
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Interactions between BMP and Canonical Wnt Signaling Regulate Interactions between BMP and Canonical Wnt Signaling Regulate 

Critical Stages of the Osteoblast Lifecycle Critical Stages of the Osteoblast Lifecycle 

Valerie Salazar 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Salazar, Valerie, "Interactions between BMP and Canonical Wnt Signaling Regulate Critical Stages of the 
Osteoblast Lifecycle" (2011). All Theses and Dissertations (ETDs). 637. 
https://openscholarship.wustl.edu/etd/637 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/637?utm_source=openscholarship.wustl.edu%2Fetd%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY 

Division of Biology and Biomedical Sciences 

Program in Molecular Cell Biology 

 

 

 

Dissertation Examination Committee: 

Thomas Baranski 

Kendall Blumer 

Roberto Civitelli, Chairperson 

Daniel Link 

Fanxin Long 

Gregory Longmore 

Gabriel Mbalaviele 

 

 

 

 

 

 

INTERACTIONS BETWEEN BMP AND CANONICAL WNT SIGNALING 

 REGULATE CRITICAL STAGES OF THE OSTEOBLAST LIFECYCLE 

 

By 

 

Valerie Suzzette Salazar 

 

 

 

 

 

 

A dissertation presented to the 

Graduate School of Arts and Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

 

 

 

 

August 2011 

St. Louis, Missouri 

  



ii 
 

ABSTRACT OF THE DISSERTATION 
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by 
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(Molecular Cell Biology) 

Washington University in St. Louis, 2011 

Professor Roberto Civitelli, MD., Chairperson 

 

Skeletal development and post-natal bone homeostasis are dependent on the coordinated activity 

of bone-forming cells called osteoblasts and bone-resorbing cells called osteoclasts.  Over 10 

million people in the US currently suffer from osteoporosis, which increases the risk of low-trauma 

fractures and accounts for health care expenditures exceeding $14 billion per year.  Osteoporosis 

is often treated with anti-resorptive compounds, primarily bisphosphonates, which inhibit 

osteoclast-mediated bone destruction.  However, these drugs do not restore bone mass, which 

can only be accomplished by activation new bone formation, as with intermittent parathyroid 

hormone therapy.  The development of additional bone “anabolic” therapies will require genetic 

and mechanistic information about other signaling pathways that can potently stimulate 

osteoblast differentiation and/or function.  A wealth of genetic evidence in humans and mice 

clearly demonstrates that the canonical Wnt pathway is intimately involved in skeletal 

development and post-natal bone homeostasis. In fact, neutralizing antibodies to antagonists of 

the canonical Wnt pathway, such as Sclerostin and Dickkhopf1, are currently in clinical trials as 

potentially promising bone anabolic agents.  However, it is still unclear how Wnt signaling 

provides such a strong osteogenic stimulus and how it interacts with BMP signaling, another pro-

osteogenic pathway, to generate accurate and timely cues during the osteoblast differentiation 

process.  Previous work in our lab showed that β-catenin, an essential mediator of canonical Wnt 
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signaling, synergizes with BMP2 to stimulate osteoblast differentiation and bone formation.  My 

work was designed to conduct a full evaluation of how BMP and Wnt signals interact at discrete 

stages of the osteoblast lifecycle to regulate cell fate, establish a mitotic/post-mitotic boundary, 

stimulate production of the skeletal extracellular matrix, and prevent programmed cell death.  

Using an in vitro model of osteoblast differentiation, we find that β-catenin acts downstream of 

BMP2 signaling to promote an osteoblast and suppress an adipocyte cell fate decision in 

multipotent progenitors, a lineage allocation mechanism requiring both Tcf/Lef-dependent and 

Tcf/Lef–independent mechanisms.  We next examined BMP/Wnt interactions during proliferation 

of osteoprogenitors, by focusing on Smad4, a central mediator of the greater TGF /BMP 

pathway.  Acute, tamoxifen-induced deletion of Smad4 in otherwise normal osteoblasts in mice 

activates proliferation of predominantly post-mitotic Osterix+ cells on trabecular bone surfaces.  

Manipulation of Smad4 in osteoprogenitor cell lines indicates this effect is accomplished, at least 

in part, by the ability of BMP signals to stimulate physical recruitment of catenin to the DNA-

binding Smad4 transcription complex, occurring in a manner that antagonizes Tcf/Lef-dependent 

transcription and the pro-mitotic effects of canonical Wnts.  This led us to hypothesize that 

deficiency of Smad4 could enhance the anabolic effects of anti-Dkk1 therapy.  Using a genetic 

mouse model with constitutive embryonic deletion of Smad4 in Osterix+ cells, we instead find that 

long-term deficiency of Smad4 in Osterix+ cells causes a lethal impairment of post-natal skeletal 

development characterized by defective osteoblasts which are insensitive to anabolic effects of 

BMP2 and canonical Wnts.  This cell-autonomous osteoblast defect is explained by disruption of 

p38 MAPK signaling, which causes premature apoptosis and Caspase-3-mediated inactivation of 

β-catenin, and therefore resistance to anabolic Wnt signaling.  Thus, acute removal of Smad4 

directly favors canonical Wnt signaling and mitosis, while long-term deficiency of Smad4 indirectly 

impairs Wnt signaling and osteoblast function.  In summary, these studies provide evidence that 

multifaceted interactions between BMP and Wnt signaling regulate cell fate, proliferation, 

function, and survival of osteoblasts.   
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1.1 SKELETAL DEVELOPMENT - The skeleton forms during late stages of development from 

three embryonic lineages.  Migration of neural crest and paraxial mesoderm contributes to form 

the cranial vault [1].  The spine of the axial skeleton derives from paraxial mesoderm and is 

formed by a precisely timed process of sclerotome divisions known as the somite clock  [3].  The 

limbs of the appendicular skeleton are formed by progenitors from lateral plate mesoderm.  

During development, these progenitors migrate to their final destinations and proliferate to form 

organized cellular condensations at sites where bone will be formed by either endochondral bone 

development (Figure 1A) or intramembranous ossification (Figure 1B; see review [2]).  

Membranous skeletal tissues of the skull, jaw, and innermost layer of long bones are formed in 

sheets-like fragments by 

differentiation of mesenchymal 

progenitors into osteoblasts, 

the bone-producing cells of the 

body.  By contrast, the formation 

of endochondral bones of the 

appendicular skeleton is a 

multistep process where 

mesenchymal progenitors first 

generate chondrocytes, or 

cartilage-producing cells that 

form a template of the skeleton 

known as the anlagen.  This 

anlagen is then patterned and 

elongated largely via a 

Hedgehog and Parathyroid 

Hormone Related Protein 

regulatory network [4] before the 

Figure 1.1  Schematic showing the processes of endochondral 

(a) and intramembranous (b) ossification [2]. 
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appearance of mesenchymally-derived osteoblast progenitors on the perichondral surfaces.  

Finally, the avascular cartilage template is then converted to a mature mineralized bone with a 

medullary cavity by an orchestrated invasion of blood vessels, cartilage-resorbing cells of the 

hematopoietic lineage known as osteoclasts, and bone forming osteoblasts [5].  Though initially 

formed during development, the skeleton is a dynamic tissue that undergoes remodeling in 

response to physiologic and environmental factors for the remainder of post-natal life.  A greater 

understanding of the cellular and molecular factors contributing to differentiation and function of 

skeletal cells will contribute to the identification of molecules and pathways which may be 

employed as pharmacologic targets in therapeutic intervention of skeletal disease. 

 

1.2 GENETIC MARKERS OF OSTEOBLASTS AND RELATED CONNECTIVE TISSUE CELLS- Skeletal 

progenitors of the mesenchymal lineage are multipotent and can adopt a chondrocyte or 

osetoblast cell fate during development, in addition to an adipocyte cell fate in postnatal skeletal 

tissues.  Mesenchymal progenitors actually co-express a wide variety of ―lineage-specific‖ 

transcription factors.  

And the process of cell 

fate determination is 

characterized by the 

ability of the 

multipotent progenitors 

to process positional 

and intracellular cues 

in a manner that 

ultimately favors 

dominant action by 

mediators of one lineage over others (Figure 1.2).  For example, the transcription factor Sox9 

promotes formation of chondrocytes at the expense of osteoblasts by direct negative regulation of 

Figure 2.2 Osteoblasts, adipoctyes, and chondrocytes, the primary lineages 

of connective tissue, are derived from common mesenchymal progenitors 

and are characterized by expression of specific genetic markers 
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-catenin [6,7], an essential mediator of the canonical Wnt pathway.  By contrast, high Wnt/ -

catenin activity can favor osteoblast formation at the expense of chondrocyte [8,9,10]  or 

adipocyte cell fate [11].  And conditions favoring adipogenesis promote dominance by PPAR  

proteins, which are critical for the differentaion of fat cells [12].  This body of the research focuses 

on the osteoblast, whose lineage is characterized by tissue-restricted transcription factors such 

as Runx2 and Osterix, as well as the ubiquitious transcription factor, β-catenin. 

 

1.3 PREMISE AND OVERALL OBJECTIVE - A large body of data demonstrates that β-catenin 

signaling is critically involved in bone development and cell fate determination of osteoblasts.  

Although the importance of β-catenin in favoring osteoblast over chondrocyte differentiation 

during embryonic skeletogenesis has been demonstrated [8,9,10,13,14], the molecular 

mechanisms by which Wnt/β-catenin signaling stimulates osteogenesis and bone formation in the 

post-natal skeleton require further evaluation.  Cumulative work by many labs indicates that β-

catenin provides temporally-specific regulatory cues during critical stages of the osteoblast 

differentiation program.  For example, in committed by still immature osteoprogenitors, β-catenin 

favors maturation into matrix secreting osteoblasts [15].  Curiously however, when β-catenin is 

activated in this same differentiating population, it stimulates cell cycle, resulting in expansion of 

progenitors which are supposed to be exiting cell cycle to progress through differentiation.  In 

mature osteoblasts, β-catenin inhibits terminal differentiation [15] and has non-cell autonomous 

control of osteoclastogenesis [16].  Genetic evidence in both mice and humans further indicates 

that elevated Lrp5/ β-catenin signaling protects osteoblasts from programmed cell death.  β-

catenin therefore functions as a mediator of cell fate decisions, a stimulator of proliferation, a 

driver of osteoblast maturation, and protector from cell death.  Using multipotent embryonic 

mouse fibroblast cell lines and in vivo models of bone formation, our lab previously found that β-

catenin synergistically interacts with Bone Morphogenetic Protein-2 and (BMP-2) to producing 

new bone [17].  The central focus of this work is to examine the epistatic and molecular 
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interactions between β-catenin and the BMP pathway that contribute to coordinate cell fate 

allocation, proliferation, matrix synthesis, and the death of osteoblasts. 

 

1.4 THE BMP SIGNALING PATHWAY - Bone Morphogenetic Proteins (BMPs), are members of 

the Transforming Growth Factor-  (TGF superfamily.  BMPs signal in diverse organisms to 

regulate proliferation, differentiation, and tissue morphogenesis.  TGF  ligands activate 

heterodimeric serine/threonine kinase receptors to stimulate a variety of intracellular signal 

transduction cascades including PI-3K/Akt, ERK, p38, and JNK, which are non-specific to the 

TGF  pathway, and Smads, which are TGF -specific [18].  Distinct groups of receptor-activated 

Smads (RA-Smads) are phospho-activated in response to different classes of TGF .  For 

example, ligand-mediated activation of the BMP Type I (BMPRI) and BMP Type II (BMPRII) 

heterodimeric receptor induces phosphorylation and dimerization of Smads-1, -5, and -8.  In all 

cases however, pathway activation results in RA-Smad homodimerization and recruitment of an 

additional, non-receptor activated, Smad4.  Smads contain intrinsic protein domains facilitating 

both nucleocytoplasmic shuttling and DNA-binding, enabling Smad complexes to function as 

transcription factors which induce gene expression at promoters containing Smad-binding 

elements (SBEs) [19].  Physical association of Smad protein complexes with other co-activators 

such as forkhead proteins [20], OAZ [21], Runx2/Cbfa1 [22], and Schnurri [23] confers 

considerable plasticity and tissue specificity to Smad-dependent transcription.  Interestingly, 

Smads have been demonstrated to integrate with -catenin/Tcf4, components of the canonical 

Wnt pathway, on the msx-2 [24], gastrin [25], and c-myc [26] promoters, or with -catenin/Lef1 

during formation of the embryonic Spemann organizer [27].  Abundant evidence therefore 

indicates that the BMP and Wnt pathways can interact via intracellular signaling mechanisms 

involving Smads and -catenin. 

 

1.5 THE WNT/β-CATENIN SIGNALING PATHWAY - -catenin and plakoglobin are two vertebrate 

homologs of Drosophila armadillo, which serve as a bridge between cadherins and the actin-
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based cytoskeleton.  Through binding to -catenin, they stabilize intercellular adherens junctions 

[28].  In addition to its function in cell-cell adhesion, β-catenin also functions as a transcriptional 

activator within the Wnt signaling pathway, a system involved in regulation of many embryonic 

processes, including limb development and growth [29].  In the Wnt pathway, β-catenin is 

downstream of Frizzled (Fz) and LRP-5 or LRP-6, two co-receptors that transduce signals upon 

binding to their extracellular ligands, Wnts.  In the absence of Wnts, β-catenin is phosphorylated 

by glycogen synthase kinase-3 (GSK-3), and thus targeted for degradation through the ubiquitin-

proteasome pathway.  Upon activation of the Wnt pathway, phosphorylation of β-catenin by GSK-

3β is inhibited, causing accumulation of β-catenin in the cytoplasm and Rac-1 mediated 

translocation into the nucleus where it associates with DNA binding proteins of the T cell factor / 

lymphoid enhancer factor (Tcf/Lef) family to activate gene transcription (for reviews, see 

[30,31,32]).  Tcf/Lefs function as transcriptional repressors in the absence of β-catenin. 

 

1.6 WNT/β-CATENIN SIGNALING IN CELL FATE SPECIFICATION - The Wnt/β-catenin signaling 

system is involved cell fate determination in many tissues.  Studies using conditional deletion of 

the β-catenin gene (Catnb) in the epidermis demonstrate that in the absence of β-catenin skin 

stem cells fail to differentiate into follicular keratinocytes, but instead adopt an epidermal 

phenotype [33].  Importantly, this study also concluded that although β-catenin is necessary for 

stem cells to form follicular keratinocytes, β-catenin is not sufficient to induce follicular 

differentiation of keratinocytes, and additional mesenchymal signals are required [33,34,35].  

Using the same strategy, others have demonstrated that ablation of the β-catenin gene in 

epithelial cells of the embryonic lungs disrupts lung morphogenesis while enhancing formation of 

the conducting airways [36].  Expression of constitutively a activated β-catenin mutant can result 

in precocious lobuloalveolar development and differentiation of mammary glands [37].  While 

BMP signals are well known to regulate tissue morphogenesis during development, the BMP 

pathway is not typically associated with cell fate decisions per se, such as the Wnt pathway is 

well known.  Our finding that activated β-catenin synergizes with BMP2 to stimulate osteoblast 
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formation from multipotent progenitors suggests that combined β-catenin and BMP2 signaling 

amplifies the osteoblast cell fate decision normally attributed to β-catenin alone.  Chapter 2 

examines how β-catenin interacts with BMP signals to promote and amplify allocation of 

progenitor cells to the osteoblast and not adipocyte lineage. 

 

1.7 WNT/β-CATENIN SIGNALING IN PROLIFERATION - In addition to mediating cell fate decisions, 

-catenin stimulates cell cycle via Tcf/Lef-dependent expression of Cyclin-D1
9
.  In the intestine, -

catenin can even favor proliferation of crypt cells over villous differentiation [38], demonstrating its 

ability to act on both cell fate and mitotic potential.  While catenin normally acts in immature 

Runx2+ cells to expand the osteoprogenitor pool, it generally does not provide mitotic signals in 

progenitors once they begin progressing through the Runx2+/Osterix+ transition.  Osterix+ cells 

of the osteoblast lineage are typically bone-adherent or bone-embedded cells, and have a 

diminished proliferative index, as would be expected for acquisition of their specialized function 

as bone producing cells.  Curiously, while catenin is required in Osterix+ cells for acquisition of 

their matrix mineralizing function, genetic activation of canonical catenin activity in the Osterix+ 

population inappropriately reactivates cell cycle [15] and causes pathologic levels of bone growth 

[15].  This strongly suggests that there is mechanism acting in the osteogenic lineage to govern 

whether catenin is providing pro-mitotic or pro-differentation cues. 

We considered this in the context of tumorigenesis where activating mutations of -

catenin, or upstream Wnt components, lead to loss of cell cycle control and increased 

proliferation [30,39,40,41,42,43].  A similar effect is often seen by loss of Smad4 or loss of Smad4 

DNA-binding activity [44,45,46,47].  The mechanism by which Smad4 attenuates proliferation and 

protects against pathophysiologic hyperplasia remains poorly understood, but intriguing clues can 

be taken from experiments in Drosophila melanogaster demonstrating that phenotypes normally 

associated with Wingless (the fly ortholog of Wnt) or activated armadillo (the fly ortholog of -

catenin) are induced by expression of Smad4 mutants defective in DNA-binding [48].  The fact 

that loss of Smad4 phenocopies proliferative and cell fate cues attributed to activated -catenin 
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leads us to hypothesize that loss of Smad4 antagonizes proliferation by antagonizing canonical 

Wnt/ -catenin activity.  Chapter 3 of this work tests the specific hypothesis that pro-mitotic 

Wnt/ -catenin signals are negatively regulated by BMP/Smad4 activity in osteoprogenitors. 

 

1.8 WNT/ -catenin SIGNALING IN BONE FORMATION.  The involvement of -catenin in 

osteoblast differentiation and bone formation is demonstrated by studies showing that upstream 

activators and downstream mediators of -catenin signaling are essential for skeletal 

development.  In the mouse, loss-of-function mutations of Wnt-5a [49], Wnt-7a [50], LRP-6 [51], 

or the transcription factors Lef1 and Tcf1 [52], cause a variety of malformations whose common 

denominator is abnormal skeletal development or lack of skeletal elements.  A number of in vivo 

studies further defined the critical role of this signaling system in bone development.  Loss-of-

function mutations of LRP-5 have been linked to osteoporosis pseudoglioma syndrome, a rare 

condition characterized by congenital severe osteoporosis [53]. Accordingly, LRP-5 null mice are 

osteopenic since birth owing to an osteoblast defect [54].  By contrast, ―gain-of-function‖ 

mutations of LRP-5 have been identified in two separate kindred with a high bone mass 

phenotype [55,56].  Since β-catenin is an integral component of the Wnt pathway, these 

observations would support the notion that β-catenin is involved in controlling bone development 

and bone mass acquisition.  Recent work cast doubts about β-catenin involvement in mediating 

the bone anabolic effect of LRP-5 activation, pointing instead to an endocrine loop involving 

serotonin secretion from the duodenum [57].  While the role of endocrine signaling on regulation 

of bone mass is under intense study by many groups, it was recently demonstrated that 

osteoblast-specific gene ablation of both Lrp5 and Lrp6 are catastrophic to bone formation, 

thereby solidifying a role for Wnt signaling through Lrp5/6 receptors specifically in osteoblasts. 

Whereas developmental studies clearly demonstrate that β-catenin is necessary for 

osteoblast differentiation and bone formation, complex and sometimes seemingly contradictory 

interactions between BMP and Wnt signaling have been reported in the skeletal system.  For 

example, β-catenin was shown to be both upstream and downstream of BMP signaling in mice 



9 

 

with Catnb ablation in neural crest cells [13].  On the other hand, lack of Catnb blocks the 

osteogenic effect of BMP-2 in ex vivo mouse calvaria cultures [8], while β-catenin contributes to 

formation of new ectopic bone in response to BMPs [58], leading to the notion that canonical Wnt 

signaling, via -catenin, may be downstream of BMP signaling, as proposed by earlier in vitro 

studies [59,60].  Recent data on conditional BMPR1A inactivation in osteoblasts seem to support 

this view, suggesting BMPs up-regulate Wnt signaling via upregulation of Sclerostin [61,62].  

However, others found that blockade of BMP signaling actually impedes Wnt-induced osteoblast 

differentiation, suggesting instead that Wnt is upstream of BMPs [63].  Clearly, simple epistatic 

models do not satisfactory explain the many discrepant data on BMP and Wnt/β-catenin 

interactions.  We hypothesize that Wnt/ -catenin activation and BMP signaling are required 

simultaneously to deliver timely and accurate osteogenic cues.  In Chapter 4, we specifically 

examine the requirement for Smad4 in osteogenic BMP signaling, and then continue by 

utilizing in vivo and in vitro experiments to test whether anabolic responses to canonical 

Wnt signaling require integrity of the BMP signaling pathway. 
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CHAPTER 2 

 

-catenin acts downstream of BMP2 to suppress 

adipocyte cell fate and promote osteoblast 

differentiation  
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2.1 ABSTRACT 

The role of β-catenin in skeletal development and osteogenic cell differentiation is well 

established, but the molecular mechanisms attending these effects remain largely unknown.  We 

conducted a structure/function analysis of β-catenin to gain further insights on these 

mechanisms.  Retroviral transduction of a full-length, constitutively active β-catenin mutant 

inhibited adipogenesis and stimulated osteoblast differentiation from multipotent embryonic 

fibroblasts (C3H10T1/2).  However, N-terminal truncated β-catenin mutants with weak Tcf/Lef 

activity retained their pro-osteogenic action, as did a constitutively stabilized mutant lacking the 

C-terminal Tcf/Lef transactivation domain.  Importantly, this Tcf/Lef-defective -catenin did not 

suppress adipogenesis, and even elicited spontaneous adipogenesis when expressed in cells 

cultured in osteogenic conditions.  Thus, Tcf/Lef transcriptional activity of β-catenin is critical for 

inhibition of adipogenesis, while it is dispensable for its pro-osteogenic effect.  BMP-2 greatly 

enhanced both osteogenesis and adipogenesis in the presence of the C-terminally truncated 

mutant, though it selectively enhanced only osteoblast differentiation in cells transduced with the 

full-length, Tcf/Lef active β-catenin mutant.  C3H10T1/2 cells produce BMP-4, and inhibition of 

endogenous BMP signaling by Noggin curtailed osteogenic differentiation by constitutively active 

β-catenin.  Therefore, BMP signaling must be active for full induction by β-catenin of osteogenic 

differentiation from multipotent precursors.  These data suggest that cooperative interactions 

between β-catenin and BMP signaling systems drive osteoblast cell fate specification and 

differentiation. 



16 

 

2.2 INTRODUCTION 

β-catenin orchestrates cell fate decisions in diverse tissues and organisms.  In 

vertebrates, β-catenin directs lineage allocation of intestinal stem cells, favoring proliferation of 

crypt cells over villous differentiation (Batlle et al., 2002).  In the epidermis, it determines the 

differentiation of follicular keratinocytes while inhibiting epidermal lineages (Huelsken et al., 

2001).  During skeletal development, β-catenin favors osteoblast over chondrocyte fate in 

mesodermal and neural crest progenitors, thereby bearing an essential role in both endochondral 

and intramembranous ossification (Hu et al., 2005a;Day et al., 2005;Hill et al., 2005).  In the adult 

skeleton, new osteoblasts are recruited from bone marrow stromal cells, which also give rise to 

adipocytes.  In vitro studies demonstrate that canonical Wnts, via β-catenin and Tcf/Lef 

transcription factors, effectively block adipogenesis (Ross et al., 2000); and we previously 

showed a postnatal osteogenic to adipogenic shift in bone marrow stromal cells derived from 

transgenic mice expressing a dominant-negative N-cadherin, which sequesters β-catenin on the 

cell surface (Castro et al., 2004).  This differentiation defect was rescued by expression of 

activated β-catenin, suggesting β-catenin favors osteoblast over adipocyte commitment from 

undifferentiated precursors in the adult bone marrow microenvironment.   

As an integral component of adherens junctions, β-catenin stabilizes cell-cell adhesion by 

binding to cadherins (Nelson et al., 2004).  β-catenin is also part of canonical Wnt signaling, a 

cascade initiated by binding of Wnt(s) to low-density lipoprotein receptor-related protein-5 or 6 

(LRP-5/6) and Frizzled co-receptors, resulting in inhibition of GSK-3β-mediated degradation of β-

catenin.  Stabilized β-catenin accumulates in the nucleus, stimulating transcription via the Tcf/Lef 

family of DNA-binding proteins (Cadigan et al., 1997;van Es et al., 2003).  Abundant genetic and 

epidemiological data support a role for canonical Wnt signaling in skeletal development 

(Hartmann, 2006) and post-natal bone mass acquisition (Gong et al., 2001;Little et al., 

2002;Boyden et al., 2002).  However, ablation or activation of the Cttnb gene in the mouse does 

not phenocopy genetic ablation or constitutive activation of Lrp5 (Kato et al., 2002;Babij et al., 

2003), resulting in severe skeletal malformations (Hu et al., 2005a;Hill et al., 2005;Day et al., 

2005).  Furthermore, many components of the canonical Wnt pathway are involved in Wnt-
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independent signal transduction pathways (Xu et al., 2004;Nam et al., 2006;Fujino et al., 2003;Jia 

et al., 2005); and Wnt-independent transactivation of Tcf/Lefs by β-catenin can be stimulated by 

lysophosphatidic acid (Yang et al., 2005) or by prostaglandin E2 (Castellone et al., 2005).  

Therefore, while Wnts can certainly provide osteogenic signals, it is possible that the osteogenic 

role of β-catenin may not derive exclusively from generation of canonical Wnt (Tcf/Lef-dependent) 

signals. 

Bone morphogenetic proteins (BMPs) are important in osteoblast specification, bone 

formation and maintenance (Zhao et al., 2002;Wan et al., 2005;Mishina et al., 2004;Mishina et al., 

2004), but can elicit the development of multiple mesenchymal skeletal lineages (Ahrens et al., 

1993).   Interactions between BMPs and Wnt signaling have been studied by others in a variety of 

mesenchymal cell lines, suggesting that such interactions are essential for osteoblast 

differentiation (Rawadi et al., 2003).  We previously demonstrated that β-catenin synergizes with 

BMP-2 to stimulate osteoblast differentiation in the mouse embryonic fibroblast cell line 

C3H10T1/2, and to induce new bone formation in mouse calvaria (Mbalaviele et al., 2005).  More 

recently, β-catenin signaling has been shown to be critical for BMP-2 stimulation of ectopic bone 

formation in vivo (Chen et al., 2007).  We hypothesized that interaction with BMP signaling offers 

one potential mechanism by which β-catenin, a ubiquitous signaling system, provides osteogenic 

cues to undifferentiated multipotent cells. 

To test this hypothesis, we performed a structure/function analysis of β-catenin in 

C3H10T1/2 cells, which differentiate into osteoblasts or adipocytes in response to BMP treatment 

(Ahrens et al., 1993).  Our results indicate that Tcf/Lef-dependent transcriptional activity of β-

catenin is not required for its pro-osteogenic action, despite that it is necessary for inhibition of 

adipogenesis.  Furthermore, we show that BMP signaling is required for full osteogenic 

stimulation by β-catenin, as well as adipogenesis. 
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2.3 METHODS 

Reagents.  β-catenin antibody was purchased from BD Transduction Laboratories (San 

Diego, CA); KT3-tag antibody from Covance (Princeton, NJ); TCF4 antibody from Upstate 

(Charlottesville, VA); BMP-2/4 antibody from R&D Systems (Minneapolis, MN).  Purified 

recombinant human BMP-2 and murine Noggin were purchased from Sigma (St. Louis, MO) and 

R&D systems, respectively.  pTopFlash (Tcf/Lef-luc) was purchased from Promega (Madison, WI) 

and consists of the luciferase open reading frame preceded by 6 tandemly-arranged Tcf/Lef 

binding elements.  p12X-SBE-Luc (SBE-luc) was a kind gift from Dr. Di Chen (University of 

Rochester, NY) and consists of 12 tandem Smad binding elements upstream of an osteocalcin 

minimal promoter and the luciferase open reading frame (Zhao et al., 2002).  Primers were 

purchased from Invitrogen (Carlsbad, CA).  Unless otherwise indicated, all other chemicals and 

reagents were purchased from Sigma. 

Cell Culture and Differentiation Assays.  C3H10T1/2 murine embryonic fibroblast cells, 

obtained from ATCC (Manassas, VA) were maintained in basal medium of Eagle (BME; Gibco; 

Carlsbad, CA) containing 10% fetal bovine serum (Atlas Biologicals; Fort Collins, CO), 40 mM L-

glutamine, 100 U/ml penicillin-G, and 100 mg/ml streptomycin, and incubated at 37
◦
C in a 

humidified atmosphere with 5% CO2.  To stimulate differentiation, we applied well-established 

methods, already described for the C3H10T1/2 cell line (Mbalaviele et al., 2005;Shin et al., 2000).  

Briefly, for osteogenic differentiation cells were seeded in 24-well dishes (10
5
 cells per well) and 

cultured in osteogenic medium (10 mM β-glycerophosphate and 50 μg/ml ascorbic acid).  As a 

marker of osteoblast lineage, ALP activity was assessed after 6-7 days in culture using a 

biochemical assay and normalized to protein content.  In some experiments, enzyme activity was 

detected by direct staining in fixed cells (Mbalaviele et al., 2005).  For adipogenic differentiation, 

C3H10T1/2 cells were cultured in adipogenic medium (5 μg/ml insulin, 50 μM indomethacin, and 

0.1 μM dexamethasone) for 10 days, and adipocytes were identified after fixation by the presence 

of lipid droplets stained using Oil Red O (Mbalaviele et al., 2005;Shin et al., 2000). 
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Expression of -catenin mutants in C3H10T1/2.  β-catenin cDNAs for wild type, 

mutGSK, N90, and N151 were kind gifts from Dr. James Nelson (Stanford University, Stanford, 

CA).  mutGSK is full length β-catenin containing four point mutations in the CK1 (S45A) and 

GSK3β (33/37T41A) phosphorylation domain.  N90, and N151 are N-terminal truncation 

mutants that include the phosphorylation domain (Barth et al., 1997).  The cDNAs encoding β-

catenin mutants were subcloned into the polylinker site of pIRES2-EGFP (BDBiosciences; San 

Diego, CA) using SacII and BamHI.  IRES-EGFP or bicistronic β-catenin-IRES-EGFP constructs 

were subcloned into pLNCX2 retroviral vector (BD Biosciences; San Diego, CA) using XhoI and 

NotI.  We also generated a C-terminally truncated β-catenin, mutGSK C, using a modified PCR 

strategy (Byrappa et al., 1995) and the pLNCX2-mutGSK-IRES-EGFP plasmid as a template.  

Briefly, amino acids 675-781 of mutGSK β-catenin were deleted in frame from the pLNCX2-

mutGSK-IRES-EGFP plasmid by amplifying the plasmid template using a high fidelity polymerase 

(Pfu-Turbo; Stratagene; La Jolla, CA), a forward primer complementary to the C-terminal KT3 tag 

of mutGSK, and a reverse primer complementary to coding sequence for β-catenin amino acids 

674-668.  The purified PCR product was circularized with T4 DNA ligase and cloned.  Retroviral 

particles were generated by using Lipofectamine (Invitrogen; Carlsbad, CA) to transfect pLNCX2 

retroviral vectors into 293GPG packaging cells, which express MuLV gag-pol and vesicular 

stomatitis virus G glycoprotein (VSV-G) under tetracycline regulation (Ory et al., 1996).  Following 

removal of tetracycline repression, 293GPG conditioned media were collected daily and tested for 

ability to transduce C3H10T1/2 cells.  Infectious fractions were pooled and supplemented with 6 

μg/ml anionic polybrene.  Subconfluent C3H10T1/2 cells were incubated in viral-conditioned 

media for 48 hr and selected for 7 d with 1 mg/ml G418 antibiotic.  Transgene expression was 

assessed by both fluorescence microscopy (detection of EGFP) and SDS-PAGE/immunoblot 

(detection of transgenic β-catenin or C-terminal KT3 tag). 

Luciferase Assay.  Following a previously described method (Stains et al., 2003), cells 

were seeded in 24-well plates (4x10
4
 cells per well), and the following day plasmids (0.4 μg/well 

of TopFlash or SBE-luc) were transfected using Lipofectamine2000 (Invitrogen; Carlsbad, CA) 
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per manufacturer’s instructions.  Transfection medium was replaced with complete medium 

containing additional treatments as indicated.  Tcf/Lef-luc and SBE-luc were harvest after 24 hr of 

treatment.  Luciferase activity was assessed in an Optocomp luminometer using a Luciferase kit 

(Promega; Madison, WI) as per manufacturer’s instructions.  Since the Renilla reporters 

commonly used for normalization of transfection efficiency were modulated by some treatments 

used in this study, Firefly activity is shown as a ratio over the average of the control group.  

Assays were repeated >3 times. 

Immunoprecipitation and Immunoblotting.  Whole cell protein extracts were prepared 

as previously described (Mbalaviele et al., 2005).  Protein content was determined Pierce BCA 

kit, separated by SDS-PAGE, and transferred to PDVF membranes (Millipore; Billerica, MA).  

Membranes were blocked and probed in PBS containing 0.05% Tween-20 and 5% non-fat dry 

milk.  Antigen-antibody complexes were visualized by horseradish peroxidase-conjugated 

secondary antibody (1:5000) and West-Pico detection (Pierce; Rockford, IL). 

 RNA Isolation and PCR.  Briefly, 1 μg total RNA was isolated using RNeasy kit (Qiagen; 

Valencia, CA) and was reverse transcribed using Superscript II reverse transcriptase and 

oligo(dT)15 primers (Stains et al., 2003;Stains et al., 2005).  Quantitative real time PCR was 

performed using SYBR green (Applied Biosystems; Foster City; CA) and an ABI Prism 7300 

detector using these conditions: 40 cycles (95
◦
C/10 min, 95

◦
C/15 sec, 60

◦
C/30 sec).  Data were 

normalized to Gapdh expression.  For semi-quantitative RT-PCR analysis, the following 

conditions were used:  95
◦
C/5 min; 30 cycles (95

◦
C for 30 sec, 55

◦
C for 30 sec, and 72

◦
C for 30 

sec); 72
◦
C for 5 min.  Primers:  Bmp-2 (RT-PCR) sense 5’-cggagactctctcaatggac-3’ and antisense 

5’-gttcctccacggcttctagt-3’; Bmp-4 (RT-PCR) sense 5’-ctcccaagaatcatggactg-3’ and antisense 5’-

aaagcagagctctcactggt-3’; Bmp-4 (QPCR) sense 5’-ttcctggtaaccgaatgctga-3’ and antisense 5’-

cctgaatctcggcgacttttt-3’. 

Statistical Analysis.   All data are expressed as the mean ± standard deviation.  Group 

means were compared by unpaired t-test. 
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2.4 RESULTS 

2.4.1 Generation of a -catenin Mutant Library and Expression in C3H10T1/2 Mouse 

Embryonic Fibroblasts. We first functionally characterized the transcriptional and osteogenic 

activities of 3 constitutively stabilized β-catenin mutants, mutGSK, N90, and N151 (Figure 

2.1A) in C3H10T1/2 cells.  Effective expression of these mutants, achieved by retroviral 

transduction using bicistronic constructs that also express EGFP, was verified by both EGFP 

fluorescence and Western blotting using antibody to -catenin C-terminus.  G418-resistant cells 

exhibited fluorescence in the green spectrum (Figure 2.1B), and the level of protein expression of 

each mutant was similar to endogenous β-catenin (Figure 2.1C).   

 

2.4.2 Transactivation of Tcf/Lef by Overexpression of -catenin Directly Correlates with 

Suppression of Adipogenesis but does not Predict Its Ability to Stimulate Osteoblast 

Differentiation.   Each -catenin mutant stimulated the activity of a Tcf/Lef-dependent 

transcriptional reporter (Tcf/Lef-luc).  However, despite the similar abundance of protein 

expression (Figure 2.1C), mutGSK was a far more potent transcriptional co-activator than was 

N90 or N151 (Figure 2.2A, black bars).  Consistent with our previous findings (Mbalaviele et 

al., 2005), BMP-2 treatment for 24 h did not activate Tcf/Lef-luc alone and did not enhance the 

effect of any -catenin mutant (Figure 2.2A, gray bars).  As we previously reported (Mbalaviele et 

al., 2005), N151 was at best a weak stimulator of alkaline phosphatase (ALP) activity, an early 

marker of osteoblast differentiation.  By contrast, mutGSK or N90 stimulated substantially higher 

levels of ALP activity after 7 days of culture (Figure 2.2B, black bars).  Importantly, BMP-2 

(100ng/ml) synergistically enhanced ALP stimulation by each β-catenin mutant (Figure 2.2B, gray 

bars).  However, N90 was stronger in stimulating ALP activity than was N151 (Figure 2.2B), 

despite that N90 and N151 were equivalent activators of Tcf/Lef-dependent transcription 

(Figure 2.2A).  Also, N90 and mutGSK stimulated similar levels of ALP activity (Figure 2.2B) 

despite that N90 was a weaker activator of Tcf/Lef-dependent transcription (Figure 2.2A).  By 

contrast, after 10 days in culture with an adipogenic medium, transduction with either of the N-
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terminally truncated mutants, N90 or N151 resulted in about 70% fewer adipocytes compared 

to EGFP, while mutGSK nearly abrogated adipogenesis (Figure 2.2C).  Thus, inhibition of 

adipogenesis by -catenin directly correlates with its Tcf/Lef transcriptional activity, whereas 

stimulation of ALP activity by -catenin does not.  

To better test whether induction of ALP activity can be dissociated from -catenin 

transactivation of Tcf/Lef, a stabilized but transcriptionally-defective -catenin mutant lacking the 

C-terminal transactivation domain was generated from the mutGSK retrovirus vector backbone 

(mutGSK C; Figure 2.3A).  It was successfully expressed in C3H10T1/2 cells, as shown by 

immunoblots of lysates from mutGSK C transduced cells (Figure 2.3B). To test the biologic 

activity of mutGSK C, we first compared its ability to stimulate Tcf/Lef transcription against 80mM 

LiCl, a pharmacological inhibitor of GSK3 or the Tcf/Lef-active mutant, mutGSK.  Exposure to 80 

mM LiCl and expression of mutGSK resulted in a similar degree of Tcf/Lef-dependent promoter 

activity, and no further stimulation was obtained by treating mutGSK-transduced cells with LiCl.  

Conversely, mutGSK C did not autonomously transactivate Tcf/Lef-luc, and in fact, it significantly 

inhibited endogenous and LiCl-stimulated Tcf/Lef activity (Figure 2.3C).  These results confirm 

that the C-terminal domain is required for canonical β-catenin transcriptional activity (Cong et al., 

2003), and demonstrate that this construct functions as a dominant-negative on Tcf/Lef 

dependent transactivation.  To determine whether loss of β-catenin’s Tcf/Lef activity correlates 

with a loss of biological function, we monitored adipogenesis in cells transduced with either 

mutGSK or mutGSK C.  As noted earlier, transduction with mutGSK prevented formation of Oil 

Red O positive cells in adipogenic medium, however transduction with mutGSK C was ineffective 

in this regard, yielding an abundance of adipocytes similar to those observed in EGFP control 

cultures (Figure 2.3D).  Importantly, despite the loss of both Tcf/Lef-activity and its anti-

adipogenic effect, mutGSK C stimulated a comparable level of ALP activity as mutGSK, an effect 

which was enhanced by exogenous BMP-2 (Figure 2.3E). 

Consistent with quantitative biochemical results, the number of ALP positive cells in 10-

day mutGSK or mutGSK C osteogenic cultures was much higher than in EGFP cultures, 
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although the number in mutGSK C cultures was slightly less than in mutGSK cultures (Figure 

2.4A, B, and C).  BMP-2 (200 ng/ml) greatly enhanced the ability of mutGSK to stimulate ALP 

staining (Figures 2.4A, B, D, and E).  The number of ALP positive cells in mutGSK C plus BMP-2 

cultures equaled or exceeded that of mutGSK plus BMP-2 (Figures 2.4F and 2.4E).  Remarkably, 

adipocytes appeared among ALP-positive cells in mutGSK C cultures but not in mutGSK 

cultures (Figures 2.4B-C’ and 2.4E-F’).  Adipogenesis in mutGSK C cells ensued spontaneously, 

in the absence of adipogenic stimuli and the presence of osteogenic supplements (Figures 2.4C-

C’); and it became vigorous with BMP-2 treatment (Figures 2.4F-F’). 

 

2.4.3 BMP2/4 Signals Act Upstream of -catenin to Promote Differentiation Both 

Osteoblasts and Adipocytes.  These results indicate that mutGSK, N90, and mutGSK C, but 

not ΔN151, stimulate osteoblast differentiation in the absence of exogenous BMP-2.  However, 

C3H10T1/2 cells have been reported to produce BMPs (Shea et al., 2003).  To determine if 

endogenously produced BMPs are required for the ―intrinsic‖ osteogenic activity of these β-

catenin mutants, we first assessed BMP expression by RT-PCR in 20% and 100% confluent 

C3H10T1/2 cells.  C3H10T1/2 cells express abundant Bmp-4 mRNA, perhaps more abundantly 

in confluent than non-confluent cells, whereas Bmp-2 mRNA is undetectable (Figure 2.5A).  

Temporal expression profiling revealed that Bmp-4 expression sharply increased >25-fold after 

the first 7 days post-confluence in osteogenic medium, receding by 21 d (Figure 2.5B).  Neither 

exposure to exogenous BMP-2, nor transduction of mutGSK altered expression of Bmp-4 (Figure 

2.5B) or Bmp-2 (data not shown).  To ascertain the signaling activity of endogenous BMPs, a 

BMP-responsive transcriptional luciferase reporter (SBE-luc) was transfected into C3H10T1/2 

cells.  Addition of recombinant Noggin (a BMP-2/4/7 antagonist) or a BMP-2/4 neutralizing 

antibody significantly inhibited basal SBE-luc activity while exogenous BMP-2, used as positive 

control, stimulated SBE-luc activity 3-fold (Figure 2.5C). 

More to the point, when cells transduced with activated mutGSK were cultured in 

osteogenic media in the presence of different concentrations of Noggin for 7 days, induction of 
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ALP activity by mutGSK was dose-dependently attenuated by BMP blockade (Figure 2.5D).  

Notably, at a concentration of 1.5 μg/ml, Noggin inhibited BMP-dependent SBE-luc activity by 

50% (Figure 2.5C) and mutGSK-dependent ALP activity by 70% (Figure 2.5D), indicating that 

endogenous BMPs, probably BMP-4, contribute in great part, if not entirely, to osteoblast 

differentiation induced by activated β-catenin in C3H10T1/2 cells.  Since adipogenesis was 

enhanced by BMP-2 in cells transduced with the transcriptionally inactive mutGSKΔC, we tested 

whether induced adipogenesis was sensitive to BMP signaling blockade.  The formation of Oil 

Red O positive cells in cells grown in adipogenic medium for 9 days was dose-dependently 

stimulated by exogenous BMP-2, and dose-dependently inhibited by Noggin (Figure 2.5E).  Thus, 

endogenous BMPs drive both adipogenic and osteogenic differentiation in C3H10T1/2 cells. 

 

2.5 DISCUSSION 

We previously reported that stabilized catenin synergizes with BMP-2 to stimulate in 

vitro osteoblast differentiation and in vivo new bone formation (Mbalaviele et al., 2005).  That 

study evaluated the effects of a single mutant, N151, which displayed little osteogenic action by 

itself and required exogenous BMP-2 treatment to generate an osteogenic stimulus.  Here, we 

utilize a more comprehensive structure-function analysis to demonstrate that, when expressed on 

a wild type background, the ability of β-catenin to stimulate Tcf/Lef-dependent transcriptional 

activity is neither necessary nor sufficient to induce osteoblast differentiation, but rather requires 

active BMP signaling. 

Previous studies reported that β-catenin contributes to formation of new ectopic bone in 

response to BMPs (Chen et al., 2007); that genetic ablation of -catenin blocks the osteogenic 

effect of BMP-2 in ex vivo mouse calvaria cultures (Hill et al., 2005); and that canonical Wnt 

signaling is induced by BMPs via an autocrine loop (Rawadi et al., 2003;Bain et al., 2003).  These 

data suggested a model whereby canonical Wnt signaling, via -catenin, is part of the 

downstream events activated by BMPs to induce osteogenesis.  However, others found that 

blockade of BMP signaling impedes Wnt-induced osteoblast differentiation (Winkler et al., 2005); 
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and the present work demonstrates that blockade of BMP signaling impedes the stimulatory 

effect of constitutively activated -catenin, which does not require expression of canonical Wnts 

to stimulate Tcf/Lef-dependent transcription.  Thus, while others had reported ―intrinsic‖ 

osteogenic activity in various -catenin mutants, (Rawadi et al., 2003;Bain et al., 2003), we here 

clarify that even a full-length -catenin mutant with potent Tcf/Lef activity is still largely dependent 

on endogenously produced BMPs for its pro-osteogenic activity.  Furthermore, since we find that 

up-regulation of endogenous BMP-4 requires at least 3 days of culture in differentiation medium, 

the assessment of effects by β-catenin/Wnt and BMP signaling interactions is heavily dependent 

on timing of experimental endpoints.  This factor may in part explain some of the discrepant 

results from independent groups.  Nonetheless, collective findings do not support a simple 

epistatic model of osteogenesis where Wnts are downstream mediators of BMPs.  Instead, 

emerging data suggest that canonical Wnt signaling through -catenin is necessary, though not 

sufficient in the absence of BMPs, to stimulate osteoblast differentiation (Chen et al., 2007).  

Although it is possible that canonical Wnts may induce expression of BMPs in a -catenin-

dependent manner to stimulate osteoblast differentiation (Winkler et al., 2005), the present results 

together with others’ findings (Hill et al., 2005), strongly suggest that -catenin activation and 

BMP signaling are required simultaneously to deliver an osteogenic cue. 

Our structure-function analysis of β-catenin establishes that its anti-adipogenic and pro-

osteogenic actions are separable.  We find that the anti-adipogenic action of β-catenin directly 

correlates with Tcf/Lef-dependent transcriptional activity and requires the C-terminal 

transactivation domain.  By contrast, the transactivation domain is dispensable for the pro-

osteogenic function of -catenin, which is not accurately predicted by Tcf/Lef activity.  Although 

the molecular nature of this β-catenin-dependent but non-canonical pro-osteogenic mechanism 

remains to be determined, Tcf/Lef-independent functions of -catenin in cell fate specification 

have been proposed in other cell types.  For example, ablation of β-catenin in skin stem cells 

induces epidermal differentiation at the expense of follicular keratinocyte differentiation (Huelsken 

et al., 2001) while expression of a Tcf/Lef-defective β-catenin mutant instead had both dominant-
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positive and dominant-negative actions, depending upon the cell context in which it was 

expressed (DasGupta et al., 2002).  It is also worth considering why constitutive activation or 

ablation of β-catenin leads to severe skeletal malformations in mice (Hu et al., 2005a;Day et al., 

2005;Hill et al., 2005), while ablation of Lrp5 results only in low bone mass and an osteoblast 

defect but no skeletal malformations (Kato et al., 2002).  Thus, previous findings support the 

notion that the pro-osteogenic action of β-catenin can operate in a non-canonical (Tcf/Lef-

independent) manner.  And furthermore, mechanistically separable cell fate cues may be 

operative in other tissues as well. 

A non-canonical mechanism could be related to cross-talk between components of the 

Wnt and BMP signaling systems.  For example, direct interaction between Smad1 and Dvl-1 in 

undifferentiated mesenchymal cells decreases cell proliferation (Chen et al., 2007).  Alternatively, 

β-catenin itself and Tcf/Lef proteins may interact with Smad-containing transcription complexes 

on promoters containing both Tcf/Lef and Smad-binding elements (Hussein et al., 2003;Lei et al., 

2004;Hu et al., 2005b).  Or, β-catenin may even directly interact with BMP-2 signaling 

independently of Tcf/Lef proteins.  Intriguingly, canonical Wnt signals are reported to regulate 

gene expression in osteoblasts which are involved in osteoclast function, such as Opg (Glass et 

al., 2005); but to date there is no strong evidence that osteoblastic genes, such as Runx2 or 

Osterix, are directly activated by Tcf/Lef-dependent mechanisms (Glass et al., 2005;Kato et al., 

2002).  Determining if non-canonical β-catenin signaling regulates osteoblast gene expression 

and differentiation therefore represents an attractive hypothesis to test. 

Our data support a model where β-catenin refines a BMP-2 signal into either an 

adipocyte or osteoblast cue, depending upon its transcriptional activity.  When β-catenin is fully 

active, adipogenesis is inhibited and BMP signaling is fully osteogenic.  When transcriptional 

activity is inhibited, BMP signals become ambiguous, inducing both osteogenesis and 

adipogenesis.  Thus, both Tcf/Lef-dependent and Tcf/Lef-independent actions of β-catenin are 

necessary to make a BMP signal strictly osteogenic. While the anti-adipogenic function is linked 

to the C-terminal transactivation domain, the topology of β-catenin pro-osteogenic activity is less 

clear.  The differences in ALP stimulatory activities between the ΔN90 and ΔN151 mutants point 
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to a region between residues 90 and 151 that might be critically important for β-catenin pro-

osteogenic action.  However, the ΔN151 mutant was still able to enhance BMP-2 induced 

osteoblast differentiation, implying that additional domains are involved.  These do not include the 

transactivation domain, since C-terminal deletion of β-catenin has no detrimental effect on its pro-

osteogenic function.  Finer resolution of the structure-function correlates of β-catenin should be 

useful for understanding its pro-osteogenic action, and the mode of interaction with the BMP 

signaling system. 

 In summary, we demonstrate that when overexpresed, -catenin employs at least two 

mechanistically distinct actions that control differentiation of mesenchymal lineages: a Tcf/Lef-

dependent function of -catenin operates to suppress the adipocyte lineage; and, a Tcf/Lef-

independent function integrates with a BMP signal to induce osteogenesis.  Our results support a 

model whereby β-catenin and BMP effectors act cooperatively, so full induction of an 

osteoblastogenesis program occurs when they signal in tandem.  This cooperative interaction of 

two osteogenic signaling systems will now be tested in vivo. 
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2.8 FIGURE LEGENDS 

Figure 2.1 Structure and expression of β-catenin mutants.  (A) Three different β-catenin 

mutants (mutGSK, ΔN90 and ΔN151) are shown below the basic structure of the wild type 

protein. The 4 phosphorylation sites (mutated to alanine in mutGSK3) at the N-terminus are 

shown, as well as the Tcf/Lef-binding domain (shaded), the transactivation domain (TA, hatched), 

and the KT3 epitope (solid).  (B) C3H10T1/2 cells were transduced with VSV-G retroviruses 

encoding EGFP only, or a bicistronic construct comprised of one β-catenin mutant and IRES-

EGFP.  Fluorescence microscopy shows G418-resistant cells expressing EGFP.  (C) Western 

analysis detects expression of the β-catenin mutant proteins in similar abundance to endogenous 

β-catenin (red arrowhead).   

Figure 2.2 Tcf/Lef-dependent transcriptional activity of β-catenin mutants and C3H10T1/2 

differentiation.  (A) After retroviral transduction, G418-resistant C3H10T1/2 cells were monitored 

for Tcf/Lef transcriptional activity in the absence or presence of 100 ng/ml BMP-2 for 24 hr after 

transfection with Tcf/Lef-luc.  (B) Alkaline phosphatase (ALP) activity was quantified from cells 

grown in the absence or presence of 100 ng/ml BMP-2.  (C) C3H10T1/2 cells transduced with 

EGFP or β-catenin mutants were grown in adipogenic medium for 10 d, and the number of 

adipocytes, defined by presence of Oil Red O positive lipid droplets, was determined in 6 random 

40X microscopic fields per genotype; p<0.05 versus EGFP (*), versus ΔN151 (#), versus BMP-2  

(‡), or versus ΔN151 plus BMP-2 (†), two-tailed Student’s t-test. 

Figure 2.3 The C-terminal transactivation domain of -catenin is necessary for Tcf/Lef 

transcriptional activity and for suppression of adipogenesis, but is dispensable for 

osteogenic stimulation.  (A) Schematic diagram of wild type and mutant (mutGSK, or 

mutGSKΔC) β-catenin constructs, with their functional domains illustrated as in Fig 1A.  (B) 

C3H10T1/2 cells were transduced with either EGFP or mutant β-catenin (mutGSK, or 

mutGSKΔC) VSV-G retroviruses.  Whole cell lysates were immunoblotted using either an anti-β-

catenin or anti-KT3 antibody, as indicated.  (C)  Cells transduced with the different mutants were 
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monitored for Tcf/Lef transcriptional activity in the absence or presence of 80 mM LiCl after 

transfection with Tcf/Lef-luc; p<0.05 versus EGFP (*) or versus EGFP plus LiCl (#), two-tailed 

Student t-test. (D) Adipogenic differentiation was determined in transduced C3H10T1/2 cells by 

Oil Red O staining after 10 d incubation in adipogenic medium.  (E) Alkaline phosphatase (ALP) 

activity was quantified in cell lysates in the absence or presence of 100 ng/ml BMP-2 after 7 d; 

p<0.05 versus EGFP (*) or versus EGFP plus BMP-2 (#), two-tailed Student t-test.  Results are 

representative of 3 separate experiments.  Bar, 100 m. 

Figure 2.4 A Tcf/Lef-defective β-catenin mutant stimulates both osteoblasts and 

adipocytes under osteogenic conditions and enhances BMP-2 effects. C3H10T1/2 cells 

transduced with either EGFP or mutant β-catenin (mutGSK, or mutGSKΔC) VSV-G retroviruses 

and selected with G418 were cultured in osteogenic medium for 10 d, stained with Oil Red O and 

subsequently counterstained for ALP activity (A-F’).  Stained monolayers were 

microphotographed at 10X or 40X magnification.  Adipocytes contain red-colored lipid droplets 

and osteoblasts are stained purple. 

Figure 2.5 C3H10T1/2 cells express endogenous BMP-4 which accounts for most of the 

“intrinsic” pro-osteogenic β-catenin activity.  (A) Expression of Bmp-2 and Bmp-4 mRNA by 

RT-PCR in confluent and sub-confluent cultures of C3H10T1/2 cells grown in osteogenic 

medium.  As a control for mRNA stability and abundance, Gapdh mRNA was determined.  (B) 

C3H10T1/2 cells were transduced with either EGFP (circles) or mutGSK (triangles) and incubated 

in the presence (open) or in the absence (solid) of BMP-2 for up to 21 d.  Total mRNA, extracted 

at indicated time points, was used for determination of Bmp-4 mRNA abundance by quantitative 

real time PCR, relative to Gapdh.  (C) C3H10T1/2 cells were transiently transfected with a BMP-

specific luciferase reporter containing 12 tandem Smad-binding elements (SBE-luc), and then 

treated with Noggin (1.5 μg/ml), a BMP-2/4 neutralizing antibody (20 μg/ml), or BMP-2 (200 

ng/ml) for 24 h; p<0.05 versus untreated (*), two-tailed Student’s t-test.  (D) Alkaline phosphatase 

(ALP) activity was quantified in C3H10T1/2 cells transduced with mutGSK and treated with 



34 

 

Noggin; p<0.05 versus mutGSK (*) or versus mutGSK plus 0.5 g/ml Noggin (#), two-tailed 

Student t-test.  (E)  C3H10T1/2 cells were grown in adipogenic medium containing either BMP-2 

or Noggin for 10 d and the number of adipocytes, defined by presence of Oil Red O positive lipid 

droplets, was determined in 6 random 20X microscopic fields; p<0.05 versus vehicle (*), two-

tailed Student’s t-test. 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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CHAPTER 3 

 

Smad4 Attenuates Proliferation 

and Canonical Wnt Signaling 

In the Osteogenic Lineage 
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3.1 ABSTRACT 

Smad4, a transcription factor of the TGF /BMP pathway, interacts with components of the 

canonical Wnt pathway.  In C3H10T1/2 cells, knockdown of Smad4 using siRNA stimulates 

Tcf/Lef-dependent transcription and enhances the ability of Wnt3a or -catenin to stimulate 

CCND1 promoter activity and mitosis.  In vivo, Tamoxifen-dependent gene ablation of Smad4 in 

Osterix
+
 cells greatly increases the number of BrdU-positive cells sitting directly on the bone 

surface.  Using structure/function analysis, we find that the ability of Smad4 to attenuate CCND1 

promoter activity is dependent on Smad4 DNA-binding activity, but independent of changes in 

Smad-dependent transcription.  Expression of Smad4 mutants does not alter expression of or 

signaling through essential components of the canonical Wnt pathway in MC3T3 cells, eliminating 

the possibility of autocrine or paracrine mode of antagonism.  Instead, we find that BMP2 rapidly 

induces Smad4 and -catenin association.  Consistent with a model where BMP2 signals can 

recruit -catenin to an activated Smad4-based transcription complex, expression of activated or 

dominant-negative -catenin mutants modulates luciferase activity driven by BMP-response 

elements.  We provide evidence that Smad4 can physically interact with -catenin in a manner 

that antagonizes canonical Wnt signaling and proliferation in the osteogenic lineage. 
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3.2 INTRODUCTION 

Osteoblasts are dedicated bone-forming cells of the body and arise from multipotent stem 

cells residing in the bone marrow stroma.  In the adult skeleton, these precursors provide a 

progenitor pool for adipocytes as well.  Progression of precursors through early stages of 

osteoblastogenesis is demarcated by expression of Runx2, an essential pro-osteogenic 

transcription factor [1].  At this stage, Runx2+ precursors continue to proliferate and expand the 

osteogenic progenitor pool.  Expression of Osterix, another essential osteogenic transcription 

factor, is believed to delineate the boundary between proliferative and post-mitotic osteoblasts 

[2,3] and indicates that osteoprogenitors have begun to acquire functional characteristics of the 

matrix-producing osteoblast.  At the end of their life cycle, mature osteoblasts either undergo 

apoptosis (the majority) or become entrapped in their own extracellular matrix where they serve a 

post-mitotic role as a mechano-sensing osteocyte [4].  While much is known about the genetic 

ontogeny of the osteogenic lineage, much remains to be described about molecular mechanisms 

governing the transition from proliferative to post-mitotic phases in the osteoblast lifecycle. 

Bone morphogenetic proteins 2, 4, and 7 (BMP2, 4, and 7) are critical regulators of 

osteoblast differentiation and bone homeostasis [5,6,7,8,9,10,11,12].  BMP family ligands signal 

through Type I and Type II heteromeric BMP receptor complexes to activate a variety of 

intracellular kinase cascades as well as Smads, which bind DNA-binding transcription factors[13] 

In addition to ―canonical‖ activity, Smads also cooperate with lineage-specific transcription factors 

to drive cell-type specific gene expression programs.  In this manner, a Smad-dependent 

transcriptional response to TGF  or BMP signaling is refined by interaction with transcription 

factors expressed in a particular tissue.  In bone for example, a physical interaction and 

cooperative transcriptional activity between BMP-specific R-Smads and Runx2 is necessary for 

BMP2 to stimulate osteoblast differentiation [14].  In the gastric mucosa, by comparison, an 

interaction between TGF -specific R-Smads with Runx3, a gastric tumor suppressor, induces 

mitotic-arrest of stomach epithelia cells and is required for prevention of gastric hyperplasia [15].  

In fact, loss of Smad4 or the BMP receptor IA lead to increased cell proliferation or even 
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pathologic hyperplasia in a myriad of progenitor niches [16,17].  The molecular mechanism by 

which BMP-dependent Smad signaling attenuates proliferation remains to be fully elucidated.  

Experiments in Drosophila melanogaster provide intriguing evidence that Smad4 function may 

affect the Wnt/β-catenin signaling system.  Cell fate decisions normally associated with 

overexpression of Wingless (the fly ortholog of Wnt) or activated armadillo (the fly ortholog of β-

catenin) can be phenocopied by overexpression of Smad4 mutants defective in DNA-binding [18].  

β-catenin is an essential transcription co-factor of the canonical Wnt pathway.  Wnt ligands signal 

through heteromeric receptor complexes comprised of Frizzled and Lrp5/6 proteins to block 

negative regulation of β-catenin protein stability by GSK3 .  Canonical Wnt signaling causes 

accumulation of β-catenin in the nucleus where it can bind to proteins of the Tcf/Lef family to 

activate gene expression.  β-catenin acts in a variety of developmental and post-natal tissues to 

stimulate cell cycle via Tcf/Lef-dependent expression of Cyclin-D1[19] or impact cell fate.  In 

bone, β-catenin can drive an osteoblast cell fate decision at the expense of progenitor allocation 

to the chondrocyte [20,21] or adipocyte [22] lineages.  Curiously, while β-catenin is required for 

progression of an Osterix+ cell to a mature osteoblast, Cre-mediated activation of β-catenin in the 

same Osterix+ population reactivates proliferation of differentiating osteoblasts which should be 

exiting cell cycle [2].  This apparent paradox suggests that a specific molecular mechanism acts 

at the Runx2/Osterix transition to dampen the pro-mitotic and instead promote pro-differentiation 

cues provided by β-catenin. 

We considered the possibility that such a molecular mechanism could explain why loss of 

BMP/Smad signaling can mimic the proliferative effect of Wnt/β-catenin activation.  Many Smads 

interact with β-catenin and Tcf/Lef family members to activate gene promoters containing both 

Smad- and Tcf/Lef-binding elements.  In the intestine, Smads interact with β-catenin/Tcf4 on the 

gastrin [23] and c-myc [24] promoters.  In the Spemann organizer of the frog, Smads cooperate 

with -catenin/Lef1 on the Xtwn promoter [25].  And in osteoblastic cells, conserved regulatory 

motifs for both Wnt and BMP response elements have been identified in the Dlx5, Msx2, and 

Runx2 promoters [26].  Outside of the nucleus, Smads can physically interact with regulatory 
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components of the canonical Wnt pathway such as GSK  and Dishevelled [28].  Thus, 

Smads have access to canonical Tcf/Lef transcriptional machinery by proximity to canonical Wnt 

signaling scaffolds in the cytoplasm and the ability to physically interact with β-catenin on natural 

promoter landscapes in the nucleus. 

Here, we test the hypothesis that the molecular mechanism by which Smad4 can 

integrate with β-catenin and Tcf/Lef might also serve to decrease β-catenin occupancy at 

canonical Tcf/Lef target genes, and thereby negatively impact proliferation.  Biochemical studies 

in the osteogenic lineage reveal that BMP2 signals quickly regulate cellular distribution of 

endogenous -catenin and lead to formation of transcriptionally active Smad4/ -catenin 

complexes.  Accordingly, the ability of Wnt3a or β-catenin to drive Tcf/Lef-dependent transcription 

of Cyclin-D1 is suppressed by increased levels of Smad4 and synergistically enhanced by loss of 

Smad4.  This mechanism is at least partially dependent on the DNA-binding function of Smad4 

but does not require Smad-dependent transcription or autocrine regulation of the Wnt pathway.  

In vivo and in vitro models indicate that loss of Smad4 is potent mitotic stimulus of osteoblast 

proliferation, rivaling or exceeding the mitotic effects of canonical Wnt signals.  In summary, we 

demonstrate that Smad4 operates at the Osterix+ stage of lineage commitment to promote exit 

from cell cycle during osteoblast differentiation.  Our study provides evidence that this is 

accomplished in large part via a BMP2-dependent Smad4/β-catenin interaction that antagonizes 

canonical Wnt signaling and Tcf/Lef-dependent transcription. 
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3.3 METHODS 

Genetic Mouse Models For conditional Smad4 ablation, a mouse strain harboring a 

―floxed‖ Smad4 allele (Smad4
flox

) [50] was crossed to mice expressing a Cre::ERalpha fusion 

protein under control of the Osterix promoter (Osx-CreERT2) [51].  Cre-mediated excision of the 

8
th
 exon of Smad4 is dependent on administration of Tamoxifen, an estrogen analog.  Rosa26R 

flox(LacZ)/+ 
mice [52] were also mated with Osx-CreERT2 mice to optimize a Tamoxifen regimen 

sufficient to activate Osx-driven Cre recombination in bones of adult mice and to examine the 

lineage specificity and efficiency of recombination.  Both alleles were generous gift of Dr. Henry 

Kronenberg, Harvard University).   All the mouse lines used in this project were developed in a 

mixed C57BL/BalbC background and littermates were used as controls.  Mice were fed regular 

chow ad libitum and housed in a room maintained at constant temperature (25°C) on a 12 hours 

of light and 12 hours of dark schedule.  All procedures were approved by the Animal Studies 

Committee of Washington University in St Louis.  Genotyping was performed by PCR on genomic 

DNA extracted from mouse tails using the HotSHOT method [53].  The following primers were 

used for genotyping:  Smad4:  Forward 5’-TTCAGTGGCTATTGATTTGGGCAGCGTAGC-3’, 

Reverse 5’-AAAGACCGCGTGGTCACTAAGGCACCTGAC-3’,  ROSA26: R1295, 5′-

GCGAAGAGTTTGTCCTCAACC-3′, R26F2, 5′-AAAGTCGCTCTGAGTTGTTAT-3′, R523, 5′-

GGAGCGGGAGAAATGGATATG-3′ [54]. The Osx-CreERT2 allele was detected using a pair of 

primers specific for both Cre and the ERalpha coding regions:  Forward 5’-

GAAGCAACTCATCGATTG-3’, and Osx-CreERT2 R 5’-TGGTCAGTAAGCCCATC-3’. 

In Vivo Analysis of Rosa26 flox(LacZ) Recombination Intact bones were fixed in 10% 

neutral buffered formalin for 1 hr, decalcified in 14% EDTA and stained for LacZ overnight at 

30°C with the addition of 100mM galactose to the staining solution to quench non-specific 

staining. Stained bones were post-fixed overnight at 4°C and embedded paraffin for histology.  

Sections were counterstained with Eosin or Safranin O. 
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Dkk1 Neutralizing Antibody Rat monoclonal anti-mouse Dkk1 (clone 11H10, Lot 

14073109) was a kind gift of W Richards (Amgen; Thousand Oaks, CA), was prepared in sterile 

saline and given to 8 week old mice (20 mg/kg/day, i.p.) for 5 consecutive days and on day 7. 

In Vivo Analysis of Proliferation Bromodeoxyuridine was administered to mice 2 hr 

prior to sacrifice.  Bones were fixed in 10% neutral buffered formalin, decalcified in 14% EDTA, 

and embedded paraffin for histological sectioning.  BrdU+ cells were detected in deparaffanized 

and rehydrated slides using the BrdU Staining Kit (Invitrogen; Carlsbad, CA).  Fluorescein-

conjugated strepavidin (#RPN 1232 Amersham, Buckinghamshire, England) was substituted for 

the DAB secondary detection reagents provided in the kit.  Sections were counterstained with 

DAPI and mounted with coverslips in Vectashield.  Ablation of Smad4 in Osterix+ cells caused 

widespread proliferation throughout the bone marrow compartment.  Thus, to facilitate 

visualization of BrdU incorporation in bone-adherent cells, the images in Fig. 2D were captured in 

the trochanter, which displayed very high efficiency of recombination as well as a replacement of 

marrow cells with fat. 

In Vitro Proliferation Bone Marrow Stromal Cells:  The entire marrow cavity of the shafts 

(femora and tibiae) of 2 month old mice was flushed by removing one of the epiphyses and 

centrifuging the bone at 9,000 rpm for 10 sec.  After hemolysis in a red blood cells lysis buffer, the 

material was resuspended in αMEM (Mediatech Inc., Herndon, VA), filtered through a 70 µm cell 

strainer, and pelleted by centrifugation.  Cells were resuspended in αMEM containing 20% fetal 

calf serum (FCS) and antibiotics plus osteogenic cocktail of 10mM b-glycerophosphate and 50 

mg/ml ascorbic acid and seeded in black-sided 96-well tissue culture plates at 30,000 cells per 

well.  After 4 days of differentiation, cells were treated with 10uM tamoxifen (Sigma; St. Louis, 

MO).  Twenty four hours later, BMSC were labeled with BrdU and incorporation was quantified 

using a chemiluminescent Cell Proliferation ELISA kit as per manufactures instructions (Roche, 

Mannheim, Germany). C3H10T1/2 cells: Cells were transfected with indicated combinations of 

siRNA and expression plasmids.  After 48 hours, they were deprived of serum overnight.  Media 

with serum was added back along with labeling solution and proliferation was assessed as above. 
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Materials Purified recombinant human BMP-2 (R&D Systems, Minneapolis, MN).  

Tcf/Lef-luc is pTopFlash (Promega, Madison, WI) and consists of the luciferase open reading 

frame preceded by 6 tandemly-arranged Tcf/Lef binding elements.  p12X-SBE-Luc (SBE-luc) was 

a kind gift from Dr. Di Chen (University of Texas Health Science Center) and consists of 

luciferase ORF preceded by an osteocalcin minimal promoter and 12 tandem Smad binding 

elements.  CCND1-luciferase [19]  was a kind gift from Dr. Fanxin Long (Washington University in 

St. Louis).  -catenin cDNAs were previously described [22,29,30,31] .  Wild type murine Smad4 

with an N-terminal HA-tag was a kind gift from V. Rosen (Harvard School of Dental Medicine).  

We used a previously described method [55] to generate in-frame deletion mutants and one point 

mutant.  Primers—Sigma-Aldrich (St. Louis, MO).  Smad4 and control siRNA—Ambion (Austin, 

TX).  Unless otherwise indicated, all other chemicals and reagents were purchased from Sigma. 

Cell Culture  C3H10T1/2 murine embryonic fibroblast cells (ATCC, Manassas, VA) were 

maintained in basal medium of Eagle (BME; Gibco; Carlsbad, CA) containing 10% fetal bovine 

serum (Atlas Biologicals; Fort Collins, CO), 40mM L-glutamine, 100U/ml penicillin-G, and 

100mg/ml streptomycin, and incubated at 37°C in a humidified atmosphere with 5% CO2.  MC3T3 

immortalized mouse calvaria cells were maintained in ascorbic acid free αMEM (Invitrogen; 

Carlsbad, CA) containing 10% fetal bovine serum (Atlas Biologicals; Fort Collins, CO), 40mM L-

glutamine, 100U/ml penicillin-G, and 100mg/ml streptomycin, and incubated at 37°C in a 

humidified atmosphere with 5% CO2. 

Luciferase Activity Cells (4x10
4
 cells per well of a 24-well plate) were transfected with 

plasmids and/or siRNAs using Lipofectamine2000 (Invitrogen; Carlsbad, CA) per manufacturer’s 

instructions.  Each well was transfected with indicated combinations of luciferase reporter 

(0.4ug/well), expression plasmid (0.4, 0.2, or 0.1 μg/well), or siRNAs (75, 50, or 25 nM).  

Transfection media was replaced the following day with complete media plus additional 

treatments as indicated.   Luciferase activity was quantified 72hr after transfection using Bright-

Glo luciferase substrate according to manufacturer instructions (Promega).  Since we have found 

that Renilla reporters, commonly used for normalization of transfection efficiency, were 
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significantly modulated by some treatments used in this study, Firefly activity is expressed as fold 

change relative to the control group.  Assays were repeated at least 3 times. 

Immunofluorescence Cell layers grown on chamber slides were rinsed with once with 

PBS and fixed in freshly prepared 4% paraformaldehyde for 15 min at room temperature, 

permeabilized and blocked in PBS + 0.25% Triton-X-100 and 5% normal goat serum for 30 min at 

room temperature.  Primary antibody (#9581, Cell Signaling; Danvers, MA) was prepared in PBS 

+ 0.25% Triton-X-100 and incubated for 1 hr at 37°C in a humidified chamber.  Goat anti-Rabbit 

AlexaFluor 488 and DAPI were used for visualization of -catenin and nuclei. 

Immunoprecipitation and Immunoblotting Whole cell protein extracts were collected in 

RIPA lysis buffer containing 150nm NaCl, 10mM Tris at pH 7.2, 0.1% SDS, 1.0% Triton X-100, 

1% Deoxycholate, and 5 mM EDTA.  Subcellular protein fractions were prepared as previously 

described [48].  Protein from primary marrow-free bone tissue was prepared as previously 

described [56].  Proteins were separated by SDS-PAGE, and transferred to PDVF membranes 

(Millipore; Billerica, MA).  Membranes were blocked in TBS containing 0.05% Tween-20 and 5% 

non-fat dry milk, and then probed overnight at 4°C with primary antibody in buffers recommended 

by the manufacturers.   Antigen-antibody complexes were visualized by horseradish peroxidase-

conjugated secondary antibody and HRP-detection reagent (Millipore; Billerica, MA).  Non-

denatured proteins for co-immunoprecipitation were collected in NP-40 buffer containing 150 nM 

NaCl, 20 mM Tris at pH 7.5, 1% NP40, and 5 mM EDTA.  Lysates were incubated with primary 

antibody overnight, under agitation, at 4°C.  Immune complexes were precipated using isotype-

matched Dynabeads (Invitrogen; Carlsbad, CA).  Extraction buffers were supplemented with Halt 

protease inhibitor cocktail kit (Pierce; Rockford, IL), 2 mM sodium vanadate, 10 mM sodium 

fluoride, and PMSF.  Protein concentrations were determined by BCA kit (Pierce; Rockford, IL).  

Antibodies are as follows:  -catenin (#610154, BD Transduction Laboratories); HA-tag 

(#11867423001, Roche; Indianapolis, IN); Smad4 (#7966, #7154, Santa Cruz; Santa Cruz, CA); 

TCF4 (#05-512, Millipore; Billerica, MA); -actin (#A5316, Sigma; St. Louis, MO); phosphorylated 

Lrp5/6 (#2568S, Cell Signaling; Danvers, MA); total GSK3  (#05-412, Millipore; Billerica, MA); 
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phosphorylated GSK3 (#9336, Cell Signaling; Danvers, MA); and HA-tag (#11-867-423-001, 

Roche; Indianapolis, IN). 

Oligo Pulldowns Single stranded oligos encoding complementary Smad4 binding 

elements (SBEs) and a 5’-biotin modification were resuspended in water and mixed in equal 

molar ratios.  SBE forward 5’-AGTATGTCTAGACTGA-3’.  SBE antisense 5’ 

TCAGTCTAGACATACT-3’.   Single stranded oligos were annealed into double stranded DNA in 

SCC buffer by heating to 95°C and then cooling down slowly to 25°C.  Biotinylated oligos were 

bound to Streptavidin-coated magnetic beads (Pierce; Rockford, IL) and blocked with BSA and 

poly dIdC.  Blocked beads were incubated with 10ug of nuclear extracts for 45 mins at 4°C under 

agitation. Nucleoprotein complexes were pulled down on a magnetic rack (Dynal, Carlsbad, CA) 

and washed extensively prior to eluting precipitates in 1X Laemli loading buffer. 

RNA Isolation and RT-PCR Total RNA from cells was isolated using RNeasy kit 

(Qiagen; Valencia, CA) per manufacturer’s instructions.  MessagerRNA was prepared from 

marrow free bone tissue or duodenum was prepared as previously described (Watkins 2011). 

One μg RNA was reverse transcribed using Superscript II reverse transcriptase and oligo(dT)15 

primers. Taqman® Gene expression assays (Applied Biosystems, Foster City, CA) were used per 

manufacturer’s instructions to measure Ccnd1, Dkk1 and Gapdh.  The same primers sequences 

were used for RT-PCR. 

Statistics analysis All data are expressed as the mean ± standard deviation.  Group 

means were compared by two-tailed student’s t-test; n=3. 

 

3.4 RESULTS 

3.4.1 BMP2 Stimulates the Formation of a Smad4/ -catenin Transcription Complex In the 

first set of experiments, we determined whether BMP-2 can alter β-catenin cellular distribution 

and transcriptional activity and.  First, an EGFP::β-catenin fusion protein was transfected in 

C3H10T1/2.  Transfected, serum-starved cells were treated with Lithium Chloride (LiCl, a GSK3β 

inhibitor and known activator of β-catenin nuclear translocation), BMP2, or both.  Fluorescent 



50 

 

microscopy on live cells showed EGFP::β-catenin diffusely distributed throughout the cytoplasm 

in serum-starved cells, with little if any fluorescence at the cell membrane, possibly because cells 

were subconfluent  (Fig. 1A, left).  Addition of 40 mM  LiCl (a GSK3 inhibitor and activator of β-

catenin nuclear translocation) triggered nuclear accumulation of EGFP::β-catenin, with distinct 

punctuate condensations (Fig. 1A, center).  BMP2 also caused EGFP::β-catenin nuclear 

accumulation, although some diffuse cytoplasmic signal remained (Fig. 1A, right).  To corroborate 

these findings, we also monitored cellular distribution of endogenous β-catenin in MC3T3 cells.  

In subconfluent cells in serum-free conditions, most β-catenin specific signal was found at cell 

boundaries, presumably at adhesion complexes (Fig. 1B, left). Exposure to 50 ng/mL of Wnt3a 

for 90 minutes resulted in increased β-catenin accumulation in the nucleus and a decrease in 

proximity of the cell membrane (Fig. 1B, center).  BMP2 treatment (200 ng/mL) also induced β-

catenin nuclear accumulation, but there was also a detectable diffuse cytoplasmic staining, and a 

large amount of specific staining remained at the cell membrane (Fig. 1B, right).  To determine 

whether β-catenin nuclear translocation was associated with increased transcriptional activity, 

C3H10T1/2 cells were transfected with a Tcf/Lef reporter construct (TopFlash).  Exposure to 

BMP-2 did not activate Tcf/Lef promoter activity, and in fact it inhibited LiCl activation of Tcf/Lef 

transcriptional activity (Fig. 1C), suggesting that BMP-2 recruits β-catenin away from the 

canonical Tcf/Lef transcriptional machinery.  Next, we used two approaches to test whether 

Smad4 and β-catenin physically interact.  First, Smad4 was immunoprecipitated from non-

denaturing cell lysates from serum starved C3H10T1/2 cells treated with BMP-2 for 10 minutes.  

Immunoblot analysis confirmed that the amount of Smad4 recovered from each treatment group 

was similar.  β-catenin was also detected by immunoblot in the Smad4 pellets, and the intensity 

of this band was greatly enhanced after BMP2 treatment (Fig. 1D).   Second, we used short 

biotinylated DNA oligos comprised of tandem Smad-binding elements (SBE) to pull down nuclear 

Smad-based protein complexes and determine if β-catenin was associated.  Cytosolic and 

nuclear extracts were separated from confluent MC3T3 cells treated with BMP2 (200ng/ml, 40 

min) and analyzed by immunoblot prior to oligo pull-down.  Nuclear extracts were deficient of 

Gapdh, as expected, and enriched for TCF3, TCF4, and Smad4.  In contrast to subconfluent 
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cells, β-catenin was present in both cytosolic and nuclear fractions, even in the absence of 

exogenous BMP2.  However, assessement of phosphorylated R-Smads 1/5/8 indicate that 

confluent cells had active BMP signaling occurring even prior to addition of exogenous  BMP2, 

which was not surprising given that we previously demonstrated that pre-osteoblasts begin to 

express endogenous BMP4 upon confluence [22].  When mixed with nuclear extracts, SBE oligos 

pulled down a protein complex containing Smad4, β-catenin, and TCF4.  Treatment with BMP2 

enhanced the abundance of the complex and further recruited phosphorylated (activated) 

Smad1/5/8 (all Fig. 1E).  Thus, BMP2 stimulates physical interaction of β-catenin with Smad4 and 

recruitment of β-catenin to DNA binding, nuclear complexes that also contain TCF4.  To test 

whether β-catenin can modulate Smad-dependent transcription activity, as results from the pull 

down assay suggest,  we monitored Smad-dependent luciferase activity (SBE-luc) in C3H10T1/2 

cells co-transfected with either EGFP, dominant-negative β-catenin (mutGSK C) [22,29,30], or 

constitutively active β-catenin (mutGSK) [22,31].  Loss-of-function and gain-of-function mutations 

to -catenin reciprocally regulated the Smad-dependent luciferase reporter in the absence and 

presence of exogenous BMP2 (Fig. 1F).  Importantly, loss-of-function mutation to β-catenin was 

not sufficient to abrogate a BMP2 transcriptional response, indicating β-catenin activity is 

sufficient to modulate, but not necessary for Smad-dependent transcription. 

 

3.4.2 Smad4 Expression Inversely Correlates with Tcf/Lef-dependent Transcription 

and Proliferation In support of our initial hypothesis, the evidence provided in Fig. 1 

demonstrates that BMP2 treatment stimulates recruitment of β–catenin and TCF4 to DNA 

sequences encoding Smad-binding elements. Thus, a series of experiments were conducted to 

evaluate whether this recruitment of β–catenin and TCF4 correlated with a decrease in Tcf/Lef 

dependent transcriptional activity.  We manipulated expression levels of Smad4 in C3H10T1/2 

cells, mouse embryonic fibroblasts capable of producing osteoblasts, by transient transfection of 

either small-interfering RNAs (siRNAs) targeted to murine Smad4 or an expression plasmid 

encoding HA-tagged wild type murine Smad4.  Confirming efficiency and specificity of Smad4 
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knockdown, RT-PCR analysis revealed dose-dependent (0-75nM) decreased expression of 

endogenous Smad4 mRNA, while levels of Gapdh and the closely related transcript of Smad5 

remained unchanged (Fig. 2A).  By contrast, transfection of Smad4-encoding plasmid resulted in 

dose-dependent increases abundance of HA-Smad4 protein, relative to stable levels of -tubulin 

(Fig. 2B).   To measure the effects of Smad4 silencing or over-expression on transcription, 

C3H10T1/2 cells were co-transfected with either the SBE-luc or the Tcf/Lef-luc constructs and 

either siRNAs or the HA-Smad4 expression construct.  As expected, HA-Smad4 enhanced SBE-

luc activity by >200% and silencing of endogenous Smad4 with siRNAs diminished SBE-luc 

activity by over 90% (Fig. 2C).  By contrast, Smad4 over expression reduced TopFlash activity by 

>80%, while Smad4 silencing enhanced TopFlash activity almost 100% (Fig. 2D).  Thus, Smad4 

abundance directly and positively regulates Smad-dependent transcription but inversely 

correlates with Tcf/Lef-dependent transcription.  To test this finding on a natural promoter, we 

transfected C3H10T1/2 cells with a luciferase reporter driven by the human CYCLIN-D1 promoter 

(CCND1-luc).  The CCND1 promoter contains Tcf/Lef binding elements and is a known β-catenin 

target [19].  Consistent with increased Tcf/Lef activity on an empirical promoter, co-transfection 

with Smad4 siRNA increased CCND1-luc activity 14.9-fold, thus, to a significantly larger extent 

than up-regulation by expression of a constitutively active β-catenin (mutGSK3) or Wnt3a (4.1- 

and 7.5-fold, respectively).  Importantly, expression of active -catenin or Wnt3a in Smad4 

depleted cells synergistically activated transcription on the human CCND1 promoter, producing 

43.9- and 55-fold higher luciferase activity than in cells expressing EGFP and control non-coding 

siRNAs (Fig. 2E).  Corroborating these findings, real-time PCR analysis for Ccnd1 mRNA showed 

that compared to cells expressing EGFP alone, expression of active -catenin or Smad4 silencing 

produced similar increases in abundance of Ccnd1 mRNA (1.3- and 1.4-fold) and expression of 

active -catenin in a Smad4-depleted background had an additive effect on Ccnd1 mRNA 

abundance, which was approximately double of that in control EGFP-expressing cells (Fig. 2F).  

Consistent with these changes in Ccdn1 expression, BrdU incorporation was approximately 
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doubled by expression of Wnt3a, tripled by depletion of Smad4, and quadrupled by concomitant 

expression of Wnt3a and Smad4 silencing, relative to cells expressing EGFP alone (Fig. 2G). 

 

3.4.3 Smad4 Antagonizes Transcriptional Activity on the Human CCND1 Promoter via 

DNA-binding Activity but not Smad-Dependent Transcription To generate mechanistic 

information concerning how Smad4 antagonizes CCND1 promoter activity in osteoblasts, we 

conducted a structure/function analysis of murine Smad4 in MC3T3 cells, which are immortalized 

mouse calvaria cells.  A library of Smad4 mutants were cloned based on the wild type HA-Smad4 

parental vector.  Five protein domains were individually targeted for deletion (Fig. 3A).  Loss of 

the DNA-binding (DBD) or the MH1 domain disrupts DNA-binding activity and thus transcriptional 

activity of Smad4.  We specifically designed the MH1 mutant to spare the integrity of a nuclear 

export signal (NES), which begins within the 3’ region of the MH1 domain.  The NES was 

targeted separately.  A central linker region of Smad4 contains a variety of amino residues 

targeted for post-translational modifications [32].  The MH2 domain contains specific amino acids 

shown to be involved in direct protein-protein interactions with other Smads.  Finally, we 

generated a sixth Smad4 mutant, also shown in Fig. 3A, bearing an R100T point mutation.  

Smad4-R100T is an allele discovered in human colorectal tumors [33].  The R100T point 

mutation in the N-terminal MH1 domain lies outside of the proper DNA binding motif but causes 

conformational changes rendering the protein defective in DNA-binding activity [34]. 

We first assessed the ability to over express each Smad4 construct.  MC3T3 cells were 

transiently transfected with equal amounts plasmid encoding each Smad4 mutant.  Protein 

lysates were collected 48 hours after transient transfection and analyzed by immunoblot for the 

N-terminal HA-tag of each Smad4 construct.  As expected, deletion constructs generated proteins 

that migrated appropriately faster during electrophoresis than wild type and R100T Smad4, which 

encode full-length proteins.  Deletion of the MH1 domain generates a protein that appeared to be 

more stable than other Smad4 variants.  By contrast, deletion of the MH2 domain appeared to 

cause instability of either Smad4 mRNA or protein--despite screening three unique and fully-
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sequenced MH2 clones by anti-HA immunoblot, we were unable to detect expression of an 

intact MH2 Smad4 protein (Fig. 3B).  Thus, structure/function analysis was conducted on 

wtSmad4, one point mutant (R100T), and 4 deletion mutants ( DBD, NES, MH1, and Linker).  

MC3T3 cells in which no ectopic Smad4 protein was expressed ( MH2) provided an internal 

negative control for further analysis by western blot.  We examined the possibility that Smad4 

regulates or Tcf/Lef-dependent transcription by altering the activation or integrity of the canonical 

Wnt pathway.  To determine if such a mechanism was at play, we examined abundance and/or 

phosphorylation of critical Wnt signaling molecules in protein lysates from MC3T3 cells over 

expressing Smad4.  Fig. 3C illustrates that no appreciable differences in the abundance of Tcf4, 

-catenin, or GSK3  were detected in response to increased expression of either wild type or 

mutant Smad4.  Phosphorylation of Lrp5, Lrp6, and GSK3 were also normal.  These data 

suggest Smad4 does not alter expression of or signaling through essential components of the 

canonical Wnt pathway in MC3T3, eliminating the possibility of an autocrine or paracrine mode of 

antagonism. 

In C3H10T1/2 cells, decreased Smad4 expression significantly upregulates promoter 

activity on TopFlash and CCND1-luciferase reporters (Figs. 1D-E), while elevated Smad4 

expression has the opposite effect and attenuates Tcf/Lef- and CCND-luciferase activity.  To 

determine if this mechanism is operative in additional cell types, MC3T3 cells were co-transfected 

with CCND1-luciferase and wild type Smad4.  Wild type Smad4 diminished CCND1-luciferase 

activity in MC3T3 cells by approximately 70% compared to control cells receiving an empty 

expression plasmid (Fig. 3D).  This suppressive effect was not dependent on the nuclear export 

signal or the linker domain of Smad4, as NES and Linker Smad4 mutants reduced CCND1-

luciferase by a magnitude comparable to the effect of wild type Smad4.  Compared to the 66% 

reduction of CCND1-luciferase activity induced by wildtype Smad4, MH1, DBD, and R100T 

reduced this activity by approximately 27%, 41%, and 33%.  The ability of Smad4 to suppress 

CCND1-promoter activity at least partially depends on a function of the DNA-binding motif. 
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Since DNA-binding activity is required for Smad4 to operate as a transcription factor, we 

next determined whether Smad-dependent transcription was necessary for Smad4 to suppress 

CCND1.  MC3T3 calvaria cells were co-transfected with SBE-luc and wild type or mutant Smad4.  

There was a fair amount of basal SBE-luc activity in cells transfected with an empty expression 

plasmid, corroborating the presence of phosphorylated Smads1/5/8 in untreated cell lysates (Fig. 

1E).  However, we have previously demonstrated this basal activity is dependent on endogenous 

production of BMP2/4 production [22] as well as expression of endogenous Smad4 (Fig. 3E).  

Basal SBE-luc activity was increased to about 200% in BMP2 treated cells, 500% in cells over 

expressing wild type Smad4, and 800% in BMP2 treated cells over expressing wildtype Smad4.  

NES is as transcriptionally active as wildtype Smad4, but is insensitive to BMP2.  This is 

expected since BMP signals enhance Smad signaling via kinase reactions in the cytoplasmic 

compartment and loss of the nuclear export signal should maintain NES in the nucleus [35].  

Deletion of the MH1, DBD, Linker domains all resulted in loss of canonical Smad4 function as 

none of these mutants increased SBE-luciferase activity above baseline.  In fact, MH1 and 

DBD were slighty inhibitory on basal SBE-luc activity, indicating these mutants may be 

dominant-negative as well as loss-of-function.  Additionally, MH1, DBD, and Linker were all 

rendered insensitive to BMP2 stimulation in MC3T3 cells.  An R100T point mutation similarly 

resulted in loss of function which was insensitive to BMP2.  Since loss of the Linker domain 

renders Smad4 transcriptionally dead and insensitive to BMP2 stimulation but maintains its ability 

to suppress CCND1 promoter activity, these results suggest that Smad4-dependent transcription 

is not required for the ability of Smad4 to antagonize canonical Wnt signaling. 

 

3.4.4 Acute Postnatal Ablation of Smad4 in Osterix+ Cells Enhances Proliferation in 

Bone -catenin acts through Tcf/Lef proteins to stimulate proliferation in many cell types of the 

body.  In keeping with this model, conditional activation of -catenin in Osterix+ cells using Osx1-

GFP::Cre stimulates proliferation of osteogenic cells in bone [2].  Based on our preliminary data, 

we hypothesized that loss of Smad4 in Osterix+ cells should also stimulate proliferation of 
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osteogenic cells in bone.  The Osx1-GFP::Cre allele used by Rodda and MacMahon to activate -

catenin is first expressed at stage E14.5 during development.  Since osteoblasts can survive very 

long periods of time as osteocytes (decades in humans [36]), we considered whether the Osx1-

GFP::Cre model was appropriate to test our hypothesis.  An abundance of in vitro and genetic 

studies indicate a paramount role for the BMP and greater TGF  signaling pathway in osteoblast 

biology.  Since Smad4 is a canonical mediator of BMP/TGF  signaling, long term deficiency of 

Smad4 might result in an accumulation of Tcf/Lef-independent signaling defects that could 

negatively impact the competency of an osteogenic cell in an adult mouse to respond to a pro-

mitotic stimulus.  Thus, to study the effect of Smad4 ablation on proliferation in bone, we induced 

acute ablation of floxed Smad4 alleles [37] in otherwise normal, healthy osteoblasts of adult mice 

using the Tamoxifen-dependent Osterix-CreERT2 allele [38]. 

To optimize a Tamoxifen treatment regimen sufficient to activate CreERT2-dependent 

gene recombination, and to evaluate the lineage specificity of Osterix-CreERT2 in adult bone, we 

first generated ROSA26
fl(LacZ)/+

; Osterix-CreET2 mice.  In this model, Tamoxifen-dependent and 

Cre-mediated recombination activates expression of a -galactosidase reporter gene which is 

preceded by a floxed stop codon.  Thus, LacZ expression should be activated only in Tamoxifen-

exposed cells expressing the osteogenic transcription factor, Osterix.  Whole tissue analysis of 

LacZ activity in bones from these mice indicates that five consecutive doses of Tamoxifen 

(100mg/kg/day, Fig. 4A) are sufficient to induce substantial Cre-mediated recombination in the 

femurs (Fig. 4B-D) and tibia (Fig. 4E-F).  Histological examination of these bones revealed strong 

-galactosidase activity in a high percentage of cells lining the cortical and trabecular bone 

surfaces.  Rarely, LacZ expression was present in clonal populations of chondrocytes (data not 

shown).  We did not find evidence that any cells in the bone marrow space had been recombined 

(Fig. 4C).  The Osterix-CreERT2 allele represents an effective genetic model to achieve post-

natal gene recombination in bone with high specificity for the osteoblast lineage. 

We administered the optimized Tamoxifen treatment regimen to Smad4
flox/flox

; Osx-

CreERT2 mice (Fig 4A).  Since Tamoxifen is an analog of estrogen, the study was restricted to 6 
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week old male mice.  Tamoxifen can exert anti-proliferative activity on some cells.  However, this 

agent has a short half-life in mice.  Thus, to circumvent any potential anti-proliferative effects of 

Tamoxifen treatment, mice were allowed metabolize any residual Tamoxifen for 3 days after the 

last dose.  Following this recovery period, actively dividing cells were labeled in vivo by giving 

mice a single injection of BrdU 2 hours prior to sacrifice (Fig. 4A).  To visualize changes in 

proliferation in bone following conditional ablation of Smad4 in osteoblasts, we performed anti-

BrdU immunofluoresence on paraffin-embedded sections of the femur and counterstained each 

section with DAPI.  Examination of stained sections by fluorescence microscopy revealed that the 

abundance of BrdU+ cells in Tamoxifen treated Smad4
flox/flox

; Osx-CreER
T2

 mice (Fig. 4G, right) 

was vastly increased in comparison to Tamoxifen-treated Smad4
flox/flox 

mice ( Fig. 4G, left).  

Importantly, the abundance of BrdU+ cells in femurs from Tamoxifen-treated Smad4
flox/+

; Osx-

CreER
T2

 mice (Fig. 4G, center) was less than in cKOs but still greater than in cWTs.  Changes in 

osteoblast proliferation following ablation of Smad4 in Osterix+ cells, depicted in Fig. 4G, are 

representative of reproducible results from 5 independent experiments.  The pro-mitotic effect of 

Smad4 ablation was particulary evident in cells sitting directly on the trabecular bone surfaces of 

the primary and secondary spongiosa.  These data directly support our hypothesis that Smad4 

antagonizes proliferation in the osteogenic lineage.  Moreover, the anti-proliferative effect of 

Smad4 is sensitive to loss of a single allele, indicating that the concentration-dependent effect of 

Smad4 siRNAs in cell culture translates into a gene-dosage dependent effect in vivo. 

 

3.4.5 Postnatal Ablation of Smad4 in Osterix+ cells Enhances Osteoblast Proliferation 

more than Inhibition of Dkk1 Our in vitro studies provide evidence that loss of Smad4 is 

equally, if not more potent, than Wnt3a/ -catenin signals in stimulating proliferation of 

osteoprogenitors.  We used the Smad4
flox/flox

; Osx-CreER
T2

 mouse model to compare the pro-

mitotic effect of Smad4 ablation versus canonical Wnt/ -catenin signaling.  To activate canonical 

Wnt signaling in vivo, we used an antibody to neutralize the Wnt receptor antagonist, Dkk1 [39].  

The secreted Wnt antagonist, Dkk1, is highly expressed in bone and attenuates endogenous Wnt 
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signaling by forming a heteromeric complex with Kremen proteins and the canonical Wnt 

receptors, Lrp5 and 6 [40].  This complex undergoes clathrin-mediated endocytosis, thereby 

downregulating the abundance of cell surface Lrp5/6 receptors available for activation by Wnt 

ligands [41].  Lrp5 activity can affect bone indirectly through the enterochromaffin cells in the 

duodenum [42] or directly through osteoblasts in bone.  However, RT-PCR (Fig. 5A) and qPCR 

on primary tissues from Smad4
flox/flox

 mice (Fig. 5B) indicate that expression of the pharmacologic 

target of anti-Dkk1 is high in bone and below detection in the duodenum.  Thus, contribution by 

endocrine signaling from the GI to bone is probably minimal in this model.  Since anti-Dkk1 

antibody is administered systemically, we performed basic molecular pharmacology to determine 

if it can drive activation of -catenin locally in bone.  Immunoblot on marrow-free femoral bone 

tissue demonstrates that a single dose of anti-Dkk1 dramatically upregulates Lrp5 and -catenin 

protein levels in bone, an effect seen within 15 and 30 minutes of a single injection.  

Administration of anti-Dkk1 is associated with the appearance of high molecular weight species of 

-catenin not usually seen in cell cultures with the same antibody, suggesting extensive and rapid 

post-translational modifications in primary bone tissue (Fig. 5C-D).  To examine the mitotic effect 

of Wnt pathway activation on osteoblasts in vivo, Smad4
flox/flox

 and Smad4
flox/flox

; Osx-CreER
T2

 

mice were given 5 consecutive daily doses of Tamoxifen, either alone or in combination with 

Dkk1 neutralizing antibody (Figure 5F).  Three days after the last dose of Tamoxifen, mitotic cells 

were labeled with a single dose of BrdU 2 hours prior to sacrifice.  Immunofluorescence was used 

to detect mitotic BrdU+ cells in histologic sections of the tibia.  Osteoblast proliferation was 

analyzed in the primary spongiosa based on the substantial amount of ROSA26
fl(LacZ)/+

; Osterix-

CreET2 recombination below the growth plate where osteoblasts are easily distinguished from 

growth plate chondrocytes and other constituent cells of the bone marrow (Figs. 4E-F).  Antibody-

mediated inhibition of Dkk1 produced a 55% increase in osteoblast proliferation compared to 

controls (Fig. 4G).  By contrast, ablation of Smad4 increased proliferating cells by 213%, an effect 

more than 4-fold higher than that of anti-Dkk1.  Treatment of Smad4-ablated mice with anti-Dkk1 

did not have an additional effect on proliferation, (Fig. 4G, 193% vs. Tam-treated controls).  We 
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also monitored proliferation of primary bone marrow stromal cells (BMSC), a source of osteoblast 

progenitors, following Tamoxifen-induced ablation of Smad4 and treatment with Wnt3a.  

Confluent BMSC were differentiated in ascorbic acid for 3 days, treated overnight with Tamoxifen 

(10uM in media), and labeled with BrdU to measure proliferation by luminescence.  Proliferation 

of BMSC was enhanced 68% by Wnt3a, 55% by treatment with Tamoxifen, and 205% by 

combined treatment.  These results demonstrate that loss of Smad4 is a mitotic stimulus to 

primary osteoblasts, providing equal or stronger proliferative cues that canonical Wnt signaling. 

 
3.5 DISCUSSION 

 

Our studies illuminate a novel role for Smad4, a transcription factor of the greater TGF  

superfamily, in modulating pro-mitotic canonical Wnt signals and proliferation in the osteogenic 

lineage.  A post-natal analysis of proliferation in bone demonstrates that Osterix+ cells residing 

on the endocortical bone surface are generally not mitotic, but retain a proliferative capacity that 

can be reactivated by acute genetic ablation of Smad4.  Mechanistic in vitro studies reveal that 

Smad4 attenuates expression of the pro-mitotic gene, Cyclin-D1, by antagonizing canonical 

Wnt/ -catenin signaling at the level of Tcf/Lef-dependent transcription.  Antagonism of CCCN-D1 

promoter activity by Smad4 requires a function of the Smad4 DNA-binding motif, but not Smad-

dependent transcription.  We propose that -catenin and Smad4 play opposing roles to control 

proliferation of osteoprogenitors. 

A fundamental objective of our work is to examine how the BMP and canonical Wnt/ -

catenin pathways interact on a genetic and molecular level to regulate the formation and function 

of osteoblasts.  Importantly, machinery for canonical Wnt and BMP signaling is expressed at 

many, if not all, stages of the osteoblast lifecycle including cell fate specification, progenitor 

proliferation, exit from cell-cycle, acquisition of mineralizing function, and programmed cell death.  

It is only reasonable to expect that the mechanism of interaction between these two pillar 

pathways must be multi-faceted in order to provide stage-specific information.  For example, we 

previously demonstrated that during cell fate specification, catenin operates downstream of 

BMP signals to promote osteoblast and suppress adipocyte cell fate.  While, the C-terminal 
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transactivation domain of -catenin was required to inhibit adipogenesis, it was dispensible for 

stimulating osteoblastogenesis [22].  Here, we have utilized genetic and molecular methods to 

manipulate Smad4 expression in cells of the osteogenic lineage to characterize how BMP and 

canonical Wnt/ -catenin signals interact to define the boundary between proliferative and post-

mitotic phases of osteoblast formation. 

Tcf/Lef-dependent transcription and expression of Cyclin-D1 inversely correlate 

with Smad4 levels  We demonstrate using two independent cell lines that ectopic expression of 

wildtype Smad4 diminishes transcriptional activity on empirical and natural promoters containing 

Tcf/Lef-binding elements.  The opposite result was obtained by reducing endogenous Smad4 

levels, which was sufficient to stimulate Tcf/Lef-dependent transcriptional activity and 

synergistically enhanced the response to ectopically expressed Wnt3a or constitutively activated 

-catenin.  We conducted studies to understand the mechanism of action for antagonism of Wnt 

signaling by Smad4.  Results show that essential Wnt signaling components are expressed 

normally, and the abundance of -catenin, phosphorylated Lrp5/6 and phosphorylated GSK3  

remain unchanged 48 hours after introduction of Smad4.  Thus, antagonism of Tcf/Lef activity by 

Smad4 does not likely involve changes in the abundance of a secreted molecule which can 

negatively regulate the canonical Wnt pathway via action at the plasma membrane.  These data 

instead suggested an intracellular mechanism of action.  Thus, we performed a structure /function 

analysis on Smad4.  We were not able to evaluate the contribution of the MH2 domain to 

suppressive activity of Smad4 due to inability to achieve expression of this mutant in our cell 

model.  However, these experiments did reveal that while the nuclear export signal and linker 

domains are dispensible, the MH1 and DNA-binding motif are necessary for full suppressive 

effect.  An R100T point mutation that disrupts the tertiary protein structure of Smad4 necessary 

for DNA-binding activity also disrupted Smad4 suppressive effect.  Since DNA-binding activity is 

necessary for Smad4-dependent transcription, we considered the possibility that Smad4 induced 

expression of an intracellular Wnt antagonist.  However, loss of the Smad4 linker region and the 

R100T mutation were both sufficient to abrogate canonical Smad4 transcriptional activity and yet 
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each mutant was still able to antagonize CCND1 promoter activity.  Thus, the role for Smad4-

dependent expression any kind of Wnt regulatory molecule is unlikely.  Nevertheless, the finding 

that expression of Smad4
R100T

 on a wild type Smad4 background was sufficient to block BMP 

transcriptional response and also reduce the ability of Smad4 to downregulate CCND1 means its’ 

biological activity is dominant over wildtype protein.  Smad4 is a tumor suppressor, although it is 

still not clear exactly how this function is fulfilled.  The presence of a single copy of Smad4
R100T

 

can cause tissue hyperplasia, particularly in the digestive tract where loss or mutation to Smad4 

causes Juvenile Polyposis Syndrome (JPS).  JPS is a rare, hereditary autosomal dominant 

condition characterized by pathobiologic growth of polyps and an elevated risk of gastrointestinal 

adenocarninomas.  It is intriguing to consider that one manner Smad4 may function as a tumor 

suppressor could in fact be related to how -catenin functions as a proto-oncogene—loss of 

BMP/Smad4 signaling and activation of Wnt/ -catenin pathway can both upregulate Tcf/Lef 

transcriptional activity.  Therefore, our finding that Smad4 antagonizes proliferation and pro-

mitotic Wnt/ -catenin signaling in osteoblasts may have broader implications if the same 

mechanism is operative in other tissues where BMP and Wnt pathways interact to control 

proliferation and differentiation. 

 

Post-natal Ablation of Smad4 Reactivates Proliferation in Differentiating 

Osteoblasts Because in vitro loss of Smad4 altered expression of the Tcf/Lef target gene Cyclin-

D1, a fundamental gene involved in coordination of cell cycle, we conducted an in vivo analysis to 

examine the role of Smad4 in controlling proliferation in osteoblasts.  Genetic activation of -

catenin stimulates proliferation of differentiating and mostly non-mitotic Osterix+ cells in bones of 

growing mice [2].  Therefore, though mostly non-mitotic, Osterix+ cells in bone retain the 

machinery required to re-enter cell cycle and provide an ideal model to evaluate the role of 

Smad4 in osteoblast proliferation.  Using the Osx-CreER
T2 

mouse model [38], we demonstrate 

that acute loss of a single allele of Smad4 in Osterix+ cells activates proliferation of cells sitting 

directly on the endocortical bone surface, an effect which was enhanced by loss of both copies of 
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Smad4.  Importantly, we demonstrate in C3H10T1/2 cells and in mice that loss of Smad4 

provides an equal and often more powerful mitotic stimulus that activation of the Wnt pathway 

alone.  Importantly, we further show that loss of Smad4 has a synergistic effect on Tcf/Lef-

dependent transcription and can enhance Wnt-mediated proliferation.  Given the abundance of 

data implicating Smad4 as a tumor suppressor and -catenin a proto-oncogene, this interaction 

may be operative in other tissues and suggests that cell types under high levels of Wnt activity 

may be more susceptible to hyperplasia or oncogenic events following loss of Smad4. 

The Osx-CreER
T2 

mouse model represents a relatively new method of conducting genetic 

studies in bone [38,43].  We show that administration of Tamoxifen activates substantial and 

acute post-natal gene recombination with a high degree of specificity for cells on the endocortical 

surfaces of the femur and tibia.  Osterix expression persists in terminally differentiated osteocytes 

(Zhou 2010 PNAS).  However, we detected very little evidence of LacZ expression in matrix-

embedded cells.  Since we do see recombination of the ROSA26
fl(LacZ)

 allele in matrix-embedded 

osteocytes using a related CreLox model, Osx1-GFP::Cre, the lack recombination by Osx-

CreER
T2 

in osteocytes might be due to low bioavailability of Tamoxifen in the bone matrix.  

Osterix is expressed at very low levels in mature chondrocytes, so recombination in clonal 

populations of chondrocytes was expected, but was minimal and did not affect the objectives of 

our study.  LacZ analysis produced no evidence of recombination in the bone marrow.  

Accumulating evidence indicates that osteoblasts can exert non cell-autonomous control over 

other cells types in bone.  Thus, it was quite intriguing to find that Tamoxifen-induced deletion of 

Smad4 in osteoblasts reproducibly triggered a massive burst of proliferation in the bone marrow 

compartment (data not shown).  Our preliminary data suggest that expression of Smad4 

specifically in Osterix+ cells controls the proliferative capacity of the bone marrow, although these 

studies were beyond the scope of this work. 

A Competitive Recruitment Model Our data demonstrate that BMP2 stimulation causes 

a rapid increase in the abundance of nuclear -catenin.  Titrating the dose of BMP2 did not 

change the abundance of responding cells (Fig. 4E) but rather increased abundance of -catenin 
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present throughout the cell, particularly at areas of dense cell-cell contact (data not shown).  

Importantly we and others have shown that even 48 hours of BMP2 stimulation does not increase 

Tcf/Lef-dependent luciferase activity.  BMP2 treatment resulted in a cellular distribution pattern of 

endogenous -catenin that was distinct from that found in either serum-deprived or Wnt3a-

stimulated cells.  This unique cellular distribution may be related to the ability of BMP2 to induce 

rapid physical interaction between β-catenin and Smad4.  Since Smad4 is a DNA-binding protein, 

recruitment of β-catenin to Smad4-binding elements is expected to decrease the abundance of β-

catenin available to bind to Tcf/Lefs.  This model implies that Smad4 antagonizes Tcf/Lef-

dependent transcription through its ability to interact with β-catenin and bind to DNA.  Thus, we 

propose that increased expression of Smad4 reduces the abundance of -catenin available to 

bind at Tcf/Lef gene targets.  And conversely, loss of Smad4 or loss of Smad4 DNA-binding 

activity alleviates antagonism at Tcf/Lef-dependent promoters by liberating a pool of β-catenin 

found in DNA-associated Smad4 complexes.  In this model, -catenin becomes a rate-limited 

transcription factor.  This model accommodates the ability of Smad4, -catenin, and Tcf/Lefs to 

integrate and synergize on promoters containing both Smad and Tcf/Lef binding sites.  Hence, in 

addition to the existence of gene targets which are synergistically regulated by Wnt and BMP, 

such c-Myc, there should also a category of competitive gene targets, such as CCND1. 

Mitotic versus Osteoanabolic Canonical Wnt/ -catenin Signaling In this work we 

have focused on the pro-mitotic function of canonical Wnt signaling.  However, it is essential to 

discuss two issues.  First, expression of -catenin is maintained through mitotic, bone-forming, 

and post-mitotic stages of the osteoblast lifecycle.  Second, canonical Wnt/ -catenin signaling 

can be potently osteoanabolic [2].  In fact, knowledge of a biologic role for Wnts in bone arose 

from the discovery that loss- and gain-of-function mutations to the Wnt co-receptor, Lrp5, 

manifest clinically as low and high bone mass syndromes in humans [44,45,46].  And, antibody-

mediated neutralization Wnt of antagonists, like Sclerostin and Dikkhopf-1, represents the 

currently emerging clinical therapies for treatment of osteoporosis [47].  So an intriguing question 

is how Wnt/ -catenin signals are refined into mitotic versus osteoanabolic cues.  Given the 
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fundamental role for BMP signaling in osteoblasts, we hypothesize that BMP/Smad4 activity 

attenuates mitotic -catenin cues to promote exit from cell cycle while enhancing anabolic -

catenin cues to facilitate maturation and function of osteoblasts.  Indeed, we have previously 

shown that enhanced expression of -catenin synergizes with BMP2 to promote 

osteoblastogenesis and new bone formation [22,48].  Our model implies that integrity of 

BMP/Smad4 transduction pathway signaling is necessary for canonical Wnt/ -catenin signaling to 

manifest an osteoanabolic response.  This remains to be tested, and clearly further investigation 

is needed to define the genetic requirement for various components of the BMP signaling 

pathway in osteoblasts.  Several studies using transgenic expression of BMP antagonists or 

mutant BMP receptors have provided some early information on the role of pathway in vivo 

[5,6,7,8,9,10,11,12].  However, phenotypic analysis using a systematic gene ablation approach 

remains to be assembled, much in the way multiple labs have collectively conducted genetic 

analysis of the Wnt pathway in bone.  BMP signaling is complex, but a specific role for Smad4 in 

osteoblast function is emerging as deficiency of Smad4 in fully differentiated Osteocalcin+ 

osteoblasts significantly impedes post-natal growth, regulates bone resorption, and leads to 

generalized osteopenia in mice [49].  As was shown with genetic analysis of -catenin in bone, 

timing of genetic ablation is critical for understanding the multifaceted role a single molecule at 

discrete stages of the osteoblast lifecycle.  Thus, it will be interesting to see whether BMP/Smad4 

signaling also exerts stage-specific effects on bone formation, post-natal skeletal homeostasis, 

and response to osteoanabolic Wnt signaling. 
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3.7 FIGURE LEGENDS 

Figure 3.1 -catenin translocates to the nucleus and physically associates with Smad4 to 

modulate the transcriptional response to BMP2.  (A) Fluorescence microscopy monitoring 

subcellular distribution of a chimeric EGFP:: -catenin protein expressed in C3H10T1/2 cells by 

transient transfection. (B) Subconfluent MC3T3 cells were serum starved, treated 3h with Wnt3a 

or BMP2.  Endogenous -catenin was localized by immunofluoresence. (C) Tcf/Lef-dependent 

luciferase activity in C3H10T1/2 cells in response to lithium chloride, BMP2, or both. p<0.05 vs. 

(*) Control or (#) Lithium. (D) Smad4 was immunoprecipitated from non-denatured protein lysates 

of serum-starved or BMP2 treated C3H10T1/2 cells and immunoblotted for Smad4 or -catenin. 

(E) Cytosolic and nuclear proteins from confluent MC3T3 cells were analyzed by immunoblot to 

characterize distribution and abundance of various Wnt and BMP transcription factors after 40 

mins of BMP2 treatment.  Biotinylated oligos encoding Smad-binding sequences were used to 

pull down DNA-binding protein complexes from nuclear extracts. (F) Smad-dependent luciferase 

was quantified after BMP2 treament in C3H10T1/2 cells expressing EGFP, constitutively active, 

or dominant-negative catenin. p<0.05 vs. (*) EGFP or (#) EGFP + BMP2.  

Figure 3.2 Smad4 expression inversely correlates with Tcf/Lef-dependent transcription. (A) 

C3H10T1/2 cells were transfected with non-targeted control or Smad4-specific small interfering 

RNAs and assessed for specificity and efficiency of Smad4 knockdown by RT-PCR. (B) 

Alternatively, C3H10T1/2 cells were transfected with expression plasmids encoding wildtype HA-

Smad4, then assessed by immublot for transgene expression. Cells expressing increasing 

amounts of HA-Smad4 (black solid lines) were transfected with luciferase reporters to assess 

Smad-dependent transcriptional activity (C) or Tcf/Lef-dependent transcriptional activity (D). 

Effects of empty pcDNA3 are expressed as black hatched lines. Cells with dose-dependent 

knockdown of Smad4 (grey solid lines) were tranfected with luciferase reporters to measure 

Smad-dependent (C) or Tcf/Lef-dependent (D) transcriptional activity. Effects of control siRNAs 

are expressed as grey hatched lines. p<0.05 vs. (*) Control siRNA or (#) pcDNA3. Luciferase 



70 

 

activity driven by the human CYCLIN-D1 promoter was monitored in C3H10T1/2 cells in response 

to expression of EGFP, constitutively activated -catenin, or Wnt3a either in the presence (grey 

bars) or absence (black bars) of Smad4. p<0.05 vs. (*) Control or (#) Smad4 siRNA. (F) Real time 

PCR was used to measure expression of endogenous Cyclin-D1 mRNA in C3H10T1/2 in 

response to expression of EGFP or constitutively activated -catenin in the presence (grey bars) 

or absence (black bars) of Smad4. p<0.05 vs. (*) Control or (#) Smad4 siRNA.  (G) Proliferation 

of C3H10T1/2 cells, as a function of BrdU incorportation, was monitored in response to 

expression of EGFP (grey bars) or Wnt3a (black bars). p<0.05 vs. (*) EGFP + Control siRNA, 

Wnt3a + control siRNA, or ## EGFP + Smad4 siRNA.  

Figure 3.3 Antagonism of CCND1 promoter activity is partially dependent on Smad4 DNA-

binding activity, but independent of Smad transcriptional activity or autocrine regulation 

of canonical Lrp5/6 pathway.  (A) Structure of wild type Smad4 and mutagenesis strategy 

targeting the MH1, linker, and MH2 domains, the nuclear export signal and motifs critical for DNA-

binding activity.  (B) Anti-HA immunoblot analysis for expression of HA-Smad4 mutants in MC3T3 

cells following transient transfection of expression plasmids.  (C) Immunoblot analysis on MC3T3 

cells to examine the abundance and phospho-regulation of critical components of the canonical 

Lrp5/6 pathway.  MC3T3 cells expressing the Smad4 mutants were transfected with a luciferase 

reporter to examine which domains of Smad4 are required to either (D) attenuate transcription on 

the human CCND1 promoter or (E) enhance BMP2 response on an empirical Smad-dependent 

promoter.  (D) p<0.05 vs. (*) pcDNA3, or (#) wild type Smad4. (E) p<0.05 vs. (*) pcDNA3 + 

vehicle control or (#) pcDNA3 + BMP2.  

Figure 3.4 Post-natal tamoxifen-dependent ablation of Smad4 in Osterix+ cells activates 

proliferation of osteoblasts.  (A) Treatment Schema—Five consecutive daily injections of 

tamoxifen (100 mg/kg i.p).  Mitotic cells were labeled with BrdU 2 hours prior to sacrifice on day 8.  

(B) After treatment with Tamoxifen or vehicle, intact femurs from Rosa26
flox(LacZ)/+

; Osterix-

CreERT2 mice were stained to detect recombination-dependent expression of -galactosidase.  
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LacZ staining was further evaluated by histology to determine efficiency and specificity of 

tamoxifen-dependent recombination in osteoblasts.  Eosin counterstain shows Osx-CreERT2 

activates the LacZ reporter in endocortical osteoblasts of the diaphysis (C), trabecular osteoblasts 

in primary ossification centers (D-E), but not in the bone marrow compartment (C and D).  Eosin 

(E) and Safranin O (F) counterstain of the proximal tibia demonstrates that OsxERT2- mediated 

recombination is efficiently restricted to osteoblasts in the primary spongiosa (PS) and generally 

excluded from chondrocytes in the growth plate (GP).  Hatched black brackets demarcate the 

representative anatomical location used for analysis in Figure 5E-G.  (G) Smad4
+/+

, Smad4
flox/+

; 

Osterix-CreERT2, and Smad4
flox/flox

; Osterix-CreERT2 mice were treated with tamoxifen and BrdU 

as indicated in Fig4A.  Mitotic cells in bone were visualized by BrdU immunofluorescence and 

DAPI. Fluourescence microscopy was used to capture images of BrdU+ cells in the proximal 

femur.  

Figure 3.5 The mitotic response to ablation of Smad4 in Osterix+ cells is stronger than the 

response to inhibition of Dkk1 (A) Reverse-transcription PCR to examine Dkk1 expression in 

marrow-free bone or duodenum.  (B) Quantitative PCR to compare Dkk1 levels in bone and 

duodenum.  (C) Treatment schema to examine acute effects of anti-Dkk1 on bone-specific 

signaling.  (D) Western blot analysis on marrow-free bone tissue from mice given a single 

injection of Dkk1 neutralizing antibody (20 mg/kg, i.p.).  (C) Treatment Schema. Five consecutive 

daily injections of tamoxifen (100 mg/kg i.p) and 6 consective doses of Dkk1 neutralizing antibody 

(20 mg/kg i.p).  (E) Mitotic cells in the trabecular compartment of the primary spongiosa were 

visualized by BrdU immunofluorescence.  (F) Treatment schema to compare proliferative effects 

of anti-Dkk1 and Smad4 ablation.  (G) BrdU+ cells in the trabecular compartment between the 

growth plate and the medullary cavity were counted.  Acute post-natal loss of Smad4 provides a 

stronger mitotic stimulus than anti-Dkk1 treatment.  (H) Adherent bone marrow stromal cells from 

Smad4
flox/flox

; Rosa26
flox(LacZ)/+

; Osterix-CreERT2 mice were seeded to confluence and allowed to 

differentiate for 3 days prior to treatment with Tamoxifen (10uM) and subsequently rWnt3a 

(5ng/ml).  (I) Mitotic cells were labeled with BrdU to quantify proliferation by luminescence. 
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3.8 FIGURES 

Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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CHAPTER 4 

 

Smad4 Coordinates R-Smad and p38 Signaling in 
Osteoblasts and is Required for Bone Anabolic 

Response to Canonical Wnt Signaling  
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4.1 ABSTRACT 

-catenin and BMP signaling synergize to promote osteoblast differentiation and bone 

formation.  To examine the molecular mechanisms underlying this cooperative interaction, we 

tested whether canonical Wnt signaling can generate bone anabolic cues in mice and cells with 

osteoblast-specific ablation of Smad4, a key mediator of the BMP and greater TGF-beta pathway.  

Smad4
Flox/Flox

; Osx1-Cre mice exhibit a lethal post-natal skeletal phenotype characterized by 

stunted growth, dramatic hypomineralization of skeletal and dental structures, a persistence of 

medullary trabeculation, and clavicle hypoplasia.  Mechanistically, Smad4 links R-Smad and p38 

MAPK pathways in bone to regulate collagen biochemistry and protect osteoblasts from 

Caspase-3 associated cleavage of -catenin.  Accordingly, Smad4–deficient osteoblasts do not 

mineralize in response to BMP2 or Wnt3a.  And conditional Smad4-deficient mice fail to form new 

bone following in vivo administration of Dkk1-neutralizing antibody.  In summary, Smad4 

regulates collagen processing, promotes osteoblast survival, and is necessary, indirectly, for 

manifestation of osteoanabolic Wnt cues. 
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4.2 INTRODUCTION 

During endochondral bone development, chondrocytes construct an avascular cartilage 

template which is converted to a mineralized skeletal structure by the orchestrated invasion of 

blood vessels, cartilage-resorbing cells of the monocyte lineage known as osteoclasts, and 

mesodermally derived bone-forming cells called osteoblasts (Maes et al.).  The skeleton 

undergoes constant remodeling by osteoblasts and osteoclasts throughout post-natal life.  Two 

pillar pathways contributing to skeletal developmental and postnatal skeletal homeostasis are the 

Bone Morphogenetic Protein (BMP) and the canonical Wnt (cWnt) signaling systems. 

BMP2 and BMP4, members of the TGF-β superfamily, are together necessary 

(Bandyopadhyay et al., 2006) and each sufficient (Kang et al., 2004; Wozney et al., 1988) to drive 

de novo bone formation.  Accordingly, bone formation is diminished by transgenic expression of 

the BMP2/4/7 antagonists Noggin and Gremlin (Devlin et al., 2003; Gazzerro et al., 2005) in 

bone; and mice with Bmpr1a or Smad4 ablation in mature Col1A1- or Bglap-expressing 

osteoblasts display low bone formation with decreased resorption (Kamiya et al., 2008a; Kamiya 

et al., 2008b; Mishina et al., 2004; Tan et al., 2007), underscoring direct action by BMPs on 

osteoblasts in vivo.  Further in vivo work is needed to characterize the roles and molecular 

mechanisms of action for BMP receptors, Smads1/5/8, and Smad4 in early osteoblasts.  BMP 

receptors activate canonical Smad and non-canonical kinase pathways, which by historic models 

are believed to act independently (Moustakas and Heldin, 2009; Zhang, 2009).  Studies in 

condrocytes instead provide compelling evidence that BMP signals unify R-Smads1/5/8, p38 

MAPK, and TAK1 MAPKKK activity in cartilage (Greenblatt et al., ; Gunnell et al., 2010; Retting et 

al., 2009; Shim et al., 2009; Zhang et al., 2005).  Mice with genetic ablation of any of these 

molecules display strikingly similar phenotypes of dwarfism secondary to reduced proliferation 

and increased apoptosis of chondrocytes, as well as delayed vascular invasion and resorption of 

cartilage from the medullary cavities.  One study suggests R-Smad and TAK1/p38 pathways are 

linked in osteoblasts as in chondrocytes (Greenblatt et al.), warranting additional genetic studies 

and representing a potential need for adjustments to BMP signaling paradigms in connective 

tissue types. 
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Wnt ligands signal through a Frizzled and Lrp5/6 heteromeric receptor complex to 

release β-

it co-activates Tcf/Lef-dependent gene expression.  Gain- and loss-of-function mutations to the 

Wnt co-receptor, LRP5, are the underlying cause of high and low bone mass phenotypes in 

humans (Boyden et al., 2002; Gong et al., 2001; Gong et al., 1996; Little et al., 2002); and two 

high bone mass syndromes, van Buchem’s disease and Sclerosteosis, are linked to loss-of-

function mutations of SOST, a gene encoding the Lrp5/6 antagonist Sclerostin (Balemans et al., 

2002; Loots et al., 2005).  Neutralizing antibodies targeting SOST and DKK1, another Lrp5/6 

antagonist, are currently being evaluated as therapeutic agents designed to increase bone mass 

in osteoporotic patients (Rachner et al.)). 

 Complex and sometimes seemingly contradictory interactions between BMP and Wnt 

signaling occur in the skeletal system.  For example, osteogenic effects of BMP-2 require -

catenin (Chen et al., 2007; Hill et al., 2005), supporting the notion that Wnt signaling through -

catenin operates downstream of BMP (Bain et al., 2003; Rawadi et al., 2003).  However, 

BMPR1a signaling suppresses cWnt activity via Sost and Dkk1 (Kamiya et al., 2008a; Kamiya et 

al., 2008b), and in vitro neutralization of BMPs blocks Wnt/β-catenin-induced osteoblast 

differentiation, suggesting instead that Wnt is upstream of BMPs (Salazar et al., 2008; Winkler et 

al., 2005).  Because simple epistatic models do not satisfactorily explain the BMP and Wnt/β-

catenin relationship in bone, it is more likely that the two pathways work together. 

In this work, we use mice with conditional ablation of Smad4 in Osx1+ osteoblasts to test 

whether bone anabolic response to cWnt signaling requires integrity of the BMP pathway.  In first 

characterizing the baseline phenotype of these mice, we uncover novel mechanistic details about 

the role of Smad4 in skeletal homeostasis, collagen biosynthesis, and osteoblast survival.  We 

furthermore demonstrate that cWnt signaling is not sufficient to stimulate bone anabolism in the 

absence of Smad4. 
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4.3 METHODS 

Materials 

Rat monoclonal anti-mouse Dkk1 (αDkk1, clone 11H10, Lot 14073109), a kind gift of Dr. William 

Richards, Amgen, Inc. (Thousand Oaks, CA), was prepared in sterile saline and administered at 

20 mg/kg/day via i.p. injections, 3 times a week for 4 weeks.  All other chemicals and reagents, 

unless specified otherwise, were obtained from Sigma Aldrich. 

Mouse Models 

Osx1-GFP::Cre (Osx1-Cre) transgenic mice express a Tet-off regulated GFP::Cre fusion protein 

under control of the Osx1 promoter (Rodda and McMahon, 2006).  Rosa26R
flox(LacZ) 

reporter 

alleles (R26R
F
) are activated by Cre-mediated excision of a floxed stop codon upstream of a 

beta- (Soriano, 1999).  Conditional Smad4 alleles (Smad4
F
) are ablated by 

Cre-mediated excision of a floxed exon 8 (Yang et al., 2002).  We examined -galactosidase 

activity in bones of Osx1-Cre; R26R
F/+

 mice to monitor efficiency and lineage specificity of the 

Osx1-Cre.  To ablate Smad4 in differentiating osteoblasts, we generated Osx1-Cre; Smad4
Flox/Flox

 

(Smad4 , conditional knockout) along with Osx1-Cre; Smad4
Flox/+

 (Smad4
F

, conditional 

heterozygous), and Smad4
Flox/Flox

 (Smad4
F/F

, conditional wildtype) mice.  Mice were in a mixed 

C57BL/6-C129/J background, fed regular chow ad libitum, and housed at 25°C with 12 hour 

light/dark cycles.  Genotyping was done with a HotSHOT method (Truett et al., 2000) and 

originally described primers.  Studies approved by Animal Studies Committee of Washington 

University in St Louis.   

Histology  

We have described decalcification, and preparation of bones for paraffin or methyl-methacrylate 

embedding and sectioning and whole mount staining (Chung et al., 2006).  Calcein Injections 

were given 11 and 3 days before euthanasia (15 mg/kg i.p.).  LacZ Non-specific β-galactosidase 

staining on decalcified bones was prevented by supplementing stain solution (Chung et al., 2006) 

with 100mM galactose and developing at 30°C.  TUNEL Apoptotic cells were detected in paraffin 

embedded sections of tibia with In Situ Cell Death Detection Kit (Roche).  Brightfield and 



82 

 

fluorescence microscopy were captured with a Nikon Eclipse E600, picrosirius red with polarized 

light microscope (Olympus BX51P), and whole mounts with a digital camera. 

MicroCT 

Bones, embedded in 2.0% agarose, were scanned post-mortem with a high resolution computed 

tomography system (µCT40; Scanco Medical AG) using 45 EkVp of radiation energy at standard 

resolution (20µm).  In vivo, we used a VivaµCT40; Scanco Medical AG set to 70kVPs and 110µA.  

The first 30 slices below the growth plate of the proximal tibia were analyzed.  Data are 

expressed as Mean±STD and were compared by t-test for unpaired samples, n ≥ 4. 

Immunoblot 

Protein from marrow-free bones (N≥3 per genotype) or cells was prepared in RIPA buffer and 

separated by SDS-PAGE electrophoresis (Watkins et al., 2011). Antibodies are listed in Table 1. 

Real-Time Quantitative PCR (QPCR) 

Messenger RNA was prepared from marrow free bones (N≥3 per genotype) or cells, converted 

into cDNA, and analyzed as described (Watkins et al., 2011).  Data were normalized to 

Cyclophilin and calculated as a ratio to the average of Smad4
F/F 

samples.  Taqman® Gene 

expression assays (Applied Biosystems) were used for Dmp1, Lox, Plod and P3ha4.  Other 

primers available upon request.  Data are expressed as the Mean±STD and were compared by t-

test for unpaired samples. 

Cell Culture 

All cultures were incubated at 37°C in a humidified atmosphere with 5% CO2 in basic media 

(ascorbic acid free α-MEM (Invitrogen) with 40mM L-glutamine, 100U/ml penicillin-G, and 

100mg/ml streptomycin) plus osteogenic cocktail (50 μM ascorbic acid, and 10 μM β-

glycerophosphate) as indicated.  Calvaria organ cultures Sagittal halves of neonatal mouse 

culture media (Wang et al., 2005).  MC3T3 immortalized mouse calvaria cells were maintained in 

basic media plus 10% FBS.  Osteoblasts were differentiated by plating to confluence (Day 0) in 



83 

 

harvested with an RNeasy Plus kit (Qiagen) and protein as prepared in RIPA buffer as described 

(Salazar et al., 2008).  Bone marrow stromal cells (BMSC) and macrophages (M ) were isolated 

by removing the distal epiphyses, centrifuging the bone at 9,000 rpm for 10 sec, then processing 

for culture as described (Watkins et al., 2011).  For mineralization, BMSC were seeded 40,000 

cells per well (96-well plate) and cultured 21 days in media with 10% FBS, osteogenic cocktail ± 

200 ng/ml rhBMP2 or 50 ng/ml rmWnt3a (R&D Systems) prior to alizarin red and alkaline 

phosphatase staining (Salazar et al., 2008).  Osteoclasts were differentiated from MCSF-primed 

M  plus MCSF and RANKL or BMSC, vitamin D3 and  dexamethosone, as described (Watkins et 

al., 2011). 

 

4.4 RESULTS 

4.4.1 Progressive Skeletal Phenotype in Mice with Deficiency of Smad4 in Osx1+ 

Osteoblasts 

In histologic sections of femurs from Osx1-Cre; R26R
F/+

 mice, LacZ activity is evident in 

osteoblasts and osteocytes, but not in chondrocytes in articular cartilage of the epiphysis, or other 

bone marrow cells (Figure 4.1A).  Compared to Smad4
F/F

 mice, Smad4 protein is nearly 

undetectable by immunoblot on marrow-free bone tissue from Osx1-Cre; Smad4
F/F

 (Smad4 ) 

mice (Figure 4.1B).  Thus, Osx1-Cre mediates osteoblast-specific ablation of Smad4.  Since 

Osx1-Cre is first expressed at E13.5 (Rodda and McMahon, 2006), we performed whole mount 

staining to determine if skeletal anomalies manifest before birth.  In Smad4 mice, the nasal 

arch is narrow and the frontal, parietal, and interparietal bones (Figure 4.1C) are hypominerilized.  

The xyphisternum is short, with dysmorphisms of the xyphoid process and ventral costal cartilage 

of the false ribs.  Ventral costal cartilage on true ribs is fully mineralized (Figure 4.1D).  Clavicles 

are hypoplastic with only a lateral rudiment (Figure 4.1E). 

Most Smad4 mice die before weaning.  About 50% die by P14, another 25% by 5 

weeks, and almost none survive to 8 weeks of age, even if provided access to soft, paste-based 

nutrition (Nutri-Cal).  Despite nearly normal body size at birth (Figure 4.1F), Smad4 mice are 
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severely runted and osteopenic compared to littermates at weaning (Figure 4.1G).  Both 

Smad4
F

 and Smad4  develop oral malocclusion, a feature linked to the Osx1-Cre transgene 

(http://jaxmice.jax.org/strain/006361.html).  However, only Smad4  mice exhibit enamel 

hypoplasia and brittle teeth (Figure 4.1H), a feature confirmed by computerized 3-D 

reconstruction using µCT of skeletal structures in 4 week old littermates (Figures 4.1I-L).  Lower 

incisors appear to be missing in Smad4  mice.  There is severe hypomineralization of the cranial 

vault, mandible, scapulae, and vertebral column (Figure 4.1K, red arrows).  Dorsal segments of 

the ribs lack curvature, forming a restricted thoracic cavity (Figures 4.1K-L).  The sternal segment 

of the clavicle remains hypoplastic and fails to reach the sternum (Figure 4.1L).  Ribs of 

Smad4 mice show new and old fractures with callus formation at 4 and 8 weeks of age (Figures 

4.1K, M, blue arrows). 

Computerized 3-D reconstructions show that tibiae of Smad4 mice are morphologically 

normal although smaller than Smad4
F/F

 (Figure 4.2A).  Trabecular structures, normally restricted 

to the metaphysis, populate the entire length of Smad4 bones and fill the secondary ossification 

center (Figures 4.2A, red arrows).  While growth plate cartilage of all genotypes is Safranin O+ 

and Fast Green- (Figure 4.2B), these trabeculae in the diaphysis of Smad4 mice are Safranin 

O- and Fast Green+ (Figure 4.2C), indicating they are boney tissue as opposed to unresorbed 

cartilage islands left behind during formation of the medullary cavity.  Trabeculation of the 

diaphysis is also evident by Goldner Trichrome staining, which further reveals that Smad4  

bones exhibit a prevalence of marrow fat and a high density of osteocytes (Figures 4.2D-E). 

Quantitative analysis at the proximal metaphysis indicates that although trabecular tissue 

volume and bone volume are significantly lower in Smad4  relative to either Smad4
F/F

 or 

Smad4
F

 mice (Figures 4.2F-G), trabecular BV/TV is not different across genotypes (Figure 

4.2H).  Thus, trabecular bone in Smad4  mice is appropriate for reduced bone size, a finding 

corroborated by BMC/TV at the metaphysis (Figure 4.2I).  Trabecular number, thickness, and 

spacing are not statistically different in any Smad4 genotype (Supplemental Figures 4.2A-C).  At 

the mid-diaphysis, total cross-sectional tissue area (Figure 4.2J) and cortical thickness (Figure 
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4.2K) are statistically decreased in Smad4  mice by 43±1.3% and 51±4.5%, respectively, 

relative to Smad4
F/F

 or Smad4
F/

.  Bone mineral content as a function of bone volume (BMC/BV) 

is 8.2±2.8% lower in trabecular compartment and 20±3.8% lower in the cortical compartment of 

Smad4  relative to Smad4
F/F

 mice (Figures 4.2L-M), consistent with hypomineralization of the 

skull, spine, and scapulae (Figures 4.1K-L).  Dynamic indices of bone formation were not 

quantitated due to early lethality.  Since bone mass and architecture are essentially the same in 

Smad4
F/F

 or Smad4
F/

, 3-D reconstructions and histologic images are shown only for Smad4
F/F

 

and Smad4 mice. 

 The increased trabeculation of the diaphyses in Smad4 mice could be the result of 

either over-active osteoblasts or diminished osteoclast bone resorption.  Considering the 

generalized, severe hypomineralization of Smad4 mice mice, the former hypothesis seems 

highly unlikely.  Thus, we examined osteoclast activity in tibia sections.   TRAP-positive 

osteoclasts are abundant at the growth plate in all genotypes but sparse on endocortical or 

periosteal surfaces of Smad4  (Figure 4.3A).  In vitro, bone marrow macrophages from 

Smad4
F/F

 and Smad4  mice form similar numbers of TRAP+ multinucleated osteoclasts in the 

presence and RANKL and MCSF (Figures 4.3B-C).  However, Smad4  osteoblasts generate 

60% fewer osteoclasts from macrophages of Smad4
F/F

 mice than do Smad4
F/F

 osteoblasts 

(Figures 4.3D-E), demonstrating a non-cell autonomous osteoclast defect.  QPCR on marrow-

free bone tissue reveals that MCSF and RANKL are constant in all genotypes while Opg was 

statistically decreased in Smad4 , a finding confirmed by immublot on bone (Figures 4.3F-G). 

4.4.2 Loss of Smad4 impairs R-Smad and p38 MAPK Pathways in Osteoblasts 

To create a context to test bone anabolic Wnt signaling in Smad4 mice, we 

investigated the osteoblast defect by using QPCR on bone extracts to profile genes expressed in 

the osteogenic lineage.  High EGFP and Cre levels in Smad4
F

 and Smad4 , but not in 

Smad4
F/F

 samples, confirmed our sample processing enriches mRNAs from cells expressing the 

Osx1-Cre transgene.  Surprisingly, considering our striking phenotype and previous findings on a 
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related model (Tan et al., 2007), expression of Cbfa1, Osx, Dmp1, and Phex are not statistically 

different in Smad4  compared to Smad4
F/F

 or Smad4
F/Δ

 samples (Figure 4.4A).  Expression of 

non-collagen components of the skeletal extracellular matrix, such as BSP, Opn and Ocn are 

modestly but not statistically decreased in Smad4  bone relative to the other genotypes (Figure 

4.4B).  Importantly, abundance of Col1 1, the major organic component of bone matrix, is only 

decreased about 20% in Smad4  bones (Figure 4.4C).  By contrast, deletion of one or two 

Smad4 alleles leads to gene-dosage dependent down-regulation of procollagen lysyl hydroxylase 

(Plod), prolyl 3-hydroxylase (P3HA4), and lysyl oxidase (Lox) mRNA (Figure 4.4C), enzymes 

required for assembly and crosslinking of collagen fibrils (Trackman, 2005).  We thus examined 

histologic sections of tibiae under polarized light following picrosirius red staining.  A red/yellow 

color display in Smad4  compared to primarily green on Smad4
F/F

 sections (Figure 4.4D) 

confirmed that collagen extracellular matrix formation is defective in Smad4  bones and is likely 

characterized by abnormal thickness or packing density of fibers (Dayan et al., 1989).   

Immunoblot on bone confirmed that Osx is expressed in Smad4  bones, though the 

abundance of high molecular weight Osx bands is sharply diminished (Figure 4.5A).  Notably, 

electrophoretic patterns of Osx and other proteins are more complex in bone samples than cell 

extracts, suggesting extensive post-translational modifications occurring in primary tissue.  

Relative to Osx and -actin, Lox is almost undetectable (Figure 4.5A), corroborating QPCR.  Lox 

is regulated by BMP2 in a Smad4- and p38- dependent manner during formation of adipoctyes 

(Huang et al., 2009), which share a common progenitor as osteoblasts.  Lox mRNA (Figure 4.5B) 

and Lox protein (Figure 4.5C) are similarly up regulated during BMP2-mediated osteoblast 

differentiation and are sensitive to p38 inhibition by SB203508.  In vivo, immunoblots reveal that 

loss of Smad4 sharply diminishes phospho-p38 in bone without affecting p38 abundance (Figure 

4.5D).  TGF  can regulate p38 MAPK activation of TAK1 or expression Gadd45  (Miyake et al., 

2007; Takekawa et al., 2002; Yoo et al., 2003).  While TAK1 mRNA is expressed normally 

Smad4  bones (Figure 4.5J), the immunoblot band of TAK1 shown to be targeted by TAK1 

siRNA (Figure 4.5D, red asterix) is low in mutant bones, while the faster-migrating, non-specific 
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band (black asterix) is unaffected (van der Heide et al., 2011).  Downstream, there is reduced 

CREB, ATF1, and ATF2 phosphorylation and decreased expression of Bcl-2, an anti-apoptotic 

molecule and transcriptional target of CREB and ATF (Ma et al., 2007) (Figure 4.5D).  Overall, 

this p38 pathway is increasingly disrupted by loss of each Smad4 allele.  By contrast, 

phosphorylation of Akt and downstream Akt substrates is similar in all genotypes, despite that 

total Akt is low in Smad4  bone (Figure 4.5E).  Abundance and phosphorylation of ERK or JNK 

are unchanged by loss of Smad4 (Figure 4.5F), as is GADD45 , an alternative link from Smad4 

to p38/CREB (van der Heide et al., 2011), (Figures 4.5G and J).  Loss of both Smad4 alleles is 

however associated with low abundance of phosphorylated Smads1/5/8 and phosphorylated 

Smad2 (Figures 4.5H).  Smad3 phosphorylation is below detection in all genotypes, and is not 

shown.  Total Smad1 and Smad2, but not Smad3 or Smad5 proteins, are sharply reduced in 

Smad4  bones (Figure 4.5I), despite normal steady-state mRNA levels (Figure 4.5J).  Thus, loss 

of Smad4 in Osx1+ osteoblasts profoundly impairs TGF /BMP signaling through R-Smads and 

p38, thereby providing an excellent model to test whether integrity of the BMP pathway is 

necessary for a bone anabolic response to cWnt signaling. 

4.4.3 Bone Anabolic Responses to cWnt Signaling Require Smad4 in Osteoblasts 

We manipulated cWnt signaling with αDkk1, an antibody that neutralizes the Wnt 

antagonist, Dkk1, and induces bone formation when given systemically to mice with rheumatoid 

arthritis (Diarra et al., 2007).  In our hands, a single dose of αDkk1 dramatically upregulates Lrp5 

and -catenin proteins in bone within 15 minutes of injection (unpublished data).  Accordingly, 

incubation of ex vivo intact calvaria culture with αDkk1 dose-dependently increases calvarial 

thickness and xylenol orange incorporation, two indicators of new bone deposition (Figure 4.6A).  

With respect to lingering controversy as to whether cWnt signaling stimulates bone formation by 

direct action on osteoblasts (Cui et al., 2011) or indirectly, via an endocrine loop (Yadav et al., 

2008), we find that αDkk1 activates cWnt signaling and stimulates new bone deposition, at least 

in part, by direct action on bone.  Wild type C57B6 male mice treated for 4 weeks with αDkk1 (20 

mg/kg/day, 3 times/week) exhibited a 48% increase in mineral apposition rate at the proximal tibia 
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(Figure 4.6B), with no effect on bone resorption, as determined by circulating CTX collagen 

fragments (Figure 4.6C).  Male Smad4
F/F

and Smad4
F/

 mice treated with αDkk1 had significantly 

increased bone volume/trabecular tissue volume (BV/TV) at the proximal tibia (60% and 59% vs. 

pre-treatment, Figures 4.6D-E).  Early lethality impeded a statistical analysis of the effect of 

αDkk1 on age and sex-matched Smad4  mice.  Nevertheless, whereas BV/TV at the 

metaphysis was normal in Smad4  mice at 1 month (Figure 4.2H), a Smad4  female that 

survived to 3 months exhibited a BV/TV that was 56% lower than age-matched Smad4
F/F

females 

and did not accrue trabecular bone in response to αDkk1 treatment compared to 39% and 49% 

increases in BV/TV of female Smad4
F/F

and Smad4  mice (Figure 4.6F).  While abundant and 

wide-spaced double calcein labels were present in Smad4
F/F

 female tibia after αDkk1 treatment 

(Figures 4.6G and H), the Smad4  female had very few labeled surfaces and a distinct absence 

of double labels (Figures 4.6K and L).  Also, areas of unmineralized osteoid persisted in Smad4  

cortical bone after αDkk1 treatment (Figures 4.6I and M).  To confirm an osteoblast defect, 

primary bone marrow stromal cells (BMSC) from Smad4
F/F

and Smad4  mice were differentiated 

under osteogenic conditions.  While Smad4
F/F

cultures formed alizarin red-positive mineralized 

nodules, particularly when exposed to BMP-2 or Wnt3a, Smad4  cultures failed to mineralize, 

even in the presence of these stimulators (Figure 4.6N).  Furthermore, alkaline phosphatase+ 

cells were not observed in Smad4  cultures, even in the presence of BMP-2 or Wnt3a, in 

contrast to abundant alkaline phosphatase+ cells and mineralization in Smad4
F/F

 cultures (Figure 

4.6O). 

Wnt pathway components were profiled to investigate why Smad4  mice and cells do 

not respond to Dkk1 or Wnt3a.  Dkk1 and Sost mRNAs are sharply decreased by loss of each 

Smad4 allele (Figure 4.7A) while Lrp5, Lrp6, and GSK3  protein levels are normal in all 

genotypes.  In contrast to a previous study where loss of Bmpr1A augmented cWnt signaling via 

decreased expression of Sost and Dkk1 (Kamiya et al., 2008a), phosphorylation of GSK3  and 

GSK3β target residues on -catenin is unaffected  by loss of Smad4 (Figure 4.7B).  More 
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importantly, immunoblots on bone with an antibody to the N-terminus of β-catenin reveal that the 

bands between 82-115 kDa in Smad4
F/F

 and Smad4
F

 bones are substantially fainter in the 

Smad4  (Figure 4.7C, upper panel).  And bands between 82-115 kDa produced by an antibody 

to the C-terminus of β-catenin are nearly below detection, with increased abundance of a band at 

about 70 kDa in the Smad4  sample (Figure 4.7C, middle panel), suggesting β-catenin cleavage 

in mutant mice.  GSK3 independent proteolysis of -catenin can be accomplished via direct 

cleavage by Caspase-3 at specific sites (Figure 4.7D) (Brancolini et al., 1997; Hunter et al., 2001; 

Steinhusen et al., 2000).  Indeed, Smad4  mice exhibit activated Caspases-9 and -3 and 

cleaved PARP in bone (Figure 4.7E), as well as focal aggregates of TUNEL+ apoptotic 

osteoblasts on cortical and trabecular surfaces in the diaphysis (Figure 4.7G).  Critically, C-

terminal cleavage of β-catenin (Figure 4.7C, middle) can remove its transcriptional activity (Cong 

et al., 2003).  Indeed, mRNA of two -catenin target genes, Ccnd1 (Tetsu and McCormick, 1999) 

and EphB4 (Batlle et al., 2002) are downregulated ~50% in Smad4  bone (Figure 4.7F, and not 

shown). 

In summary (Figure 4.7H), Smad4  osteoblasts do not properly utilize the p38 MAPK 

pathway to drive collagen biosynthesis and protect against apoptosis.  This cell autonomous 

signaling defect renders Smad4  osteoblasts insensitive to BMP2, and causes a secondary 

depletion of β-catenin making them also resistant to cWnt signaling.  In this model, Smad4 and 

cWnt/ -catenin signaling act cooperatively, not sequentially, to orchestrate the osteoblast 

differentiation and control post-natal bone homeostasis. 
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4.5 DISCUSSION 

The key finding of this work is that Smad4 is required for bone forming responses to cWnt 

signaling in vitro and in vivo.  Intriguingly, expression of Dkk1 in osteoblasts is regulated by 

Bmpr1a signaling through Smad4, while Sost is regulated by Bmpr1a signaling through p38 

(Kamiya et al., 2008a; Kamiya et al., 2008b).  We find that loss of Smad4 abrogates expression of 

both Dkk1 and Sost, implying Smad4 is upstream of p38 in the BMP signal cascade.  Thus, if 

cWnt is indeed sufficient downstream of Smad4 to induce new bone formation, then Smad4  

mice should display an osteosclerotic phenotype owing to increased osteoblast activity, as 

predicted by the high bone mass syndromes caused by activating LRP5 mutations (Boyden et al., 

2002; Ellies et al., 2006) and loss-of-function SOST mutations (Balemans et al., 2002; Brunkow et 

al., 2001).  Furthermore, Smad4  mice 

since less antibody would be required to saturate the target. And Smad4  primary osteoblasts 

should mineralize better in response to purified Wnt3a.  To the contrary, we show that Smad4  

mice have small, poorly mineralized bones; and Smad4  cells do not mineralize in response to 

Wnt3a.  Further, a Smad4  mouse that survived beyond 6 weeks completely failed to mount an 

osteoanabolic response to αDkk1 treatment.  Thus, loss of Smad4 in osteoblasts results in a 

resistance to anabolic Wnt signaling in bone.   Importantly, diminished bone formation was also 

reported in mice with selective ablation of Bmpr1a in differentiated osteoblasts despite reduced 

expression of Dkk1 and Sost (Kamiya et al.), indicating loss of Smad4 phenocopies loss of 

Bmpr1a, and thus that disruption of BMP signaling through Smad4 in osteoblasts impairs 

anabolic responses to cWnt. 

 While loss of Smad4 does not prevent Osx+ osteoblasts from progressing to a 

Dmp1+/Phex+ stage of maturation, it does render these cells unable to mineralize their matrix.  

Smad4  osteoblasts are also unable to support normal osteoclastogenesis, a non-cell 

autonomous defect unexplained by changes to the RANKL/OPG ratio.  Osteoblast-specific 

deficiency of BMP2 and 4 (Bandyopadhyay et al., 2006), Bmpr1a (Mishina et al., 2004), or 

Smad4 (Tan et al., 2007) cause very similar phenotypes with low bone turnover and a 
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persistence of osteochondral tissues in the medullary cavity, suggesting defects in Smad4  

osteoblasts are largely attributable to disruption of BMP, not TGFβ, signaling.  Also, our Smad4  

mice exhibit skeletal and dental features remindful of cleidocranial dysplasia, or haploinsufficiency 

of Runx2 (Camilleri and McDonald, 2006; Fukuta et al., 2001; Otto et al., 1997; Yamamoto et al., 

1989).  Such features are not reported in TGFβ mutant mice, but are caused by osteoblast-

specific ablation of BMP2/4 (Bandyopadhyay et al., 2006) or TAK1/p38 (Greenblatt et al.), 

implying that BMP2/4, Smad4, TAK1/p38 and Runx2 are components of a common pathway. 

We provide evidence that resistance to cWnt signaling in Smad4  mice is associated with 

activation of the Caspase-9/-3 pathway and GSK3 -independent cleavage of β-catenin in bone.  

N-terminal cleavages of -catenin by Caspase-3 are typically activating, even oncogenic, 

modifications that promote extrusion of a cell from the epithelium via enhanced disassembly of 

adherens junctions (Kessler and Muller, 2009).  By contrast, C-terminal cleavage removes the 

transcriptional activation domain thereby deactivating the transcription factor function of -catenin 

(Brancolini et al., 1997; Cong and Varmus, 2004; Hunter et al., 2001; Steinhusen et al., 2000).  -

catenin is a critical downstream mediator of the cWnt cascade.  It is both necessary and sufficient 

in Osx+ cells for controlling skeletal mineralization (Rodda and McMahon, 2006).  Thus, the 

impaired mineralizing function of Smad4  osteoblasts and their inability to respond to 

extracellular cWnt activation (i.e. Dkk1 and Wnt3a) can most likely be reconciled by a secondary 

depletion of -catenin.  We further show that Smad4 is required for expression of collagen 

biosynthetic enzymes in bone.  Collagen synthesizing defects are not reported in -catenin 

mutant mice.  Thus, β-catenin depletion probably causes, or exacerbates, the mineralizing defect 

in Smad4  mice, whereas altered production of the organic bone matrix, failed expression of 

Dkk1 and Sost and apoptosis are all linked to defective p38 MAPK signaling. 

This illuminates a second, equally important, finding of this work.  Smad4, canonical R-

Smads, and non-canonical TAK1/p38 MAPK pathways are tightly networked in bone, not 

independent.  In comparison to chondrocytes, where TAK1 coordinates only with BMP-specific R-

Smads (Gunnell et al., 2010; Shim et al., 2009), TAK1 in osteoblasts coordinates with both BMP- 
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and TGF -specific R-Smads.  Mechanistically, loss of Smad4 disrupts not only phosphorylation of 

p38, but also phosphorylation of the downstream p38 targets CREB, ATF1, and ATF2.  However, 

ERK, JNK, and Akt pathways are not affected, indicating, as a recent in vitro study proposed (van 

der Heide et al., 2011), that Smad4 is linked specifically to p38/CREB/ATF cascade but not to 

MAPK pathways in general. This mechanism may be operative in other tissues (Xu et al., 2008). 

The p38 pathway is typically considered to be pro-apoptotic (van der Heide et al., 2011; Wagner 

and Nebreda, 2009).  But accumulating evidence indicates TAK1/p38 signals generate pro-

survival effects in bone and cartilage synthesizing cells (Gunnell et al., 2010; Shim et al., 2009; 

Yoon et al., 2005).  In cartilage, pro-survival p38 signals appear to be mediated by CREB- and 

ATF2-dependent expression of Bcl-2 (Ma et al., 2007).  In bone, we find diminished Bcl-2 

expression and low CREB and ATF2 phosphorylation are similarly associated with defective p38 

signaling.  Importantly, these are all downstream of Smad4 ablation.  Thus, we propose that the 

central mediator in this signaling network is Smad4, not TAK1/p38. 

To conclude, Smad4 in Osx1+ osteoblasts regulates collagen synthesis and osteoblast 

survival, each of which are at least partly modulated by a BMP signaling network involving 

Smad4, R-Smads, and TAK1/p38.  Moreover, Smad4 is required, indirectly via suppression of 

apoptosis, to maintain adequate levels of -catenin required for bone anabolic responses to cWnt 

signaling. 
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4.7 Figure Legends 

Figure 4.1 Progressive Skeletal Phenotype in Smad4F/F; Osx1-Cre Mice 

(A) Eosin and LacZ stain on histologic sections of the femur (40X)  

(B) Immunoblot on marrow-free bone tissue 

(C-E) Alizarin red and alcian blue skeletal preparations.  Shown to scale, bar indicates 1mm. 

(F-G) Contract radiograph, littermates 

(H) Malocclusion and enamel hypoplasia of the inscisors 

(I-L) 3-D microCT (µCT) reconstructions of skeletal structures in 4 week old littermates.   Not 

shown to scale, bars indicate 5 mm. 

(M) Contact radiograph, 8 week old Smad4 mouse. 

Figure 4.2 Abnormal Architecture and Quality of Long Bones in Smad4F/F; Osx1-Cre Mice 

(A) 3-D µCT reconstructions of tibias in 4 week-old littermates, shown to scale. 

(B-C) Safranin O staining on the tibia. Top, 10X.  Bottom, 15X. 

(D-E) Goldner trichrome stain on the tibia.  Top, 4X.  Bottom, 40X. 

(F-I) Quantitative µCT analysis of trabecular bone at the proximal tibia 

(J-K) Quantitative µCT analysis of cortical bone in the mid-diaphysis 

(L-M) Mineral content per unit volume of trabecular bone (L) or cortical bone (M).  Note different 

y-axis.  All µCT data are expressed as Mean±STD. p*<0.05 and p
#
<0.02 vs. Smad4

F/F
. 

Figure 4.3 Non-cell autonomous regulation of osteoclastogenesis by Smad4 in Osx1+ 

cells is not explained by the RANK ligand to Osteoprotegerin ratio. 

(A) TRAP stain on mid-sagittal sections of the tibia from 4 week old mice.  Left, ventral, 10X.  

Center, 4X.  Right, dorsal, 10X. 

(B)  MCSF-primed bone marrow macrophages (M ), cultured in the presence of RANKL and 

MCSF, were stained for TRAP to monitor osteoclastogenesis.  Genotype of donor mouse is 

specified. 

(C) Quantitation of Figure S2B, osteoclasts derived from 2500 bone marrow macrophages. 
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(D) MCSF-primed bone marrow macrophages (M ) were cultured with equal numbers of bone 

marrow osteoblasts (Ob), vitamin D3, and dexamethasone, then stained for TRAP to 

monitor osteoclastogenesis.  Genotype of donor mouse for macrophages and osteoblasts 

is specified. 

(E) Quantitation of Figure S2D, osteoclasts derived from 47,000 macrophages. 

(F) QPCR on marrow-free bone tissue 

(G) Immunoblot on marrow-free bone tissue 

Numerical data are expressed as Mean±STD. p*<0.05 and p
#
<0.01 vs. Smad4

F/F
. 

Figure 4.4 Smad4 is Required in Osx1+ Cells for Expression of Collagen-Processing 

Enzymes 

(A-C) QPCR on marrow-free bone tissue. (A) Osteoblast differentiation markers. (B) Non-

collagen extracellular matrix components. (C) Collagen synthesizing enzymes. p*<0.05 vs. 

Smad4
F/F

. 

(D) Picrosirius red stain and polarized light microscopy on mid-sagittal sections of the tibia.  Top, 

4X.  Middle, 20X, Bottom, 40X. 

Figure 4.5 Smad4 Integrates with p38 MAPK to Regulate Lysyl Oxidase and Bcl-2 

(A, D-I) Immunoblot on marrow-free bone tissue 

(B-C) QPCR (B) and immunoblot (C) analysis on MC3T3 osteoblast cultures treated with BMP2 

(200 ng/ml) ± p38 inhibitor SB203580 (10 M). 

(J) QPCR on marrow-free bone.  Expressed as Mean±STD.  p*<0.05 vs. Smad4
F/F

. 

Figure 4.6 Loss of Smad4 Abrogates Osteoanabolic Responses to Canonical Wnt 

Signaling 

(A) Calvaria cultured ex vivo with Dkk1-neutralizing antibody.  (Ai-iii) Fluorescence microscopy 

(20X). New tissue labeled with xylenol orange.  (Aiv) Goldner Trichrome showing Aiii in 

brightfield (20X).  New osteoid (pink), pre-existing bone (blue). 

(B) Effect of Dkk1 therapy on mineral apposition rate on the endocortical surface of the 

proximal tibia (20 mg/kg/day, i.p. 3 times/week, 4 weeks).  p*<0.05 vs. Smad4
F/F

. 
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(C) Effect of Dkk1 therapy on bone resorption, measure by serum RatLaps elisa. 

(D) Effect of Dkk1 therapy on trabecular bone mass at the proximal tibia of male mice, 

assessed pre and post therapy by in vivo CT, and compared to normal growth in 

untreated 3mo old mice.  Data are expressed as Mean±STD.  P values compare one 

genotype pre and post-treatment. 

(E) 3-D reconstructions of the proximal tibia by CT illustrating representative changes in bone 

architecture in one Smad4
F/F

 mouse given Dkk1 therapy 

(F) Effect of Dkk1 therapy on trabecular bone mass at the proximal tibia of female mice, 

assessed pre/post treatment by in vivo CT.  Data are expressed as Mean±STD.  P values 

compare one genotype pre and post-treatment. 

(G-M) Histologic sections of tibias from Smad4
F/F

 (top) or Smad4  (bottom) mice after 4-weeks 

Dkk1.  (G, K) Calcein, 4X.  (H, L) Calcein, 20X, boxed areas in G and K. Blue arrowhead, 

endocortical surface.  Black arrowhead, periosteum.  (L) Note lack of double labels in 

Smad4 .  (I, M) Görömi Trichrome (20X) showing the persistence of sporadic 

osteomalacia after treatment. 

(N) Alizarin red stain on calcium deposits in osteoblast cultures of primary bone marrow 

stromal cells 

(O) Alizarin red counterstained for alkaline phosphatase activity (4X) 

Figure 4.7 Smad4 Protects Osteoblasts from Apoptosis and Deactivating Cleavage of -

catenin 

(A) QPCR on marrow-free bone tissue. Expressed as Mean±STD. *p<0.05, *p<0.01 vs. 

Smad4
F/F

 

(B-C) Immunoblot analysis of Wnt signaling in marrow-free bone tissue 

(D) Schematic of -catenin showing relative positions of antibody epitopes and Caspase-3 

cleavage sites  

(E) Immunoblot analysis of Wnt signaling in marrow-free bone tissue  
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(F) QPCR on marrow-free bone tissue.  Expressed as Mean±STD. *p<0.05, vs. Smad4
F/F

 

(G) Immunofluorescence for TUNEL+ cells in the tibia.  Open arrows (endosteum) and closed 

arrows (periosteum) in 40X magnified images, shown to scale. 

(H) Anabolic signaling by Smad4 and Canonical Wnt Pathways in Osteoblasts 

  



105 

 

4.8 FIGURES 

Figure 4.1 
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Figure 4.2 
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Figure 4.2 (Supplemental) 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5
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Figure 4.6 
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Figure 4.7 
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4.9 TABLE 4.1 

Antibody Company City, State Catalog Number 

β-actin Sigma Saint Louis, MO A 5316 

Akt Cell Signaling Danvers, MA 9272 

Akt-substrate (RXXXS/T) Cell Signaling Danvers, MA 9614 

Bcl-2 BD Biosciences San Diego, CA 554218 

α-catenin Sigma Saint Louis, MO B 6184 

β-catenin (C-terminus) BD Biosciences San Diego, CA 610154 

β-catenin (N-terminus) Cell Signaling Danvers, MA 9581 

Caspase 3 (Cleaved) Cell Signaling Danvers, MA 9661 

Caspase 9 Cell Signaling Danvers, MA 9504 

Erk BD Biosciences San Diego, CA 610124 

GADD45β Santa Cruz Santa Cruz, CA sc-8775 

GSK3  Millipore Temecula, CA 05-412 

Jnk Cell Signaling Danvers, MA 9252 

Lysyl Oxidase Thermo Scientific Rockford, IL PA1-46020 

Lrp5 Santa Cruz Santa Cruz, CA sc-21389 

Lrp6 Cell Signaling Danvers, MA 3395 

Ncadherin BD Biosciences San Diego, CA 610921 

Osterix Abcam Cambridge, MA ab22552 

p38 Cell Signaling Danvers, MA 9212 

PARP (Cleaved) Cell Signaling Danvers, MA 9544 

Phospho-ATF2 Cell Signaling Danvers, MA 9221 

Phospho-CREB Cell Signaling Danvers, MA 9198 

Phospho-p38 Cell Signaling Danvers, MA 9211 

Phospho-Akt (Ser473) Cell Signaling Danvers, MA 9271 

Phospho-Erk Cell Signaling Danvers, MA 9101 

Phospho-GSK3β Cell Signaling Danvers, MA 9336 

Phospho-Jnk Cell Signaling Danvers, MA 9251 

Phospho-Smad1/5/8 Cell Signaling Danvers, MA 9511, 9516 

Phospho-Smad2 Cell Signaling Danvers, MA 3101 

Phospho-Smad3 Cell Signaling Danvers, MA 9520 

Phospho-TAK1 Cell Signaling Danvers, MA 4508 

Phospho-β-catenin (S/T) Cell Signaling Danvers, MA 9561 

Smad1 Cell Signaling Danvers, MA 9743 

Smad2 Cell Signaling Danvers, MA 5339, 3102 

Smad3 Cell Signaling Danvers, MA 9523 

Smad4 Cell Signaling Danvers, MA 9515 

Smad5 Cell Signaling Danvers, MA 9517 

TAK1 Cell Signaling Danvers, MA 4505 

α-Tubulin Santa Cruz Santa Cruz, CA sc-8035 
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CHAPTER 5 

 

Summary and Future Directions 
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5.1 Interactions between BMP and Canonical Wnt Signaling Regulate Critical Stages of 

the Osteoblast Lifecycle.  Our lab has previously demonstrated that overexpression of β-

catenin synergizes with BMP2 to stimulate osteoblast differentiation and new bone formation [1], 

although the molecular mechanisms behind this cooperative interaction were not clear.  Thus, the 

central focus of this work was to examine the epistatic and molecular interactions between β-

catenin and the BMP pathway that contribute to regulate cell fate, proliferation, matrix synthesis, 

and the death of osteoblasts.  Our studies reveal that the interactions between β-catenin and 

BMP signals are unique at different stages of the osteoblast lifecyle, and are in large part 

mediated by the TGF /BMP transcription factor, Smad4. 

 

Figure 5.1  Interactions between BMP and canonical Wnt signaling regulate critical stages 
of the osteoblast lifecycle. 

In multipotent progenitors, we find that specification of osteoblasts over adipocytes 

involves a lineage allocation switch that lies downstream of BMP signals and is mediated by β-

catenin.  Expansion of the osteoprogenitor pool by Wnt/β-catenin signaling also lies downstream 

of the BMP pathway, but is negatively regulated, at least in part, by BMP-dependent formation of 
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Smad4/β-catenin/TCF transcription complexes.  This, acute removal of Smad4 increases 

canonical Wnt signaling at the level of Tcf/Lef dependent transcription, resulting in greater 

proliferation of progenitors.  By contrast, long-term deficiency of Smad4 makes osteoblasts 

extremely susceptible to apoptosis, leading to indirect deactivation of canonical Wnt signaling via 

GSK3β-independent and Caspase-3 dependent cleavage of β-catenin.  Thus, while pro-mitotic 

canonical Wnt cues are directly attenuated by BMP/Smad4 signaling, bone anabolic canonical 

Wnt cues are fully dependent on the integrity of the BMP/Smad4 pathway.  Our study establishes 

that BMP pathway is epistatic to Wnt signaling during specification of osteoblast cell fate, 

establishment of the mitotic/post-mitotic boundary, and for control of programmed cell death.  In 

combination with previous reports by other labs [2,3], our study further demonstrates that Wnt 

and BMP pathways are not epistatic during bone formation, but rather must fire simultaneously 

for osteoblasts to fully acquire their prototypic collagen-synthesizing and matrix-mineralizing 

functions.  Taken together, these findings reveal that critical stages of osteoblastogenesis and 

bone formation are regulated by distinct and temporally-specific signaling interactions between 

the canonical Wnt and BMP pathways. 

 

5.2 -catenin acts downstream of BMP2 to suppress adipocyte cell fate and promote 

osteoblast differentiation.  In Chapter 2 of this thesis, we examine how -catenin and BMP 

signaling coordinate to specify osteoblast cell fate and suppress adipogenesis.  By performing a 

structure/function analysis of -catenin, we find that stimulation of multipotent progenitors with 

BMP2 generates an ambiguous differentiation cue that can be amplified and refined with cell fate 

information by β-catenin.  Specifically, overexpression of a full-length, constitutively active β-

catenin mutant inhibits adipogenesis and stimulates osteoblast differentiation in mouse embryonic 

fibroblasts (C3H10T1/2 cells), an effect that is great enhanced by BMP2.  While N-terminal 

truncation of β-catenin weakens its ability to transactivate Tcf/Lef activity, it does not eliminate its 

capacity to stimulate the osteoblast differentiation program.  This is further exemplified by C-

terminal truncation of -catenin, which completely abolishes its ability to transactivate Tcf/Lefs 
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and suppress adipogenesis, but has no detrimental effect to the capacity of -catenin to 

stimulates osteoblast differentiation.  Curiously though, overexpression of this C-terminally 

truncated -catenin mutant prompted spontaneous formation of adipocytes alongside alkaline 

phosphatase expressing osteoblasts, which the abundance of both were greatly enhanced by 

treatment with BMP2.  Moreover, we found that C3H10T1/2 cells produce high amounts of BMP-

4, and inhibition of endogenous BMP signaling by Noggin curtails differentiation of adipocytes as 

well as osteoblasts, even in the presence of constitutively active β-catenin.  This study therefore 

demonstrates that BMP signaling is required for differentiation of both osteoblasts and 

adipocytes.  Cell fate cues are provided downstream of BMP signals by -catenin, involving both 

Tcf/Lef-dependent and Tcf/Lef-dependent mechanisms for inhibition of adipogenesis and 

enhancement of osteoblast differentiation. 

 

5.3 Smad4 Attenuates Canonical Wnt Signaling and Proliferation in the Osteogenic 

Lineage.  Crosstalk between BMP and canonical Wnt pathways can occur via direct interaction of 

Smad proteins with catenin.  In Chapter 3, we tested the hypothesis that a Smad4/ catenin 

physical interaction modulates Tcf/Lef-dependent transcription and biological responses.  

Preliminary studies in C3H10T1/2 mouse embryonic fibroblasts show that Smad4 expression 

inversely correlates with the ability of Wnt3a or activated catenin to stimulate TCF/Lef-

dependent transcription, CCND1 expression, and proliferation.  Immunoblot analysis in MC3T3 

cells indicates that the abundance and phosphorylation status of critical components of the 

canonical Wnt pathway are not changed by Smad4 over-expression, thus making autocrine or 

paracrine regulation unlikely.  In contrast to subconfluent MC3T3 cells where BMP2 can stimulate 

nuclear accumulation of -catenin in approximately 75% of cells, confluent MC3T3 cells exhibit 

primarily nuclear localization of -catenin, along with Smad4, TCF3, and TCF4.  However, BMP-2 

does not activate, and in fact inhibits lithium-stimulated TCF/Lef transcriptional activity. Pull-down 

experiments reveal that BMP-2 triggers recruitment of -catenin to a heteromeric transcription 

complex that binds DNA oligonucleotides encoding classic Smad-binding sequences. Importantly, 
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this complex also contains Smad4, phosphorylated R-Smads (1/5/8), and TCF4; whereas TCF3 

is not recruited.  Mutational analysis demonstrates that disrupting Smad4 DNA-binding activity 

greatly diminishes its ability to antagonize basal CCND1 promoter activity, which is regulated by 

TCF/Lef promoter elements. The nuclear export signal, linker domain, and Smad4-dependent 

transcriptional activity are not required. Such antagonism by Smad4 on canonical Wnt signaling is 

also operative in vivo.  And, Tamoxifen-induced ablation of Smad4 in Smad4
flox/flox

; Osx-CreER
T2

 

mice results in a 4-fold increase in the number of BrdU+ cells in trabecular bone, an effect 

significantly greater than that obtained by activating LRP5/6 with a systemic anti-Dkk1 antibody 

treatment. Thus, Smad4 operates at the Osterix+ stage of osteoblast differentiation to dampen 

proliferation, a mechanism at least partially mediated by BMP-2-dependent recruitment of -

catenin/TCF4 to Smad4-containing transcriptional complexes.  Our results are consistent with a 

competitive recruitment model whereby Smad4 can sequester the -catenin/TCF transcriptional 

machinery away from canonical target genes and into BMP response elements, thus inhibiting 

osteoblast proliferation.  Importantly, these findings imply that increased abundance of -catenin, 

such as was accomplished by overexpression in Chapter 2, should alleviate the ability of BMP2 to 

dampen proliferation and thereby produce a greater number of osteoblast from a given starting 

population of progenitors. 

 

5.4 Smad4 Coordinates p38 Signaling in Osteoblasts and is Required for a Bone 

Anabolic Response to Canonical Wnt Signaling.  TGFß/BMP family members are potent 

regulators of bone cells and signal by activating cytosolic kinase cascades and Smad 

transcription factors, including the common mediator, Smad4.  In Chapter 3, we report that 

Smad4 inhibits osteoblast proliferation in vivo, in part via direct and competitive interference with 

canonical Wnt signaling.  To examine the role of Smad4 in bone formation (Chapter 4), we 

generated Smad4
Flox/Flox

; Osx1-GFP::Cre mice (Smad4
Δ/Δ

), where Smad4 is ablated in 

osteoblasts.  Whole mount staining of Smad4
Δ/Δ 

neonates reveals hypomineralization of the skull, 

clavicle hypoplasia, and malformations of the rib cage. At day P28, Smad4
Δ/Δ

 mice are severely 
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runted and µCT indicates the cranial vault, scapulae, and sternal segment of the clavicles are still 

hypomineralized. Trabecular bone volume at the proximal tibia is normal relative to a smaller 

bone. However, Smad4
Δ/Δ 

mice exhibit delayed development of a medullary cavity in long bones.  

Smad4 ablation does not impede Runx2, Col1α1, DMP1, or Phex expression in bone, but sharply 

decreases expression of genes involved in collagen crosslinking including Lox, Plod, and P4Ha, 

which is consistent with abnormal picrosirius red staining. Importantly, Smad4
Δ/Δ

 mice fail to 

respond to the osteo-anabolic effect of anti-Dkk1 antibody, with sparse single calcein labels 

present on bone surfaces after 4 weeks of treatment as opposed to abundant wide double-labels 

in WT mice. Accordingly, Smad4
Δ/Δ

 BMSCs fail to mineralize in culture, and are not rescued by 

either BMP-2 or Wnt3a. Mechanistically, Smad4 ablation disrupts p38 and Smad(1/5/8) 

phosphorylation in bone, instead enhancing Caspase-3 activity and the abundance of apoptotic 

TUNEL+  osteoblasts. Whereas BMP2-dependent expression of Lox is mediated by the p38 

MAPK pathway, the resistance to anabolic Wnt signaling can be linked to loss of β-catenin 

transcriptional activity, a consequence of Caspase-3-mediated cleavage of the β-catenin C-

terminal transcriptional activation domain.  Thus, while that acute removal of Smad4 directly 

favors canonical Wnt signaling and mitosis, long-term deficiency of Smad4 indirectly impairs Wnt 

signaling and osteoblast function via Caspase-3.  In summary, Smad4 regulates osteoblast 

survival and function via coupling of canonical Smad with non-canonical MAPK pathways, 

interactions that lie upstream of anabolic canonical Wnt/β-catenin signaling. 

 

5.5 Future Directions.  As has been extensively reviewed in this text, inhibition of 

osteoblast differentiation by loss of β-catenin is well documented.  Thus, an immediate question 

prompted by the findings in Chapter 2 is whether a transcriptionally-defective β-catenin mutant is 

able to restore osteoblast differentiation in Catnb-null cells.  The data in Chapter 4 could be 

interpreted to suggest that loss of the β-catenin C-terminal transactivation domain impedes 

osteoblast differentiation, which is in apparent contradiction to results in Chapter 2 showing that 

expression of a β-catenin mutant missing this domain is fully capable of inducing osteoblast 

differentiation, though alongside spontaneous adipogenesis.  However, a conclusive 
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interpretration is elusive as it is difficult to know what components of the osteoblast defect in 

Smad4
Δ/Δ

 mice are specific for loss of Smad4 and independent of β-catenin deactivation.  This 

type of issue exemplifies a potential pitfall of analyzing protein function by overexpression on a 

wild type background.  Thus, to directly address this question, a future objective is to determine 

the ability of β-catenin mutants described in Chapter 2 to rescue osteoblast differentiation in 

Catnb
Δ/Δ

 primary cells. 

In a similar context, we have clearly demonstrated that activation of canonical Wnt 

signaling, specifically at the level of the Lrp5/6 receptors, is not sufficient to rescue Smad4
Δ/Δ

 

osteoblasts.  Since a critical feature of Smad4
Δ/Δ

 osteoblasts is depletion of endogenous β-

catenin, complementation of Smad4
Δ/Δ

 osteoblasts with constitutively active β-catenin will help 

clarify whether the collagen-synthesizing and matrix mineralizing defects are distinct components 

of the overall phenotype, as we suspect collagen organization is linked to TGF /BMP signaling 

while mineralization is a function regulated by Wnt/β-catenin.  This particular experimental design 

could also be used to determine if restoring β-catenin levels protects against apoptosis.  An 

additional β-catenin mutant bearing Caspase-3 resistant cleavage motifs would be useful.  It is 

important to determine if pharamacologic inhibition of Caspase-3 restores β-catenin levels in 

Smad4
Δ/Δ

 osteoblasts. 

Additionally, we have yet to determine the protein domain(s) of Smad4 required for its 

physical interaction with β-catenin.  Being that we have already generated an extensive library of 

Smad4 mutants, this type of study should be relatively straight forward and will be conducted by 

evaluating which HA-tagged Smad4 mutants can co-immunoprecipate a KT3-tagged wild type β-

catenin.  These results will be compared to our existing data to determine whether physical 

interaction between Smad4 and β-catenin is required for antagonism of pro-mitotic Wnt signals. 
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5.6 CLOSING REMARKS In summary, these studies were undertaken in an effort to 

understand how β-catenin and BMP synergize to stimulate osteoblast differentiation and bone 

formation.  To this end, the work presented here describes a systematic survey of the nature of 

crosstalk between BMP and β-catenin at defining stages of the osteoblast differentiation program.  

Our findings illuminate that complex and temporally-specific interactions between the BMP and β-

catenin are in large part mediated by Smad4, and serve to regulate cell fate, proliferative 

capacity, function, and death of osteoblasts.  These data therefore help describe the molecular 

mechanisms underlying osteogenic Wnt and BMP signaling in bone.  Additionally, while we did 

not initially intend to examine the role of Smad4 in osteoblast biology, per se, we have 

nevertheless uncovered a fundamental role for this transcription factor of the greater TGF  

pathway in post-natal skeletal development.  We provide evidence that the role of Smad4 in bone 

development and skeletal metabolism derives not only through an ability to modulate canonical 

Wnt signaling, but also because Smad4 exerts powerful influence over R-Smad and TAK1/p38 

MAPK signaling in bone.  Therefore, this work also provides novel evidence that current models 

depicting TGF /BMP signaling should be refined to account for a clear, but heretofore 

unestablished, link between canonical Smad and non-canonical MAPK pathways.  
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