Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-10
1990-11-01

SwarmView Animation Vocabulary and Interpretation

Kenneth C. Cox

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cox, Kenneth C., "SwarmView Animation Vocabulary and Interpretation" Report Number: WUCS-91-10
(1990). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/629

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/629?utm_source=openscholarship.wustl.edu%2Fcse_research%2F629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

SwarmView Animation Vocabulary
and Interpretation

Kenneth C. Cox

WUCS-91-10

November 1990

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

1 Introduction

This document specifies the syntax and interpretation of the language which is used to transmit
descriptions of animations from SwarmExec to SwarmView. SwarmExec is a Prolog-based execution
engine running on a Macintosh® IIfx. SwarmView is a C-based graphical engine running on a Silicon
Graphics Personal Iris®. The major design elements of SwarmExec and Swarm View are discussed in the
referenced papers.

2 Basic Concepts

The language described in this paper specifies collections of graphical objects that change with
time. The language design is centered around primitive graphical objects or PGOs. PGOs are those simple
graphical elements (such as lines, circles, rectangles, and spheres) which are provided by the SwarmView
graphical engine. Each PGO has a type and a number of typed attributes. The type is the graphical form of
the PGO, for example line or sphere. The attributes are those parameters of the PGO which are required to
generate the object; in the case of a sphere, this would inclnde the center, radius, and color. Attribute types
are numbers, lists of numbers, and lists of lists of numbers — for example, coordinates are represented by
lists of three numbers, and sets of coordinates are represented by lists of lists of three numbers. (Lists are
enclosed in square brackets with elements separated by commas, a notation selected for its resemblance to
Prolog.) Appendix 2 contains a list of the primitive graphical objects currently provided, along with the
attributes of each object and the type of each atiribute.

The basic unit of animation is a primitive graphical event or PGE. A PGE specifies an animation
involving a single PGO. A PGE is represented in the language by a tuple

type (attribute] = expr], attribute? = expry, ..., altributen = expry)

where the fype is the PGO type, cach atribuse; is one of the PGO's attributes, and each expr; is an
appropriately-typed expression, either a constant or a time-dependent function. The tuples are variadic; that
is, the number of tuple components (atiribute/expression pairs) which appear is permitted to vary.
Attributes for which an expression is unspecified are assigned a default value as indicated in Appendix 2.
Animation is achieved by using time-dependent functions provided by the SwarmExec graphical engine.
For example, 10 make a sphere move from point A to point B, we assign to the sphere's center attribute a
function which changes smoothly from A o B.

The language is used to specify a series of graphical transitions, each of which represents a change
from one image to another, the two images corresponding to two consecutive states of the underlying
computation. Between each such pair of endpoint images are additional images or frames, generated by the
animation, which produce the desired smooth transition from the initial image to the final image. Each
graphical transition can be perceived in two ways:

* asacollection of PGEs which occur simultaneously;
» as acollection of frames which occur consecutively.
The first view is the one expressed by the language; the second is that which SwarmView generates.

Generation of frames involves the concept of time. Time within a transition is measured in terms
of frame counts, also called ficks. The first frame of a transition occurs at tick 0, the second at tick i, and
so forth; the final frame occurs at a time ¢_max which is determined from examination of the tuples making
up the graphical transition. The times used in the animation functions are specified as numbers in terms of
ticks. One use of time is in the /ifetime attribute; this attribute, which is possessed by all objects, is of
type “list of two numbers” and represents the (closed) range of frames between which the object will be
produced. An object with fifetime = [3,5] will be produced only in frames number 3, 4, and 5; one with
lifetime = [0, ¢_max] will be produced in all frames.

3 Language Interpretation

A “program” in the language consists of an arbitrarily-long sequence of graphical ransitions, Each
transition consists of a sequence of PGE tuples separated by semicolons; the sequence is terminated by the
special token end followed by a semicolon. A complete BNF grammar for the language appears in
Appendix 1,

Interpretation begins with the input and storage of the PGE tuples making up a transition. The
value of ¢_max for the transition is then determined by examining all the tuples and selecting the maximum
of all times present (or 1, if no time is present). Times can appear in two contexts: as particular
arguments of functions (for example, the first and third arguments of a ramp function), and as values
assigned to the lifetime attribute of objects. One the value of 7_max is determined, the interpreter generates
the sequence of frames. For each tick, the values of all attributes of all objects are determined and the
resulting collection of objects is rendered (although a particular object is rendered only if the current tick
falls within the object's /iferime). The atiribute may have been assigned a constant (a number, list of
numbers, or list of list of numbers); in this case, the value calculated is simply the constant. In the case of
a function, the value is obtained by evaluating the function at the appropriate tick and using the resulting
value,

3.1 Function Specification and Evaluation

A function is either a simple function or a composition of simple functions. The notation for a
simple function is standard:

function_name (argument], argument?, ..., argumenty,)

A composite function is represented by a list of simple functions. A list of the available simple functions,
with explanations of their behavior, is in Appendix 3.

The arguments of a simple function are of iwo types, times and constants. A time is an integer or
the special token t_max which represents the value ¢_max. The constants are numbers, lists of numbers,
or lists of lists of numbers; all constants provided to a particular function must be of the same type, and the
value produced by the function will be of the same type.

We first consider the case of a simple function calculating a value of type number. Each function
has two associated times (two of the function arguments) called the start time and the end time of the
function. These divide the time from 0 to ¢_max into three periods, those before, during, and after the
function’s time range. The before period consists of those ticks ¢ such that 0 € ¢ < start time; the during
period covers start time < t < end time; and the after period is end time <t < t_max. Any of these
periods can be of length 0. For ticks within the during period, the value produced by the function is
determined through application of the function and generally varies in some way. For ticks within the
before and after periods, the value produced is a constant also determined by the function — most typically,
the value before is the value of the function at the start time and the value after is the value of the function
at the end time.

The start time, end time, and behavior of each function are explained in Appendix 2. As an
example, consider the function ramp(4,3.0,8,5.5). The start time of this function is 4, the end time is 8:
assume ¢_max is 20. Then the function behavior is as shown in Figure 1: A ramp extending from time 4
to time 8 with value varying from 3.0 to 5.5, preceded by a constant value 3.0 and followed by a constant
value 5.5,

When a simple function applied to more complex arguments (such as a list) the result is of the
same type as the arguments and is obtained by applying the simple function to each of the list components
individually. Jf arguments are lists of lists, the function is applied recursively to each list component. For
example, the value resulting from the function ramp(0,{0,0,0],2,/2,4,8]) at time 1 is {1,2,4]. This result
can be considered as the value obtained by forming the list /; ramp(0,0,2,2).ramp(0,0,2 4}, ramp(0,0,2.8)].
(The language currently does not support the list of functions construct ; it is under consideration as a
convenient expansion.)

Figure 1. Behavior of ramp(4, 3.0, 8, 5.5).

In the case of a composite function the resuits are somewhat more complex. Assume for now that
two functions are involved. The most important rule is the following: the during periods of the two
functions must not overlap. That is, the intersection of the two during periods must be empty; no tick can
be common to both, If the during periods do overlap, the behavior of the function is undefined (in the sense
that any value produced is considered legitimaic),

With this restriction, it must be the case that one function's during period occurs before the other's.
This divides time into five periods:

* The before period of the first function. The value of the composite function in this period is
the value produced by the first function in its before period.

* The during period of the first function, The value of the composite function is the value
produced by the first function in its during period.

* The intersection of the agfter period of the first function with the before period of the second
function, The value of the composite function is a smooth interpolation between the value
produced by the first function for its after period and the value produced by the second function
for its before period. That is, if end rime of the first function is tick ¢£7 and that function
produces value vy for its affer period, and start time of the second function is tick rpand that
function produces value v for its before period, the value of the composite function between
times {7 and2 is that produced by a ramp (17, v}, 12,12).

* The during period of the second function. The value of the composite function is the value
produced by the second function in its during period.

> The gfter period of the second function. The value of the composite function in this period is
the value produced by the second function in its after period.

Figure 2 illustrates the results of composing several ramp functions. The dashed lines indicate the
periods of time as discussed above. The second graph in the Figure illustrates the behavior when the third
time period is of length 0; in this case the ramp degenerates to a step where the value at the step is the
value produced by the second function.

e e e o e e o ou

il R e R

ramp(12,6.0,17,3.0)]

65.0)»

[ramp(3,2.0

,ramp(9,5.5,17,1.0)]

0)

[ramp(2,5.0,9.2

7,10}]

4,2.0), ramp(7,.2.0.9,5.0), ramp(12,5.0,1

¥

{ ramp(2,5.0

Figure 3. Compositions of various functions.

The third graph in Figure 2 illustrates the composition of three simple functions. The method is a
logical extension of the composition of two functions. We first compose any two consecutive functions,
ie., any two functions whose during periods are such that no other function has a during period intervening.
We consider the result as a single function whose during period includes the during periods of both
subfunciions as well as the period between the two. We then compose this function with the third,
Composition of any number of functions can be performed in the same manner, and a recursive
specification for the result of composing a set of n functions can be easily expressed:

If n = 1, the result of the composition is the single functon in the set.

If n > 1, select any two consecutive functions and remove them from the set. Compose the two
functions using two-function composition, and add the resulting function to the set, Apply this
algorithm to the result.

1t should be noted that the above, although a concise means of expressing the result of a composition, is
not the algorithm used by the SwarmExec interpreter for function composition — the interpreter does not
need to have an expression for the composition, merely a means of calculating the value of the composite
function at any particular tick.

4 Interpretation of Special Tuples

The SwarmView implementation defines a number of special tuple types. These tuples do not
correspond 1o PGOs; instead, the tples are used 1o transmit certain types of control information. Two
special tuple types are currently defined: view and define.

The view tuple is used to specify the desired viewpoint for the graphical transition. The
SwarmView viewing model is polar, where the user is considered to be looking at a particular point in the
graphical space (usually the origin) from a viewpoint defined relative to the observed point by a distance,
azimuth angle, and incidence angle. The parameters of the view tuple specify the observed point, distance,
and angles. If a view tuple is encountered in a graphical transition, the tuple is stored; during the transition
the view tuple is used to determine the viewpoint information. Normal viewer control of the viewpoint is
overridden; the user can pause the animation and change the viewpoint, but when progress is resumed the
viewpoint will return to that specified by the view tuple. Note that the attributes of the view tuple can vary
with time, allowing the visualization to (for example) “zoom in” on areas of particular interest.

The define tuple is used to manipulate SwarmView's symbol table, either to create new object
types based on existing object types or to change the default atiributes of an existing type. The notation
used is:

define (typename = primitive graphical event tuple)

The interpretation of the define tuple is to create the new object type fypename (or modify the existing
typename), where typename will be a name for objects of the type given by the primitive graphical event
tuple with default attributes as given by the PGE. The object type of the PGE must be one of the
“primitive” types as listed in Appendix 2. For example, if the tuple

define (smallsphere = sphere (radius=02))
is processed, the result will be a symbol table entry for objects of type smallsphere which are identical to a
sphere except the default radius is 0.2. The new type smallsphere may then be used as a typename in PGE

tuples. If the fypename and the type of the PGE are the same, the define tuple re-defines the defaults for the
object type. For example, the following tuple causes all spheres to have radius 0.2 by default:

define { sphere = sphere (radius =0.2))

The define tuple is the only case in which the order in which the tuple set is read by SwarmView is
significant. The SwarmExec execution engine is set up so all define tuples are transmitted before any

tuples of other types, but not in any particular order. This ensures that all definitions appear before they are
used.

5 Acknowledgments

The author would like to thank Dr. Jerome R. Cox of the Department of Computer Science at
Washington University for his support. This research was supported in part by the National Fellowship
Program in Parallel Processing, supported by DARPA/NASA and administered by the University of
Maryland Institute for Advanced Computer Studies (UMIACS).

Appendix 1. Grammar

The following is a BNF grammar of the language. Terminals are in bold. The symbol A
represents the null string. The “terminal” identifier represents any legal identifier (anything described by
the LEX-style regular expression [a-z]{a-zA-Z_0-9]*); number represent any legal numeral, either integer
orreal.

language = (ransition_list
transition_list u= transition transition_list
Y
transition y= pge ; transition
I end;
pge = type_name (attribute_list)
I type_name ()
_name n= identifier
atiribute_list = attribute , attribute_list
l attribute
attribute 1= atiribute_name = expression
attribute_name u= identifier
expression »= function
| constant
function = primitive_function

I { primitive_function_list]

primitive_function_list = primitive_function , primitive_function_list
| primitive_function

primitive_function = identifier (constant_list)
constant_list = constant , constant list
| constant
constant = number
t_max

[constant_list]

Appendix 2. Graphical Objects

The following graphical objects are provided by the interpreter. All objects have a lifetime
atiribute, which is of type list of two numbers. The type coordinate is a shorthand for “fist of three
numbers” and specifies the X/Y/Z coordinates of the point. The type color is “list of three numbers” and
specifies the red/green/blue color values, each in the range O to 255, The default color is white, or
[255, 255, 255].

Object Type Attribute Type Default Notes
point position coordinate 0,0,0] location of point
color color white color of point
line from coordinate [0,0,0] one endpoint
to coordinate [0, 0,0 the other endpoint
color color white
width number 1 width of line (screen pixels)
rectangle comer coordinate [0,0,0] lower left comer
xsize number 1 dimensions
ysize number 1
color color white
fill number 0 if non-zero, rectangle is filled
xrot number 0 rotation about X-axis, degrees
yrot number 0 rotation about Y-axis
zrot number 0 rotation about Z-axis
crect center coordinate [0,0,0] centroid
xsize number 1 dimensions
ysize number 1
color color white
fill number 0 if non-zero, rectangle is filled
xrot number 0 rotation about X-axis, degrees
yrot number 0 rotation about Y-axis
ZI0t number 0 rotation about Z-axis
polygon vertices list of coordinates [[0, 0, 0]] in the order 1o be connected
color color white
fiil number 0
circle center coordinate [0,0,0]
radius number 1
color color white
fill number 0
Xrot number 0 as in crect
yrot number 0
Zrot number 0
sphere center coordinate [0,0,0]
radius number 1
color color white

A-2

Appendix 3. Functions

Function Start End Value Value during VYalue
time time before after
step (t, vQ, v1) t t V() N/A v]
ramp(tg, vQ, t1, v1) 1) 11 v linear interpolation v1
from vg attp to vq
at {1
constant(t(), v, t1) 78] 11 v v v
square(0, t1, Pon, Poffs Yon. Voff) 10 t Voff square wave: Von Voff
for pop, ticks, vgff
for Doff ticks

The square function takes value von at time tQ, then alternates between vop and voff for the rest of
the during period. Ass von periods last a complete time pop; if the interval remaining in the during period
is insufficient for a complete vop, the value will be held at vogf until the expiration of the during period.
The following diagram gives some examples of this for clarification. Both graphs show a square wave with
Pon = 3 and poff = 2. In the upper graph the last von period ends at tick 11; if another period were started,
it would begin at time 13 and end at time 16, after the expiration of the during. In the lower graph there is
sufficient time for an addition vgp period to be included.

A !

3 —] : :

| ;

P B *—0 ® E

0 T P O Rl
0 5 10 15 24

square(3,15, 3,2, 4,1)

A : i

4 &—0 e&——o0 eo—5

3~ : :

S s

SO [D B Y I Ry Oy N B Y Iy By B By e
0 5 10 15 20

square(3,16, 3,2, 4,1)

A-3

	SwarmView Animation Vocabulary and Interpretation
	Recommended Citation

	tmp.1455646060.pdf.9i47s

