ORF72 Simplex Caucasian Female 56 Bulbar 30 

C9ORF72 Probable B Caucasian Male 44 FTD 146 

C9ORF72 Probable B Caucasian Male 63 Limb 46 

C9ORF72 Probable A Caucasian Female 76 Limb 17 

C9ORF72 Simplex Caucasian Female 63 Limb 36 

C9ORF72 Simplex Caucasian Male 56 Limb 46 

C9ORF72 Simplex Caucasian Female 70 Limb 27 

C9ORF72 Simplex Caucasian Female 63 Limb 50 

C9ORF72, 

DCTN1(p.I196V) 
Definite Caucasian Male 60 Bulbar 20 

C9ORF72, 

SETX(p.I2547T) 
Definite Caucasian Male 46 Bulbar 33 

C9ORF72, 

SQSTM1(p.V153I) 
Probable B Caucasian Female 63 Limb 32 

DAO(p.G331E) Simplex Caucasian Male 57 Limb unknown 

DAO(splice donor) Simplex Caucasian Female 71 Bulbar 29 

DCTN1(p.H1270Q), 

FIG4(p.M694V), 

SETX(p.C1554G) 

Simplex Caucasian Female 41 Limb >50 

DCTN1(p.I196V) Simplex Caucasian Male 57 Bulbar unknown 

DCTN1(p.I196V) Simplex Caucasian Female 30 Limb unknown 

DCTN1(p.I196V) Simplex Caucasian Female 38 Limb unknown 

DCTN1(p.I196V) Simplex Caucasian Female 69 Bulbar 22 
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DCTN1(p.I935M) Simplex Hispanic Male 81 Limb unknown 

DCTN1(p.R1049Q), 

SETX(p.S323N) 
Simplex Caucasian Male 69 Limb 38 

DCTN1(p.S1080F) Simplex African American Male 64 Limb >135 

DCTN1(p.S111C) Simplex Caucasian Female 71 Limb >54 

DCTN1(p.T1249I) Possible Caucasian Male 69 Bulbar 65 

DCTN1(p.T1249I), 

SETX(p.M274V), 

ATXN2(22/32) 

Simplex Caucasian Female 62 Limb unknown 

EWSR1(p.S203T) Simplex Caucasian Male 61 Limb 78 

EWSR1(p.T207S) Simplex Caucasian Female 60 Limb unknown 

FIG4(F530*) Simplex Caucasian Male 82 Limb 16 

FIG4(p.F815S) Simplex Caucasian Male 38 Bulbar unknown 

FIG4(p.I41T) Simplex Caucasian Female 77 Bulbar 7 

FIG4(p.T410P) Simplex Hispanic Male 78 Bulbar unknown 

FUS(p.c.1394-2delA) Possible Caucasian Male 32 Limb 8 

FUS(p.P431L) Simplex Caucasian Male 60 Limb unknown 

FUS(p.P525L), 

ATXN2(23/31) 
Simplex Caucasian Female 14 Limb 44 

FUS(p.R485W), 

SETX(p.I2547T) 
Simplex Caucasian Male 55 Limb >62 

FUS(p.R521G) Definite Caucasian Female 46 Limb 20 

OPTN(p.Q235*) Simplex Caucasian Male 72 Limb 14 

OPTN(p.Q314L) Simplex Caucasian Female 63 Bulbar unknown 

SETX(p.A1588T) Simplex Asian Male 48 Limb unknown 

SETX(p.C1554G) Simplex Caucasian Male 78 Bulbar unknown 

SETX(p.C1554G) Simplex Caucasian Male 69 Limb unknown 

SETX(p.C1554G) Simplex Caucasian Male 74 Limb unknown 

SETX(p.C1554G) Simplex Caucasian Female 69 Limb unknown 

SETX(p.C1554G), 

SETX(p.R168Q) 
Simplex Caucasian Female 67 Bulbar unknown 

SETX(p.D2372N) Simplex Hispanic Male 53 Bulbar unknown 
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SETX(p.D994G) Simplex Caucasian Male 70 Unknown unknown 

SETX(p.E327V) Simplex Caucasian Male 60 Limb >205 

SETX(p.E623D) Simplex Caucasian Male 67 Limb >28 

SETX(p.H2533Y) Probable B Caucasian Female 59 Limb 41 

SETX(p.I2547T) Simplex Caucasian Male 61 Limb unknown 

SETX(p.I2547T) Simplex Caucasian Male 35 Bulbar unknown 

SETX(p.I2547T) Simplex Caucasian Female 77 Respiratory unknown 

SETX(p.I2547T) Simplex Unknown Male 68 Limb unknown 

SETX(p.I2547T)  

homozygous 
Simplex Caucasian Male 51 Limb 32 

SETX(p.I2547T), 

SETX(p.T14I), 

TAF15(p.R408C) 

Simplex Caucasian Female 40 Limb 36 

SETX(p.K220Q) Simplex Caucasian Male 72 Bulbar 19 

SETX(p.L158V) Simplex Caucasian Male 43 Limb >55 

SETX(p.M917T) Simplex Caucasian Male 40 Limb 16 

SETX(p.P1622L) Simplex Caucasian Male 41 Limb 59 

SETX(p.S323N) Simplex Caucasian Female 79 Limb unknown 

SETX(p.S464L) Simplex Caucasian Female 39 Limb 129 

SETX(p.T1118K) Simplex Caucasian Male 62 Limb unknown 

SOD1(p.A5V) Simplex Caucasian Female 46 Limb unknown 

SOD1(p.A5V), 

DAO(p.S345F) 
Definite Caucasian Female 57 Limb 13 

SOD1(p.A90V) Simplex Caucasian Male unknown Limb unknown 

SOD1(p.D77Y) Probable B Caucasian Male 75 Limb 41 

SOD1(p.D91A) Simplex Caucasian Male 68 Limb unknown 

SOD1(p.D91A) Definite Caucasian Female unknown Limb unknown 

SOD1(p.G38R), 

ANG(p.P136L), 

DCTN1(p.T1249I) 

Definite Caucasian Female 21 Limb unknown 

SOD1(p.I114T) Simplex Caucasian Male 66 Limb unknown 

SOD1(p.I114T) Definite Caucasian Female 39 Limb unknown 
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SOD1(p.P67A), 

SETX(p.I2547T) 
Probable B Caucasian Female 36 Limb >95 

SQSTM1(p.A33V) Simplex Caucasian Male 63 Bulbar unknown 

SQSTM1(p.A33V) Simplex Caucasian Male 82 Bulbar 25 

SQSTM1(p.A426V) Simplex Caucasian Male 76 Bulbar 84 

SQSTM1(p.K238E) Simplex Caucasian Male 75 Limb unknown 

SQSTM1(p.K238E) Simplex Caucasian Male 34 Limb unknown 

SQSTM1(p.K238E) Simplex Caucasian Male 61 Limb unknown 

SQSTM1(p.K238E) Simplex Caucasian Male 39 Limb >108 

SQSTM1(p.K238E), 

ATXN2(22/31) 
Simplex Caucasian Male 38 Bulbar 18 

SQSTM1(p.L48P) Simplex Caucasian Male 64 Limb 100 

TAF15(p.R388H) Simplex Caucasian Female 62 Limb unknown 

TARDBP(p.A315T) Definite Caucasian Male 48 Limb 118 

TARDBP(p.G287S), 

VAPB(p.M170I) 
Simplex Caucasian Female 72 Bulbar 102 

TARDBP(p.S375G) Simplex Caucasian Female 41 Limb 10 

VAPB(p.D130E) Simplex Caucasian Male 54 Limb 73 

VAPB(p.M170I) Simplex Caucasian Male 74 Limb unknown 

VAPB(p.M170I) Simplex Caucasian Male 67 Bulbar unknown 

VAPB(p.M170I) Simplex Caucasian Male 38 Limb >71 

VCP(p.R155H) Probable A Caucasian Male 42 Limb >137 
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Table S2 Individual variant association testing results. Only SNPs found ALS samples with European ancestry. Discovery Cohort= ALS: genotyped frequencies. 
SPLINTER predictions used when SNPs not genotyped. Only samples of European ancestry used. Controls: Frequency in ESP6500-EA+1000genomesEUR. 

Significance level adjusted for multiple comparisons p=8.2x10-4. Validation Cohort: 552 ALS cases and 464 neurologically normal controls from Coriell, all of 
European Ancestry.  Yellow highlights three variants with significant association in the Discovery Cohort, but that did not show an association with the 

Validation Cohort. 

SNP ID Hg19 Location Gene Variant Alleles 
Discovery Cohort Validation Cohort 

Minor Alleles pval OR (95%CI) Minor Alleles pval OR (95%CI) ALS Controls ALS Controls 

rs80356719 1:11082325 TARDBP G287S A/G 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

Novel 1:11082589 TARDBP S375G G/A 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

Novel 2:74588653 DCTN1 H1270Q A/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs72466496 2:74588717 DCTN1 T1249I T/C 1/618 39/9358 0.515 0.39 (0.01,2.3) 6/1080 1/910 0.13 5.08 
(0.61,233.59) 

rs72659383 2:74592252 DCTN1 R1049Q A/G 1/618 21/9358 1 0.72 (0.02,4.5) not tested 

rs17721059 2:74596527 DCTN1 R495Q A/G 19/618 175/9358 0.048 1.66 (0.97,2.7) 24/1076 19/908 0.88 1.07 
(0.56,2.08) 

rs13420401 2:74597937 DCTN1 L287M A/C 2/618 6/9358 0.084 5.06 
(0.5,28.37) 0/1084 0/738 1 0 (0,Inf) 

rs55862001 2:74598723 DCTN1 I196V G/A 4/618 70/9358 1 0.86 
(0.23,2.32) 6/1070 6/904 0.78 0.84 

(0.23,3.17) 

rs374419252 2:74604801 DCTN1 S111C G/C 1/618 0/9358 0.062 Inf (0.39,Inf) 0/1082 0/738 1 0 (0,Inf) 

rs200396166 5:179248034 SQSTM1 A33V T/C 2/618 6/9358 0.105 4.4 
(0.43,24.67) 0/1062 2/904 0.21 0 (0,4.53) 

Novel 5:179248079 SQSTM1 L48P C/T 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs11548633 5:179252184 SQSTM1 K238E G/A 5/618 32/9358 0.076 2.38 
(0.72,6.18) 5/1082 1/738 0.41 3.42 

(0.38,161.93) 

rs55793208 5:179260099 SQSTM1 E274D T/G 5/618 235/9358 4.11E-03 0.32 (0.1,0.75) 27/1090 22/920 1 1.04 
(0.56,1.92) 

rs201239306 5:179263547 SQSTM1 A426V T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 
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rs121908287 6:110036336 FIG4 I41T C/T 1/618 16/9358 1 0.95 
(0.02,6.11) 0/1044 3/868 0.09 0 (0,2.01) 

rs2295837 6:110064928 FIG4 M364L T/A 14/618 345/9358 0.073 0.61 
(0.33,1.04) 41/1090 45/918 0.22 0.76 

(0.48,1.2) 

rs9885672 6:110107517 FIG4 V654A C/T 80/618 1432/9358 0.118 0.82 
(0.64,1.05) not tested 

rs143531641 6:110107636 FIG4 M694V G/A 1/618 3/9358 0.226 5.05 
(0.1,63.11) 0/1082 0/738 1 0 (0,Inf) 

rs375414729 6:110113852 FIG4 F815S C/T 1/618 1/9358 0.12 15.15 
(0.19,1177.85) not tested 

rs3739927 9:135139826 SETX S2612G G/A 34/618 249/9358 2.21E-04 2.13 
(1.43,3.09) 25/1044 19/866 0.88 1.09 

(0.57,2.12) 

rs1056899 9:135139901 SETX I2587V G/A 191/618 2752/9358 0.439 1.07 (0.9,1.28) 300/1046 276/866 0.13 0.86 
(0.7,1.05) 

rs151117904 9:135140020 SETX I2547T C/T 7/618 71/9358 0.338 1.5 (0.58,3.27) 8/1084 2/738 0.22 2.74 
(0.54,26.51) 

rs2296871 9:135173685 SETX T1855A G/A 126/618 1439/9358 1.35E-03 1.41 
(1.14,1.73) 169/1090 146/918 0.81 0.97 

(0.76,1.25) 

rs140781535 9:135202120 SETX P1622L T/C 1/618 0/9358 0.062 Inf (0.39,Inf) 0/1074 0/738 1 0 (0,Inf) 

rs112089123 9:135202325 SETX C1554G G/T 6/618 40/9358 0.063 2.28 
(0.79,5.45) 3/1078 2/738 1 1.03 

(0.12,12.33) 

rs1185193 9:135203409 SETX D1192E T/G 102/618 1282/9358 0.054 1.25 
(0.99,1.56) 144/1074 132/906 0.47 0.91 

(0.7,1.18) 

rs3739922 9:135203530 SETX F1152C G/T 27/618 317/9358 0.209 1.3 (0.84,1.95) 32/1042 32/866 0.52 0.83 
(0.49,1.41) 

Novel 9:135203632 SETX T1118K A/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs149546633 9:135204004 SETX D994G G/A 1/618 0/9358 0.062 Inf (0.39,Inf) 0/1046 0/868 1 0 (0,Inf) 

rs61742937 9:135204010 SETX K992R G/A 19/618 156/9358 0.016 1.87 
(1.09,3.05) 21/1090 11/916 0.22 1.62 

(0.74,3.73) 

rs376022544 9:135204235 SETX M917T C/T 1/618 1/9358 0.12 15.15 
(0.19,1177.85) 0/1044 0/868 1 0 (0,Inf) 

rs882709 9:135205006 SETX A660G G/C 67/618 548/9358 3.97E-06 1.95 
(1.47,2.56) 59/1082 51/912 0.92 0.97 

(0.65,1.46) 

rs139200312 9:135205116 SETX E623D C/A 1/618 3/9358 0.226 5.05 
(0.1,63.11) not tested 
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rs200614765 9:135205594 SETX S464L T/C 1/618 6/9358 0.361 2.53 
(0.05,20.86) 0/1000 1/824 0.45 0 (0,32.14) 

Novel 9:135206694 SETX E327V T/A 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs372193033 9:135206706 SETX S323N A/G 2/618 1/9358 0.011 30.36 
(1.58,1768.42) not tested 

Novel 9:135210013 SETX M274V G/A 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

Novel 9:135211743 SETX K220Q C/A 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

Novel 9:135211898 SETX R168Q A/G 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs145438764 9:135218103 SETX L158V G/T 1/618 48/9358 0.369 0.31 
(0.01,1.84) 9/1080 4/738 0.58 1.54 

(0.43,6.88) 

rs79740039 9:135224757 SETX R20H A/G 4/618 101/9358 0.415 0.6 (0.16,1.58) 9/1090 10/918 0.65 0.76 
(0.27,2.08) 

Novel 9:135224775 SETX T14I T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs11258194 10:13152400 OPTN M98K A/T 15/618 297/9358 0.341 0.76 
(0.42,1.28) not tested 

Novel 10:13160964 OPTN Q235* T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs142812715 10:13166053 OPTN Q314L T/A 1/618 3/9358 0.226 5.05 
(0.1,63.11) not tested 

rs4262766 12:109294259 DAO G331E A/G 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs121909536 14:21161845 ANG K41I T/A 1/618 23/9358 1 0.66 
(0.02,4.07) 4/1046 2/868 0.7 1.66 

(0.24,18.4) 

rs186547381 16:31201719 FUS P431L T/C 1/618 2/9358 0.175 7.58 
(0.13,145.89) not tested 

rs201772423 16:31202343 FUS R485W T/C 1/618 1/9358 0.12 15.15 
(0.19,1177.35) not tested 

Novel 16:31202752 FUS P525L T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs140268553 17:34171358 TAF15 R388H A/G 1/618 7/9358 0.401 2.16 
(0.05,16.89) not tested 

rs200175347 17:34171525 TAF15 R408C T/C 1/618 2/9358 0.175 7.58 
(0.13,145.89) 0/1048 0/866 1 0 (0,Inf) 
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rs146459055 20:57014075 VAPB D130E G/T 1/618 11/9358 0.536 1.38 (0.03,9.5) not tested 

rs143144050 20:57016076 VAPB M170I A/G 5/618 18/9358 0.012 4.23 
(1.22,11.88) 3/1088 2/916 1 1.26 

(0.14,15.15) 

rs121912442 21:33032096 SOD1 A5V T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

Novel 21:33039600 SOD1 A90V T/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs80265967 21:33039603 SOD1 D91A C/A 2/618 9/9358 0.146 3.37 
(0.35,16.35) not tested 

rs121912441 21:33039672 SOD1 I114T C/T 1/618 1/9358 0.12 15.15 
(0.19,1177.85) not tested 

rs144503053 22:29682919 EWSR1 S203T A/T 1/618 1/9358 0.12 15.15 
(0.19,1177.35) 1/1076 0/906 1 Inf (0.02,Inf) 

Novel 22:29682932 EWSR1 T207S G/C 1/618 0/9358 0.062 Inf (0.39,Inf) not tested – singleton in ALS 

rs41311143 22:29693915 EWSR1 G470S A/G 24/618 119/9358 6.70E-06 3.14 
(1.92,4.94) 12/1086 13/916 0.55 0.78 

(0.32,1.86) 
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Chapter 4 

Risk Haplotype of the C9ORF72 Locus 

4.1 Abstract 
 The most common genetic cause of ALS to date is the hexanucleotide repeat expansion in 

the gene C9ORF72. The presence of a common haplotype, tagged by rs3849942, shared between 

all expansion carriers led to the hypothesis of an expansion founder event, however the shared 

haplotype could alternatively be a genetic background that is permissive to expansion. We found 

that all subjects in our cohort of 153 expansion carriers shared at least part of the common 

haplotype. Sequencing a BAC containing C9ORF72 locus identified the rare SNP rs147599399 

within the risk haplotype that was not shared between all expansion carriers and was also present 

in the general population. Additionally, survival in expansion carriers with the minor allele at 

rs147599399 was roughly 20 months longer than expansion carriers that were homozygous for 

the reference allele (p=0.00047). These results show that both rs3849942 and rs147599399 are 

potential cis-modifiers of the expansion with rs3849942 promoting the formation of C9ORF72 

repeat expansions and rs147599399 mediating their effects. A genetic background that is 

permissive to expansions raises that possibility that expansions can arise de novo and would 

account for the prevalence of the expansion in sporadic cases of ALS. Understanding how the 

genetic background promotes expansion could allow us to create strategies to intervene and 

prevent repeats from expanding. 

4.2 Introduction 
 Hexanucleotide (GGGGCC) repeat expansions in the C9ORF72 gene are the most 

common cause of both familial and sporadic ALS to date.1,2 They account for approximately 
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34% of familial cases and 6% of sporadic cases overall with frequencies varying by population. 

The expansion is most prevalent in ALS subjects in Sweden and Finland and lowest in Asian 

populations (reviewed in Van Blitterswijk et al.)3 C9ORF72 repeat expansions also account for a 

significant portion of frontotemporal dementia (FTD) and have been found in other neurological 

disorders. While the pathogenic range of repeat expansions has yet to be clearly delineated, 

expansions larger than 26 are very rare in normal controls.1,2,4,5 

The repeat expansion is thought to have arisen from a single founder event in the 

Scandanavian population.1,2,5–9 A 42-SNP haplotype spanning 232 kb was identified in a GWAS 

of Finnish SALS subjects with the A allele of rs3849942 tagging the haplotype.10,11 With the 

discovery of the C9ORF72 repeat expansion, it was shown that all expansion carriers shared the 

rs3849942 risk allele1. Analysis of the entire risk haplotype in wider populations revealed that all 

expansion carriers possessed at least part of the risk haplotype.8 The prevalence of the C9ORF72 

expansion is lowest in Asian populations with have the least amount of Scandanavian 

admixture.3 

This observation has been widely interpreted to mean that the expansion arose once 

approximately 1500 years ago.  The alternative hypothesis to this single founder event is that the 

risk haplotype is a genetic background that is permissive to expansion. Multiple studies have 

shown that the rs3849942 A allele is associated with longer repeat lengths in those without the 

full expansion.1,5,12 It is possible that these are pre-mutations that can expand further into a 

pathogenic range. The risk haplotype is at lower frequencies in Asian populations5 and therefore 

C9ORF72 repeat expansions would be less likely to occur in these populations. Two other 

studies have provided evidence of multiple origins of the expansions. Beck et al. used 

microsattelite markers to show that expansions carriers in the UK did not share recent common 
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ancestry12 and Fratta et al used Southern blotting to show an individual with a small expansion in 

blood but a large expansion in brain.13  

Evidence of multiple origins of the expansion raises the possibility that expansions can 

arise de novo on the risk haplotype and would explain the prevalence of C9ORF72 expansions in 

sporadic disease. This would also have implications for estimating the risk of ALS for genetic 

counseling. Furthermore evidence of multiple expansions would indicate that the risk haplotype 

is permissive to expansion and allow us to identify the cis-acting modification that promotes 

repeat expansions in C9ORF72. 

In this study we first investigated the known risk haplotype in our cohort of expansion 

carriers to determine if there were alternate genetic backgrounds that would support multiple 

origins of expansion. In addition we reasoned that rare variation would be more informative with 

regards to the recent history of the expansion, therefore we use a BAC containing the C9ORF72 

locus derived from a patient carrying the full expansion to identify rare variants within the risk 

haplotype. 

4.3 Methods 

4.3.1 Subjects 

 This study used a total of 153 subjects that carried full C9ORF72 repeat expansion as 

diagnosed by repeat-primed PCR. The clinical diagnoses of the subjects were 67 SALS, 67 

FALS from 48 families (including asymptomatic relatives), 14 Alzheimer’s disease (AD), and 5 

unaffected controls. We also included 57 intermediate-length (19-30 repeats) expansion carriers 

(SALS=7, AD=40, Parkinson’s disease=7, Controls=3). Of the 141 ALS subjects, 42 were from 

Coriell panels NDPT026, NDPT100, NDPT103, NDPT106, and NDPT116. The remaining ALS 
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subjects were collected at the Washington University Neuromuscular Disease Center in St. 

Louis, Missouri (WUSM), the Virginia Mason Medical Center (VMMC), or Houston Methodist 

Hospital.  

4.3.2 Genotyping 

Eight SNPs from the known risk haplotype rs1110264, rs2225389, rs2589054, 

rs10511816, rs4879515, rs868856, rs3849942, and rs2453556) were genotyped in 181 subjects 

from 168 families using Sequenom. An additional 31 subjects were genotyped for 

rs3849942 using a custom assay (KASPar; KBioscience). Genotyping of rs147599399 was 

performed by PCR amplification with primers 5’ TCT TTA GCC TAG GTG GGG AGA 3’ and 

5’ TGA CAT TTG TAG AGC ACA GCA 3’ and subsequent enzymatic digestion with BstN1.  

This enzyme only cuts sequences that contain the alternate allele. rs147599399 was genotyped in 

all ALS subjects and asymptomatic relatives that carried full expansions, 5 AD subjects with full 

expansions,  and Coriell panels NDPT026, NDPT100, NDPT103, NDPT106, and NDPT116, a 

total of 567 subjects.  

4.3.3 MiSeq 

We obtained DNA from a BAC containing an insert spanning chr9:27527137-27683106 

derived from a subject carrying a full repeat expansion confirmed by Southern blotting (Figure 

4.1).  We sequenced this BAC on the Illumina MiSeq (GTAC). The sequencing reads were 

aligned to the Hg19 human genome using Novoalign and variants were called using Samtools. 

We annotated variants using SeattleSeq and obtained variant frequencies from the 1000 genomes 

phase 3 data.  
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Figure 4.1 Southern blot confirmation of C9ORF72 repeat expansion in a BAC. The blue box indicates the clone 
used for sequencing 

 

4.3.4 Statistical analysis 

 All statistical tests were performed in R version 3.1.1. Comparisons of allelic frequencies 

were done using Fisher’s exact test. Association with age of onset was tested using Wilcoxon 

rank-sum test. Association with gender and site of onset were tested using Fisher’s exact tests. 

Survival analysis was performed using the Survival package to create Kaplan-Meier curves and 

Cox-proportional hazards models. 

 

4.4 Results 

4.4.1 Known risk haplotype 

The 8 SNPs from the known risk haplotype were genotyped in 167 subjects in total. We 

included subjects that carried the full expansion (n=110) as well as intermediate length 

expansions (n=57). Confirming the findings in other populations, all subjects carried at least part 

of the risk haplotype (Figure 4.2 and Figure 4.3). There were 3 subjects that were homozygous 
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for the non-risk allele at the tag-SNP rs3849942, two of which were intermediate-length 

expansion carriers. The full expansion carrier was of African American ancestry. In all three 

cases with the non-risk allele at the tag SNP, both the upstream and downstream SNPs were risk 

alleles.  
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Figure 4.2 Largest continuous risk haplotype in patients with full C9ORF72 repeat expansions. The green line 
represents the recombination rate. The vertical purple line represents the location of the repeat expansion. Each row 

represents a single individual and a blue square indicates the subject carried the risk allele at that SNP. 
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Figure 4.3 Largest continuous risk haplotype with intermediate-length C9ORF72 repeat expansions (19-30 repeats). 
The green line represents the recombination rate. The vertical purple line represents the location of the repeat 

expansion. Each row represents a single individual and a blue square indicates the subject carried the risk allele at 
that SNP. 
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4.4.2 Rare SNPs identified by MiSeq 

In order to determine if there were rare variants within the risk haplotype that would give 

us additional insight into the origins of the repeat expansion, we sequenced a BAC containing the 

section of the hapltyope nearest to the repeat and spanning rs3849942. There were 4 variants 

within the range of the risk haplotype (Table 4.1). All variants were confirmed by sequencing 

and all are on the same haplotype as the expansion since they were discovered in the BAC. 

Interestingly, none of these was novel to this individual.  We focused on rs147599399 because of 

its proximity to the tag SNP rs3849942 (600bp away), because this SNP is very rare in the 

subjects included in phase 3 of the 1000genomes project, and because it is not present in the 

Finnish population where the expansion is thought to have arisen (Table 4.2). 

Table 4.1 Rare variants on the C9ORF72 risk haplotype discovered by MiSeq. *Denotes subject used to create BAC. 

Position dbSNP ID Ref 
allele 

Alt 
allele 

MAF(%) 
1000genomes 

phase3 

BAC 
genotype 

Affected 
Carrier* 

Affected 
Carrier 

Unaffected 
Carrier 

chr9:27543629 rs147599399 A G 0.339 G/G G/A G/A G/A 

chr9:27601617 rs75747155 G A 0.778 A/A G/A G/A G/A 

chr9:27617365 rs79652154 C A 0.572 A/A C/A C/A C/A 

chr9:27673058 rs138129614 A G 0.179 G/G A/G A/G A/G 
 

4.4.3 Prevalence of rs147599399 in additional expansion carriers 

We genotyped rs147599399 in a total of 106 full expansion carriers from 86 families, 

including the family in which the variant was originally identified (WUNM0026).  There was 

one family in addition to WUNM0026 that carried the variant; all expansion carriers were also 

heterozygous for rs147599399 in both families confirming the SNP is in phase with the 

C9ORF72 repeat expansion. A total of 19 out of the 86 families carried the variant resulting in a 
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minor allele frequency of 11%.  This is dramatically increased compared to 0.339% in all 

subjects included in 1000genomes phase3 (p<2.2X10-16, OR=35.9, 95%CI=17.5-76.2). The vast 

majority of expansion carriers in our cohort are of European ancestry so we also compared only 

those of white, non-Hispanic ethnicity to 1000 genomes subjects with European ancestry 

(p=1.625x10-10, OR=12.8, 95%CI=5.5-31.5).  Because our study included expansion carriers of 

mixed phenotypes, we also looked at rs147599399 in AD. Five of the 87 families had 

Alzheimer’s disease, one of which had the rs147599399 G allele. 

To validate this finding, we genotyped rs147599399 in 460 ALS samples from Coriell. 

The G allele was found in 6/35 expansion carriers compared to 16/425 non-expanded ALS 

subjects (p=0.004, OR=4.87, 95%CI=1.5-13.7). The frequency of rs147599399 in non-expanded 

ALS was higher than in the total 1000 genomes cohort (p=3.46x10-6), but not higher than in the 

1000 genomes subjects of European ancestry (p=0.116)  
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Table 4.2 Frequency of rs147599399 in all 1000 genomes populations 

Population Allele count MAF (%) 

Tosaini in Italy (TSI) 209 (A) / 5 (G) 2.336 

Colombian in Medellin, Colombia (CLM) 185 (A) / 3 (G) 1.596 

Iberian in Spain (IBS) 211 (A) / 3 (G) 1.402 

British in England and Scotland (GBR) 180 (A) / 2 (G) 1.099 

Americans of African Ancestry in SW USA (ASW) 121 (A) / 1 (G) 0.82 

African Caribbeans in Barbados (ACB) 191 (A) / 1 (G) 0.521 

Punjabi from Lahore, Pakistan (PJL) 191 (A) / 1 (G) 0.521 

Puerto Ricans from Puerto Rico (PUR) 207 (A) / 1 (G) 0.481 

Bengali from Bangladesh (BEB) 172 (A) 0 

Chinese Dai in Xishuangbanna, China (CDX) 186 (A) 0 
Utah Residents (CEPH) with Northern and Western European Ancestry 

(CEU) 198 (A) 0 

Han Chinese in Beijing, China (CHB) 206 (A) 0 

Southern Han Chinese in China (CHS) 210 (A) 0 

Esan in Nigeria (ESN) 198 (A) 0 

Finnish in Finland (FIN) 198 (A) 0 

Gujarati Indian from Houston, Texas (GIH) 206 (A) 0 

Gambian in Western Divisions in the Gambia (GWD) 226 (A) 0 

Indian Telugu from the UK (ITU) 204 (A) 0 

Japanese in Tokyo, Japan (JPT) 208 (A) 0 

Kinh in Ho Chi Minh City, Vietnam (KHV) 198 (A) 0 

Luhya in Webuye, Kenya (LWK) 198 (A) 0 

Mende in Sierra Leone (MSL) 170 (A) 0 

Mexican ancestry in Los Angeles (MXL) 128 (A) 0 

Peruvian in Lima, Peru (PEL) 170 (A) 0 

Sri Lankan Tamil from the UK (STU) 204 (A) 0 

Yoruba in Ibadan, Nigeria (YRI) 216 (A) 0 

ALL 4991 (A) / 17 (G) 0.339 
 

4.4.4 Association of rs147599399 with clinical characteristics in ALS 

Within our ALS expansion carriers, there were no differences between gender, site of 

onset, or age of onset with A/A versus A/G genotypes at rs147599399.  However, there was a 
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difference in survival with the A/G individuals having longer survival (median=50 months) than 

A/A individuals (median=32) (figure 4.3). We fit a cox-proportional hazards model controlling 

for age of onset and found that rs147599399 was significantly associated with survival (hazard 

ratio (A/G vs A/A =0.235, p=0.00047) with the G allele associated with longer survival. There 

was no difference in survival by rs147599399 genotype in non-expansion carriers.                                                 

 

Figure 4.4 Survival curves by rs147599399 genotypes.  

4.5 Discussion 

  Analysis of the C9ORF72 locus has shown that there is a common haplotype shared 

between expansion carriers. The simplest explanation for this is observation is a single founder 

expansion event. Here we provide direct evidence of multiple expansion events based on the 

SNP rs147599399. This SNP is present in both non-expansion carriers and expansion carriers, 

but is not present in all expansion carriers. It is less likely that the SNP arose in both groups than 

the expansion arising on both backgrounds, especially given the known instability of the 

repeat.12–14 Since the rs147599399-G carriers in the phased 1000 genomes data have the risk 
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allele both upstream and downstream of the repeat on the same chromosome, it is also unlikely 

that a recombination event between rs147599399 and the repeat in an expansion carrier led to the 

rs147599399-G allele in non-expansion carriers.  

 An alternate possibility is that there was a founder pre-mutation on the originally 

identified risk haplotype that is more likely to continue to expand into a pathogenic range as is 

the case with Myotonic Dystrophy type 115,16 and Friedreich Ataxia.17 In this scenario, the 

rs147599399 SNP would have occurred on the pre-mutation background and a subset of these 

would pass on full expansions to their offspring and a subset would remain in the pre-mutation 

range and not develop disease (Figure 4.5). Further analysis of transmission of intermediate-

length alleles will be required to determine if this is a possibility. 

 

Figure 4.5 Models of expansion events 
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In addition to showing multiple origins of the expansion, we have discovered that 

rs147599399 modifies survival in expansion carriers with the G allele resulting in an almost 20 

month increase in disease duration. rs147599399 does not influence survival in ALS patients 

without the repeat expansion, suggesting that the SNP exerts an effect specifically on the repeat 

expansion. It could be acting by stabilizing the expansion, altering transcription of C9ORF72, or 

altering translation of dipeptide-repeats.18 This is another in a growing list of genetic factors that 

have been shown to modify the disease phenotype in C9ORF72-associated disease along with 

TMEM106B19,20, ATXN221, and several others.22 However, to our knowledge, this is the first 

modifier in cis with the expansion. 

This is not the first evidence of cis-acting genetic factors influencing repeat expansions. 

Haplotype is an important factor in Huntington Disease (HD) with multiple origins of the 

expansion arising on population-specific haplotypes, but the exact mechanism of this is not 

known.23–27 Possibilities include changes in replication origins which can alter stability of repeats 

during replication,28,29 and formation of secondary structures, which can in turn alter the effects 

of DNA mismatch repair machinery.30  Methylation of flanking sequences can also alter stability 

of repeats as in SCA731 and fragile-X syndrome.32  

We show here that genetic context is an important factor in the pathogenicity of 

C9ORF72 through both the risk background associated with rs3849942 and the increased 

survival associated with rs147599399. This finding suggests that de novo expansions on the 

permissive haplotype are possible, which might explain why the expansion is relatively common 

in sporadic ALS patients. Understanding the mechanisms behind these phenomena will allow us 

to develop strategies to intervene.   
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Chapter 5 

Characterization of size and stability of C9ORF72 repeat 

expansions 

5.1 Abstract 

 Despite the prevalence of C9ORF72 repeat expansions in ALS, little is known about the 

importance of repeat sizes and stability. Understanding these characteristics can have a great 

impact in our knowledge of the pathogenic mechanisms of the repeat expansion and of how it is 

transmitted from generation to generation. We used Southern blot analysis to determine size of 

the repeat expansion in a variety of patient tissues. We observed a high degree of somatic 

instability between tissues with larger expansions in most regions of the brain than in blood. 

Expansions size did not correlate with clinical characteristics in any tissue and there was no 

difference in expansion size in blood between affected and unaffected expansion carriers. There 

was instability in transmission of expansions within families, but unlike the transmissions in 

repeat disorders with anticipation, the expansions showed increases and decreases between 

generations. It will be important to continue this work with additional samples in order to 

perform more concrete analysis. 

5.2 Introduction 

Large expansions in C9ORF72 are the most common cause of ALS, however the effects 

of expansion sizes on pathogenesis are not well understood.1,2 Many pathogenic mechanisms of 

C9ORF72 repeats have been proposed which could be influenced by expansion sizes. GGGGCC 
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repeats form RNA-DNA heteroduplexes called G-quadruplexes3,4 and increases in repeat number 

altered G-quadruplex conformation in small repeats.5 Expanded C9ORF72 also forms nuclear 

RNA foci which sequester RNA-binding proteins.1,6–8 Expression of constructs with 8,38, or 72 

repeats in cell lines and zebrafish showed length dependent effects on the formation of RNA 

foci, especially in neuronal cells.9 The role of repeat length in repeat-associated non-ATG 

initiated translation into aggregating dipeptide repeats10–13 has not been investigated, but it is 

possible that larger expansions would promote increased production of dipeptides and increased 

aggregation in a similar fashion to RNA foci.  

Variability in expansion size and stability could explain disease characteristics such as 

tissue specificity, progressive degeneration, and incomplete penetrance. For example, in the 

related repeat expansion disorder Myotonic Dystrophy (DM), somatic instability has been 

observed in the CTG repeat tract of DMPK with larger repeats in muscle (the affected tissue) 

compared to blood.14 Additionally the repeat is unstable and continues to expand with age 

accounting for the progressive nature of the disease.15 Like many other repeat expansion 

disorders DM1 also shows anticipation with larger repeat expansions and earlier onset in 

progressive generations.16,17 

C9ORF72 expansions are detected by repeat-primed PCR (RP-PCR) which does not size 

expansions larger than 30 repeats, therefore Southern blots must be used to detect the number of 

repeats in full expansions. Due to the difficulty of performing Southern blots, very few studies 

have been done observing the impact of expansion sizes, most of which have focused on 

expansions in blood-derived DNA.1,18–24 All studies have shown expansion sizes of hundreds to 

thousands of repeats in all tissues and variability of expansion sizes between tissues. Although 
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some studies have reported clinical associations with expansion sizes in certain tissues, these 

results are mostly inconsistent between studies.18,19,23 

In this study, we use Southern blot analysis to determine expansion lengths in multiple 

tissue types in a cohort of ALS subjects. In addition, we analyze the stability of repeat 

expansions both in cell culture and in transmission in families. 

5.3 Methods 

5.3.1 Samples 

All patients included in this study were diagnosed with definite or probable ALS at either 

Washington University Neuromuscular Disease Center in St. Louis, Missouri (WUSM) or the 

Virginia Mason Medical Center (VMMC). Patients were screened for C9ORF72 repeat 

expansion by repeat-primed PCR as previously described (Figure 5.1).1 DNA from patient 

samples was prepared by the Hope Center DNA/RNA purification core at Washington 

University in St. Louis. All participants had provided signed informed consent for studies 

approved by local institutional review boards. 

Figure 5.1 Example of repeat-primed PCR to detect C9ORF72 repeat expansions

Expanded Repeat Normal

Fragment Size (bp)

Expanded Repeat Normal

Fragment Size (bp)
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5.3.2 Southern blots 

 Southern blots were performed as previously described.25 Briefly, genomic DNA was 

digested using either XbaI or XbaI and TaqαI. 3.5-5ug of digested DNA was run out on a gel and 

transferred to the membrane. Hybridization was performed using a 590bp probe labeled with 32P 

that hybridizes adjacent to the repeat. Blots were exposed on film for 1-7 overnights. Band sizes 

were determined using GelAnalyzer (ww.gelanalyzer.com). Either the 1kb plus DNA ladder 

(Invitrogen) or the 1kb DNA ladder (NEB) was used as a standard to measure expansion size. 

The maximum, minimum and peak for each band were measured. The number of repeats was 

calculated by subtracting the digest size of 0 repeats (2359 for XbaI digest or 1941 for 

XbaI+TaqαI) from the measured band size and dividing by 6. 

5.3.3 Statistical Analysis 

 All statistical analyses were performed in R v3.1.3. For samples that had multiple 

expansion size, the largest was used in analysis. When samples were blotted more than once, the 

average was used. Differences in number of repeats between affected and unaffected expansion 

carriers and between different tissues were assessed by Wilcoxon-rank sum tests. Differences in 

number of repeats in different tissues within individuals were assessed using Wilcoxon paired 

signed -rank tests. Correlations between repeat sizes and age of onset and between repeat sizes 

from different tissues were performed using Spearman correlations Survival was assessed using 

cox-proportional hazards models controlling for age of onset. 

5.4 Results 

5.4.1 Expansions in blood-derived DNA 
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We were able to perform Southern blots on blood-derived DNA from 39 different 

expansion carriers. Expansions in blood-derived DNA generally showed long smears on 

Southern blots (Figure 5.2). The median size of the smear peaks was 1702 and ranged from 705 

to 3520 repeats. Smear minima were between 477 and 2297 repeats with a median of 967. Smear 

maxima ranged from 840 to 3947 repeats.  

Figure 5.2 Representative Southern blots of blood-derived DNA. Sample numbers are listed above. The far right sample is an 
ALS patient that was negative for the expansion by RP-PCR and is shown as a negative control. Samples were digested with 

XbaI resulting in wild-type alleles of ~2359bp. 

There was no difference in the minima (p=0.56), maxima (p=0.41) or peaks (p=0.33) between 

the 26 symptomatic and 13 asymptomatic expansion carriers (peaks shown in figure 5.3 A). 

There was also no correlation between repeat size and age of onset in symptomatic repeat 

carriers (p=0.60 for minima, p=0.56 for maxima, p=0.94 for peaks [shown in Figure 5.3B]). 

Number of repeats also had no effect on survival (p=0.43, p=0.39, p=0.95 for peaks, maxima, 

and minima respectively). 
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Figure 5.3 Relationship between C9ORF72 repeat sizes and phenotype. A. Boxplot of peak number of repeats in blood-derived 
DNA in affected and unaffected expansion carriers. The data are transposed on top of the boxplot. B. Scatterplot of peak number 

of repeats in bood-derived DNA versus age of onset. The blue line represents the least-squares regression line. 

5.4.2 Expansion sizes across families 

Blood derived DNA was available from 7 families with multiple expansion carriers. 

Three families had multiple causes of disease. Family WUNM0026 (Figure 5.4 A) included one 

distant affected relative that tested negative for the expansion, but was found to be a 

heterozygous carrier of the SOD1 p. D91A variant. This individual had another affected cousin 

who was positive for the expansion. Southern blotting of this family confirmed the absence of 

the expansion in the p.D91A carrier and presence of the expansion in the other affected 

members. In family WUNM0085 the proband was positive for the expansion and their distant 

relative who also had ALS tested negative and was confirmed by Southern blot (Figure 5.4 D). 

The cause of disease is still unknown in this individual. In family WUNM0194 (Figure 5.4 G) 
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the proband and two unaffected sisters carried the expansion. They had one affected brother who 

was negative for the expansion and whose cause of disease is unknown. 

 We observed both stable and unstable transmission patterns in families. The expansion 

was roughly the same size in all expansion carriers in families WUNM0026, WUNM0160, 

WUNM0226, WUNM0521, and WUNM0194 (Figure 5.4 A, B, C, E, G). Family WUNM0176 

(Figure 5.4 F) has a proband whose daughter, mother, and brother are all asymptomatic and all 

have different sized repeats. In fact the proband has the smallest repeat out of the four family 

members. 

 There was no relationship between expansion size and whether or not the carrier was 

symptomaticwhich is consistent with the statistical analysis performed above (which includes 

these families). Four families (WUNM0026, WUNM0226, WUNM0512, WUNM0194) all had 

affected and unaffected individuals with expansions of roughly the same size. In family 

WUNM0226, both expansion carriers were identical twins but only one had ALS. In family 

WUNM0176 the proband had a smaller repeat than three asymptomatic carriers.    
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Figure 5.4 Southern blots of blood-derived DNA from 7 ALS families. Samples were digested with XbaI resulting in wild-type 
alleles of ~2359b.p A.WUNM0026, B. WUNM0160, C. WUNM0226, D. WUNM0085, E. WUNM0521, F. WUNM0176, G. 

WUNM0194 
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5.4.3 Expansions in cultured cells 

 To observe how C9ORF72 repeat expansions behave in cultured cells, we performed 

Southern blots on fibroblast-derived DNA from 19 expansion carriers, all of whom were 

symptomatic. Expansions in fibroblasts were uniformly smaller than blood-derived DNA and 

peak sizes ranged from 340-960 repeats (Figures 5.5 and 5.6A) with the exception of one sample 

with a small expansion of ~35 repeats. The median peak number of repeats was 703. Some 

fibroblast lines showed multiple sizes of expansions (Figure 5.6A). Unsurprisingly, due to the 

narrow range of expansion sizes in fibroblasts, there was no correlation between number of 

repeats in fibroblast-derived DNA and age of onset. There were also no associations between 

number of repeats and survival (p=0.16, p=0.17, p=0.09 for minima, peaks, and maxima 

respectively).  

 
Figure 5.5 Peak expansion sizes in fibroblast-derived DNA 
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Subject 32 showed multiple expansion sizes in fibroblast-derived DNA (Figure 5.6 A) 

that were both smaller than the single band observed in the blood-derived DNA from the same 

patient (Figure 5.6 A). There was no correlation between peak expansion size in fibroblast-

derived DNA and peak expansion size in blood-derived DNA (data not shown). There were no 

significant correlations between peak, maximum, or minimum number of repeats in fibroblast-

derived and blood-derived DNA.   

We performed Southern blots of fibroblasts at different passages to observe changes in 

expansion size through cell divisions. The expansion was larger in later passages in two different 

cell lines (Figure 5.6 B). We also performed Southern blots of a lymphoblast cell line from 

patient ND08980 from the Coriell repository (Figure 5.6 C). This cell line showed multiple 

expansion sizes and was also unstable with the latest passage (p17) only showing one expansion 

size. 

 

Figure 5.6 Southern blots of cultured cells. Samples were digested with XbaI resulting in wild-type alleles of ~2359bp. A. 
Representative blot of cultured patient fibroblast-derived DNA. B. Fibroblast-derived DNA from two patients at passages 6 and 

13. C. Lymphoblast-derived DNA from one patient at passages 9, 11, and 17 

                 

                   

A B C 
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5.4.4 Expansions in different tissues 

 Next we used tissue from patient autopsies to observe somatic instability of the repeat 

expansion. In initial studies we noted that expansions in brain derived DNA were larger than in 

blood and fibroblasts from the same individual (Figure 5.7), so we expanded our analysis to a 

range of tissues across the entire body and multiple regions of the CNS.   

 

Figure 5.7 Expansions in blood, brain and fibroblast derived DNA from a single individual (patient 18). Sample were digested 
with XbaI resulting in wild-type alleles of ~2359bp. 

 

We observed variability in expansion size across tissue samples from the same patients 

(Figure 5.8). The most obvious pattern was that expansions in DNA from the cerebellum are 

smaller than other brain regions (seen in Figure 5.8A). This was consistent across all individuals. 

Another interesting finding was that expansions in non-CNS tissues are within the same size 

range as CNS tissues. In fact it appears that expansions in the kidney are in fact larger than in 

multiple brain regions (Figure 5.9). Expansions in DNA derived from the testes was also very 

large, although they also showed a significant amount of DNA that did not migrate out of the 
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wells of the gel. It is unclear if this is DNA that has very large expansions or if it is simply less 

soluble. 

 

 

Figure 5.8 Southern blots across multiple tissues. Samples were digested with XbaI+TaqαI resulting in wild-type alleles of 
~1941bp. A. Patient 47, B. Patient 68 

 

We compared number of repeats across different tissue types for which there were at least 

three subjects with usable measurements. This included cerebellum (n=6, median =1570, 

range=996-1761), frontal cortex (n=4, median=2317, range=1588-2413), occipital cortex (n=5, 

median=2088, range=1290-3375), sensory cortex (n=3, median=2391, range= 2145-2524), 

motor cortex (n=6, median=2334, range=1447-2716), cervical spine (n=4, median=2171, 

range=1290-3677), lumbar spine (n=4, median=2326, range=1930-3615), kidney (n=3, 

median=2951, range=2187-4296), and blood (n=39, median=1702, range=705-3520). Each 

tissue was compared to all of the others and we found that expansions in the cerebellum were on 
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average smaller than in frontal cortex, sensory cortex, lumbar spine, and kidney. No other 

comparisons were statistically significant (Table 5.1). We also performed paired tests comparing 

the differences in expansion sizes between tissue types within individuals. None of these 

comparisons were significant (Table 5.2). There were also no significant correlations between 

expansion size in a given tissue and expansion size in any other tissue (data not shown). 

 

Figure 5.9 Repeat sizes across multiple tissues. Only tissues with at least three subjects blotted were included 
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Table 5.1 P-values from Wilcoxon rank-sum test comparing expansion sizes in different tissue types. Only peak repeat numbers 
were used. 

  Cerebellum 
Cervical 

Spine 
Motor 
Cortex 

Occipital 
Cortex 

Frontal 
Cortex Kidney 

Lumbar 
Spine 

Sensory 
Cortex Blood 

Cerebellum - - - - - - - - - 
Cervical 

Spine 0.1714 - - - - - - - - 
Motor 
Cortex 0.1320 1.0000 - - - - - - - 

Occipital 
Cortex 0.3290 0.8057 0.5368 - - - - - - 
Frontal 
Cortex 0.0381 0.8857 0.9143 0.9048 - - - - - 
Kidney 0.0238 0.4000 0.1667 0.2500 0.4000 - - - - 
Lumbar 
Spine 0.0095 0.8857 0.7619 0.5556 0.8857 0.6286 - - - 

Sensory 
Cortex 0.0238 0.8571 1.0000 0.5714 0.6286 0.4000 0.8571 - - 
Blood 0.4133 0.2502 0.1287 0.3180 0.2333 0.0191 0.0689 0.0873 - 

 

Table 5.2 P-values from Wilcoxon paired signed rank tests comparing expansion sizes in different tissue types within individuals. 
Only peak number of repeats were used 

  Cerebellum Cervical 
Spine 

Motor 
Cortex 

Occipital 
Cortex 

Frontal 
Cortex Kidney Lumbar 

Spine 
Sensory 
Cortex Blood 

Cerebellum - - - - - - - - - 
Cervical 

Spine 0.375 - - - - - - - - 
Motor 
Cortex 0.0625 0.875 - - - - - - - 

Occipital 
Cortex 0.25 1 0.625 - - - - - - 
Frontal 
Cortex 0.125 0.5 0.25 0.25 - - - - - 
Kidney 0.25 0.5 0.25 0.5 0.5 - - - - 
Lumbar 
Spine 0.125 0.75 0.875 1 0.75 0.25 - - - 

Sensory 
Cortex 0.25 1 0.25 1 0.5 0.5 0.25 - - 
Blood 1 0.25 0.125 0.125 0.5 0.25 0.25 0.5 - 

 

We analyzed the relationship between expansion size in different tissue regions and 

clinical course (Table 5.3). There was a moderate association that was not statistically significant 

128



between age of onset and expansion size in the sensory cortex, however there were only three 

observations for this tissue. 

Table 5.3 Associations between expansion sizes in different tissues and clinical presentation. P-values from spearman correlation 
and cox-proportional hazards models are given for associations with age of onset and survival respectively. 

  
Age of 
onset Survival 

Cerebellum 0.8569 0.27 
Cervical 

Spine 0.6428 0.5 
Motor Cortex 0.4441 0.5 

Occipital 
Cortex 0.9779 0.27 
Frontal 
Cortex 0.5549 1 
Kidney 0.7727 1 

Lumbar Spine 0.8416 0.55 
Sensory 
Cortex 0.0611 1 

 

5.5 Discussion 

 Based on characteristics of other repeat expansion disorders and the relative lack of 

knowledge regarding characteristics of repeat expansions, we investigated these characteristics 

of the C9ORF72 repeat expansion in our ALS cohort. We found all repeat expansions to be very 

large, ranging from ~700 repeats to ~4500 repeats, and showing a high degree of instability. 

Within patients, expansion size varied with the smallest expansions in the cerebellum (not 

including cultured fibroblasts). There were no significant differences between different CNS 

regions or between CNS and non-CNS tissues (blood and kidney). The same pattern of smaller 

repeats in the cerebellum compared to other brain regions has been observed in all studies 

comparing C9ORF72 expansions across brain regions.18,22,23 
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We did observe instability of the repeat during transmission within families. Unlike 

repeat expansion disorders with anticipation, in which expansions become larger with each 

subsequent generation, we saw both families with increases or decreases in expansion size and 

families with no change in expansion size from parents to offspring. One family in fact showed a 

decrease in size from an unaffected parent to the affected proband and then an increase in size 

from the proband to their daughter. 

 We saw no difference in expansion size in blood-derived DNA between symptomatic and 

asymptomatic expansion carriers from ALS families. There was in fact a set of monozygotic 

twins with identical repeat sizes that were discordant for disease. Another set of monozygotic 

twins with C9ORF72 expansions that are discordant for disease has been reported as well.26 It is 

possible that symptomatic expansion carriers have larger expansions in CNS tissues, however no 

tissue from asymptomatic carriers was available for comparison.  

 Our analysis did not identify any associations between repeat length in any tissue and 

either age of onset or survival. While other studies have reported associations, they have not 

been consistent between studies. Beck et al.19 found smaller expansions in blood to be associated 

with earlier age of onset, while others did not.18,23  van Blitterswijk et al18 found smaller repeats 

in the frontal cortex were associated with earlier age of onset and larger repeats in cerebellum 

were associated with shorter survival in patients with FTD. There were no associations in ALS. 

Nordin et al. 23found smaller expansions in the cerebellum and parietal lobe to be associated with 

earlier age at onset and larger expansions in the parietal lobe to be association with shorter 

survival. 

  The lack of correlations with clinical characteristics in our study may be due to the small 

sample-size. The technical difficulty and amount of sample required to perform Southern blots 
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limited the number of usable observations for analysis. Additionally, the imprecise nature of 

obtaining the number of repeats from Southern blot images decreases the accuracy of our 

analysis. Size estimation of expansions larger than 20kb becomes even more inaccurate as there 

small errors in measurement translate into large differences in estimated size. For these reasons, 

the development of novel methods, such as single-molecule real-time sequencing of long reads 

used to sequence expansions in FMR127, would be useful for continued study of this repeat 

expansion.  

 One interpretation of these results is that the number of repeats does not determine 

toxicity. It is possible that there is a threshold effect where expansions become toxic once they 

reach a certain size and additional repeats do not have any added effect. The fact that we see no 

difference in expansion sizes between affected and unaffected tissues points to a tissue specific 

ability to cope with toxic repeat expansions. Furthermore, each tissue tested contains a 

heterogeneous mix of cell types (neurons, microglia, astrocytes, etc.). It is possible that 

differences will become more apparent if we look specifically at different types of neurons. 

Additionally, the lack of difference in expansion size between unaffected carriers indicates that 

additional genetic and environmental factors are involved in pathogenesis. Further studies of 

repeat sizes in larger cohorts are needed to confirm these findings and to improve the analysis of 

clinical characteristics.  

  

131



5.6 References 

1. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding 
region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 
(2011). 

2. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of 
chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011). 

3. Haeusler, A. R. et al. C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of 
Disease. Nature 507, 195–200 (2014). 

4. Fratta, P. et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis 
and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep 2, 1016 (2012). 

5. Šket, P. et al. Characterization of DNA G-quadruplex species forming from C9ORF72 
G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal 
lobar degeneration. Neurobiology of Aging 36, 1091–1096 (2015). 

6. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as 
therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. U.S.A. 110, 
E4530–4539 (2013). 

7. Cooper-Knock, J. et al. Sequestration of multiple RNA recognition motif-containing proteins 
by C9orf72 repeat expansions. Brain 137, 2040–2051 (2014). 

8. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with 
a C9ORF72 repeat expansion. Sci Transl Med 5, 208ra149 (2013). 

9. Lee, Y.-B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, 
sequester RNA binding proteins, and are neurotoxic. Cell Rep 5, 1178–1186 (2013). 

10. Ash, P. E. A. et al. Unconventional Translation of C9ORF72 GGGGCC Expansion 
Generates Insoluble Polypeptides Specific to c9FTD/ALS. Neuron 77, 639–646 (2013). 

11. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat 
proteins in FTLD/ALS. Science 339, 1335–1338 (2013). 

12. Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA 
biogenesis, and kill cells. Science 345, 1139–1145 (2014). 

13. Mizielinska, S. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila 
through arginine-rich proteins. Science 345, 1192–1194 (2014). 

14. Anvret, M. et al. Larger expansions of the CTG repeat in muscle compared to lymphocytes 
from patients with myotonic dystrophy. Hum. Mol. Genet. 2, 1397–1400 (1993). 

132



15. Martorell, L. et al. Progression of somatic CTG repeat length heterogeneity in the blood cells 
of myotonic dystrophy patients. Hum. Mol. Genet. 7, 307–312 (1998). 

16. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ 
untranslated region of the gene. Science 255, 1253–1255 (1992). 

17. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with 
myotonic dystrophy. Nature 355, 547–548 (1992). 

18. Van Blitterswijk, M. et al. Association between repeat sizes and clinical and pathological 
characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional 
cohort study. The Lancet Neurology 12, 978–988 (2013). 

19. Beck, J. et al. Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple 
Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population. 
The American Journal of Human Genetics 92, 345–353 (2013). 

20. Dobson-Stone, C. et al. C9ORF72 repeat expansion in Australian and Spanish 
frontotemporal dementia patients. PLoS ONE 8, e56899 (2013). 

21. Dols-Icardo, O. et al. Characterization of the repeat expansion size in C9orf72 in 
amyotrophic lateral sclerosis and frontotemporal dementia. Hum. Mol. Genet. 23, 749–754 
(2014). 

22. Buchman, V. L. et al. Simultaneous and independent detection of C9ORF72 alleles with low 
and high number of GGGGCC repeats using an optimised protocol of Southern blot 
hybridisation. Mol Neurodegener 8, 12 (2013). 

23. Nordin, A. et al. Extensive size variability of the GGGGCC-expansion in C9orf72 in both 
neuronal and non-neuronal tissue in 18 patients with ALS or FTD. Human Molecular 
Genetics (2015). doi:10.1093/hmg/ddv064 

24. Fratta, P. et al. Screening a UK amyotrophic lateral sclerosis cohort provides evidence of 
multiple origins of the C9orf72 expansion. Neurobiology of Aging 36, 546.e1–546.e7 
(2015). 

25. Harms, M. B. et al. Lack of C9ORF72 coding mutations supports a gain of function for 
repeat expansions in amyotrophic lateral sclerosis. Neurobiol. Aging 34, 2234.e13–19 
(2013). 

26. Xi, Z. et al. Identical twins with the C9orf72 repeat expansion are discordant for ALS. 
Neurology 83, 1476–1478 (2014). 

27. Loomis, E. W. et al. Sequencing the unsequenceable: expanded CGG-repeat alleles of the 
fragile X gene. Genome Res. 23, 121–128 (2013). 

 

133



Chapter 6 

Identification of mutations in the TREM family genes 

The work presented in this chapter resulted in the following publication: 

1. The TREM2 variant p.R47H is a risk factor for sporadic amyotrophic lateral sclerosis. 

Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, 

Ravits J, Simpson E, Appel SH, Pestronk A, Goate AM, Miller TM, Cruchaga C, Harms 

MB. JAMA Neurol. 2014 Apr;71(4):449-53. doi: 10.1001/jamaneurol.2013.6237 

 

6.1 Abstract   

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which 

microglia play a significant and active role.  Recently, a rare missense variant (p.R47H) in the 

microglial activating gene TREM2 was found to increase the risk of several neurodegenerative 

diseases, including Alzheimer’s disease. Here we show that the TREM2 variant p. R47H was 

more common in subject with ALS than in controls and is therefore a significant risk factor for 

ALS (OR=2.40; 95%CI=1.29-4.15; p=4.1x10-3).  Furthermore, TREM2 expression was increased 

in spinal cords from ALS patients and SOD1G93A mice (p=2.8x10-4, p=2.8x10-9 respectively), 

confirming dysregulated TREM2 in disease.  TREM2 expression in human spinal cord was 

negatively correlated with survival (p=0.04), but not other phenotypic aspects of disease. This 

study demonstrates that the TREM2 p.R47H variant is a potent risk factor for sporadic 

amyotrophic lateral sclerosis. These findings identify the first genetic influence on neuro-

inflammation in ALS and highlight the TREM2 signaling pathway as a therapeutic target in ALS 

and other neurodegenerative diseases.        
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6.2 Introduction 

Activated microglia in the vicinity of degenerating neurons are a long-recognized 

pathological feature of ALS1, but whether such activation is a beneficial response or injurious 

contributor to the disease process remains unclear.  In fact the answer may be both- mouse model 

data show that microglia express both neuroprotective and neurotoxic factors simultaneously2  

and may transition from a neuroprotective phenotype at symptom onset to become more 

neurotoxic later in the disease course.3   

There are many signaling pathways governing microglial phenotype, including a complex 

formed by TREM2 (MIM 605086) and TYROBP (also known as DAP12, MIM 604142).4  

Activation of TREM2/TYROBP results in a potentially neuroprotective microglial state, with 

improved phagocytosis of apoptotic cellular debris and down-regulation of inflammatory 

cytokines.5  The importance of signaling through TREM2/TYROBP is made clear by the fact 

that recessive mutations in either gene cause early onset frontotemporal-like dementia, either in 

isolation6 or as part of the recessive human disease polycystic lipomembranous osteodysplasia 

with sclerosing leukoencephalopathy (PLOSL or Nasu-Hakola Disease, MIM 221770).7,8  

Furthermore, recent studies have demonstrated that a rare non-synonymous variant in TREM2, 

rs75932628 (encoding p.R47H) is a strong risk-factor for Alzheimer’s disease (AD), another 

neurodegenerative disease characterized by microglial activation.9–13  Other studies have 

implicated the same variant in frontotemporal dementia and Parkinson’s disease.14,15  It has been 

hypothesized that this variant impairs TREM2/TRYOBP signaling, thereby blunting 

neuroprotective microglial activation and exacerbating the disease process.9,11  
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In this study we demonstrate that p.R47H is a risk factor for sporadic ALS, and 

demonstrate upregulation of TREM2 in human ALS spinal cord and in spinal cord from the 

G93A mouse model of SOD1 ALS.16 

 

6.3 Methods 

6.3.1 Study subjects and TREM2 p.R47H genotyping  

 923 sporadic ALS (SALS) subjects and 1854 normal controls, all of self-reported non-

Hispanic white background, were included and provided written informed consent at their 

contributing institution.  Diagnoses of probable or definite ALS were made by neuromuscular 

specialists according to El Escorial criteria (Washington University in St. Louis, n= 273; 

Virginia Mason Medical Center, n=143; Methodist Neurological Institute, n= 47; Coriell plates 

NDPT025, NDPT026, NDPT100, NDPT103, NDPT106, n=460).  Control subjects were without 

ALS, Parkinson's disease, or dementia and were collected from ongoing studies (Washington 

University, n=1390) or Coriell panels (NDPT020, NDPT079, NDPT082, NDPT095, NDPT096, 

n=464).   55% of SALS cases were male and age at DNA collection was 61.0±11.6 years old 

(mean ± stdev), while the control cohort was 44% male and 68±13.6 years old (mean ± stdev). 

An additional control group of 25,023 individuals of European or European American descent 

was collated from published studies (Table 1) and from the unrelated European Americans (EA) 

genotyped by whole-exome sequencing as part of the NHLBI’s Exome Sequencing Project or 

ESP (http://ESP6500.gs.washington.edu/ESP6500/ [1 Dec 2013]).) Icelandic controls were not 

included given the isolation of the population and significantly higher MAF at rs75932628.9 
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DNA was extracted from blood or saliva using standard methods and genotyped for 

rs75932628 (TREM2 p.R47H) using a custom KASPar (KBioscience) assay.12  Genotype call 

rate was 99.7% in both cases and controls. p.R47H carriers were validated by sequencing.   

 

6.3.2 TREM2 expression analysis 

Expression in human lumbar spinal cord: Total RNA was extracted from snap-frozen 

transverse sections of lumbar spinal cord of 18 autopsied subjects with ALS (Table 2) and 12 

controls without neurological disease using the miRNeasy kit (Qiagen). Extracted RNA was 

quantified and 40ng was used as input for the Express One-Step Superscript qRT-PCR Universal 

(Invitrogen: 11781-200) with validated Taqman assays for human TREM2 and three endogenous 

controls, GAPDH, PPIA, and RPLPO (Applied Biosystems 4331182, 4333764F, 4333763F, 

4333761F respectively).  Reactions were run in duplicate on an ABI 7500 fast thermocycler.  

TREM2 expression was normalized to the geometric mean of the three endogenous controls.  10 

subjects had provided separate informed consent for genetic analysis, but none were found to 

carry the p.R47H variant.  

 

Expression in mouse spinal cord: Total RNA was extracted from saline-perfused and snap-

frozen spinal cords of 8 end-stage SOD1G93A transgenic mice (Jackson Lab B6.Cg-

Tg(SOD1*G93A)1Gur/J) and 6 negative littermate controls. TREM2 expression was quantified 

using a mouse-specific TREM2 Taqman assay (Applied Biosystems 4331182) and normalized to 

the endogenous control SMRT using primers and probe from IDT DNA (Probe: 

AGACGTCTCACACAAGGAAGGACTCGCC, Forward primer: 

GGGTATATTTTTGATACCTTCAATGAGTTA, Reverse primer 
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TCTGAAACAGTAGGTAGAGACCAAAGC).  Reactions were run in duplicate on an ABI 

7500 fast thermocycler. 

6.3.3 Exome Sequencing 

Whole exome sequencing was generated from 735 patients either at Washington 

University or at Duke University as part of a large ALS exome sequencing initiative.17 

Sequences were aligned to the human genome reference Hg19 using Novoalign 

(http://www.novocraft.com) and variants were called by Samtools.18 PCA analysis was used to 

identify 608 subjects of European ancestry that were used for analysis. Variants in the TREM 

locus (chr6: 41116999-41254457) and TYROBP (chr19: 36395303-36399211) were queried 

using vcftools.19 Variants in these regions were then annotated using SeattleSeq 

(http://sngs.washington.edu/SeattleSeqAnnotation131/), and filtered them to included variants 

that resulted in coding changes in any transcript of a particular gene. Variants in the same 

genomic regions were extracted from the non-Finnish European population in the ExAC 

database (Exome Aggregation Consortium, Cambridge, MA, http://exac.broadinstitute.org 

[May,2015]) for comparison of variant frequencies.  

6.3.4 Statistical analysis 

All statistics were computed using R version 3.0.1 except as noted.  Fisher’s exact test 

was used to compare proportions of p.R47H carriers in cases and controls.  Comparisons of 

TREM2 expression utilized student t-tests, while correlations between TREM2 expression and 

subject characteristics utilized Spearman correlations (continuous variables) or Mann-Whitney U 

(dichotomous variables).  Logistic regression was performed in PLINK with age and gender as 

covariates using cases and controls for whom this data was available (913/920 of ALS subjects 

and 1803/1848 of controls).  All tests were two-tailed, with the significance level set at p=0.01 to 
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correct for multiple comparisons.  Single-variant association tests in the TREM family genes 

were performed using fisher’s exact tests. Gene-based tests were performed using SKAT as 

described in chapter 3.   

 

6.4 Results 

6.4.1 TREM2 p.R47H in sporadic ALS 

 1.09% (10/920) of sporadic ALS subjects and 0.162% (3/1848) of normal controls were 

heterozygous carriers of the p.R47H variant, showing a significant enrichment in ALS 

(OR=6.77; 95% CI 1.86-24.65; p=0.0016).  No cases or controls were homozygous for this 

allele.  Because the proportion of p.R47H carriers in the population declines with age7 and our 

cases were younger than controls, we also analyzed our data by logistic regression with age and 

gender as covariates.  This produced a similar risk estimate (OR=7.38; 95%CI = 1.95-27.9, p= 

0.0032).  To provide a more conservative estimate of effect size, we also compared our sporadic 

ALS cohort to an aggregate control population of European ancestry gleaned from published 

studies and databases (n=25,023, Table 6.1).  We again observed an enrichment in sporadic ALS, 

albeit with a lower effect size (OR=2.81; CI 1.31-5.41; p=4.8x10-3).  A prior study of a smaller 

cohort of North American ALS patients found a non-significant but increased frequency in cases 

versus controls (0.7% vs. 0.45%).14  A combined analysis of this study with ours compared to all 

available controls also showed a significant association (OR=2.40; 95%CI=1.29-4.15; p=4.1x10-

3), confirming that TREM2 p.R47H is a risk factor for ALS.  TREM2 p.R47H carriers in our 

cohort showed no difference in age of symptom onset, site of first symptom, or in survival 

compared to those without.  However, the rarity of the variant limited our power to detect such a 
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difference.  A larger cohort of p.R47H carriers with ALS will be required to definitively 

determine effects on disease parameters.  

Table 6.1 TREM2 p.R47H carriers in published cohorts and this study. Abbreviations:  MAF= minor allele 
frequency; ESP-EA= Exome Sequencing Project European American; N. America=North American 

Cohort No. Subjects p.R47H carriers MAF (%) 

C
on

tr
ol

s 

ESP-EA 4,300 22 0.26 
Spain12 550 0 0.00 
Georgia, USA9 402 1 0.12 
Germany9 1,891 7 0.19 
Netherlands9 4,950 15 0.15 
Norway9 2,484 8 0.16 
N. America/UK11 5,166 20 0.19 
Utah, USA13 2,540 12 0.24 
France10 783 4 0.26 
N. America/Ireland/Poland14 1,957 8 0.20 
This Study (N. America) 1,848 3 0.08 
Total Controls 26,871 100 0.19 

A
L

S 

This Study (N. America) 920 10 0.54 
N. America14 765 5 0.33 
Total ALS Subjects 1685 15 0.45 

 

 

6.4.2 TREM2 expression in spinal cords from humans with ALS and 

SOD1G93A mice  

In collaboration with Tim Miller’s lab, we examined spinal cord expression of TREM2 in 

lumbar spinal cord sections from 18 subjects with ALS and found a 2.8-fold upregulation 

compared to controls (p=2.8x10-4; Figure 6.1 panel A).  Expression levels did not correlate with 

age of onset, site of symptom onset, or presence of a known disease-causing mutation (Table 

6.2).  However, the degree of upregulation showed a modest inverse correlation with disease 

survival that was not statistically significant after correction for multiple comparisons.  Because 

markers of microglial activation are also upregulated in models of SOD1 ALS20, we evaluated 
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TREM2 expression in SOD1G93A transgenic mice and found a 13-fold increase compared to non-

transgenic littermates (p=2.8x10-9; Figure 6.1 panel B). 

Table 6.2 ALS autopsy subjects studied for TREM2 expression in lumbar spinal cord. 
a Survival defined as symptom onset to death or full-time ventilation. 

b 3 subjects had SOD1 mutations (A4V, G85R, I133T) and 3 had C9ORF72 repeat expansions. 
c Spearman correlation, unadjusted for multiple comparisons. 

d Mann-Whitney U rank test, unadjusted for multiple comparisons. 
Demographic Category Metric Correlation P-value 

Age at onset (years, n=17) Mean ± stdev (range) 61±13 (29-75)    r=-0.03 0.9c 
Survivala (months, n=18) Mean ± stdev (range) 31.3±28.0 (4-

108)    r=-0.49 0.04c 
Postmortem interval (hours, 
n=11) Mean ± stdev (range) 12.4±7.5 (2-28)    r=-0.45 0.17c 
Site of onset (n=16)  % Bulbar (n) 31 (5)    0.21d 

Genetic causeb (n=18) % With known gene 
(n) 33 (6)  0.21d 

 
 
 

 
Figure 6.1 TREM2 expression is increased in human ALS and SOD1G93R mouse spinal cord. TREM2 expression 

was measured by qPCR in A) lumbar spinal cord sections from 18 ALS subjects and 12 controls and normalized to 
the geometric mean of three endogenous control genes.  B) In mice, expression was measured in spinal cords from 8 

SODG93R mice and 6 wild-type littermates with normalization to an endogenous control.  p-values were calculated 
using two-tailed student’s t-test. 

 
 
6.4.3 Additional mutations in TREM2 and TREM family genes 
 

 We used whole-exome sequences of ALS patients to determine if there were additional 

TREM2 mutations that conferred a risk of ALS. There were 7 coding variants in TREM2 in the 

exomes of 608 ALS patients with European ancestry, none of which were novel (table 6.3). 

When compared to the population of non-Finnish Europeans (NFE) from the ExAC browser, no 

variants were significantly associated with disease status. Although there is overlap between the 



samples included in whole exome sequencing and the cohort we originally genotyped, the 

p.R47H signal did not replicate in this set. The majority of the association came from the Coriell

samples which were not included in these exomes. The frequency of rare coding variants in 

TREM2 was 0.020 in ALS patients and 0.021 in the NFE population in the ExAC browser. The 

distribution was not different by SKAT analysis (p=0.99). 

Table 6.3 Variants in TREM2 detected by exome sequencing. 
Allele Counts 

Chr Hg19 
Position 

Amino 
Acids SNP ID Alleles 

(Ref/Alt) 
Alt 

ALS 
Ref 
ALS 

Alt 
NFE 

Ref 
NFE p-value

6 41129252 R47H rs75932628 C/T 3 1215 172 66102 1 
6 41129207 R62H rs143332484 C/T 14 1226 762 65900 1 
6 41129133 D87N rs142232675 C/T 4 1238 119 66609 0.292 
6 41129105 T96K rs2234253 G/T 1 1241 57 66671 1 
6 41127543 H157Y rs2234255 G/A 1 1241 20 66546 0.322 
6 41126655 L211P rs2234256 A/G 1 1239 64 66670 1 
6 41126429 W191X rs2234258 C/T 1 1241 19 62339 0.326 

There are 4 additional genes TREM1, TREML1, TREML2 and TREML4 in the TREM 

family of genes, all located in the same genomic region as TREM2. The SNP rs3747742 in the 

related gene TREML2 has been shown to be protective in Alzheimer’s disease.21 We looked for 

variants in these four genes in addition to TYROBP.   

We saw no difference in the frequency of rs3747742 (MAF=29.6% in ALS and MAF= 

29.9% in NFE). Aside from this SNP, we only analyzed rare variants that were less than 1% 

frequency in controls (table 6.4). There were a total of 8 novel variants in these genes, all of 

which were found in a single individual. None of the variants passed the corrected significance 

threshold (0.002). The variant that came closest to significance was rs112680060 in TREML4 

(OR=1.9, 95% CI=1.15-3.08).   
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Table 6.4 Variants in TYROBP, TREM1, TREML4, TREML2, and TREML1. 
            Allele Counts   

Gene Chr 
Hg19 

position 
Amino 
Acids SNP ID 

Alleles 
(Ref/Alt) 

Alt 
ALS 

Ref 
ALS 

Alt 
NFE 

Ref 
NFE 

p-
value 

TYROBP 19 36398357 A74T . C/T 1 1236 0 65890 0.0184 
TYROBP 19 36398414 V55L rs77782321 C/A 13 1216 637 65217 0.6602 
TREM1 6 41250175 P122A . G/C 1 1241 0 66466 0.0183 
TREM1 6 41248810 C163F rs201082267 C/A 1 1231 14 66722 0.2400 
TREM1 6 41243926 F214L rs2234245 G/C 1 1241 29 66695 0.4250 

TREML4 6 41196169 A2S rs112680060 G/T 19 1223 490 61320 0.0091 
TREML4 6 41197301 T146K rs9471515 C/A 1 1241 43 66687 0.5559 
TREML4 6 41204306 G197S . G/A 1 1241 0 66662 0.0183 
TREML2 6 41166063 V54F rs147506354 C/A 4 1238 83 66653 0.0755 
TREML2 6 41162556 R131K . C/T 1 1237 0 64452 0.0188 
TREML2 6 41162395 A185T . C/T 1 1241 13 66493 0.2282 
TREML2 6 41162371 T193A rs145455750 T/C 3 1239 167 66287 1.0000 
TREML2 6 41162204 S248R rs115991880 G/T 4 1238 212 26352 0.0668 
TREML2 6 41162173 P259T . G/T 1 1237 0 12334 0.0912 
TREML2 6 41160572 V285I rs35521209 C/T 1 1241 11 56969 0.2280 
TREML1 6 41121702 E57A . T/G 1 1239 0 66302 0.0184 
TREML1 6 41118614 V171I rs41273760 C/T 2 1236 7 66627 0.0110 
TREML1 6 41118000 M207T rs35929443 A/G 3 1239 114 65144 0.4838 
TREML1 6 41117594 D228E rs138237630 A/T 4 1226 282 66444 0.8232 

 

We compared total variant burden in each of these genes using SKAT. TREML4 was the 

only gene that was significant (table 6.5). This appears to be mainly driven by the higher 

frequency of rs112680060 in ALS. 

Table 6.5 SKAT variant burden testing. 

Gene 
Total variant 

frequency (%) 
ALS 

Total variant 
frequency (%) 

NFE 

SKAT 
p-value 

TREM2 2.01 2.13 0.99 
TYROBP 1.12 1.17 0.86 
TREML2 1.21 0.90 0.26 
TREM1 0.24 0.28 0.77 

TREML1 0.80 0.78 0.51 
TREML4 1.69 1.05 0.003 
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6.5 Discussion 

Our study demonstrates that a rare variant in TREM2 (p.R47H), more than doubles the 

risk of ALS.  In addition to identifying a novel risk factor for ALS, this finding provides the first 

link between genetic variation and microglial activation in ALS pathogenesis.  This is important 

in light of a recent study demonstrating that higher degrees of microglial activation on 

pathological examination were correlated with both the degree of upper motor neuron symptoms 

and a more rapid disease progression.22  Interestingly, our evaluation of TREM2 expression in 

ALS spinal cord showed a similar trend, with higher levels of TREM2 correlating with shorter 

survival.  Furthermore, our finding that TREM2 expression is also increased in spinal cords from 

SOD1G93A mice is congruent with recent studies of isolated microglia from this same model2 and 

suggests that studies of microglial activation in this model may provide insights relevant to 

human ALS. 

We identified no novel variants in TREM2 by exome sequencing and none of the known 

variants were associated with disease state. Interestingly, we did not identify any p.R47H carriers 

in the additional subjects we analyzed; all three p.R47H carriers were previously discovered in 

our original cohort. We did not have ages of the controls used for this analysis and were 

therefore not able to control for possible changes in frequency with age as we did for p.R47H. It 

is possible that we were unable to detect associations because of this.  

p.R47H was first shown to increase risk for Alzheimer’s disease with subsequent 

associations with frontotemporal dementia and Parkinson’s disease.9–14 How the p.R47H variant 

affects TREM2 function and predisposes to neurodegeneration is currently unknown.  Because 

TREM2 signaling mediates potentially neuroprotective microglial activities (including 

phagocytosis of apoptotic cells and secretion of anti-inflammatory cytokines), one model 
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hypothesizes that p.R47H is a loss-of-function allele.  Inadequate clean-up of cellular debris and 

counter-productive inflammation would predispose to symptomatic disease.  The p.R47H variant 

is located in the extracellular domain of TREM2 where it could interfere with binding to 

unidentified ligand(s) or disrupt signaling through its receptor complex partner TYROBP.   

We also looked for variants in the four other genes in the TREM family of membrane 

receptors, all of which are located in the same genomic location with TREM2.23 There was an 

increase in variant burden in ALS in TREML4 with the variant rs112680060 contributing most of 

the signal. TREML4 is expressed abundantly in the spleen and recognizes apoptotic and necrotic 

cells.24 Like TREM2, TREML4 associates with TYROBP.24 Although TREML4 is not normally 

expressed in microglia, it was shown to be significantly upregulated in microglia in response to 

damage to dopaminergic neurons.25 There were no associations with any of the other TREM 

genes or with TYROBP.  

As dysregulated TREM2 signaling confers risk for several neurodegenerative disorders, 

insights gleaned from the study of TREM2 in ALS are likely to be applicable to other diseases 

and vice versa.  This includes the important possibility that manipulation of TREM2 signaling or 

microglial activation would be a worthwhile therapeutic strategy.  
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Chapter 7 

Conclusions and future directions 

7.1 Contribution of known ALS genes 

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of the motor neurons which 

is universally fatal. Over 20 genes have been identified that cause ALS. Mutations in these genes 

explain up to 70% of ALS cases with a family history of disease (FALS), with hexanucleotide 

repeat expansions accounting for 40% of cases alone. The vast majority of ALS cases have no 

family history and are considered sporadic (SALS). Some of these cases also have mutations in 

FALS genes, with about 6% caused by C9ORF72. Current hypotheses for genetic contributions 

to SALS include oligogenic inheritance, where mutations in multiple ALS genes are required for 

disease, and rare variants in ALS genes that increase risk of ALS. 

Using pooled-sample sequencing we investigated variations in 17 known ALS genes and 

found that potentially pathogenic mutations in 64.3% of familial ALS cases and 27.8% of 

sporadic ALS cases. This was higher than any previous study and while this is possibly due to 

genetic heterogeneity it is more likely due to differences in which genes were included.  In the 

past, only the most commonly mutated genes in ALS were screened in large cohorts (SOD1, 

TARDBP, FUS, ANG, OPTN, VCP, and recently C9ORF72). The decreasing cost of next-

generation sequencing enabled our pooled sequencing strategy and other targeted sequencing 

techniques to screen larger numbers of genes.1,2  

Furthermore, the proportion of potentially pathogenic mutations was highly influenced by 

the definition of which mutations are considered pathogenic. The use of common guidelines in 
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reporting novel mutations will improve consistency and allow us to make accurate comparisons 

between studies.3 Several criteria should be considered when evaluating potentially pathogenic 

variants including the segregation of the variant with affected members in a family, absence of 

the variant in control populations, and functional evidence. Due to the late onset of disease, we 

are less likely to have DNA from parents and other family members to test for segregation. 

Therefore variant frequency in controls and functional evidence will be more important in the 

assessment of pathogenicity.  

We considered all mutations that had a frequency of less than 1% in control databases to 

be potentially pathogenic. Other studies typically either exclude all variants detected in public 

databases or internally sequenced controls. We found that excluding all control database variants 

removed several mutations that have previously been reported to cause ALS while all of these 

remained when using a threshold of 1% minor allele frequency. The presence of these mutations 

in controls is likely a reflection of the small number of controls used when they were identified, 

prior to our knowledge of the abundance of rare variation in all individuals.4,5  Alternatively, the 

presence of these mutations in controls could represent lower penetrance alleles or contamination 

with individuals at-risk for ALS but not yet manifesting symptoms. 

Statistical significance is important to consider when comparing novel variants to control 

populations; however most studies lack the power to detect statistically significant associations 

of rare variants. We compared frequencies of all rare variants identified in our sporadic ALS 

cohort and did not find any that were significantly more common in ALS. This includes 

mutations that are known to be pathogenic, such as SOD1 mutations p.A5V and p.I114T. 

Additionally, some genes are more tolerant to variation than others and therefore mutations 

would be less likely to have an effect.6,7 Gene-based test such as SKAT take this into account by 
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comparing the mutation frequencies across a region in cases and controls and can show whether 

a gene is more commonly mutated in affected individuals compared to the mutation frequency in 

the general population. In a gene-based test looking at total variation in SOD1, we did achieve 

statistical significance, however this was the only gene that did. This type of collapsing method 

can be further refined to identify specific domains of a gene or expanded to identify entire 

pathways and networks that are more frequently mutated in disease. 

 There are several in silico pathogenicity prediction algorithms that can be used to 

prioritize variants for follow-up, however we have not used them here to exclude potentially 

pathogenic variants. It is important to consider the specific gene and disease under investigation 

when using these in silico methods. These algorithms evaluate pathogenicity of variants using 

evolutionary conservation and changes in structural and biochemical properties. Drastic changes 

in amino acid properties are, however, more likely to result in early onset disease8, therefore a 

mutation involved in a late onset disease such as ALS might be more likely to be predicted as 

benign. Furthermore, mutations that result in late onset disease are not under purifying selection 

and the positions will not be as highly conserved, again making them more likely to be predicted 

to be benign. There is also evidence that different in silico predictions and combinations of 

multiple predictions are more accurate for different genes.9 

Experimental evidence will be necessary to validate the predicted functional effects of 

potentially pathogenic variants.  The use of induced pluripotent stem cells (iPSCs) and direct 

conversion of adult tissues such as fibroblasts into other tissue types such as neurons or 

microglia will be particularly valuable to show the effects of mutations in the context of the 

patient's entire genome. Advances in genome editing technologies such as CRISPR/Cas9 will 

allow us to determine if a particular mutation is causative by converting it to wild-type and 
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observing if this corrects the pathogenic phenotype.10 This technology can also be used to delete 

large segments of DNA and could potentially remove the C9ORF72  repeat expansion.11 This 

will be particularly interesting in patients with mutations in multiple ALS genes. Based on our 

hypothesis that mutations in multiple genes are not required for disease but act synergistically, 

we would expect that correcting only one mutation would not fully correct the phenotype. 

Despite finding mutations in a higher than expected proportion of subjects, nearly 70% of 

our cases remain unexplained. The falling cost of next-generation sequencing has made it 

possible to perform whole exome sequencing (WES) on larger numbers of patients to identify 

novel genes involved in disease. Recently, our patients were included in an ALS consortium that 

sequenced 2869 ALS subjects and identified the gene TBK1 as risk factor.12 As additional WES 

data continues to be generated, novel approaches to analysis and refinement of in silico 

pathogenicity predictions will be required to tease out meaningful associations from massive 

amounts of information. Current analysis focus on the effects of coding variants and ignores the 

hundreds of mutations in regulatory regions and microRNAs. Data generated from the ENCODE 

project, which aims to annotate all functional elements of the human genome13, will help us 

interpret variants that may be causing disease through changes in gene regulation. 

7.2 C9ORF72 

One of the intriguing aspects of the C9ORF72 repeat expansion is its prevalence in 

sporadic ALS. We pursued two different avenues that would give us insight into this observation 

and also help us understand their pathogenicity. The first was to determine whether all expansion 

carriers were descended from a single expansion event. Evidence of a single founder event 

would indicate that the sporadic ALS carriers were cases of incomplete penetrance in the parents.  
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We identified a rare variant rs147599399 on the risk haplotype that was present in both 

some expansion carriers and some non-expansion carriers, showing that the expansion arose at 

least twice in history. This SNP also influenced disease presentation by extending survival in 

expansion carriers. This finding shows that the risk haplotype, marked by rs3849942, is one that 

is permissive to expansion and that both rs147599399 and rs3849942 could be cis-acting 

modifiers of the expansion.  

Further sequencing of the risk haplotype in C9ORF72 expansion carriers may identify 

more rare variants that would provide further evidence of multiple expansions. One group used 

targeted capture to sequence the risk haplotype and did not identify rs147599399 or other 

variants that would provide evidence against a single founder, however all subjects were of 

Northern European ancestry.14 It is possible that expansions in subjects of Northern European 

ancestry are indeed descended from the same founder and that more heterogeneous populations 

such as ours are needed to reveal rare haplotype variants. Furthermore, it may be that 

rs147599399 is not itself cis-acting modifier of the expansion. Sequencing the full risk haplotype 

may reveal that rs147599399 is in linkage disequilibrium (LD) with the true modifier and may 

identify additional cis-acting modifiers.   

Determining the effects of these SNPs is an important step in comprehending the origin 

of repeat expansions in C9ORF72. Studies have shown that the distance between the repetitive 

sequence and origin of replication is important factor in instability of trinucleotide repeats15 and 

one study showed that a SNP on the predisposing haplotype of the FMR1 expansion fell within a 

mapped replication origin altering the timing of DNA replication in that region.16,17 This could 

be the mechanism through which rs3849942 (or a different SNP on the risk haplotype) 

predisposes the C9ORF72  repeat toward further expansion.  
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There are a few approaches that use next-generation sequencing to identify replication 

origins genome-wide. Repli-seq involves labeling newly synthesizes DNA in dividing cells with 

BrdU, sorting cells by cell-cycle progression and sequencing the BrdU labeled DNA. This 

provides a map of the replication timing through the cell cycle.18 However, due to the differences 

in replication timing between different cell lineages18 and the fact that we observe contraction of 

the repeat in the BAC, it is unclear whether observations in cell culture models will be an 

accurate representation of how the repeat locus behaves in disease. Another technique of 

observing replication origins uses ChIP-Seq targeting a component of the origin replication 

complex (ORC1) to identify replication origins.19 This method was performed using cell lines, 

however could potentially be used on frozen patient tissues.20 

Cis-acting modifiers in other repeat expansion disorders include altered methylation 

status and formation of secondary structures.21–24 Methylation profiles and G-quadruplex 

structures, which are present in expanded GGGGCC repeats25, can both be evaluated using 

frozen patient tissues.26 The downstream effects of these changes, such as increased or decreased 

transcription, alternative splicing, and changes in RAN translation levels of C9ORF72, can also 

be compared by rs147599399 genotype. RNAseq was recently used to show that C9ORF72 

expansion carriers had altered transcription levels and splicing patterns of certain genes 

compared to non-C9 ALS subjects.27 It would be interesting to see if transcriptome profiles also 

differed by r147599399 genotype within expansion carriers.  

Another way we explored the repeat expansion was by using Southern blot analysis to 

ascertain expansion sizes. Instability of the repeat expansion could lead to sporadic disease 

through anticipation or through somatic instability. Progressive expansion of the repeat through 

generations, as is characteristic of anticipation, could produce SALS patients with parents whose 
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expansions do not meet a threshold for pathogenicity. Somatic instability could result in SALS 

patients with larger expansions in CNS tissues leading to neurodegeneration whereas their 

unaffected parents would not have larger expansions in their CNS tissues. 

Instability of the repeat in control families from the CEPH panel was shown with a 

change from 21 repeats in paternal grandparent to 22 repeats in the father to 20 repeats in his 

son. All families with changes in repeat size between generations had more than 10 repeat units 

and all unstable transmissions were paternal. 28 To our knowledge, we have shown the first 

evidence of instability in families with full-length expansions. Unstable transmissions came from 

paternal and maternal lines. This instability was not the typical pattern that is seen in anticipation 

since the repeat was not always expanding between generations, however there are other repeat 

expansion disorders with anticipation that have both expansions and contractions as well.29,30  

Somatic instability of the repeat has been shown in multiple reports. All of these studies 

consistently show that expansions in the blood are smaller than most brain regions except for the 

cerebellum.28,31–33   We observed the same somatic instability, but did not identify any 

correlations between expansion size and clinical features in any of the observed tissues. Other 

studies have produced mixed results regarding the effect of expansion size in specific tissues on 

age of onset and survival. Beck et al. found expansion sizes in blood to be positively correlated 

with age of onset in a variety of neurodegenerative diseases including ALS.28 Van Blitterswijk et 

al. found no correlations between age of onset or survival in ALS patients, but did find a two 

associations in patients with frontotemporal dementia: a positive correlation between expansion 

size in the frontal cortex and age of onset in and an association between larger expansions in the 

cerebellum with reduced survival.31 The Nordin et al. study included the largest number of 

tissues and only found correlations with expansion sizes in the cerebellum and parietal lobe. 
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Smaller expansions in the cerebellum and parietal lobe were associated with earlier age of onset 

in ALS while larger expansions in the parietal lobe were associated with shorter survival in ALS 

patients and the overall cohort.32  Additional studies will be required to clarify these findings.  

We observed no difference in expansions in blood-derived DNA of affected and 

unaffected carriers, although it is possible that affected carriers have larger expansions in CNS 

tissues or more specifically in motor neurons compared with unaffected carriers. These data 

suggest that expansion size is not the only factor in pathogenicity. There is evidence that 

environmental stress can induce trinucleotide repeat instability in cells34 so it is possible the 

cellular stress in motor neurons could induce further expansion and result in degeneration of 

those neurons. There could also be other cis- or trans-acting genetic factors that interact with 

expansions and reduce their penetrance. For example a common variant in TMEM106B protects 

against fronto-temporal dementia in expansion carriers35 and intermediate expansions in ATXN2 

predispose towards motor neuron degeneration.36 

One aspect of the expansions that we were unable to study was whether the repeat 

sequence is pure or contains interruptions of non GGGGCC units. Interruptions in the repeat 

sequence of other expansion disorders reportedly stabilize expansions and prevent them from 

continuing to expand by preventing slippage of DNA replication machinery during cell 

division.37–39 Due to the length and GC content of the repeats, they cannot be sequenced by 

conventional methods. Real-time long-read sequencing was recently used to sequence through 

expanded CGG repeats in the FMR1 gene showing the presence of AGG interruptions in the 

sequence and simultaneously determining the size of the expansions.40 Preliminary studies 

sequencing the BAC on the MinIon long-read sequencing platform were able to generate a size 

distribution for expansion length (Figure 7.1), but base-calling is not yet accurate enough to 
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detect sequence interruptions. This method requires the preparation of sequencing libraries 

containing the repeat, so while it can be used to sequence the BAC, we are working on 

developing methods to isolate expanded C9ORF72 alleles from patients genomic DNA for 

sequencing. 

 

Figure 7.1 Preliminary sequnecing of a C9ORF72 BAC on the MinIon sequencing platform. A. Southern blot showing the size of 
the expansion in the BAC compared to a BAC with an unexpanded allele (~30 repeats in the expanded BAC). B. Histogram of 
repeat lengths from a MinIon sequencing run. The peak expansion size was 150bp longer than wild-type, corresponding to ~28 

repeats. 

 

7.3 Neuroinflammation 

 In order to find risk factors that are associated with sporadic ALS, we selected TREM2 as 

a candidate gene. TREM2 encodes the triggering receptor expressed on myeloid cells 2 and is 

involved in activation of microglia.41 The rare p.R47H SNP was shown to be associated with 
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Alzheimer’s disease which also presents with microglial activation,42–46 therefore we genotyped 

this SNP in our cohort.  

We showed that this same SNP was significantly associated with disease in our SALS 

cohort. TREM2 expression was increased in spinal cords from ALS patients and SOD1G93A mice. 

It is unclear whether this is a specific effect of TREM2 or a reflection of the recruitment of 

microglia to the site of motor neuron injury. We were unable to determine if p.R47H had any 

effect on expression levels. We hypothesized that p.R47H was a loss of function mutation that 

resulted in an inability of microglia to remove cellular debris. A recent study of TREM2 in AD 

showed that the SNP did not alter the expression or signaling ability of TREM2, but reduced its 

ability to bind ligands including phospholipids.47 

In order to determine if there were other mutations in the TREM family that were 

associated with ALS, we looked for variants in TREM2, TREM1, TREML1, TREML2, TREML4, 

and the binding partner of TREM2, TYROBP. There were no additional variants in TREM2 or 

any of the other genes that were significantly associated with ALS. Variants in TREML4 

approached significance, mainly due to the SNP rs112680060. TREML4 is also involved in 

recognition of apoptotic cells and associates with TYROBP48 and while it is not normally 

expressed in microglia, it was upregulated in response to neuronal damage.49 A role for TREML4 

in ALS has not been reported, so it will be important to see if TREML4 is expressed in spinal 

cords of ALS patients and if the rs112680060 SNP has any effect on its expression. If TREML4 

acts similarly to TREM2 this SNP could alter the ability of TREML4 to recognize degenerating 

neurons for clearance.  

Current studies in our lab are attempting to clarify the role of TREM2 in ALS. We are 

measuring the expression levels of TREM2 mRNA levels in additional spinal cords to confirm 
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our initial observations. In addition we are measuring TREM2 in blood and CSF from patients to 

determine its viability as an ALS biomarkers. Mouse models exploring the effects of TREM2 

genetic knock-out in the SOD1G93A are underway to explore the role of TREM2 in motor neuron 

degeneration.  Additionally anti-sense oligos are being generated to knock-down TREM2 

expression in symptomatic SOD1G93A mice to study the specific effects of TREM2 in disease 

progression.  
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