Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-16

1991-01-01

Formal Verification of Pure Production Systems Programs

Gruia-Catalin Roman, Rose F. Gamble, and William E. Ball

Reliability, defined as the guarantee that a program satisfies its specifications, is an important
aspect of many applications for which rule-based expert systems are suited. Executing rule-
based programs on a series of test cases. To show a program is reliable, it is desirable to
construct formal specifications for the program and to prove that it obeys those specifications.
This paper presents an assertional approach to the verification of a class of rule-based
programs characterized by the absence of conflict resolution. The proof logic needed for
verification is already in use by researchers in concurrent programming. The approach involves
expressing... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin; Gamble, Rose F.; and Ball, William E., "Formal Verification of Pure Production
Systems Programs" Report Number: WUCS-91-16 (1991). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/635

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/635?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/635

Formal Verification of Pure Production Systems Programs

Gruia-Catalin Roman, Rose F. Gamble, and William E. Ball

Complete Abstract:

Reliability, defined as the guarantee that a program satisfies its specifications, is an important aspect of
many applications for which rule-based expert systems are suited. Executing rule-based programs on a
series of test cases. To show a program is reliable, it is desirable to construct formal specifications for
the program and to prove that it obeys those specifications. This paper presents an assertional approach
to the verification of a class of rule-based programs characterized by the absence of conflict resolution.
The proof logic needed for verification is already in use by researchers in concurrent programming. The
approach involves expressing the program in a language called Swarm, and its specifications as
assertions over the Swarm program. Among models that employ rules-based notation, Swarm is the first
to have an axiomatic proof logic. A brief review of Swarm and its proof logic is given, along with an
illustration of the formal verification method used on a simple rule-based program.

https://openscholarship.wustl.edu/cse_research/635?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/635?utm_source=openscholarship.wustl.edu%2Fcse_research%2F635&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Verification of Pure Production Systems
Programs

Gruia-Catalin Roman, Rose F. Gamble and William
E. Ball

WUCS-91-16

January 1991

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

As appeared in the Proceedings of the 9th National Conference on Artifical
Intelligence, Vol. 1, July 1991, pp. 329-334.

Formal Verification of Pure Production System Programs

Rose F. Gamble and Gruia-Catalin Roman and William E. Ball*
Washington University
Department of Computer Science
St. Louis, MO 63130
rfgQ@cs.wustl.edu, roman@cs.wustl.edu, web@cs.wustl.edu

Abstract

Reliability, defined as the guarantee that a program
satisfies its specifications, is an important aspect of
many applications for which rule-based programs are
suited. Executing rule-based programs on a series of
test cases does not guarantee correct behavior in all
possible test cases. To show a program is reliable, it is
desirable to construct formal specifications for the pro-
gram and to prove that it obeys those specifications.
This paper presents an assertional approach to the ver-
ification of a class of rule-based programs characterized
by the absence of conflict resolution. The proof logic
needed for verification is already in use by researchers
in concurrent programming. The approach involves
expressing the program in a language called Swarm,
and its specifications as assertions over the Swarm pro-
gram. Among models that employ rule-based notation,
Swarm is the first to have an axiomatic proof logic. A
brief review of Swarm and its proof logic is given, along
with an illustration of the formal verification method
used on a simple rule-based program.

Introduction

Rule-based (RB) programs have been very successful in
applications where speed and total reliability are not
significant factors. However, speed and reliability are
important in applications involving critical real-time
decisions. The issue of execution speed is currently
being addressed by work on parallel production sys-
tems (Ishida 1990; Schmolze and Goel, 1990) which is
concerned with parallel implementations of existing se-
quential rule-based programs. Reliability, defined as
the guarantee that a program satisfies its specifica-
tions, has not been addressed as yet. For this pur-
pose, a set of formal specifications must be given for
the program and the program must be expressed in
a language with an associated proof theory to show
that the program obeys its specifications. Such a proof

"The first and third authors were supported by Washing-
ton University’s Center for Intelligent Computer Systems,
whose primary sponsors are McDonnell Douglas Corpora-
tion and Southwestern Bell Corporation.

theory is not associated with current languages used
to express RB programs, such as OPS5 {Forgy, 1981).

The principal contributions of this paper are to show
that many rule-based programs may be formally veri-
fied using assertional methods and that the proof logic
needed for verification is already in use by researchers in
concurrent programrning. This proof logic is applicable
to both sequential rule-based programs and to concur-
rent rule-based programs, i.e., to programs that exhibit
logical parallelism independent of their implementation.

The proof logic we will be using was originally devel-
oped by Chandy and Misra for UNITY (Chandy and
Misra, 1988), a concurrency model based on condi-
tional multiple assignment statements to shared vari-
ables. This proof logic was later generalized by Cun-
ningham and Roman (Cunningham and Roman, 1990)
for use with Swarm, a concurrency model based on
atomic transactions over a set of tuple-like entities. Be-
cause Swarm uses tuples to represent the entire pro-
gram state and builds transaction definitions around a
rule-based notation, certain programs written in tra-
ditional rule-based programming languages have direct
correspondents in Swarm and may be subjected to
formal verification. Because of space limitations, we
assume familiarity with the components of RB pro-
grams. A complete discussion can be found in (Win-
ston, 1984). One class of RB programs that can be
translated to Swarm without modification is the class
of pure production system programs. In such programs
no conflict resolution strategy is used. Instead, instan-
tlations are chosen nondeterministically for execution
from the conflict set. Many RB programs that depend
on some form of conflict resolution can be reformu-
lated as pure production system programs. The con-
version of such programs is not addressed in this paper.

We begin the paper by presenting Swarm and its proof
logic. In the next section, we demonstrate the proof
theory on an example RB program. The final section
gives a brief discussion and conclusion.

Swarm

Swarm (Roman and Cunningham, 1990) is a shared
datespace model and language, in which the princi-
pal means of communication is a common content-
addressable data structure, called the dataspace.
Swarm provides a small number of constructs that are
at the core of a large class of shared dataspace lan-
guages, of which RB programs are a part.

Working memory directly corresponds to the Swarm
tuple space, which is one part of the dataspace con-
sisting of a set of data tuples. Each working mem-
ory element in 2 RB program is represented as a fu-
ple in the tuple space!. Production memory maps to
the Swarm transaction space, which is another part of
the dataspace? consisting of a set of transactions that
indicate possible actions to be taken by the program.
Each transaction may be viewed as a parameterized
rule. Simple transaction definitions involve 2 left-hand
side (LHS) and a right-hand side (RHS) with the same
meanings as in a rule in a RB program. Complex trans-
action definitions use a ||-operator to combine simple
definitions of rules, also called sublrersactions, into a
single transaction. Note that Swarm makes a distinc-
tion between the definition of a transaction and its ex-
istence. Only transactions that exist in the transaction
space may be executed.

The execution cycle of a Swarm program begins by
choosing & transaction nondeterministically from the
transaction space. The choice is fair in the sense that
a transaction in the transaction space will eventually
be chosen. As a by-product of its execution, the trans-
action is deleted from the transaction space, unless it
explicitly reasserts itself. Once chosen, the LHS of
all subiransactions are matched simultaneously. Those
subtransactions whose LHSs are satisfied, execute their
RHSs simultaneously, performing all deletions before
additions. Only tuples may be deleted in the RHS of
a subiransaction, but both tuples and transaction may
be asserted. Termination occurs when no transactions
are left in the transaction space. Figure 1 presents the
tuple and transaction notation of Swarm.

Each rule in a pure production system program is
represented as a subtransaction of a distinct transae-
tion. In addition, the termination conditions of the pure
production system program are defined, negated, and
placed as a second subiransaction in each transaction.
This ensures that the transaction is reasserted into the
transaction space as long as the termination conditions
are not satisfied. Thus, each transaction in Swarm con-
tains two subtransactions: (1) the direct translaiion of
a single rule in the RB program and (2) the negated

'If working memory is 2 multiset, it must be encoded as

a set.
*There is a third and final part of the dataspace, the
synchrony relation, but we do not elaborate on it in this

paper.

T(i) =)]
XY : out(X) A in(Y) — in(Y)},0ut(Y)

Z :in(Z) — T(1);

Description: (a) T(i) is the transaction name, with vari-
able i.. (b) X, Y, Z are dummy variables. (c) out{X) is
the 1st tuple in the LHS of the first subtransaction in T(i),
where “out” is the class name and X represents an attribute
value of that class. (d) The arrow (—) separates the LIS
and RHES. (e) In the RHS, the dagger (}) means “delete this
tuple from the tuple space” No dagger means *“add this
tuple to the tuple space.” (f} The parallel bars (||} separate
the subtransactions. (g) in(Z) is the 1st tuple in the second
subtransaction, which reasserts the transaction as long as
in{Z} is in the tuple space. For notational convenience, the
above transaction can be rewritten as:
T({i) =
XY out(X), in(Y)f —— out(Y)

Z :in(Z) — T(i)

Figure 1: Swarm Sample Transaction.

termination conditions of the RB program for reasser-
tion of the transaction. Since a transaction is chosen
nondeterministically, and has an effect only if its LHS
is satisfied, the execution sequences produced are those
of a pure production system program.

Proof System

In this section, we briefly summazrize the Swarm proof
logic (Cunningham and Roman, 1990). This proof
logic is built around assertions that express program-
wide properties. Such properties encompass the entire
knowledge base and database of a RB program. The
Swarm proof logic is based on the UNITY (Chandy and
Misra, 1988) proof logic, and uses the same notational
conventions. Informally, the meaning of the assertion
{p} t {q} for a given Swarm program, is whenever the
precondition p is true and transaction instance t is in
the transaction space, all dataspaces which can result
from execution of t satisfy postcondition q.

As in UNITY’s proof logic, the basic safety properties
of a program are defined in terms of unless relations.
[t : ¢t € TRS = {p A ~qL t {p V 41}

r unless q

where the bar represents inference and TRS is the set
of all transactions that can occur in the tramsaction
space. Informally, if p is true at some point in the
computation and q is not, then, after the next step,
either p remains #rue or q becomes frze. TFrom this
definition, the properties stable and invariant can be
defined as follows,

stable p = p unless false
invariant p = (INIT = p) A stable p

where INIT is a predicate which characterizes the valid
initial states of the program. Informally, a stable pred-
icate once true, remains frue, and invariants are always
true. The symbol = represents logical implication.
The ensures relation is the basis of the progress
properties. This relation is defined as follows,

punless g A[Bt:te TRS u(p A g = [A {p A ~g} t {g}]
7 CHSUIES ¢

where [t] means that the transaction t is actually
present in the transaction space. Informally, if p is frue
ab some point, then (1) p will remain #rue as long as g
is false, and (2) if q is false, there is af least one trans-
action in the transaction space which can establish ¢ as
true.

For the leads-to (—) property, the assertion p —s
q is frue if and only if it can be derived by a finite
number of applications of the following inference rules.

i 2 ensures g
E2§ P F—*TAqr —+ q
P 9q

: e W
(3) For any set W' 1[:: : z €W ﬁgxg}:qg

Informally, p —— q means once p becomes frue, q will
eventually become truze, but p is not guaranteed to re-
main {rze until q becomes frue.

Illustrating a Correctness Proof

We use the Bagger problem (Winston, 1984) to illus-
trate the use of Swarm proof logic for verifying RB
programs. Bagger is a toy expert system to bag gro-
ceries according to their container types and weights.
This program was chosen because: (1) it can be fully
specified formally, (2) it can be stated as a pure pro-
duction system program, and (3) it exhibits some basic
properties of a RB program, such as tasking and con-
text switching. For notational convenience, we have
eliminated some extraneous information in the original
program.

Bagger is given a set of unbagged grocery items rep-
resented by tuples of the type unbagged(I), where
I, ranging from 1 to mazilems, denotes a unique tem
number. The value of mazitems is determined by the
number of unbagged items given initially. For each un-
bagged tuple in the tuple space, the program is given a
description of that item in the form of a tuple of type
grocery(L,B,W.,F). The first field of this tuple type
corresponds to the unigue item number. The next field
corresponds to a boolean value representing whether or
nol the item is a bottle. The third field gives one of three
possible weighls that determines if the ilem is small
medium or large. These weights are: smwgt, med-
wgt, Igwgt respectively. The last field corresponds to
a boolean value representing whether or not the ilem is
frozen.

Execution of the program must place unbagged items
in a bag, in a predefined order. Bags should only be cre-
ated when needed. To represent a bag, a tuple of type

There is exactly one step tuple present at all times.

The total number of grocery items equals maxitems,

For every item, there is exactly one grocery item.

At any time, a grocery item is either inside or outside

of a bag.

A bagged item exists once in only one bag.

A bagged item remains bagged in the same bag and in

the same position.

7. The items in each bag are ordered as follows:
{a) large bottles (b) large items
{¢) medium frozen items (d} medium non-frozen items
{e) small frozen items (f) small non-frozen items

8. At any time, the weight of every bag cannof exceed
the maximum weight allowed.

9. The bags are ordered sequentially, beginning with the
number 1.

10. The bags are identified by unique natural numbers.

I1. At any time, the first item in bag N, cannot fit in any
bag M, where M < N.

12. All unbagged items are eventually bagged

13. Eventually every bag has at least one item.

14. Once all items are bagged, all remain bagged.

15. Onmce all items are bagged, the program terminates.

kel A

< o

Figure 2: Informal Specifications of Bagger.

bag(IN,W,A) is placed in the tuple space, in which
N is the bag’s unique identification number, W is the
tolal weight of the bag, and A is a sequence coniaining
the identification numbers of the ilems placed in the bag
so far. A bag can only reach a certain weight, called
maxwgt. Since bags are created dynamically, a tuple
of type current(IN) keeps track of the number of bags
created.

Another tuple of type step(B}, is used as a context
element to divide the rules into tasks 1, 2, 3, and 4, de-
pending on the value of B. The context element in Bag-
ger is a single working memory element that is present
in the LHS of every rule making each rule contribute to
some task. It is also always present in working memory,
In each task, a control rule is used to switch contexts,
according to the predefined task ordering. The tasks
are: (1) bag large bottles, (2) bag large items, (3) bag
medium items, and (4) bag small items. Bagger ter-
minates when all unbagged items are bagged. Figure 2
informally details the full specifications of Bagger.

Translation of Bagger to Swarm

Each rule in the original Bagger was translated to a
Swarm transaction as discussed in the earlier Swarm
section. Figure 3 shows the Swarm transactions for
task 1, bag large bottles. The symbol » represents con-
catenation and <> represents the null sequence. Figure
4 shows the English translation of these same transac-
tions. We will concentrate on this task for the remain-
der of the paper. The formal specifications, the Swarm
program in its entirety, and the proof of Bagger can be

Rule(l) =
LN,WA :
step(1), large-bottle(T), unbagged(I)$,
bag(N,W,A)t, W < maxwgt - lgwgt
—

bag(N, W-tlgwgt, A o I}
I
I :unbagged(I} — Rule(1);

Rule(2) =

LN:

step(1), large-bottle(l), unbagged(l), current(N)t,
[VM,W,A : bag(M,W,A) :: W > maxwgt - lgwgt]

—_——

bag(N+1, 0, <>), current(N+1)
I
I :unbagged(I) — Rule(2);
Rule(3) =
step(1)t, [VI : large-bottle(I) :: —unbagged(I}],

step(2)

I :unbagged(I) — Rule(3);

Figure 3: Transactions to bag large botiles in Bagger.

found in (Gamble ef al., 1991).

Sample Proof

In this section, we prove a single progress property to
demonstrate how the proof logic of Swarm can be ap-
plied to a rule-based program. A progress property is
normally expressed as a leads-to relation between two
predicates.

The proof presented in this section will show that
task 1, bag large bottles, fulfills its objective. Every
task is characterized formally by its initial and termi-
nation conditions. The termination conditions of a task
must eventually be reached from the initial conditions.
When the termination conditions are reached, the ob-
jectives of the task should be met. Let in#f(1) represent
the initial conditions of task 1, and term(1) its termina-
tion conditions. Task 1 is activated only when the tuple
step{1) is in the tuple space. Also part of init(1)is that
all large bottles are unbagged. The termination condi-
tion of task 1 is that all large bottles are bagged. Since
this condition must occur when step(1) is in the tuple
space, it is also part of term(1}. The proof obligation
for task 1 is stated as follows.

Prove: While in task 1, all large bottles are
eventually bagged.

Formally, this is stated:
(1) init(1) s term(1).

When Rule(1) is chosen, if the
current step is 1 and there

exists a large unbagged botile,
and an available bag, then delete
the unbagged tuple and add the
item and its weight to the bag.
Any unbagged item in the tuple
space causes the transaction

to be reasserted.

For Rule(2), if the step is 1 and
there exists a large unbagged bottle
and the current number of bags

is N, and no bag can hold the item,
then create a new bag, changing the
current number of bags.

For Rule(3), if the step is 1 and
all large bottles are bagged, then
delete the current step tuple and
insert the tuple step(2), which
enables large items to be bagged.

Figure 4: English Version of Swarm Transactions
to bag large bottles.

which expands to:

(2) step(1) A [V I :large-bottle(I) :: unbagged(I)]
[E—
step(1) A [V I : large-bottle(T) :: bagged(T)]

where large-bottle(I} is true if there is a grocery tuple
representing a large bottle with I as the unique identi-
fier. Ience, large-bottle(I) is defined by:

large-bottle(l) =
item(I) A
[3 W,F : grocery(Ltrue, W.F) ©: W = lgwgt];

itern(I) is defined by:
item(I} = [1 £ I £ maxitems];
and bagged(l) is true if the item is in some bag:

[V I:item(T) :: bagged(l) =
[ANWAnD: bag(NNW,A):: An=1}]

Before we prove (1), we must first show that the
initial conditions of the task are actually established
sometime during execution. In the case of task 1, the
predicate init{ 15 should be implied by the initial con-
ditions of the program, represented by the predicate
INIT. We will assume INIT satisfies the following prop-
erties stated informally below.

A. The total number of grocery items equals masitems.
B. There exists one grocery tuple for each item.
C. For every grocery tuple (i.e., grocery(I,B,W,F)},
there is a corresponding unbagged tuple
(i.e., unbagged(I}).

D. There are no tuples of type bag{N,W,A) present.
E. The tuple step(1} is the only one of its type present.
F. All transactions are present in the transaction space.

From the definition of INIT, it should be clear that
(3) INIT = initf1)
A property of ensures is that ;ﬁﬂs%{m (Chandy
and Misra, 1988). Then, by the first inference rule of
leads-to we have:
(4) INIT +— init(1)

To show (1), we use induction on the number of large-
bottles. By property 4, in Figure 2, we know:

[V 1: large-bottle(I) :: bagged(I)]
[Z I: large-bottle(I) A unbagged(l) :: 11°= 0.

Then, it is clear that

(5) step(1) A [Z1: large-bottle(I) A unbagged(l) :: 1) = 0
= term(l

Then we need to show init(1) = (5). If there are
no large bottles, then the proof is trivial. Assume that
initially the number of large bottles is non-zero. We
define

(6) must-bag(l,o)=

step(1} A
[Z1: large-bottle(I) A unbagged(I} :: 1] =& A
o >0

Then

(M) init{1) = (must-bag(l,a) A @ > 0)

and

(&) (must-bag(l,a) A o = 0) = term(1)

are true. Both (7) and (8) can be stated as leads-to
relations. The implication in (8) represents the base
case of the induction. The remainder of the proof of
(1) is to show that the number of unbagged bottles
eventually decreases by one, i.e., the induction step.

(9) (must-bag(l,a) A @ > 0) — must-bag(l,e-1)

Then we can apply the transitive property of leads-to
to (7), (8), and (9).

In the proof of (9), two cases are possible: (i) if the
unbagged large bottle does not fit in any available bag,
or (ii) the unbagged large bottle does fit in an available
bag. We define
fits(I) =

[3 N,W,A : large-bottle(I) A unbagged(I) A bag(N,W,A)

i W 4 lgwet < maxwgt)

The two cases can be stated as:

3Count 1 for each time the predicate is satisfied. Read
“the number of I, such that I is a large bottle and I is
unbagged.”

Case (i)
Case (i) must-bag(l,o
We know that

(10) (must-bag(l,e) A a > 0}
([must-bag(l,a) A @ > 0 A —fits(I)] v
[must-bag(l,a) A a > 0 A fits(I)])

since must-bag(l,a) A @ > 0 logically implies the dis-
junction of case (i) and case (ii). Using the transitivity
of leads-to, the proof of (9) is complete if we show:
case (i) leads-to case (ii), and case (ii) leads-to must-
bag(1,a-1). This is done by showing the following:

must-bag(l,e) A & > 0 A —fits(I)
Ao >0 A fits(l)

(11) (must-bag(l,e) A o > 0 A —fits(I))
ensures
(must-bag(l,a) A & > 0 A fits(]))
and
(12) (must-bag(1l,a) A & > 0 A fits(I))

ensures
must-bag{l,a-1)

To prove the ensures relation in (11) and (12), it
must be shown that all transactions either maintain the
LHS property of the ensures after execution, or change
the state of computation to satisfy the RIS property,
and that there is at least one transaction that changes
the state to the RHS property. Only those transactions
that match the tuple step(1) can affect the ensures in
(11) and (12). When step(1) is in the tuple space, any
transaction that does not match step(1) maintains the
LHS property. (We are using property 1 in Figure 2 and
the fact that every transaction contains a query for the
step tuple.) Therefore, for the purpose of this proof, we
need only prove (11) and (12) for those transactions in
Figure 3.

The first step of the proof for (11) is to show:

[VRule(t): 1 <t<3::
{{must-bag(l,a) A o > 0 A ~fits(1)) A
—(must-bag(l,) A o > 0 A fits(1))}
Rule(t)
{(must-bag(l,e) A a > 0 A ~fits(I)) v
{must-bag(L,a) A o > 0 A fits(I))}]

[VRule(t): 1 <t <3
{must-bag(l,a) A & > 0 A -fits(I}}
Rule(t)
{must-bag(l,a) A & > 0}]

This property clearly holds since in a state where a large
bottle does not fit in any bag, none of the rules do any
bagging. Both Rule{1) and Rule(3) maintain the LHS
property because their LHSs are not satisfied under the
property. Rule(2) creates a new bag upon execution,
but does not reduce the number of unbagged bottles.
Hence, we have proven

(13) (must-bag(l,a) A o > 0 A —fits(I})
unless
(must-bag(l,a) A o > D A fits(I))

Since every transaction is reasserted as long as:
{3 : item(I) :: unbagged(I)]
we know
(14) must-bag(l,e) A e > 0 A —fits(I) = Rule(2)

and based on its definition, Rule(2) actually establishes
the RHS of (11} as shown in (15) below.
(15) {(must-bag(1,e) A o > 0 A —fits(I)}
Rule(2)
{(must-bag(l,&) A a > 0 A fits(I)}

By (13), (14), and (15), we have proven (11).

The proof of (12) is similar o the previous proof.
Again we look only at the transactions to bag large
bottles, task 1, since these are the only transactions
that can have any effect on (12), because they match

step(1).

(16) {must-bag(l,0) A & > 0 A fits(I)}
Rule(1)
{must-bag(1,e-1)}

a7) {(must-bag(l,0) A & > 0 A fits{I)}
Rule{2)

{(must-bag(la) A & > 0 A fits(}}

(18) {must-bag{l,a) A o > 0 A fits(I)}
Rule(3)

{must-bag(l,a) A o > 0 A fits(I}}

In (17} and (18), it is shown that Rule(2) and Rule(3)
maintain the LHS of (12). Rule(1) decreases the num-
ber of unbagged large bottles, because it will pack an
item in a bag. From (16), (17), and (18), we know:
(19) (must-bag(1,a) A & > 0 A fits(I))

unless

must-bag{1,e-1)

Again, all transactions are reasserted into the transac-
tion space as long as there is an unbagged item left in
the tuple space. Thus,

{20) must-bag(l,a) A @ > 0 A fits(I) = Rule(1)

In (16) Rule(1) establishes the RHS of (12). Therefore,
by (16), (19}, and (20), have proven (12), and hence
shown proof of (2).

The proof above gives the flavor of the entire proof
of the Bagger program, but only encompasses a small
part: that of proving a single task executes correctly.
The approach we used in proving progress properties of
the entire program was to show first, that each individ-
ual lask ezecuted according lo ils specifications and then
to show, the ordering of the tasks was correct!. Since
each task has a control rule to switch contexts when the
task completed, the proof of correct task ordering fol-
lowed directly. This approach would be typical of RB

*For example, if task 2 followed task 1, the proof obliga-
tion would be: term{1) ~— init(2).

programs structured using a context element and con-
trol rule for tasking. In Bagger, because the tasks were
similar, we were able to simplify the proof by general-
izing some program properties. The result was a single
proof that covered all four tasks.

Conclusion

This paper presents an assertional approach to the ver-
ification of a class of RB programs characterized by the
absence of conflict resolution. The verification method
is borrowed directly from work in concurrent programs-
ming. This work raises two important questions. First,
can we eliminate conflict resolution from rule-based pro-
grams for the sake of achieving reliability through the
application of formal verification methods? Second,
can we extend program verification techniques to cover
those forms of conflict resolution that appear to be es-
sential to RB programming?

References

Chandy, K.M., and Misra, J. 1988, Parallel Program
Design: A Foundation. Reading, Mass.: Addison Wes-
ley.

Cunningham, H.C., and Roman, G.-C. 1990. A
UNITY-style Programming Logic for a Shared Datas-
pace Language. IEEE Transactions on Parallel and
Distributed Systems 1(3):365-376.

Forgy, C.L. 1981. QPS5 User’s Manual. Technical
Report, CMU-CS-81-135, Dept. of Computer Science,
Carnegie-Mellon University.

Gamble, R.F.; Roman, G.-C.; and Ball, W.E. 1991,
On Extending the Application of Formal Specification
and Verification Methods to Rule-Based Programming,
Technical Report WUCS-91-1, Dept. of Computer Sci-
ence, Washington University, St. Louis.

Ishida, T. 1990. Methods and Effectiveness of Parallel
Rule Firing. Proceedings of the 6th IEEFE Conference on
Arlificial Intelligence Applications. Washington, D.C.:
IEEE Computer Society Press.

Roman, G.-C,, and Cunningham, H.C., 1990. Mixed
Programming Metaphors in a Shared Dataspace Model

of Concurrency. JEEE Transactions on Software Engi-
neering 16(12):1361-1373.

Schmolze, J.G., and Goel, S. 1990. A Paralle] Asyn-
chronous Distributed Production System. 8th National
Conference on Artificial Intelligence, 65-71. Cam-
bridge, Mass.: MIT Press.

Winston, P.H. 1984. Artificial Intelligence, 2nd Edi-
tion. Reading, Mass.: Addison-Wesley.

	Formal Verification of Pure Production Systems Programs
	Recommended Citation
	Formal Verification of Pure Production Systems Programs

	tmp.1455646060.pdf.4gK80

