
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2012 

Novel Sequence-Based Method for Identifying Transcription Novel Sequence-Based Method for Identifying Transcription 

Factor Binding Sites in Prokaryotic Genomes Factor Binding Sites in Prokaryotic Genomes 

Gurmukh Sahota 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Sahota, Gurmukh, "Novel Sequence-Based Method for Identifying Transcription Factor Binding Sites in 
Prokaryotic Genomes" (2012). All Theses and Dissertations (ETDs). 636. 
https://openscholarship.wustl.edu/etd/636 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/636?utm_source=openscholarship.wustl.edu%2Fetd%2F636&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS

Division of Biology and Biomedical Sciences

Computational and Systems Biology

Dissertation Examination Committee:
Gary Stormo, Chair

Jeremy Buhler
Justin Fay

Jeffrey Gordon
James Havranek

David Wang

Novel Sequence-Based Method for Identifying Transcription Factor Binding Sites in 
Prokaryotic Genomes

by

Gurmukh Singh Sahota

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in 
partial fulfillment of the 

requirements for the degree
of Doctor of Philosophy

May 2012

Saint Louis, Missouri



ABSTRACT OF THE DISSERTATION

Novel sequence-based method for identifying transcription factor binding sites in 

prokaryotic genomes

by

Gurmukh Singh Sahota

Doctor of Philosophy in Biology and Biomedical Sciences

Computational and Systems Biology

Washington University in St. Louis, 2012

Professor Gary D. Stormo, Chairperson

Computational techniques for microbial genomic sequence analysis are becoming 

increasingly important.  With next-generation sequencing technology and the human 

microbiome project underway, current sequencing capacity is significantly greater than 

the speed at which organisms of interest can be experimentally probed.  We have 

developed a method that will primarily use available sequence data in order to determine 

prokaryotic transcription factor binding specificities.

The prototypical prokaryotic transcription factor (TF) contains a helix-turn-helix 

(HTH) fold and bind DNA as homodimers, leading to their palindromic motif 

specificities.  The connection between the TF and its promoter is based on the 

autoregulation phenomenon noticed in E. coli.  Approximately 55% of the TFs analyzed 

were estimated to be autoregulated.  Our preliminary analysis using RegulonDB indicates 

that this value increases to 79% if one considers the neighboring operons.
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Given the TF family of interest, it is necessary to find the relevant TF proteins and 

their associated genomes.  Due to the scale-free network topology of prokaryotic systems, 

many of the transcriptional regulators regulate only one or a few operons.  Within a single 

genome, there would not be enough sequence-based signal to determine the binding site 

using standard computational methods.  Therefore, multiple bacterial genomes are used to 

overcome this lack of signal within a single genome.  

We use a distance-based criteria to define the operon boundaries and their 

respective promoters.   Several TF-DNA crystal structures are then used to determine the 

residues that interact with the DNA.  These key residues are the basis for the TF 

comparison metric; the assumption being that similar residues should impart similar DNA 

binding specificities.  After defining the sets of TF clusters using this metric, their 

respective promoters are used as input to a motif finding procedure.

This method has currently been tested on the LacI and TetR TF families with 

successful results.  On external validation sets, the specificity of prediction is ~80%. 

These results are important in developing methods to define the DNA binding preferences 

of the TF protein residues, known as the “recognition code”.  This “recognition code” 

would allow computational design and prediction of novel DNA-binding specificities, 

enabling protein-engineering and synthetic biology applications.
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Introduction

There has been increasing interest in understanding microbes both in the context 

of their symbotic relationship with their human hosts, as in the microbiome project 

(Friedrich, 2008; Peterson et al., 2009; Turnbaugh et al., 2007), as well as in the context 

of disease as exemplified by the tuberculosis projects (Cole et al., 1998; Schürch et al., 

2010).  This interest has lead to an increasing number of sequenced microbial genomes. 

Much of the current computational analysis of this sequence information focuses on 

functional classification of genes or metabolic network reconstruction. As of yet, there 

has been little large-scale computational work focused on understanding transcriptional 

regulation in these prokaryotic systems.

Unraveling the gene regulation network is an important step in a deeper 

understanding of the functional complexity of an organism. Gene regulation is a critical 

in the adaptation of the cell to its environment via selective tuning of protein levels. 

Transcription factors are proteins that are able to bind DNA in order to transcribe the 

DNA into RNA. In prokaryotic systems, the transcription factors (TF) are the main 

mechanism of selective gene regulation via cognate binding sites in the promoters of 

regulated genes. This thesis describes a method that combines the increasing amount of 

sequence data with a few simplifying assumptions in order to generate large-scale 

predictions of the binding sites of prokaryotic transcription factors.

Transcriptional Regulation

The central dogma of molecular biology states that information flows from DNA 

to RNA to proteins. DNA is composed of 4 nucleotide bases, adenine (A), guanine (C), 
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cytosine (G) and thymine (T). RNA replaces the thymine (T) with uracil (U) and has a 2' 

OH as well, leading to increased lability. 

Figure 1.1. Nucleotide bases.

In this context, RNA was commonly thought of as a temporary intermediary 

between DNA and protein, however there has been a growing body of literature 

discussing functional RNA enzymes, ribozymes and riboswitches (Guerrier-Takada et al., 

1983; Kruger et al., 1982; Lai, 2003; Serganov, 2009). The process by which information 

flows from DNA to RNA is called transcription. Translation is the process of converting 

the information encoded in the RNA into proteins. The DNA that eventually encodes a 

functional product is generally referred to as a gene. Regulation of gene expression levels 

is mainly controlled during the process of transcription. Both transcription and translation 

occur in three distinct phases: initiation, elongation, and termination. In the context of 

transcriptional regulation, the main control point is the during the initiation phase.

The canonical example of transcriptional control in prokaryotes was developed 

from the study of the lac operon nearly a half century ago (Jacob and Monod, 1961). In 

their study of the lac operon, they discovered the difference between the regulator (TF), a 

3



trans-acting element, and the operator (TFBS), a cis-acting element. They hypothesized 

that these two separate components were required in order to activate or repress the 

“gene” of interest. In addition, they hypothesized a model, Model II, of coordinate 

expression of a set of genes, that they named an “operon” as shown in Figure 1.2.

Figure 1.2. Models of regulation of protein synthesis. Reproduced with permission from 

Journal of Molecular Biology (JMB).

The regulatory region immediately upstream of the operon is called the promoter, 

that contains the regulatory elements necessary for transcription initiation. The result of 

this archtecture is that these sets of genes in the operon are both co-transcribed as well as 

co-regulated. This co-regulation and co-transcription is usually because the operons 

encode genes that are part of a common pathway or are members of a complex. Many 

times these operons include their own regulators, up to 55% of Escherichia coli operons 
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are autoregulatory.  A simple analysis of RegulonDB 6.7 (Gama-Castro et al., 2008), a 

database based on E. coli, increases this value to 79% if one includes the promoters of 

adjacent upstream and downstream operons.

DNA-dependent RNA polymerase is the main enzyme responsible for transcribing 

the DNA into RNA (Ebright, 2000). The complete holoenzyme consists of six subunits: 

α2ββ'σω. The two α subunits assemble the enzyme and bind regulatory factors. The β 

subunit catalyzes the synthesis of RNA, both chain initiation and elongation. Nonspecific 

DNA binding is mediated via the β' subunit. The function of the ω subunit is not entirely 

clear, but currently it is believed to help with the folding of the β' subunit and assembly of 

the RNA polymerase (Mathew and Chatterji, 2006). The final subunit, σ, targets the RNA 

polymerase to certain promoters while decreasing the overall nonspecific promoter 

binding.

Promoter architecture

The RNA polymerase holoenzyme interacts with several specific cis-DNA 

elements that together form the “core” promoter. These elements include the transcription 

start site (TSS), -10 element, -35 element, and the UP element (centered at -50). The -10 

element, also known as the Pribnow box (Pribnow, 1975), serves a similar function to the 

TATA box in eukaryotes, but is essential for initiation of transcription and has a 

consensus sequence of TATAAT. The -35 element is a heptamer with a consensus 

sequence of TTGACAT and typically spaced about 17 +/- base pairs upstream of the -10 

element. There do not appear to be any bacterial promoters with both the -10 and -35 

consensus sequences, perhaps because that would create too tight of a bond between the 

RNA polymerase and the DNA and actually inhibit its translocation. The UP element and 
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the -35 element seem to be interchangable such that, in the presence of an UP element, 

the -35 element is not required for transcription (Estrem et al., 1998). These sets of 

elements in the core promoter localize the initial binding of the RNA polymerase. After 

binding to the DNA, the polymerase converts from the closed complex to the open 

complex. Eventually for the polymerase to continue the elongation process, the σ factor 

must be removed. In addition to this core promoter, the dynamic control of transcription 

in prokaryotes is mainly accomplished via proteins that bind specifically to the upstream 

promoter DNA regions, namely transcription factors. Through interactions with RNA 

polymerase, their binding strength to the DNA is has a correlated effect to the amount of 

RNA that is eventually produced and thus the protein product. 

Transcription factors are able to bind specifically to DNA cis-elements 

modulating their binding in response to external stimuli, generally via protein or 

metabolite allosteric interactions. In making this connection, they becoming the critical 

link in transferring information from the environment into functional consequences. The 

prototypical prokaryotic transcription factors are mainly of the helix-turn-helix (HTH) 

fold family, and selectively bind to the major groove of DNA using the second helix of 

the TF. Approximately 80% of E. coli TFs are members of the HTH superfamily. These 

HTH TFs generally bind as homo-dimers (and more rarely as homo-tetramers) leading to 

a palindromic binding specificity, however in certain families they can bind direct repeats 

as well.

Figure 1.3. HTH binding model. The structure shown is adapted from PDB (2yvh). The 

structural elements highlighted in orange are the recognition helices of the HTH binding 

domain. As can be seen, they fit into the major groove of the DNA where they can make 
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base-specific contacts. Figure created using VMD (Humphrey et al., 1996).

Horizontal gene transfer and phylogeny

Horizontal gene transfer is a mechanism by which different bacteria can share 

genetic material. This process is believed to be important in the rapid emergence of drug 

resistance across multiple different bacterial species given a few resistant bacteria 

(Hawkey and Jones, 2009). Given a local regulatory structure, the sharing of genetic 

material between different bacterial species via horizontal gene transfer would be more 

effective due to a lower risk of importing of an entirely unregulated set of operons. This 

process of horizontal gene transfer also creates confusion within a phylogenetic analysis, 

which generally depend on sequence differences between taxa in order to generate an 

evolutionary tree. Phylogenetic approaches are usually based on a molecular clock 

hypothesis, where changes in the DNA are an evolutionary process that is roughly 
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constant over a unit of time and these eventual processes lead to speciation and 

adaptation. With lateral transfer, the problem is that changes in the DNA are no longer 

only due to top-down speciation events over time, from parent to child. This complication 

becomes important in the context of selecting methods in order to analyze multiple 

microbial genomes. Many advanced motif finding approaches rely on orthology and 

phylogeny in order to more effectively determine putative motifs. In addition, as will be 

discussed later, the assumption of sequence independence between phylogenetically 

distant relatives may not apply in the context of horizontal transfer, thus a normalization 

procedure based on phylogeny may lead to spurious signals.

Experimental determination of binding sites.

Many experimental methods have been used in order to identify interactions 

between transcription factors (TF) and their corresponding DNA binding elements. In 

antibody-based TF detection assays, one can either directly detect the TF or tag every TF 

with an epitope such as a GST tag. The benefit of a direct TF antibody is that it will 

detect a native form of the TF and can be easily multiplexed, although if the TF is 

modified from the form used to generate the antibodies, such as by post-translational 

modification, the antibodies may cross-react or not bind at all. Additionally, direct 

detection requires generating antibodies to each TF of interest. The epitope tag can 

alleviate some of these issues by inserting a constant region that can be is detected by an 

antibody regardless of the linked TF. However, the tag can potentially impede or change 

native TF-DNA interactions, and thus needs to be used with care.

Electrophoretic mobility shift assay (EMSA) uses gel shifting in order to 

determine DNA binding. Specifically, a TF is purified and labeled DNA oligmer probes 
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are mixed and introduced into a polyacrylimide gel. An electric voltage is introduced 

across this gel and the protein-DNA mixture, stabilized in part by the gel-matrix moves 

via electrophoresis. Then the complex is visualized using florescence, UV or another 

appropriate method depending on the labeling strategy of the DNA. The TF-DNA 

complex will be at a larger molecular weight than the labeled oligimer probe. If the 

starting concentrations of the TF and the oligmer probe is known, then the affinity can be 

estimated from the relative intensities of the bound and unbound fractions. If the TF 

concentration is not known, then one can titrate the labeled probe and measure against a 

known standard (Buratowski and Chodosh, 2001). If the protein is not purified, it is also 

possible to use an antibody specific for the TF of interest generating a “supershift”.

Systematic evolution of ligands by exponential enrichment (SELEX) (Tuerk and 

Gold, 1990) is an in-vitro method that is used to identify target sequences that have 

affinity for the TF of interest. The TF is affixed to a substrate and an input library of 

potential DNA oligmers is flowed over the substrate. Iterative rounds of selection and 

elution followed by amplification are performed. At the end of several rounds, the 

strongest binders are most likely to remain. Recently, a method has been developed so 

that only a single round of SELEX is required to determine the specificity of a 

transcription factor using a maximum-likelihood model and the background frequencies 

of the input library (Zhao et al., 2009).

In protein-binding microarrays (PBMs) (Berger et al., 2006; Berger and Bulyk, 

2009), microarrays that cover all of the sequence space of a certain length are generated, 

using a linearized de Bruijn sequence. TFs are flowed over this microarray and binding 

associations are detected using an antibody to the TF. A control experiment to detect 
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cross-reaction of the microarray and the antibody is also performed. The ratio between 

the control and sample are used to calculate an enrichment score for each potential DNA 

binding sequence.

In the genomic context, one can implement protocols based on chromatin 

immunoprecipitation (ChIP). There are two major variants that are used to determine TF-

DNA interactions across a genome, ChIP-chip (Buck and Lieb, 2004) and ChIP-Seq 

(Johnson et al., 2007). The main difference between the two is the readout method, the 

former uses a microarray and the latter uses sequencing. The overall protocol consists of 

taking cells that overexpress an epitope-tagged TF or unmodified cell lines, crosslinking 

the DNA to the DNA-binding proteins, sheering the genomic DNA, purifying the TF-

DNA crosslinked complex of interest (via immunoprecipitation with an anti-TF antibody 

or an anti-epitope antibody), un-crosslinking the DNA and then use one of the two 

readout methods to determine the sequence of the DNA that was bound by the TF during 

the crosslinking process. In the ChIP-Seq protocol, the same rapid sequencing 

technologies that have increased the amount of bacterial genomic sequence, are also 

being applied to understand TF-DNA interactions. However, to assess all of the 

transcription factors in a genome, the protocol would require antibody pulldowns of 

every TF of interest, either in a successive manner by epitope tagging every TF, or by 

creating antibodies to every TF of interest in the native form.

The bacterial one-hybrid (B1H) has also been used to determine the specificity of 

DNA interactions. The method relies on two plasmids, one containing the TF fused to the 

ω subunit of RNA polymerase and the second containing a randomized binding region 

(Meng et al., 2005). A major advantage of the B1H system is that the protein does not 
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need to be purified, however, given that this is a bacterial system, it is likely that some 

bacterial TF's would cross-react with the transcriptional machinery of the E. coli host and 

cause errors in interpretation.

Motif Models

Representation of a binding site can take multiple forms. Most simply, one could 

list the series of sequences that are bound. There is no loss of information in the 

enumerative model, however there is also no generalization or easy ability to interpolate 

missing data points.  A summarization of the most likely to be bound set of sequences 

could be a “consensus” sequence. The consensus sequence is generally described using 

the IUPAC degenerate alphabet or a regular expression. The IUPAC degenerate alphabet 

consists of 15 characters that describe all possible combinations of nucleotides, A, C, G 

and T. For example, S, for strong hydrogen bond, represents C or G, whereas N 

represents any nucleotide A, C, G or T. Again, the issue is that the consensus sequence 

may not reflect the relative influence of a nucleotide at each position on the overall 

binding probability (for example, does an S imply equiprobably C/G or was C more 

favorable at that position). A more numerical approach would solve this problem of 

relative ranking of binding sites. The position weight matrix (PWM) or position specific 

scoring matrix (PSSM) is such a method of describing the motif. In this model, each 

column, generally representing a single nucleotide position, is independent and the net 

energy is additive. There are multiple methods to construct a PWM given a set of 

sequences, but generally one counts the number of nucleotides at each position and 

divides that count by the sum over all nucleotides at that column creating a position 

frequency matrix (PFM). Many times, a small pseudocount is added to each nucleotide 
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count in order to mitigate sampling errors, and numerical complications of taking the 

logarithm of zero. This PFM is transformed into a PWM by taking the log-likelihood 

ratio of the observed frequency of a nucleotide at that position vs the expected frequency, 

based on the background nucleotide distribution. The benefit of a PWM is that any 

potential sequence can be scored whether it was observed or not. A common convention 

is that lower scoring sites are correlated with higher energy of binding and higher scoring 

sites are correlated with lower energy of binding. Since each column is independent, the 

more conserved columns can often contribute more to the overall energy of binding, 

which usually means they are more important in determining the strength of the TF-DNA 

interaction (G D Stormo, 2000). The assumption of independence between adjacent 

nucleotide positions has been challenged, but in most cases, it appears to be a relatively 

robust (Benos et al., 2002).

Motif Finding

The prior section assumed that the sites that contributed to the binding were 

known and all that was needed was a model to describe their interaction with the DNA. 

The set of transcription factors binding sites is rarely known a-priori, so both the model 

and the set of sites are being learned simultaneously. The problem is that given a set of 

sequences that are likely to contain a binding site, find a set of statistically 

overrepresented words contained within, or a statistically significant alignment of 

possible binding sites. These sets of words may be the binding sites for the transcription 

factor of interest.

Under the assumption of a fixed width motif of length l, simplest method of 

accomplishing this task would be to count the occurrences of all the l-long words, lmers, 
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within the set of sequences. The problem with this simplistic method is that it requires all 

positions to be exactly identical. Many TFs bind a set of similar sequences rather than 

imposing the restriction that all sequences be completely identical. A variant of this 

method leads to the classical computer science problem of the planted l,d motif (Pevzner 

and Sze, 2000). In this formulation, the group of the l long words with up to d differences 

is considered to be part of the same motif. These two methods generally enumerate all 

possible motifs and select the best representative motif from that set. 

Alternatively, one can use methods that are based on iteratively building the PWM 

as opposed to enumerating all possible lmers. There are three major components to all 

motif finders: a motif model, an objective function and a search algorithm. The motif 

model is generally a PWM. The objective function is a measure of the likelihood of that 

specific PWM being enriched in the set of sequences rather than simply a null model. 

There are three main algorithms used in the search step, including greedy algorithms, 

expectation-maximization (EM), and a variation of EM called Gibbs sampling. 

Representing these three classes are CONSENSUS (Hertz and Stormo, 1999; Stormo and 

Hartzell, 1989), MEME (Bailey and Elkan, 1994) and Gibbs sampler (Neuwald et al., 

1995) respectively.

The CONSENSUS algorithm creates a set of potential start matrices using all 

possible lmers. In each subsequent iteration, the best matching lmer from the sequence is 

added to the current set of matrices, and the top scoring PWMs are retained for the next 

round. This process is continued for all sequences. This algorithm is greedy, because the 

order of the input sequences will matter to the final result of the algorithm. An alternative 

method is to use EM. The EM algorithm is commonly used to generate the maximium 
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likelihood estimate of a set of parameters via alternating cycles of expectation of a 

likelihood function using the current parameters followed by maximization of the 

parameters based on the current expectation of the likelihood function. In this regards, 

EM can be viewed as a local descent algorithm. MEME uses EM with a series of 

comprehensive start points in order to generate a set of likely motifs. Gibbs sampling is 

very similar to EM, with the exception that instead of a simple maximization step, Gibbs 

uses a roulette wheel selection to decide the next set of parameter values. This allows the 

algorithm to potentially make a move that is less favorable, thus allowing it to climb out 

of local minima. Incorporating additional data lead to newer generations of motif finders 

that have attempted to capitalize on the idea that orthologous transcription factors should 

bind similar sequences in orthologous promoter regions (Prakash et al., 2004; Saurabh 

Sinha et al., 2004; Siddharthan et al., 2005; Wang and Stormo, 2003). 

Overview of this thesis

This thesis describes a method that can be applied to a series of bacterial genomes 

in order to determine the transcription factor binding sites without additional 

experimental data. Chapter 2 describes the overall approach and its ability to determine 

the binding specificities of two HTH families, namely LacI and TetR. The results of 

Chapter 2 showed some limitations in MEME in its application to this specific problem, 

that spurred the development of an improved motif finding algorithm, including gaps and 

multiple orientations of binding as discussed in Chapter 3. Finally, future directions for 

this project are described in Chapter 4. Two additional appendices are attached which 

describe ancillary projects related to motif finding in non-prokaryotic systems that were 

performed before this thesis project was undertaken. These ancillary projects provided 
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insights as well as a set of tools and codebase that helped in accomplishing this thesis. 

Specifically, an alternative gibbs-sampling based gapped motif finder, much of the SVG 

logo generation framework, and many of the motif input/output and analysis routines 

were implemented in the scope of these additional projects.
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Chapter 2: Sequence-based motif finding protocol in 
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1  This chapter is adapted from Sahota, G. & Stormo, G. D. Novel sequence-based method for 

identifying transcription factor binding sites in prokaryotic genomes. Bioinformatics 26, 2672-

7 (2010).
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Abstract

Motivation: Computational techniques for microbial genomic sequence analysis are 

becoming increasingly important. With next-generation sequencing technology and the 

human microbiome project underway, current sequencing capacity is significantly greater 

than the speed at which organisms of interest can be studied experimentally.  Most related 

computational work has been focused on sequence assembly, gene annotation, and 

metabolic network reconstruction. We have developed a method that will primarily use 

available sequence data in order to determine prokaryotic transcription factor binding 

specificities.

Results: Specificity determining residues (critical residues) were identified from crystal 

structures of DNA-protein complexes and transcription factors (TFs) with the same 

critical residues were grouped into specificity classes. The putative binding regions  for 

each class were defined as the set of promoters for each TF itself (autoregulatory) and the 

immediately upstream and downstream  operons. MEME was used to find putative motifs 

within each separate class. Tests on the LacI and TetR TF families, using RegulonDB 

annotated sites, showed the sensitivity of prediction is 86% and 80% respectively.

Availability: http://ural.wustl.edu/~gsahota/HTHmotif/

Introduction 

There are more bacterial species than from any other kingdom, but only a few 

have been studied in much detail. Their relatively small genomes make them readily 

amenable to sequencing and they now constitute the most abundant genome sequences in 
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the public databases. Projects such as the Human Microbiome Project (Turnbaugh et al., 

2007) and other metagenomic sequencing projects (Riesenfeld et al., 2004) promise to 

significantly increase the amount of genomic sequence from bacterial species. For most 

of these species the genome sequence is the only available information so computational 

approaches are essential to learning more about their characteristics and capabilities. 

Most current computational analyses focus on sequence assembly (Pop, 2009; Ye and 

Tang, 2009), the phylogenetic distributions of species (Hamady et al., 2009; Pei et al., 

2009), functional classification of gene (Selengut et al., 2010; Qin et al., 2010) and 

metabolic network reconstruction (Ye and Doak, 2009). Many of these analyses are 

accomplished through the identification of homologous proteins with known function and 

the inference of functional conservation in the newly sequenced species. As of yet, there 

has been little computational work focused on transcriptional regulation in these 

prokaryotic systems. In this paper, we present a novel sequence-based method to infer the 

specificities of prokaryotic transcription factors (TFs) through the comparisons of their 

DNA-binding domains and applying a motif-finding algorithm to likely binding regions.

Most prokaryotic TFs contain an helix-turn-helix (HTH) fold, where the second 

helix, also known as the recognition helix, primarily contacts DNA (Harrison, 1991; 

Perez-Rueda and Collado-Vides, 2000; Santos et al., 2009). Using crystal structures of 

protein-DNA complexes, we can determine a set of residues that is important for defining 

the specificity of the protein, the “critical residues”. Commonly, these HTH TFs bind as 

homodimers with palindromic DNA specificities. Previous studies have utilized those 

features to identify regulatory motifs in related bacterial species but in those cases the TF 

that binds the motif was not identified except in cases where the motif corresponded to 
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one for a known TF (McCue et al., 2002; Qin et al., 2003). In general, when the binding 

motif for a specific TF is known, and orthologous TFs are identified in other species, one 

can transfer the knowledge about the motif and predict genes that are regulated by the TF 

in the new species (Alkema et al., 2004; Gelfand et al., 2000b; Tucker et al., 2004; Yu et 

al., 2004). Making connections between novel motifs and the TFs that bind them can also 

be accomplished by taking into account additional information (Tan et al., 2005). In that 

study the most useful information for identifying the TF that bound to a specific motif 

was the proximity of the TF, within the genome, to the locations of the predicted binding 

sites. In a similar approach, motifs for orthologous TF were predicted based on the 

assumption of autoregulation (Sorokin et al., 2009). In an earlier study of the Escherichia 

coli transcriptome, approximately 55% of the TFs analyzed were estimated to be 

autoregulated (Martínez-Antonio and Collado-Vides, 2003). Our analysis using 

RegulonDB 6.7 (Gama-Castro et al., 2008) indicates that this value increases to 78% if 

one also includes the promoters of neighboring operons.

Motif finders typically depend on having at least one of two types of data. In a 

“phylogenetic footprinting” approach one has orthologous genes from a set of species and 

attempts to find the conserved binding site motifs that control their expression (Berezikov 

et al., 2004; Blanchette and Tompa, 2002; Cliften et al., 2003; Wang and Stormo, 2005). 

Using such data one can often find potentially functional regulatory motifs, but the TFs 

that bind to them are frequently unknown. The other general approach uses sets of 

sequences within one species for which experimental data suggest they contain common 

binding sites. This may be the promoters (or other regulatory regions) that are known to 

be regulated by a common TF, or sets of genes that are found to be co-regulated, perhaps 
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by unknown TFs (Bailey and Elkan, 1994; Buhler and Tompa, 2002; Down and Hubbard, 

2005; Hertz and  Stormo, 1999; Liu et al., 2001; Pavesi et al., 2001; Thompson et al., 

2003). More recently ChIP-chip and ChIP-Seq methods have been used to identify 

genomic regions that bind to a specific TF. Both kinds of data can be used 

simultaneously, where sets of genes within one species are thought to be co-regulated, or 

at least co-bound by the same TF, and one also has the orthologous regions from multiple 

species from which to focus on the conserved sites (Gelfand et al., 2000a; Jensen et al., 

2005; Kellis et al., 2003; Moses et al., 2004; Prakash et al., 2004; Siddharthan et al., 

2005; Sinha, 2007; Wang and Stormo, 2003). But for the vast majority of sequenced 

bacterial species, data that can be used to identify the binding sites for specific TFs is not 

available. There is generally no experimental data from which to identify co-regulated 

genes, and frequently bacterial TFs, such as LacI, only regulate one gene so that 

canonical motif finding would not work. While motifs can be found for orthologous 

genes across multiple species, that often works only for relatively closely related species 

and not for the entire distribution of bacterial genomes that are sequenced (Lozada-

Chávez et al., 2006; Price et al., 2007). In analyzing metagenomic data, the definition of 

orthologous genes also becomes quite difficult because one only has partial genome 

sequences. It also doesn’t identify the TF that binds to the motif, which is necessary to be 

able to begin determining the regulatory networks across bacteria.

The approach we take in this paper relies on three types of information. The first 

is the identification of bacterial TFs that contain HTH domains and their classification 

into subfamilies based on the primary protein sequence signatures within the HTH 

domain using Pfam (Finn et al., 2010). These subfamilies are not necessarily functionally 
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related, as many times the functions of a specific protein are determined by a separate 

effector domain, but proteins within the same subfamily are likely to interact with DNA 

very similarly, and in particular to use the same critical residues for determining the 

binding specificity of the TF (Contreras-Moreira and Collado-Vides, 2006; Morozov and 

Siggia, 2007; Siggers et al., 2005). The second type of information is the structure of the 

DNA-protein complex for at least one member of the subfamily, which is obtained from 

PDB (Dutta et al., 2009). There are 22 subfamilies of bacterial HTH TFs that have at least 

one known crystal structure from which we can determine the protein residues, within the 

HTH domain, that determine the binding specificity. We cluster together TFs from the 

same subfamily that also contain the same critical residues as we expect them to bind to 

identical, or at least very similar, motifs whether or not they are orthologous TFs. The 

third type of information we need in order to assign motifs to each TF cluster is a set of 

likely binding regions. For this we rely on the fact, mentioned above, that most bacterial 

TFs regulate themselves and/or adjacent operons. Therefore we only need short contigs, 

containing the TF and its promoter as well as adjacent promoters, to have a high 

likelihood of having regions that contain binding sites for the TFs. Although there are 

currently many complete bacterial genomes in the database, there are also many genomes 

represented only by whole genome shotguns (WGS) in which the contigs are 

considerably shorter, and the large scale microbiome projects that are beginning will also 

generate large datasets with much smaller contigs. The approach we apply in this paper 

will be able to leverage that type of data to identify the binding motifs for many 

uncharacterized bacterial TFs, which opens the way to start modeling regulatory 

networks. We demonstrate this approach on two HTH subfamilies, TetR and LacI which 
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are large HTH subclasses with protein-DNA crystal structures and palindromic 

specificities. Initially, this large size will be important in order to have enough sequences 

within each specificity class to confidently find motifs.

Methods

Figure 2.1. Flowchart describing overall method.  The shapes are standard flowchart   

shapes, with the disk showing a database, parallelograms showing user input, the 

rectangle showing processes, inverted triangles showing merging, diamonds showing 

selection, and the rounded box showing the terminating state.

A conceptual overview of the method is shown in Figure 2.1.  The implementation 

was via a series of Perl scripts, using inline C code for the pairwise sequence alignment 

25

Genome
Sequence

Define TF domains 
present in genes 

(via HMMER/PFAM)

Select TF Family

Link Operon/Promoters
to TF

Define Critical Residues
using PDB crystal structures

Extract Gene annotations

Cluster TFs based on 
the critical residues

Define putative binding regions:
Promoters of adjacent operons and 

operon containing the TF

Map putative binding regions 
to TF clusters

Run motif finding on
putative binding regions

Select clusters
with sufficient

number of USPs

Define operons and promoters

Mitigate phylogenetic bias:
Cluster binding regions based
on global similarity and pick 

exemplars from clusters (USP)
Putative representative

motifs for TF cluster

Genome
Sequence

Define TF domains 
present in genes 

(via HMMER/PFAM)

Select TF Family

Link Operon/Promoters
to TF

Define Critical Residues
using PDB crystal structures

Extract Gene annotations

Cluster TFs based on 
the critical residues

Define putative binding regions:
Promoters of adjacent operons and 

operon containing the TF

Map putative binding regions 
to TF clusters

Run motif finding on
putative binding regions

Select clusters
with sufficient

number of USPs

Define operons and promoters

Mitigate phylogenetic bias:
Cluster binding regions based
on global similarity and pick 

exemplars from clusters (USP)
Putative representative

motifs for TF cluster



for speed.

Processing genomes

Four main types of genomic data were selected from the NCBI ftp site for this 

project: completed bacterial genomes, completed plasmid genomes, completed phage 

genomes and bacterial whole genome shotgun (wgs) projects. For the former three 

datasets, the genbank DNA sequence (gbk), the protein translation tables (ptt) and rna 

translation tables (rnt), and the protein fasta sequence (faa) files were retrieved. For the 

plasmids and the phages (retrieved as viruses), they were filtered to only contain bacterial 

or phage sequences respectively. In the case of the whole genome shotgun sequences, 

these subfiles were generated from the genbank flat file (gbff).   The downloaded files 

were validated for correct file format structure and the gbk files were used to recreate the 

ptt and rnt files when errors were found. Each separate gbk file, with its ptt and rnt 

annotations, was further processed into operon and promoters using distance cutoffs 

similar to those used previously (Liu et al., 2008; Price et al., 2005; Tan et al., 2005): a 50 

bp intergenic cutoff for determining operon membership and a 400bp maximum promoter 

length relative the first gene of the operon. The minimum promoter size was required to 

be 50bp.  Circular sequences were appropriately handled both in defining the operons as 

well as their respective promoters.

Determining critical residues

To classify the proteins into their respective HTH subfamilies, HMMER v3.0rc2 

(Eddy, 2009) and Pfam v24.0 were used. The PDB files for each Pfam entry were used to 

determine the critical residues for that subfamily (ie. residues that contact DNA). This 
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was achieved using a modified version of PDB2PQR v1.5 (Dolinsky et al., 2007) to find 

all protein residues within 3.5 angstroms of a DNA base-pair (excluding backbone atoms) 

that may form van der Waals contacts or hydrogen bonds, where the distance cutoff was 

3.4 angstroms and 30 degree maximal angle between the acceptor, donor, and donor 

hydrogen atoms. A maximum of two hydrogen bonded bridging waters were allowed 

between the protein and DNA base. The union of all of these sets of potential contacts 

yielded the critical residues. 

Finding TF family members

The HMM for the Pfam entry was used to search through the fasta sequences 

using hmmsearch. TFs containing multiple domains of an HTH subfamily were removed. 

The resulting domains were then aligned using hmmalign. In order to try to maintain a 

similar binding mechanism, no gaps/insertions were allowed in the alignment within the 

range bounded by the critical residues unless the same gaps/insertions had also been seen 

in the PDB structures. Critical residues were also constrained to fall within the 

boundaries of the HMM domain.

Defining putative binding regions

Under the assumption that prokaryotic transcription factors regulate nearby 

operons, for every TF, the upstream promoter and the two promoters of the neighboring 

operon in either direction were concatenated to generate a “super-promoter” which 

potentially contains a binding site for the TF. The  WGS sequence data was in the form of 

contigs rather than finished full length sequences, thus there was no guarantee that all 

three component promoters would be part of the same contig. In these cases where the 
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contigs did not contain all of the specified promoters, the subset of present relevant 

promoters were used to define the super-promoter. 

Clustering TFs and generating USPs

For each HTH subfamily, these critical residue sets, which will be referred to as 

CR tags, were used to cluster the transcription factor protein sequences. These clusters of 

TFs needed be mapped into clusters of  putative binding regions in order to proceed with 

motif finding. Given the biased distribution of sequenced genomes and the potential for 

non-unique genomes in the procedure above, a simple mapping of the TFs to their super-

promoters would not be sufficient to generate an approporiate dataset for motif finding. 

Instead, a subset, known as unique super-promoters (USPs), was defined as described. 

To compare two super-promoters, the component promoter sequences were 

compared.  To mitigate differences due to promoter shuffling or varying sizes of super-

promoters, an all-by-all comparison was performed, using a trimmed Needleman-Wunsch 

(NW) (Needleman and Wunsch, 1970) alignment (1/-1, -2 score scheme for 

match/mismatch, gap respectively, excluding the trailing gaps). The alignment score for 

each pair of promoters was normalized to fall between 0 and 1. The Hungarian algorithm 

(Kuhn, 2005) optimization was applied to the normalized NW scores to determine the 

best pairs of related promoter sequences. The “super-promoter” weighting score was 

defined as the average of the best component pairwise scores. These weighting scores 

were used to generate a hierarchical complete linkage tree via the perl module Algorithm-

Cluster version 1.4.6 and using a threshold of 90% of the theoretical maximum score, this 

tree was cut to define clusters of sequences. Each resulting cluster of promoter sequences 

was considered one effective sequence and the sequence closest to the center of the 
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cluster was chosen as the exemplar. If multiple sequences were equidistant from the 

center, ties were broken using the length of the sequence and the species of origin. This 

set of exemplar sequences was the USP set for each TF cluster and used for the motif 

finding procedure described below.

Motif Finding

MEME v4.3.0 (Bailey and Elkan, 1994) was used to determine the motifs of these 

USP sets. Only TF clusters with a minimum of 10 USPs were used in motif finding. A 

maximum of three motifs were reported for each cluster. MEME was run allowing zero 

or one site per sequence (zoops), the sites were required to be palindromic and the motif 

width was restricted to be between 15 and 25bp. For further analysis, motifs were 

required to have an e-value of < 1.  The result of motif finding was a set of motifs that 

likely contained the true representative binding site of the CR tag cluster members.

Validation

All TFs and promoter sequences from Escherichia coli K12 MG1655 (genbank 

code NC_000913) along with the corresponding promoter sequence cluster members 

were excluded from the motif discovery sets so that they could be used as independent 

test sets for evaluating the effectiveness of this procedure to identify true motifs for 

bacterial TFs. In order to validate the predicted motifs, a Z-score based metric was used 

to search the sites defined in RegulonDB 6.7. The position weight matrix (PWM) was 

calculated from the frequency matrix as has been described earlier, using a pseudocount 

of 1 (Hertz et al., 1990). The weighted mean and variance was determined for each 

column (position) of the PWM, weighting by the relative background frequencies for 
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each base. The mean and variance of the PWM were calculated as the sum of the means 

and variances of the individual columns. The standard deviation was calculated as the 

square root of the summed variance. Sequences were scored using an additive model as 

the sum of the position weight matrix elements for each sequence position. The threshold 

Z-score of 5, corresponding to roughly one match in the E. coli genome by chance, was 

used to specify whether the RegulonDB site matched the motif. A motif was considered 

correct if any of the RegulonDB sites for that transcription factor exceeded this threshold. 

The quality measure is the sensitivity of finding a correct motif, (TP) / (TP+FN).

Results

Between releases 176 and 177, Genbank contained 1056 complete bacterial 

genomes and 634 whole genome shotgun datasets as well as 2011 plasmid and 543 phage 

genomes. In this study we have focused on the LacI (PF00356) and TetR (PF00440) Pfam 

HTH subfamilies (Table 2.1). These two subfamilies comprise roughly 1/10 of the HTH 

domains in the Pfam clan CL0123. From that set of DNA sequences, for LacI there are 

5989 domains. When filtered to remove gaps in restricted positions, multiple domains 

and missing promoter sequences, there are 5258 TFs remaining, and we defined the 

critical residues based on three LacI family proteins that have structures bound to DNA: 

LacI (PDB codes 1efa, 1jwl, 2pe5); CcpA (PDB codes 1rzr, 1zvv); PurR (PDB codes 

1bdh,1 bdi, 1jfs, 1jft, 1jh9, 1pnr, 1qp0, 1qp4, 1qp7, 1qpz, 1qqa, 1qqb, 1vpw, 1wet, 1zay, 

2pua, 2pub, 2puc, 2pud, 2pue, 2puf, 2pug). Based on those structures, we determine that 

there are ten critical residues (positions 2,3,12,13,14,17,18,24,25,26) in the respective 

Pfam HMM domain (PF00356). Using those ten positions to define the specificity 

classes, there are a total of 1827 classes. There are 23119 TetR domains which, after the 
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same data filtering as above, lead to 21883 TFs. In TetR, we defined the critical residues 

based on three proteins that have structures bound to DNA in the PDB: TetR (PDB code 

1qpi); QacR (PDB code 1jt0); CGL2612 (PDB code 2yvh). Based on those structures we 

determine that there are seven critical residues (positions 20,29,30,31,32,34,35) from the 

respective Pfam HMM domain (PF00440). Using those seven positions to define 

specificity classes, there are a total of 6207 classes.  The distribution of the sequences 

into these specificity clusters is shown in Figure 2.2.

Table 2.1. Dataset sizes for LacI and TetR.  The values shown are the number of   

sequences (with the exception of the first values that are the number of domains), within 

the parenthesis are the number of specificity clusters.    Briefly, USPs are promoter sets 

that have been filtered to remove redundancy (see methods for more detail).  Hamming 

Distance (HD) is a measure of similarity, the number of substitutions required to change 

one string into another.

Type LacI (PF00356) TetR (PF00440)

  Domains  5989  23119
  Transcription Factors  5258  (1827)  21883  (6207)
  USP >=10 sequences  1733      (32)    8124    (226)
  Predicted Motifs  1716      (31)    7923    (214)
  Within 1HD of Motif CR tag  1958      (95)  11394  (1335)
  Within 2HD of Motif CR tag  2409    (293)  16929  (3801)

The identity of the residues at the critical residue positions define a sequence tag. 

For example, the cluster TetR-SPKGSYH refers to the set of all proteins that are 

classified as belonging to the TetR family of HTH proteins and have residues 

S,P,K,G,S,Y,H in HMM alignment positions 20,29,30,31,32,34,35 respectively. For motif 

finding, the promoter sequences with potential binding sites were inferred using the 

computationally derived operons, taking the promoter of the operon containing the TF, 

31



and the upstream and downstream operon promoters as well. These three promoters were 

concatenated into a “super-promoter” which likely contained at least one binding site for 

the TF. 

Figure 2.2. Log-scale plot showing size distribution of specificity clusters for LacI 

(inverted triangles) and TetR (squares).

There are a large number of similar genomes that have been sequenced, many 

times these are simply different strains of model prokaryotic organisms. This introduces 

the issue of similar sequence due to a similar lineage which could be resolved using a 

phylogenetic tree. However, there is also the potential issue of horizontal gene transfer as 

well. In order to resolve the potential promoter redundancy issue, if the promoters were 

too similar, they were reduced to one exemplar sequence.

In order to ensure stability in motif finding, a minimum of 10 USPs was required 

for running MEME. With this threshold criteria, there were 32 (1733) and 226 (8124) 
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classes (TFs) for LacI and TetR, respectively, and putative motifs were obtained for 31 

and 214 of them. The majority of classes without motif prediction were simply due to a 

lack of sufficient USPs to reliably undertake motif finding (Table 2.1).

RegulonDB was used to validate the datasets where E coli was excluded. These 

datasets comprise a subset of the full dataset and will be described in further detail, 

however, the predicted motifs  and sequence datasets for all of the classes are available at 

http://ural.wustl.edu/~gsahota/HTHmotif/. The external validation test using RegulonDB 

showed that in LacI, there were 6 true positives and 1 false negative, for an accuracy of 

86% (Table 2.2 and Figure 2.3). For TetR, there were 4 true positives and 1 false 

negatives, for an accuracy of 80% (Table 2.3 and Figure 2.4). Additionally, we included 

an analysis of whether the motif was present as part of the superpromoter of the excluded 

TF to test the hypothesis of local regulation (Tables 2.2 and 2.3).  In most instances, it 

appears to be a valid assumption, but even in TetR-RAPTYSR where this assumption was 

not true, the protocol was still able to predict the correct motif, due to local regulation in 

other bacterial organisms in the same cluster.

Table 2.2. Validation results for LacI using RegulonDB 6.7.  The matches in RegulonDB 

are coded as follows: Y means a match to any site, N means no matches and – means no 

RegulonDB site. The autoreg column is a + if there is a match to the superpromoter and - 

if there is no match.

Locus ID Name        CR Tag Sequences USP Matches in RegulonDB Autoreg

  b1658 purR IKSTTSHRFV       168   60             Y      +
  b2837 galR IKSVASRPKA       140   45             Y      +
  b3753 rbsR MKSTSSHRFV       116   41             Y      +
  b4241 treR IKGKSSRSGV         97   15             Y      +
  b0345 lacI LYSYQSRSHV         37   14             Y      +
  b2714 ascG MLSKASRGYV         62   11             Y      +
  b3934 cytR MKSTASRDKV         85   12             N      +
  b1320 ycjW IYSKSSRTNI         61   20              -      +
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Table 2.3. Validation results for TetR using RegulonDB 6.7.  The matches in RegulonDB 

are coded as follows: Y means a match to any site, N means no matches and – means no 

RegulonDB site. The autoreg column is a + if there is a match to the superpromoter and - 

if there is no match.

Locus ID Name        CR Tag Sequences USP Matches in RegulonDB Autoreg

  b3963 fabR RAPTSYR       193    81             Y      -
  b1649 nemR SPKGSYH       141    49             Y      +
  b0313 betI ASTGISH         98    41             Y      +
  b3264 envR NTRGAYW       104    27             Y      +
  b1013 rutR ESKTNLY         95    18             N      +
  b3641 slmA ASEAAYR       282  148             -      +
  b0846 ybjK RPLGSTY       118    45             -      +
  b4251 yjgJ ANPPSYA         87    19             -      +
  b0796 ybiH RNIATTY       105    17             -      +
  b1111 ycfQ AKAPTYA         97    17             -      +

Discussion

Using primarily genomic sequence data augmented with structural priors, we are 

able to determine putative motifs for a number of bacterial TFs in two families. The 

method described is capable of working not only with fully sequenced genomes, but also 

with sufficiently long contigs, allowing for the use of assembled metagenomic reads. 

Using the MEME program, putative motifs were determined for 31 (LacI) and 214 (TetR) 

classes of TFs representing ~1/3 of the sequences of each of these TF families. For 

validation, classes that had an excluded E coli USP were selected, 8 (LacI) and 10 (TetR). 

Of these selected classes, 7 (LacI) and 5 (TetR) had known regulatory sites in 

RegulonDB. The majority of these motifs, 6/7 for LacI and 4/5 for TetR, were consistent 

with the known regulatory sites defined based on RegulonDB, validating this approach. 

Even some of the motifs that did not match to known sites with scores exceeding our 

stringent threshold still had fairly high scores and are likely to be very similar to the true 
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motifs for those classes.

While this approach has proven to be useful, there are several modifications to the 

method we describe in this paper that should offer further improvements in our ability to 

determine binding motifs for bacterial TFs. The current protocol assumes a fixed-width 

gap between the half-sites of the motif. However, there is no guarantee that proteins with 

similar critical residues must have similar gaps in the spacer region between the half-

sites, as the regions of the protein that determine these variable gaps are generally outside 

of the DNA binding domain (Laguri et al., 2003; Mao et al., 2005; Reece and Ptashne, 

1993). Even within the test set, we can see evidence of multiple widths in TetR-

SPKGSYH. In the first and third motif, there is a TAGACC half site, separated by a 4 or 

0 base spacer from the complementary GGTCTA. For TetR-NPKGSYH, these spacers 

are 3 or 0 bases. An EM-based algorithm that allowed variable spacing between the two 

parts of E. coli promoters had been published previously (Cardon and G D Stormo, 1992) 

and a similar approach could increase the power of detecting some motifs that may be 

missed simply because they have multiple binding widths. Current gapped motif finders 

are not capable of dealing with sequence fragments, which is important in the context of 

the “super-promoters”.

We only applied MEME to classes with at least ten USPs because motif finding is 

more reliable with larger datasets. However, many of the classes with less than ten USPs 

are very similar to other classes with ten or more, and we expect that TFs with very 

similar critical residues will bind to very similar motifs. This means that we could use the 

motifs from the larger classes as priors to aid in the discovery of the motifs for the 

smaller classes. As shown in Table 2.1, there are an additional 95 and 1335 classes that 
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are at a Hamming distance of one (HD=1) away from the larger classes for the LacI and 

TetR families, respectively. If we go to HD=2 the number of classes increases to 293 

(LacI) and 3801 (TetR). This could greatly increase the number of TF classes for which 

motifs could be determined and further expand the repertoire of TF-motif pairs. In the 

current implementation, a set of putative motifs is predicted for the TF cluster, however 

the correct motif within the set is not specified. In conjunction with the above described 

gapped motif finder, these HD classes could also be used to filter out inconsistent or 

incorrect motif predictions, under the assumption that similar CR tags lead to similar 

half-sites or motifs. This refined analysis would lead to a one-to-one mapping of a 

predicted motif to a TF cluster. Another benefit of having a large number of TF-motif 

pairs is the determination of the interacting residues. Our choice of the critical residues is 

based on crystal structures of DNA-protein complexes where we have used a distance 

cutoff between an amino acid and a base-pair to identify those residues that may, in at 

least some members of the family, contribute to the specificity of binding. It has been 

shown before that interface residues are only partially conserved across DNA binding 

domains (Contreras-Moreira et al., 2010). In this paper, the union of all such residues was 

used, leading to a potential overspecification of the critical residue set, in turn decreasing 

the size of certain classes. In addition, it may be that some residues, while close to the 

DNA, do not participate in binding specificity and could be eliminated from the critical 

residue set, which would increase the size of the classes. In general, correlations between 

the aligned protein sequences and alignments of the motifs can be useful in determining 

which protein residues interact with which base-pairs (Mahony et al., 2007; Noyes et al., 

2008). This could then be used to determine the critical residues even for TF families 
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currently without crystal structures for DNA-protein complexes.

Finally, there are many more HTH families that can be addressed with this 

approach. HTH proteins are classified as the clan CL0123 in Pfam and there are 141 

HTH subfamilies of which 22 are mainly bacterial domains and contain protein-DNA 

crystal structures where the domain interacts with DNA. When taking into account the 

variability in size of the families, this actually covers approximately ½ of the potential 

HTH TF proteins, so the method has significant potential to cover a large amount of the 

potential HTH TF proteins. In some of these families, we may have motifs with variable 

gaps in their spacer regions and differing configurations of the half-sites such as direct 

repeats instead of palindromic motifs, and sometimes even mixtures of the two modes. 

This will require a modification to the current protocol but may provide for a much larger 

collection of binding motifs for specific bacterial TFs.
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Supplementary Figures

Figure 2.3. Visual representation of the validation results for LacI.  RegulonDB matches 

are shown by black boxes, surrounding both the CR tag and the matching motifs.  In 

parenthesis are the number of USPs, below the CR tag or the number of sites, below the 

motifs.  Additionally below the motifs, the MEME e-value is shown.
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Figure 2.4. Visual representation of the validation results for TetR.  RegulonDB matches 

are shown by black boxes, surrounding both the CR tag and the matching motifs.  In 

parenthesis are the number of USPs, below the CR tag or the number of sites, below the 

motifs.  Additionally below the motifs, the MEME e-value is shown.
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Introduction

Computational motif finding involves optimizing a motif model with respect to 

the data, normally a set of sequences that likely contain DNA binding sites of interest. 

Many of these computational approaches make differing assumptions regarding the 

internal structure and distribution of the binding sites within the sequences.  Generally, 

these assumptions are converted into the form of a likelihood function that is optimized. 

The congruence of these assumptions and the actual parameters underlying the data in 

part determines the success of the computational motif finders at detecting the true motif 

(Tompa et al., 2005).  Given the specific nature of analyzing TFBS in the context of 

multiple prokaryotic genomes, a novel motif finder needs to be developed that can handle 

the motif structures and distributions that are relevant.

The structure of prokaryotic motifs generally consist of palindromic motifs 

comprised of two half-sites, due to the dimeric quaternary structure of the component 

transcription factors.  It has also been shown before that prokaryotic transcription factors 

can have a variable gap between these two half-sites (Eraso and Kaplan, 2009).  Most 

motif finders generally have fixed width models and are not built to handle variable gap 

spacing between two motif half-sites, however there has been some previous work in this 

area (Bi and Rogan, 2004; Cardon and Stormo, 1992; A. V. Favorov et al., 2005; 

GuhaThakurta and Stormo, 2001; X. Liu et al., 2001).  This problem is exacerbated when 

one clusters multiple TFs together that may each have slightly different spacing 

preferences.  These spacing preferences can be due to domains or proteins that are outside 

of the TF binding domain and thus may not be easy to determine a priori.  Additionally, 

in most motif finders, the relative half-site orientation is fixed, whereas in bacterial 
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systems, sometimes the transcription factors bind direct repeats and other times they bind 

inverted repeats (Bi et al., 2008).  A bipartite model of motif finding should allow for a 

direct repeat (dr), inverted repeat (ir), everted repeat (er) and reverse direct repeat (rdr) as 

shown in Figure 3.1.

Figure 3.1. Bipartite structure.  Shows four relative half-site orientations.  Inverted 

repeats are also commonly known as palindromic motifs.

The distribution model of motifs is generally uniform and continuous across a 

sequence.  In our problem, the more important variable is the continuity of the sequence. 

There are several possible sequence fragments within which we require expect zero or 

more motifs.  The easiest method to conceptualize this is to consider them as a single 

fragmented sequence, which will simply be referred to as a sequence in the rest of this 

chapter.  This could be simply implemented as a series of null characters (N, X, -) 

between each fragment, however, this method would slightly skew the normalization 

parameters based on sequence length.  A more accurate method of implementing 

sequence fragments is to track the start and end points of the sequence fragments and 

appropriately handle the edge-case for each fragment similar to how the edge-case would 

be handled for a single sequence.  The difference is that the summation/multiplication of 

the likelihood function would be over the set of fragments that likely contain a motif, or a 
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sequence rather than a single unfragmented sequence that likely contains a motif.

Even with an appropriate model, it is necessary to optimize the parameters to 

maximally fit the data.  There are many different methods that can be used in order to 

perform this optimization.  As discussed earlier, there are three main methods that are 

used in motif finding, greedy algorithms, expectation-maximization (EM) and gibbs 

sampling.  The advantages of greedy algorithms is that they are very fast to run, however, 

the solution is highly context dependent; the order in which the data is presented to a 

greedy algorithm can impact the final result.  EM algorithms do not suffer this context 

dependence, however they are only a local optimizer, thus they can be trapped in local 

energy wells rather than finding the global optimum.  Gibbs samplers attempt to solve 

this problem local energy well by randomly selecting the next starting point using a 

roulette wheel selection of the posterior probability distribution.  In this problem, a 

deterministic algorithm is preferable and given a reasonable starting model, EM is the 

best option for a motif optimizer.  Additionally, building the motif finding pipeline with 

an option to optimize a starting motif allows for easier incorporation of prior knowledge 

of the motif composition.  In the context of this dataset, there are CR tags that contain 

few USPs to reliably attempt de novo motif finding, but optimization from a known 

similar motif may be an alternative option for elucidating the binding motif in these 

cases.

Before running EM, the parameter values need to be initialized.  Given the local 

optimization nature of the algorithm, the starting parameter values will determine which 

parameter set, corresponding to a local energy minima, is returned.  EM can be 

implemented with multiple random restarts in order to try to overcome this potential 
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hurdle, however this solution does not guarantee that the global energy minima will be 

attained.   Alternatively, a set of representative starting points can be used in order to 

improve the likelihood of finding the global minima.

In the context of motif finding, a set of start points can be defined from the data, 

generally by some sort of word counting and simple optimization procedure.  From this 

set of start points, a representative subset or potentially all can be used for motif finding. 

The end result is a set of putative motifs from which the most likely motif must be 

selected.  Selecting between the sets of putative motifs requires a metric to determine 

which motif is more significant in the context of the data.

The remaining parts of this chapter will discuss the development, preliminary 

testing and results of a EM-based motif finding method.  This motif finder is built on a 

motif half-site model, where these half-sites are allowed to be in any bipartite orientation 

and are separated by a variable gap length.  In addition, this motif finder is inherently 

capable of dealing with sequence fragments in a mathematically correct framework, 

rather than some of the crude approximations described above.  The results are 

preliminary and show that this motif finder is capable of converging to the correct 

solution given a close enough starting point, which could potentially be a motif from a 

neighboring cluster that differs slightly in the transcription factor protein specificity tag.

Methods

Overview

The motif finding algorithm consists of two main steps that have been kept 

separated for reasons of efficiency and modularity.  The first step is taking the dataset and 
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defining a reasonable start point, basically a preliminary motif that can be refined.  The 

second step of the algorithm is to refine this preliminary motif using an EM based 

algorithm.  The input to this second step can include priors on the gap size, the number of 

expected motifs, the expected relative orientations of the half-sites and obviously the 

preliminary motif to be optimized.  The result of the second step is a predicted motif for 

the dataset along with a probability distribution of the possible gap sizes.

Start points

Given the additional variables of orientation and gap, a simple enumerative motif 

finder is run to determine a single optimal start point, which eliminates the requirement 

of relative motif comparison in a later step.  For this algorithm, two parameters are 

required, the motif width l, and the number of variable positions in the motif d.  This is 

similar to the planted motif problem (Pevzner and Sze, 2000), but in this case for each 

putative motif, the d different positions are chosen a priori rather than having a hamming 

distance criteria of d potential changes over the entire motif from a fixed consensus.

Given the short width of the half-sites of interest generally on the order of 6-8 bp, 

instead of generating a set of potential lmers from the input sequences and then clustering 

them into putative motifs, an enumerative approach was employed.  The enumerated set 

of motifs were of width l containing d variable positions.  This process can be broken into 

two main stages, selecting the d variable positions and generating all possible DNA 

strings for the (l-d) fixed positions.  For implementation efficiency, this was done in the 

reverse order, as the (l-d) mers would be constant for every (l choose d) combination. 

After generating all possible (l-d) mers, the d varying positions were chosen and N's were 

inserted at those d positions.  When being added to the final motif set, an orientation 

51



independence criteria was imposed, such that a motif and its reverse complement would 

not both be part of this finalized set.  For the purposes of this chapter, the l,d was fixed as 

7,2.

This final motif search set was used to search the input sequences.  The bipartite 

search model including the variable gap was used to search with these enumerated motifs. 

In the current implementation, the motifs were converted into regular expressions, where 

Ns were allowed to be A, C, G or T, and these expressions were used to search the 

sequence fragments.  Ranking was based on the number of sequences in which a dyad 

was found, the number of dyads, the number of sequences in which a monad was found, 

and the number of monads.  These counts were adjusted such that if a motif had 

overlapping repeats (for example, a polyA tract), the set of identical matches that 

overlapped by at least one base were only counted a single time and likewise for the 

dyad.  The motif that ranked the highest was chosen as the putative motif.  This regular 

expression motif was transformed into a position frequency matrix (PFM) where the 

consensus base was given a weight of 0.777 and the other letters are weighted at 0.077 

and at the variable positions all nucleotides are given equiprobably weights of 0.25.  This 

resulting PFM was normalized to guarantee that each column summed to 1.

Start points for similar motif optimization

Given a known similar motif, sometimes it is necessary to use this information to 

guide motif finding in a similar TF cluster, where similarity is judged by the hamming 

distance between the CR tags.  In this case, one could simply take the resulting PWM of 

the prior motif finding procedure and use that as a start point, however, this runs into the 

problem that sometimes the predicted motifs have completely conserved bases.  These 
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completely conserved bases are a very high energy barrier for this EM algorithm to 

overcome, and thus need to be attenuated.  A logical method to overcome this problem is 

to attenuate the entire PWM, by simply adding a pseudocount of 0.1 to every base and 

then normalizing the resulting PWM to enforce a column sum of 1.  This would 

effectively reset a base that was fully conserved at a value of 1 and 0 for all other bases to 

roughly the 0.777/0.077 consensus/nonconsensus split as described in the section above.

EM algorithm with variable spacing and multiple binding modes

The basic concept behind the EM algorithm with variable spacing was built on 

previous work (Cardon and Stormo, 1992).  There are four major extensions or 

modifications to that prior work: calculating probabilities in log-space, allow for a zero-

or-one per sequence (ZOOPs) model, correctly working with sequence fragments and 

bipartite half-site orientations (including palindromic modes).  The final program was re-

implemented in C to alleviate some restrictions due to the design and architecture of the 

prior version.  Additionally, there is a beta version that was used to prototype some of the 

advanced features that was written in PERL, however it does not contain the log-space 

calculations.  The results discussed in this chapter have been obtained using the C 

version.

Before delving into the specific equations and parameters of the method, a brief 

overview is presented.  The probability of a sequence given a motif is shown in Equation 

3.1.  This probability basically states that the probability of a sequence is composed of 

bases that are part of the motif, the P(motif) and the bases that are not P(bkgd).  In the 

specific instance of a variably gapped motif, the gap bases are not well defined as being 
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part of the motif or part of the background.  In the prior implementation by Cardon, these 

were treated separately, however in this implementation, they are simply assumed to be 

part of the background distribution.  Given the probable application of the method, the 

number of parameters that needed to be estimated from the data would have been 

increased significantly if the gaps were considered separately.  In addition, the relative 

correspondence of the gap positions in different orientations of binding would have been 

problematic.  If there is no motif present, then the probability is simply the cumulative 

background probability distribution for all of the bases in that sequence as shown in 

equation 3.2.

(3.1)

(3.2)

Table 3.1.  Variables and definitions.

n Sequence number

N Number of sequences

nf Number of fragments in sequence n

b
b'

base
reverse complement of the base

I() Indicator function that quantity in parenthesis is true (1 or 0)

In,j,b Indicator function base b at sequence n at position j (1 or 0)

Ln Sequence length

K Set of valid start points

Δ Binding site

Ø The background

Yn,k Indicator of a Δ starting at position k in sequence n (1 or 0)

m
m1, m2

Binding orientation (composed of m1, m2), 
hs1 orientation, hs2 orientation 
(defined as: 0 = forward, 1=reverse)

M Set of possible binding orientations 
(maximum of 4: dr, ir, er, idr)
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g Gap size

G Set of possible gap sizes

ρb,j Half-site PWM

ρb,Ø Background distribution

ρg Gap size probability

Q Random variable for binding site presence/absence (1/0)

γ probability that a sequence contains a binding site

whs Half-site width

w Motif width (whs + g + whs)

The following sets of equations assume that K is set such that it does not violate 

the inter-fragment or end-sequence boundaries, and that k is drawn from this set K. 

Given a specific sequence n and gap size g, the number of valid start positions is shown 

in equation 3.3.

(3.3)

Equation 3.4 shows the probability of a binding site within a specific sequence. 

The equation can be split into four components, the two half-sites, and then split whether 

the half-site is in the forward orientation or reverse.  Since it is only going to be in one of 

those two orientations, and given the definition of the orientation as 1 or 0, only one of 

the two products in the square brackets will be non-zero.  And equation 3.5 shows the 

consequent background distribution assuming a motif that starts at k.

(3.4)

(3.5)
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The probability of the sequence, given that it contains a motif, is the product of 

the background and the motif as outlined in equation 3.1 and formally in equation 3.6. 

Expanded out into its full form in equation 3.7, it becomes clear how the background and 

motif are distributed across the each position.  In addition, the use of the background 

model for the gap positions also becomes apparent.

(3.6)

(3.7)

Since the current model assumes a ZOOPs distribution, there needs to be a null 

model if there are zero motifs present in the sequence as alluded to by equation 3.2.  That 

is accomplished by assuming that all sequence positions are drawn from the background, 

shown in equation 3.8.

(3.8)

The discussion has been surrounding the probability of the sequence, however, in 

the context of the motif finder, the important question is what is the probability that the 
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binding site starts at position k.  Using Bayes theorem on conditional probability shown 

in equation 3.7, the resulting inversion of the conditional probability is shown is shown in 

equation 3.9.  The P(Q=1) represents the probability that the sequence contains a motif 

which is parameterized as γ.  The Z is the partition function that describes the total 

probability density and is shown in equation 3.10.  The probability in equation 3.9 is 

bounded between 1 and 0, where 1 means that the binding site is perfectly predicted at 

only position k and consequently it will be 0 for all other k.  Given the ZOOPs model, the 

sum for all k in equation 3.9 is also bounded between 1 and 0.

(3.9)

(3.10)

Equations 3.9 and 3.10 form the basis of the expectation step (E-step) of the EM 

algorithm.  In the maximization step (M-step), the maximum likelihood estimate is 

calculated as shown in equations 3.11-3.14.  The additional superscript of i denotes the 

value is updated for the i-th iteration.

(3.11)

(3.12)

(3.13)
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(3.14)

These equations neglect the priors that can be placed on both ρg and γ.  The 

method of implementing the weighted prior is by a normalized proportional weighting of 

the prior and the updated value and setting the updated value to this sum.  Additionally, 

all of the calculations in the E-step are performed in log space including the summation 

of logs where necessary.

The EM algorithm is iterated until one of two conditions is met.  Either, the 

maximum number of iterations is reached or the change between the successive 

iterations, as measured by the absolute difference between the matrices, does not change 

significantly (10e-16 in the current implementation).  Additionally, there is a pseudocount 

that is applied to the ρb,j matrix until either a certain number of iterations are performed 

(600) or until the EM algorithm has sufficiently converged (10e-10).

Results

To test the applicability of the motif finding method to the problem of interest, 

there were two tests that needed to be run.  Firstly, could the motif finder determine a 

motif given a reasonable starting point.  Secondly, could the motif finder use a predicted 

motif in order to determine the motif of a similar CR tag set.  In the prior chapter, TetR-

SPKGSYH appeared to have a gapped motif so it was chosen as the test CR tag to see if 

the motif finder was capable of determining a motif given a reasonable start point and 

also whether the hint of gapped motif was actually present in motif finding.  Additionally, 

there was a motif that was 1 HD away, namely TetR-SGKGSYH that appeared to have a 

two base change in the half-site, so that was chosen as the secondary test as to whether 
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this method could take a similar motif as a start point and find the correct resultant motif. 

Since the gapped-method does not currently have a “scan mode”, the correctness of the 

motif was judged by its visual similarity to the known motif.

In the case of the Pfam TetR family, there are three known crystal structures 

which were used to define the critical residues.  There are two crystal structures that have 

an even-spacing between the motif half-site and one that has an odd-spacing between the 

motif half-site.   The proteins were aligned and indexed based on their profile hidden 

markov models (profile HMM), as described in the previous chapter.  Figure 3.2 shows 

the residues and their respective base contacts.  This provides a map with which to 

determine the consistency of the predicted motifs with the known residue-base 

interactions.

Figure 3.2. TetR residue-base contact diagram.  The diagram shows the residues in blue 

that contact the DNA bases.  The weight of the arrows pointing from the residue to the 

base is proportional to the number of interactions that were seen in the crystal-DNA 

monomers.  The odd spacing implies that there was an odd number of bases between the 

DNA half-sites and even-spacing that there was an even number of bases.  The 

numbering was set such that the central base of an odd-length motif was indexed as 0 and 

the two central bases of an even-length motif were indexed as 0.
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TetR-SPKGSYH was chosen as the test case to determine if this motif finding 

algorithm was functionally capable of determining the correct motif.  The parameters 

were set to allow variable gaps between 0 and 5 bp, the gap probability was allowed to 

vary and the half-site orientation model was chosen to be an inverted repeat.  As shown in 

Figure 3.3, we can see that there appears to be at least two differently spaced motifs, thus 

this method should be able to find a single half-site with multiple gaps. 

Figure 3.3. MEME determined binding motifs for TetR-SPKGSYH and TetR-

SGKGSYH.  A set of predicted motifs are shown along with the CR tags.  Below the CR 

tags is the number of USPs.  Below the motifs is the number of USPs that contained that 
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comprise the motif along with the MEME calculated e-value. The numbering is 

consistent with Figure 3.2.

The start-point algorithm resulted in a consensus string of NTAGACN.  The 

results of the optimization procedure are shown in Figure 3.4.  As we can see, the 

consensus half-site is cTAGACC, which is consistent with the MEME results, although 

the motif appears to be more conserved.  This could be due to the fact that the original 

motif was a mixture of multiple different gap sizes, as evidenced by the gap probabilities. 

In contrast to what was expected from the prior study, only a small fraction of the half-

sites appear to have a gap of 0; this could be for two reasons.  Firstly, the 0 gapped motifs 

may not have been found given the more stringent half-site binding model.  Secondly, the 

model was only a ZOOPS model, and thus there may have been multiple modes of 

binding within each USP, which would remain unaccounted for, as the method would 

likely have selected the most consistent set of binding sites.  The size 3 gap motifs is not 

unexpected, as this was also seen in TetR-NPKGSYH (data not shown).
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In order to create the appropriate start point for TetR-SGKGSYH, the resulting 

PWM from the TetR-SPKGSYH was modified as discussed in the method section by 

adding a pseudocount and re-normalizing.  The parameters were again set to find an 

inverted repeat variably gapped motif with a gap size between 0 and 5 bp.  The motif is 

shown in Figure 3.4.  Interestingly in this case, there was a single unanimous gap size of 

4 that was found in the dataset.

Figure 3.4. EM algorithm results for TetR-SPKGSYH and TetR-SGKGSYH.  The panel 

on the left shows the critical residue tag along with the HMM number to correlate to 

Figure 3.2.  The middle panels show the predicted motif half-sites, the numbering is 

based on an gap of 4.  The panel on the right shows the chart of the final calculated gap 

probabilities.

Discussion

In this chapter, a method was described that would allow for gapped motif finding 

in the context of a bipartite motif model.  This method was implemented as a two step 

process, first to determine a set of start points and a second to optimize this set of start 

points.  The importance of keeping these two steps of the algorithm separate was so that 

the second part of the algorithm could be later applied to extending the motif predictions 

using a variant of the start-point determining algorithm.  In the context of extending the 
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TF prediction space, the set of all current predictions that are a certain distance away 

from the CR tag of the set of proteins to be predicted are collected.  In this case, a CR tag 

that was HD=1 away was chosen.  These sets of motifs can be aligned and combined into 

a start point for the optimization component of the algorithm.  The benefit of multiple 

similar motifs is that if the new motif is also variable in the same set of positions, then the 

process of merging the priors should actually downweight the relevant positions that will 

change in the motif, thus allowing the EM algorithm to have an easier time determining 

the solution.

The method has not been applied to the full dataset because it lacks a few 

modifications that would greatly improve the sensitivity and specificity of motif finding. 

Primarily, there are two points for improvement.  Firstly, the algorithm for defining the 

start points is somewhat rudimentary.  It is capable of finding overrepresented motifs, but 

is still thrown askew in some cases where there are repeats.  Some sort of a complexity 

filter on putative motifs is likely to be needed in order to advance this method further. 

When determining the start points, there is some knowledge gained about the distribution 

of gap sizes and orientations.  This knowledge is currently not being transferred to the 

subsequent motif finding protocol.  An additional step to combine similar string motifs is 

likely to be beneficial in the process of both defining the start point as a more continuous 

quantity and also might alleviate some of these repeat-biases.  In addition, the prior 

knowledge of the gap size and orientation is likely to be more accurate if the starting 

motif is also more accurate.  Secondly, the EM algorithm currently is using a ZOOPS 

type model which allows zero or one motifs per sequence, regardless of the number of 

sequence fragments.  However, given multiple fragments that comprise a sequence, it is 

63



likely that more than one contains a motif occurrence, thus a ZOMPS or zero or more 

motifs per sequence is a superior model of the distribution of the motif.  This requires 

additional parameters assessing the number of total expected motifs.  Again, with a more 

robust starting point, a more accurate prior can be assessed regarding the likely number 

of motifs that are present in the dataset.

Additionally, the method could be improved by inclusion of a more robust 

statistical test of the significance of obtaining a result.  Given the nature of gapped motif 

finding and the inclusion of multiple different orientations, there was not an obvious 

extension of the common methods for assessing p-values on a motif dataset.  The EM 

algorithm is guaranteed to converge, however the resulting solution is not necessarily the 

optimal or a reasonable.  The importance of including methods to assess the significance 

of a motif includes the ability to determine the statistical likelihood of such a motif 

appearing in the dataset by chance, as well as a method to determine the relative 

significance of motifs that were started at different points.  The ability for relative 

comparison could enable the use of multiple start points with a selection step to choose 

the best motif at the end of the optimization procedures.
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Chapter 4: Progress and future directions
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Current progress

In this thesis, a novel pipeline to determine TFBS in prokaryotic genomes was 

presented. This method is based on two basic assumptions, first that TFs have a localized 

regulatory structure and bind near the gene that encodes them, and second that TFs with 

similar DNA-interacting residues, critical residues, should have similar binding sites. As 

discussed in chapter 2, an initial pipeline was designed that extracted genomic data from 

the NCBI database, defined TF families based on their Pfam HTH signatures, used the 

relevant PDB structures to determine the critical residues, clustered TFs with similar 

critical residues and determined the putative promoter binding regions for these TFs. 

These putative clustered binding regions were then further processed to remove 

sequencing or phylogenetic biases and input into a motif finder, namely MEME. The 

resulting motifs were validated against RegulonDB and showed an ~80% sensitivity of 

prediction on both the TetR and LacI families. There were some unresolved issues, 

including the inability of MEME to allow for variably gapped binding sites and to allow 

for differing binding orientations as well.

In order to address these issues, an EM-based variable gapped bipartite-model 

motif finder along with a rudimentary enumerative equivalent was developed as 

described in chapter 3. Conceptually, this motif finder was designed to not only find 

motifs in the large clusters as in chapter 2, but also extending the current set of 

predictions via a nearest-neighbor approach. As shown on a set of TF examples from the 

TetR HTH family, this method appears to be functional, but as discussed in chapter 3, 

there still remains some work to be done before the method can be broadly applied and 

integrated into the bioinformatics pipeline. In this chapter, some additional extensions to 
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the methods will be described along with their potential broader implications in the 

scientific field.

Expanding family repertoire

The method that has been outlined should be easily extensible to other HTH 

families. The bioinformatics pipeline is structured to be flexible in this regard, however, 

application may require more careful thought. To this end, the pipeline described in 

chapter 2 was extended with most of the steps becoming nearly fully-automated and the 

addition of a configuration file  simplifies porting the code to other systems or users. As 

with any large scale project, there are occasional issues that arise due to evolving file 

formats or data sources that do not conform to the standard specifications, however these 

are generally flagged by the pipeline for further inspection. Using the additional 

automation, the pipeline can be directly applied to all of the remaining Pfam families 

with ~50% overall success rate, however, the success rate on many families is quite low 

and these shortcomings need to be explored further. For example, in the AraC family, 

many proteins contain multiple putative DNA binding domains, but the binding modality 

of these domains does not appear to be conserved (Martin and Rosner, 2001). There are 

family members that contain two domains that bind DNA (Rhee et al., 1998), whereas 

other family members only contain a single domain. In some cases, there are family 

members with multiple domains, but only one actually binds the DNA (Kwon et al., 

2000). Also in AraC, a subset of proteins binds via direct and/or indirect repeats (Carra 

and Schleif, 1993; Gallegos et al., 1997). Given these sorts of problems, there are some 

Pfam families that may require special attention rather than simply applying the default 

analysis pathway. The novel motif finder that was described in chapter 3 may help in this 
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matter, as it provides a flexible platform on which to develop a more robust pipeline. The 

extensions described in the discussion section of that chapter would be important first 

steps in order to analyze additional motif families.

Currently, the method assumes that all proteins in a family are using the same sets 

of critical residues in order to interact with the DNA. This assumption may not be correct 

in all cases, as the critical residue set was assessed by taking the union of all possible 

protein-DNA contacts. Generally this is a valid assumption, but in some cases, there may 

be a specific subset of the critical residues that are used in determining DNA specificity 

in specific HTH proteins (Wintjens and Rooman, 1996). Normally, the consequence of 

the faulty assumption will simply lead to smaller cluster sizes and fewer motif 

predictions, however it could also lead to motif predictions that do not represent the true 

diversity of the proteins in the cluster. The challenges that would arise from such an 

analysis would be two-fold. First, a method would need to be built such that it could 

determine which subset of residues are being used by a particular TF. Second, 

discrepancies based on the first analysis would need to be resolved; if the method predicts 

that a specific TF was able to use multiple different subsets of critical residues and the 

results of motif finding are inconsistent this would need to be resolved.

Many ongoing sequencing projects are generating metagenomic sequence data. 

The pipeline was theoretically built to handle such datasets, and has placeholders in many 

of the routines to include metagenomic datasets, but as of yet has not been fully tested 

using metagenomic sequences. In the context of the human microbiome project and other 

sequencing projects, this will become an increasingly important source of information 

and it will be imperative to include metagenomic sequence information into the pipeline. 
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The potential problems with including such data is the length of the contigs and the 

relative position of the TF or the relevant promoters/operons. If the TF is located too 

close to either end of the contig or the contig is too short, then it is likely that the 

upstream promoter, downstream promoter and autoregulatory promoter will not all be 

present. This would affect the assumption of each concatenated USP containing a motif. 

Technically, this could also be an issue in WGS datasets as well, but it has not proven to 

be too much of a problem. Additionally, given the context of metagenomic sequencing, 

these contigs could potentially represent chimeras of multiple different organisms that 

were assembled into a single contig, thus this could also throw a motif finder askew. To 

solve the first problem, a simple data filtration criteria could be assessed such that if a 

contig does not contain at least 2 of the 3 relevant promoters, it is not included in the 

motif finding dataset. Additionally, to solve both problems, the motif finder from chapter 

3 could be easily extended such that it is capable of relative sequence weighting and a 

position specific prior. If the confidence in the metagenomic sequencing project and the 

resulting contigs therein, is not high, this could be reflected in a lower relative sequence 

weight which would effectively decrease its impact on the final motif. The exact relative 

weighting of the metagenomic sequencing is not entirely clear without some testing, and 

would be an important step in analyzing such data.

Extending motif predictions

As discussed in chapter 3, there are three major improvements that need to be 

implemented in the current gapped motif finder before it can be deployed in a larger 

scale. Firstly, the start-point algorithm needs to be refined.   It needs to be more resilient 

to repeat regions and in some ways, clustering the top set of (l,d)-mer matches might 
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provide for a more accurate start point. The start-point definition might also improve if 

there were a complexity filter on the set even before clustering. Given superior start-point 

definitions, more accurate priors could be assessed that would be input into the 

optimization procedure. Secondly, improvements in the optimization part of the algorithm 

would help to more accurately model the expected distribution of the motifs as ZOMPs as 

opposed to ZOOPs. Finally, there needs to be a rigorous analysis of the significance of a 

motif. Since EM is guaranteed to converge, the statistical importance of a motif is much 

more important than if motif finding was done using a method that would not converge 

unless a reasonably significant motif was present. This significance value could be used 

to not only assess the degree of certainty that the motif is valid, but also to compare 

different motif predictions to determine the one that is most consistent with the data.

One of the main driving factors for developing a motif finder was in order to have 

a method that was capable of optimizing a motif from a start point in the context of 

extending known motifs predictions to similar clusters. In each Pfam family, there are 

many motif predictions, however these predictions are not complete, as when there are 

fewer than 10 USPs, no predictions are made. This minimum limit of 10 USPs is 

somewhat arbitrary, however, if there are too few sequences provided to a motif finder 

then the motif finding may be unstable. As discussed in chapter 2, we can see that the 

idea of using similar CR tags as defined by a HD criteria in order to predict the binding 

specificity of additional motifs would allow for a significant increase in the number of 

predicted members of a Pfam family. This extension would require a few additional 

modifications to the current procedure in order to work. Firstly, the motifs of the similar 

CR tags would need to be converted into a form that is conducive to the motif 
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optimization procedure. This could be as simple as inputting a slightly muted version of 

the motif by adding a global pseudocount and re-normalizing as discussed in chapter 3. 

However, in the case where there are more than one CR tags that are within the specified 

similarity criteria, a more robust method of aligning the motifs likely using a modified 

variant of STAMP (Mahony and Benos, 2007) and trimming the resulting familial 

binding profile (FBP) is likely to be effective. The modification of STAMP included 

outputting the intermediate full alignments as opposed to simply the consensus 

representations. The benefit of STAMP is that one can weight the individual motifs that 

are input into the procedure, so the confidence in the prediction is also reflected in this 

stage of the analysis as well. The pipeline has been built with the concept of “rounds” or 

iterations, and thus one could extend these predictions while tracking the level of 

extrapolation that has occurred. In round 1, it could be a single level of extrapolation, 

such that only CR tags with HD=1 are used to extend the predictions, whereas in round 2, 

HD=2 or extrapolated HD=1could be used to further extend the predictions. Keeping the 

primary data and the extrapolations separated would allow for easier interpretation of the 

data in further analyses, potentially require assessment of the confidence. The separation 

of the datasets would also assist in tracing of any potential problems in the extrapolative 

process.

Regulatory Code

One such analysis could include defining a regulatory code for the TF families of 

interest. The regulatory code is an elusive “function” by which if the protein sequence is 

known, the DNA binding site can be predicted, similar to how with the nucleic acid 

coding sequence, the protein sequence can be inferred. Generic deterministic versions of 
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this regulatory code that apply to all DNA-binding proteins do not appear to exist 

(Matthews, 1988). However, family specific codes can be elucidated (Benos et al., 2002; 

Noyes et al., 2008). In this context, there are multiple transcription factor families of the 

HTH class, and thus might be amenable to such a regulatory code. The importance of a 

regulatory code in these contexts is that it would enable motif predictions of CR tags that 

either are not amenable to discovery by the current/future protocols, or that do not even 

exist in the dataset. If these predictions can be made, this might be quite useful in the 

synthetic biology arena, where custom TF-DNA interactions would be a key part of 

designing novel transcriptional networks. 

Methods to elucidate the regulatory code could include a mutual information 

analysis (Mahony et al., 2007). The drawback to the mutual information method is that it 

is quite stringent on quality the input dataset, thus a validated set of data would need to be 

input. This is still not ideal though, as mutual information methods normally require a 

large amount of data in order to draw their conclusions and the validation process would 

likely eliminate some lower quality input points. A simpler method to determine a 

correlation between the residue and the DNA might be to take the set of motifs whose CR 

tags are 1 HD away from each other and calculate a column-based distance metric 

between their motifs. The columns with the furthest distance are likely the ones that are 

interacting with the residue that has changed. The complication in this method is that the 

motif half-sites need to be aligned in a consistent manner so that the resulting correlations 

are consistent and can be compiled across multiple comparisons, maybe using STAMP in 

order to align the half-sites. Once the correlations between DNA position and residue 

number have been determined, then a closer inspection of the co-variance can be 
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undertaken to see if there is a residue-based code underlying the motif changes. Again, 

this method will require a significant corpus of data, however, as discussed in chapter 3, 

the new motif finder should be able to extend the predictions to the HD=1 CR tags 

successfully, thus providing the additional needed data.

Informing Biophysical models

There has been some work on generating biophysical models of TF binding to 

DNA, however, these studies have been plagued by a paucity of known TF-crystal 

structures. Using this pipeline, there will be a large dataset correlating transcription factor 

protein sequences to their potential DNA binding sites. This dataset could be used to 

provide insight into the specific mechanisms underlying transcription factor-DNA 

binding interactions. An easy way to include the data would be as a larger test set to 

determine which of the current methods is best at predicting HTH binding specificities de 

novo. Alternatively, the same results from the testing procedure could be used to pinpoint 

problems in the current prediction methods. If a method is capable of predicting a motif, 

but not its HD=1 correlate, than that could provide useful information about a potential 

problem in the parameters describing a specific residue-DNA interaction pair. However, 

the outlined method will not be able to help in terms of the lack of explicit waters and 

difficulty in accurately calculating electrostatic interactions for the highly charged DNA.

Alternatively, the large corpus of data could be used to calculate “fudge-factors” 

or correction terms that would allow for a semi-empirical approach to biophysical 

binding site prediction. In this hybrid procedure, first the binding site energy would be 

calculated using an all-atoms model, and then depending on the protein-DNA interactions 

that are likely to be present given the regulatory code analysis, certain correction terms 
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could be applied. These would allow for some leeway in the prediction accuracy, such 

that it was not entirely dependent on the force-field based terms. Again, the simplest 

method would be to apply these additional terms during the ranking procedure to 

determine whether a sequence is likely to be bound by the DNA or not. The relative 

weight of the correction terms versus the computed force-field energy would likely 

depend on several factors including the force field used, the optimization procedure 

employed and the confidence in the predictions.

Synthetic biology

The method that has been described will provide a large dataset of TF-DNA 

interactions. Assuming the successful extension of the method to a large number of TF 

families, many of the current methods could be applied to generate a relatively robust 

transcriptional regulatory network. Even though the method has only been applied/tested 

on HTH families, these comprise ~80% of E. coli TFs. Thus the resulting regulatory 

network should be relatively complete.

With a transcriptional regulatory network in hand as well as the predicted TF-

DNA interactions in bacterial systems, it becomes more feasible to manipulate the 

cellular transcriptional network. There has been increased interest in developing synthetic 

organisms or modifying current organisms to perform specific tasks or functions, known 

as synthetic biology (Purnick and Weiss, 2009). Recently a minimal organism has been 

generated that could be a scaffold for future research (Gibson et al., 2010). Additionally, 

there has been significant interest in developing organisms that can be used in the 

production of biofuels or for bioremediation (Löffler and Edwards, 2006; Lovley, 2003; 
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Weber et al., 2010). 

One of the limiting factors in engineering organisms is the ability to determine the 

effect of a newly inserted gene or operon on the fitness of the cell. This is a complex 

problem that is not only limited to the gene regulatory network, but can include the 

intermediate RNA, the protein products and the resulting metabolites. In order to 

optimize the function of the cell, all of these factors need to be taken into account and this 

highly depends on what is being optimized as well, production of a certain end product or 

sheer biomass. The gene regulatory network is the lowest level at which this optimization 

can happen, so it is likely to have a large impact on the results. Specifically, given a 

bacterial simulator, that takes into account the factors that are important for growth and 

production of metabolites/products, it is easy to envision how modulating the affinity of 

the TFs in the system for their respective targets could allow for the optimization of 

production of a certain metabolite, by simply downweighting (or substituting with 

suboptimal binding sites) non-required pathways and upweighting (or substituting with 

optimal binding sites) for the pathways of interest. This would need to be done in a 

careful manner, as there may be non-linear dependencies that underly these pathways, but 

the gene regulatory network of an organism along with the binding specificities of the 

component TFs would provide an invaluable resource to the synthetic biology 

community. Additionally, this could be done for a wide variety of organisms, as the 

method has been applied to all currently sequenced organisms.
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Appendix 1: Regulation of the Drosophila Enhancer of 

split and invected-engrailed Gene Complexes by 

Sister Chromatid Cohesion Proteins2

2  This chapter was adapted from: Schaaf, C. A., Misulovin, Z., Sahota, G., Siddiqui, A. M., Schwartz, Y. 

B., Kahn, T. G., Pirrotta, V., Gause, M. & Dorsett, D. Regulation of the Drosophila Enhancer of split 

and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS One 4, e6202 

(2009).  I created scripts to re-analyze the cohesin ChIP-chip data in order to define cohesin (Nipped-

B/Smc1) +/- PolII binding in a rigorous manner and helped correlate the microarray data with these 

definitions.
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Abstract

The cohesin protein complex was first recognized for holding sister chromatids together 

and ensuring proper chromosome segregation. Cohesin also regulates gene expression, 

but the mechanisms are unknown. Cohesin associates preferentially with active genes, 

and is generally absent from regions in which histone H3 is methylated by the Enhancer 

of zeste [E(z)] Polycomb group silencing protein. Here we show that transcription is 

hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z)-

mediated histone methylation simultaneously coat the entire Enhancer of split and 

invected-engrailed gene complexes in cells derived from Drosophila central nervous 

system. These gene complexes are modestly transcribed, and produce seven of the twelve 

transcripts that increase the most with cohesin knockdown genome-wide. Cohesin 

mutations alter eye development in the same manner as increased Enhancer of split 

activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps 

restrain transcription of these gene complexes, and that deregulation of similarly cohesin-

hypersensitive genes may underlie developmental deficits in Cornelia de Lange 

syndrome.
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Introduction

The cohesin protein complex holds sister chromatids together, ensuring their proper 

segregation upon cell division [1-3]. Cohesin has a ring-like structure that encircles DNA 

[4,5], formed by the Smc1, Smc3, Rad21 and Stromalin (SA) proteins. In most 

organisms, cohesin binds chromosomes throughout interphase, and several findings 

indicate that it regulates gene expression. The Drosophila Nipped-B protein that loads 

cohesin onto chromosomes facilitates activation of the cut and Ultrabithorax homeobox 

genes, and cohesin inhibits cut expression [6-9]. Drosophila cohesin facilitates 

expression of a steroid hormone receptor and axon pruning in non-dividing neurons 

[10,11], and the Rad21 cohesin subunit encoded by verthandi (vtd), was identified 

genetically by its opposing effect to Polycomb group (PcG) silencing of homeotic genes 

[12,13]. Rad21 also facilitates expression of zebrafish Runx genes in a cell-type specific 

manner [14].

To understand how Nipped-B and cohesin regulate gene expression, their binding 

was mapped in the genomes of Drosophila cultured cells, revealing that they co-localize 

genome-wide [15]. Cohesin was also mapped in the human genome [16], and in 3% of 

the mouse genome [17]. All three studies show that cohesin binds many genes, and that 

binding is particularly enriched around transcription start sites.

In mammals, cohesin co-localizes extensively with the CCCTC-binding factor 

(CTCF) that functions as a transcriptional insulator, and cohesin contributes to insulation 

[16,17]. CTCF is thought to function by forming long-range chromosome loops, and 

cohesin and CTCF support transcription-dependent loops in the human apoliporotein 
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gene cluster [18] and a developmentally-regulated loop at the IFNG cytokine locus in 

mammalian T cells [19].

There are also links between insulators and cohesin in Drosophila. A 75 kb 

domain of cohesin that covers the active Abd-B gene in the bithorax complex is flanked 

by a CTCF site near the 5’ end of Abd-B, and the Fab-7 insulator downstream of Abd-B 

[15, 20], suggesting that insulators define some cohesin domains. On the basis of genetic 

evidence it was suggested that cohesin blocks enhancer-promoter interactions in cut, and 

that Nipped-B counters this insulation by controlling cohesin binding [8]. Most recently, 

genome-wide mapping revealed that the Drosophila CP190 insulator protein co-localizes 

extensively with cohesin [21].

Many differences in cohesin binding between different Drosophila cell lines 

correlate with differences in transcription, with cohesin binding a gene only in those cells 

in which the gene is active [15]. Cohesin extensively overlaps RNA polymerase II (PolII) 

genome-wide, but is almost always absent from regions in which the E(z) protein of the 

PRC2 PcG silencing protein methylates histone H3 on the lysine 27 residue 

(H3K27Me3).

There are rare cases where cohesin overlaps H3K27Me3 over large regions in 

ML-DmBG3 (BG3) cells [22] derived from Drosophila central nervous system. One of 

these is the Enhancer of split complex [E(spl)-C] that contains twelve genes, including 

seven basic helix-loop-helix (bHLH) genes that repress neural fate [23]. Another is the 

invected-engrailed complex with two homeobox genes expressed in posterior 

developmental compartments [24-26]. The unusual pattern prompted us to determine if 

cohesin regulates these gene complexes. We find that genes in these complexes are 
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expressed at modest levels, and that in sharp contrast to most cohesin-binding genes, 

reducing Nipped-B or cohesin levels dramatically increases their transcription.

Results

Cohesin and RNA polymerase II (PolII) binding overlap extensively genome-wide, while 

cohesin shows a negative correlation with the H3K27Me3 mark made by the PRC2 PcG 

silencing complex [15]. PcG target genes such as Abd-B or cut bind little or no cohesin in 

cells in which they are silenced, but bind cohesin over large regions of 75 and 150 kb in 

cells in which they are transcribed [15].

While comparing the cohesin and H3K27Me3 patterns, we noted eight unusual 

regions of extensive overlap ranging in length from 4.8 to 80.9 kb in the genome of BG3 

cells derived from central nervous system, and only two such regions in Sg4 cells of 

embryonic origin (Table A1.S1). Strikingly, two of the BG3-specific overlaps align 

perfectly with developmentally-important gene complexes. Figure A1.1 shows the 

association of cohesin, RNA polymerase II (PolII), and H3K27Me3 with the Enhancer of  

split and invected-engrailed complexes in BG3 and Sg4 cells. In BG3 cells, the 50 kb 

length of the E(spl)-C binds cohesin and has extended regions of H3K27Me3. Six genes 

(HLHmδ, HLHmβ, mα, HLHm3, HLHm7) bind PolII. By contrast, in Sg4 cells, only 

three E(spl)-C genes bind cohesin (HLHmβ, HLHm3, m6), six bind PolII (HLHmδ, 

HLHmβ, m2, HLHm3, m6, HLHm7), and there is no H3K27Me3. Similar to the E(spl)-C, 

the invected-engrailed complex is also coated by cohesin, and has extensive H3K27Me3 

in BG3 cells (Figure A1.1). The cohesin domain extends from upstream of the invected 
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transcription start site to a region upstream of engrailed that contains a Polycomb 

Response Element (PRE) and sequences required for interactions with transcriptional 

enhancers [27]. The H3K27Me3 region also starts upstream of invected, but extends 50 

kb past the PRE, over a region that regulates engrailed [28]. In Sg4 cells, H3K27Me3 

also coats the invected-engrailed complex and the regulatory region, but there is no PolII 

and little cohesin, as is typical for PcG-targeted genes [15].

Cohesin Regulates the E(spl)-C and invected-engrailed Complex in BG3 

Cells

The unusual cell-type specific overlap of cohesin and H3K27Me3 that covers the 

E(spl)-C and invected-engrailed raised the possibility that cohesin might regulate their 

expression. Genome-wide, 480 genes have H3K27Me3 (p ≤ 10-3) in their transcribed 

regions in BG3 cells, and only 64 (13%) of these bind PolII, including the genes in the 

E(spl)-C and the invected-engrailed complex. Although PcG proteins bind PREs of some 

target genes in both the inactive and active states, for the genes examined, H3K27Me3 

covers the transcribed region only when they are silent [29-32]. We measured transcripts 

to compare expression of the E(spl)-C and invected-engrailed complex in BG3 and Sg4 

cells. Consistent with the binding of PolII, seven E(spl)-C genes (HLHmδ, HLHmγ, 

HLHmβ, mα, m2, HLHm3, HLHm7), invected, and engrailed are transcribed in BG3 cells 

(Figure A1.2A). An overlapping set of six E(spl)-C genes (HLHmδ, HLHmβ, mα, m2, 

HLHm3, m6) are expressed in Sg4 cells at levels similar to those seen in BG3 cells 

(Figure A1.2A), but invected and engrailed are essentially silent. Thus at the invected-

engrailed complex, which is coated by H3K27Me3 in both cell types, the presence of 
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Nipped-B and cohesin correlates with expression, suggesting that cohesin prevents 

complete silencing, and/or that incomplete silencing promotes cohesin binding.

We used RNAi to knock down Nipped-B and cohesin to see if this alters 

expression of the Enhancer of split and invected-engrailed complexes. Knockdown of 

Nipped-B had little effect on cohesin levels, while Rad21 knockdown slightly reduced 

SA as previously noted [33], and SA RNAi reduced Rad21 (Figure A1.2E). SA and 

Rad21 interact, making it likely that they stabilize each other. In several experiments with 

BG3 cells, knockdown of Nipped-B, Rad21 or SA was maximal within two days, and on 

the order of 80% for several days (Figure A1.2B,E). Knockdown in Sg4 cells was 

maximally 60% after two successive treatments.

We saw large increases in E(spl)-C, invected and engrailed transcripts in BG3 

cells six days after Rad21, Nipped-B or SA RNAi in all of several experiments (Figure 

A1.2B,C). The increases varied somewhat between experiments. In Figure A1.2C, the 

HLHmδ transcripts increase 130-fold by day 6 in one experiment, and 25-fold in another 

with Rad21 RNAi, representing some of the largest and smallest increases observed in 

the nearly forty independent Rad21 RNAi experiments that were performed. Within each 

experiment using the same cell passage, however, effects were similar between Rad21 

and Nipped-B knockdown, or between Rad21 and SA RNAi (Figure A1.2C). Thus we 

attribute the variability in the fold-effects from experiment to experiment to unknown 

differences in the physiology or growth state of the cells between passages, and conclude 

that overall, Nipped-B and cohesin have similar effects on gene expression. We measured 

transcripts up to 13 days after RNAi, when Nipped-B (not shown) or Rad21 (Figure 

A1.2B) recover. The E(spl)-C and invected-engrailed transcripts start to decrease, but are 
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still above initial levels (Figure A1.2B).

Nipped-B or cohesin RNAi had little effect on expression of the E(spl)-C in Sg4 

cells (Figure A1.2D), including the cohesin-binding HLHm3 and m6 genes. There was 

also no effect on the silenced invected and engrailed genes. Although Rad21 and Nipped-

B knockdown was less efficient in Sg4 cells (Figure A1.2E), as shown below, Rad21 

knockdown of 30 to 50% in BG3 cells alters E(spl)-C RNA levels. We conclude that the 

E(spl)-C and invected-engrailed are less sensitive to cohesin dosage in Sg4 than in BG3 

cells, as might be expected from the substantial differences in cohesin binding between 

the two cell types.

On day 3 after Nipped-B RNAi, some E(spl)-C transcripts (HLHmγ, mα, m2, 

HLHm3) decrease (Figure A1.3), yet show large increases by day 6 (Figure A1.2). 

Similar decreases at day 3 were seen in all Nipped-B RNAi experiments. To see if a 

biphasic effect also occurs with Rad21, we used different amounts of dsRNA to control 

RNAi efficiency. A 30% knockdown decreased most E(spl)-C transcripts, while a 55% 

reduction decreased some and increased others (Figure A1.3). Thus Rad21 has a biphasic 

effect similar to Nipped-B.

E(spl)-C transcripts are miRNA targets [34], and we considered the possibility 

that cohesin knockdown decreases miRNA activity to increase transcript stability in BG3 

cells. Rad21 knockdown, however, had little effect on the stability of E(spl)-C transcripts 

(Table A1.S2), and we therefore conclude that cohesin RNAi elevates E(spl)-C 

transcription.

Nipped-B or Rad21 knockdown slowed but did not arrest cell division in BG3 or 

Sg4 cells, consistent with previous findings in Drosophila cells [33]. Sister chromatid 

86



separation increased 2 to 3-fold over controls, but there was no increase in hyperploid 

cells, indicating that the minor cohesion deficits did not affect segregation (Table A1.S3). 

Nipped-B or cohesin RNAi did not increase cell death, as determined by trypan blue 

staining.

Polycomb Represses the E(spl)-C in BG3 Cells

In contrast to engrailed, the E(spl)-C has not previously been reported to be a PcG 

target. We used RNAi knockdown of the Polycomb (Pc) subunit of the PRC1 complex to 

see if PcG proteins repress the E(spl)-C in BG3 cells. With a Pc knockdown of some 

70%, most E(spl)-C transcripts increased several-fold by day 6, indicating that in addition 

to cohesin, PRC1 restrains their expression (Figure A1.4). The invected and engrailed 

RNA levels did not change (Figure A1.4), although Abd-B, which is PcG-silenced and 

does not bind cohesin [15], showed up to 1200-fold increases in transcript levels with Pc 

knockdown (not shown). The lack of effects on invected and engrailed transcripts 

suggests that Pc is not strongly limiting for their repression in BG3 cells. Pc is only 

weakly limiting for repression of engrailed in embryos, and is less limiting than other 

PcG proteins for repression of many target genes in imaginal discs [31,35].

The CP190 Insulator Protein Does Not Regulate E(spl)-C and invected-

engrailed Transcription in BG3 Cells

Cohesin can regulate gene expression by contributing to activity of the CTCF 

insulator protein and insulator-mediated looping in mammalian cells [16-19]. Drosophila 
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has many insulator proteins, including CTCF, Su(Hw), GAF, and BEAF. All co-localize 

extensively genome-wide with the CP190 protein, which is required for CTCF and 

Su(Hw), and likely also for GAF and BEAF insulator activities [21,36]. We used RNAi to 

knockdown CP190 protein by approximately 90%, but there was little or no change in the 

level of E(spl)-C and invected-engrailed transcripts six days after RNAi treatment 

(Figure A1.5). Rad21 knockdown substantially increased E(spl)-C and invected-

engrailed transcripts in the same experiment. CP190 knockdown also had no significant 

effect four or eight days after RNAi treatment (not shown). These results argue that the 

effects of Nipped-B and cohesin on transcription of these gene complexes, which are 

substantially larger than the effects of cohesin on insulator function seen in mammalian 

cells, are unlikely to result from changes in insulator function.

Nipped-B and Rad21 Mutations Alter Notchsplit Mutant Phenotypes

We used mutant phenotypes of the split missense mutation in the Notch receptor 

gene (Nspl-1) that are sensitive to E(spl)-C activity to test if cohesin regulates the E(spl)-C 

in vivo. Nspl-1 reduces activation of proneural genes, thereby decreasing the number of 

photoreceptors in the eye, and altering bristles [37]. E(spl)-C duplications, the E(spl)D 

gain-of-function allele, and forced overexpression of some E(spl)-C genes increase the 

severity of the eye phenotype [37-40], while E(spl)-C deletions suppress [41].

We tested if two loss-of-function Rad21 mutations [12], the vtd36 missense 

mutation, and the vtdγ26-6 splice site mutation, dominantly alter the Nspl-1 mutant 

phenotypes. Both increased the severity of the eye phenotype, and consistent with a 

previous report [9], the Nipped-B407 null allele suppressed the eye phenotype (Figure 

A1.6). Both Rad21 alleles also decreased the number of scutellar macrochaete (Figure 
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A1.6). The simplest explanation is that reduced Rad21 dosage increases E(spl)-C 

expression in the developing eye and bristles, reducing the number of cells that adopt 

neural fate and become photoreceptors or bristles.

Knockdown of either Nipped-B or Rad21 increases E(spl)-C transcription in BG3 

cells. Thus the opposing effects of Nipped-B and Rad21 mutations on the Nspl-1 eye 

phenotype appear contradictory. We posit, however, that they reflect biphasic effects on 

E(spl)-C expression similar to those seen in BG3 cells (Figure A1.3). Heterozygous 

Nipped-B null mutations reduce Nipped-B mRNA by only 25% in vivo [8] and thus their 

suppression of Nspl-1 could reflect a decrease in E(spl)-C transcription caused by a 

biphasic effect. Although the biphasic effect is transitory with an 80% Nipped-B 

reduction in BG3 cells, it may last longer with a 25% reduction in vivo, and the critical 

phase for E(spl)-C expression in the developing eye at the morphogenetic furrow likely 

lasts for a much shorter time than three days [42].

Cohesin’s Effects on E(spl)-C and invected-engrailed Transcription in BG3 Cells are 

Exceptional

We measured effects of Nipped-B and Rad21 on gene expression in BG3 cells 

using microarrays to (a) see if the effects of cohesin on E(spl)-C and invected-engrailed 

expression are unique, (b) look for effects of cohesin on regulators of E(spl)-C and 

engrailed, and (c) obtain a comprehensive view of the role of cohesin in gene expression. 

We used two samples for three days after RNAi treatment, one four day and one six day 

sample for both Nipped-B and Rad21, and mock RNAi controls for each time point. 

Comparing log2 expression values, the genome-wide correlation coefficients between the 

four control samples were greater than 0.99.
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Strikingly, seven of the twelve transcripts that increase the most six days after 

Rad21 RNAi treatment are from the E(spl)-C and invected-engrailed (Figure A1.7, 

Figure A1.S1, Table A1.S4). Biphasic effects are seen, as some E(spl)-C transcripts 

decrease after 3 days of Nipped-B RNAi, but increase by day 6 (Figure A1.S1, Table 

A1.S4). E(spl)-C and invected-engrailed transcripts are present at relatively low levels in 

mock RNAi controls (Figure A1.S2, Table A1.S4). Thus the E(spl)-C and invected-

engrailed are expressed at modest levels, and are unusually sensitive to cohesin.

Other genes located in regions of cohesin-H3K27Me3 overlap also significantly 

increase in expression with cohesin or Nipped-B knockdown, including jing, Psc, Su(z)2, 

hth, and Lim1 (Tables S1 and S4). The increases are from 1.4 to 4-fold, and less than 

those observed with the E(spl)-C and invected-engrailed, but these genes are already 

expressed at 10 to 500-fold higher levels than the E(spl)-C prior to cohesin or Nipped-B 

knockdown, despite the extensive H3K27Me3 in their transcribed regions (Table A1.S4). 

After knockdown, their expression ranges from 2-fold less to 4-fold more than E(spl)-C 

transcripts, suggesting that the lower fold-increases in expression of these genes with 

cohesin knockdown reflects their initial higher expression levels. We conclude that all 

genes in regions of substantial cohesin-H3K27Me3 overlap in BG3 cells are not silenced, 

and are negatively regulated by cohesin.

Cohesin Knockdown Increases Expression of Notch Pathway Genes

BG3 cells are derived from central nervous system, but the proneural genes (ac, 

sc, l’sc, ato, da) that promote E(spl)-C expression [42,43] are not expressed (Table 

A1.S4). E(spl)-C genes are activated by Notch, and the genes encoding Notch (N), the 

Suppressor of Hairless [Su(H)] protein that tethers the Notch intracellular fragment to 
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target genes, the Mastermind (Mam) coactivator, and both the Delta (Dl) and Serrate 

(Ser) Notch ligands are expressed. Cohesin RNAi increases Ser ligand transcripts 6-fold 

on day 3 and 25-fold by day 6, and thus elevated Notch signaling may help increase 

E(spl)-C transcription (Figure A1.S1, Table A1.S4).

Lack of proneural gene transcripts suggests that Notch, which alone is insufficient 

to activate E(spl)-C genes [42], cooperates with other unknown activators to induce 

E(spl)-C expression. Binding sites for many transcription factors are conserved in the 

E(spl)-C between Drosophila species [44] and some of these (Adf1, broad, Trl, Eip74EF, 

dorsal, tramtrack, zeste) are expressed in BG3 cells (Table A1.S4).

Effects of cohesin on the Notch pathway cannot explain the effects of Nipped-B 

and Rad21 mutations on Nspl-1 phenotypes described above. If Rad21 mutations increase 

Notch signaling, they should increase proneural gene expression and suppress Nspl-1. 

Nipped-B mutations do suppress the eye phenotype, but they have little effect on the Nspl-1 

bristle phenotype, the Nnd-1 wing margin phenotype, or the NAx-E2 wing vein phenotype, 

indicating that they do not increase Notch signaling in vivo [9]. Thus a biphasic effect on 

E(spl)-C transcription remains the simplest explanation for the opposite effect of Nipped-

B and Rad21 mutations on the Nspl-1 eye phenotype.

Embryonic regulators of engrailed (ftz, eve, prd, slp, odd) are not expressed 

before or after cohesin RNAi (Table A1.S4). The genes that regulate engrailed in later 

stages, however, are unknown, and thus indirect effects of cohesin RNAi on invected-

engrailed expression cannot be ruled out. We note, however, that the modest changes in 

expression seen for most genes are unlikely to cause the unusually large changes in 

invected and engrailed expression.
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Cohesin Has Minimal Effects on PcG and trxG Genes

We considered the possibility that cohesin could regulate the E(spl)-C and 

invected-engrailed through effects on PcG or trxG gene transcription. Most of these 

genes, however, are not affected by cohesin RNAi (Table A1.S4). Exceptions are an 

increase of 80% in Pc transcripts and a 2-fold increase in Psc expression by day 6, but 

this should increase silencing and reduce transcription. A few trxG transcripts (brahma, 

osa, ash1, Trl, Bre1) increase less than 2-fold. Cohesin had no significant effect on any of 

the 394 genes with H3K27Me3 that do not bind cohesin, most of which are not detectably 

expressed above background levels, including all the genes in the bithorax and 

Antennapedia complexes (Table A1.S4).

Cohesin Directly Regulates Gene Expression

The genome-wide effects of Nipped-B and Rad21 RNAi on gene expression after 

six days were very similar, with a correlation between the log2 Nipped-B/control and log2 

Rad21/control expression ratios of 0.93 (Figure A1.7). Thus, with very few exceptions, 

Nipped-B and cohesin regulate the same genes to similar extents. Genome-wide, slightly 

more than 10% of transcripts showed statistically significant changes in one or more 

RNAi treatments, with 959 transcripts increasing, and 1025 decreasing (Figure A1.S3).

Comparison of the effects of cohesin on transcripts to its binding pattern in BG3 

cells argues that many of the effects of Nipped-B and cohesin on gene expression are 

direct. To ensure that we examined genes that respond consistently, we analyzed 

transcripts that showed 2-fold or greater increases or decreases in two or more RNAi 

treatments. By these criteria, 340 transcripts increase, and 414 decrease. 333 of the up-

regulated and 407 of the down-regulated genes are euchromatic, allowing us to determine 
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cohesin and RNA polymerase (PolII) binding from chromatin immunoprecipitation data.

Justified by their genome-wide co-localization [15], we combined the ChIP-chip 

data for Nipped-B and Smc1 and identified the genes in which these proteins bind within 

the transcription units at p ≤ 10-3. By these criteria, 57% (189/333) of the genes that 

increase, and 36% (146/407) of the genes that decrease in expression bind cohesin (Table 

A1.S5), which is a significant difference (p = 9.7 x 10-9). PolII binding does not differ, 

with binding to 68% (225/333) of the increasing and 66% (268/407) of the decreasing 

genes (Table A1.S5). It is not unexpected that PolII binding is not detected in some cases 

because many genes are expressed at low levels and have low polymerase density. PolII 

binding is detected more frequently with the cohesin-binding genes, in 83% of the 

increasing and 82% of the decreasing genes (Table A1.S5). We conclude that more genes 

that increase in expression with cohesin RNAi bind cohesin compared to genes that 

decrease.

Both increasing and decreasing genes bind cohesin at a higher than average 

frequency. Genome-wide, 19% (816/4282) of PolII-binding genes also bind cohesin, 

compared to 70% (157/225) of the PolII-binding genes that increase in expression, and 

45% (120/268) of the PolII-binding genes that decrease (Table A1.S5). This argues that 

cohesin directly affects expression, and that negative effects are more common than 

positive. These data also indicate that many changes in expression that occur with 

cohesin RNAi are indirect.

Analysis of cohesin-binding genes further argues that the large increases in 

E(spl)-C and invected-engrailed transcripts that occur with cohesin knockdown are 

unique. Of the 816 genes in BG3 cells that bind both cohesin and PolII, 804 are detected 
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by the expression microarray. 341 (42%) of these increase in expression by 20% or more 

with Rad21 knockdown, and 136 (17%) decrease 20% or more (Figure A1.S4). 54 (7%) 

are not detectably expressed, and 273 (34%) change less than 20% in expression (Figure 

A1.S4). For genes that increase 20% or more, the median increase is 50%. For the genes 

that decrease 20% or more, the median decrease is 35%. Thus the effect on expression of 

most cohesin-binding genes is less than 2-fold.

Cohesin Has Minor Effects on Genes Involved in Translation and Cell 

Division

The top gene ontology (GO) categories for genes that increase in expression with 

cohesin RNAi involve development, while the top categories for decreasing transcripts 

involve protein translation (Figure A1.S3, Table A1.S6). All ribosomal protein transcripts 

decrease an average of 15%, and all aminoacyl tRNA synthetase transcripts decrease an 

average of 33% (Table A1.S4). The most significant cell division category is mitotic 

spindle elongation (Table A1.S6), but most genes in this case encode ribosomal proteins. 

There are slight increases, all less than 2-fold, in transcripts for cyclin B, some cohesion 

factors and condensin subunits, consistent with a mild G2/M delay [33].

Discussion
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Cohesin Regulates the Enhancer of split and invected-engrailed Gene 

Complexes in a Cell-Specific Manner

Here we show that in BG3 cells derived from central nervous system, the E(spl)-

C, and the complex containing invected and engrailed share exceptional attributes: (a) 

cohesin binds over the entire gene complex and not just to individual genes, (b) cohesin 

binds throughout a large H3K27Me3 domain, and (c) they show unusually large increases 

in transcription when cohesin is reduced. We posit, therefore, that cohesin directly 

regulates these gene complexes.

This is supported by the contrasts in histone modification, cohesin binding, and 

the response to cohesin between BG3 and Sg4 cells. In Sg4 cells, cohesin binds only 

three of the active E(spl)-C genes, there is no H3K27Me3, and expression not 

substantially affected by cohesin. Thus the effect of cohesin on the E(spl)-C correlates 

with presence of cohesin and H3K27Me3 domains. The invected-engrailed complex in 

Sg4 cells shows the typical pattern for PcG silenced genes. It is coated by H3K27Me3, 

there is no cohesin, and it is silent before or after cohesin RNAi. Thus, we suggest that in 

BG3 cells, cohesin prevents complete silencing of invected and engrailed by PcG 

proteins, and/or that lack of silencing promotes cohesin binding. This latter possibility 

alone seems unlikely, given that many non-silenced and active genes do not bind cohesin, 

and that cohesin domains that extend over entire gene complexes are rare. For instance, 

only selected active E(spl)-C genes bind cohesin in Sg4 cells, in which there is no 

H3K27Me3, but the entire complex binds cohesin in BG3 cells, when it is also coated by 

H3K27Me3, indicating that lack of silencing or gene expression by itself is insufficient to 

establish the cohesin domain. We currently do not know the factors that determine when 
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and where a cohesin domain is established.

The similarities in chromatin structure and hypersensitivity to cohesin between 

the E(spl)-C and invected-engrailed complexes in BG3 cells lead us to speculate that in 

cases of cohesin and H3K27Me3 overlap, cohesin helps create an intermediate chromatin 

structure with aspects of both silenced and active regions (Figure A1.8). Such a dual role 

is consistent with the biphasic effects of Nipped-B and Rad21 RNAi on E(spl)-C 

transcription. When cohesin levels are reduced, silencing becomes temporarily stronger, 

but eventually a specific chromatin structure needed to repress transcription is lost, 

leading to overexpression. In other regions of cohesin-H3K27Me3 overlap, where genes 

such as Psc and hth are expressed at higher levels, the structural balance favors the active 

state. RNA levels are still increased in these cases by reducing cohesin levels, however, 

indicating that transcription is still restricted. At present, we do not know if cohesin 

binding is reduced selectively at specific sites when cohesin or Nipped-B dosage is only 

slightly reduced, which might contribute to biphasic effects at some genes. The lack of an 

effect of CP190 insulator protein on E(spl)-C and invected-engrailed expression argues 

against the possibility that changes in insulator activity contribute to the changes in 

E(spl)-C and invected-engrailed transcription that occur with cohesin knockdown.

In S. cerevisiae, cohesin inhibits spreading of SIR silencing proteins and 

establishment of silencing [45,46], suggesting that cohesin might have a similar effect on 

PcG function at the E(spl)-C and invected-engrailed complex. Cohesin binds the silent 

HMR mating type locus [47,48], where it helps form a chromatin boundary [45], and 

mediate sister cohesion [49,50]. It remains to be determined if cohesin’s functions at 

HMR are analogous to its roles at E(spl)-C or invected-engrailed, but we note that the 
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H3K27Me3 mark at invected-engrailed extends far beyond the cohesin domain at one 

end, arguing that cohesin does not form a chromatin boundary.

The finding that H3K27Me3 coats the E(spl)-C and invected-engrailed complex 

in BG3 cells, and that many of the genes in these two complexes bind PolII, raises the 

question if they are equivalent to bivalent genes in mammals. Including the E(spl)-C and 

invected-engrailed, and the five other genes in regions of cohesin-H3K27Me3 overlap, 

only 13% of the 480 genes marked by H3K27Me3 in BG3 cells bind PolII, and the vast 

majority of marked genes are not detectably expressed above background levels. Bivalent 

genes are defined by the simultaneous presence of the H3K27Me3 mark made by E(z) 

orthologs at silenced genes, and the histone H3 lysine 4 trimethylation (H3K4Me3) 

modification made by Trithorax orthologs at active genes [51-53]. Bivalent genes are 

frequent in embryonic stem cells, but also occur in lineage-restricted cells [53]. Like the 

E(spl)-C and invected-engrailed complex in BG3 cells, many bivalent genes encode 

transcription factors and are expressed at modest levels [52,54]. The invected-engrailed 

complex in BG3 cells has both H3K4Me3 and H3K27Me3 modifications, but the E(spl)-

C shows only a little H3K4Me3 (Y.B. Schwartz, T.G. Kahn, P. Stenberg, K. Ohno, R. 

Bourgon, V. Pirrotta, submitted). Thus invected-engrailed matches the original definition 

of bivalent genes.

Does Cohesin Regulate the E(spl)-C and invected-engrailed In Vivo?

The enhancement of Nspl-1 mutant phenotypes by Rad21 (vtd) mutations reported 

here supports the idea that cohesin restricts E(spl)-C transcription during eye and bristle 

development, because these are the phenotypic changes seen when E(spl)-C activity is 

increased by gene duplication, forced overexpression, or hypermorphic mutations, and 
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opposite of what is caused by an increase in Notch signaling or decrease in E(spl)-C 

dosage [37-41].

Heterozygous Nipped-B mutations suppress the Nspl-1 eye phenotype, suggesting 

that they either reduce E(spl)-C expression or increase Notch signaling. Because 

heterozygous Nipped-B null mutations only reduce Nipped-B mRNA by 25% [8], this is 

consistent with an in vivo biphasic effect on E(spl)-C transcription similar to that seen in 

BG3 cells. Based on the genome-wide analysis in BG3 cells, which shows that Nipped-B 

and cohesin regulate the same genes to similar extents, it is unlikely that Nipped-B and 

Rad21 have opposing effects on eye development by regulating different genes. Also, 

Nipped-B mutations do not affect other sensitive Notch mutant phenotypes, arguing that 

the effect on Nspl-1 is not through increasing Notch signaling [9]. Given the essential 

nature of cohesin in cell division, and the complex spatial and temporal pattern of E(spl)-

C expression in vivo, it will not be simple to confirm that Nipped-B and cohesin directly 

affect the levels of specific E(spl)-C transcripts in vivo, or rule out potential indirect 

effects. Indeed, given the contrast in binding of cohesin to the E(spl)-C between BG3 and 

Sg4 cells, in vivo effects of cohesin likely occur in only a select population of E(spl)-C 

expressing cells.

For similar reasons, it will also not be straightforward to confirm that PcG 

proteins regulate the E(spl)-C in vivo. Effects of PcG on E(spl)-C function have not been 

reported, and genome-wide mapping in other cell lines, whole organisms, or imaginal 

discs has not revealed that the E(spl)-C gene is a PcG target [30,31,55-57]. Nonetheless, 

the H3K27Me3 pattern and the effects of Pc knockdown on E(spl)-C expression in BG3 

cells argue strongly that E(spl)-C is a PcG target, although this may occur only in a small 
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fraction of cells in vivo.

It is unknown if invected and engrailed are regulated by cohesin in vivo. Our 

results suggest that this may occur in cells in which engrailed is active, but partially 

repressed by PcG proteins, such as the posterior compartment of the wing imaginal disc 

[58]. No dominant effects of Nipped-B or cohesin mutations on compartment formation 

have been observed in otherwise wild-type flies, but the feedback loop at the wing 

anterior-posterior boundary that controls engrailed, hedgehog, patched, wingless and 

decapentaplegic expression [59] may prevent or counteract increases in engrailed 

expression. The feedback mechanisms may be unbalanced in hedgehogMoonrat mutants, in 

which ectopic hedgehog expression in the anterior compartment causes overgrowth 

[60,61]. Rad21 (vtd) and Nipped-B mutations dominantly suppress this overgrowth 

[12,62], and one possibility is that increased engrailed expression helps restore the 

autoregulatory loop.

Do Genes Hypersensitive to Cohesin Contribute to Cornelia de Lange 

Syndrome (CdLS)?

Heterozygous loss-of-function mutations in the Nipped-B-Like (NIPBL) ortholog 

of Nipped-B cause CdLS, characterized by slow growth, mental retardation, autistic 

features, craniofacial abnormalities, and structural defects in limbs, gut, heart and kidney 

[63,64]. Mutations that change amino acid residues in the Smc1 or Smc3 cohesin 

subunits cause milder CdLS [65,66]. Cells from CdLS individuals do not have significant 

defects in chromatid cohesion [67-69], and NIPBL mRNA is only reduced by 15 to 30% 

in cells from CdLS individuals [70,71], indicating that the developmental deficits arise 

from changes in gene expression.
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Relative to healthy controls, over a thousand genes that are differentially 

expressed in CdLS lymphocyte cell lines with NIPBL mutations or mutant Smc1 [71]. As 

with cohesin knockdown in Drosophila BG3 cells, some genes increase in expression and 

some decrease. Most changes in lymphocytes, however, are less than 2-fold, and the 

largest effect is less than 4-fold. It is unknown if lymphocytes contain significant 

overlaps of cohesin and H3K27Me3, and therefore whether or not they might have 

hypersensitive genes similar to those in BG3 cells. Given the small reductions in 

cohesion factor activity that cause CdLS, the findings in BG3 cells suggest that genes that 

are hypersensitive to cohesin in only a subset of cells are the most likely to be strongly 

affected, and significantly alter development.
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Materials and Methods

Cell Culture and RNAi

BG3 cells were cultured in Schneider’s media with 10% FCS and 10 µg per ml 

insulin. Sg4 cells were grown in Schneider’s containing 10% FCS. For RNAi, cells were 

plated at 5x106 cells per 3 cm well for BG3 cells, and 3x106 for Sg4 cells. Media was 

replaced with 1 ml of Express Five SFM (Invitrogen) with 1% FCS, (and 10 µg per ml 

insulin for BG3 cells). For cohesion factors and Polycomb, from 0.7 to 40 µg of dsRNA 

was added per well, and 80 µg was used for CP190 knockdown. Media was adjusted to 3 

ml and 10% FCS with Schneider’s media after 2 hrs. Cells were replated as needed. 

Templates for dsRNA synthesis were made by PCR from cDNA or genomic DNA 

templates using primers with T7 promoters (Table A1.S7). In most experiments, equal 

amounts of two dsRNAs against each target were used. Both individual dsRNAs knocked 

down the targets, but knockdown was generally more efficient with a mixture. All dsRNA 

sequences were scanned against the genome to avoid off-target effects. To determine 

transcript half-lives, actinomycin D was added to cultures at 5 µg per ml, RNA was 

extracted every 30 min up to 2 hours, and half-lives were calculated assuming 

exponential decay.

RNA Quantification

Total RNA was isolated using Trizol (Invitrogen), treated with DNase I 

(Epicentre), chloroform extracted, ethanol precipitated and dissolved in water. cDNA was 

synthesized using random hexamer primers and SuperScript VILO reverse transcriptase 
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(Invitrogen). Transcripts were quantified using Sybr green real-time PCR (Clontech) and 

gene-specific primers (Table A1.S8) calibrated with genomic DNA. RNA levels were 

calculated adjusting for amplification efficiency [72] and normalizing to internal RpL32 

transcripts and external genomic DNA standards. Standard errors of the mean were 

calculated using all PCR replicates from all biological replicates.

Protein Extracts and Western Blots

Cells were washed in PBS, lysed in RIPA buffer (5 µl per 106 cells), insoluble 

material removed by centrifugation, and extracts were stored at -80o. Nipped-B, Smc1, 

SA, Rad21, Polycomb, and CP190 proteins were quantified by SDS-PAGE western blots 

using chemiluminescence imaging with Actin as a standard and previously described 

antisera [6,7,15,20,73].

Metaphase Spreads

Cells (3x106) were incubated in media with 3 mg per ml colchicines for 4 hr, 

washed in phosphate-buffered saline (PBS), suspended in hypotonic (1% sodium citrate) 

for 4 min, collected by centrifugation, suspended in 0.1 ml hypotonic and fixed with 1 ml 

ice-cold methanol:acetic acid (3:1). Fixed cells were suspended in 60 µl of 

methanol:acetic acid, dropped onto a microscope slide from a distance of 50 to 60 cm, 

and covered with a coverglass. Slides were frozen on dry ice for 20 min, and rinsed with 

PBST (PBS with 1% Triton X-100) 3 times after removing the coverslip. Chromosomes 

were stained with 0.5 µg DAPI per ml in PBS for 10 min, rinsed with PBST, mounted in 

BioRad FluoroGard, and observed by fluorescence microscopy.
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Effects of Nipped-B and Rad21 (vtd) Mutations on Nspl-1 Mutant Phenotypes

wa Nspl-1 females were crossed to wild-type males or males with Nipped-B and vtd 

mutations over balancers with dominant markers at 25o. The anterior-posterior diameter 

of the eyes of male progeny were measured with a reticule in a dissection microscope, 

and scutellar macrochaete were counted.

Genome-Wide Transcript Analysis

Five µg of total RNA purified by Qiagen RNeasy minicolumns was used to make 

cRNA probes using Affymetrix GeneChip HT One-Cycle Target Labeling and Controls 

Kit according to the manufacturer’s instructions. Probes were hybridized to Affymetrix 

GeneChip Drosophila Genome 2.0 arrays, processed and scanned using Affymetrix 

procedures. Quality metrics for each array were monitored by spike-in labeling controls 

and hybridization/staining controls using Microarray Suite 5.0 (MAS5) algorithms from 

GeneChip® Operating Software v1.4, (GCOS) (Affymetrix, Inc). Probe cell intensities for 

each array were normalized using GCRMA algorithms, which consist of background 

adjustment and quantile normalization, accounting for probe GC content [74]. 

Normalization was executed using the R statistical environment [R Foundation for 

Statistical Computing, Vienna, 2007; ISBN 3-900051-07-0; www.R-project.org] and the 

Bioconductor package (www.bioconductor.org) [75]. Transcript levels from Rad21 and 

Nipped-B RNAi treatments were compared to those of mock RNAi controls at 3 and >3 

days (4 and 6 days) (N=4 per RNAi comparison; N=2 per treatment condition). A 

balanced 2-way ANOVA was performed on GCRMA-normalized log2 signal intensities to 

assess expression variability with regard to RNAi treatment (FDR ≤ 0.1) [76,77]. 

Differentially expressed groups were analyzed for gene ontology enrichment using 
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Fisher’s exact test in the GOEAST package [78]. The data are available in the GEO 

database (accession no. GSE16152).

Correlation of Chromatin Immunoprecipitation and Gene Expression Data

The Nipped-B, Smc1, RNA polymerase II, H3K27Me3 and control cel files for 

BG3 and Sg4 cell chromatin immunoprecipitations (GEO acc. no. GSE9248; 

ArrayExpress acc. no. E-MEXP-535) were processed using MAT [79] to generate 

cohesin-Nipped-B, H3K27Me3, and PolII bed files at p ≤ 10-3 that were visualized using 

the Affymetrix Integrated Genome Browser. Transcription units that overlap cohesin-

Nipped-B, H3K27Me3, and PolII binding regions were identified using the April 2006 

genome annotations [80].
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Figure Legends

Figure A1.1. Enhancer of split and invected-engrailed gene complexes.

The Enhancer of split complex [E(spl)-C] (top) contains twelve genes (blue): HLHmδ, 

HLHmγ, HLHmβ, mα, m1, m2, HLHm3, m4, HLHm5, m6, HLHm7, and E(spl)m8. 

Nucleotide numbering is from the April 2006 genome (Berkeley Drosophila Genome 

Project). Genes above the scale are transcribed from left to right, and those below from 

right to left. Tracks above the gene diagrams show chromatin immunoprecipitation data 

for histone H3 lysine 27 trimethylation (H3K27Me3), RNA polymerase II (PolII) and 

combined cohesin and Nipped-B binding (cohesin-Nipped-B) for Sg4 (red) and BG3 

cells (black) [15,56, Y.B. Schwartz, T.G. Kahn, P. Stenberg, K. Ohno, R. Bourgon, and V. 

Pirrotta, submitted). Bars below each track show regions that bind at p ≤ 10-3, as 

determined using the MAT program. The bottom shows the same for the invected-

engrailed complex.

Figure A1.2. Regulation of the E(spl)-C and invected-engrailed complex by cohesin 

and Nipped-B.

(A) Transcripts for the E(spl)-C and invected-engrailed complex in BG3 (black) and Sg4 

(red) cells quantified by RT-PCR and normalized to RpL32. The HLHmδ level in BG3 

cells is defined as 1 unit, and all transcripts are normalized to this value. By comparison 

to genomic DNA standards, HLHmδ transcripts in BG3 cells are 8,400-fold less than 

RpL32 transcripts. BG3 values are the average of three RNA preparations, and Sg4 values 
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are the average of two. Standard errors were calculated using all RT-PCR replicates from 

all biological replicates.

(B) Rad21 RNAi time course, for Rad21 protein (blue diamonds, 100% starting), and 

fold-increases for the HLHmδ (red squares) and invected (green triangles) transcripts. 

Similar time courses are seen for engrailed and other E(spl)-C transcripts (not shown). 

Nipped-B knockdown shows similar time courses in Nipped-B protein and E(spl)-C and 

invected-engrailed transcripts (not shown), except that some E(spl)-C transcripts decrease 

on day 3 (Figure A1.3).

(C) The left panel shows transcript levels in a typical experiment with mock RNAi-

treated BG3 cells (black) and BG3 cells six days after Rad21 (blue) or Nipped-B (orange) 

RNAi treatment. The right panel shows transcript levels in another experiment with 

mock-treated BG3 cells (black), and BG3 cells treated with Rad21 (blue) or SA (purple) 

RNAi six days after treatment.

(D) E(spl)-C and invected-engrailed transcript levels in mock-RNAi treated Sg4 cells 

(red), or Sg4 cells after two successive 3 day Rad21 (blue) or Nipped-B (orange) RNAi 

treatments.

(E) Western blots of whole cell extracts after RNAi treatment. The three left panels show 

the same blot of BG3 extracts six days after RNAi probed with Nipped-B, Rad21 and 

Actin antisera. RNAi treatments are indicated at the tops of the lanes. The middle three 

panels show a blot of Sg4 extracts after two successive 3 day RNAi treatments. The right 

panels show a blot of BG3 extracts probed with SA, Rad21 and Actin antibodies six days 

after RNAi.
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Figure A1.3. Biphasic changes in E(spl)-C transcripts after Nipped-B and Rad21 

knockdown in BG3 cells.

The top panel shows E(spl)-C transcript levels in mock-treated (black) or Nipped-B 

RNAi treated (orange) BG3 cells three days after treatment. Similar results were obtained 

in all Nipped-B RNAi experiments. All levels are relative to HLHmδ in mock-treated 

cells. The data shown is an average of two RNAi experiments. The bottom panel shows 

the indicated E(spl)-C transcript levels three days after treatments with increasing 

amounts of Rad21 dsRNA that cause different extents of knockdown (mock, 0%; 0.7 µg 

per 3 cm well, 32%; 1.7 µg, 55%; 3.3 µg, 71%; 6.7 µg, 81%).

Figure A1.4. Effects of Polycomb on E(spl)-C and invected-engrailed transcripts in 

BG3 cells.

The graph shows transcript levels in mock-treated BG3 cells (black) and in Polycomb 

RNAi-treated cells (gray) six days after treatment. The western blot shows the Polycomb 

protein knockdown (~70%) on day 6. All transcripts are relative to HLHmδ in mock 

control cells. Similar results were obtained in three experiments.

Figure A1.5. Effects of the CP190 insulator protein on E(spl)-C and invected-

engrailed transcripts in BG3 cells.

The graph shows transcript levels in mock-treated BG3 cells (black), Rad21 (blue) and 

CP190 (green) RNAi-treated BG3 cells six days after treatment. The western blot shows 

the knockdown of CP190 protein on days 4 and 6 (~90%). The unlabeled protein under 

72 kD in size that is unaffected by RNAi is a cross-reacting cytoplasmic protein (Marek 
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Bartkuhn and Rainer Renkawitz, personal communication). Similar results were obtained 

with 4 and 8 days after CP190 RNAi.

Figure A1.6. Dominant effects of Nipped-B and Rad21 mutations on Notch-split (Nspl-

1) mutant phenotypes.

The top panel compares the eye phenotype in two wild-type backgrounds (wt a, Oregon 

R; wt b, Canton S), to flies heterozygous for Nipped-B407, Rad2136 (vtd36), and Rad21γ26-6 

(vtdγ26-6). Eye diameter was measured as shown in the upper right. At least 30 eyes were 

scored for each genotype. Error bars are standard errors. The bottom panel shows the 

effects of the heterozygous Nipped-B and Rad21 mutations on the four scutellar 

macrochaete (large bristles). The number of flies scored for bristles is given above the 

bars.

Figure A1.7. Genome-wide effects of Rad21 and Nipped-B RNAi on RNA transcripts 

in BG3 cells.

The top graph shows the effects of Rad21 knockdown on transcript levels (log2 

Rad21/Mock) versus the effects of Nipped-B knockdown (log2 Nipped-B/Mock), 6 days 

after RNAi for all 18,770 probes on the microarray. E(spl)-C and invected-engrailed 

transcripts are red. The bottom is an aligned histogram of the effects of Rad21 RNAi, 

with transcripts that increase 2-fold or more in expression in red, and transcripts that 

decrease 2-fold or more in green.

Figure A1.8. Speculative model for regulation of gene complexes by cohesin.

118



The top depicts a PcG-silenced complex contained in a loop created by PRE-PRE 

interactions. There is little or no transcription, and we posit that the silenced chromatin 

diameter prevents encirclement by cohesin. The nucleosomes have trimethylation of 

histone H3 on lysine 27 (green). The middle diagram depicts a gene complex in which 

cohesin, trithorax group (trxG), transcriptional activators, and PcG proteins combine to 

create an intermediate chromatin structure with aspects of both silenced and active 

regions that permits modest transcription (angled arrows); nucleosomes near the 

transcription start sites also have trimethylation of histone H3 on lysine 4 (pink). Based 

on the biphasic effects of Nipped-B and cohesin knockdown on some E(spl)-C 

transcripts, we posit that when cohesin levels are reduced, the chromatin structure first 

becomes closer to the silenced state, decreasing transcription, and that the higher order 

structure associated with silencing is eventually lost, leading to unrestrained transcription 

(bottom).
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Figure A1.1
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Figure A1.2
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Figure A1.3
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Figure A1.4
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Figure A1.5
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Figure A1.6
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Figure A1.7
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Figure A1.8
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Table A1.S1. Regions of cohesin – H3K27Me3 overlap.

Regiona Size 
(kb)

Genes Cell 
Type

Effect of cohesin 
RNAib

2L 14,531,380 – 14,586,447 55.1 - BG3 -
2R 2,390,180 – 2,434,731 44.6 jing BG3 1.4-fold increase
2R 7,361,191 – 7,416,761 55.6 invected, 

engrailed
BG3 24-fold increase

2R 8,849,716 – 8,930,632 80.9 Psc,  
Su(z)2

BG3, 
Sg4

2-fold increase

3R 6,445,227 – 6,450,047 4.8 hth BG3 4-fold increase
3R 11,472,282 – 11,481,587 9.3 - BG3 -
3R 21,822,901 – 21,866,784 43.9 E(spl)-C BG3 235-fold increase
3R 26,597,168 – 26,602,515 5.3 zfh1 Sg4 -
X 8,662,774 – 8,696,222 33.4 Lim1 BG3 2-fold increase

aRegions of overlap > 2 kb at p ≤ 10-3 with product of MAT scores > 50; positions are 

indicated by chromosome arm and nucleotide numbers from the April 2006 release of the 

Drosophila genome sequence.

bMaximal effect on transcript levels for any gene in region seen in BG3 expression 

microarray analysis with Rad21 or Nipped-B RNAi knockdown.
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Table A2.S2. Half-lives of E(spl)-C transcripts.

Gene Rad21/Mocka Mock t1/2 (min)b Rad21 t1/2 (min)c

HLHmδ 10.2 24.5 21.4
HLHmγ 1.9 16.7 18.2

mα 1.3 15.6 15.5
HLHm3 1.7 23.4 24.8
HLHm7 6.3 60 65

aFold-increase in transcript level in Rad21 RNAi-treated cells 3 days after treatment.

bHalf-life of transcript in mock-treated cells after Actinomycin D.

cHalf-life of transcript in Rad21 RNAi-treated cells after Actinomycin D.
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Table A1.S3. Effects of Rad21 and Nipped-B RNAi on precocious sister chromatid 

separation (PSCS) and hyperploidy.

Hyperploid Chromosomes

Cell RNAi
# 

Cells #a % p valueb #c
# 

PSCS 
% 

PSCS 
p value 
PSCSd

BG3 Mock 71 3 4.2 -- 322 28 9 --
BG3 Rad21 30 1 3.3 0.76 146 35 24 1.4x10-5

BG3 Nipped-B 31 1 3.2 0.77 133 43 32 1.7x10-9

Sg4 Mock 74 3 4.1 -- 610 142 23 --
Sg4 Rad21 37 2 5.4 0.54 249 118 47 6.6x10-12

Sg4 Nipped-B 37 4 11 0.17 310 94 30 1.3x10-2

aBG3 cells are diploid male with four large autosomes, two 4th dot chromosomes, one X 

and one Y chromosome. Sg4 cells are partially tetraploid, with eight large autosomes, two 

4th dot chromosomes, and two X chromosomes. Cells with one or more extra large 

chromosomes were scored as hyperploid.

bComparison of RNAi treated to Mock by Fisher’s exact test.

cOnly X chromosomes and large autosomes with clear morphology were scored for 

PSCS.

dComparison of RNAi treated to Mock by Fisher’s exact test.
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Table A1.S4.  Effects of Rad21 and Nipped-B knockdown on gene expression in BG3 

cells.

Too large to reproduce.  Please see supplementary materials online at 

doi:10.1371/journal.pone.0006202.
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Table A1.S5. RNA polymerase II and cohesin binding to genes that increase or 

decrease in expression with Rad21 or Nipped-B RNAi.

Expression 
Changea

Genes 
(G)b

PoIII 
(P)c

P
----
G

cohesin 
(C)d

C
-----
G P+Ce

(P+C)
-------

C

(P+C)
-------

P
All 4282 816 0.19

Increase 333 225 0.68 189 0.57 157 0.83 0.70
Decrease 407 268 0.66 146 0.36 120 0.82 0.45

Increase vs 
Decreasef 0.34  9.7x10-9

Increase vs 
Allg 2.4 x 10-57

Decrease 
vs Allg 2.3 x 10-20

aAll genes, or genes that increase or decrease in expression ≥ 2-fold in two or more RNAi 

treatments

bNumber of genes (G) with indicated expression change

cNumber of genes with indicated expression change that bind RNA polymerase II (PolII, 

P)

dNumber of genes with indicated expression change that bind cohesin and Nipped-B (C)

eNumber of genes with indicated expression change that bind both PolII (P) and cohesin 

(C)

fComparison for PolII or cohesin binding with Fisher’s exact test

gComparison of PolII-binding genes for cohesin binding with Fisher’s exact test
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Table A1.S6. Gene Ontology Categories Affected by Cohesin and Nipped-B.

Too large to reproduce.  Please see supplementary materials online at 

doi:10.1371/journal.pone.0006202.
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Table A1.S7. PCR primers for making RNAi templates.

Target Direction Sequence
Nipped-B Forward TAATACGACTCACTATAGGGAGATTCGCTGTTGGGAACTATGCTGG

Reverse TAATACGACTCACTATAGGGAGATGTCGGTATCACTTTCATCGCACG
Nipped-B Forward TAATACGACTCACTATAGGGAGAGTTCAATAGCCAACGACGCCG

Reverse TAATACGACTCACTATAGGGAGATGGTCCACGACTCGCATAACCTC
Rad21 Forward TAATACGACTCACTATAGGGAGACTGGTTGGCAGCACATTGGG

Reverse TAATACGACTCACTATAGGGAGAGCATATCAGCATGGGCGTCC
Rad21 Forward TAATACGACTCACTATAGGGAGATGGGTGACGATTTTAATCAAGGAG

Reverse TAATACGACTCACTATAGGGAGACGCCTGTTTTCTGGAATTTCCTG
SA Forward TAATACGACTCACTATAGGGAGAGGGACACCACGAGCGGATA

Reverse TAATACGACTCACTATAGGGAGAGCCGTCATCAACTTCATGGC
SA Forward TAATACGACTCACTATAGGGAGATGACGCTCCTTTTGAGCCTG

Reverse TAATACGACTCACTATAGGGAGATCTCGACGTTTACGTGTGTAGGC
Pc Forward TAATACGACTCACTATAGGGCAAAGCCGAGGTGCTCAAG

Reverse TAATACGACTCACTATAGGGACGAATCGCCTTTCATGTCG
CP190 Forward TAATACGACTCACTATAGGGAGATAAACGGACGACCCATTAGC

Reverse TAATACGACTCACTATAGGGAGATTATGTCCGAAAGGATTCGC
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Table A1.S8. Primers for RT-PCR.

Gene Direction Sequence
invected Forward TTGGTCGGCGGTTCGTAACAGC

Reverse TGGGTTGGGTGATAAACTTGTCG
engrailed Forward TTCCACAATCAGACGCACACC

Reverse CGTATCATCCACATCCACATCAATG
Abd-B Forward TCCGCAAACAAGAAGACACACTCC

Reverse GGTATCAAAGGACACGACACGACG
HLHmg Forward AATCAACAAGTGCCTGGACGAG

Reverse GCAAATGGGTGACGGTAAGTTC
HLHmd Forward GCAAATGGGTGACGGTAAGTTC

Reverse TCCTTGAGTTCGTCCAGATACAGG
HLHmb Forward CACAGAGTCTCCGAGTCCGAATC

Reverse CCAGAACCATTTTGTTGTAGTTTGG
ma Forward GGAGGACGAGGAGGATGTCTATG

Reverse GACTGGCTGAAGGTTGGTGGTC
m1 Forward AGAACGCATTCGTCTGTAAAAACC

Reverse TGGGGCAAAAAGTTGGACAAGC
m2 Forward CAAGTCAACGCCAGAGGAGTCTATC

Reverse CGCTGCTAATCAATGTGGGTGTG
HLHm3 Forward AGGGAGTAGTGGCTGGTGTTGG

Reverse CTCATCGGTTTGCTGTGTCTGC
m4 Forward ACCGTTCCCGTTCACTTCGTCC

Reverse ATAGCGATGGCGTTGGAGGTGCTG
HLHm5 Forward TTGGACACCTTGAAGACCTTGG

Reverse CTGCTGCTTGACGACCTGTTTG
m6 Forward CCGACAGTCAGCGATACGATAGC

Reverse CCTCCAATCCCACTTGAGTTGC
HLHm7 Forward AGTGGATGTGGCTTTTGGAACC

Reverse GACGATACTGAGTGGAGTGTTGACG
E(spl)m8 Forward ATGAACAAGTGCCTGGACAACC

Reverse CTTCCTGAGCCACCTTCTTTGG
RpL32 Forward ATCGGTTACGGATCGAACAAGC

Reverse GTTCTGCATGAGCAGGACCTCC
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Appendix 2:The AP-1 transcription factor Batf controls 

TH17 differentiation3

3  This chapter was adapted from: Schraml, B. U., Hildner, K., Ise, W., Lee, W. L., Smith, W. A., 

Solomon, B., Sahota, G., Sim, J., Mukasa, R., Cemerski, S., Hatton, R. D., Stormo, G. D., Weaver, C. 

T., Russell, J. H., Murphy, T. L. & Murphy, K. M. The AP-1 transcription factor Batf controls T(H)17 

differentiation. Nature 460, 405-9 (2009).  I had initially tried to analyze some of the previous 

microarray datasets using PhyloCon.  In this paper, we had EMSA data, so we analyzed using 

CONSENSUS.  A prototype gibbs-based gapped motif finder was also built to see if the half-sites were 

separated by a variable gap (no significant variably gapped motifs were found).
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Abstract

Activator protein 1 (AP-1) transcription factors are dimers of Jun, Fos, MAF and 

activating transcription factor (ATF) family proteins characterized by basic region and 

leucine zipper domains1. Many AP-1 proteins contain defined transcriptional activation 

domains (TADs), but Batf and the closely related Batf3 (refs 2, 3) contain only a basic 

region and leucine zipper and have been considered  inhibitors of AP-1 activity3-8. Here 

we show that Batf is required for the differentiation of IL-17-producing T helper (TH17) 

cells9. TH17 cells comprise a CD4+ T cell subset that coordinates inflammatory responses 

in host defense but is pathogenic in autoimmunity10-13. Batf-/-mice have normal TH1 and 

TH2 differentiation, but show a defect in TH17 differentiation, and are resistant to 

experimental autoimmune encephalomyelitis (EAE).  Batf-/-T cells fail to induce known 

factors required for TH17 differentiation, such as RORγt11 and the cytokine IL-21 (refs 

14-17). Neither addition of IL-21 nor overexpression of RORγt fully restores IL-17 

production in Batf-/-T cells. The IL-17 promoter is Batf-responsive, and upon TH17 

differentiation, Batf binds conserved intergenic elements in the IL-17A/F locus and to the 

IL-17, IL-21 and IL-22 (ref 18) promoters.  These results demonstrate that the AP-1 

protein Batf plays a critical role in TH17 differentiation. 

Results and Discussion

In a gene expression survey (Supplementary Fig. A2.S1a), we identified the basic 

leucine zipper (bZIP) transcription factor ATF-like7 (Batf) to be highly expressed in TH1, 
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TH2 and TH17 cells compared to naïve T cells and B cells.  Batf and Batf3 (refs 2, 3) 

form heterodimers with Jun6,7 and are considered repressors of AP-1 activity3,5,6,8,19. To 

assess its role in T cell differentiation20, we generated Batf-/- mice (Supplementary Fig. 

A2.S2a, b).  Batf-/- mice lacked detectable Batf protein, were fertile and appeared healthy. 

Batf protein was low in naïve T cells, increased in TH2 cells, induced by activation 

(Supplementary Fig. A2.S2), present in the nucleus and cytoplasm, but upon activation 

showed increased nuclear translocation (Fig. A2.1a and Supplementary Fig. A2.S1b, c). 

Batf-/-mice had normal thymus, spleen and lymph node development and CD4+ and CD8+ 

T cell development (Supplementary Figs. A2.S3, A2.S4a, b).  Although Batf-transgenic 

mice had altered NKT cell development21, Batf-/-mice had normal development of NKT 

cells (Supplementary Fig. A2.S4c), B cells (Supplementary Fig. A2.S4d, e), conventional 

and plasmacytoid dendritic cells (Supplementary Fig. A2.S5a, b). 

Batf-/- T cells displayed normal TH1 and TH2 differentiation (Supplementary Fig. 

A2.S6a). Under TH17 conditions, Batf-/-T cells, but not Batf+/- T cells, showed a dramatic 

reduction in IL-17 production, but had normal levels of IL-2, IFN-γ and IL-10 (Fig. 

A2.1b, c). Batf-/-DO11.10+ T cells showed loss of IL-17 even after several passages under 

TH17 conditions (Supplementary Fig. A2.S6b).  Batf-/-CD8+ T cells also failed to produce 

IL-17 (Supplementary Fig. A2.S6c).  We generated transgenic mice expressing FLAG-

tagged Batf under the control of the CD2 promoter22. Batf-transgenic DO11.10+ CD4+ T 

cells and CD8+ T cells had increased IL-17 production under TH17 conditions compared 

to controls (Supplementary Fig. A2.S6d, e).  Lamina propria CD4+ T cells, which 

constitutively express IL-17 in wild type mice11, failed to produce IL-17 in Batf-/- mice 

(Supplementary Fig. A2.S6f). 
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TH17 cells are the major pathogenic population in experimental autoimmune 

encephalomyelitis10 (EAE), although factors other than IL-17A and IL-17F can contribute 

to disease23. Batf+/+ mice immunized with myelin oligodendrocyte glycoprotein peptide 

35-55 (MOG35-55) (Fig. A2.2) developed EAE, but Batf-/- mice were completely 

resistant (Fig. A2.2a).  At peak disease, CNS-infiltrating and splenic CD4+ T cells from 

Batf+/+ mice produced abundant IL-17 and IFN-γ, while T cells from Batf-/-mice produced 

no IL-17 (Fig. A2.2b, Supplementary Fig. A2.S7a).  Since IL-6-deficient mice are 

resistant to EAE due to a compensatory increase in Foxp3+ T regulatory (Treg) cells14, we 

analyzed splenic Batf+/+ and Batf-/-CD4+ T cells for Foxp3 expression before and after 

MOG35-55 immunization (Supplementary Fig. A2.S7b, c).  Batf-/- mice had lower basal 

numbers of splenic Foxp3+ T cells compared to Batf+/+ mice, but showed no change in 

Foxp3+ expression after MOG35-55 immunization (Supplementary Fig. A2.S7b, c), 

suggesting that their resistance to EAE is not due to an increase in Treg cells. To 

determine whether the resistance to EAE in Batf-/- mice resulted from a defect within T 

cells or other immune cells, we injected naïve Batf+/+ CD4+ T cells or PBS control buffer 

into mice before MOG35-55 immunization (Fig. A2.2c). Batf-/- mice receiving PBS 

remained resistant to EAE, but Batf-/- mice receiving naïve Batf+/+ CD4+ T cells developed 

severe EAE (Fig. A2.2c, Supplementary Table A2.S1) with CNS-infiltrating IL-17-

producing CD4+ T cells (Supplementary Fig. A2.S7d).  Thus, Batf-/- mice have a T cell-

intrinsic defect preventing EAE. 

Batf could control TH17 development by regulating IL-6 or TGF-β signaling. IL-6 

receptor expression and IL-6-induced STAT3 phosphorylation were normal in Batf-/-T 

cells (Supplementary Fig. A2.S8a and b).  TGF-β induced normal levels of Foxp3 in 
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Batf-/-CD4+ T cells (Supplementary Fig. A2.S8d).  While Batf-/-T cells failed to fully 

downregulate Foxp3 in response to IL-6 (ref 12), neutralization of IL-2 abrogated 

increased Foxp3 in Batf-/- T cells, without restoring IL-17 production (Supplementary Fig. 

A2.S8d, e). Thus, Batf/- T cells exhibit normal TGF-β signaling and proximal IL-6 

signaling, implying Batf may regulate downstream target genes.  

IL-21, an early target of IL-6 signaling in CD4+ T cells17, is required for TH17 

development14-16. IL-21 was reduced in Batf-/-CD4+ T cells activated under TH17 

conditions (Fig. A2.3a). Addition of IL-21 failed to rescue TH17 development in Batf-/-T 

cells (Fig. A2.3b) but IL-21-induced STAT3 phosphorylation was intact (Supplementary 

Fig. A2.8c), suggesting that Batf regulates other factors besides IL-21 during TH17 

differentiation. 

We performed DNA microarrays and quantitative RT-PCR (qRT-PCR) of Batf+/+  

and Batf-/- T cells activated with combinations of IL-6 and/or TGF-β (Fig. A2.3c, d and 

Supplementary Fig. A2.S9).  This analysis identified several genes known to regulate 

TH17 development as Batf-dependent (Fig. A2.3c, d, Supplementary Fig. A2.S9c and 

Supplementary Table A2.S2), including RORγt17, RORα24, the aryl hydrocarbon 

receptor25,26, IL-22 (ref 18) and IL-17. However, IRF-4 (ref 13) and SOCS gene 

expression were unchanged in Batf/- T cells (Supplementary Fig. A2.S9b and 

Supplementary Table A2.S4).  Early induction of RORγt was normal in Batf-/- T cells but 

was not maintained at 62h after stimulation (Supplementary Fig. A2.S11a).  Batf  

appeared necessary for expression of a subset of IL-6-induced genes, but was not 

required for expression of TGF-β-induced genes (Fig. A2.3c, Supplementary Fig. A2.S9a 

and Supplementary Table A2.S2, A2.S3).  However, Batf did not globally affect IL-6-
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induced responses, since IL-6-induced liver acute phase responses appeared normal in 

Batf-/- mice (Supplementary Fig. A2.S10).  

Since RORγt acts directly on the IL-17 promoter27,28, we asked whether RORγt 

could rescue TH17 development in Batf-/-T cells. In Batf+/+ T cells, retroviral RORγt 

expression induced 38% IL-17 production, compared to only 1.6% IL-17 production 

induced by control retrovirus (Fig. A2.3e and Supplementary Fig. A2.S11c)11,13. But in 

Batf-/-T cells, retroviral RORγt expression induced only 5.7% IL-17 production (Fig. 

A2.3e and Supplementary Fig. A2.S11c).  Even under TH17-inducing conditions, 

retroviral RORγt expression did not fully restore IL-17 production in Batf-/- T cells 

(Supplementary Fig. A2.S11b, c). Retroviral expression of both Batf and RORγt in Batf-/-

T cells induced 26% IL-17 production, compared to only 5% with RORγt alone, and 14% 

with Batf alone (Supplementary Fig. A2.S11d), suggesting potential synergy between 

RORγt and Batf, and a possible direct action of Batf in transcription of IL-17 and other 

TH17-specific genes. 

We used a reverse-strand retroviral reporter29 to examine IL-17 promoter activity 

in primary Batf+/+ and Batf-/- T cells (Fig. A2.4a). Three days after activation, Batf-/-CD4+ 

T cells showed considerably less reporter activity than Batf+/+ T cells, suggesting the 

proximal IL-17 promoter is Batf-responsive (Fig. A2.4a). Using chromatin 

immunoprecipitation (ChIP) analysis of several conserved regions within the IL-17a/IL-

17f locus (Supplementary Fig. A2.S12a), we found that Batf specifically bound to the 

+9.6kb and +28kb intergenic regions within 24h after activation (Fig. A2.4b, 

Supplementary Fig. A2.S12b, c). By day 5 after stimulation, Batf bound specifically to 

several intergenic regions and to the proximal IL-17a and IL-17f promoters (Fig. A2.4b, 
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Supplementary Fig. A2.S12b, c), with distal elements showing more rapid and stronger 

binding than proximal elements.  

We next examined Batf binding to a consensus AP-1 probe6 by EMSA. This probe 

formed two complexes in Batf+/+ TH17 cell extracts (Fig. A2.4c) that were dependent on 

stimulation (Supplementary Fig. A2.S13a).  Only the upper complex formed in Batf-/-

TH17 cells (Fig. A2.4c). An anti-Batf antibody inhibited the lower complex.  In CD2-N-

FLAG-Batf-transgenic TH17 cell extracts, the lower complex was specifically 

supershifted by an anti-FLAG antibody (Fig. A2.4c). Thus, only the lower complex 

binding the consensus AP-1 probe in TH17 cells contains Batf. 

Several potential Batf binding sites were identified by EMSA in the IL-17, IL-21 

and IL-22 proximal promoters, including the IL-17 promoter region (-188 to -210) that 

bound Batf in ChIP (Fig. A2.4b, Supplementary Fig. A2.S13b-d).  Another Batf-binding 

IL-17 promoter region (-155 to -187) overlapped with a reported RORγt-binding 

element27. As an EMSA probe, this region forms two complexes in TH17 cells (Fig. 

A2.4d), with the lower complex being selectively inhibited by anti-Batf antibody, absent 

in Batf-/-TH17 cells, and supershifted by an anti-FLAG antibody in Batf-transgenic TH17 

extracts (Fig. A2.4d). We confirmed Batf binding to the IL-21 and IL-22 promoters by 

ChIP analysis (Supplementary Fig. A2.S13e).  The program CONSENSUS30 determined 

that the Batf-binding element in the IL-17, IL-21 and IL-22 promoters resembles 

canonical AP-1 elements at positions 1 through 3, with variation at remaining nucleotides 

(Supplementary Fig. A2.S13f).  CONSENSUS did not identify other transcription factor 

binding sites enriched near Batf binding elements.  We determined the composition of the 

Batf-containing complex using supershift analysis (Fig. A2.4e).  The upper complex 
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supershifted with pan-anti-Fos antibody, whereas the lower complex supershifted with a 

pan-anti-Jun and anti-Batf antibodies. Anti-JunB supershifted the majority of the lower 

complex, but antibodies to c-Jun, JunD, ATF1 or ATF3 did not. Thus, Batf forms 

heterodimers preferentially with JunB during TH17 differentiation. 

Although Batf and Batf3 were considered AP-1 inhibitors3-8, we have shown that 

they are required for the development of specific immune lineages2. Batf is selectively 

required for TH17 development, but unlike Irf4 (Ref 13), is not required for TH2 

development.  Since Batf is also expressed in TH1 and TH2 cells, it likely cooperates 

with other TH17-specific factors to regulate target genes.  Future work will determine 

whether the actions of Batf involve distinct DNA binding specificity or unique protein-

protein interactions with TH17 specific factors. 
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Methods Summary 

Mice

Batf-/- mice were generated by homologous recombination, deleting exons 1 and 2 

of the Batf gene on the pure 129SvEv genetic background. The neomycin resistance 

cassette was removed from the targeted Batf allele in ES cells before generation of mice. 

T cell differentiation assays

Naïve CD4+CD62L+CD25- T cells were isolated by cell sorting and activated with 

plate-bound anti-CD3 and soluble anti-CD28 antibodies. Cultures were supplemented 

with anti-IL-4 (11B11; hybridoma supernatant), IFN-γ (Peprotech; 0.1ng/ml) and IL-12 

(Genetics Institute; 10U/ml) for TH1; anti-IFN-γ (H22; BioXcell; 10μg/ml), anti-IL-12 

(Tosh; BioXcell; 10μg/ml) and IL-4 (Peprotech; 10ng/ml) for TH2; anti-IL-4, anti-IL-12, 

anti-IFN-γ, IL-6 (Peprotech 20ng/ml) and TGF-β (Peprotech; 0.5ng/ml) for TH17 
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differentiation. Unless otherwise indicated, three days after activation cells were 

restimulated with PMA/ionomycin for 4h for intracellular cytokine analysis by flow 

cytometry.  

Intracellular Staining

For intracellular cytokine staining, cells were stained for surface markers followed 

by fixation with 2% formaldehyde for 15 minutes at room temperature. 

Cells were then washed once in 0.05% saponin and stained with anti-cytokine antibodies 

in 0.5% saponin.  Anti-phospho-STAT3 antibody (BD Pharmingen) was used according 

to the manufacturer’s recommendations. Briefly, cells were stained for surface markers 

followed by fixation with 90% methanol at -20oC overnight. Cells were then washed and 

stained for phospho-Stat3 in PBS containing 3% FCS. Foxp3 staining was performed 

according to the manufacturer’s recommendations using Foxp3 staining buffers 

(eBioscience). 

Induction of EAE

Mice (7-10 weeks old) were immunized subcutaneously with 100μg MOG35-55 

peptide (Sigma) emulsified in CFA (IFA supplemented with 500μg Mycobacterium 

tuberculosis). One and three days later mice were given 300ng Pertussis Toxin (List 

Biological Laboratories) intraperitonally (i.p.). Clinical scores were assessed as described 

in methods. For T cell transfer experiments mice were injected with either PBS or 107 

Batf+/+ CD4+ T cells 4 days prior to MOG35-55 immunization13. 
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Figure legends.

Figure A2.1. Loss of IL-17 production in Batf-/-T cells. a, DO11.10+CD4+ T cells from 

CD2-N-FLAG-Batf transgenic mice or littermates were cultured with OVA/APCs under 

TH2 conditions for 7 days, and stained with antibodies to CD4 and FLAG. b, Batf+/+ and 

Batf-/-CD4+CD62L+CD25-T cells cultured under TH17 conditions were restimulated with 

PMA/ionomycin on days 7 (left panel) or 3 (middle and right panels) and stained for IL-

17, IFN-γ, IL-2 and IL-10. c, IL-17 and IFN-γ expression in DO11.10+CD4+ T cells from 

Batf+/+, Batf +/-and Batf-/- mice activated with OVA/APCs under TH17 conditions. Data are 

representative of at least 2 independent experiments. 

Figure A2.2. Batf-/- mice are resistant to EAE.  a, Batf+/+ (n=12) and Batf-/- (n=13) mice 

were immunized with MOG33-35 peptide. (Mean clinical EAE scores +/- s.e.m, 

representative of two independent experiments). b, 13 days after EAE induction, CNS-

infiltrating lymphocytes were stimulated with PMA/ionomycin, gated on CD4+ cells and 

stained for intracellular IL-17 and IFNγ (Clinical scores are in parentheses, data are 

representative of 2-3 mice per group).  c, Batf+/+ and Batf-/-mice were injected with 

control PBS buffer (n=5) or 1x107 Batf+/+ CD4+ T cells (n=6) four days prior to EAE 

induction. Mean clinical scores are shown. 

Figure A2.3. Batf controls multiple TH17-associated genes. a, IL-21 expression in 

Batf+/+ or Batf-/- T cells cultured under TH17 conditions determined by qRT-PCR and 

ELISA. (mean + s.d. 3 mice).   b, IL-17 and IFN-γ expression of CD4+CD62L+CD25-T 

cells cultured in a in the presence or absence of IL-21. c, Microarray analysis of anti-

CD3/CD28-activated T cells at 72h, presented as heat maps of genes 5-fold-induced in 

Batf+/+ T cells under TH17 conditions. d, IL-17 and IL-22 expression in Batf+/+ or Batf-/-
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CD4+ T cells activated under TH17 conditions for 3 days. e, Anti-CD3/CD28-activated 

Batf+/+ or Batf-/-CD4+ T cells were left uninfected or infected with RORγt-GFP-RV or 

control-GFP-RV, and stained for IL-17. 

Figure A2.4. Batf directly regulates IL-17 expression.  a, Batf+/+ and Batf-/- CD4+ T 

cells cultured under TH17 conditions were infected with hCD4-pA-GFP-RV-IL-17p 

reporter virus. GFP expression after PMA/ionomycin restimulation is shown.  b, Batf+/+ 

and Batf/-CD4+ T cells cultured under TH17 conditions for 5 days were subjected to ChIP 

analysis of the indicated regions using anti-Batf antibody (mean + s.d.). c, d, f, EMSA 

supershift analysis of TH17 whole cell extracts using a consensus AP-1 (c, f) or the IL-

17(-155 to -187) probe (d). (Batf+/+ (WT), Batf-/-(KO), CD2-N-FLAG-Batf transgenic 

(TG), IL-17(-155 to -187) and RORE probes were used as competitors).  
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Figure A2.1
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Figure A2.2
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Figure A2.3
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Figure A2.4
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Online Methods

Generation of Batf -/-mice. 

Murine Batf exons 1–2 were deleted by homologous recombination via a targeting vector 

constructed in pLNTK31 using a 1 kb genomic fragment (left arm) upstream of the Batf  

exon 1 and a 3.6 kb genomic fragment (right arm) downstream of exon 2. The left arm 

was generated by PCR from genomic DNA with the use of the following 

oligonucleotides: left arm forward (5’-

ATTACTCGAGTGAAACAAACAGGCAGTCGCAGTG) and left arm reverse (5’-

ATTACTCGAGCCTACTACCTTTCAGGGCTACTGC).  The right arm was generated 

by PCR with the use of the following oligonucleotides: right arm forward (5’-

ATTAGTCGACGCATTCTTCATGGTCCTTAGCCTTGG) and right arm reverse (5’-

ATTAGTCGACCAGAGAATGAGAAATGTTGGAGG). EDJ22 embryonic stem cells 

were transfected with linearized targeting vector and targeted clones were identified by 

Southern blot analysis using probes A and B located 5’ to the left arm and 3’ to the right 

arm respectively. Probe A was generated using the oligonucleotides 5’-

CAACTGGGTCTGAGTCAAGAGGT and 5’-CGTAGCCGCTGATTGTTTTAGAAC to 

generate a 531bp product.  Probe B was generated using the oligonucleotides 5’-

ACAGCTTGAACTTCAGAGCCCTCC and 5’-

CACATTTAAGTCACAATAACACTGC to generate a 772bp product.  The neomycin 

resistance cassette was deleted from successfully targeted clones by in vitro treatment 

with Adeno-Cre virus (gift from Dr. Barry Sleckman, Washington University, St. Louis, 

MO) and targeted clones with successful neo deletion were identified by Southern blot 
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using probes A and B (Supplementary Fig. A2.S2a and b). Blastocyst injections were 

performed with two distinct recombinant clones each of which generated germline 

transmission of the targeted Batf allele. Male chimeras were crossed with 129SvEv 

females to establish Batf mutants on the pure 129SvEv genetic background. All 

experiments were performed with mice harboring the neo-deleted mutant allele. 

Homozygous mice were obtained by intercrossing heterozygous siblings and littermates 

were used as controls in most experiments. For some experiments 129SvEv wild type 

mice purchased from Taconic served as controls. For experiments with DO11.10 

transgenic Batf -/-mice, mice were crossed to BALB/c mice for at least 5 generations and 

littermates were used as control. For the generation of transgenic mice, Batf cDNA was 

cloned from CD4+ T cell mRNA using primers 5’-GGAAGATTAGAACCATGCCTC and 

5’-AGAAGGTCAGGGCTGGAAG and subcloned into the GFP-RV retrovirus32. An N-

terminal FLAG tag was introduced by Quick Change Mutagenesis kit (Stratagene) using 

the primers 5’-

GGACTACAAAGACGATGACGACAAGCCTCACAGCTCCGACAGCA and 5’-

CTTGTCGTCATCGTCTTTGTAGTCCATGGTTCTAATCTTCCAGATC. The 

underlined sequence indicates nucleotides used to introduce the FLAG-tag. The FLAG-

tagged Batf was cloned into the CD2 microinjection cassette33 via blunt end strategy into 

Sma1 digested CD2 microinjection cassette. Transgene expression in CD4+ T cells was 

tested by anti-FLAG western blot. CD2-N-FLAG-Batf transgenic mice were crossed to 

C57BL/6 and BALB/c mice for at least 5 generations. Transgene-negative littermates 

were used as control mice. Mice were bred and maintained at the animal facilities at 

Washington University in St. Louis. All animal experiments were approved by the 
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Animal Studies Committee at Washington University. 

Visualization of lymph nodes.

To visualize superficial inguinal lymph nodes mice were injected with 50 l of 1% Evans  

Blue dye solution into each hind foot pad. After 1.5 hours mice were sacrificed and 

lymph nodes were visualized using a dissecting microscope34. 

Western Blot analysis.  

To test for residual Batf protein expression, total splenocytes from Batf ++ and Batf -/-

129SvEv mice were stimulated with anti-CD3 for 3 days under TH17 conditions. Cells 

were then lysed in RIPA buffer, electrophoresed on 15% polyacrylamide gels, transferred 

to nitrocellulose and analyzed by Western Blot with rabbit anti-murine Batf polyclonal 

serum and HRP-conjugated anti-rabbit Ig antibody (Jackson ImmunoResearch). Affinity 

purified rabbit anti-murine Batf polyclonal serum (Brookwood Biomedical; Birmingham, 

AL) was generated by immunization with full length recombinant Batf protein. Equal 

protein loading was assessed by subsequent immunoblotting with antibody to -actin  

(Santa Cruz Biotechnology) and HRP conjugated anti-mouse antibody (Jackson 

ImmunoResearch). For analysis of Batf protein expression in naïve CD4+ T cells, 

magnetically purified CD4+ T cells from Batf +/+ and Batf -/-129SvEv mice were isolated. 

Equal cell numbers were lysed in RIPA buffer and subjected to Western Blot analysis as 

described above. For analysis of Batf expression in TH2 cells, magnetically purified 

CD4+ T cells from Batf ++ and Batf -/-mice were activated with anti-CD3/CD28 in the 

presence of IL-4, anti-IL-12 (Tosh), and anti-IFN-  (H22). On day 4 cells were left  

unstimulated or stimulated with PMA/ionomycin for 4 hrs. Cells were collected by 
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centrifugation, washed with PBS, and resuspended (100e6 cells/ml) in Affymetrix Chip 

lysis buffer (10mM Tris pH 7.5, 10mM NaCl, 3mM MgCl2, 0.5% IGEPAL, with protease 

inhibitors (PMSF, aprotinin, leupeptin)). After 5 min at 4oC, nuclei were collected by 

centrifugation (800 rcf for 3 min 4oC) and lysed in RIPA (100e6 cell equivalents/ml) with 

protease inhibitors. Nuclear lysates were centrifuged for 10 min 4oC 15000 rcf, diluted 

with an equal volume of 2x SDS-PAGE sample buffer containing 2-ME and extracts from 

equal cell numbers were subjected to Western Blot analysis using rabbit anti-murine Batf 

polyclonal serum. Equal protein loading was assessed by subsequent immunoblotting 

with antibody to Lamin B (Santa Cruz Biotechnology) and HRP conjugated anti-goat Ig 

(Jackson ImmunoResearch). 

Immunohistochemistry. 

CD4+ T cells from CD2-N-FLAG-Batf transgenic mice were isolated by magnetic 

separation and either left untreated or stimulated with PMA/ionomycin for 4h. Cells were 

then allowed to settle on poly-L-lysine treated slides, fixed with 4% Formaldehyde, 

permeabilized with 0.25% TritonX100 and were stained with an anti-FLAG antibody 

(M2, Sigma Aldrich) according to the manufacturer’s recommendations. A goat anti-

mouse AF-488 (Invitrogen) antibody was to detect anti-FLAG staining. For analysis of 

cellular localization of Batf in TH2 cells, DO11.10 CD4+ T cells from CD2-N-FLAG-

Batf transgenic mice were isolated and differentiated with OVA and APC under TH2 

conditions for 7 days. On day 7 cells were either left untreated or stimulated with 

PMA/ionomycin for 4h. Cells were stained with anti-FLAG antibody as described above. 

Cells were also stained with anti-CD4APC antibody (BDBiosciences). Confocal images 

were obtained with the Olympus FV1000 microscope and software using a 60x oil 
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objective. The pinhole was set to 110 m. The excitation/emission settings used for  

DAPI, Alexa 488 and Alexa 633 were 405/461nm, 488/520nm and 635/668nm 

respectively. 

Additional methods can be found in the Supplementary Information. 

Methods Reference List 

31. Gorman,J.R. et al. The Ig(kappa) enhancer influences the ratio of Ig(kappa) 

versus Ig(lambda) B lymphocytes. Immunity. 5, 241-252 (1996). 

32. Ranganath,S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. 

J. Immunol. 161, 3822-3826 (1998). 

33. Zhumabekov,T., Corbella,P., Tolaini,M. & Kioussis,D. Improved version of a 

human CD2 minigene based vector for T cell-specific expression in transgenic mice. J 

Immunol Methods 185, 133-140 (1995). 

34. Sun,Z. et al. Requirement for RORgamma in thymocyte survival and lymphoid 

organ development. Science 288, 2369-2373 (2000). 
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Supplementary Table A2.S1. Transfer of Batf +/+ CD4+ T cells into Batf -/- mice restores 

EAE

Group Incidence Mean Max. 
Score 

Mortality Mean day 
of onset‡ 

PBSBatf +/+ 5 of 5 (100%) 3.4 ± 0.7  1of 5 (20%) 12±0.8¶ 
PBSBatf -/ 0 of 5 (0%) 0 0 of 13 (0%) NA 

Batf +/+CD4+Batf +/+ 5 of 6 (83%) 3.0 ± 0.6  0 of 6 (0%) 13.6±2.3§¶ 

Batf +/+CD4+Batf -/- 4 of 6 (66%) 2.4 ± 1.0 2 of 6 (33%) 15.5±1.7§ 

Four days prior to induction of EAE mice were injected with 1x107 CD4+Batf +/+ T cells or 

control buffer (PBS) as indicated. The mice were monitored for disease development as 

described in Methods. Mean maximum score of disease was calculated and is presented ± 

s.e.m. Only animals positive for disease are included in the analysis. § not significant 

(p=0.215). ¶ not significant (p=0.232). NA, not applicable. 
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Supplementary Table A2.S2. Microarray data accompanying Figure A2.3c.

Too large to reproduce.  Please see supplementary materials online at

doi:10.1038/nature08114
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Supplementary Table A2.S3. Microarray data accompanying Supplementary Figure 

A2.S9a.

Too large to reproduce.  Please see supplementary materials online at

doi:10.1038/nature08114
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Supplementary Table A2.S4. Microarray data accompanying Supplementary Figure 

A2.S9b.

Too large to reproduce.  Please see supplementary materials online at

doi:10.1038/nature08114
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Supplementary Table A2.S5. RT-PCR primers and probes.

5’3’ Primers (5’FAM 3’ BHQ1 Probes) Location

IL17a -97   (-97kb)  
 AAATGTGAGCCCCAGATCGA Chr1:20,623,606-20,623,625
 CTGCTGCTGTCCCAGGCACAGTTG Chr1:20,623,627-20,623,650
 GGGACATTTTTTCCACCATGA Chr1:20,623,652-20,623,672

IL17a -60   (-60kb)  
 TTGTCCCCTGGCTGTTCCT Chr1:20,661,177-20,661,247  
 CCTTATCCAGCTGTCTTTTTCTCT Chr1:20,661.249-20,661,272
 GGGCTCCCCAAAAATTCACA Chr1:20,661,274-20,661,293

IL17a -37   (-37kb)  
 GTCCCTCTGTTGTTTCCAAGGAT Chr1:20,683,616-20,683,638
 TCATTGAGTCCTTCCAGCAGAGATTTCAGG Chr1:20,683,640-20,683,669
 GCCATTTCAGCCACTGTGAA Chr1:20,683,671-20,683,690

IL17a -15   (-15kb)  
 TGGCAAATGTTTTGTCAACCA Chr1:20,705,507-20,705,527
 TTCCTCGATTGCTGTCTACTCATC Chr1: 20,705,529-20,705,552
 CATGCAGCCTCTGCTTGAGA Chr1:20,705,554-20,705,573

IL17a -5   (-5kb)  
 CGATACTTTTCAGTGACATCCGTTT  Chr1:20,715,852-20,715,876
 ACTTGAAACCCAGTCAGTTGCTGACCTTGA Chr1:20,715,879-20,715,908
 TGCTGACTTCATCTGATACCCTTAGA Chr1:20,715,910-20,715,935

IL17a promoter   (-243 to -176)  
 GAACTTCTGCCCTTCCCATCT Chr1:20,720,800-20,720,820
 CCTTCGAGACAGATGTTGCCCGTCA Chr1: 20,720,822-20,720,846
 CAGCACAGAACCACCCCTTT Chr1:20,720,848-20,720,867

IL17a +9.6   (+9.6kb)   
 ATTTAGGGCACAGGTGACATGA Chr1:20,730,688-20,730,709
 TGGTTCTCAAAGCATAAACCTCATTC Chr1:20,730,711-20,730,736
 CCACTTCCCCGACCTCACTA Chr1:20,730,738-20,730,757

IL17a +23   (+23kb)  
 CAAATCCGTGTGCCTTCTGTT Chr1:20,744,816-20,744,836
 CTGCAGTGAGGAAGATGTTTCCAATGAGG Chr1:20,744,838-20,744,866
 AGGTTGACTTCGTCCCTGTGA Chr1:20,744,870-20,744,890

IL17a +28   (+28kb)   
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 GTGGCCTACTTCAGGCAGATG Chr1:20,749,994-20,750,014
 TGAGAAGCCAGCGTCGGGTCC Chr1:20,750,016-20,750,036
 GGAGCCGATGAGAAGCATTC Chr1:20,750,039-20,750,058

IL17a +36   (+36kb)  
 AGATAATGTATCACACAGCCCTGAAG Chr1:20,757,551-20,757,576
 AGCCAGTGCCTTAATCCATTGGG Chr1:20,757,578-20,757,600
 CATGGTTGTGAAGTTGGTGAGATG Chr1:20,757,602-20,757,625

IL17f promoter   (-408 to -340)   
 ACTGCATGACCCGAAAGCA Chr1:20,774,671-20,774,688
 AACCCACACGCAGAGCATGACAAGAG Chr1:20,774,643-20,774,669
 TTTAATTCCCCCACAAAGCAA Chr1:20,774,620-20,774,640

IL17f -7   (-7kb)  
 TTCCCTTTTCTGCCTTGCA Chr1:20,782,972-20,782,990
 ACGAAGCACAGGGCTGGGCC Chr1:20,782,996-20,783,015
 TGTGTAACACGCAGAGTGGAATG Chr1:20,783,017-20,783,039

IL21 promoter   (-529 to -382)  
 GCATAGTCATCACCCCATAAA Chr3:37,131,996-37,132,016
 TCAGAGAAGTAAACACAAACAC Chr3:37,131,869-37,131,890

IL22 promoter (-600 to -417)
 GCACAGAATATAGGACACGGGT Chr10:117,641,447-117,641,468
 ACACAGTTTTCAAAGAAAGCCA Chr10:117,641,609 117,641,630
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Supplementary Table A2.S6. EMSA oligos.

IL-17 promoter oligos Sequence 5’ to 3’
33-1-top-IL17a GCACCCAGCACCAGCTGATCAGGACGCG 
33-1-bot-IL17a GTTTGCGCGTCCTGATCAGCTGGTGCTG 
46-14-top-IL17a ACGAGGCACAAGTGCACCCAGCACCAGC 
46-14-bot-IL17a GATCAGCTGGTGCTGGGTGCACTTGTGC 
69-37-top-IL17a GCACTACTCTTCATCCACCTCACACGAG    
69-37-bot-IL17a TGTGCCTCGTGTGAGGTGGATGAAGAGT 
83-51-top-IL17a AAAGAGAGAAAGGAGCACTACTCTTCAT  
83-51-bot-IL17a GGTGGATGAAGAGTAGTGCTCCTTTCTC 
100-68-top-IL17a GTAGTAAAACCGTATAAAAAGAGAGAAA 
100-68-bot-IL17a GCTCCTTTCTCTCTTTTTATACGGTTTT 
119-87-top-IL17a ACGTAAGTGACCACAGAGGTAGTAAAA   
119-87-bot-IL17a TACGGTTTTACTACCTCTGTGGTCACT 
140-106-top-IL17a GTCACCCCCCAACCCACTCTTGACGTAAGT      
140-106-bot-IL17a TGGTCACTTACGTCAAGAGTGGGTTGGGGG 
159-127-top-IL17a GAATCTTTACTCAAATGGTGTCACCCCC 
159-127-bot-IL17a GGTTGGGGGGTGACACCATTTGAGTAAA 
169-137-top-IL17a TTTGAGGATGGAATCTTTACTCAAATGG 
169-137-bot-IL17a TGACACCATTTGAGTAAAGATTCCATCC 
187-155-top-IL17a GGTTCTGTGCTGACCTCATTTGAGGATG 
187-155-bot-IL17a GATTCCATCCTCAAATGAGGTCAGCACA 
204-172-top-IL17a GCCCGTCATAAAGGGGTGGTTCTGTGCT 
204-172-bot-IL17a AGGTCAGCACAGAACCACCCCTTTATGA 
215-183-top-IL17a AGACAGATGTTGCCCGTCATAAAGGGGT 
215-183-bot-IL17a GAACCACCCCTTTATGACGGGCAACATC 
235-203-top-IL17a GCCCTTCCCATCTACCTTCGAGACAGAT         
235-203-bot-IL17a GCAACATCTGTCTCGAAGGTAGATGGGA 
250-217-top-IL17a GCATAGTGAACTTCTGCCCTTCCCATCTA                 
250-217-bot-IL17a GAAGGTAGATGGGAAGGGCAGAAGTTCAC 
266-234-top-IL17a GAAGTCATGCTTCTTTGCATAGTGAACT 
266-234-bot-IL17a GCAGAAGTTCACTATGCAAAGAAGCATG 
281-249-top-IL17a CTGTTCAGCTCCCAAGAAGTCATGCTTC 
281-249-bot-IL17a GCAAAGAAGCATGACTTCTTGGGAGCTG 
302-269-top-IL17a CTGAATCACAGCAAAGCATCTCTGTTCAG 
302-269-bot-IL17a GGGAGCTGAACAGAGATGCTTTGCTGTGA 
320-286-top-IL17a GTCCATACACACATGATACTGAATCACAGC 
320-286-bot-IL17a GCTTTGCTGTGATTCAGTATCATGTGTGTA 
334-302-top-IL17a GCAGCTTCAGATATGTCCATACACACAT      
334-302-bot-IL17a GTATCATGTGTGTATGGACATATCTGAA 
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349-317-top-IL17a GAGCCCAGCTCTGCAGCAGCTTCAGATA                 

349-317-bot-IL17a GGACATATCTGAAGCTGCTGCAGAGCTG 

370-337-top-IL17a GACTCACAAACCATTACTATGGAGCCCAG 

370-337-bot-IL17a CAGAGCTGGGCTCCATAGTAATGGTTTGT 

383-351-top-IL17a GAGACTGTCAAGAGACTCACAAACCATT 

383-351-bot-IL17a ATAGTAATGGTTTGTGAGTCTCTTGACA 

400-368-top-IL17a AAAGTGTGTGTCACTAGGAGACTGTCAA 

400-368-bot-IL17a GTCTCTTGACAGTCTCCTAGTGACACAC 

416-384-top-IL17a GATCAAGTCAAAATTCAAAGTGTGTGTC 

416-384-bot-IL17a CTAGTGACACACACTTTGAATTTTGACT 

433-401-top-IL17a GGTAGAAAAGTGAGAAAGATCAAGTCAA 

433-401-bot-IL17a GAATTTTGACTTGATCTTTCTCACTTTT 

445-413-top-IL17a GCCAGGGAATTTGGTAGAAAAGTGAGAA       

445-413-bot-IL17a GATCTTTCTCACTTTTCTACCAAATTCC 

464-432-top-IL17a GGGCAAGGGATGCTCTCTAGCCAGGGAA 

464-432-bot-IL17a GCAAATTCCCTGGCTAGAGAGCATCCCT 

476-44-top-IL17a GTGGGTTTCTTTGGGCAAGGGATGCTCT 

476-44-bot-IL17a GCTAGAGAGCATCCCTTGCCCAAAGAAA 

497-465-top-IL17a GTTTACATACTAAGACATTGAGTGGGTT 
497-465-bot-IL17a AAAGAAACCCACTCAATGTCTTAGTATG 

IL-21 promoter oligos
33-1-top-IL21 GTCATCAGCTCCTGGAGACTCAGTTCTG 
33-1-bottom-IL21 GCCACCAGAACTGAGTCTCCAGGAGCTG 
55-22-top-IL21 GTGAGAACCAGACCAAGGCCCTGTCATCA 
55-22-bottom-IL21 GGAGCTGATGACAGGGCCTTGGTCTGGTT 
67-35-top-IL21 AGTCAGGTTGAAGTGAGAACCAGACCAA     
67-35-bottom-IL21 GGGCCTTGGTCTGGTTCTCACTTCAACC 
88-56-top-IL21 TAGCGACAACCTGTGCACAGTCAGGT 
88-56-bottom-IL21 GTTCAACCTGACTGTGCACAGGTTGT 
105-73-top-IL21 GATGAATAAATAGGTAGCCGTAGCGACA 
105-73-bottom-IL21 CAGGTTGTCGCTACGGCTACCTATTTAT 
120-88-top-IL21 GGCCTCTTCTTGAGGGATGAATAAATAG 
120-88-bottom-IL21 GCTACCTATTTATTCATCCCTCAAGAAG 
137-105-top-IL21 CTGCAATGGGAGGGCTTGGCCTCTTCTT 
137-105-bottom-IL21 GCCTCAAGAAGAGGCCAAGCCCTCCCAT 
150-118-top-IL21 AAAGATTTCCAGGCTGCAATGGGAGGGC 
150-118-bottom-IL21 GCCAAGCCCTCCCATTGCAGCCTGGAAA 
174-142-top-IL21 GTTACTCACACTCATCCACTATACAAAG  
174-142-bottom-IL21 GAAATCTTTGTATAGTGGATGAGTGTGA 
183-151-top-IL21 GAAAAACGAGTTACTCACACTCATCCAC 
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183-151-bottom-IL21 GTATAGTGGATGAGTGTGAGTAACTCGT 
207-175-top-IL21 CACGTACACCTAGCCAATGGAAAAGAAA 
207-175-bottom-IL21 TCGTTTTTCTTTTCCATTGGCTAGGTGT 
221-189-top-IL21 TGCCCCCACACGCACACGTACACCTAGC 
221-189-bottom-IL21 CATTGGCTAGGTGTACGTGTGCGTGTGG 
240-208-top-IL21 TGTGGACTCTATCCATCCCTGCCCCCAC 
240-208-bottom-IL21 TGCGTGTGGGGGCAGGGATGGATAGAGT 
254-222-top-IL21 GATGGGGCACATTTTGTGGACTCTATCC 
254-222-bottom-IL21 GGGATGGATAGAGTCCACAAAATGTGCC 
266-234-top-IL21 GTCTAAGATGCAGATGGGGCACATTTTG  
266-234-bottom-IL21 GTCCACAAAATGTGCCCCATCTGCATCT 
279-247-top-IL21 GTCTCTTTTTCCTGTCTAAGATGCAGAT 
279-247-bottom-IL21 GCCCCATCTGCATCTTAGACAGGAAAAA 
304-272-top-IL21 GCTGAAAACTGGAATTCACCCATGTGTC  
304-272-bottom-IL21 AAAGAGACACATGGGTGAATTCCAGTTT 
314-282-top-IL21 CTTGGTGAATGCTGAAAACTGGAATTCA 
314-282-bottom-IL21 ATGGGTGAATTCCAGTTTTCAGCATTCA 
334-303-top-IL21 GACACACACACACACACACACCTTGGTG 
334-303-bottom-IL21 GCATTCACCAAGGTGTGTGTGTGTGTGTG 
361-328-top-IL21 GCCACACACACACACACACACACACACA 
361-328-bottom-IL21 GTGTGTGTGTGTGTGTGTGTGTGTGTGT 
383-351-top-IL21 GAAATCTGACGGTGCCTCCTGTGCCACA 
383-351-bottom-IL21 GTGTGTGTGGCACAGGAGGCACCGTCAG 
395-363-top-IL21 GTTTACTTCTCTGAAATCTGACGGTGCC 
395-363-bottom-IL21 CAGGAGGCACCGTCAGATTTCAGAGAAG 
410-378-top-IL21 GATCAAAGTGTTTGTGTTTACTTCTCTG 
410-378-bottom-IL21 GATTTCAGAGAAGTAAACACAAACACTT 
422-390-top-IL21 TGCAGAGCAAAAGATCAAAGTGTTTGTG 
422-390-bottom-IL21 GTAAACACAAACACTTTGATCTTTTGCT 
447-415-top-IL21 GACAAACCAGGTGAGGTGCCAGGGATGC 
447-415-bottom-IL21 GCTCTGCATCCCTGGCACCTCACCTGGT 
463-429-top-IL21 GCCTTTATGACTGTCAGACAAACCAGGTGA 
463-429-bottom-IL21 GCACCTCACCTGGTTTGTCTGACAGTCATA 
476-445-top-IL21 GTCATTGCAGAAGTGCCTTTATGACTGT 
476-445-bottom-IL21 GTCTGACAGTCATAAAGGCACTTCTGCA 
494-462-top-IL21 GCCATGCCGCTGCTTTACTCATTGCAGA 
494-462-bottom-IL21 GCACTTCTGCAATGAGTAAAGCAGCGGC 
509-477-top-IL21 AAAGTTCCAATAAAGGCCATGCCGCTGC 
509-477-bottom-IL21 GTAAAGCAGCGGCATGGCCTTTATTGGA 
525-493-top-IL21 AGTCATCACCCCATAAAAAGTTCCAATA 
525-493-bottom-IL21 GCCTTTATTGGAACTTTTTATGGGGTGA 
543-511-top-IL21 GGTTCAGTCAAAAAGCATAGTCATCACC 
543-511-bottom-IL21 TATGGGGTGATGACTATGCTTTTTGACT 
558-526-top-IL21 AATGGAGTACAGGATGGTTCAGTCAAAA 
558-526-bottom-IL21 ATGCTTTTTGACTGAACCATCCTGTACT 
578-546-top-IL21 GTAACCTCTTCCATCATTGCAATGGAGT 
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578-546-bottom-IL21 CCTGTACTCCATTGCAATGATGGAAGAG 
604-573-top-IL21 GCCCATCATTTAATTCTTCCTAAGAAG 
604-573-bottom-IL21 GGTTACTTCTTAGGAAGAATTAAATGA 
618-586-top-IL21 AGGTTAGAAAACTAGCCCATCATTTAAT 
618-586-bottom-IL21 GAAGAATTAAATGATGGGCTAGTTTTCT 
639-607-top-IL21 AGGATCTAAAATACTCTTGCTAGGTTAG 
639-607-bottom-IL21 GTTTTCTAACCTAGCAAGAGTATTTTAG 
657-625-top-IL21 GCACCCTTACAAAAAGATAAGGATCTAA 
657-625-bottom-IL21 GTATTTTAGATCCTTATCTTTTTGTAAG 
678-646-top-IL21 TGGAAGCAAATCCTATTTTAACACCCTT 
678-646-bottom-IL21 TTTGTAAGGGTGTTAAAATAGGATTTGC 
705-672-top-IL21 GCTATTTAAAGATACACTGGTGAAAATTG 
705-672-bottom-IL21 GCTTCCAATTTTCACCAGTGTATCTTTAA 
718-686-top-IL21 AGGCACCATTAGTGCTATTTAAAGATAC 
718-686-bottom-IL21 CCAGTGTATCTTTAAATAGCACTAATGG 
736-704-top-IL21 GTTACATAAAGTGTCAGGAGGCACCATT 
736-704-bottom-IL21 GCACTAATGGTGCCTCCTGACACTTTAT 
754-722-top-IL21 GTATTTACAATCCATATTGTTACATAAA 
754-722-bottom-IL21 GACACTTTATGTAACAATATGGATTGTA 
775-743-top-IL21 AGTTCATCAAAACTGTTTATTGTATTTA 
775-743-bottom-IL21 GATTGTAAATACAATAAACAGTTTTGAT 
792-760-top-IL21 GAGCACGCTGTCTACTTAGTTCATCAAA 
792-760-bottom-IL21 ACAGTTTTGATGAACTAAGTAGACAGCG

IL-22 promoter oligos
33-1-top-IL22 AGTTATCAACTGTTGACACTTGTGCGAT
33-1-bottom-IL22 CAGAGATCGCACAAGTGTCAACAGTTGA
48-16-top-IL22 ACAGGCTCTCCTCTCAGTTATCAACTGT
48-16-bottom-IL22 TGTCAACAGTTGATAACTGAGAGGAGAG
69-37-top-IL22 TTGCCTTTTGCTCTCTCACTAACAGGCT
69-37-bottom-IL22 AGGAGAGCCTGTTAGTGAGAGAGCAAAA
85-53-top-IL22 TGCTCCCCTGATGTTTTTGCCTTTTGCT
85-53-bottom-IL22 GAGAGAGCAAAAGGCAAAAACATCAGGG
107-75-top-IL22 GTACCATGCTACCCGACGAACATGCTCC
107-75-bottom-IL22 TCAGGGGAGCATGTTCGTCGGGTAGCAT
123-91-top-IL22 GACAATCATCTGCTTGGTACCATGCTAC
123-91-bottom-IL22 GTCGGGTAGCATGGTACCAAGCAGATGA
146-114-top-IL22 AGGTAAGCACTCAGACCTCTACAGACAA
146-114-bottom-IL22 GATGATTGTCTGTAGAGGTCTGAGTGCT
160-128-top-IL22 AGAGACACCTAAACAGGTAAGCACTCAG
160-128-bottom-IL22 GAGGTCTGAGTGCTTACCTGTTTAGGTG
181-149-top-IL22 TCTGCCTCTCCCATCACAAGCAGAGACA
181-149-bottom-IL22 TTAGGTGTCTCTGCTTGTGATGGGAGAG
193-161-top-IL22 AAAAGCAGCAACTTCTGCCTCTCCCATC
193-161-bottom-IL22 CTTGTGATGGGAGAGGCAGAAGTTGCTG
214-182-top-IL22 CCTGGTGTCCCGATGGCTATAAAAGCAG
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214-182-bottom-IL22 AGTTGCTGCTTTTATAGCCATCGGGACA
233-201-top-IL22 GTCACAATACCAAAAAAACCCTGGTGTC
233-201-bottom-IL22 ATCGGGACACCAGGGTTTTTTTGGTATT
252-220-top-IL22 AATGTCTGATGTCATATCATTCACAATA
252-220-bottom-IL22 TTTGGTATTGTGAATGATATGACATCAG
267-235-top-IL22 GACTGGAAATTAGATAATGTCTGATGTC
267-235-bottom-IL22 GATATGACATCAGACATTATCTAATTTC
293-261-top-IL22 GTGGTTAGGTACTTCTCAGAAGACAGGA
293-261-bottom-IL22 TCCAGTCCTGTCTTCTGAGAAGTACCTA
305-273-top-IL22 TGGCCTCCTATGGTGGTTAGGTACTTCT
305-273-bottom-IL22 TTCTGAGAAGTACCTAACCACCATAGGA
329-297-top-IL22 GGAAGGCTTGGAGGTGGTGTCTTGTGGC
329-297-bottom-IL22 AGGAGGCCACAAGACACCACCTCCAAGC
340-309-top-IL22 GCTCTCAAGGTGGGAAGGCTTGGAGGTG
340-309-bottom-IL22 GACACCACCTCCAAGCCTTCCCACCTTG
366-334-top-IL22 GTGACGTTTTAGGGAAGACTTCCCATCT
366-334-bottom-IL22 TTGAGAGATGGGAAGTCTTCCCTAAAAC
380-348-top-IL22 TGTTGGCCCTCACCGTGACGTTTTAGGG
380-348-bottom-IL22 GTCTTCCCTAAAACGTCACGGTGAGGGC
405-373-top-IL22 CTGGGATTTGTGTGCAAAAGCACCTTGT
405-373-bottom-IL22 GGCCAACAAGGTGCTTTTGCACACAAAT
420-388-top-IL22 GTGTTTAGAAGATTTCTGGGATTTGTGT
420-388-bottom-IL22 TTTGCACACAAATCCCAGAAATCTTCTA
497-465-top-IL22 AATAGCTACGGGAGATCAAAGGCTGCTC
497-465-bottom-IL22 GAGTAGAGCAGCCTTTGATCTCCCGTAG
518-486-top-IL22 CCGTGACCAAAACGCTGACTCAATAGCT
518-486-bottom-IL22 CCCGTAGCTATTGAGTCAGCGTTTTGGT
528-495-top-IL22 GAAAATGAGTCCGTGACCAAAACGCTGAC
528-495-bottom-IL22 ATTGAGTCAGCGTTTTGGTCACGGACTCA
536-504-top-IL22 GTTGGTGGGAAAATGAGTCCGTGACCAA
536-504-bottom-IL22 GCGTTTTGGTCACGGACTCATTTTCCCA
540-506-top-IL22 TGAAGTTGGTGGGAAAATGAGTCCGTGACC
540-506-bottom-IL22 GTTTTGGTCACGGACTCATTTTCCCACCAA
547-513-top-IL22 GAATCTATGAAGTTGGTGGGAAAATGAGTC
547-513-bottom-IL22 TCACGGACTCATTTTCCCACCAACTTCATA
558-527-top-IL22 TAAAGAGATAAGAATCTATGAAGTTGGT
558-527-bottom-IL22 GTCCCACCAACTTCATAGATTCTTATCT
574-543-top-IL22 GTATTTCTGGTCACTTCTAAAGAGATAA
574-543-bottom-IL22 GATTCTTATCTCTTTAGAAGTGACCAGA
595-563-top-IL22 GAATATAGGACACGGGTCTTTTATTTCT
595-563-bottom-IL22 TGACCAGAAATAAAAGACCCGTGTCCTA
612-580-top-IL22 GCTTATTTCAAAGCACAGAATATAGGAC
612-580-bottom-IL22 CCCGTGTCCTATATTCTGTGCTTTGAAA
628-596-top-IL22 CCAAGTTTTCATTATGGCTTATTTCAAA
628-596-bottom-IL22 TGTGCTTTGAAATAAGCCATAATGAAAA
650-619-top-IL22 GATTTTAAAAATTGAAATAATCTCCAAG
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650-619-bottom-IL22 GAAAACTTGGAGATTATTTCAATTTTTA
662-630-top-IL22 AGAGATATAATTATTTTAAAAATTGAAA
662-630-bottom-IL22 GATTATTTCAATTTTTAAAATAATTATA
684-652-top-IL22 GGATTCCATATACTAAAAAAATAGAGATA
684-652-bottom-IL22 GATTATATCTCTATTTTTTTAGTATATGG
700-668-top-IL22 AGCTAGTTATAGTTTAGGATTCCATATA
700-668-bottom-IL22 TTTAGTATATGGAATCCTAAACTATAAC

AP-1 Consensus Probe36

Top AGCTTCGCTTGATGAGTC
Bottom GCCGACTGAGTAGTTCGC

RORE element38

Top GAAAGTTTTCTGACCCACTTTAAATCA
Bottom CTTTAACTAAATTTCACCCAGTCTTTT
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Supplementary Figure Legends

Supplementary Figure A2.S1. Expression and cellular location of Batf in T cells.

a, The expression profile of Batf among the indicated tissues was determined by 

Affymetrix gene microarray.  The data are presented in arbitrary units and reflect 

normalized and modeled expression values generated using DNA-Chip analyzer (dChip) 

software. b, c, Batf is located in the cytoplasm and nucleus of resting T cells. b, DO11.10 

CD4+ T cells from CD2-N-FLAG-Batf transgenic or littermate control mice were isolated 

and differentiated with OVA and APCs under TH2 conditions. On day 7 cells were either 

left untreated or stimulated with PMA/ionomycin for 4h. Cells were then allowed to settle 

on to poly-L-lysine treated slides and stained with an anti-FLAG antibody, anti-CD4 

antibody and DAPI as a nuclear stain as described in Methods.  c, Naïve DO11.10 CD4+ 

T cells from CD2-N-FLAG-Batf transgenic or littermate control mice were isolated and 

stained as in c. Data are representative of 2 independent experiments.  

Supplementary Figure A2.S2. Targeting of the Batf locus by homologous 

recombination.  

a, The endogenous genomic Batf locus, targeting construct and the mutant allele before 

and after cre-mediated deletion of the neomycin cassette are shown.  Restriction enzyme 

digestion with BamHI of the genomic locus results in a 14.3kb wild type fragment that is 

detected by Southern Blot probes A and B; in the targeted allele, probe A detects a 2kb 

and probe B detects a 9kb fragment. In the neomycin-deleted targeted allele, BamHI 

digestion results in a 9kb fragment that is detected by both the 5’ and 3’ Southern Blot 
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probes. The neomycin resistance cassette was deleted by in vitro treatment with a cre-

expressing Adenovirus. b, Southern Blot analysis of targeted Batf alleles. Probe A was 

used to hybridize BamHI digested genomic DNA from the indicated genotypes resulting 

from Batf +/-intercrosses. c, No residual protein expression in Batf -/- mice.  Equal cell 

numbers from total splenocytes activated under TH17 conditions for 3 days were lysed in 

RIPA buffer and analyzed by Western Blot using anti-Batf antibody.  The blots were 

stripped and reblotted with an antibody to β-actin to show equal protein loading. d, Batf 

expression in naïve T cells. Magnetically purified Batf +/+ and Batf -/-CD4+ T cells were 

lysed in RIPA buffer. 1.5x106 cell equivalents were subjected to Western Blot analysis. 

Blots were stripped and reprobed with anti-β-actin to show equal protein loading. e, CD4+ 

T cells from Batf +/+ and Batf -/- mice were stimulated with anti-CD3/CD28 under TH2 

conditions for 4 days, left untreated or restimulated with PMA/ionomycin for 4h. Nuclear 

extracts from 0.5x106 cell equivalents were analyzed for Batf expression by Western Blot. 

The blots were stripped and reprobed with anti-Lamin B antibody to show equal protein 

loading. Data are representative of 2 independent experiments. 

Supplementary Figure A2.S3. Thymus, spleen and lymph nodes develop normally in 

Batf -/-mice. 

a, Total cell numbers of thymus (n=11) and spleen (n=17) from individual 8-10 week old 

Batf +/+ and Batf -/-mice are shown (horizontal bars indicate mean cell numbers).  b, Batf +/+ 

and Batf -/-mice were injected with Evans Blue dye solution into each hind foot pad.  After 

1.5 hrs, mice were sacrificed and superficial inguinal lymph nodes were visualized using 

a dissecting microscope35. Data are representative of 2 independent experiments. 
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Supplementary Figure A2.S4. T and B cell development is normal in Batf -/-mice. 

a, Thymus, spleen and lymph nodes of mice of the indicated genotypes were analyzed for 

the surface expression of CD4 and CD8 by flow cytometry.  The percentages of CD8+, 

CD4+ and CD4+CD8+ T cells were similar between Batf +/+ and Batf -/- mice.  b, Splenic 

CD4+ and CD8+ cells were analyzed for the surface expression of the activation markers 

CD62L (left panel) and CD44 (right panel) on Batf +/+ and Batf -/-cells. A histogram 

overlay of surface expression of CD62L and CD44 on Batf +/+ and Batf -/-CD4+ and CD8+ T 

cells is shown. c, Total splenocytes were stained for CD3 in conjunction with unloaded or 

PBS57-loaded CD1d tetramers.  NKT cells are identified as CD3+CD1d-PBS57+. d, Total 

splenocytes were analyzed by staining with antibodies to B220, AA4.1, IgM and IgD. 

The percentages of immature B cells (AA4.1+ B220+), Transitional 1 (B220+IgMhiIgDlo), 

Transitional 2 (B220+IgMhi, IgDhi) or mature B cells (AA4.1-B220+; B220+IgMloIgDhi) 

were similar between Batf +/+ and Batf -/- mice.  e, Bone marrow cells were stained for the 

expression of B220, CD43 and either BP1 and CD24 or IgD and IgM.  The percentages 

of cells included in B220+CD43hi subsets: BP-1-CD24- (Hardy fraction A), BP-1-CD24+ 

(Hardy fraction B), and BP-1+CD24+ (Hardy fraction C) were similar between Batf +/+ and 

Batf -/- mice.  Also the percentages of B220+ CD43- subsets; IgM-IgD-(Hardy fraction D), 

IgM+IgDlo (Hardy fraction E), and IgMloIgDhi (Hardy fraction F) were similar between 

Batf +/+ and Batf -/- mice. Numbers of all FACS plots indicate percentage of cells in the 

indicated region or gate. Data are representative of at least 2 independent experiments 

performed with multiple mice of each genotype. 
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Supplementary Figure A2.S5. The development of myeloid cells is grossly normal in 

Batf -/-mice. 

a, Conventional splenic dendritic cell (cDC) subsets are present at normal ratios in Batf -/- 

mice.  Single cell suspensions from collagenase and DNase treated spleens were stained 

with the indicated antibodies. cDCs were identified as CD11chi cells and further 

subdivided into CD4+ DCs and CD8+ DCs, identified as CD11chiCD4+CD8-and 

CD11chiCD4-CD8α+ respectively. CD8+ DCs were further identified as CD11chiCD8α+ 

Dec205+. b, Splenic single cell suspensions were prepared as in a and stained with 

antibodies to CD11c, CD11b, Gr1 and B220. Percentages of plasmacytoid dendritic cells, 

identified as CD11b-CD11cloB220+Gr1+, were similar between Batf +/+ and Batf -/- mice. 

Numbers for all FACS plots indicate the percentage of live cells in each gate or region. 

Data are representative of at least 2 independent experiments performed with multiple 

mice of each genotype. 

Supplementary Figure A2.S6. Batf regulates IL-17 production by CD4+ and CD8+ 

cells. 

a, Naïve CD4+CD62L+CD25-T cells from Batf +/+ and Batf -/- mice activated with anti-CD3 

and anti-CD28 alone or under TH1 or TH2 conditions. Cells were restimulated on day 7 

with anti-CD3/CD28 for 24h and analyzed for IFN-γ and IL-4 production. b, CD4+ T 

cells from DO11.10 Batf +/+ and Batf -/- mice were purified by magnetic bead separation 

and activated with OVA and irradiated APCs under TH17 conditions.  3 days later, cells 

were split and allowed to expand for 4 days in the presence of TH17 inducing cytokines. 
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After 3 rounds of differentiation, cells were restimulated with PMA/ionomycin for 4 

hours and analyzed for IFN-γ and IL-17 expression by flow cytometry.  c, Total 

splenocytes from Batf +/+ and Batf -/- mice were stimulated under TH17 conditions for 3 

days.  Cells were restimulated with PMA/ionomycin and analyzed for IL-17 and IFN-γ 

expression by intracellular cytokine staining and flow cytometry. Plots are gated on CD8+ 

cells. d, DO11.10 transgenic CD4+ T cells from CD2-N-FLAG-Batf transgenic (TG) or 

transgene-negative (WT) control mice were stimulated with OVA and APC under TH17 

conditions. 3 days later, cells were restimulated with PMA/ionomycin and cytokine 

production was analyzed by flow cytometry as described in Methods.  e, Total 

splenocytes from CD2-N-FLAG-Batf transgenic (TG) or transgene-negative (WT) 

control mice were stimulated and analyzed as in c. f, Small intestinal lamina propria cells 

were isolated from Batf +/+ and Batf -/-mice and stimulated with PMA/ionomycin and 

stained for IL-17 and IFN-γ production. Plots are gated on CD4+ lymphocytes.  Numbers 

for all FACS plots indicate the percentage of live cells in each indicated gate.  Data are 

representative of at least 2 independent experiments performed with multiple mice of 

each genotype.

Supplementary Figure A2.S7. Batf -/- mice are resistant to EAE.  

a, Total splenocytes were isolated from Batf +/+ and Batf -/- mice 10 days after EAE 

induction, stimulated with PMA/ionomycin for 3 hours and analyzed for IL-17 and IFN-γ 

expression by intracellular cytokine staining.  Plots are gated on CD4+ cells. b, Spleens 

were isolated from unimmunized Batf +/+ and Batf -/-or from mice 10 days after EAE 

induction.  Total splenocytes were stained for the expression of CD4 and Foxp3 and 
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analyzed by flow cytometry. c, Spleens were isolated from unimmunized Batf +/+ and Batf 

-/- mice or from mice 40 days after EAE induction.  The abundance of Foxp3+ cells is 

depicted as the ratio of CD4+Foxp3+ cells in the total CD4+ T cell compartment. d, 4 days 

prior to EAE induction, Batf +/+ and Batf -/- mice received either control buffer (PBS) or 

1x107 Batf +/+ CD4+ T cells. 40 days after EAE induction splenic and CNS infiltrating 

lymphocytes were stimulated with PMA/ionomycin for 4h and analyzed for IL-17 and 

IFN-γ production. Genotypes and whether mice received PBS or CD4+ T cells are 

indicated, disease scores are given in parentheses. FACS plots in a and d are gated on 

CD4+ cells. FACS plots are representative of 2-3 mice analyzed per group.  Numbers for 

FACS plots indicate percentage of cells in each indicated gate.  

Supplementary Figure A2.S8. Proximal IL-6 receptor signaling is normal in Batf -/-T 

cells. 

a, Splenocytes from Batf +/+ and Batf -/- mice were stained with antibodies to CD4 and IL-

6 receptor (IL-6R).  A histogram overlay of IL-6R expression on CD4+ cells of the 

indicated genotypes is shown. b, Magnetically purified Batf +/+ and Batf -/-CD4+ T cells 

(left) and CD8+ T cells (right) were stimulated with anti-CD3/CD28 in the presence of 

IL-6 for the indicated times and stained with an antibody to phospho-STAT3 (black lines) 

by intracellular staining as described in Methods. Untreated cells (grey lines) served as a 

negative control. c, Magnetically purified Batf +/+ and Batf -/-CD4+ T cells were stimulated 

with anti-CD3/CD28 in the presence of IL-21 for the indicated times and stained with an 

antibody to phospho-STAT3 (black lines) by intracellular staining.  Untreated cells (grey 

lines) served as a negative control.  d, Naïve CD4+CD62L+CD25-T cells from Batf +/+ and 
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Batf -/- mice were stimulated with TGF-β or TGF-β plus IL-6 for 3 days. Cells were 

stained for Foxp3 and analyzed by flow cytometry. e, Naïve CD4+CD62L+CD25-T cells 

from Batf +/+ and Batf -/- mice were stimulated with TGF-β plus IL-6 in the presence of a 

neutralizing antibody to IL-2 for 3 days. Cells were stained for Foxp3, IL-17 and IFN-γ 

and analyzed by flow cytometry. Numbers for all FACS plots indicate the percentage of 

live cells in each indicated gate.  Data are representative of at least 2 independent 

experiments performed with multiple mice of each genotype.

Supplementary Figure A2.S9. Batf does not regulate expression of genes induced by 

TGF-β alone or regulate SOCS gene expression. 

a, b, Gene expression microarray analysis of T cells activated with anti-CD3/CD28 for 

72h in the presence of the indicated cytokines and antibodies. a, A representative heat 

map of genes at least 5-fold induced by TGF-β compared to neutral conditions in Batf +/+ 

T cells is presented. b,  A representative heat map of the expression of suppressor of 

cytokine signaling (SOCS) genes in Batf +/+ and Batf -/-T cells is presented. c, Relative 

expression of RORγt, RORα and IL-22 in T cells 72h after activation with anti-

CD3/CD28 under TH17 conditions was assessed by qRT-PCR. Data are normalized to 

HPRT and presented as percent expression relative to Batf +/+ cells (mean + s.d. of 3 

individual mice).

Supplementary Figure A2.S10. Several aspects of the IL-6-induced liver acute phase 

response are normal in Batf -/mice. 

a, Batf +/+ and Batf -/- mice were injected intraperitonally with either 0.3ug IL-6 or saline. 
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4h after injection of mice the expression of the indicated acute phase proteins in liver was 

assessed by quantitative real time PCR. The relative expression of proteins normalized to 

HPRT is presented in arbitrary units.  b, Relative expression of Batf in liver 4h after 

injection of mice with 0.3ug IL-6 or saline. The relative expression of proteins 

normalized to HPRT is presented in arbitrary units. Data represent mean + s.d. of 3 

individual mice from independent experiments.

Supplementary Figure A2.S11. Retroviral overexpression of RORγt only partially 

restores IL-17 production in Batf -/-T cells.

a, Naïve CD4+CD62L+CD25-T cells were stimulated with anti-CD3/CD28 under TH17 

conditions for 0, 8, 16, 24 and 62h. Relative expression (normalized to HPRT) of RORγt 

in Batf +/+ and Batf -/-T cells is depicted (error bars: mean ± s.d. of 3 individual mice). b, 

Magnetically purified CD4+ T cells were stimulated with anti-CD3/CD28 under TH17 

conditions and were either left untreated or infected with empty-IRES-GFP-retrovirus 

(GFP-RV) or RORγt expressing IRES-GFP-retrovirus (RORγt-RV) as described in 

Methods. Cells were restimulated with PMA/ionomycin for 4h and analyzed for cytokine 

expression on day 3.  c, CD4+ T cells were stimulated as indicated and infected with 

retrovirus as in (b) and Fig. 3e. The percentage of IL-17 producing cells among stably 

infected (GFP+) cells is shown (mean + s.d. of three independent experiments). d, Dual 

retroviral overexpression of Batf and RORγt in Batf -/-T cells. Magnetically purified Batf 

-/-CD4+ T cells were stimulated with anti-CD3/CD28 under TH17 conditions and either 

infected with Batf-expressing IRES-GFP-retrovirus (Batf-RV), RORγt-expressing IRES-

hCD4-retrovirus (RORγt-RV) or both retroviruses (bottom panel) as described in 
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Methods. As a control, cells were infected with empty-control retroviruses as indicated 

(top panel). Cells were restimulated with PMA/ionomycin and analyzed for IL-17 and 

IFN-γ expression on day 3. Data are representative of 2 independent experiments. 

Representative FACS plots shown are gated as indicated. Numbers represent percentage 

of cells in each gate or quadrant.

Supplementary Figure A2.S12. Batf binds several conserved non-coding regions in 

the IL-17 locus. 

a, Vista blot depicting the sequence conservation of the human and mouse IL-17 loci. The 

locations of primers used for ChIP analysis are indicated.  b,  Magnetically purified CD4+ 

T cells from Batf +/+ or Batf -/-mice were activated with anti-CD3/CD28 coated beads under 

TH17 conditions (IL-6/TGF-β) for 24h, then subjected to ChIP analysis using anti-Batf 

polyclonal antibody as in Fig. 4b. Data are presented as relative binding based on 

normalization to unprecipitated input DNA (mean + s.d. of 2 independent experiments). 

c, Batf +/+ CD4+ T cells from C57Bl/6 mice were stimulated with anti-CD3 and APCs 

under TH17 conditions for 5 days. ChIP analysis of T cells before and after 

PMA/ionomycin stimulation for 4h was performed using anti-Batf antibody. The 

analyzed sites are denoted relative to the ATG for the Il17a or Il17f genes. Data are 

presented as relative binding based on normalization to unprecipitated input DNA (mean 

+ s.d. of 2 independent experiments).

Supplementary Figure A2.S13. Identification of potential Batf binding sites in the 

IL-17a, IL-21 and IL-22 promoters. 

a, CD4+ T cells from DO11.10 Batf +/+ and Batf -/- littermates were purified by magnetic 
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bead separation and activated with OVA and irradiated APCs under TH17 conditions. 3 

days later, cells were split and allowed to expand for 4 days in the presence of TH17 

inducing cytokines. On day 7 after initial stimulation cells were either left untreated or 

restimulated with PMA/ionomycin for 4 hours. Total cell extracts were analyzed for DNA 

binding ability to a consensus AP-1 probe (AGCTTCGCTTGATGAGTCAGCCG)36 by 

electrophoretic mobility shift assay. b-d, Identification of potential Batf binding sites in 

the IL-17, IL-21 and IL-22 promoters.  Total splenocytes from Batf-transgenic mice were 

stimulated under TH17 conditions for 3 days. Total cell extracts were analyzed for DNA 

binding ability to a consensus AP-1 probe36 by EMSA as in a. Batf containing complexes 

were identified by supershift with anti-FLAG antibody. Sequences from the IL-17a (b), 

IL-21 (c) and IL-22 (d) promoters were used to assess their ability to inhibit formation of 

Batf containing complexes as described in Methods.  Sequences of competitors used are 

supplied in Supplementary Table 6. e, Batf +/+ and Batf -/-CD4+ T cells were stimulated 

under TH17 conditions for 5 days. ChIP analysis was performed as above. The analyzed 

sites are denoted relative to the ATG for the IL21 or IL22 genes. Data are presented as 

relative binding based on normalization to unprecipitated input DNA. f, WebLogo37 

presentation of the Batf-binding motif in the IL-17, IL-21 and IL-22 promoters. The size 

of each nucleotide is proportional to the frequency of its appearance at each position.

Supplementary Figure A2.S14. Batf -/-T cell do not protect against EAE. 

a, Batf +/+ and Batf -/- mice were injected 1x107 Batf -/-CD4+ T cells (n=4). Four days later, 

mice were immunized MOG33-35 peptide as described in Methods. Clinical EAE scores 

(mean +/- s.e.m) representative of two independent experiments are shown.  b, 
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Magnetically purified CD4+ T cells from wild type (WT) or mice lacking Batf (KO) were 

stimulated with anti-CD3/CD28 under TH17 conditions and either infected with control 

virus (GFP-RV) or Batf-expressing IRES-GFP-retrovirus (Batf-RV) as described in 

Methods. On day 7, cells re-stimulated with anti-CD3/CD28 under TH17 conditions. 

After 4 days, cells were restimulated with PMA/ionomycin and analyzed for CD4 and IL-

17 expression. Representative FACS plots are gated on GFP+ cells (KO) or GFP- cells 

(wild type uninfected). Numbers represent percentage of cells in each region.
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Supplementary Figure A2.S1.
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Supplementary Figure A2.S2.
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Supplementary Figure A2.S3.
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Supplementary Figures A2.S4.
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Supplementary Figure A2.S5.
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Supplementary Figure A2.S6.
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Supplementary Figure A2.S7.
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Supplementary Figure A2.S8.
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Supplementary Figure A2.S9.
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Supplementary Figure A2.S10.
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Supplementary Figure A2.S11.
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Supplementary Figure A2.S12.
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Supplementary Figure A2.S13.
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Supplementary Figure A2.S14.
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Supplementary Methods 

Flow cytometry  

All flow cytometric data was collected on a FACS Calibur or FACS Canto (both BD 

Biosciences) and analyzed using FloJo analysis software (Tree Star, Inc.). The following 

antibodies were purchased from BD Biosciences; anti-CD4-Allophycoerythrin (APC), 

CD4-Phycoerythrin (PE)/Cy7 (RM4-5), anti-CD8-APC (53-6.7), anti-CD44-APC (IM7), 

anti-CD62L-PE (Mel14), anti-CD3-APC (145-2C11), anti-IgM-PE (II/41), anti-B220 

Fluorescein isothiocyanate (FITC) (RA3-6B2), anti-IL-17-PE (TC11-18H10), anti-IFNγ- 

PE (XMG1.2), anti-IFNγ-APC, anti-IL-4-APC (11B11), anti-IL-10-APC (JES5-16E3), 

anti-CD16/32 (2.4G2), anti-CD11c-PE (HL3), anti-CD11b-PECy7 (M1/70)), anti-CD44-

APC (1M7), anti-CD25-APC (3C7), anti-phospho Stat3-AlexaFluor 647 (4/P-Stat3), 

Streptavidin-PeCy7, 7-AAD, AnnexinV-FITC and AnnexinV staining solution. The 

following antibodies and solutions were purchased from eBioscience; anti-AA4.1 APC 

(AA4.1), anti-IgD PE (11-26c), IL-17A-FITC (eBio17B7), anti-Foxp3 (FJK-16s) and 

Foxp3 staining buffers. Anti-CD4-FITC and anti-CD8-FITC were purchased from 

Invitrogen. Anti-Dec205-biotin (MG38) was purchased from Cedarlane.  CD1d-PBS57-

PE and CD1d-unloaded-PE tetramers were obtained from the tetramer facility at the NIH. 

Anti-IL-22 (RMF 222CK) was purchased from Antigenix.  

Isolation of dendritic cells for flow cytometry.  

Spleens were isolated, cut into small pieces and digested with Collagenase B (Roche) and 

DNase I (Sigma) for 30 min at 37oC. 
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Red blood cells were lysed by incubation with Red Blood Cell Lysis Buffer (Sigma) (1 

minute at room temperature). Single cell suspensions were prepared by passing digested 

spleens through 35μm nylon cell strainers (Fisher Scientific) and were stained with 

antibodies for analysis by flow cytometry.  

Isolation of naïve T cells. 

Splenic single cells suspensions were generated and red blood cells were lysed by 

incubation with Red Blood Cell Lysis Buffer (Sigma) (1 minute at room temperature). 

Splenocytes were then negatively depleted of B220+ and CD8+ cells using magnetically 

labeled beads followed by depletion over LD columns (all Miltenyi Biotec). The depleted 

fraction was then stained with antibodies to CD4, CD62L and CD25 (all BD Biosciences) 

and CD4+CD62L+CD25-cells were sorted on a MoFlo cytometer. Sort purity was 

generally >98%. For some experiments, as indicated, CD4+ T cells were isolated from 

spleens by incubation with anti-CD4 magnetic beads and selection via LS columns 

(Miltenyi Biotec) according to the manufacturer’s recommendations. 

Cell culture. 

For T cell differentiation assays, sorted naïve CD4+ CD62L+CD25-T cells or magnetically 

purified CD4+ T cells were isolated as indicated. Cells were cultured at 0.5x106 cells/well 

in 48 well plates containing plate-bound anti-CD3 (from ascites) and soluble anti-CD28 

(37.5; BioXcell; 4μg/ml). Cultures were supplemented with anti-IL-4 

(11B11; hybridoma supernatant), IFN-γ (Peprotech; 0.1ng/ml) and IL-12 ( Genetics 

Institute; 10U/ml) for TH1; anti-IFN-γ (H22; BioXcell; 10μg/ml), anti-IL-12 (Tosh; 

BioXcell; 10 μg/ml) and IL-4 (Peprotech; 10ng/ml) for TH2; anti-IL-4, anti-IL-12, anti-
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IFN γ, IL-6 (Peprotech; 20ng/ml) and TGF- β (Peprotech; 0.5ng/ml) for TH17 

differentiation. In some experiments, cultures were supplemented with IL-21 (50ng/ml; 

all Peprotech), anti-IL-6 (MP5-20F3; eBioscience; 10μg/ml), anti-TGF-β (1D11, R&D 

Biosystems, 10μg/ml) or anti-IL-2 (JES6-1A12; BioXcell; 10μg/ml) as indicated. For 

TH1 and TH2 conditions and differentiation without addition of cytokines 

(Supplementary Fig. A2.6a) cells were restimulated on day 7 with anti-CD3 and anti-

CD28. Brefeldin A was added for the last 4 hours of stimulation. Unless otherwise 

indicated cells differentiated under TH17 conditions, were restimulated at the indicated 

time points with Phorbol 12-myristate 13-acetate (PMA) (50ng/ml; Sigma) and 

ionomycin (1μM; Sigma) for 4 hours in the presence of Brefeldin A (1μg/ml; Epicentre). 

Cells were then analyzed by intracellular cytokine staining and flow cytometry. In some 

experiments, as indicated, magnetically purified CD4+ T cells from DO11.10 transgenic 

mice were activated with OVA (3μM) and irradiated syngeneic splenocytes in the 

presence of anti-IL-4, anti-IL-12, anti-IFN γ, IL-6 and TGF- β (1ng/ml) to induce TH17 

differentiation. To induce TH17 differentiation in total splenocytes, single cells 

suspensions from spleens were prepared and red blood cells were lysed. Total splenocytes 

were activated at 4x106 cells/well in 12 well plates containing plate-bound anti-CD3, anti-

IL-4 (hybridoma supernatant), anti-IL-12 (10μg/ml), anti-IFNγ (10μg/ml), IL-6 (20ng/ml) 

and TGF-β (1ng/ml).  Cells were restimulated with PMA and ionomycin for 4h in the 

presence of Brefeldin A before intracellular cytokine staining and analysis by flow 

cytometry. For STAT3-phosphorylation assays magnetically purified CD4+ or CD8+ T 

cells were stimulated with anti-CD3 and anti-CD28 in the presence of IL-6 or IL-21 

(50ng/ml) followed by intracellular staining and analysis by flow cytometry.  
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ELISA. 

The concentration of IL-21 in supernatants from CD4+ T cells activated for 3 days under 

TH17 conditions was determined by ELISA (R&D Systems) according to the 

manufacturer’s recommendations. 

 Isolation of Lamina Propria T cells. 

For isolation of lamina propria T cells, mice were sacrificed; small intestines removed, 

placed in cold DMEM media (10%FCS) and cleared of Peyer’s patches and residual 

mesenteric fat tissue. Intestines were then opened longitudinally, cleared of contents and 

cut into 0.5cm pieces. The pieces were washed multiple times in cold media and twice in 

ice cold Citrate BSA (CB-BSA) buffer followed by two 15 minute incubations in CB-

BSA with agitation. After each incubation cells were vortexed to remove epithelial cells. 

The remaining intestinal pieces were then washed twice with cold media before digestion 

in media containing 75U/ml Collagenase IV (Sigma) at 37oC for 1 hour. The solution was 

vortexed at 20 min intervals to detach lymphocytes. After one hour the solution was 

filtered through a 35μm strainer, the pieces were collected and digested a second time. 

Supernatants from both digestions were combined, washed once, suspended in the 70% 

fraction of a percoll gradient and overlaid with 37% and 30% percoll gradient fractions. 

Lymphocytes were collected at the 70-37% interface, washed once in PBS and stimulated 

with PMA/ionomycin in the presence of Brefeldin A for 3 hours before cells were stained 

for extracellular markers and intracellular cytokines. 

Induction of EAE and disease scoring. 

Age and sex matched mice (7-10 weeks old) were immunized subcutaneously with 100 
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μg MOG35-55 peptide (Sigma) emulsified in 

CFA (IFA supplemented with 500μg Mycobacterium tuberculosis) on day 0. On days 1 

and 3, mice were injected with 300ng Pertussis Toxin (List Biological Laboratories) 

intraperitonally (i.p.). Clinical scores were given on a scale of 1-5 as follows: 0, no overt 

signs of disease; 1, limp tail or hind limb weakness, but not both; 2, limp tail and hind 

limb weakness; 3, partial hind limb paralysis; 4, complete hind limb paralysis; 5, 

moribund state or death by EAE. Mice with a score of 4 were given 300 μl saline solution 

subcutaneously to prevent dehydration. Mice with a score of 5 were euthanized. Some 

mice died during the course of the experiment. Their clinical score of 5 was included in 

the analysis for the remainder of the experiment. For T cell transfer experiments, CD4+ T 

cells were isolated from splenic single cell suspensions by magnetic separation with anti-

CD4 magnetic beads and positive selection via LS columns (Miltenyi Biotec). 1x107 

MACS purified CD4+ T cells were injected i.p. on day -4 followed by EAE induction on 

day 0 as described above. 

Isolation of CNS lymphocytes. 

Brain and spinal cords were removed from mice after perfusion with 30ml of saline 

solution. Single cell suspensions were prepared by dispersion through sterile 35μ nylon 

cell strainers (Fisher Scientific) and mixed at room temperature for 1h in HBSS 

containing 0.1% collagenase, 0.1μg/ml TLCK (N-α-tosyl-L-lysine chloromethylketone 

hydrochloride), and 10μg/ml DNaseI (all Sigma). The resulting suspension was pelleted, 

resuspended in the 70% fraction of a Percoll gradient 

and overlaid by additional 37% and 30% layers. The Percoll gradient separation was 

achieved by centrifugation for 20 min at 2000rpm and lymphocytes were collected at the 
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70-37% interface.  Subsequently cells were activated with PMA and ionomycin for 3-4 

hours in the presence of Brefeldin A and intracellular cytokine staining was performed.  

Real time PCR.  

Naïve CD4+CD62L+CD25-T cells were isolated by cell sorting and activated with plate-

bound anti-CD3 and soluble anti-CD28 antibodies under TH17 conditions for 3 days, 

unless otherwise indicated. Total RNA was isolated from the indicated cells using 

Quiagen RNeasy Mini Kit and cDNA was synthesized using SuperscriptIII reverse 

transcriptase (Invitrogen).  Real time PCR analysis was performed using ABI SYBR 

Green master mix according to the manufacturer’s instructions on an ABI7000 machine 

(Applied Biosystems) using the relative standard curve method. The PCR conditions 

were 2min at 50oC, 10 min at 95oC followed by 40 2-step cycles of 15s at 95oC and 1min 

at 60oC. Primers for RORγt (RORγt forward 5’-CGCTGAGAGGGCTTCAC, RORγt 

reverse 5’-GCAGGAGTAGGCCACATTACA)39, IL-21 (IL-21 forward 5'-

ATCCTGAACTTCTATCAGCTCCAC, IL-21 reverse 5′-

GCATTTAGCTATGTGCTTCTGTTTC)40, IL-22 (IL-22 forward-5’ 

CATGCAGGAGGTGGTACCTT, IL-22 reverse- 5’- 

CAGACGCAAGCATTTCTCAG)41, RORα ( RORα forward 5’-

TCTCCCTGCGCTCTCCGCAC, RORα reverse 5’-TCCACAGATCTTGCATGGA)38, 

IRF-4 (IRF-4 forward 5'-GCCCAACAAGCTAGAAAG, IRF-4 reverse: 5'-

TCTCTGAGGGTCTGGAAACT) 42 and HPRT as normalization control (HPRT forward 

5’-AGCCTAAGATGAGCGCC, HPRT reverse 5’-TTACTAGGCAGATGGCCACA) 

were used to evaluate relative gene expression. For analysis of acute phase response 

proteins, mice were injected intraperitonally with either 0.9% saline solution or IL-6 

205



(0.3μg per mouse) in 0.9% saline solution. Four hours later, total liver RNA was isolated 

using Trizol reagent (Invitrogen) according to the manufacturer’s recommendations. 

cDNA was synthesized and real time PCR performed as described above. Primers used 

for serum amyloid protein P (SAP forward: 5’-TTTCAGAAGCCTTTTGTCAGA and 

SAP reverse: 5’-AAGGTCACTGTAGGTTCGGA) 43, c-reactive protein (CRP forward: 

5’-TTCTGGATTGATGGGAAAAGC and  CRP reverse: 5’- 

AAACATTGGGGCTGAGTGTC)43, Serum amyloid protein A (SAA forward 5'-

TCTCTGGGGCAACATAGTATACCTCTCAT and  SAA reverse 5'-

TTTATTACCCTCTCCTCCTCAAGCAGTTAC) 44, fibrinogen β (fibß forward: 5'-

ATTAGCCAGCTTACCAGGATGGGACCCAC-3',  Fibß reverse: 5'-CAGTAGTAT 

CTGCCGTTTGGATTGGCTGC-3')45, alpha-1-acid glycoprotein (AGP forward: TCT 

CTG AAC TCC GAG GGC TG AGP reverse: 

GAGACAGAATCAAAGTGCACAGGA)46 and HPRT as normalization control (HPRT 

forward 5’-AGCCTAAGATGAGCGCC, HPRT reverse 5’-

TTACTAGGCAGATGGCCACA) were used to evaluate relative gene expression. 

Gene expression profiling. 

Naïve CD4+ CD62L+ CD25-T cells and CD4+ CD62L+ CD25+ regulatory T cells were 

isolated from C57BL/6 mice. Naïve CD4+ CD62L+ CD25-T cells were differentiated 

under TH1 and TH2 conditions for 7 days. After restimulation with anti-CD3 and anti-

CD28 for 24h, TH1 and TH2 cells were sorted for IFN-γ and IL-4 production 

respectively using cytokine secretion assays (Miltenyi Biotec) according to the 

manufacturer’s recommendations. For gene expression profiling of TH17 cells, naïve 

CD4+ CD62L+ CD25- T cells were activated for 3 days with anti-CD3 and anti-CD28 in 
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the presence of anti-IL-4, anti-IL-12, anti-IFNγ, anti-IL-2, IL-6 and TGF-β (0.5ng/ml). 

For gene expression analysis in Batf -/-T cells, naive CD4+ CD62L+ CD25- T cells from 

Batf +/+ and Batf -/- mice were activated for 3 days with anti-CD3 and anti-CD28 in the 

presence of either anti-IL-4, anti-IL-12, anti-IFNγ, IL-6 and TGF-β (0.5ng/ml); anti-IL-4, 

anti-IL-12, anti-IFNγ, IL-6 and anti-TGF-β; anti-IL-4, anti-IL-12, anti-IFNγ, anti-IL-6 

and TGF-β or anti-IL-4, anti-IL-12, anti-IFNγ, anti-IL-6 and anti-TGF-β. IL-2 was 

neutralized in all conditions.  Total RNA was isolated from cells using Quiagen RNeasy 

Mini Kit. Biotinylated antisense cRNA was generated using two cycle target preparation 

kit (Affymetrix). After fragmentation, cRNA was hybridized to Affymetrix GeneChip 

Mouse Genome 430 2.0 Arrays. Data were normalized and expression values were 

modeled using DNA-Chip analyzer (dChip) software (www.dChip.org). 

Retroviral infection and analysis.  

mRNA was isolated from 129SvEv total thymocytes using Quiagen RNAeasy Mini Kit 

and cDNA was amplified by SuperscriptIII (Invitrogen). Murine RORγt transcript was 

amplified using primers 5’-CTCGAGGTGTGCTGTCCTGGGCTAC and 5’-

CTCGAGGGGAGACGGGTCAGAGGG. Underlined nucleotides indicate XhoI 

overhangs used to clone RORγt into XhoI digested GFP-RV retrovirus47 or XhoI digested 

hCD4-RV48. Batf cDNA was cloned from CD4+ T cell mRNA using primers 5’-

GGAAGATTAGAACCATGCCTC and 5’-AGAAGGTCAGGGCTGGAAG and 

subcloned into the GFP-RV retrovirus47. An N-terminal FLAG tag was introduced by 

Quick Change Mutagenesis kit (Stratagene) using the primers 5’-

GGACTACAAAGACGATGACGACAAGCCTCACAGCTCCGACAGCA and 5’-

CTTGTCGTCATCGTCTTTGTAGTCCATGGTTCTAATCTTCCAGATC. The 

207

http://www.dChip.org/


underlined sequence indicates nucleotides used to introduce the FLAG-tag. The retrovirus 

based reporter hCD4-pA-GFP-RV48, in which a cytoplasmic truncated human CD4 

(hCD4) marks viral infection and green fluorescence protein (GFP) is used to report 

promoter activity has been described previously and was modified as follows to generate 

hCD4-pA-GFP-RV-IL-17p. The 1021bp promoter region of murine IL-17a was generated 

by PCR from genomic 129SvEv DNA using primers 5’-

AGCTTGAACAGGAGCTATCGGTCC and 5’-

AAGCTTGAGGTGGATGAAGAGTAGTGC. Underlined nucleotides indicate 

overhangs containing HindIII restriction sites used to clone the resulting PCR product 

into hCD4-pA-GFP-RV. Retroviral vectors were packaged in Phoenix E cells as 

described previously47. Magnetically purified CD4+ T cells were infected with viral 

supernatants on days 1 and 2 after activation with anti-CD3 and anti-CD28. 3 days after 

activation cells were restimulated with PMA/ionomycin in the presence of Brefeldin A 

and analyzed by intracellular cytokine staining and Flow Cytometry.  For the experiments 

in Figure 4, CD4+ T cells from Batf +/+ and Batf -/- mice were activated under TH17 

conditions and infected with the IL-17 reporter virus. Stably infected T cells were 

restimulated with PMA/ionomycin for 4h and examined for GFP expression on day 3 

after initial activation. 

Statistical Analysis. 

A Student’s unpaired two-tailed t-test was used to indicate statistically significant 

differences between indicated groups. Differences with a P value <0.05 were considered 

significant. 
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Electrophoretic mobility shift assays.  

Whole cell extracts were prepared from total splenocytes activated for 3 days with anti-

CD3, TGF-β and IL-6 as described previously49. For EMSA analysis the AP-1 consensus 

probe36 (top: AGCTTCGCTTGATGAGTC and bottom: GCCGACTGAGTAGTTCGC), 

RORE element in CNS2 of the IL-17 gene38 (top: 

GAAAGTTTTCTGACCCACTTTAAATCA and bottom: 

CTTTAACTAAATTTCACCCAGTCTTTT) and -187 to -155 of the IL-17 promoter (top: 

GGTTCTGTGCTGACCTCATTTGAGGATG and bottom: 

AAAAGACTGGGTGAAATTTAGTTAAAG), Eα Y box probe 

(TCGACATTTTTCTGATTGGTTAAAAGTC)50 were used after labeling with 32P-dCTP. 

The probe (2.5x104cpm per reaction) was used along with 15μg of total cell extracts and 

1ug poly diDC as described previously50. For competitor-supershift assay, Batf binding to 

the AP-1 consensus probe36 was assessed by anti-FLAG supershift. Unlabeled probes 

from the IL-17a, IL-21 and IL-22 promoters (Supplementary table A2.S6) were used to 

compete for Batf binding to the AP-1 consensus probe. Single stranded overhangs of the 

competitor oligos were not filled in. Sequences identified as competitors for Batf binding 

were used to determine the Batf consensus motif.  For supershift analysis of the EMSA 

complexes formed on the AP-1 probe, whole cell extracts were prepared as above. 8μg 

whole cell extracts were incubated for 15min on ice with anti-Batf, anti-Fos (K25), anti-

c-Jun (D), anti-c-Jun (N), anti-JunB (C11), anti-JunD (329), anti-ATF-1 (H60) and anti-

ATF-3 (C-19)  (all Santa Cruz Biotechnology) before 2.5x104cpm of the AP-1 consensus 

probe was added.  To test whether Batf binding to the AP-1 probe requires stimulation 

DO11.10 transgenic CD4+ T cells were activated for 3 days with OVA, irradiated APCs, 

209



anti-IFN-γ/IL-4/IL12, TGF-β and IL-6, followed by a period of 3 days rest in the 

presence of TGF-β and IL-6. Cells were left untreated or activated with PMA/ionomycin 

for 4 hrs before whole cell extracts were prepared and used in EMSA analysis as 

described above. Reactions were electrophoresed on 7.5 or 10% bisacrylamide gels to 

achieve optimal band separation. 

CONSENSUS program for determination of Batf binding motif. 

Sequences of the proximal promoter regions of IL-17, IL-21, and IL-22 identified as 

competitors for Batf binding in the competitor-supershift EMSA assay were input into 

CONSENSUS version v6d51. Default program parameters were applied, except for 

searching the reverse complement of the input sequences (c2) and uniform background 

nucleotide frequencies. The program was searching potential motif lengths from 5 to 15 

using the expected frequency statistic (e-value) and the optimal motif length was 

determined as 7.  The corresponding weight matrix, with a sample size adjusted 

information content of 4.467, was chosen from the final cycle.  The enrichment of the 

binding motif in the input set was verified using PATSER v3e52. Using the numerically 

calculated cutoff score, 38/40 of the input training sequences were identified as 

containing the motif. The motif is presented as a Weblogo37 in which the size of each 

nucleotide is proportional to the frequency of its appearance at each position. 

Batf Chromatin immunoprecipitation (ChIP).  

ChIP was performed as previously described53 using an affinity purified anti-Batf rabbit 

polyclonal antibody prepared by Brookwood Biomedical (Birmingham, AL).  Briefly, 

chromatin was prepared from 1x107 CD4+ T cells isolated from C57BL/6 Batf +/+ mice 
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stimulated under TH17 polarizing conditions with anti-CD3 (2.5μg/ml) and syngeneic 

splenic feeder cells, then restimulated or not at the indicated time points with PMA 

(50ng/ml) and ionomycin (750ng/ml) for 4 h.  For experiments assessing early binding of 

Batf to the DNA CD4+ T cells from Batf +/+ and Batf -/- 129SvEv mice were activated with 

anti-CD3/CD28 coated beads under TH17 conditions for 24 hours, then processed for 

ChIP analysis. Immunoprecipitations were performed with 20 μg/ml anti-Batf rabbit 

polyclonal antibody using the Chromatin Immunoprecipitation (ChIP) Assay Kit from 

Millipore (Billerica, MA) according to the manufacturer’s recommendations. 

Immunoprecipitated DNA released from cross-linked proteins was quantitated by real-

time PCR as previously reported53, and was normalized to input DNA. Unless otherwise 

indicated data are presented as mean + s.d from 2 independent experiments. All real-time 

PCR primers and probes are included in Supplementary table A2.S5. The analyzed sites 

are denoted relative to the ATG start codons for the Il17a or Il17f gene. For ChIP analysis 

of the IL-21 and IL-22 promoters DO11.10 transgenic CD4+ T cells from Batf +/+ and Batf 

-/- were stimulated with OVA and APC for 3 days, rested for 3 days before restimulation 

with PMA/ionomycin for 4h on day 5 and processing for ChIP as described above. Real 

time PCR analysis was performed using ABI SYBR Green master mix according to the 

manufacturer’s instructions on a Step One Plus (Applied Biosystems) using the relative 

standard curve method. Results were normalized to input DNA. Sequences of primers 

used in the analysis are given in Supplementary Table A2.S5.  
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