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1. INTRODUCTION

There are two well-recognized techniques for achieving concurrency by simultaneous operation on
multiple computing elements: parallelism and pipelining. In the parallelism approach, a hardware
structure is replicated many times and each replica executes in parallel different parts of the large
computation; pipelining technique splits the hardware structure into a sequence of substructures
(called stages) corresponding to phases of the computation task and allows all stages to operate

simultaneously on different parts of the computation [1, Chapter 1].

In principle, a pipeline can either operate in lbck—step fashion {(controlled by the “ticks” of a
global clock) or operate by having each stage processor synchronize only with its neighbors using a
handshaking protocol. In the first case, the pipeline is called a synchronous pipeline; the second case
corresponds to an asynchrenous pipeline. Synchronous pipelines are generally simpler to design.
Pipelining has aiso been recognized as an important computation model at the programming level
[3, 4]. Instruction pipelines and arithmetic pipelines have been used with great success in modern

computer architectures.

Synchronous pipelines have received considerable attention over the years. For instance, many
methodologies for the design and operation of hardware pipelines have been well-documented [1, 5,
6, 12]. Hwang and Xu have presented equations for the speedup of their pipeline net [2]; Dubey
and Flynn [7} have also reported closed-form solutions for the speedup of a hardware pipeline, which
account for the effect of various hardware overheads as well as pipeline setup/flush overhead and
delay variations. All these results only apply to synchronous pipeline operation. We have not seen

analytical models that deal with asynchronous pipelines in the literature.

1.1. Motivations

‘We believe two factors are mostly responsible for the limited use of asynchronous pipelines so far. The
complexity of asynchronous control logic is high; and characterization of asynchronous behavior has
been difficult, thus limiting our understanding of asynchronous pipelines. Distributed applications

that mandate the use of asynchronous pipelines are just beginning to become practical.
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Asynchronous pipelines are absolutely necessary when pipeline stages are physically distributed
or have varying processing delays. For example, in a related research effort, we have proposed
pipelining across high-speed networks as an efficient model for televisualization, called pPTv (Pipelined
TeleVisualization) [8]. Televisualization pipelines are significantly different from most hardware

pipelines in several ways:

e The complex visualization computation makes it almost impossible to obtain perfect parii-

tioning.

e Stages of a pTV pipeline are disiributed across (inter)networks with communication errors and

variable delays.

s Bach stage of the pipeline is an independent computer with multiprogrammed load, and fluc-

tuation of this load causes the processing delay at the stage to also vary with time.

¢ User interaction with different stages of the PTV pipeline is required, which also introduces

unpredictable delays.

These characteristics clearly suggest that a global clock will be very difficult to provide. Also, asyn-
chronous operation allows each processor to work at its potential speed while synchronous operation
would force every stage to keep in pace with the slowest among them. Therefore, asynchronous

pipeline operation is necessary to achieve high performance for such distributed applications.

1.2. Outline

To help better understand the behavior of asynchronous pipelines, we present a model for their
performance analysis in this paper. We derive a set of recurrence relations that describe the exact
behavior of certain abstract asynchronous pipelines with paG (directed acyclic graph) topology;
we also devise two simple transformations that allow effects of communication overhead and extra
buffers to be modeled using the recurrence relations. We develop an efficient algorithm for evaluating
the recurrence relations and verify our model with discrete event simulations. The result is an
accurate and efficient tool for performance analysis of distributed asynchronous pipelines. Detailed

application of the model to the analysis of particular pipelines is a task of future endeavors.

The rest of the paper is organized as follows: Section 2 derives a set of recurrence relations for
an abstract asynchronous pipeline having a linear topology. Section 3 outlines transformations for
modeling communication overhead and buffers in the recurrence model. Section 4 derives recurrence
relations for abstract pipelines with a DAG topology. Section b introduces a station abstraction to
aid in the description of application pipelines and presents results from experiments that help verily
the recurrence model approach. In Section 6, we discuss how the recurrence model can be used
to gain insight into engineering of asynchronous pipelines along with some related work. Finally,

Section 7 provides concluding remarks.
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2. LINEAR PIPELINES

In this section, we define an abstraction to real-life linear asynchronous pipelines and derive a set
of recurrence relations to describe the behavior of the abstraction. The abstraction is necessary to
make the pipeline behavior amenable to simple recurrence description. Methods for modeling more

realistic aspects of the pipeline will be presented in Section 3.

2.1. Abstract Linear Pipeline

Suppose we have a linear pipeline with m stages and n data items to be processed using the pipeline.
Each stage is simply a processing element that gets an input data item, processes it, sends the result

to the next stage, and then repeats this process on the next data item. Figure 1 illustrates such a

Figure 1: An Abstract Pipeline

pipeline.

We refer to a list of stage processors p1, p2, ..., Pm, With processor i 1 depending on the output
of processor i (for all 7, 1 < ¢ < m — 1), as a dependency chain. We also assume that the following

is true for this pipeline:

¢ Asynchronous behavior: There is no single global clock for the synchronization of pipeline

stages. Therefore, coordination between stages is realized by a handshaking protocol.

s Ideal Handshaking: A stage always has complete and up-to-date knowledge about the state of

the next stage.

e Bager computation: Each stage starts processing a data item as soon as it arrives at the stage

and sends it to the next stage as soon as the next stage is ready to accept it.

e Negligible data communication overhead: Time overhead associated with exchanges of data is’
negligible; methods to explicitly model this overhead will be discussed in Section 3.

e No additional buffer: There is assumed to be no additional buffer besides the single working

space within each processor. Again, modeling of buffers will be discussed in Section 3.

2.2. Recurrence Relations

Notations. Let D be an m X n matrix of processing delay:
D:{dij] 1525?’?’2.,15]571

where d;; denotes the processing delay for data item § at stage i.
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We now introduce two recurrence variables: fi; is the time at which data item j finishes being
processed at stage i; {;; is the time at which data item j leaves stage { and arrives at stage 7 + 1.
Since a data item has to be processed at a stage before it can leave the stage, I;; > f;; holds for any

data at any stage. We can derive recurrence relations involving fi; and l;; as follows.

Initial Conditions. Since the pipeline is empty at the beginning, the first data item can flow
down the pipeline as fast as the processing at each stage allows. Hence the following initial condition
is true: ;

i=fa=Y da 1<i<m
k=t

Boundary Conditions. It should also be observed that stage 1 does not depend on data from
any previous stages, and it is always ready to process the next data item as soon as stage 2 is
ready to accept the current processed data item. On the other hand, the stage m does not need to
wait for any subsequent stage to accept its output, and thus, a data item is consumed (therefore
considered to have left the pipeline) as soon as it has finished being processed by stage m. These

two observations are formalized as two boundary conditions:
Jij=lja+dyy; 2<j<n
lnj =fm; 1Z57<n

Recurrence Body. For an internal stage of the pipeline, we emphasize the following two important
behavioral properties: (1) a stage can start processing a data item if and only if the data has arrived
from the previous stage, and (2) a data item can leave for the next stage if and only if it has finished
being processed at the current stage and the next stage has sent out its previous data ifem {and is
therefore ready to accept another). Figure 2 depicts two typical timing scenarios at an internal stage
of the pipeline. For data item j at stage 7 — 1, by the time the processing finishes, stage 7 is already
free to receive data item j, and so {;_1; = f;_;;. The corresponding waiting time is represented by
the hatched area. At stage i, data item j finishes earlier than stage 7 + 1 is ready to receive it (i.c.,
liv1j-1 > fij), thus causing data item j to wait at stage ¢ until time lj; = l;;1;-1. This waiting

time is marked by the gray area in the figure.

Ligj=fi1f fi by
} — > Time
Stage i- (i-1.j) P
Stage i W) ) 6o ||
Stage i+1 (i+1j-1) G+1j)

Figure 2: Dependency Timing

The general behavior of an internal stage is captured in the following recurrence body:

fig=licy+dy; 2<i<m,2<ji<n
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b = max(fij, lig1;-1) 1<i<m-1,2<ji<n

Given the 2-dimensional array D, the recurrence relations characterize exactly the behavior of
the pipeline. By evaluating the recurrence relations for the set of input data items, we will obtain
a complete trace of the finish time and the leave (or departure) time for each data item at every
stage (fij and {;; for 1 < i< m,1 < j < n). With this data, a set of commonly used performance

measures for pipelines can be defined.

First, the average cycle time (AC) is a measure of time it takes, on average, for the pipeline to

completely process one data item:

AC — fmn
)
The throughput (TH) of a pipeline is the number of data items completely processed by the pipeline

per unit time. It is simply the reciprocal of the average cycle time:
1
AC
Definition of speedup (SU) requires another implementation of the computation as a reference. Let

T be the time it takes to process the set of n data items by the reference implementation. The
speedup is defined as the ratio between 7' and the time taken by the m-stage pipeline to process the

TH =

same set of data. It is given as:

T
fmn

Similarly if we are interested in the pipeline performance after the pipeline is filled up, we can define

SU =

a new average cycle time ACY as:

AC’+=£’3:TE—{L1 n>1

ACT will be used as the performance metric in this paper.

It is important to note that the recurrence relations derived above do not explicitly model the
feedback control of a pipeline, and this will also be true for the recurrence relations to be derived
in Section 4.2. This is not an issue because feedback paths normally carry control information
requiring very small bandwidth. Moreover, important effects of feedback (e.g. flush of pipeline) can

be indirectly modeled using the recurrence model by selecting suitable values of processing delays.

3. MODELING COMMUNICATION OVERHEAD AND DATA BUFFERS

Assumptions of zero data communication delay and zero buffering are not realistic. In this section we
introduce two simple transformations which will allow us to model the effects of delay and buffering

in the recurrence model.
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3.1. Modeling Communication Overhead

When large volumes of data have to be exchanged between pipeline stages which are separated
by networks, the overhead associated with this data communication is no longer negligible due to
network delay, data loss, and data corruption. In general, the communication overhead consists
of three components: effective end-to-end transport time for each data item i., the overhead for
passing a data item from the communication system to the application space £, and the overhead
for passing data in the other direction #,. Time ¢, will include the effect of end-to-end propagation
delay, transmission time (data item size/data rate), and error control overhead. We denote the pure
intrastage computation delay by #,. Figure 3 shows how the overheads affect pipeline operation
by using a space-time diagram. Being consistent with the next generation host communication
architecture, we assume there is a communication processor at each pipeline stage which operates
in parallel with the main stage processor. Therefore, communication processing can overlap in fime
with intrastage computation. However, the overheads {, and {, are limiting the degree of overlap
possible. Without loss of generality, the diagram is drawn for a 4-stage pipeline with the assumption
that ¢, =1,, t. =1, +1,, and all overhead values are constant throughout the pipeline. I'our types
of legends are used to mark areas corresponding to different delays in the diagram. Their specific
associafions are given at the bottom of Figure 3. Al unmarked spaces in the diagram represent idle
periods. It is clear that the space-time diagram can be interpreted as representing a new T-stage
pipeline, with end-to-end transport making up the 3 new stages. If we number the stages from 1 to
7 top-down, the equivalent processing delays become: (1, +t,) for stage 1; ¢, for stages 2, 4, and 6;
(tp +t- +1,) for stages 3 and 5; and (¢, +¢,) for stage 7.

N N

N

S2 3 % )
33
S4 H H v
PRRRTRIFRRTE
a Receiving overhead ¢,
N Sending overhead #;

i1 Intrastage computation delay z,
Effective end-to-end transport time ¢,

Figure 3: Communication Overhead Effect

Thus, for a given m-stage pipeline with interstage communication overhead, we can create an
abstract pipeline with (2m — 1) stages, where for every pair of original computation stages cp; and
£piy1, & hew communication stage em; is added between them. The equivaleni processing delay



Gong, Dittia and Parulkar 7

values for ¢p;, emy, and epiqy will be determined as demonstrated above. The transformed pipeline

now conforms to the abstraction of Section 2.

3.2. Modeling Data Buflers

In reality, asynchronous pipelines should always have buffers in the stages to deal with transient
speed mismatch between stages in order to achieve efficient operation. Therefore, our recurrence
model must be able to model buffers in the pipeline. In general, these buffers are finite FIFO queunes
with some delay overheads. Our aim is to find an equivalent representation of a real pipeline with
buffers that will conform to the abstraction of Section 2. This will allow us to analyze any real-life

linear pipeline using the recurrence relations derived in Section 2.2.

An elegant transformation results from the realization that in a real pipeline, an internal stage i
(with no extra buffer) actually serves as a single buffer between stage i—1 and stage i+1, in addition
to providing the processing funetion. In another words, due to the presence of stage 7, when data
item j finishes processing at stage ¢ — 1, whether it will be able to leave and free up stage i — 1
does not affect stage 7 + 1 at that moment. Stage 7+ 1 will be affected only after data item j
finishes processing at stage . This buffering effect is modeled in the derived recurrence relations. It
is reflected in the property that at stage 7, the leave time of data item j (I;;) depends only on the
leave time of date item j — 1 at stage ¢+ 1 ({ip15-1). Therefore, physical buffers in an application
pipeline can be modeled as a segment of abstract pipeline. Let B; be the size of the extra buffer
in the stage ¢p; of application pipeline, and ; be a constant overhead associated with the buffer.
Then we can create an abstract pipeline segment which consists of B; new stages, by, bs,...,bp;, in

addition to ep;. This transformation is depicted for stage cp; in Figure 4.

Figure 4: Buffer Transformation (k = B;)

The overhead @; can be represented in two ways. It can be distributed among the B; new stages,
or it can be added to the processing delay of ¢p; with processing delays for the new stages set to

zero. The two approaches are equivalent as far as pipeline performance is concerned.

4. DAG PIPELINES

The model developed so far is for linear asynchronous pipelines. In practice we can expect to have
distributed applications in which the computation is more effectively organized as a pipeline with
parallel processors at stages. It would thus be very useful if we could extend the recurrence model

to such cases. We address precisely this issue in this section.
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4.1. Abstract DAG Pipeline

Figure 5 shows a pipeline with a DaG topology. The first stage processor p; prepares the input data
stream and splits it among three processors (pa, ps, and p7). Processors ps and py perform some
computations in parallel, and their results are gathered by processor py. The result from p4 is again
distributed to ps and pg for further processing. Finally, processor ps performs processing on the

combined results of ps, ps and pr to produce the pipeline ocutput.

Figure 5: An Abstract Parallel Pipeline

Now we define a set of terms that will be useful in the derivation of recurrence relations. A
predecessor of a processor p is a processor whose output is directly input by p. A successor of a
processor p is a processor that requires direct outpuf from p. A processor is a source processor if it
has no predecessors. A processor Is a sink processor if it has no successors. For example, in Figure 5,
p2 and ps are two successors of py; pa is a predecessor of p4; py is the source processor; and pg is the

sink processor.

As a consequence of multiple processors operating in parallel, data flow may split and merge
along the pipeline. The semantics of these actions directly affect the performance model. Therefore,

a set of assumptions about the parallel behavior within the pipeline is in order:

e All data items are tagged with a unique sequence number at the source processor(s). This tag

is maintained throughout the pipeline.

o Processor p requires data items with the same tag from all its predecessors to be present hefore
it can start processing. Once the processing finishes, all data items that served as input will
be consumed and an output data item from the current processor is produced, carrying the

same tag as the corresponding input data items.

e When a processor has more than one successor, the processor will produce one output data item
for each of its successors, with all data items carrying the same tag. The current processor can
begin processing the next input data item(s) only after output data items have been forwarded

to its successors.
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4,2, Recurrence Relations

Notation. We view the set of dependencies among processors of the DAG as a set of dependency
chains. We use a two dimensional indexing scheme for the identification of processors. The processors
are partitioned into stages as follows. Let m be the total number of stages, which is defined as the
number of processors on the longest dependency chain. Each source processor is labeled as a stage 1
processor and a sink processor as a stage m processor. For any internal processor (i.e., not a source
or sink processor), if ¢ is the maximum distance from the processor to any sink processor, this
processor is labeled as a stage (m — i) processor. If w; is the number of processors at stage 7, we
label these processors by tuples (Z,1),(4,2),---, (i, w;). Also, we use pred(, j) to denote the set of
predecessors for processor (7, j) and suce(i, ) to denote the set of successors to processor (7, j). The
abstract parallel pipeline in Figure 5 can be labeled using the above scheme as shown in Figure 6.
For example, processor (3,1) has two predecessors (2,1) and (2, 2), and two successors (4,1) and

(4,2).

Stagel  Stage2  Stage3  Stage4  Stageb

Figure 6: A Parallel Pipeline — Labeled

Now we introduce recurrence variables. Let s;;& be the time at which processing of data item &
begins at processor (i, 7). Let dij; denote the processing delay for data item k£ at processor (7, j), and
let fi;z denote the finish time of data item £ at processor (i, 7). Finally, li;; represents the time at
which data item k& leaves processor (4, j) and arrives at all processors in succ(i, 7). We assume that
a processor begins execution when all input data items have arrived, and it can forward its output
data item fo its successors only when they are ready to receive the data itemn. A set of recurrence’
relations in these variables can be derived and organized as initial conditions, boundary conditions,

and recurrence body.

Initial Conditions. Since the pipeline is empty initially, the first data item (k = 1) can be
processed at a given processor as soon as all the corresponding input data ifems are received from
predecessors; and the resulting output data item can move to successors immediately after its pro-
cessing is finished. The first data item is available to the source processors at time 0. Therefore, the

following initial conditions hold for the pipeline:
5151 =0

fij1 =dijn
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lij1 = fii1

Sis1 = max ey
3= yeesa )

fis1 = sij1 + dij1
li;y = fin

where:

fov]
IA
IA
3

.,..
1A
s,
IA
g

Boundary Conditions. Operation of source and sink processors is also special. First, source
processors (¢ = 1) never have to wait for input data items because they are assumed to have all
data items to begin with. Sink processors ({ = m) never have to wait to forward an output data
item because they consume their own output. These correspond to the boundary conditions of the
pipeline:

s1jk = lijre1

fijk = 155 + dijk
(lirjri-1)

(L)

e = max
T (e suce(1,5)

Smik = max
TR i gnepred{m,i)
Sfmir = Smje + dmj

It = fnje

where:

Recurrence Body. Processors of internal stages (2 < ¢ < m—1) have to wait for input data items
from all predecessors to arrive before the processing can start; once the processing is complete, the
output data item has to be held until all successors are ready to receive it. This logic is formulated

into the recurrence body:

(ljei)
Jije = sije + dije

(lirjre—t), fije]

Siip = max
T8 T in i Epred(i ;)

I — max{ max
’ (" 3 )Esueei.f)

where:
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Comparing the above with the recurrence relations for the linear pipeline in Section 2.2, we can
see that the main difference between the two is the introduction of additional maz functions for
the parallel pipeline in order to model synchronization behavior for splitting and merging of the
data flow. The transformations developed in Section 3 for modeling communication overheads and

buffers also apply to DAG pipelines.

5. EXPERIMENTS

The recurrence models presented in the previous sections have been implemented as a single C
program. Two simple experiments have been conducted to verify that the recurrence relations
correctly characterize the behavior of asynchronous pipelines. In this section, we will first introduce
an abstraction that allows applications to specify the pipeline to be modeled as a set of parameterized
stations. We then describe the implementation and present results of the experiments.

5.1. Station Abstraction

In Section 2 we have shown how data communication overhead and extra buffers can be modeled
by using simple transformations. However, for complex application pipelines, the corresponding
abstract pipelines would be very large and complex due to expansions resulting from the transfor-

mation. To help control this complexity, we introduce a stafion abstraction in this section.

‘We define two types of stations which can be used by applications to describe their pipelines. A
type 1 station is shown in Figure 7. The type 1 station is for representing intrastage computation of
an application pipeline, and it consists of input buffers, receiving overhead {,, actual computation
¢p, and sending overhead t;. The receiving overhead i, is the time for the computation process to
gain access to an input data item from the communication process. The sending overhead {, is the
time associated with passing an output data item fto the communication process. An input bufler is
characterized by its size and delay overhead. A station will have one set of input buffer for each of

its predecessors. The computation process ¢p is characterized by a processing delay distribution.

Figure 7: Computation Station

A type 2 station is shown in Figure 8. The type 2 station is an abstraction for the interslage
communication in an application pipeline. It consists of a buffer followed by the main communication
process e, The buffer is described by its size and a delay overhead, and the communication process

has a processing delay with some distribution.
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Figure 8: Communication Station

5.2. Implementation

The current implementation provides the following main functions:

e It allows any DAG to be specified as an asynchronous pipeline.
» Each abstract station is specified using parameters as defined in Section 5.1.

¢ It allows processing delays to be specified as either a normal distribution or as a sequence of

values stored in a file.

o The average cycle time and a complete trace of finish time and leave time are produced.

Evaluation of the recurrence relations is the major computational cost of our analysis method. Com-
pared to traditional discrete event simulations, abstraction using recurrence relations already avoided
those overheads associated with the management of queues and events. However, a brute force im-
plementation may be very inefficient. For example, one may implement the evaluation as a recursive
function, but due to the double-indexed nature of the recurrence relations, the implementation will
be difficult. Furthermore, it is well known that a recursive implementation of a computation is less
efficient in time than its non-recursive implementation. We have developed a very efficient iterative
algorithm for the evaluation of the recurrence relations. The key to the algorithm is the efficient

evaluation order determined from the dependencies among the recurrence variables.

Data Item j-1 Data Item.

Stage i-1
(D

Stage i+1

Figure 9: Evaluation Dependency

Figure 9 illustrates the general evaluation dependencies for f;; and l;;, where an arrow (—)
means that the evaluation for the variable at the tail of the arrow has to precede that of the variable
at the head. It is easy to see that the following pseudo code defines an iterative structure that is

consistent with such dependencies for all the variables:
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var m: integer; {total number of stages}
n: integer; {total number of data items}
ffj: Iij: l‘E&l; {]‘ < : <m, 1 SJ < 11}
for j=1tondo
fori=1tomdo
begin .
compuie fij;
compute {;;;
end.

Computation of f;; and f; is defined by the recurrence relations given in Section 2.2. A similar

sequential evaluation order is used for the recurrence relations of DAG topologies.

All user interactions with the current implementation is character-oriented. The implementation
can be improved by adding a number of features: (1) a graphical interface that allows pipeline
topologies to be specified by simply dragging and connecting blocks, (2) support for parameters of
each station to be easily edited from the graphical interface, and (3) a post-processor that allows

performance results to be plotted graphically in different metrics and styles.

5.3. Experiment Results

For experiments, both the recurrence model and discrete event simulation were applied to a 3-stage
linear pipeline and a 3-stage pipeline with two processors at the second stage, referred to as a parallel
pipeline. The findings are summarized next with discussions. We use cp; to denote a computation
station (fype 1 as defined in Section 5.1) and cm; to denote a communication station (type 2 as
defined in Section 5.1). The exact topologies of the two example pipelines are shown in Figure 10

represented as abstract stations.

3-Stage Lincar Pipeline

3-Stage Parallal Pipaline
Figure 10: Example‘f}—Sta,ge Pipelines

The particular simulator used was BONeS*. In this study, all stages (computation/communication)

{The Block Oriented Network Simulator is a software package for modeling and simulation of communication
networks from COMDISCO Systems Inc.
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are assumed to have a normally distributed processing delay with mean equal to 50%. The standard
deviation is varied from 0 to 50 with step size 10, and four buffer sizes of 0, 1, 10, 20 are examined.
Buffer sizes are always the same across stages. In all cases, both simulation and the recurrence
model are run with more than 9000 data items to ensure statistical significance for the results.
Figures 11 and 12 present respectively the results for the linear and the parallel pipelines from the
recurrence model. The same set of results were also obtained with the BONeS simulation model,
and they match almost exactly with results of the recurrence model. Hence, the simulation results
are omitted from the plot. However, it is important to note that the recurrence model is at least
an order of magnitude faster than the BONeS simulator under very similar conditions. The metric

used in these plots is the average cycle time calculated after the pipelines have been filled up (i.e.

ACt).
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Figure 11: Linear Pipeline

First we examine the linear pipeline results shown in Figure 11. When processing delay for all
stations is constant at 50 (i.e., standard deviation = 0), the average cycle time is 50 regardless
of buffer size. As the standard deviation is increased, and there is no buffering, the average cycle
time shows a linear increase; with buffer size 20, the increase in average cycle time is very little.
Thus, the family of curves (for buffer sizes 0,1,10,20) shows that the increase of average cycle time
with the increase in standard deviation is slower with larger buffers. This result fully conforms
to our expectation of the effects of buffering. First of all, due to the data dependency in pipeline
computation, a slow-down at any one stage will affect all the downstream stages by delaying the

8 According to the normal distribution, there are a small number of samples of negative value. These samples are
clipped to 0 to maintain their validity as delay samples in both the recurrence model and the BONeS sirmulation.
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Figure 12: Parallel Pipeline

arrival of subsequent data items at those stages; furthermore, since there is no buffering, a faster
stage is always forced to wait for its slower neighbors (to synchronize on per data item basis) and
a slowed-down stage has no chance of catching up because it cannot buffer data items, Therefore,
Increased variation in processing delay directly translates into longer average cycle time of the
pipeline as represented by the line labeled buffer=0 in Figure 11. On the other hand, when sufficient
buffer space is introduced, short term variations of processing delay (as dictated by the distribution)
do not have much impact on the average cycle time, as indicated by the curve labeled buffer=20
in Figure 11. This is because a stage is now rarely forced to wait in order to synchronize with its
neighbors. This trend suggests that as the buffer size goes to infinity, the average cycle time for
the pipeline would approach the mean of the normal distribution. However, the decrease in average
cycle time with respect to increased buffer size does not seem fo be linear within the ranges of buffer

size and standard deviation observed.

In the case of a paralle] pipeline, Figure 12 shows a similar trend, that is, the average cycle
time increases linearly with increase in standard deviation when buffer size is 0. As larger buffers
are used, average cycle increases slowly with increasing standard deviation. Comparison of Figures
11 and 12 show that for the same processing delay and buffer size, a parallel pipeline has a larger
average cycle time than that of a linear pipeline excepl when standard deviation is zero. This is
correct, because in the case of parallel pipelines, the waiting resulting from splitting and merging
of stages contributes to a longer average cycle time. This kind of waiting is due to synchronization

among parallel data streams, and it cannot always be eliminated by using extra buffers.
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6. DISCUSSIONS

We can think of many ways in which the recurrence model can be applied to the study of issues

related to asynchronous pipelines. Several ideas are discussed in this section.

As we have demonstrated, the recurrence model developed is an accurate performance evalua-
tion tool. For a given asynchronous pipeline system, the topology and the number of buffers at
each stage can easily be obtained; then the processing delay matrix can be derived either from a
known distribution or from trace data collected from other experiments. Given this information the

recurrence model can readily be applied and any desired performance measures can be obtained.

Another potential area of application for the recurrence model is optimal design of asynchronous
pipeline systems. In such applications, a global optimization strategy has to be defined, which
will maintain constant some of the parameters of the system (e.g., topology, number of stages and
distribufion of processing delay) while systematically varying other parameters (e.g., number of
buffers at each stage). The recurrence model can be used to evaluate performance for each of these

settings to determine an optimal setting according to a specified set of criteria.

One of our goals is to use the recurrence model to study the interprocess communication issues for
pTV (Pipelined Televisualization). In particular we need to understand how the flow and error control
mechanisms within a transport protocol affect PTV application performance. We can use type 2

"stations to model interstage communication provided by the transport protocol. The processing
delays for these stations can be derived from the underlying network characteristics and the flow
and error control overhead. We will be able to observe the impact of flow and error control on the
performance of a PTV pipeline by varying certain control parameters while keeping the rest of the
parameters constant, and to explore the trade-offs involved with using different control strategies.

6.1. Related Work

Greenberg, Lubachevsky and Mitrani [9] very recently reported their work on parallel simulations
that also utilized recurrence relations. The authors took a new approach to parallelizing simulations
of queuingr systems. First, they formulated simulations of queuing systems as solutions to a set of
recurrence relations. Then they presented methods for solving the recurrence relations using multiple
processors. ‘The queuing systems studied include the @ /a/1 queue, queueing networks with global
FCFS structure, and a variety of general networks of G/G/1 queues (e.g., with non-FCFs discipline
and feedback). It was shown that a much higher level of parallelism in simulation can be achieved

with recurrence relations than previously possible with standard event-list approach.

Qur work has been motivated by the need for an efficient and accurate model for analysis of
distributed asynchronous pipelines. The systems under consideration always have finite buffers as
opposed to infinite buffers of G/Gg/1 queues. We also need to define exactly how to model the
intrastage computation and the interstage communication in pipelines. These high level differences

have led to the following specific differences between the recurrence relations derived:
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s Given our emphasis on the asynchronous behavior of the pipeline, we did not model the arrival
process explicitly as in [9]. But it can easily be modeled by an additional input stage with its
processing delay distribution equal to the interarrival time distribution.

e Finite buffers are modeled differently. In [9], the authors derived a separate set of recurrence
relations for a series of queues with bounded buffers. These relations were of higher order. We
introduce a transformation that models buffers by additional abstract stages, thus avoiding

the need for separate higher order recurrence relations for different buffer sizes.

o When dealing with queuning networks with parallel queues, the authors in [9] had concentrated
on only 6/c/1 queues (i.e., with infinite buffers). Therefore, no backward dependency had to
be modeled by their recurrence relations. In the case of asynchronous pipelines, if the buffer
of the successor of a stage is full, the stage will have to wait. This dependency is explicitly

modeled in our recurrence relations.

The recurrence relation approach had also been used earlier in somewhat limited ways for studying
G/G/1 systems (e.g., see {10}). Not only were the buffers assumed to be infinite, the objective was
limited to deriving waiting time for jobs rather than a complete trace of the system (also pointed

out in [9]).

7. CONCLUSION

In this paper we have presented a recurrence model as an efficient tool for performance analysis of
asynchronous pipelines. We have also reported experimental results that verified the set of recur-
rence relations and transformations. We emphasize the model’s strength of being able to provide
very accurate modeling while requiring very little computation power. Particularly, the bag model
is powerful enough to apply to any parallel pipeline with a DAG topology, which is an essential
component of many distributed computing systems. We also outlined a number of ways that the

recurrence model may be used to study various issues in the engineering of asynchronous pipelines.

In the light of recent work by Greenberg et al, we can consider to extend the current model
to the cases where dynamic routing of data items is allowed and to explore parallel computation

algorithms for the recurrence relations.
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