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Recently developed in our laboratory the MRI-based technique – 3He Lung Morphometry – 

is a unique tool allowing in vivo measurements of lung microstructural parameters such as 

alveolar volume, surface-to-volume ratio and alveolar density. These parameters are 

commonly used by lung physiologists and pathologists but were previously available only 

from invasive biopsy studies.  3He Lung Morphometry was originally developed for human 

studies but there is a need to expand it for studies of small animals like mice and rats that are 

used to advance our knowledge of lung physiology in health and disease and for 

development of drugs. Such an expansion of the 3He Lung Morphometry technique is the 

subject of this dissertation. To achieve this goal we have developed a theory of 3He gas 

diffusion in lung airways and alveoli and tested this theory in two distinct experiments.  
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In the first experiment, using a Stejskal-Tanner method, we examine the diffusion of 3He 

atoms as it occurs in tiny airways of mouse lungs. Through a series of magnetic resonance 

(MR) measurements we study the pattern of signal decay over very short periods of time. 

This decay crucially depends on the confining effects of the spins in very small 

compartments, lung acinar airways and alveoli. The signal decay is mathematically modeled 

after the theory developed in our laboratory that describes 3He gas diffusion in the 

compartments that are at the scale of mouse lung airways (~100 µm). Applying our MR 

diffusion decay measurements in the mouse lung mathematical model allowed us to provide 

close estimation of lung microstructural parameters at the alveolar level. The values obtained 

for those parameters are in agreement with various histological findings published in the 

literature, as well as our own histological findings. These values are also in agreement with an 

in vivo mouse lung 3He MR experiment also conducted in our laboratory.  

 

Our theory of 3He gas diffusion in lungs relies on an assumption that diffusion in the lung 

acinar airways is anisotropic. Thus, a set of experiments were performed to demonstrate that 

the gas diffusion in mouse lungs is indeed anisotropic. The MR measurements that 

demonstrate anisotropy of the 3He gas diffusion in mouse lung also use a series of MR 

diffusion measurements. These MR measurements are directionally interrelated in such a way 

that the results unequivocally demonstrate diffusion anisotropy, one of the founding 

assumptions for our mathematical mouse lung model.  
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These two studies examined healthy lungs and allowed us to develop a robust and reliable 

tool to measure mouse lung parameters. We applied this tool and provided the first in vivo 

measurements of changes in lung microstructure that occur as a result of smoking.  
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Chapter 1 - Introduction 

1.1 Project Overview and Aims 

The efficiency of oxygen delivery through the lung airspaces to the blood vessel network 

occupying the alveolar walls depends mostly on the structure, integrity and functioning of 

the pulmonary acinar airways. The morphometry of the pulmonary acinus, both in health 

and disease, has been studied in numerous publications. These studies provided invaluable 

information on lung microstructure that is the basis of the current knowledge on the lung 

structure and function (see for example [1-5]). Understanding changes in lung microstructure 

in different illnesses is crucial for phenotyping disease progression and developing new 

medicines. One of the lung diseases that is mostly related to changes in lung alveolation and 

affects millions of Americans and people worldwide is emphysema.  

 

The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, 

a number of important questions remain unanswered because a quantitative localized 

characterization of emphysema requires knowledge of lung structure at the alveolar level in 

the intact living lung [6]. Lung stereology, the extraction of the lung spatial geometry from 

two dimensional planar sections of biopsied tissue, is considered the “gold standard” for the 

lung morphometry [7]; however its clinical applications are limited by its invasive nature. The 

introduction of hyperpolarized gas MR [8, 9] has opened the door to applications for which 

gaseous agents are uniquely suited, such as lung magnetic resonance imaging (MRI) [10]. 

One direction in hyperpolarized 3He gas MRI is lung morphometry that is based on 

measuring the random atomic motion (diffusion) of 3He gas that is inhaled by a subject. To 



2 

 

diffusing 3He atoms, the alveolar walls, alveolar ducts, sacs and respiratory bronchioles serve 

as obstacles - they reduce and restrict the 3He gas diffusivity. Thus, the measured atomic 

diffusion strongly relates to the lung microstructure. Already initial publications [6, 11-13] 

have demonstrated that the apparent diffusion coefficient (ADC) of hyperpolarized 3He gas 

in the lungs is much smaller than in the free space but dramatically increases in emphysema, 

suggesting a large potential as a diagnostic tool for clinical applications. 

 

While very encouraging, the 3He gas ADC measurements substantially depend on the details 

of the technique that is used in the MR experiments. Also, ADC does not provide direct 

measurement of lung geometrical parameters, even though ADC showed correlation with 

direct morphometric measurements in rats [14, 15], humans [16] and rabbits [17]. The 3He 

gas lung morphometry technique developed in our laboratory by Yablonskiy and colleagues 

[6, 18, 19] allows MRI-based diffusion measurements to provide unique in vivo information 

on the lung microstructure at the alveolar level: 3D tomographic images of such geometrical 

parameters as mean airspace chord length (Lm), lung parenchyma surface-to-volume ratio 

(S/V) and the number of alveoli per unit lung volume (Na) can be estimated from a rather 

short (several seconds) MRI scan. These parameters are most commonly used by lung 

physiologists to characterize lung morphometry [7] but were not previously available from in 

vivo studies. 

 

To date, the 3He gas lung morphometry technique with hyperpolarized 3He gas diffusion 

MRI has been developed and exploited for human lungs [19]. In this study we further 

develop and use the 3He gas lung morphometry to study lungs in mice. As mouse lungs have 

vastly smaller physical parameters, this requires modification of the theoretical equations that 
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relate MRI diffusion measurements to lung microstructural parameters [19]. While the 

general MRI morphometry theory remains valid, the specific relationships between lung 

microstructure parameters and diffusion attenuated MR signal must be modified for 

parameters of mouse lungs, which is one of the objectives of this study. Thus, one of the 

goals of this work is to take the theoretical model used in human lung experiments and 

generalize it for the small physical size of mouse lung airways. Also because the length of the 

acinar airways in mouse lung is much shorter than in humans, the diffusion gradient 

encoding duration should be shortened to minimize effects of 3He atoms escaping into 

adjoining airways and distorting the lung morphometry measurements. The mathematical gas 

diffusion model for the human lungs cannot simply be scaled down for the mouse lungs as 

number of physical parameters differ in a non-linear fashion and different gradient pulses 

will be used. In this study we use very short bipolar diffusion sensitizing gradient pulses 

(Δ=440 μs), as compared to 1800 μs in human experiments. 

 

To achieve the overall goal of non-invasively obtaining mouse lung microstructure 

parameters comparable to those obtained using direct method (histology), we pursued the 

following specific aims: 

 

AIM 1.  To Develop Animal Model And Lung Scanning Protocol 

The core of this aim is to develop an animal scanning model to study lung microstructure 

using MRI techniques described in [6] and [18] to measure the lung physical parameters 

based on in vivo lung morphometry technique proposed by Sukstanskii and Yablonskiy [18, 

20].  
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Previous studies used an in vivo model which, due to the lung dimensions and the limiting 

factors imposed by hyperpolarized 3He gas, introduced various motion artifacts. To eliminate 

them and focus specifically on the lung, an object of this study is an MR experiment on the 

lungs of a freshly sacrificed animal. Using this model, a number of variables are 

contemplated and tested: scanning lungs in the chest cavity or excised, oral vs. tracheal 

intubations, age of the animals, size, period between intubation and data collection, various 

purging techniques, suppressing the 3He gas MR signal from large airways, various 3He gas 

delivery techniques as well as the tradeoff between the richness of the 3He gas mixture, lung 

airway sizes, diffusion speed in the lungs and the administration of diffusion weighing (b-

values) MR pulse sequence.   

 

AIM 2.  To Determine Lung Microstructure Using The 3He Morphometry Technique 

The objective here is to establish lung morphometry parameters for normal (non-diseased) 

lungs, to measure the lung microstructure and to compare it with the histology Lm method 

using fifteen freshly sacrificed mice. The Lm, or Mean Linear Intercept method, is a standard 

histology measurement technique used to quantify the average size of alveoli [20].  

 

To quantify lung morphological parameters from the diffusion measurements on the acinar 

level in healthy mice, we have developed and/or adapted a number of data processing 

mathematical methods and tools. Namely, to assess the MR signal strength, we use a 

Bayesian Analysis software package to describe the frequency spectral data. The 

mathematical model developed in [6] and subsequently optimized for the mouse lungs is 

used in a mathematical analysis software package to curve fit sets of MR diffusion data to 

extract morphometric parameters.  



5 

 

 

AIM 3.  To Validate MR measurements Through Histology in Mice With 

Emphysema  

The final objective is to establish lung morphometry parameters for emphysema diseased 

lung, to measure its microstructure and to compare it with the histology Lm method using 

freshly sacrificed mice. As in the previous aim, to attain this objective, a diseased lungs 

model with smoking-induced emphysema will be used.  

 

 

1.2 Conventional and Hyperpolarized 3He 
Magnetic Resonance Imaging 

Conventional MRI uses the water hydrogen nuclei present in the body as a signal source. 

The low density of the lung (tissue of the lung comprises only 10-20% of the lung volume) 

drastically reduces the nuclear spin density making conventional MRI of lungs very difficult 

[11]. Spin density is defined as the number of nuclei per volume that will provide an MRI 

signal when excited by an RF pulse of the resonant frequency of the imaged nuclei for a 

given strength of the permanent magnetic field. The MRI signal is proportional to the spin 

density, thus imaging low density tissue results in a poor MRI signal. Additionally, any 

magnetic field inhomegeneities across the lung will negatively affect the measured MRI 

signal. These inhomogeneities are due to the magnetic susceptibility difference at the 

boundaries between lung tissue and gas in lungs. These inhomogeneities will have 

pronounced effect for small samples as mouse lungs where strong gradients have to be 

applied to obtain the MR data.  
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Applying MR principles to hyperpolarized 3He gas inhaled into the lungs allows direct 

imaging of the airspaces in the lungs. The hyperpolarized 3He MRI of the lungs is a non-

invasive, non-destructive and relatively safe technique. It utilizes the high spin polarization 

of laser-polarized 3He gas to generate a strong MR signal of the gas delivered to the lung 

airways. As opposed to the conventional MRI method, in which we image the lung tissue 

itself, the hyperpolarized 3He gas MR images gas within the lungs. This method allows for 

MR examination of the lung internal microstructure, its ventilation as well as time-dependent 

studies to observe changes.  

 

The process of hyperpolarization is a spin-exchange technique [21] using a commercial 

polarizer to achieve polarization levels of approximately 40%. The spin density of the 3He 

gas is approximately 2,500 times less than that of water 1H protons; however, the 3He gas 

can be hyperpolarized to approximately 100,000 times the spin polarization of the thermal 

equilibrium. Although this compensates for the low-spin density of the 3He gas, the 

hyperpolarization is a non-equilibrium state and the polarization level decreases rapidly due 

to various mechanisms in the process of creation, dispensing, transportation and delivery of 

the gas. Even so, the remaining 3He gas polarization, if quickly delivered, provides more than 

adequate signal-to-noise ratio (SNR). It is important to note that this technique does not 

detect tissue (as the solubility of the 3He gas is very low) but detects hyperpolarized 3He gas 

only in the ventilated airways of the lungs. In the MR images tissue will appear as dark 

regions, while high-spin density regions from hyperpolarized 3He gas will appear as bright 

regions.  
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As stated earlier, the highly polarized state is not an equilibrium (stable) state and each RF 

pulse will result in an unrecoverable signal loss. Polarization will also degrade over a period 

of time, thus proximity of the polarizing hardware is beneficial. The 3He gas is scarce, 

expensive and slow to polarize. Hence, special MR protocols should be used to address these 

specific details of hyperpolarized gas MRI.  

1.3 3He Gas Apparent Diffusion Coefficient in 
Mouse Lungs 

Initial studies in humans and rats [6, 11-13, 22] have shown the correlation between the 

internal lung microstructure and the apparent diffusion coefficient (ADC) of the 

hyperpolarized 3He gas in the lungs. Diffusion here is described as traditional Brownian 

motion of the gas atoms in the lungs and denoted as D – diffusion coefficient. For 3He 

diffusion in 3He gas, the free diffusion coefficient is 1.8±0.2 cm2/s [23, 24] and for the 

observing diffusion time interval t, the diffusing 3He atoms will on average move 

 

 2rmsx Dt  (1.1) 

 

If diffusion is measured in the presence of gases other than 3He gas, this diffusion will take a 

different value and will be modified by the amount and type of other gases [25].  

 

Mouse lungs are highly restrictive to gas diffusion: the obstacles result in reduction of the 

diffusion coefficient being measured using MR technique. This measure of reduced diffusion 

is known as the apparent diffusion coefficient (ADC).  
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As alveolar walls, alveolar ducts, sacs and respiratory bronchioles serve as obstacles to the 

path of the diffusing 3He atoms, they reduce and restrict the 3He gas diffusivity. Thus, there 

should be a strong correlation between the measured atomic diffusion and underlying lung 

microstructure.  

 

In essence, we should be able to link changes in ADC to lung microstructure changes. The 

lung changes due to emphysema will deteriorate the lung airways and alveoli, resulting in a 

different diffusion coefficient that can be effectively related to detecting the disease, its 

stages and progression. From here, one can expect to see a discernable difference in ADCs 

between healthy and diseased lungs as well as to track lung changes due to a disease over 

time by tracking changes in the ADC.  

1.4 Hyperpolarized 3He Measurements in Mouse 
Lungs 

The flexibility of working with a mouse model makes applying the techniques of 

hyperpolarized 3He magnetic resonance lung imaging to mice very logical, thus from that 

perspective, mice are suitable candidates for hyperpolarized 3He gas MRI experiments. These 

experiments can serve as validations of the proposed MR method and also to study different 

mice models of lung diseases. On the other hand, the mouse is a small animal and many 

experiments involve larger rodents [11] or even larger animals like dogs or pigs [26]. As 

compared to other research animals, the small size of a mouse, and its lungs, pose 

experimental challenges that should be overcome to make them useful research vehicles to 

conduct hyperpolarized 3He gas MRI experiments.  
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The main challenge is that mouse lung is about 10 times smaller than the average rat lung 

and around 6000 times smaller than the average human lung. This means that volumes of 

gas will be that much smaller, and although the expected signal should be roughly 40 times 

higher than that of the protons in the water molecule, such small amounts of hyperpolarized 

gas in tiny airways will rapidly degrade in polarization.  

 

To date, the 3He gas lung morphometry technique with hyperpolarized 3He gas diffusion 

MRI was developed and exploited for human lungs [19]. In this study we use the 3He gas 

lung morphometry to study lungs in mice, leveraging the theoretical model of [19], 

developed for human lungs. As mouse lungs have vastly smaller physical parameters, this 

requires modification of the theoretical equations that relate MRI diffusion measurements to 

lung microstructural parameters [19]. While the general MRI morphometry theory, to be 

addressed in sections that follow, remains valid, the specific relationships between lung 

microstructure parameters and the diffusion attenuated MR signals should be modified for 

mouse lungs, which is one of the objectives of this work. Thus, the theoretical model used in 

our experiment is generalized for the small physical size of mouse lung airways. Also because 

the length of acinar airways in mouse lung is much shorter than in humans, the diffusion 

gradient encoding duration should be shortened to minimize effects of 3He atoms escaping 

into adjoining airways (this effect is not accounted for in the current theory) and distorting 

the lung morphometry measurements. In this study we use very short bipolar diffusion 

sensitizing gradient pulses (Δ=440 μs), as compared to 1800 μs in similar human 

experiments. 
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1.5 Main Project Steps 

All experiments were performed on an Oxford Instruments (Oxford, UK) 4.7 T horizontal-

bore magnet (33 cm magnet bore and 15 cm gradient bore), equipped with 60 G/cm 

gradient coils. All procedures are performed with the approval of the Washington University 

Animal Study Committee. To conduct any of the 3He gas diffusion measurements in lungs, 

ex vivo, the main project steps are encompassed by the five major and distinct activities: 

 

1) Shimming: Magnet shimming is accomplished using a spherical phantom containing 

doped water. The phantom was 17 mm in diameter mimicking the size of the inflated 

mouse lungs. The shimming was conducted using a tuning box, i.e., a passive LC 

circuitry that tunes the 3He coil to the water Larmor frequency for the particular magnet 

field strength of 4.7 T.  

2) Lung extraction and intubation: After collecting general information from a mouse while 

alive (weight, age, condition), the mouse was euthanized.  The euthanasia was followed  

by opening the chest cavity and removing the lungs. This is a delicate first step that all 

subsequent steps and results depend on. Mouse lungs are very small in size; they have to 

be removed relatively fast and intact, along with the trachea. After the lungs are removed 

from the chest cavity, the heart and any surrounding fat are removed and the trachea is 

promptly catheterized with a plastic needle. Particular attention has to be paid not to 

pierce, cut or damage the lungs otherwise, as any gas leakage will prevent the experiment 

from being conducted properly. 

3) Delivery of the hyperpolarized 3He gas to the lungs and the MRI experiment: This step 

required building a valves-tubes-syringes gas delivery apparatus specially designed to be 

compatible with the small size of the mice lungs, the high magnetic fields in which it 
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must operate, and the easily de-polarizing nature of the hyperpolarized 3He gas. The 

apparatus was tasked with delivering precise amounts at precise pressure of either 3He 

gas or N2 gas. Once extracted, the lungs were fitted into the 3He coil and connected to 

the gas purge and delivery apparatus. Using the apparatus, the lungs were repeatedly 

purged using 3He gas (at equilibrium polarization, not hyperpolarized) to remove 

virtually all remaining oxygen in the lungs. The freshly hyperpolarized 3He gas was 

dispensed into a 1L Tedlar bag and the bag was connected to the gas delivery apparatus, 

ready to be delivered to the lungs. For the duration of the experiment, the Tedlar bag 

with hyperpolarized 3He gas resided about 2 feet from the bore opening, along the field 

axis, where the fringe field of the magnet is about 100 G. This location was selected 

because the magnetic field is very strong yet the field gradients are small enough (~0.1 

G/cm) to cause negligible T1 relaxation of the gas [27, 28]. Immediately after the Tedlar 

bag was connected to gas delivery apparatus, the hyperpolarized 3He gas is delivered to 

the lungs, followed by a small amount of inert gas, N2. The lung valve was then closed 

and the lungs were disconnected from the rest of the gas delivery system. The carrier 

along with the 3He coil carrying lungs filled with required amount of 3He gas was 

inserted into the center of the magnet for MRI scanning. Usually two to four MRI 

experiments, depending on the combination of the strength of the polarization and the 

type of the experiment, are conducted while changing diffusion encoding axis or other 

key parameters of the MRI sequence, as required. Once scanned, the lungs were pulled 

out of the magnet, connected to the gas delivery apparatus for the repetition of the 

process: purging, delivering fresh HP 3He gas, and inserting back into the magnet for 

scanning.  
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4) The flip angle confirmation for each batch of 3He gas: The duration and strength of each 

RF pulse determines the flip angle that the 3He nuclear spins will exhibit. Each flip is a 

loss of irrecoverable nuclear polarization of the hyperpolarized 3He gas. The precision of 

the sequence depends on the precision of the flip angle delivered used by the sequence, 

thus preliminary calibration of the flip angle was conducted using a syringe filled with the 

pure hyperpolarized 3He gas by measuring the polarization loss after 20 RF pulses of 

fixed duration and strength.  

5) Data Analysis: The MRI data obtained from the scanner were in the form of FID (Free 

Induction Decay) array of data. To convert it to information useful to us, we first put 

this array of data through the FFT (Fast Fourier Transform) transform to be able to see 

discernable spectral information as captured after each RF pulse in the sequence. To 

extract the peaks of major harmonics, the spectral data are analyzed using Varian’s Bayes 

analysis software. These data are then transferred to MS Excel for further analysis: 

extraction from Varian format, averaging, flip angle correction. For this part of the 

process a few MS Excel tools enabling a quick manipulation of large data sets were 

developed. The previous steps prepare the data to be fit using a mathematical model 

developed in house specifically for mouse. This fitting is performed in Origin 7.5, 

professional graphing and data analysis software for scientists and engineers. The fitting 

of the mouse lung model to data using Origin 7.5, eventually yields information on 

physical lung dimensions, (varied radius of lung airways, R and r) as well as other 

important physical lung information (Lm – airway mean chord length, S/V and Na). 

1.6 Dissertation Overview 

Overview of the remaining chapters is as follows: 
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Chapter II is an overview of the theoretical background that provides the basis for deriving 

the latest mouse lung mathematical model for the 3He gas diffusion. It is a discussion that 

covers the general physics of nuclear spins in magnetic field, their optical pumping to create 

the hyperpolarized 3He gas and the science behind the MRI of such optically pumped gas. It 

also touches on the impacts of signal-to-noise ratio and its impact on optimizing the flip 

angle used in our MR pulse sequence. And lastly, the main parameters used in the pulsed 

field gradient experiment, such as b-value, gradient rise time, slew rate and gradient length 

are discussed.  Further discussion is on the parameters measured by the experiment: 

diffusion attenuated MR signal and observed anisotropy in the mouse lungs.  

 

Chapter III discusses the development of aforementioned mathematical model based on 

Stejskal-Tanner diffusion sequence, understanding the relationship between the b-value and 

the gradients as well as deriving mouse lung airways physical parameters. Additionally, the 

discussion is centered on approaches used to detect and consistently demonstrate anisotropy 

of the gas diffusion in the mouse lungs.  

 

Chapter IV focuses on mission critical materials and methods for reliable and repetitive gas 

delivery to the mouse lungs. The chapter covers the design and development of the gas 

delivery apparatus including details on how to operate the gas delivery apparatus. 

Additionally, this chapter covers the animal preparation procedure: surgery of lung removal 

and trachea intubation. Attention was also given to limitations of the experiment and 

potential improvements. 

 



14 

 

Chapter V explains the calibration of the MR magnet To conduct precise MR diffusion 

measurements, we needed equipment that will perform to the specifications (calibrate MR 

gradients) and minimize interferences (eddy currents). This chapter in general covers the 

equipment/hardware, either created or modified to increase confidence in our results. Items 

covered are eddy currents, external tuning box, RF coil and polarization equipment.  

 

Chapter VI presents the details of the MR diffusion experiments and pulse sequences used. 

Deep level of detail is provided on the sequences used to measure the 3He gas diffusion, all 

its intricacies and subsequent process of data extraction and analysis, as well as lung 

parameter calculation use the mouse lung model mentioned above. Similar discussion is 

given to the MR experiment that measures anisotropy of the diffusion in the mouse lungs.  

 

Chapter VII presents the results of this research project: mouse lung physical parameters as 

obtained using non-invasive 3He gas diffusion MR technique. For comparison and reference, 

included are the results of two more studies: one is similar in vivo study conducted in our 

laboratory, and the other is a collection of independent studies from numerous published 

works on the related subject. This chapter also includes our interpretation of the results 

obtained in these studies.  

 

Chapter VIII summarizes the accomplishments, discusses the conclusions of the research 

project, reflects on known opportunities and gives an insight to future work that can build 

on results obtained here.  

 

Each chapter has its own collection of references.  
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Appendix A provides details on the pulse sequences used for setting up the equipment and 

experiments.  This appendix includes pulse sequences for eddy-current measurements and 

flip-angle calibrations.   

 

Appendix B provides detailed pulse sequences for the experiments themselves, 3He Lung 

Morphometry and the Anisotropy experiment.  This appendix includes the source code, 

explanations and their applications to the specific parts of this research project.   
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Chapter 2 - Physics of  Magnetic 
Resonance Imaging with Hyperpolarized 
3He 

2.1 Theoretical Nuclear Spin Physics 

Our experiments are based on theory of detection of nuclear spins in magnetic field that was 

established around 50-60 years ago. The main concepts of theoretical physics related to the 

behavior of nuclear spins in a magnetic field and the concept of gas hyperpolarization will be 

succinctly explained in subsequent sections.  

2.1.1 Nuclear Spins in Magnetic Fields 

NMR (nuclear magnetic resonance) is a property that magnetic nuclei have in a magnetic 

field and applied radio frequency pulse (or pulses), which cause the nuclei to absorb energy 

from the radio frequency pulse and radiate this energy back out. The energy radiated back 

out is at a specific resonance frequency which is proportional to the strength of the magnetic 

field. Thus, the key feature of NMR is that the resonance frequency of a particular substance 

is directly proportional to the strength of the applied magnetic field. 

 

Particles that compose any atomic nucleus, neutrons and protons, have the intrinsic 

quantum property of spin, determined by a spin quantum number S. If the number of both 

protons and neutrons in a given nucleus is even, then S=0. A non-zero spin is always 

associated with a non-zero magnetic moment (µ) via the relation µ=γħS, where γ is the 
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gyromagnetic ratio and ħ is reduced Planck’s constant (divided by 2π). It is this magnetic 

moment that allows the observation of the NMR spectra.  

 

3He has a nuclear spin ½ and when placed in magnetic field, the energy of a magnetic 

moment µ when in a magnetic field B0 is given by:  

 

 0 sE B m   (2.1) 

 

where ms is spin energy level. As a result, the nuclear spins states, (spins up and spins down) 

have different energies in a non-zero magnetic field. For most isotopes γ is positive, then 

ms=1/2 is the lower energy state (ms=-1/2 being the higher energy state) and the energy 

difference between the two states is:  

 

 0E H    (2.2) 

 

If an ensemble of such spins is placed in a magnetic field, this difference results in a small 

population bias towards the lower energy state, ms=1/2.  

 

This distribution between energy levels of spins up and spins down, determines the spin 

polarization. At room temperature, the thermal energy dominates over the energy difference 

between the two energy states ( E ) so that for equilibrium the Boltzmann polarization for 

3He at 25°C, in a magnetic field strength of 4.7 Tesla is:  
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 12P ppm  (2.4) 

 

where ω=2πf and f=151.82 MHz is the precession frequency of the 3He nucleus in 4.7 Tesla 

magnetic field, kB is Boltzmann’s constant and T is room temperature in Kelvins.  

 

An NMR signal is proportional to the product of polarization P and the spin density. For 

comparison, density of water is 2500-3000 times higher than the density of gas, thus giving 

roughly that much better NMR signal for the same room temperature conditions and 

Boltzmann equilibrium polarization.  

2.1.2 Hyperpolarization 

According to equations (2.2), (2.3) and (2.4), the strength of MR signal grows with the 

magnitude of magnetic field B0. Another way to improve the effectiveness of NMR is by 

using hyperpolarization, the nuclear spin polarization far beyond thermal equilibrium 

conditions. It is a state where much larger population of spins is forced into one energy state 

(or the other). This is however not a stable condition for the distribution of the spins, it is 

far from equilibrium state, thus spins will return to the Boltzmann equilibrium in a time 

order of the longitudinal relaxation time constant T1. Typical 3He gas hyperpolarization 

hardware allow the boost of polarization to ~40%, P=0.4.  
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Various mechanisms are enemy of such high nuclear spin polarization: 3He atoms’ collisions 

with other 3He atoms and with other materials present (wall of the polarization cell, small 

tubing walls, other gas atoms or molecules in the cell or bag), field inhomogeneities or any 

T1 mechanisms. Almost instant depolarization will be caused by 3He gas contact with 

paramagnetic O2 molecules or any ferromagnetic materials. In later text we will discuss what 

precautions we take to minimize any of the factors above to increase the hyperpolarized 3He 

gas T1 and ultimately improve signal-to-noise ratio (SNR) of the MR experiment.  

 

2.2 Spin Exchange – Optical Polarization of 3He 
Gas 

First introduced by Kastler [1] in 1950, the polarized 3He gas has been a useful tool and a 

testing ground in many areas of research, including the MR imaging of lungs and airways. 

This section focuses on the system and mechanism employed in hyperpolarizing the 3He 

nuclei using spin exchange with optically pumped rubidium atoms. In short, Rubidium 

valence electrons are polarized by absorption of circularly polarized resonant laser light at 

m=-1/2 

m=+1/2 

Thermal Equilibrium (12 ppm) Hyperpolarized (~40%) 

Figure 2.1: Illustrative comparison of Thermal (Boltzmann) equilibrium of several ppm 
polarization of 3He gas (nuclear spin number I=1/2) versus the high level of nuclear spin 
polarization reached by optical pumping, ~40%.  
 



23 

 

795 nm in a glass cell along with 3He gas at a high pressure. Through collisions with 3He 

atoms, polarization is transferred to the 3He nucleus, creating hyperpolarized 3He gas. 

Relatively recent advances in Ti:Sapphire lasers and specifically laser diode arrays are the 

main vehicles for achieving high polarizations (40% or more).  

2.2.1 Optical Pumping of Rubidium Electrons  

Polarization of noble gas (3He) via spin exchange requires a source or angular momentum to 

transfer to the noble gas: in this case, the source is optically pumped rubidium (Rb). 

Although in theory any alkali metal can be used to be optically pumped, Rb is alkali of choice 

for its dense vapor and humble temperatures, to achieve high levels of polarization.  

 

Optical pumping of Rb is accomplished by absorption of resonant photons that carry 

angular momentum to the Rb atom. Linearly polarized laser light resonant with the energy 

level splitting of the Rb electrons is passed through a quarter-wave (λ/4) plate giving it an 

angular momentum. The λ/4 plate in effect converts the light from linearly polarized laser 

light into circularly polarized laser light. In an enclosed polarization glass cell, under high 

pressure (125 psi), and high temperature (350 F), the liquid rubidium is vaporized and mixed 

with the 3He gas. The cell is illuminated with the circularly polarized laser light effectively 

bombarding the atoms of rubidium. Since the light is resonant with the principal electric 

dipole transition of the valence electrons, the spin of the electrons couple with the orbital 

angular momentum of the laser light. This results in the valence electrons being excited from 

5s1/2 ground state to 5p1/2, excited state [2] (Figure 2.2). The wavelength of this transition 

is ~795 nm, a match to the frequency of the laser light that carries the angular momentum.  
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Figure 2.2: Vaporized Rb illuminated using circularly polarized laser light. The light excites 
the electron transitions from 5s1/2 ground state into 5p1/2 excited state. Collisional mixing 
provides near even re-population of both sub-levels of the excited state. Electrons falling 
into m=-1/2 excited state sub-level eventually decay to the ground state where they are re-
pumped, resulting in extremely high polarization of Rb electrons into m=1/2 state. 

 

 

Basically, vaporized Rb electrons are “pumped” to the excited state by the mechanism of the 

matched frequency circular laser light absorption. Before the Rb electrons leave their excited 

state, the Rb atoms rapidly collide with the 3He atoms, re-distributing the electrons into sub-

levels of the excited state [3] nearly completely destroying the electron spin polarization of 

Rb. Nonetheless, electrons are continuously pumped back into the 5p1/2, excited state by 

the laser light. Using this mechanism electron polarization of Rb nearly to 100% can be 

achieved with a well-tuned system [2].  

 

While optical pumping is used to change the electron spin, nuclear spin can be modified by 

the hyperfine interaction between the electron and nuclear magnetism.  
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2.2.2 Polarization Transfer from Rb to 3He 

Key process in spin-exchange optical pumping is collisional transfer of polarization between 

optically pumped vaporized Rb atoms and the nuclei of 3He gas we are hyperpolarizing. As 

Figure 2.3 shows, for 3He, the transfer of angular momentum occurs mostly in simple binary 

collisions between the atoms [2]. The time for binary collision is ~ 10-12 sec, continuously 

flipping the nuclear and electronic spins, leaving the Rb atom ready to be re-polarized and 

ready to collide with another 3He nucleus, to transfer the spin.  

 

 

 

 

 

Collisions between 3He nuclei and the Rb electrons are very frequent however, transfer of 

the angular momentum during the collision occurs only with the small probability. The spin-

exchange rate, γse is linearly proportional to the density of Rb vapor [4]. 

 

3He 

3He 

 Rb 

 Rb 

Figure 2.3: Polarization transfer process during binary collisions of 
the 3He nuclei and Rb electrons. Spin polarization is continuously 
exchanged leaving the Rb electron spin-down while the 3He nuclei get 
hyperpolarized. 
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The rate of the 3He gas hyperpolarization as a result of the Rb optical pumping and the rare 

spin-exchange process approaches a limiting value as a function of time: 
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where PRb is the Rb polarization, γse is spin-exchange rate and T1 is pure 3He relaxation 

constant (pure 3He gas, no other gases present).  

 

The process of hyperpolarization is a gradual and slow process as the spin-exchange rate is 

very small while various processes, as T1, bad collisions with Rb, collisions with the walls, 

etc. are continuously reducing polarization level. The highest level of polarization will be 

eventually reached when the amount of 3He nuclei that get hyperpolarized is the same as 

number of 3He nuclei that get de-polarized by various competing processes mentioned 

above, per unit of time.  

 

In practice, using our polarizing equipment, polarization of ~1L of 3He gas to 40%-45% 

level takes around 22 hours under typical temperature and pressure conditions in the glass 

cell.  

2.3 Design of a HP 3He MRI Diffusion 
Experiment: Critical Components 

To properly design and conduct the MRI experiments with hyperpolarized 3He gas in small 

animal lungs, full understanding of entire process and equipment is required: knowing your 
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equipment performance limitations, capabilities of the 3He coil, to designing the sequence to 

extract lung physical information form the experimental setup, selecting and calibrating the 

flip angle.  This and many other variables pertinent to the experiment will be discussed in 

this section.  

 

2.3.1 RF Coil and Tuning Box 

When a sample is inserted in the permanent magnet (B0 field), the nuclear spins tend to align 

with the strong magnetic field, in our case 4.7 T. The sample is always inside a RF (radio 

frequency) coil that, when emitting the RF signal, can flip the spins (net magnetization). 

When coil in receiving mode, it can detect electrical induction from those same spins, as they 

are precessing. For our particular experiment we used a single loop coil, tuned to precise 

frequency of 3He for the particular B0 filed.  

 

A schematic of typical NMR coil, as R-L-C (resistance – inductance – capacitive) resonant 

circuit (as shown in Figure 2.4)  

R

L C

 

Figure 2.4: Typical RF coil can be represented as a series connection of R-L-C oscillating at 
the resonant angular frequency ω.  
 

is tuned to the specific frequency of the nuclei of interest as modulated by the frequency of 

the B0 field. Sum of the impedances around the circuit is given by Equation (2.6):  
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where ω is an angular frequency. The quantity in parenthesis is zero when ω=1/√(LC) and 

that value of ω is called resonant frequency. At that value of ω, the total impedance of the 

circuit is Z=R. In our case, the RF coil was tuned to the frequency of 3He nuclei equal to 

151.82 MHz for our 4.7T scanner.  

 

Ability to conduct the proton scanning (imaging) using the same RF coil as for 3He imaging, 

can be useful for various reasons, e.g., one can conduct the scanning using one RF coil on 

the same sample and generate 3He as well as complimentary 1H images. It can be also used 

to ensure the sample’s position prior to the expensive 3He MR scans, and in more general 

sense to avoid the need to remove the sample to physically change the resonant frequency of 

the RF coil to obtain image of another nuclei of interest. This can be achieved using various 

means, building double resonance coils (coils with two resonant frequencies) or placing 

another circuitry in series with the original RF coil that tunes it to the new frequency of 

interest (tuning box). We choose the later one as it can be easily removed and original RF 

coil will perform to the full standards. The tuning box is a passive one, a simple set of a L-C, 

and when connected to the RF coil, the schematic changes to one depicted in Figure 2.5. 

The resonant frequency of this new circuitry, as before, is a solution of the total impedance 

of the circuit, given by Equation (2.7): 
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L C

LD

CD

 

Figure 2.5: When tuning box placed between the RF coil and the amplifier, the equivalent 
schematic looks as shown, resonant circuitry for dual frequency is a parallel L-C circuit in 
series with the connection of R-L-C circuitry. 
 

In practice, the RF coils are usually connected to the RF amplifier through inductively 

coupled circuitry, usually another series L-C circuit, as in the Figure 2.6. The RF amplifier is 

connected to a simple series L-C circuitry, inductive coupled to the MRI resonant circuitry, 

tuned to the frequency of interest.  

 

R

L CLA

M

CA

to RF amplifier 

for transmit/

receive

 

Figure 2.6: The schematic shows typical RF RLC resonant circuit inductively coupled to RF 
amplifier. 
 

The RF coil is tuned to the frequency of the nuclei we are observing (3He) for the given B0 

filed strength using a network analyzer. As the mouse lungs are small and present very little 
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or no loading to the RF coil, it is tuned without a load to the precise frequency. The tuning 

box connected in series with the RF 3He coil is then tuned to the proton frequency. The 

proton frequency tuning is as well conducted on the network analyzer by choosing the 

minimum attenuation and minimal impedance on the Smith chart.  

2.3.2 Flip Angle 

When sample is inserted in the magnetic field B0, spins will precess around the magnetic field 

with the angular frequency of ω=γB0. The RF coil, perpendicular to the B0 external field, 

excited with alternating current at the same frequency ω, will effectively apply an oscillating 

magnetic field B1, perpendicular to B0. This will result in nuclear spins being flipped, 

depending on the strength and duration of the RF (B1) field applied.  

 

In general, the degree of rotation of a net magnetization vector aligned along Z axis towards 

the x-y plane by a radiofrequency pulse is called “flip”, “tip” or “nutation” angle, most 

commonly denoted as the flip angle α.  

 

We usually think of a RF pulse at Larmor frequency flipping the net magnetization away 

from Z axis by an angle α. The flip angle α is a function of both, strength of the applied RF 

field B1 and, the time τ for which the field is being applied.  

  1 B ,      (2.8) 

Flip angles between 0° and 90° are typically used in FID sequences, 90° and a series of 180° 

pulses in spin echo sequences and an initial 180° pulse followed by a 90° or smaller in 

inversion recovery sequences.  
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Flip angle lower than 90° decreases the amount of longitudinal magnetization by partially 

tipping it into the transverse plane. Besides conserving irrecoverable longitudinal 

polarization of the hyperpolarized 3He spins, it also allows for shorter TR/TE and decreased 

scan time and faster acquisitions. The flip angle also determines the quantity of the 

magnetization left on the longitudinal axis; in Figure 2.7, Z-axis.  

 

 

Figure 2.7: The magnetization, M, precesses about the Z axis with the tip angle α, and it is 
divided into the longitudinal component, MZ and transverse component, MXY. A RF coil is 
placed in the Y axis direction to collect the MR signal. 
 

Once M0 is flipped for the flip angle α, the longitudinal magnetization vector, MZ, can be 

described mathematically as MZ = M0 cosα. The z-magnetization after two RF pulses, 

provided they are administered sufficiently close in time to each other (to ignore T1 effects), 

is given by Equation (2.9): 

 0M cos  cos   (2.9) 

   

It is easy to conclude that after n such pulses, remaining z-magnetization will be M0(cosα)n. 

Using this relationship and desire to retain some longitudinal magnetization (~25-30%) after 

the last pulse to ensure good SNR throughout the sequence, a simple iterative calculation is 

M0 
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used to calculate the appropriate flip angle from the varied number of consecutive RF 

pulses.  
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Chapter 3 - Materials and Methods: MR 
Diffusion Procedure for Mouse Lungs 
Chapters 3, 4 and 5 are all Materials and Methods, outlining the details of my contribution to 

the project.  In Chapter 3 those are the contribution to develop MR diffusion procedure for 

the mouse lungs, vast amount of trials and errors followed by optimization of the model 

until it yielded results. In Chapter 4, it is creating and perfecting the apparatus for delivery of 

the 3He to the mouse lungs, surgery, removal and preparation of the lungs for successful 

MR scanning. In Chapter 5, it is calibrating the equipment, namely MR gradients, checking 

for any eddy current issues and creating and tuning the MR coil. With all of this done, my 

contribution was in writing and testing the MR diffusion sequence that synthesized all the 

information above to use the maximum out of the hardware without tripping or damaging 

the gradient amplifiers. Using the sequence and its variations, all experiments were 

conducted.  

3.1 MR Measurements of Lung Microstructure 

The theoretical background of the MR lung morphometry with HP 3He gas in mice is similar 

to the method that was developed in humans [1-3]. Hence we describe it here only briefly. 

Measuring the diffusion of 3He gas in lung airspaces can provide valuable information on the 

lung microstructure. To make the information encoded in the diffusion-attenuated MRI 

signals quantitative, the relationship between lung microstructural parameters and the MR 

signal attenuation function is required. In our approach, the lung acinus is treated as a 

network of cylindrical passages covered with alveolar sleeves [4, 5] where the main 
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geometrical parameters characterizing these airways are the outer radius R and the depth of 

the alveolar sleeve, h [3] (see Figure 3.1). 

 

 

3.1.1 MR Diffusion Experiment 

Measurements of increasing apparent diffusion coefficient (ADC) of the hyperpolarized 3He 

gas have been linked to the increases in emphysema in lungs, thus ADC can be used as a 

tool to quantify, at some level, the lung microstructure. Changes in internal lung 

microstructure imply changes in restrictions (obstacles to the hyperpolarized 3He gas 

diffusion) in the lungs, effectively altering the measured ADC.  

 

Figure 3.1: Schematic structure of an acinar airway with eight alveoli distributed 
along the annular ring (eight-alveolar model).  Left is a cross section of the airway 
perpendicular to its length and the right is a cross section along the length of the 
airway. Each airway (duct or sac) can be considered geometrically as a cylindrical 
object consisting of an alveolar sleeve with alveoli opening toward the internal 
cylindrical air passage. The diagram defines inner (r) and outer (R) airway radii (as in 
Fig. 1 in [4] and [2]) and the depth of the alveolar sleeves (h). The ratio L=0.765*R 
is chosen so that the alveolar size is the same along the airway and along the 
circumference [3]. The shaded area shows lung air volume per alveolus Va that 
comprises both the volume of alveolus proper and the immediately associated duct 
volume. 
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Stejskal and Tanner in their seminal paper in 1965 introduced pulsed field gradient sequence 

[6] into the basic spin echo sequence, resulting in much improved sensitivity to diffusion as 

compared to steady state gradients. A pulsed field gradient is a bipolar gradient pulse with 

spatial dependent field intensity. Any gradient is identified by four characteristics: axis, 

strength, shape and duration. Application of a field gradient destroys the FID signal, but this 

can be recovered and measured by a refocusing gradient.  

 

Stejskal-Tanner solved Bloch’s partial differential equation for a symmetric pair of pulsed 

gradients (see Figure 3.2) and obtained the well-known Stejskal-Tanner formula (see 

Equation (3.1)). They were first to propose measuring restricted diffusion by varying the 

distance between bi-polar gradient pulses. After a RF excitation, a short and strong gradient 

G is applied along a single axis, changing the constant main field B0 to a spatially variable 

field B(x)= B0 + Gx. With time and gradient strength, some phase differences will 

accumulate between spins at different positions. After time Δ, the opposite gradient, -G, is 

applied. If atoms did not move, the phase would be perfectly reversed and magnetization 

would be fully restored. The refocusing will not be perfect for spins that have moved during 

the time interval between the pulses, and the signal measured by the MRI machine is 

reduced. This reduction in signal due to the application of the pulse gradient can be related 

to the amount of diffusion that is occurring through the following equation: 

 

2 2 2 ( /3)

0

G D bDS
e e

S

       (3.1) 
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where S0 is the signal intensity without the diffusion weighting, S is the signal with the 

gradient, γ is the gyromagnetic ratio, G is the strength of the gradient pulse, δ is the duration 

of the pulse, Δ is the time between the two pulses, and finally, D is the diffusion-coefficient. 

 

 

 

In the Stajskal-Tanner experiment, the attenuation of MR signal is a measure of molecular 

displacement during the diffusion time. For restricted diffusion, intensity of MR signal is no 

longer described by Eq. (3.1) and is usually written as:  

 0

b ADCS S e   (3.2) 

where “b” is known as a b-value, while ADC is dependent on the restrictive lung 

environment and pulse sequence parameters.  

 

Faster diffusion (larger ADC) means that the spins have bigger chance to travel farther and 

therefore experience larger magnetic field changes, due to diffusion gradients, causing larger 

spread in phase and resulting in a smaller MR signal. If the relationship between ADC and 

t 

G
m

 

-G
m

 

δ 

Δ 

Figure 3.2: Bi-polar pulsed gradients. Stejskal-Tanner were 
first to propose the idea of measuring restricted diffusion 
by varying the Δ between gradient pulses. 
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system structure is known, measuring the signal as a function of b-value provides an 

opportunity to obtain the properties of a system.  

 

For pure 3He gas at normal pressure of 1 atm and at the room temperature, we measured the 

unrestricted or free diffusion coefficient at ~1.75 cm2/s.  

3.1.2 Gradient relationship to b-value 

The so called b-value depends on the strength, shape and duration of diffusion-weighting 

gradient waveform. For the gradient waveform in Figure 3.2, b-value from Equation (3.1) is:  

 
2 2 2

3
mb G


 

 
   

 
 (3.3) 

This gradient waveform is not possible in practice, e.g., it is impossible to have infinite rate 

of change from zero to Gm. A more realistic gradient waveform that is attainable by the 

hardware (Figure 3.3) is used to calculate the b-value relationship as in [2]:  

 2 2 2 27 8
( ) 2

3 6 15
mb G


       

    
            

    
 (3.4) 

where the second parenthesis in the bracket is due to the finite ramp-up and ramp-down 

times in the gradient waveform in Figure 3.3.  
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Figure 3.3: Gradient slew rate (time τ) is dynamically controlled to satisfy Equation (3.4) and 
not to exceed maximum hardware capabilities. 

 

 

If the gradient rise time is zero the Equation (3.4) is reduced back to Equation (3.3) and the 

gradient waveform in Figure 3.3 is similarly reduced to the one in Figure 3.2.  

 

Given that the b-value is a reflection of the strength and duration of the bi-polar gradient 

waveform, a thoughtful selection of the b-value is important when measuring gas diffusion 

in the lungs. If the b-value is small, attenuation of the MR signal will be small and the ratio 

of attenuated vs. unattenuated signal will be close to unity, making reliable diffusion 

calculations difficult. If b-value is selected to be very high, the gradients will attenuate the 

signal close to the noise floor making diffusion calculations virtually impossible. An 

acceptable range of b-values depends mostly on the expected diffusion that in turn depends 

on the size of the airways that we attempt to measure with this MR technique.  
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3.1.3 Theory of Gas Diffusion in Mouse Lungs 

Molecular diffusion in each acinar airway is characterized by longitudinal and transverse 

diffusion coefficients DL and DT. Given a large number of airways in the lungs (in our 

experiment MR signal is collected from the mouse’s entire lungs, excluding large conducting 

airways), it is safe to assume a uniform distribution of airway spatial orientations. 

Accordingly, the diffusion attenuated MRI signal can be presented as [2]:  

  

1 2

1 2

0( ) exp( ) ( ) ,
4

T AN AN L T

AN

S b S b D bD D D D
bD

 
         

 
 (3.5) 

where b is the so-called b-value that depends on the strength and duration of diffusion-

weighting gradient waveform (see corresponding expression below and Figure 3.4).  

 

As mentioned above, the in vivo lung morphometry technique developed in [1-3] is based on 

considering the lung on the acinar level as a set of airways of cylindrical geometry, covered 

by alveolar sleeves, as in Figure 3.4.  
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Figure 3.4: Weibel’s lung model [7] [8] (based on biological structure), shown as branching 
acinar airways, covered with alveolar sleeve of depth R-r. Diffusion calculations and 
mathematical model is based on this lung model. 
 

 

Diffusion of 3He atoms in the airways is microscopically anisotropic and is described by two 

principal parameters: longitudinal (DL) and transverse (DT) diffusion coefficients [2]. The 

dependence of the MR signal on these parameters is given in Eq. (3.5). In [1], the diffusion 

coefficients DL and DT were related to the airway geometrical parameters R and h (see [1]), 

which made it possible to determine R and h from the diffusion attenuated multi-b MR 

experiments. It was further demonstrated in [3] that the airway’s geometrical parameters are 

related to the commonly used morphometric parameters of the lung microstructure, such as 

mean linear intercept Lm and surface-to-volume ratio S/V.  
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It should be noted, however, that the relationships between DL, DT and R and h, obtained in 

[1] by means of computer simulations are not universal and are valid only within the range of 

the airway size R characteristic of human lungs (R ~ 300 μm). In mice, the airway radii R are 

substantially smaller, R ~ 100 μm. In the present study we have found modified 

relationships between DL, DT and R, h for the range of airway radii characteristic for mice 

and rats (R ~ 60 – 140 μm) for the pulse sequence parameters with diffusion times 

corresponding to smaller airway length, as used here. Specifically, the new equations are valid 

for Δ = δ  0.3-0.6 ms. The following relationships were obtained using this approach, based 

on computer simulations similar to those developed in [1]: 
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 (3.7) 

where D0 is the free diffusion coefficient of 3He gas in lung airspaces. Values  

 
1 2 1 2

1 0 2 0(2 ) , (4 )L D L D       (3.8) 

are the characteristic free-diffusion lengths for one and two dimensional diffusion. The 

relationships (3.7) are purely phenomenological; specific mathematical functions are chosen 

solely to fit the simulations. During the data analysis we found virtually no transverse 

diffusion (DT) dependence on b-value, thus the analysis of data will be conducted with βT =0.  
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The b-value in the 12b diffusion attenuated MR experiment is determined by a standard 

relationship given in Equation 15.  

 

With mathematical equations relating DL and DT to acinar airway geometrical parameters R 

and h (Equations (3.6)-(3.8)), we can evaluate the lung tissue surface area per alveolus Sa, 

lung volume per alveolus Va, and alveolar number density Na – the number of alveoli per 

unit lung volume [3] (see Figure 3.1): 

 
2 1

(2 ) 2 ; ; 2 sin ;
4 4 8 8

a a a

a

S R L h R h h L V R L L R N
V

   
           (3.9) 

Note that the volume Va comprises both the volume of alveolar duct, 2( ) / 8R h L   , and 

the volume of alveolus proper, 2 2[ ( ) ] / 8R R h L    . Also note that here we are using the 

airway model with eight alveoli in the cross section [3, 9]. Using Equations (3.6)-(3.8) that 

relate airway geometrical parameters R and h to alveoli surface area and volume, and the 

well-known relationship between mean linear intercept and surface-to-volume ratio [8] we 

can estimate the mean chord length Lm: 

 / / 4 /a aS V S V Lm   (3.10) 

Using the Eqs. (3.6)-(3.8) in conjunction with multi-b MR signal measurements in mouse 

lung acinar airways enables calculation of the geometrical parameters R and h as well as 

standard morphometric parameters of lung airways: Lm, S/V, Na - see Eqs. (3.9)-(3.10).  
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3.1.4 Diffusion Anisotropy in the Lung Model 

From the Weibel’s lung model one can see that the structure is highly anisotropic, thus we 

assume that diffusion in such structure will also be anisotropic with two distinct diffusion 

coefficients parallel and perpendicular to airway axis. This is the main assumption of the 

model and the associated derived mathematics. To prove this directly, we need to show that 

diffusion in the lung is anisotropic, deducing that lung structure is in fact anisotropic.  

 

As the model predicts, the anisotropic character of diffusion on the microscopic level 

together with the presence of numerous multiple-oriented airways, lead to such a non-mono-

exponential dependence of the MR signal on the b-value. This non-mono-exponential 

dependence could also be caused by other factors, e.g., presence of multiple spherical 

compartments (alveolar sacs) with a variety of sizes. Two-dimensional MR experiments, in 

which the diffusion sensitizing gradients are applied successively in two orthogonal 

directions, were proposed in the past to address similar questions [10].  

 

In our study, we exploit the same idea expanding it to a three-dimensional sequence 

eliminating any potential uncertainties of the interpretation of the two-dimensional 

experiment.  
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Figure 3.5: The sequence in (a) has three consecutive bi-polar gradients along the x axis, 
referred to as the XXX sequence, exploiting only diffusion along the X axis. Similarly, the 
sequence in (b) is the XYZ sequence, and exploits diffusion along all three spatial axes. 
 

 

To illustrate the idea behind such an experiment, we use the following example. If we are 

measuring diffusion in the spherical compartments (Figure 3.6a), where diffusion in all 

directions is the same (DX=DY=DZ), using the sequence in Figure 3.5a, where we apply three 

consecutive gradients in one spatial direction along the X axis, the MR signal (labeled SXXX, 

denoting repetitive diffusion measurements in X direction) will be proportional to: 

 
3X X X Xb D b D b D b D

XXXS e e e e
       

    (3.11) 

Using a sequence that exploits the diffusion in all three directions for this spherical 

compartment, as in Figure 3.5b, the MR signal will be proportional to: 

 X Y Zb D b D b D

XYZS e e e
     

   (3.12) 

Given that the diffusion coefficient is the same in any direction for a spherically shaped 

object, the last equation, Eq. (3.12), effectively becomes equal to Eq. (3.11):  

 
3X Y Z X X X Xb D b D b D b D b D b D b D

XYZS e e e e e e e
             

       (3.13) 

(a) (b) 
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e.g., both sequences, Figure 3.5a and Figure 3.5b will measure the same MR signal in 

multiple spherical compartments of various sizes.  

 

Figure 3.6: If alveolar structure in the lungs can be mimicked as a series of spherical 
compartments of various sizes, (a), the diffusion in all directions will be equal. If lung 
microstructure is modeled as cylinders (acinar airways), as in (b), the diffusion will be 
anisotropic. 
 

 

Similarly, if we are measuring diffusion in the cylindrical compartments (Figure 3.6b), where 

diffusion along the X axis differs from those along Y and Z axis, using the XYZ sequence 

(Figure 3.5b), the MR signal will be proportional to: 

 X Y Zb D b D b D

XYZS e e e
     

   (3.14) 

Given that diffusion coefficients along the Y and Z axis are the same, DY=DZ, and 

ADC=(DL+2DT)/3, the above expression becomes:  

 
2 3X Yb D b D b ADC

XYZS e e e
        (3.15) 

If our sequence gradients are XXX, as in Figure 3.5a, then we are proportionally measuring:  

 
3X X X Xb D b D b D b D

XXXS e e e e
       

    (3.16) 

This result is clearly different from Eq. (3.15). Hence, conducting the two types of 

experiments – XXX and XYZ allows distinguishing between the two types of structures – 

spherical and cylindrical. Averaging Eq. (3.16) with respect to airways orientations, the signal 

for the XXX sequence is becoming similar to Eq. (3.5) and is proportional to:  

(a) (b) 
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It can be proven that Eqs. (3.15) and (3.17) will yield different results, e.g.. it can be shown 

that for any value of b, SXYZ < SXXX.  

 

3.2 SNR Optimization of MR in Mouse Lungs 

When working with 3He gas, where polarization is not recoverable, one needs to be aware of 

the fact that with each RF pulse, the available signal is decreasing. In addition to that, the 

signal will be decreasing due to various mechanisms, though we will not consider any of 

these, assuming the experiments are conducted rapidly with respect to T1 decay of 

hyperpolarized 3He gas in the Tedlar bag.  

 

A typical gradient echo experiment will utilize a number of RF pulses, as mentioned in the 

section “Theory of Gas Diffusion in Mouse Lungs”, for each one to interrogate the diffusing 

3He gas nuclear spins with the small flip angle of the RF pulse. The magnitude of the RF flip 

angle is directly proportional to the MR signal received. For conducting experiments in 

mouse lungs, where airways are tiny and the hyperpolarization decays faster, SNR 

optimization is of high importance. Correct choice of flip angle will help consume right 

amount of polarization with the rapid train of RF pulses, and obtain maximum possible S/N 

ratio. In addition to the flip angle, we will “encode” the spins with the gradient pulses, 

further deteriorating the MR signal: the higher the b-value/gradient strength, the more MR 

signal attenuation will be exhibited. In our experiment, we apply 12 RF pulses, first one with 

no b-value (b=0 [s/cm2]), then 10 RF pulses with changing b-value, and the last pulse again 
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with b=0 [s/cm2]. Having two measurements with b=0, at the beginning and at the end of 

the pulse sequence, allows for accurate calibration of RF pulses. To better utilize the MR 

signal from such an experiment, the b-values are applied in the descending order. In other 

words, the sequence of 12 RF pulses has the following b-values: 0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 

0 [s/cm2]. This ensures that when 3He gas polarization is fresh and strong to apply the 

highest b-value and at the end of the sequence, where polarization is weakest, we apply the 

smallest gradient. This strategy produces a more uniform MR signal pattern and vastly better 

SNR as opposed to a standard strategy with generally applied ascending order of b-values.  

 

Equation (3.18) gives the amount of the magnetization left along the Z axis after applying 

the train of RF pulses in the overall sequence, in this case n=12   

  0 cos
n

M M   (3.18) 

We chose the flip angle α such that some ~25% magnetization is left after applying the train 

of 12 RF pulses. The reason for this approach is to ensure enough magnetization along the 

Z axis to produce and capture an adequate signal for the last RF pulse, even if the flip angle 

is slightly miscalculated.  
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Chapter 4 - Materials and Methods: 
Hyperpolarized 3He Gas Delivery 

4.1 Delivery of 3He Gas 

The 3He gas was hyperpolarized by the spin-exchange technique [1] using a lab-built 

polarizer or a IGI.9600.He commercial polarizer (General Electric Medical, Fairfield, CT) to 

achieve polarization levels of approximately 40%. The hyperpolarized gas from the nearby 

polarizer was transported in a 1 L Tedlar bag to the fringe field of the MRI scanner.  

 

Given the small size of mouse lungs and the small TLC (total lung capacity) of the lungs, 1 

ml, an accurate, fast and repeatable delivery of the 3He gas is of high importance to the 

successful gas diffusion measurements. Additionally, contact with paramagnetic oxygen has a 

strong depolarizing effect on hyperpolarized 3He gas, and substantially reduces the 3He gas 

T1 relaxation time constant [2]. Thus, it was important to reduce the amount of residual 

oxygen in the lungs before and during delivery of a 3He gas bolus. To achieve that objective, 

we needed to develop a method and apparatus for controlled delivery of pure 3He gas, while 

minimizing contact with oxygen and the consequential loss of polarization.  

4.1.1 Gas Delivery Apparatus 

The gas delivery apparatus for purging and delivering gas was assembled using six valves 

(Figure 4.1). Briefly, the system consists of three syringes, six stopcocks (two on-off and four 

3-way valves), a pressure gauge (0-30 cmH2O), and a Tedlar bag to hold hyperpolarized 3He 

gas. The syringe close to the pressure gauge is filled with nitrogen and serves to purge the 
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gauge line. The N2 syringe close to the lungs serves to purge the valve manifold to remove 

oxygen that enters the manifold after the lungs are disconnected for scanning. The 3He 

syringe, close to the 3He gas bag delivers the 3He gas to the lung. To minimize the amount of 

3He gas that will be depolarized due to interaction with the walls of small diameter lines, all 

3He gas line connections are made as short as possible (about 14 cm long). To ensure 

repetitive inflation to the same pressure, a conventional pressure gauge for respiratory 

research was used.  

 

Figure 4.1: The block diagram of MRI-compatible (with the exception of the low-pressure 
pressure gauge), manual 3He gas delivery six-valve apparatus. The purpose is to allow the 
lungs to be purged of air multiple times using N2 and then filled with the 3He for the NMR 
measurement of diffusion. The 180 cm long line keeps the pressure gauge containing 
ferromagnetic parts out of the scanner's fringe field. 
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The gas delivery system is put together with off the shelf standard small tubing parts, using 

various fittings to reduce tubing to different sizes, and standard lab syringes (5ml for all three 

syringes, two N2 and one 3He gas syringe). The pressure gauge is ferromagnetic, thus the 

long line, to keep it outside of the fringe field of the magnet. The gauge was tested and 

confirmed to repetitively and accurately measure pressures outside of the fringe field of the 

scanner. All other parts don’t contain any metal parts, be it magnetic or ferromagnetic.  

4.1.2 Delivery Method and practice 

The 1 L Tedlar bag with 3He (this is 3He gas at thermal equilibrium, not hyperpolarized) was 

connected to the six-valve setup. The pressure gauge and the lung valve were connected to 

the six-valve gas delivery setup (Figure 4.1 and Figure 4.2).  

 

Figure 4.2: The 3He gas, six-valve delivery apparatus. The image shows manifold with three 
color-coded valves (as described in the block diagram), the plastic cannula connected with 
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the lung valve, long line to connect the low pressure gauge and the Tedlar bag connected 
with the bag valve.  

 

 
Using the colored valves, the setup was purged of oxygen (see Table 4.1 for all the actions in 

the gas delivery process and the valve positioning). In essence the purging is done by taking 

~5 ml of the depolarized 3He gas with the 3He syringe from the Tedlar bag and purging it to 

the atmosphere through the white valve. To remove any oxygen from connecting N2 syringe 

to the setup, a several milliliters of the N2 gas were purged through the same white valve, 

closed immediately upon purging. The long pressure gauge line was purged using the 

dedicated N2 syringe at the gauge, venting again through the same white valve (Figure 4.1 

and Figure 4.2).  

 

Once the system is purged, the catheterized lungs were immobilized in the center of the 3He 

coil and connected to the six-valve setup. The air in the lungs must be purged as a last step 

prior to delivery of hyperpolarized gas. Using the same depolarized pure 3He gas in the 

Tedlar bag, the lungs are purged 5 times to 30 cm H2O pressure, to remove oxygen. This 

procedure ensures that the concentration of 3He gas in lungs will be practically the same 

(close to 100%) for all experiments. At this pressure (30 cm H2O) the typical volume of the 

C57 mouse lungs is ~1 ml [3].  

 

After the lungs were purged, a Tedlar bag with freshly polarized 3He gas is brought to the 

fringe field of the MRI scanner and connected to the six-valve setup, replacing the bag of 

depolarized 3He gas. After the lung purging, lungs are inflated in two stages. The first 850 μl 

of gas delivered to the lung is the hyperpolarized 3He gas. Using the correct position of the 

valves at each step, the 3He gas is taken from the Tedlar bag and then followed by ~150 μl 
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N2, as the second stage. The purpose of this N2 blanket is to replace 3He gas in the large 

conducting airways (non-acinar portion of the lungs, typically 11% of mice lungs) [4] with 

N2, minimizing the MR signal contribution from large airways and focusing the 

measurement on the acinar portion of the lungs. 

 

Table 4.1: The block diagram of MRI-compatible (with the exception of the low-pressure 
pressure gauge), manual 3He gas delivery six-valve apparatus. The purpose is to purge the 
lungs of air multiple times using 3He (at thermal equilibrium). After that, the lungs are filled 
with the HP 3He gas first and topped with ~150 μl of N2 for the NMR measurement of 
diffusion. The 180 cm long line keeps the pressure gauge containing ferromagnetic parts out 
of the scanner's fringe field. 

   valve  

step   bag yellow red white lung gauge action 

1 connect 3He bag closed   closed   closed   closed   closed  closed none 

2 purge manifold w/o lungs, 1 closed  3He-red yellow-white open open  closed deliver 2 ml of 3He gas 

3 purge manifold w/o lungs, 2 closed   closed  open open open  closed deliver 2ml of N2 gas 

4 purge pressure gauge line closed closed closed gauge-lung open  closed deliver 5ml of gauge N2 

5 purge lungs, 1 open 3He-bag closed open open  closed get 2ml of 3He gas 

6 purge lungs, 2 closed 3He-red yellow-white red-lung open  closed deliver/pull 1ml of 3He gas 

7 purge lungs, 3 closed closed N2-white red-lung open  closed crack 3He syr and purge 

8 connect HP3He bag closed  closed   closed   closed   closed  open none 

9 purge HP3He connecting tube 1  open  3He-bag closed closed closed open get 2ml of HP 3He gas 

10 purge HP3He connecting tube 2 closed  3He-bag  closed   closed   closed  open crack 3He syr and purge 

11 take HP3He gas to syringe open  3He-bag closed closed closed open intake 5 ml of HP3He gas 

12 deliver HP3He gas to lungs   open  3He-bag yellow-white open open open deliver 850 ul of HP3He gas 

13 top HP3He with N2 gas  open  closed  N2-white  open   open open  deliver 150 ul of N2 gas 

14 disconnect lungs open  closed  N2-white  closed  closed   open  RF coil w/lungs for scanning 

 

As oxygen is one of the main culprits of reduced SNR, a detailed protocol and process steps 

have been devised to purge all possible oxygen from the system and to keep it out while 

delivering the two stage lung inflation (see Table 4.1). This also ensured standardization of 

the steps, reduced variability between experiments (e.g. same protocol for each of the steps) 

or more precisely, repeatable delivery of hyperpolarized 3He gas with the consistent lung 

inflation and precise topping with the N2 gas blanket. 
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It was important to conduct the experiments fast and accurate. After practicing the gas 

delivery to lungs for 2-3 weeks, the motions and steps became a routine and added to the 

repetitiveness of the experimentation, reducing undue variability due to human errors or 

imperfections.  

4.2 Animal Preparation 

All experiments were approved by the Washington University Animal Study Committee. We 

used both lungs excised from freshly sacrificed mice (C57BL/6N, males, 3-4 months of age, 

kept providing food and water ad libitum, weight between 21-27 grams).  

4.2.1 Animal surgery to remove lungs 

All surgeries were performed in the dedicated surgery room, using the same set of standard 

surgery tools and same method described below. Before removing lungs, each animal was 

weighed for later comparison.  Thehe anesthetics and all tools were prepared prior to the 

surgery, to ensure lungs are freshly excised – shortest time from the euthenization of the 

animal to the excised lungs, intubated and ready to be scanned. Mouse is first anesthetized 

with 2.5% isoflurane. This is done to minimize any pain that a mouse could experience and 

to enable accurate delivery of the anesthetics to the desired location. Once anesthetized, the 

mouse is intraperitoneally injected with an overdose of anesthetics, 0.1 ml of Ketamine 

cocktail (0.15 ml of Xylazine, 1.0 ml of Ketamine and 4.6 ml of sterile saline). The anesthetic 

cocktail euthanizes the animal. Intraperitoneal injection is preferred with the small animal as 

young mice for the ease of the administration as compared with other parenteral methods, 

specifically intravenous injection.  
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Once euthanized, the mouse chest cavity was cut open carefully, paying a close attention not 

to pierce the lungs, as they would not hold the pressure and experiment of measuring the 

diffusion in lungs would not be possible.  

 

Table 4.2: The CL57BL/6N mouse strain, euthanized and secured on the surgery table: 
after the light anesthetic, the mouse is delivered an over dose of Ketamine cocktail (0.15 ml 
of Xylazine, 1.0 ml of Ketamine and 4.6 ml of sterile saline) and euthanized. The animal is 
ready for the lungs to be extracted and intubated with a plastic needle.  
 

With the chest cavity open, the aorta was cut to exsanguinate the animal - clean chest cavity 

facilitates the lung excision. The trachea was exposed and the lungs were excised, paying 

particular attention not to damage the lobes or the trachea. For our experiment, we need to 

scan lungs only, and not any other tissue; this will also minimize an undue loading on the RF 
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coil. With that objective in mind, we removed the heart and any surrounding tissue and fat 

from the lungs, again paying close attention not to damage the lungs.  

 

Figure 4.3: On the left hand side is freshly extracted mouse lungs with heart and all excess 
tissue removed. Size relation to a US quarter demonstrates the challenge of size when 
working with mouse lungs. On the right hand side, the same lung intubated, double ligated, 
and inflated with 1 ml of air, approximately the total volume of mouse lungs.  
 

4.2.2 Intubating lungs, fixing in the coil 

The mouse trachea is very small. To deliver the 3He gas to it, we needed to use a non-

metallic object on whose end we could mount a valve (to keep the hyperpolarized 3He gas in 

the lungs during the scanning process). Thus, the trachea was catheterized using a plastic 

needle and double ligated [5] to ensure both a tight seal and the physical stability. Sound 

physical structure is needed as we will pull on the needle to connect the 3He bag to it, each 

time we deliver a new batch of HP 3He gas.  
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We also made sure not to over tight when ligating as that would reduce already small radius 

of the plastic needle, potentially negatively impacting flow and hyperpolarization of the 3He 

gas. Also, more tight than needed, the ligation had tendency to cut through the trachea tissue 

and split it. The worst case scenario was to ligate so tight to completely obstruct the flow of 

3He gas and render the setup unusable. It was important to make sure the lungs are not 

intubated with the completely obstructed needle. Remediating any potential problems with 

the path of the gas delivery was diagnosed and fixed prior to getting HP 3He gas delivered in 

scanner’s proximity: the gas polarization would continually decrease and negatively impact 

the SNR for an experiment. Once lungs properly intubated, and the other end of the plastic 

needle was sealed with a stopcock valve, the intubation was tested with 1ml syringe: 1 ml of 

air was delivered into the lungs, the valve was closed ensuring there were no leaks in the 

lungs (e.g. lungs not pierced or cut), intubation or valve. Then, the valve was vented to the 

air to make sure the lungs would deflate on its own. After this procedure, the lungs were 

properly secured in the 3He coil, ready for the HP 3He gas delivery and scanning. The lung 

valve is kept outside of the coil for easy connectivity of our gas delivery setup.  

4.2.3 Problems incurred during animal procedures 

Working with such a delicate organ like lungs, from such a small and delicate animal as 

mouse, increases the likelihood of mishaps and mistakes and calls for extra caution during 

the surgery and the intubation procedure. Several recurring problems affected the 

procedures from time to time; however in general we were getting better results as the 

experience was acquired. The problems include piercing the lungs, not forming a good seal 

with the trachea, cutting the trachea with the thread, obstructing the flow through the plastic 
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needle with over tightening thread or intubating into one branch of the trachea (needle put 

too far into the bi-furcation of trachea, ending up in one side of the lungs).  

 

By far the greatest obstacle was piercing the lungs. In this case we would not be able to use 

the lungs. The next one was lungs that leak. Leaks could be caused by various reasons, small 

cuts, not a good seal, seal loosening after a few times delivering the 3He to the lungs or lungs 

stiffening and breaking. In general small leaks, or micro-leaks, where the change in lung 

volume is negligible relative to the duration of the scanning time (eg, lung would lose half 

the pressure in 2+ min), did not affect the data collected and only slightly, less than 15% 

impacted the SNR.  

 

To eliminate the occurrence of leaky seal between the trachea and the plastic needle, at the 

time of initial testing of the lungs for proper inflation with the air, a droplet of water is 

placed around the seal is to ensure no leaks. Over time with practice and proper ligation, the 

leaks at the trachea were nearly eliminated.  
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Chapter 5 - Materials and Methods: 
Gradients Calibration, Eddy Currents and 
RF Coil 

5.1 Varian MRI System  

All MRI measurements were performed on an Oxford Instruments (Oxford, UK) 4.7 T 

horizontal bore magnet (33 cm magnet bore and 15 cm gradient bore), equipped with 

actively shielded high performance Varian/Magnex gradient coils capable of 60 G/cm. The 

scanner is equipped with the broadband capabilities allowing MR measurements at the 3He 

frequency of 152.1 MHz. The operating system used was VnmrJ from Varian. The scanner 

system includes dedicated eddy current compensator.  

 

5.2 Gradient Pick-up Coil and Oscilloscope 

The accuracy of the measurements of the lung microstructural parameters depends in part 

on the performance of the gradient coils. In particular, precise gradient rise and fall times 

and gradient strengths should be known accurately for calculation of b-values in Equation 

(3.4). To measure and calibrate the gradient coil characteristics, we used an induction-based 

gradient pickup coil consisting of four spatially offset coils (Figure 5.1a), able to record 

gradients in the X and Z (or Y and Z) directions.  
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Figure 5.1: Home-built gradient pick up coil. The two pairs of coils are offset spatially along 
the Z axis (along the cylinder) while the other pair is offset in a perpendicular direction. The 
Z-gradient is obtained from Z (Z1 and Z2) coil-pair, while X- or Y-gradient are obtained 
from the Y (Y1 and Y2), coil pair, depending on a physical alignment of the Y coil pair 
inside the magnet bore, either with X axis or with the Y axis. Due to this nature of the 
design of the gradient coil, and given the two channel amplification in the accompanied 
electronic box (see Figure 5.2), one could simultaneously observe Z-X or Z-Y gradients.  
 

 

Once inside the magnet’s bore, the coil assembly can be rotated around the Z axis to align 

the pair of Y coils (Y1 and Y2) with the Y gradient or to align it with the X gradient, while 

coil pair Z (Z1 and Z2) is in either case aligned with the Z gradient, along the bore. The coils 

feed the gradient signal to electronics for time integration and display on an oscilloscope. 

Inside the electronic box of the gradient pickup coil, there are two identical integrator-

inverting amp pairs for ability to read both gradients at the same time, be it X and Z or Y 

and Z, Figure 5.2.  
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Figure 5.2: Electronic schematic of the circuitry that processes signal from one pair of 
gradient coils. There are two identical circuits in the electronic box, for both gradient coil 
pairs. In principle, L1 and L2 can represent Z1 and Z2 of Y1 and Y2 from Figure 5.1.  
 

 

Using the fast digital oscilloscope, Tektronix TDS 5104, 1 GHz, and the setup above for 

each gradient pair we conducted the following measurements: the gradient slew rates were 

measured and tabulated for all three axes through the full range of gradient strengths (Figure 

5.3). Virtually all three axes exhibited the same linear relationship through the entire gradient 

range, 0-60 G/cm. This linear relationship found in the graph (Figure 5.3) is coded into the 

pulse sequence to ensure the system never asks the gradient amplifiers for a more rapid 

gradient slew rate than what the system is capable of delivering. Once the sequence was 

coded to control the gradient slope, its precision and responsiveness has been confirmed 

using the “pickup coil – oscilloscope” setup.  

 

In our sequence, it was important to have a uniform gradient slew rate for each of the 12 

MR diffusion measurements (only 10 of them had gradients applied, all with the exception 

of the first and the last RF pulse.).  
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Figure 5.3: The rise times of gradient pulses through the entire range of gradient strengths. 
Results were identical for all three axes as for the negative gradient amplitudes. The solid 
curve is a fit to the data with the linear expression shown. 
 

 

Figure 5.4 gives an example of the same gradient with various slew rates.  
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Figure 5.4: Images show the gradient pulse shapes for various rise times for X axis. Results 
demonstrate an excellent slope control, no ringing and the identical fall. The other two axes, 
Y, and Z, exhibited identical gradient pulse shapes. Some of the curvature can be noticed in 
the first image (top left) at the end of the fall cycle. The amount of the curvature is negligible 
to make a difference in our calculations. Additionally, this is the image obtained for the 
maximum slew rate, which we never use in our sequence, e.g. we always force the slope, 
particularly we used rise times in order of 100-200 μs.  
 

 

An example of the gradient wave-form used in our experiments is shown in Figure 5.5 (bi-

polar gradient pair) demonstrating that the calibration procedure provides an adequate 

gradient behavior allowing precise achievement of required b-values.  
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Figure 5.5: The bi-polar gradient transition region behaves well: gradient follows the 
prescribed waveform for both, positive and negative side. The gradient moves through the 
transition points without ringing or soft corners, allowing us to apply the mathematical 
theory for the gas diffusion in lungs with the required accuracy and confidence in results.  
 

5.3 External Tuning Box  

The external tuning box is a simple passive LC circuitry, as elaborated in Chapter II, which 

shifts the resonance of the 3He RF coil. The box, when connected in series with the 3He RF 

coil tunes it to the proton frequency. This allows the proton imaging and correct mouse 

positioning inside the 3He coil without a need of removal when switching to 3He gas 

diffusion spectroscopy or imaging. In a nutshell, inserting the tuning box between the coil 

and the preamplifier will move the resonance to the proton frequency of ~200 MHz.  
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Figure 5.6: External tuning box, consisting of one inductor and two capacitors, one fixed 
one adjustable. The adjustable capacitor is there to tune the box to the right resonance, in 
this case the frequency of proton (1H).  
 

 

Figure 5.7 demonstrates the value of the external tuning box: mouse proton images are 

obtained using the external tuning box to make the best estimate of the location of the lung 

cavity. Once the location is determined, the external tuning box is removed and the 3He gas 

lung images are obtained.  
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Figure 5.7: Images a-d are coronal mouse proton images, obtained using 3He RF coil with 
the external tuning box connected in series, effectively re-tuning the RF coil to the proton 
frequency. These images are used to locate the lung cavity. The image e is the 3He gas image 
of the same mouse lungs in the transverse plane, obtained using the same RF 3He coil. All 
imaging planes are cited with the respect to the magnet bore.  
 

5.4 Eddy Currents  

Eddy currents are usually induced in conductors, opposing the change in magnetic field that 

generates them. Eddy currents are circulating flow of electrons or current within the body of 

conductor, in our case the gradient coils, inducing magnetic fields that oppose change of the 

original magnetic field [1]. The stronger the applied magnetic field, or the greater the 

electrical conductivity of the conductor, or the faster the changes of the magnetic field, the 

greater the eddy currents are developed and the greater opposing field they generate. In our 

case the gradient coils have a high conductivity (thick copper wire positioned in the cold 

magnet bore), the field is strong (up to 60G/cm) and it changes fast (few hundred 

microseconds for a full swing change), creating deeply fertile environment for generation of 

eddy currents.   
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Eddy currents can cause repulsive or attractive field effects as well as the heat in the body of 

the conductor. In our case, eddy current issue translates to concern about impact on the 

gradient related b-values, the quantity directly impacted by the total gradient applied.   

 

Although there is an eddy current compensator on our Varian system, as strong and fast 

changing magnetic fields are used in the gradient coils it is possible to exhibit undesirable 

eddy current effect, causing unpredicted behavior of the gradients applied and thus the 

received MR signal. Additionally, mouse lungs are very small and signal to noise ratio can be 

negatively affected, causing diffusion measurement uncertainties. For that reason an 

exhaustive eddy current tests were conducted to understand their behavior and a potential 

impact.  

 

Two types of test were conducted. The first one with using one positive gradient pulse 

whose ramp up/ramp down times were changing from 125 ms to 350 ms, followed by 150 

µs RF pulse and immediate 200 ms of acquisition time (see Figure 5.8a). This sequence was 

run for ten consecutive times, back to back, each time stepping up the rise/fall time of the 

gradient pulses by 25 ms. The MR acquisitions did not reveal any noticeable eddy current 

impacts for either axial direction (see Figure 5.8b). The above sequence strategy was repeated 

for the RF pulses of significantly longer times, 50 ms and to 3 sec, and eddy currents did not 

show any impact and results looked virtually the same for all directions, X, Y and Z (see 

Figure 5.8c, Figure 5.8d).  
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The same test from the above was repeated to more closely mimic our diffusion sequence with 

the bi-polar gradients (see Figure 5.9a).  The bi-polar gradients mean fast shifting in polarity, 

however the eddy currents had no effect (see Figure 5.9b, Figure 5.9c and Figure 5.9d).  

a b 

c d 

Figure 5.8: Image a shows the sequence used to explore eddy current effect while changing 
the ramp up/ramp down time of the gradient pulse, grise [ms] =125, 150, 175, 200, 225, 250, 
275, 300, 325, 350, followed by a fixed d2=3 ms delay and 150 µs RF pulse. Image b shows 
the MR signal for the ten RF pulses. Image c shows the result of the same sequence, now 
with the RF pulse of 50 ms. Image d employs the sequence with 3 s long RF pulse and 
reveals no eddy current effect. Images b, c, and d look exactly the same for X, Y and Z 
direction.  
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Determined to put more stress on the system to find where eddy current effect may show, 

we used a long gradient just before a short RF pulse and made acquisitions for all three axial 

directions. The sequence was simple: one positive gradient pulse (50 ms) followed by a 

varied delay (3 ms – 3 s) and a 10 µs RF pulse, repeated ten times for all three axial directions 

(see Figure 5.10a), the results revealed impact in all three directions (Figure 5.10b, Figure 

5.10c and Figure 5.10d).  

a b 

c d 

Figure 5.9: Similar to Figure 5.8, image a shows the sequence used to explore eddy current 
effect while changing the ramp up/ramp down time of the bi-polar gradient pulses, grise [ms] 
=125, 150, 175, 200, 225, 250, 275, 300, 325, 350, followed by a fixed d2=3 ms delay and 150 
µs RF pulse. Image b shows the MR signal for the ten RF pulses. Image c shows the result 
of the same sequence, now with the RF pulse of 50 ms. Image d employs the sequence with 
3 seconds long RF pulse and reveals no eddy current effect. All MR signal images look 
identical for all three axes: X, Y and Z.  
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To exploit this weakness in our diffusion sequence, we assembled similar test using fixed 

rise-time bi-polar gradients, varied d2 delay and comparable RF pulse of 150 µs (see Figure 

5.11a). The result obtained shows slight impact on the transitioning the delay from 3 ms to 

10 ms (Figure 5.11b, Figure 5.11c and Figure 5.11d). For subsequent transitions, eddy 

currents showed no effects.  

a b 

c d 

Figure 5.10: As before, image a shows the sequence used to explore eddy current effect 
while changing the d2 delay (3, 10, 50, 100, 150, 300, 600, 1000, 2000, 3000 ms), followed by 
a 10 µs RF pulse and a 300 ms acquisition. Image b shows the MR signal for the ten RF 
pulses in X direction. Image c shows the result of the same sequence, now with in Y 
direction and d shows the Z direction.  
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As it can be seen in the next chapter, for our diffusion sequence the delay d2 is fixed, 

gradient pulses are much shorter (< 0.5 ms) and we have fixed preamble delay followed up 

by crusher gradients, to ensure quiet eddy currents for the new sequence to be ran. Applying 

these strategies to alleviate issues uncovered above, we were confident that eddy currents 

have had minimal effects, if any.  

 

5.5 RF Coil for 3He  

We used a lab-built small coil on a 25 mm glass tube, 5 cm in length as in Figure 5.12. The 

glass tube of this size is used to receive the entire mouse. Since excised lungs are much 

a b 

c d 

Figure 5.11: Image a shows sequence with fixed rise-time bi-polar gradients with changing 
the d2 delay (3, 10, 50, 100, 150, 300, 600, 1000, 2000, 3000 ms), followed by a 150 µs RF 
pulse and a 200 ms acquisition. Image b shows the MR signal for the ten RF pulses in X 
direction. Image c shows the result of the same sequence, now with in Y direction and d 
shows the Z direction. 
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smaller, a small padding was created to elevate the lungs to the center of the coil. The 

inflated lungs fill about one quarter of the cross-section of the glass cylinder. The RF coil 

consists of the four copper plates, bridged with the three set of capacitors and with one 

adjustable capacitor. This capacitor is used to adjust the resonance frequency of the coil.  

 

Figure 5.12: The lab-built RF coil, tuned to 3He nuclei frequency. The coil consists of four 
copper plates acting as inductors connected in series with capacitors: three fixed and one 
adjustable capacitor. The RF coil is inductively coupled to RF amplifier using a LC circuitry: 
a single loop (L) terminated with a capacitor (C). The coupling is adjusted using both, the 
adjustable coupling capacitor and distance between the loop and the RF coil.  
 

 

 
 The adjustable capacitor has sufficient range so the coil can resonate on proton frequency 

(~200 MHz for our MRI 4.7 T Varian system) or 3He nuclei frequency (~151 MHz). The 

resonating circuitry (RF coil) is inductively coupled to the RF amplifier using simple LC 

circuitry, in this case a single loop of wire terminated with a capacitor. The maximum 
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inductive coupling can be adjusted by changing the distance of the loop from the RF coil, as 

well as its L to C ratio by changing the adjustable coupling capacitor.  

 

The whole setup is firmly affixed onto a Plexiglas base that fits snuggly into a carrier that is 

custom made for the magnet bore. The carrier is designed to position the RF coil in the 

middle of the magnet in all axial directions. 

 

The high sensitivity of the high-quality RF solenoid allows the usage of small RF tipping 

pulses so that many MR measurements can be obtained from a single bolus of 

hyperpolarized 3He gas. 

5.5.1 Network Analyzer 

The coil, with the lungs as an internal load, is tuned to the 3He gas nuclear MR frequency for 

our magnet strength (4.7 T) of 151.82 MHz using the network analyzer. Using the same 

network analyzer, the inductive coupling is tuned to the peak employing Smith chart and 

tuning it to center of the chart to minimize reflectance and maximize the inductive coupling. 

The network analyzer is shown in Figure 5.13.  
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5.6 Polarization Equipment for 3He 

The 3He gas was hyperpolarized using IGI.9600.He commercial polarizer (General Electric 

Medical, Fairfield, CT) to achieve high levels of polarization, approximately 40%. The 

polarization equipment is housed in its own room, to allow for proper safety (laser 

equipment), controllable environmental conditions (proper heat removal) and to 

accommodate for all the utilities connected to it: power, compressed air, compressed 

nitrogen and compressed 3He gas.  

5.6.1 Hyperpolarizing Hardware 

The laser-path schematic of our hyperpolarizing equipment is shown in Figure 5.14, 

depicting the laser source, collimating optics and the laser beam irradiating the 

Figure 5.13: Network Analyzer, HP 8720A, used to tune the RF coil to the 3He nuclei 
frequency and to adjust the inductive coupling, with the load present in the coil. 



76 

 

hyperpolarization cell, filled with 3He gas and liquid Rb.  The cell is heated to temperature of 

170°C, at which the Rb is in the gaseous state. The laser light is generated with the laser 

diode box. The box contains actually two diode arrays and the diodes are supplied by ~36 A 

each, with 

 

Figure 5.14: Schematic diagram of the laser source (diode array) that emits linearly polarized 
laser light, series of collimating lenses (to focus the light at infinity, to make the laser rays 
collinear) after which it is passed through the ¼λ plate to make the light polarization circular. 
This light irradiates the cell with 3He and Rb vapor. A fan circulates warm air around the cell 
in a chamber, to elevate its temperature to 170°C. The chamber is located between two 
Helmholtz coils that generate nearly homogeneous magnetic field. 
 

 
the target to maintain temperature for both diode arrays at ~12°C. The diode arrays 

consume a lot of energy, turning it into laser light at 795 nm, however large part of energy is 

dissipated as heat. Fluctuating temperature of the diodes would fluctuate the wavelength of 

the linearly polarized laser light [2]. To have stable wavelength of the polarized light at the 

constant power, the diode arrays are cooled using temperature control loop internal to the 

diode array box.  

 

Laser light from gas or crystal lasers is naturally collimated because it is formed in an optical 

cavity between two mirrors. Laser light produced by laser diodes is not collimated [3]. This 

non-collimated light is then passed using polarization-maintaining optical fiber and fed into 
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the set of optics to collimate. The set of optics will nearly collimate the light (perfectly 

collimated beam with no divergence cannot be created due to diffraction, thus need to wear 

laser-protective glasses in the polarization room!) producing linearly polarized, collimated 

light. This beam of light is then passed through a ¼ wave plate to transform the laser light’s 

linear polarization into the circular polarization. This light is entered into the heating 

chamber to irradiate the gas cell containing approximately 1 liter of 3He gas mixed with 

nitrogen and Rb vapor. The gas cell pressure is kept at ~10 atm or ~130 psig. As the 

chamber is heated by introducing compressed air over the heating element, impurities from 

the compressed air line (oil and dust), as well as any non-metal or non-glass material in the 

chamber, will overtime deposit on the gas cell and the chamber window where the laser light 

enters, reducing the hyperpolarization effectiveness.  

 

The gas cell and the chamber are located in the homogeneous magnetic field, maintained by 

a pair of Helmholtz coils using low-field strength (~50 x 10-7 Tesla). The homogeneous 

magnetic field extends the T1 of the hyperpolarized 3He to typically >24 hours [4].  

5.6.1 Controls and Diagnostics 

Inside the heating chamber, close to the gas cell, there is a coil that is connected to the small 

NMR spectrometer system. Its functionality is controlled by a PC that runs the polarizer and 

the results of the polarization inspections are displayed in a form of spectra. Inside the 

heating chamber, as the laser light goes through the gas cell it is received by a light sensor, 

thus the PC is capable of showing the laser light absorption and also reads the light’s 

wavelength. With the fact that PC also controls the diode array box and can set their 

currents, desired temperature and turns them on or off, this setup gives a complete 
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diagnostic and control of the laser-path for the polarizer. Temperature of the system is 

controlled using individual PID (proportional-integral-derivative) controller.  

 

The 3He gas delivery is controlled using a few valves and manifolds (see Figure 5.15). As the 

compressed 3He gas is at a very high pressure (1500 psi) in the metal tank, the 3He gas is 

delivered to a small limited volume (short pipe run), from where it is metered to the glass cell 

making sure not to exceed 3 cfm of the gas flow to the cell, for safety reasons. The 

hyperpolarized gas can be dispensed from the cell or mixed with the nitrogen using the set 

of valves that is part of the 3He gas piping structure. If there is a need to purge the 

dispensing container (in our case the Tedlar bag), the small vacuum pump provides vacuum 

at the point of dispensing. 

 
Figure 5.15: The commercial GE polarizer with its key components boxed in red. The 
control PC runs the laser diode array, measures the light absorption, its wavelength and can 
inspect the polarization level. 
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Chapter 6 - Mouse Lung MR Diffusion 
Experiment 

6.1 MR Diffusion Experiment  

Data from the MR lung diffusion experiment are obtained using bi-polar Stejskal-Tanner 

diffusion sequence optimized for mice (Figure 3.2) by taking 12 consecutive MR 

measurements, some with and some without applied gradient. Additionally, the 

measurement of free diffusion of the 3He gas was conducted immediately after the lung MR 

scan using a 10 ml syringe and the same sequence with modified b-values. This procedure 

will be explained in detail in this section.  

 

6.1.1 Bi-Polar Stejskal-Tanner Sequence for Diffusion 

Measurements 

Signal was collected from the whole lung by applying a broad-band RF pulse and collecting 

the free-induction decay data without any spatial encoding. The bipolar diffusion-sensitizing 

gradients were inserted between the RF excitation pulse and the data acquisition, to generate 

diffusion attenuation of the MR signal. The diffusion gradient waveform had the following 

parameters: τ = 0.175 ms, Δ = δ = 440 µs and shape as shown in Figure 3.2. Parameters δ 

and Δ define each gradient pulse duration and the beginning of the second pulse, 

respectively. As the two gradient pulses are applied consecutively, Δ and δ are the same in 

our pulse sequence (in fact the VnmrJ would not let us use zero time between the two 

gradient pulses, thus we used 1 µs; this is negligible as compared to 880 µs, duration of two 
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gradient pulses during which diffusion is being codded). Time τ (ramp time) is fixed in the 

sequence; that is, the rise/fall time of each gradient pulse is independent of the gradient 

strength (see Figure 3.2). The sequence controlled the gradient waveform slope to achieve 

this constant ramp-up and ramp-down time τ independent of b-value. The maximum b-value 

was varied by varying only the maximum gradient amplitude Gm. The VnmrJ sequence was 

programmed to calculate a required gradient for the particular b-value and selected 

maximum slope, making sure it never called for faster gradient ramp-rate than the hardware 

limitation established previously in Chapter V.  

 

The fastest ramp time was established from the gradient calibration chart (see Figure 5.3) 

and our highest desired b-value, discounted by the overhead delay caused by the system 

controlling the ramp time. In our case, our highest b-value, b=10, is the limiting and 

determining factor for the fastest ramp time achievable by the hardware. In this case, the 

ramp time was calculated to be 155 µs, empirically confirmed to be 170 µs and for the final 

value we chose τ = 175 µs.  

 

The MR pulse sequence that we use in the experiment, as desplayed in the Varian system 

software window, is shown in Figure 6.1. The first thing applied in the MR sequence is the 

crusher gradients, meant to diphase any potential remaining magnetization. This is followed 

by a square wave RF pulse at the frequency of the 3He nuclei, for given B0. Half millisecond 

after the RF pulse, we applied a set of bi-polar gradients, firs the positive one and then 

negative, back to back. The gradient is applied only in one axial direction (or not applied at 

all when b=0) per RF pulse, for all 12 consecutive RF pulses. The diffusion sequence has 

been written so that gradient pulses have always the same rise time, duration and fall time, to 
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accommodate the theory and mathematical model developed and described in Chapter III. 

Shortly after the diffusion sensitizing gradients are applied (after 270 µs), the MRI signal is 

acquired for 50 ms.  

 

 
Figure 6.1: The bi-polar diffusion sensitizing gradient sequence used in all diffusion MR 
measurements. The sequence is run 12 times back to back for different b-values 
(b[s/cm2]=0, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0). The purple italics denote main sequence parts: 
crusher gradients followed by the RF pulse and the bi-polar set of gradients, only in one axial 
direction for one 12-sequence set.  
 

 

6.1.2 b-values and Diffusion Gradient Direction 

The sequence is a multi-b value experiment that uses 12 b-values each with the same 

acquisition time of 50 ms and all other parameters as seen in the previous section. As 

mentioned earlier, the descending order for b-values was chosen to better use the naturally 
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decreasing SNR in 3He gas experiments: apply the large b-values first while the 3He gas has 

strong polarization and apply the weakest b-values last, when the polarization is reduced by a 

large percentage. The ten b-values were chosen for our experiments by selecting an 

approximate value that would provide the desired MR signal attenuation according to the 

Eq. (3.3) in Chapter II. Once these b-values were selected, given all sequence timings were 

preset, the sequence by itself chooses corresponding diffusion sensitizing gradient strength. 

The sequence calculated actual gradient strengths using Eq. (3.4).  

 

Each full data set (12 MRI scans) is acquired in about a second. Each of three axial 

directions (X, Y and Z) is scanned individually with a new batch of hyperpolarized 3He gas 

using full 12-b sequence. Although different signal strength was acquired for the each axial 

direction, it did not matter as the relative relationship between the 12 MR signals in each 

sequence is used to determine the diffusion parameters in the lungs.  

 

Figure 6.2: A set of typical 12 MR signals collected from the b-value descending sequence 
for b[s/cm2]=0, 10, 9, …., 2, 1, 0. The first and the last pulse of b=0 value are used to 
calculate actual flip angle α. 
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The same 12 b-value sequence was used to measure 3He gas self-diffusion. This is conducted 

right after the lung diffusion experiment. A 10 ml syringe is purged several times and filled 

with the pure HP 3He gas. As compared to the lungs alveoli, the size of the syringe 

compartment is enormously large, needing much smaller gradient diffusion encoding. This 

translates into b-values for this part of experiment being vastly smaller than those used for 

measuring diffusion in the lungs. In this case, we calculated and experimentally confirmed 

that optimal gradient attenuation, required for calculating the self-diffusion coefficient, is 

produced by using b-values of b[s/cm2]=0, 1.50, 1.35, 1.20, 1.05, 0.90, 0.75, 0.60, 0.45, 0.30, 

0.15, 0. The smaller b-values as compared to measurements in lungs are required due to 

bigger self-diffusion coefficient. Also, large quantity of HP 3He gas produces the strong 

signal, and the sequence gain had to be attenuated not to over-saturate the MR amplifier. 

The great SNR enabled us to calculate precise values of 3He gas self-diffusion coefficient for 

later use in our lung mathematical model. Data analysis and calculations are discussed in 

Section 6.3, MR Data Processing.  

 

6.1.3 Residual Magnetization 

An important issue to remember whenever running MR scans consecutively, is the issue of 

remaining magnetization in the X-Y plane induced from the previous scan (the diffusing 

spins are de-phased/re-phased using bi-polar gradients, forming and echo upon which the 

MR signal is acquired). If there is any magnetization left from the previous MR scan, when 

next RF pulse is delivered, the residual magnetization will contribute to the acquired MR 

signal, skewing the results. Question here is reduced to the longevity of T2
* relaxation time 

constant in the lungs, which is short. Literature has quoted the T2
* in the rat lungs as short as 
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4 milliseconds [2], which is expectedly even shorter in mouse lungs. Various delays 

throughout the sequence are considerably longer then T2
* time in mouse lungs, thus we fully 

expect that any magnetization that is rotated to the X-Y plane is completely 

dispersed/relaxed well before the next MR pulse arrives. To remove any guess work and 

make sure we de-phase any remaining magnetization in the X-Y plane, we included low level 

crusher gradients of 12 G/cm for all axial orientations (X, Y and Z) as the first step of our 

MR sequence, just before RF pulse (see Figure 6.1, crusher gradients).  

6.1.4 Diffusion Pulse Sequence Details 

In order to improve the SNR in the MR signal obtained, the order of b-values in the 

diffusion sequence is descending (see Section 2.5, Signal to Noise Optimization). Due to this 

optimization, our sequence was designed to deplete almost all of the 3He polarization, thus 

providing maximum available signal, allowing for no averaging. Total length of the one full 

sequence, with all timings/delays, crusher gradients, RF pulses, bi-polar gradients and the 

acquisition time was 54.72 ms, while for 12 of them to run consecutively, it took about 1.2 

seconds; the discrepancy coming from the parameter tr=100 µs, repetition time parameter 

that describes the duration of one whole sequence. One MR sequence acquires 10,000 

complex data points (5,000 real and 5000 imaginary), over the acquisition time of 50 ms. The 

MR signal was largely attenuated after the first 10 ms, however we acquired entire 50 ms to 

make sure to capture any changes in case of a stronger signal. Entire set of the sequence 

parameters can be found in the Table 6.1.  
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Table 6.1: The comprehensive list of sequence parameters used for acquiring lung diffusion 
data, used for estimation of the lung internal physical parameters. 
Parameter Description Values and Units 

sw spectral width (auto set with scanner/MR 
system preparation macro) 

100 kHz 

at acquisition time (hard set by the sequence) 0.05 s 

np number of complex points acquired during 
the acquisition time, at 

10,000 

nt number of transients (number of 
acquisitions, averaged together) 

1 

tr repetition time – time to acquire full k-
space data, one full sequence 

0.1 s 

te echo time – time between RF pulse and 
echo peak 

0.0021 s 

rfcoil RF coil type, here tuned to 3He frequency, 
calibrated for flip angle, power and RF 
signal pattern 

lungs3He – here named variable associated 
with values mentioned in description  

p1 RF pulse duration 28 µs 

p1pat RF pulse pattern/shape square 

tpwr1 RF pulse power 36 dBm 

ws water suppression – here n/a n 

gcoil gradient coil (system value, describes 
gradient coil present in the scanner) 

205_120_HD 

rgdiff rise time of bi-polar diffusion gradient (also 
fall time of bi-polar diffusion gradient) – 
time required to transcend from zero to the 
required gradient value 

175 µs 

crushg crusher gradient value – here fixed for all 
iterations 

12 G/cm 

dir direction of the gradient applied – here we 
used all three axial directions, X, Y and Z 

X, Y or Z, depending on axial diffusion 
being measured 

tdelta  time duration from the beginning of the 
positive (or negative) gradient to the end of 
the same gradient 

440 µs 

tDELTA time duration from the beginning of the bi-
polar gradient to the beginning of the 
opposite polarity gradient – here greater 
than “tdelta” by 1, to accommodate 
internal vnmrJ system requirements 

441 µs 

gain amplifier gain for acquired signal 40 dB 

trise rise time – internal variable, here used to 
delimit the end of the bi-polar gradient 
from the acquisition time 

270 µs 
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6.2 MR Experiment for Anisotropy 

6.2.1 Pulse Sequence 

The theory behind the anisotropy experiment is described in Chapter III. The experiment is 

conducted by applying the same idea of measuring gas diffusion in the lungs, in this case 

three consecutive MR measurements stacked in X, Y, Z direction and compared with three 

MR gas diffusion measurements stacked in one direction, in our case we chose X, X, X 

combination. The Sequence for XYZ experiment (Figure 6.3) is ran first followed by the 

sequence for XXX experiment (Figure 6.4). Similar to the diffusion multi b-value sequence, 

the bi-polar diffusion sensitizing gradients are inserted between the RF pulse and the 

acquisition time, in this case three pairs of bi-polar gradients. In this sequence we used lower 

b-values and the Varian hardware was able to achieve somewhat faster ramp times, τ = 0.150 

ms, while the whole one-pole gradient time was Δ = δ = 350 µs. We used the same 

technique to control the gradient ramp time to achieve constant ramp irrespective of varied 

b-values in the sequence and also to prevent the sequence to ask for faster gradient ramp 

times than hardware’s capabilities. This also ensured that the scan duration is the same each 

time, allowing us to compare the MR measurements side by side.  

 

The basic premise behind the idea of confirming the anisotropy of the gas diffusion in the 

mouse lungs is to establish the link between the non-mono-exponential dependence of the 

MR signal on the b-value and the lung microstructure. This objective is embodied in our 

approach to compare the signal acquired with three successive gradient pairs (each gradient 

characterized by a given b-value) applied in the three axial directions, SXYZ, and the signal 

acquired with the three successive gradient pairs applied in the same axial direction, SXXX. If 
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the lungs provide isotropic environment for the gas diffusion, both signals will be the same. 

For anisotropic environment, e.g. cylindrically shaped airways, SXYZ < SXXX as described 

previously by Eqs. (3.15) and (3.17) for any value of b. The two sequences in Figure 6.3 and 

Figure 6.4, are designed to show how these two signals, SXYZ and SXXX, have consistent 

deviation from each other, confirming in fact the anisotropic nature of the gas diffusion in 

lungs at the microscopic level.  

 

Figure 6.3: The X, Y, Z diffusion sensitizing gradient sequence used in all anisotropy MR 
experiments. The sequence utilized the descending set of b-values, b[s/cm2]=0, 4, 3, 2, 1, 0. 
The purple italics denote the main sequence parts: crusher gradients followed by the RF 
pulse and all three consecutive bi-polar gradients, X, Y and Z. 
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Figure 6.4: The X, X, X anisotropy sequence. The graph is for illustration purpose of the 
three consecutive uni-axial gradients. The sequence otherwise has the same timings and 
works in tandem with X, Y, Z sequence to confirm the anisotropy of the gas diffusion in 
mouse lungs. The purple italics denote the main sequence parts: crusher gradients followed 
by the RF pulse and the set of three bi-polar gradients all applied in one axial direction, X 
direction. 
 

6.2.2 b-values 

Similar to the original diffusion sequence, this one is also multi b-value sequence. To scan 

both XYZ and XXX experiment with one gas delivery to the lungs, this sequence is ran in 

tandem of 11 scans using descending b-values: 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0 [s/cm2]. The first 

six scans are run as XYZ sequence and the last six scans as the XXX sequence, thus the sixth 

scan (the mid scan) of b=0 is used for both sequences, XYZ and XXX, to determine the 

exact flip angle alpha. The three successive gradient pairs are reducing the signal budget left 

over for diffusion coding, thus we used lower b-values for this experiment, as compared to 

the 12 b-value diffusion experiment.  
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6.2.3 Anisotropy Sequence Details 

This anisotropy sequence also uses crusher gradients, in this case variable crusher gradients 

to ensure any repetitiveness in the scanning pattern and reading undesired signals is avoided. 

As both measurements, XYZ and XXX are packed in one 11-RF pulses scan, this sequence 

uses gradient directions as variables. The overall duration of one sequence is as before, 

tr=100 µs, and the 11 b-value sequence is ran in approximately 1.1 seconds. Detailed list of 

all anisotropy sequence parameters are in the Table 6.2.  

 

Table 6.2: Comprehensive list of anisotropy sequence parameters used for acquiring lung 
diffusion data after applying successive gradients, used for establishing the link between the 
anisotropy of the diffusion and the lung tissue. 
Parameter Description Values and Units 

sw spectral width (auto set with scanner/MR 
system preparation macro) 

100 kHz 

at acquisition time (hard set by the sequence) 0.05 s 

np number of complex points acquired during 
the acquisition time, at 

10,000 

nt number of transients (number of 
acquisitions, averaged together) 

1 

tr repetition time – time to acquire full k-
space data, one full sequence 

0.1 s 

te echo time – time between RF pulse and 
echo peak 

0.0015 s 

rfcoil RF coil type, here tuned to 3He frequency, 
calibrated for flip angle, power and RF 
signal pattern 

lungs3He – here named variable associated 
with values mentioned in description, 
same as before  

p1 RF pulse duration 28 µs 

p1pat RF pulse pattern/shape square 

tpwr1 RF pulse power 39 dBm 

ws water suppression – here n/a n 

gcoil gradient coil (system value, describes 
gradient coil present in the scanner) 

205_120_HD 

rgdiff rise time of bi-polar diffusion gradient (also 
fall time of bi-polar diffusion gradient) – 
time required to transcend from zero to the 
required gradient value 

150 µs 

crushg crusher gradient value – here variable 
throughout the sequence 

5, 15, 10, 7.5, 12.5, 5, 15, 10, 7.5, 12.5, 5 
G/cm 

dir1 direction of the first successive gradient 
applied  

X, X, X, X, X, X, X, X, X, X, X  

dir2 direction of the first successive gradient 
applied  

Y, Y, Y, Y, Y, Y, X, X, X, X, X, X 
depending on anisotropic experiment 
being conducted 
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dir3 direction of the first successive gradient 
applied  

Z, Z, Z, Z, Z, Z, X, X, X, X, X, X 
depending on anisotropic experiment 
being conducted 

tdelta  time duration from the beginning of the 
positive (or negative) gradient to the end of 
the same gradient 

350 µs 

tDELTA time duration from the beginning of the bi-
polar gradient to the beginning of the 
opposite polarity gradient – here greater 
than “tdelta” by 1, to accommodate 
internal vnmrJ system requirements 

352 µs 

gain amplifier gain for acquired signal 40 dB 
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6.3 MR Data Processing 

To correct the inhomogeneity of the magnetic field produced by the MRI magnet due to 

imperfections in the magnet, filed disturbance by the objects inside the bore, we have to 

shim the magnet. As each RF pulse inflicts a loss of nuclear polarization of the HP 3He gas, 

it is virtually impossible to shim the magnet on the 3He sample.  Instead we shimmed the 

magnet using a 17 mm spherical doped water phantom that has approximately the same size 

as inflated mouse lungs. This shimming produces good results with the water phantom (the 

MR test pulse line width obtained was 20-40Hz, see Figure 6.5) and allows us to obtain good 

SNR with 3He,  

  

Figure 6.5:  MR signal obtained by shimming on the water phantom with the volume 
similar to inflated mouse lungs, 17 mm in diameter. Very narrow Lorentzian signal has the 
width of less than 20 Hz.   
 

however is not perfect as the material, shape and sizes differ from the mouse lungs. Thus, 

some field inhomogeneities will be present in the lung sample, which will broaden the MR 

signal, lower the SNR and introduce jumps or shoulders in the MR frequency spectrum.    
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Our first attempt to scan lungs was with the lungs inside of mouse chest cavity. However the 

body of the mouse introduced a large amount of field inhomogeneities, and the received MR 

signal was broad with many peaks (see Figure 6.6), with low SNR.  At this point we 

concentrated the research on the freshly excised lungs.   

  

Figure 6.6: A broad MR signal with many peaks (lungs inside chest cavity make for very 
inhomogeneous magnetic field).  The full scale is 3000 Hz wide, and shows real part of the 
signal. The MR signal from excised lungs, shown at the same frequency scale, 3000 Hz, was 
of much better shape (see Figure 6.8) and SNR.  
 

 

As mentioned in the section 6.1.4 , the raw MR data are obtained as 10,000 complex data 

points that describe behavior of the FID during the 50 ms data acquisition time (see Figure 

6.7 for an example of a single FID). The FID signal was put through the FFT (Fast Fourier 

Transform) in the Varian MR software system, VnmrJ, resulting in the MR frequency 

spectral line - see Figure 6.8. Our sequence uses a train of 12 RF pulses; a train of typical 12 
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MR signals can be seen in Figure 6.2. For our next step in the signal processing, we need to 

assess the area  

 

  

Figure 6.7:  A typical FID signal collected for 50 ms, immediately after the RF excitation 
pulse and the Stejskal-Tanner gradients in our sequence, 5000 real and 500 imaginary data 
points. The red line is the real while the blue is imaginary part of the MR signal.   

 

 

under the curve of each of the 12 MR spectral lines. As in Figure 6.8, the tails of the signal 

never fall to zero, making it impossible to calculate the area under the curve in a consistent 

manner, from pulse to pulse.  Instead, we used Bayesian Analysis tool in the Varian system 

[3], to represent the original spectral information (see Figure 6.6) as the concatenation of 

several Bayesian curves (where obvious criterion of goodness is the residual between the 

original signal and the Bayes representation – see Figure 6.9). More peaks there are in the 

MR spectral line, the more Bayes resonances will be needed to model the original MR signal 
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behavior. In our experiment, we then used the Bayesian curves to calculate the height of the 

12 original MR signals, by adding Bayesian peak heights together. 

 

  

Figure 6.8:  After the FID signal is passed through the FFT transform, the spectral signal is 
obtained.  The tails of the signal never go to zero due to noise floor level, making it hard or 
impossible to calculate the area under the curve in a meaningful way. The horizontal axis is 
3000 Hz wide, same as Figure 6.6.  Signal obtained from the excised lungs is about twice as 
narrow with vastly improved SNR, in this case around three times. The deviation of this 
curve from a Lorentzian behavior seen in Figure 6.5 is due to imperfect shimming and the 
specific structure reflects the distribution of field inhomogeneities.  
 

Each set of the 12 MR signals is represented using the same number of curves generated by 

the Bayesian Analysis: in a case of a signal represented in Figure 6.9 (the third curve) three 

Lorentzian peaks were sufficient to model the MR signal (the second curve) with a negligible 

residual (the first curve in Figure 6.9). The amplitudes of those three peaks are added 

together and that number is taken as the height/peak of the original MR signal. With all 12 
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peak heights calculated, the first (b=0) MR signal is normalized to 100, while the rest of 11 

MR signals are normalized to the first one.  

 

Each RF pulse inflicts a loss of nuclear polarization of the HP 3He gas. A tradeoff in 

selecting the RF pulse flip angle was made between maximizing the signal extraction from 

each RF pulse and maintaining the polarization for subsequent signals. We chose the flip 

angle of 20 degrees, leaving approximately 25-30% of the polarization after the last pulse. 

Naturally, the precision of this quantity is dependent on the precision of the flip angle 

calibration. Preliminary calibration of the flip angle α was conducted using a 10 ml syringe 

filled with pure HP 3He, subjected to a train of 20 RF pulses of fixed duration and strength. 

Final determination of the flip angle was done by comparing the first and the last values of 

the signal amplitude obtained with zero gradient (b=0) (see Figure 6.2), using equation  

 

Figure 6.9:  The line on the bottom represents an original MR spectrum; line in the middle 
is its Bayesian representation (using three Bayesian resonances), while the first line is the 
residual between the two signals: original MR signal and its Bayesian representation. 
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11

12 1 (cos( ))S S   . In all experiments, the flip angle so obtained agreed closely with the 

value from the calibrating procedure (see Figure 6.10, dotted curve). With the true flip angle 

known, each measured signal amplitude is adjusted by dividing by (cos )n , where n 

indicates the number of previous RF pulses. The adjusted data are then plotted as a function 

of b-value and normalized to 100. The adjusted data are analyzed using Eqs. (3.6), (3.7) and 

(3.8) (as described in the Chapter III) to obtain the key lung microstructure parameters, R 

and h. The data are analyzed using OriginPro 7.5 (OriginLab; Northampton, Massachusetts). 

 

Figure 6.10: Original MR signal (arbitrary units) amplitude, using the order of b-values as 
they were collected in the experiment, in [s/cm2]. Two b=0 signals, at the beginning and the 
end of the sequence, have different amplitudes as polarization is consumed by RF pulses 
during the measurement. These two signals are used to determine the RF pulse flip angle for 
later correction of the amplitudes. Dotted line shows the signal decay path that would occur 
in case of no gradients, all b=0. 
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Signal after such an adjustment accounting for RF consumption, is shown in Figure 6.11.  

 

 

Figure 6.11: Typical dependence of adjusted MR signal amplitude (logarithmic scale) on b-
value (symbols) and the fitting curves (solid lines) for X, Y, Z and their average. Results 
demonstrate an excellent fit with χ2=0.045. A very important feature is the substantial 
deviation from mono-exponential behavior (deviation from straight line), in agreement with 
theoretical prediction, in [1] and the theory presented in this paper. 
 

 
The theoretical equations connecting the MR measurements to the lung geometrical 

parameters (Eqs. (3.7), (3.8) in Chapter III) rely on knowledge of the 3He gas free diffusion 

coefficient D0 (recall that in our experiments the lungs are filled with pure 3He gas). To 

measure D0, approximately 10 ml of HP 3He gas from the same batch of gas is scanned in a 
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syringe using the same 12 b-value sequence with a substantially lower range of b-values, 

b[s/cm2]= 0, 1.5, 1.35, 1.2, … , 0.3, 0.15, 0. 

 

The result of this measurement was D0=1.76 cm2/s, which is in good agreement with similar 

values found in the literature (1.8±0.2 cm2/s) [4, 5] for 20°C, the temperature maintained for 

all our experiments.  

 

Thus, the flow of the steps going from the MR experiment to the final 12 MR signals where 

the lung physical parameters are extracted is given in the Figure 6.12. 

 

 

Figure 6.12:  The figure gives a complete data processing path spanning the MR experiment 
until the data are ready for the curve fitting and lung physical parameters extraction.   
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Chapter 7 - Summary of  Results 

7.1 MR Measurements of Key Lung Parameters 

An example of the raw data set corresponding to the MR signal amplitude acquired with the 

12 b-values sequence is shown in Figure 6.10. A typical dependence of the corrected 

amplitudes on the b-value is shown in Figure 6.11 (symbols) along with the fitting curve 

(solid line). Data are presented for three directions of applied diffusion sensitizing gradients 

and demonstrate a small anisotropy. This is consistent with the results of Mitzner et al [1] 

who demonstrated in mice that lung structure is slightly anisotropic even at the macroscopic 

level. These authors provided evidence that the measured mean linear intercept Lm is 

dependent on the planar orientation of the sample. Specifically, Lm along the ventral-dorsal 

axis of the lung tissue was on average 7.4% greater than Lm measured in the perpendicular 

direction. Our approach takes into account the anisotropic structure of the lung acinar 

airways at the microscopic level; however it assumes isotropy of airway orientations at the 

macroscopic level. That is, the airways are oriented in all directions essentially equally. In 

principle, we could introduce this anisotropy at the macroscopic level in our equations, 

which would further increase the model complexity. Instead, to avoid potential bias based on 

this effect and retain the model’s isotropy at the macroscopic level, we collected data for 

three spatially orthogonal directions of diffusion sensitizing gradients and averaged the MR 

signals together before data analysis. The result shown in Figure 6.11 demonstrates an 

excellent fit with χ2=0.045. For this individual measurement, lung microstructure parameters 

are R=103.7±2.9 µm and h=63.1±1.1 µm. An important feature of this signal dependence 

on b-value is the substantial deviation from the mono-exponential behavior (deviation from 
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a straight line on the logarithmic scale in Figure 6.11), in agreement with theoretical 

prediction and experimental data obtained in human lungs [2]. 

 

The complete set of morphometric data for all six mice are summarized in Table 7.1. Our 

average measurement of the mean linear intercept Lm (from Eqs. (3.9) and (3.10)) presented 

in Table 7.1 for six mice is ~62 µm. This corresponds to a surface-to-volume ratio of the air 

spaces of 670 cm-1. We also found that an average alveolar density, Na is about 3200 per 

mm3. The corresponding number that we found previously [3] in normal human lungs (S/V 

about 200-240 cm2/ml and Na about 120-150 per mm3) were in good agreement with direct 

histological measurements.  

 

Table 7.1: Summary of geometrical and diffusion parameters from excised lungs of six mice. 
The table gives values of key parameters in our model: major airway radius R, the depth of 
alveolar sleeve h, alveolar surface-to-volume ratio S/V, mean chord length Lm and alveolar 
density Na, where the error bars are the fit uncertainties. Average diffusion along and 
perpendicular to the airways is 0.7 cm2/s and 0.0143 cm2/s, respectively. Both diffusion 
parameters, DL and DT are sharply reduced from 3He free diffusion (D0=1.76 cm2/s) as the 
alveolar ducts and walls present obstacles to diffusing 3He atoms. Quantity βL is kurtosis 
factor for longitudinal diffusivity. 

 

 

For comparison with the data reported in Table 7.1 we have compiled in Table 7.2 various 

results from the literature obtained by stereological analysis of mouse lungs [1, 4-11]. The 

mouse # R, μm h, μm Sa/Va, 
cm-1 

Lm, µm 
 

Na, mm-3 DL0,  
cm2/s 

DT0,  
cm2/s 

βL 

1 103.7±3 63.1±1 738 54.2 2984 0.741 0.0114 0.0174 

2 107.8±11 48.3±5 555 72.1 2656 0.877 0.0144 0.0081 

3 84.1±5 46.3±2 836 47.8 5594 0.642 0.0063 0.0117 

4 119.1±3 64.1±1 580 69.0 1969 0.679 0.0235 0.0181 

5 109.3±4 46.9±1 524 76.4 2548 0.796 0.0170 0.0075 

6 97.1±10 58.8±2 788 50.8 3634 0.486 0.0133 0.0216 

mean 103.5 54.6 670 61.7 3231 0.704 0.0143 0.0141 

std dev 11.9 8.3 133 12.2 1280 0.135 0.0058 0.0058 
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studies assessed alveolar number, mean linear intercept of air spaces, and the surface-to-

volume-ratio, as well as mean alveolar volume v(alv); this latter value allowed obtaining an 

approximate estimate of h = v(alv)1/3
 assuming a cubic shape of alveoli in first approximation. 

The data show considerable variation, which may reflect significant differences between 

animals; but some of this may be due to different inflation levels achieved in fixation as the 

measured lung volumes varied by a factor of 3. Results obtained in this study for Lm, S/V 

and Na  are within the range of published data (Table 7.2). Some of the differences may also 

be related to the fact that the lungs prepared for microscopic morphometry are generally 

fixed by fluid instillation at 20 cm H2O whereas in the present study the helium gas was 

applied at a pressure of 30 cm H2O resulting in a larger volume. The lower pressure and the 

fluid-filled state may have affected some of the microscopic measurements. 

 

Table 7.2: Morphometric data from microscopic studies from various literature sources 
obtained by stereological analysis of mouse lungs using animals of different strain, age and 
size. The measured lung volumes varied by a factor of 3, some of which may be due to 
different inflation levels achieved in fixation. 

Source Strain age 

(week) 

Mb 

g 

VL 

cm3 

Lm 

µm 

NV(a) 

mm-3 

h 

µm 

v(a) 
103 µm3 

Sa/Va 

cm-1 

Voswinckel  C57BL/6 12-16 24.3 0.721 54.3  37** 51 740 

Knudsen [6] C57BL/6 12  0.680 35 14.1 39** 59 1150 

Soutière  C57BL/6J 6-8  0.95-1.45 45-63     

Fehrenbach  C57BL/6 12-14  0.432  2.7    

Mitzner C57BL/6 10-12  1.2 52    770 

Knust C57BL/6 6.5-10 20.6 0.307 85 9.6 39** 59 470 

Lee  C57BL/6J 7-9   38     

Kang  C57BL/6J 12  1.7 55     

Knudsen C57BL/6* 12  0.69 39    915 

Overall range  6-16 20-25 0.4-1.5 40–80 3–14 30–50  500–1000 

This study C57BL/6 12-16 21-27 ~1.2 61.7±12 3.2±1.3 55±8  670±133 

*) SPD-deficient mice treated with recombinant SPD; **) h = v(alv)1/3 
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The published data [1, 4-11] do not contain estimates of the morphometric parameters of 

alveolar ducts, such as their major radius R that comprises both the inner duct radius r and 

the alveolar sleeve of depth h (Figure 3.1). Such data characterizing the structure of acini 

have been obtained for human, rat and rabbit lungs [12, 13].  

 

Here for illustration purposes we present data obtained in an as yet unpublished identical 

study by Weibel E.R. of the acinus of the mouse lung that provided a limited number of 

specimens on which the size characteristics of mouse alveolar ducts could be estimated. 

These studies were based on two types of preparations: silicone rubber casts filled to about 

70% TLC [13], and perfusion fixed lungs air-inflated at about 60% TLC [14]; examples of 

these preparations are shown in Figure 7.1A and Figure 7.1B. The specimens were obtained 

on BALB/6 mice of about 40 gr and a total lung volume of 0.8-1.0 ml following the 

methods described in [13]. The two specimens are different in terms of preparation artifacts: 

the silicon rubber cast does not shrink during preparation and thus shows the real size of the 

structures; in contrast, the lungs fixed by vascular perfusion suffered considerable shrinkage 

during the preparation procedures, mainly because of critical point drying. We estimate that 

measurements obtained on the perfusion fixed specimen must be corrected by a factor of 

1.6; this about the difference in the size of alveoli in Figure 7.1A and Figure 7.1B. The very 

small size of mouse acini (mean volume ~0.1 mm3) rendered a rigorous morphometric 

analysis of the duct structure, as done for larger lungs [12, 13], difficult, but it was possible to 

determine an approximate range for the parameters R, r, and h, as marked on a few examples 

in Figure 7.1. We find that the inner duct radius r, marked by double-pointed arrows, 

measures on the order of 40-75 μm and shows systematic variation being nearly 2 times as 
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wide in the ducts of the first generations following on the transitional bronchiole (trb) as 

compared to more peripheral ducts; this agrees with the pattern found in rat, rabbit and 

human lungs [12, 13]. The outer radius R, marked by a bar, varies in the same sense but to a 

lesser degree with a 

 

Figure 7.1: (A, left) Scanning electron micrograph of segment of a partly dissected silicone-
rubber cast of an acinus of a mouse lung showing the transitional bronchiole (trb) as 
entrance airway and alveoli (a) grouped around alveolar ducts which have been partly 
separated. Asterisk marks a transected alveolar duct with diameter 2r. Bars mark approximate 
outer diameter 2R. (B, right) Scanning electron micrograph of a perfusion-fixed mouse lung 
air-inflated to about 60% TLC showing a transitional bronchiole (trb) that opens into the 
acinus (arrow). Double-pointed arrows mark the inner diameter 2r of alveolar ducts that are 
wide in the first generations of branching and taper somewhat towards the periphery; the bar 
marks the outer diameter 2R that comprises the sleeve of alveoli (a). Range of measured 
values: R = 70-100 μm. r = 40-75 μm, h = 30-55 μm. 
 

 

range of 70-100 μm. The size of alveoli (a) varies considerably in the range of 30-55μm. 

These results show a reasonable agreement with our MRI measurements.  
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Certain phenomena, not taken into consideration by our model and experimental method, 

can affect the accuracy of the results obtained with 3He gas lung morphometry technique. 

First we mention that our model assumes that during the diffusion experiment of duration 

2*Δ=880 µs, most 3He atoms spend their time diffusing in a single airway. The effect of 3He 

atoms moving into another airway of different orientation during the diffusion measurement 

is especially important in small animals. Because the average mouse lung mean alveolar 

length is much smaller than in humans, in this study we used very short bipolar diffusion-

sensitizing gradient pulses (δ=Δ=440 µs), as compared to 1800 µs in human experiments [3]. 

This decreases the fraction of 3He molecules escaping into adjoining airways and distorting 

the lung morphometry measurements. In principle, this effect could be further reduced by 

using still smaller diffusion times, however hardware limitations in our case would not allow 

for further improvement.  

 

To minimize the undesirable contribution of 3He gas in conducting airways to our 

measurements, we followed the 3He gas delivery with 15% of inert N2. Practically, this may 

lead to partial mixing of 3He and N2 gases resulting in a reduced 3He diffusion coefficient D0 

in some regions. If we assume the dilution level of 3He to be 90%, the corresponding 

reduction in D0 will be from 1.76 cm2/s for 100% 3He concentration to ~1.58 cm2/s. 

Substituting this reduced D0 in the equations used for data analysis yielded average changes 

of geometrical parameters R and h of only 3.6% and -4.3%, respectively. Thus we expect that 

3He-N2 gas mixing between large and small airways causes errors no more than 5% in 

estimation of the geometrical parameters R and h.  
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Our model is limited to the adopted lung microstructure and its simplified representation. 

The data analysis provides an overall average of the distribution of the airway and alveolar 

sizes throughout the lungs. The main geometric parameters characterizing acinar airways are 

the internal acinar airway radius r and the outer radius R (which includes the sleeve of alveoli 

with its depth, h) [12]. Both of these parameters (R and r, thus R and h) vary depending on 

the position and branching level of the acinar airway tree. Our method assumes that we can 

characterize the diffusion attenuated MR signal in terms of the average characteristics across 

the acinus and, further, across the lung. In humans this is justified by experimental 

measurements of Haefeli-Bleuer and Weibel who found that the variation in parameters 

distribution is rather small: the distribution width is 16% for R and 20% for r [12]. In this 

manuscript we also make an assumption of the “narrowness” of the distributions of 

parameters R and r and characterize our result by average parameters R, r and h in mice. 

 

In this work we studied only lungs obtained from healthy mice. The theoretical model 

developed here is suitable for deformation/destruction of lung microstructure only in the 

initial stages of emphysema that can be characterized by airways inflation and retraction of 

alveolar sleeve [3, 15]. At advanced stages of emphysema, characterized by severe 

destruction of lung parenchyma, our measurements could return skewed values of the key 

lung parameters. However, validation data obtained in human lungs [3] demonstrated that 

the measurements of Lm using 3He gas ADC even in severely emphysematous lungs were in 

excellent agreement with direct histological measurements. 
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7.2 MR Measurements of Lung Anisotropy 

For the lung anisotropy experiment, the diffusion data are acquired using the same sequence 

with different gradient spatial orientations (see Figure 6.3 and Figure 6.4), one with three 

consecutive gradients in the same direction, XXX, and another with gradients in the 

orthogonal directions, XYZ. As described in the Section 3.1.4, “Diffusion Anisotropy in the 

Lung Model”, it can be shown mathematically that, if lungs are made out of cylindrical 

airways (as opposed from spherical ones), for any b-value the MR signal from the two 

experiments will be consistently different, e.g. theory predicts SXYZ < SXXX.  

 

A typical raw data set obtain from these experiments is shown in Figure 7.2. Our approach 

for this experiment is to unequivocally link the anisotropy of the diffusion in the lungs with 

the lung microstructure. Raw MR data obtained as in Figure 7.2 are analyzed using the same 

Bayesian analysis technique, where flip angles are removed. Typical MR dependence on b-

value for both, XYZ- and XXX-experiments (log scale), obtained for one mouse is shown in 

Figure 7.3. Clearly, the signal corresponding to XYZ experiment consistently lays below the 

signal corresponding to the XXX experiment. This consistent difference between the two 

signals, Sxyz and Sxxx (Figure 7.3) proves that non-mono exponential behavior of the MR 

signal is indeed due to the diffusion anisotropy at the microscopic level. Furthermore, as 

experiment is set up to confirm the anisotropy due to cylindrical lung airways and data 

support the theoretical expectations, in this experiment we established a link between the 

anisotropy of the gas diffusion in the lung and the lung microstructure.  
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Figure 7.2: Raw data are shown in the order they were acquired. After the first b=0 
acquisition, the descending order of b-values was chosen to better use the naturally 
decreasing SNR in 3He gas experiments: apply the large b-values first while the 3He gas has 
strong polarization and apply the weakest b-values last. 
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Figure 7.3: Typical XYZ and XXX data comparison for one mouse lungs. The Sxxx stays 
above Sxyz throughout the range of different b-values used in the experiment. This 
consistent inconsistency indeed demonstrates the 3He gas diffusion anisotropy at the 
microscopic level in the mouse lungs.  
 

 

Data in Figure 7.2 and Figure 7.3 are presented for one mouse. The data for all other mice 

from Table 7.1, where we measured the lung microstructure parameters, produced consistent 

difference between SXXX and SXYZ, as shown in Figure 7.3. All six graphs are shown in Figure 

7.4. The MR signal obtained from SXYZ experiment is expected to be anisotropic and it 

clearly demonstrates deviation from the monoexponential behavior (deviation from a 

straight line in the logarithmic scale), while MR signal from SXXX experiment is much closer 

to the straight line, as also expected.  
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Figure 7.4: Summary of comparison of Sxxx and Sxyz signals for all six mice, as in Table 
7.1, for the anisotropy experiment. MR signal Sxxx is consistently higher than Sxyz for all 
scanned b-values, demonstrating the gas diffusion anisotropy in the mouse lungs, due to the 
cylindrical shape of airways in the mouse lungs.  
 

 

7.3 Results from in vivo Studies 

An in vivo study on seven mice was conducted by one of the PhD candidate in our labs, Wei 

Wang, with similar objectives: implement 3He gas lung morphometry to quantify regional 
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lung microstructure in the mouse in vivo [16] using the same mathematical modeling as 

described in the Section 3.1 of Chapter III.  

 

Briefly on methods: Mice were of the same strain and age group as in our original study. 

Animal was anesthetized using standard procedure, orally intubated using 20-gauge 

intravenous catheter and attached supine to a ventilator [17], custom built in our labs. The 

animal was ventilated at 120 breaths per minute with each breathing cycle consisted of an 

inhalation of 3He/4He gas mixture, a short breath hold, further inhalation of pure oxygen, 

followed by a passive exhalation. A trigger signal from the ventilator during the short breath 

hold ensured that the image data acquisition began at the same point, where lungs are still. 

Using 2D multi-slice gradient echo sequence with embedded bipolar diffusion-sensitizing 

gradients (with similar key sequence parameters as our diffusion experiment: 6 b-values of 0, 

1, 2, 4, 6, 9 s/cm2, δ=Δ=440 μs, rise time τ = 150 μs) 3He gas diffusion data were collected. 

For each mouse, five 2 mm-thick axial slices were acquired with a 40 mm x 40 mm field of 

view, covering nearly entire lung.  

 

A voxel by voxel 3He gas diffusion data was extracted, generating parametric maps for 

alveolar depth h, airway radii R and the mean linear intercept, Lm. Figure 7.5a shows the 

representative parameter map for one mouse, while the corresponding 1H MR images and 

3He ventilation images are shown in Figure 7.5b and Figure 7.5c.  
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Figure 7.5: a: Representative geometric parameter (R, h, and Lm) maps obtained from one 
healthy mouse lung. Major airways are red in the maps of R. The pixel size is 0.63 mm x 0.63 
mm and slice thickness is 2 mm. The slightly elevated R and Lm values in the ventral and 
dorsal lung periphery are fairly consistent from mouse to mouse.  
b: corresponding 1H images showing anatomical positions.  
c: Corresponding HP 3He ventilation images (b=0) 
 

 

Table 7.3 summarizes all the parameters for all mice: key physical parameters as R, h, Lm, Na 

and S/V are all fairly homogeneous throughout the entire lung, with some regional variation 
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and slight increase of R and Lm in the lung periphery. Variation from slice to slice for 

average values is minimal.  

 

Table 7.3: Summary of morphometric parameters obtained via 3He MRI from 7 normal 
mice with histological comparison (not available for mice 6 and 7). The table gives values of 
key parameters for our model: acinar airway radius R, alveolar depth h, mean linear intercept 
Lm, alveolar density Na and alveolar surface-to-volume ratio S/V. Since there is not much 
variation from slice to slice in the same mouse, only mean values of the parameters for each 
mouse are shown here. 

Mouse 
No. 

R (µm) h (µm) Lm (µm) Na (mm-3) S/V (cm-1) Lm(Histology) 

1 95.6±7.0 49.8±6.7 61.0±12.5 3920±829 702±88.6 54.5±5.0 

2 100.4±6.4 49.2±4.4 66.0±10.2 3360±632 642±69.1 52.8±5.6 

3 97.4±7.9 49.3±6.3 62.4±13.1 3760±854 689±86.7 49.6±5.6 

4 94.7±6.7 51.3±5.9 58.7±11.6 4020±784 722±87.9 52.7±4.5 

5 92.0±6.4 52.9±3.6 54.6±10.1 4390±871 762±105.0 50.6±3.4 

6 103.3±5.8 58.3±3.9 60.1±8.8 3680±536 682±70.2 - 

7 96.7±5.9 51.4±4.2 60.1±8.4 3760±670 688±82.4 - 

Mean 97.2 51.7 60.5 3840 698 52.0 

Std Dev 3.7 3.2 3.5 3920±829 702±88.6 1.9 

 

Average value for all seven mice, for all voxels in this experiment is found to be 60.5 ± 3.5 

μm, which compares well with our diffusion experiment and the mean Lm = 61.7 μm.  

 

Table 7.3 also shows the data of the mean chord length measured by histology, conducted 

on the same mice, right after the MR in vivo scanning. The quantitative histology was 

conducted using the usual method (lungs were inflation-fixed, embedded in ager to random 

cut 2-3 mm blocks for post processing: 5 μm slices were cut and stained to determine the 

chord length and other physical parameters). The average of mean chord length using this 

direct method was found to be 52.4 μm. The small but statistically significant difference 

between the measurements by the two methods appears to be systematic and may relate to 

the histological preparation and imprecise estimation of tissue shrinkage.  
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Chapter 8 - Conclusion 

8.1 Accomplishments 

The accomplishments of this research are in both scientific and technological domain.  

8.1.1 Mouse Lung Microstructure Measurements 

First, scientifically, we established empirical relationships that connect MRI measurements of 

3He gas diffusion-attenuated MRI signal in mouse lungs with the geometrical parameters of 

lung acinar airways. We applied the new mathematical model to study mouse lungs and 

demonstrated that MR-based measurements of hyperpolarized 3He gas diffusion in mouse 

lungs provide quantitative information on acinar airway dimensions and lung surface-to-

volume ratio consistent with published histological values and our direct estimates.  

8.1.2 Anisotropic Nature of Mouse Lungs 

Additionally, our measurements of the lung anisotropy provided conclusive relationship 

between lung microstructure and the anisotropic diffusion in the mouse lungs. As mentioned 

in Chapter II, the lung environment is microscopically anisotropic and macroscopically 

isotropic system (assuming uniform orientation of the lung airways) and the measured MR 

signal is non-mono-exponential in b-value in humans [1, 2] and mice [3]. Such non-mono-

exponential dependence can be caused by other factors, e.g. presence of multiple spherical 

compartments of varied sizes. This study established a relationship between the non-mono-

exponential behavior of the MR signal and the diffusion anisotropy at the microscopic level. 

In short, our measurements confirmed that the diffusion of 3He gas in the mouse lung is 
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anisotropic at the microscopic level but practically isotropic at the macroscopic level thus 

explaining the non-mono-exponential behavior of diffusion attenuated MR signal in lungs.  

8.1.3 Adaptive MR Sequence for Optimal use of Gradient 

Budget 

Technologically, we developed an adaptive MR sequence to effectively take full advantage of 

the gradient strength budget, while staying within the constraints of the developed 

mathematical model and within operating parameters of the hardware used. Direct outcome 

is the new MR protocol able to acquire data with much shorter diffusion times as compared 

to human measurements, to accommodate the substantially smaller acinar airway length as 

those found in mice. The basis of the sequence is used for other similar mouse lung MR 

measurements for both in vivo and ex vivo.  

8.2 Directions for Future Study 

8.2.1 Known Experiment Limitations 

We would not demonstrate the scientific rigor and full awareness of aspects of the research 

conducted here without discussing known limitations. Although studies are with merit, more 

measurements could have been taken to allow for richer set of results. Also, another branch 

of experiments could have been conducted (e.g. study of lungs with chemically induced 

emphysema or lungs damaged with smoke) to show comparison and to draw conclusions. 

Additionally, collaboration with other departments and universities in adoption of the gold 

standard method for direct lung microstructure measurements would provide more sound 

scientific comparison of our newly developed MR mouse lung methods.  
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Further, although developed theory assumes that no 3He atoms will escape observed airways 

(not case in practice), published papers on similar measurements in humans provide 

evidence that actual MR measurements are impacted with less than 7% of accuracy. 

Diffusion times used in mice are substantially shorter than those in humans, as the airways 

are. Similar study on impact of escaping 3He atoms into adjacent airways would provide a 

valuable insight and potential modulation of this study.  

 

Triggering the MR measurements at the magnet (right upon delivering the HP 3He gas to the 

mouse lungs and inserting the carrier into the magnet), rather than walking to the magnet 

and triggering them at the console would improve the SNR and reduce the noise floor, in 

turn potentially allowing for further flip angle increase (flip angle was chosen conservatively 

to hedge ourselves from the proximity of the noise floor).  

 

Unfortunately, the ongoing progressive scarcity and high cost of 3He gas limits wide scope of 

studies with large sample population in this area. Though certain steps are currently taken to 

address this issue, among them – 3He gas recycling which offers substantial reduction in 

experimental costs.  

8.2.2 This Study and Future Work 

The MR measurements of lung microstructure appear to be in good correlation with 

histological findings and other similar published studies. We regard these diffusion 

measurements as closely reflective of true mouse lung microstructure physical parameters. 

The method we developed here creates a basis for in vivo study of lung microstructure in 

small animals, similar to the previously developed method of 3He Lung Morphometry in 
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humans [2, 4]. It also creates a basis for ex vivo work on other area of lung studies (e.g. lung 

development and diseased lungs).  

 

The development of the MR diffusion sequence used on such small subject that produces 

results in good correlation with the histological findings, paves two paths.  One is to use the 

sequence in other experiments (e.g. in vivo, where the HP noble gas is continuously 

delivered). This in fact has been done: the sequence developed in this dissertation has been 

used as a basis to develop imaging sequence with focus on voxels of interest in the lungs. 

The other is to use the HP noble gas apparatus in different experiments (e.g. with newborn 

mice to observe for example lung developmental process, or with different small animals 

such as rats in similar experiments). Similarly, we used the tools developed in this work to 

conduct experiments on newborn mice.   

 

Additionally, as the 3He gas is becoming prohibitively more expensive and there are drives to 

recycle it, the gas delivery apparatus makes it easy to do both, save unused gas and recycle 

the gas used in the experiment.   

 

Also, moving the mathematical model from the human lungs to mice lungs, in spite of the 

successful results, can be questioned. Developing similar model for rats or a model for 

xenon for both mice and rats would drastically add to the validation of the method and the 

tools used.   
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Appendix A - Source Code for Flip Angle 
and Eddy Currents Measurements 

A1 Flip Angle Measurement and Calibration 

 

#ifndef LINT 

static char SCCSid[] = "@(#)s2pul.c 14.1 12/08/98 Copyright 

(c) 1991-1996 Varian Assoc.,Inc. All Rights Reserved"; 

#endif 

 

/*  s2pul - standard two-pulse sequence */ 

 

#include <standard.h> 

 

pulsesequence() 

{ 

   /* equilibrium period */ 

   status(A); 

   hsdelay(d1); 

 

   /* --- tau delay --- */ 

   status(B); 

   pulse(p1, zero); 

   hsdelay(d2); 

 

   /* --- observe period --- */ 

   status(C); 

   pulse(pw,oph); 

} 

 

 

A2 Eddy Current Pulse Sequence 

 

#ifndef LINT 

static char SCCSid[] = "@(#)semsdw.c 13.1 10/10/97 

Copyright (c) 1991-1995 Varian Assoc.,Inc. All Rights 

Reserved"; 
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#endif 

/*  

 * Varian Assoc.,Inc. All Rights Reserved. 

 * This software contains proprietary and confidential 

 * information of Varian Assoc., Inc. and its contributors. 

 * Use, disclosure and reproduction is prohibited without 

 * prior consent. 

 */ 

/**********************************************************

**** 

SEDFWS.C 

Spin-echo diffusion spectroscopy sequence with optional 

CHESS  water suppression 

010104 deleted acquire command.  This added or subtracted a 

delay so that echo was not centered.  This caused a 

1st order phase shift. 

000511 Add ir option. Can be used to find null point for 

STIR imaging. Suppress water with diffusion. 

991001 Add option of putting gradients for water 

suppression on in two directions and alternating the 

axis so all three are orthogonal. Usage is wstype = 1 

or 2 where 1 is the 1-2-4 height from earlier. 

990903 Added the option to turn on all gradients at once 

for diffusion. Direction refered to as 'a' for all. 

Allows 1.732x gradient height by vector sum. Added 

notification of gmax and bmax. 

990813 phase cycling changed to 4 transient EXORCYCLE of 

Bodenhausen (1977) with subsequent increment in p1 to 

give 16 transient cycling. The previous phase cycling 

was from the imaging sequence and inappropriate. 

990812 CHESS gradient height changed to 1-2-4, and on in 

all three directions to get a higher maximum spoiler 

by vector addition. Different heights suggested by 

Moonen and van Zijl. 

990811 abort_flag created so all timing errors are listed 

at one time 

990329 created from semsdw.c by Jon Sehy water suppression 

and b calculation from presstd2.c gradient direction 

code from Victor Song 

081001 retrofitted the code for exploiting eddy currents  - 

Emir Osmanagic  

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-* 

RF   ---- [90] ------------------- [180] ------------- 

|**ACQ**|- 

            < - - - - - - - - - - - te - - - - - - - - - - 

> 
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                           _______               _______ 

GDIFF 

___________________////////\_____________////////\_________

______ 

                      <tA><tdelta> <tB>     <tC><tdelta> 

<tD> 

     < - - - - tDELTA - - >                    

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-*/ 

#include <standard.h> 

 

pulsesequence() 

{ 

    /* INTERNAL VARIABLE DECLARATIONS 

*********************/ 

    double  predelay,seqtime,tA,tB,tC,tD,rgdiff,crushg; 

    double  temin,tDELTAmax,tDELTAmin,tau1,tau2,b; 

    double  

grate,gmr,half_gspoil,quarter_gspoil,vectorsum=1,bmax; 

    char    dir[MAXSTR],dircg[MAXSTR],gpn[MAXSTR]; 

    int     

dir_ro=0,dir_pe=0,dir_ss=0,abort_flag=0,wstype=1; 

    int     dircg_ro=0,dircg_pe=0,dircg_ss=0; 

  

    initparms_sis(); 

    grate = trise/gmax; 

    half_gspoil=gspoil/2.0; 

    quarter_gspoil=gspoil/4.0; 

    rgdiff=getval("rgdiff");  

    crushg=getval("crushg");  

    wstype = getval("wstype"); 

    b = getval("b"); 

    getstr("dir",dir); 

    getstr("dircg",dircg); 

    getstr("gpn",gpn);  

 

 

 if((dir[0]=='x') || (dir[0]=='X')) 

  dir_ro=1; 

 else if ((dir[0]=='y') || (dir[0]=='Y')) 

  dir_pe=1; 

 else if ((dir[0]=='a') || (dir[0]=='A')) { 

  dir_ro=1; 

  dir_pe=1; 

  dir_ss=1; 

  vectorsum=1.732; 

  } 



125 

 

 else 

  dir_ss=1; 

 

  

 if((dircg[0]=='x') || (dircg[0]=='X')) 

  dircg_ro=1; 

 else if ((dircg[0]=='y') || (dircg[0]=='Y')) 

  dircg_pe=1; 

 else if ((dircg[0]=='a') || (dircg[0]=='A')) { 

  dircg_ro=1; 

  dircg_pe=1; 

  dircg_ss=1; 

  } 

 else 

  dircg_ss=1; 

  

 

  /* CHECK MAXIMUM tDELTA FOR TE, AND MINIMUM TE FOR tdelta 

*/ 

        tDELTAmax = te - p1/2.0 - rof1 - tdelta - trise; 

        temin = tDELTA + tdelta + p1/2.0 + rof1 + trise; 

     

    if (tDELTA > tDELTAmax) { 

 printf("SEDFWS: tDELTA too large for te.  Max tDELTA = 

%f.",tDELTAmax); 

 printf("  Min te = %f\n",temin); 

 abort_flag=1; 

    } 

 

  /* CHECK MINIMUM tDELTA FOR p2 AND tdelta */ 

  /*  tDELTAmin = p2 + 2.0*rof1 + tdelta + trise; */  

    tDELTAmin = 2.0*rof1 + tdelta + trise; 

    if (tDELTA < tDELTAmin) {   

  /*    printf("SEDFWS: tDELTA too small for p2;  Min 

tDELTA = %f\n",tDELTAmin); */  

       printf("SEDFWS: tDELTA too small;  Min tDELTA = 

%f\n",tDELTAmin); 

       abort_flag=1;   

    } 

 

  /* TAU1 AND TAU2 ARE THE SUMS OF ALL EVENTS IN EACH HALF-

ECHO PERIOD */ 

  /*  tau1 = (p1 + p2)/2.0 + 2.0*rof1 + tdelta + trise; */ 

  /*  tau2 = p2/2.0 + rof1 + tdelta + trise; */  

    tau1 = p1/2.0 + rof1 + tdelta + trise; 

    tau2 = rof1 + tdelta + trise;  

    temin = (tau1 < tau2) ? 2.0*tau2 : 2.0*tau1;   
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    if (te < temin) { 

 printf("SEDFWS: te too small for tdelta.  Minimum te = 

%f\n",temin); 

 abort_flag=1; 

    } 

 

  /* ADDITIONAL DELAYS TO POSITION DIFFUSION GRADIENTS */ 

    if (tDELTAmax - tDELTA > tDELTA - tDELTAmin) { 

 tB = (tDELTA - tDELTAmin)/2.0; 

        /* tC = (tDELTA - tDELTAmin)/2.0;   */ 

 tA = te/2.0 - tau1 - tB; 

        /* tD = te/2.0 - tau2 - tC;         */ 

        tC = 0.0005; 

        tD = 0.0005; 

    }  

    else { 

 tA = (tDELTAmax - tDELTA)/2.0; 

        /* tD = (tDELTAmax - tDELTA)/2.0;   */ 

 tB = te/2.0 - tau1 - tA; 

        /* tC = te/2.0 - tau2 - tD;      */ 

        tC = 0.0005; 

        tD = 0.0005; 

    } 

 

    if (tA < 0)  { 

 printf("SEDFWS: tA cannot be negative."); 

 abort_flag=1; 

 } 

 

    if (tB < 0)  {  

        printf("SEDFWS: tB cannot be negative.");  

        abort_flag=1;  

        } 

 

    /*if (tC < 0)  { */ 

    /*    printf("SEDFWS: tC cannot be negative."); */ 

    /*    abort_flag=1; */ 

    /*    } */ 

 

    /*if (tD < 0)  { */ 

    /*    printf("SEDFWS: tD cannot be negative."); */ 

    /*    abort_flag=1; */ 

    /*    } */ 

 

  /* RELAXATION DELAY */ 

    seqtime = te + p1/2.0 + rof1 + at; 

    if ((ws[0]=='y') || (ws[0]=='Y'))   
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 seqtime = seqtime + 3*(psat + tspoil + trise + 

2.0*rof1);  

    predelay = tr - seqtime; 

    if (predelay < 0.0) { 

      printf("SEDFWS: Requested tr too short.  Min tr = 

%f\n",seqtime); 

      abort_flag=1; 

    } 

 

    if (abort_flag == 1) { 

      abort(1); 

    } 

 

  /* COMPUTE b VALUES ***********************************/ 

 

    gmr = 26750/199.35*sfrq;     /* gmr = gyromagnetic 

ratio */ 

  /* gdiff=(sqrt(b/(gmr*gmr*tdelta*tdelta*(tDELTA-

tdelta/3.0))))/vectorsum; */ 

    gdiff=(sqrt(b/(gmr*gmr*(tdelta*tdelta*(tDELTA-

tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff)))))/vectorsum; 

     

    

bmax=(vectorsum*gmax)*(vectorsum*gmax)*(gmr*gmr*(tdelta*tde

lta*(tDELTA-tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff))); 

     

    printf("Gradient: %7.4f  Grad vector sum: %7.3f  tdiff: 

%7.3f  ",gdiff,gdiff*vectorsum,tDELTA-tdelta/3); 

    printf("gmax: %7.3f  bmax: %7.3f  GradTrise req: %7.6f  

SysTrise for gdiff: 

%7.6f\n",gmax*vectorsum,bmax,rgdiff,gdiff*0.000378/60+0.000

022); 

    if (gdiff>gmax) {  

 text_error("ERROR:  max gradient exceeded"); 

 abort(1); 

 } 

    if (gdiff*0.000378/60+0.000022>rgdiff) { 

        printf("Requested gdiff rise time exceeds system 

capabilities, eg. rgdiff: %7.6f  systems: %7.6f\n", rgdiff, 

gdiff*0.000378/60+0.000022); 

        } 

     

  /* PULSE SEQUENCE *************************************/ 
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      /* PHASE CYCLE, 16 TRANSIENT 

EXORCYCLE*****************/ 

      mod4(ct,v4);    /* v4  = 0123012301230123 */ 

      hlv(v4,v3);     /* v3  = 0011223300112233 */ 

      hlv(v3,v1);     /* v1  = 0000111122223333 */ 

      add(v1,v4,v2);  /* v2  = 0123123023013012 */  

      mod2(v4,v4);    /* v4  = 0101010101010101 */ 

      dbl(v4,v4);     /* v4  = 0202020202020202 */ 

      add(v4,v1,oph); /* oph = 0202131320203131 */ 

      mod4(v1,v1); 

      mod4(v2,v2); 

      mod4(oph,oph); 

 

      /* Relaxation delay 

***********************************/        

      status(A); 

      delay(predelay - 3*tdelta-3*trise-0.3); 

      

oblique_gradient(dircg_ro*crushg,dircg_pe*crushg,dircg_ss*c

rushg,0.0,0.0,0.0); 

      delay(tdelta); 

      zero_all_gradients(); 

      delay(trise + 0.0005); 

      /* 

oblique_gradient(dir_pe*gdiff,dir_ro*gdiff,dir_ss*gdiff,0.0

,0.0,0.0);   */ 

      /* delay(tdelta);         

*/ 

      /* zero_all_gradients();      

  */ 

      /* delay(trise + 0.1);        

*/ 

      /* 

oblique_gradient(dir_pe*gdiff,dir_ro*gdiff,dir_ss*gdiff,0.0

,0.0,0.0);  */ 

      /* delay(tdelta);         

*/ 

      /* zero_all_gradients();      

  */ 

      /* delay(trise + 0.1);        

*/ 

 

      /* Optional water suppression 

*************************/ 

 

      if ((ws[0]=='y') || (ws[0]=='Y')) { 
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 obspower(satpwr); 

 obsoffset(wsfrq); 

 

 shapedpulse(satpat,psat,zero,rof1,rof1); 

 

 if (wstype == 1) { 

            

oblique_gradient(quarter_gspoil,quarter_gspoil,quarter_gspo

il,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(half_gspoil,half_gspoil,half_gspoil,0.0,0.

0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(gspoil,gspoil,gspoil,0.0,0.0,0.0); 

 } 

 else {       

     oblique_gradient(gspoil,gspoil,0.0,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(0.0,gspoil,gspoil,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(gspoil,0.0,gspoil,0.0,0.0,0.0); 

 } 

 delay(tspoil); 

 zero_all_gradients(); 

 delay(trise); 

     } 

  obsoffset(tof); 
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 /* Optional Inversion-Recovery pulse */ 

        if (ir[0] == 'y') { 

                obspower(tpwri); 

                shapedpulse(pipat,pi,v1,rof1,rof1); 

                delay(ti);  

        } 

  

      /* 90 degree pulse 

************************************/  

      obspower(tpwr1); 

      shaped_pulse(p1pat,p1,v1,rof1,rof1); 

 

      /* First half-TE period and diffusion gradient 

********/ 

      delay(0.0005); 

      

      if((gpn[0]=='p') || (gpn[0]=='P')) { 

          

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gdiff,1,

WAIT);  

          delay(tdelta-rgdiff); 

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gd

iff,1,WAIT); 

      }  

      else { 

          

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT);  

          delay(tdelta-rgdiff);  

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT); 

      }       

      zero_all_gradients(); 

      delay(tB + trise); 

 

      /* 180 degree pulse 

***********************************/ 

      /* obspower(0); */ 

      /* shaped_pulse(p2pat,p2,v2,rof1,rof1); */ 

 



131 

 

      /* Second half-TE period and diffusion gradient 

********/ 

      delay(tC);  

       

      if((gpn[0]=='p') || (gpn[0]=='P')) { 

           

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT);  

           delay(tdelta-rgdiff);  

           

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT); 

      }  

      else { 

          

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gdiff,1,

WAIT);  

          delay(tdelta-rgdiff); 

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gd

iff,1,WAIT); 

      }  

      zero_all_gradients(); 

      delay(trise + tD); 

 

      /* Acquire echo 

***************************************/ 

}
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Appendix B - Source Code for Lung 
Microstructure and Anisotropy 
Experiments  

B1 Pulse Sequence for Determining Mouse Lung 
Microstructure 

 

#ifndef LINT 

static char SCCSid[] = "@(#)semsdw.c 13.1 10/10/97 

Copyright (c) 1991-1995 Varian Assoc.,Inc. All Rights 

Reserved"; 

#endif 

/*  

 * Varian Assoc.,Inc. All Rights Reserved. 

 * This software contains proprietary and confidential 

 * information of Varian Assoc., Inc. and its contributors. 

 * Use, disclosure and reproduction is prohibited without 

 * prior consent. 

 */ 

/**********************************************************

************* 

SEDFWS.C 

Spin-echo diffusion spectroscopy sequence with optional 

CHESS  water suppression 

010104 deleted acquire command.  This added or subtracted a 

delay so that echo was not centered.  This caused a 

1st order phase shift. 

000511 Add ir option. Can be used to find null point for 

STIR imaging. Suppress water with diffusion. 

991001 Add option of putting gradients for water 

suppression on in two directions and alternating the 

axis so all three are orthogonal. Usage is wstype = 1 

or 2 where 1 is the 1-2-4 height from earlier. 

990903 Added the option to turn on all gradients at once 

for diffusion. Direction refered to as 'a' for all. 

Allows 1.732x gradient height by vector sum. Added 

notification of gmax and bmax. 

990813 phase cycling changed to 4 transient EXORCYCLE of 

Bodenhausen (1977) with subsequent increment in p1 to 
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give 16 transient cycling. The previous phase cycling 

was from the imaging sequence and inappropriate. 

990812 CHESS gradient height changed to 1-2-4, and on in 

all three directions to get a higher maximum spoiler 

by vector addition. Different heights suggested by 

Moonen and van Zijl. 

990811 abort_flag created so all timing errors are listed 

at one time 

990329 created from semsdw.c by Jon Sehy water suppression 

and b calculation from presstd2.c gradient direction 

code from Victor Song 

080601 retrofitted the code for diffusion measurements 

using 3He by using one independently set crusher 

gradient scaled down expression for "b", use one 90 

degree pulse only and the second gradient negative, 

making "b" variable real. -Emir Osmanagic  

 

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-*-*-*-*-*-*-* 

 

RF   ------ [90] --------------------- [180] --------------

- |** ACQ **|- 

 

              < - - - - - - - - - - - te - - - - - - - - - 

- - - > 

 

                           _______               _______ 

GDIFF 

____________________////////\_____________////////\________

_______ 

                      <tA><tdelta> <tB>     <tC><tdelta> 

<tD> 

 

     < - - - - tDELTA - - >                    

 

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-*-*-*-*-*-*-*/ 

 

#include <standard.h> 

 

pulsesequence() 

{ 

    /* INTERNAL VARIABLE DECLARATIONS 

*********************/ 

    double  predelay,seqtime,tA,tB,tC,tD,rgdiff,crushg; 

    double  temin,tDELTAmax,tDELTAmin,tau1,tau2,b; 
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    double  

grate,gmr,half_gspoil,quarter_gspoil,vectorsum=1,bmax; 

    char    dir[MAXSTR],dircg[MAXSTR],gpn[MAXSTR]; 

    int     

dir_ro=0,dir_pe=0,dir_ss=0,abort_flag=0,wstype=1; 

    int     dircg_ro=0,dircg_pe=0,dircg_ss=0; 

  

    initparms_sis(); 

    grate = trise/gmax; 

    half_gspoil=gspoil/2.0; 

    quarter_gspoil=gspoil/4.0; 

    rgdiff=getval("rgdiff");  

    crushg=getval("crushg");  

    wstype = getval("wstype"); 

    b = getval("b"); 

    getstr("dir",dir); 

    getstr("dircg",dircg); 

    getstr("gpn",gpn);  

 

 

 if((dir[0]=='x') || (dir[0]=='X')) 

  dir_ro=1; 

 else if ((dir[0]=='y') || (dir[0]=='Y')) 

  dir_pe=1; 

 else if ((dir[0]=='a') || (dir[0]=='A')) { 

  dir_ro=1; 

  dir_pe=1; 

  dir_ss=1; 

  vectorsum=1.732; 

  } 

 else 

  dir_ss=1; 

 

  

 if((dircg[0]=='x') || (dircg[0]=='X')) 

  dircg_ro=1; 

 else if ((dircg[0]=='y') || (dircg[0]=='Y')) 

  dircg_pe=1; 

 else if ((dircg[0]=='a') || (dircg[0]=='A')) { 

  dircg_ro=1; 

  dircg_pe=1; 

  dircg_ss=1; 

  } 

 else 

  dircg_ss=1; 
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  /* CHECK MAXIMUM tDELTA FOR TE, AND MINIMUM TE FOR tdelta 

*/ 

        tDELTAmax = te - p1/2.0 - rof1 - tdelta - trise; 

        temin = tDELTA + tdelta + p1/2.0 + rof1 + trise; 

     

    if (tDELTA > tDELTAmax) { 

 printf("SEDFWS: tDELTA too large for te.  Max tDELTA = 

%f.",tDELTAmax); 

 printf("  Min te = %f\n",temin); 

 abort_flag=1; 

    } 

 

  /* CHECK MINIMUM tDELTA FOR p2 AND tdelta */ 

  /*  tDELTAmin = p2 + 2.0*rof1 + tdelta + trise; */  

    tDELTAmin = 2.0*rof1 + tdelta + trise; 

    if (tDELTA < tDELTAmin) {   

  /*    printf("SEDFWS: tDELTA too small for p2;  Min 

tDELTA = %f\n",tDELTAmin); */  

       printf("SEDFWS: tDELTA too small;  Min tDELTA = 

%f\n",tDELTAmin); 

       abort_flag=1;   

    } 

 

  /* TAU1 AND TAU2 ARE THE SUMS OF ALL EVENTS IN EACH HALF-

ECHO PERIOD */ 

  /*  tau1 = (p1 + p2)/2.0 + 2.0*rof1 + tdelta + trise; */ 

  /*  tau2 = p2/2.0 + rof1 + tdelta + trise; */  

    tau1 = p1/2.0 + rof1 + tdelta + trise; 

    tau2 = rof1 + tdelta + trise;  

    temin = (tau1 < tau2) ? 2.0*tau2 : 2.0*tau1;   

    if (te < temin) { 

 printf("SEDFWS: te too small for tdelta.  Minimum te = 

%f\n",temin); 

 abort_flag=1; 

    } 

 

  /* ADDITIONAL DELAYS TO POSITION DIFFUSION GRADIENTS */ 

    if (tDELTAmax - tDELTA > tDELTA - tDELTAmin) { 

 tB = (tDELTA - tDELTAmin)/2.0; 

        /* tC = (tDELTA - tDELTAmin)/2.0;   */ 

 tA = te/2.0 - tau1 - tB; 

        /* tD = te/2.0 - tau2 - tC;         */ 

        tC = 0.0005; 

        tD = 0.0005; 

    }  

    else { 

 tA = (tDELTAmax - tDELTA)/2.0; 
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        /* tD = (tDELTAmax - tDELTA)/2.0;   */ 

 tB = te/2.0 - tau1 - tA; 

        /* tC = te/2.0 - tau2 - tD;      */ 

        tC = 0.0005; 

        tD = 0.0005; 

    } 

 

    if (tA < 0)  { 

 printf("SEDFWS: tA cannot be negative."); 

 abort_flag=1; 

 } 

 

    if (tB < 0)  {  

        printf("SEDFWS: tB cannot be negative.");  

        abort_flag=1;  

        } 

 

    /*if (tC < 0)  { */ 

    /*    printf("SEDFWS: tC cannot be negative."); */ 

    /*    abort_flag=1; */ 

    /*    } */ 

 

    /*if (tD < 0)  { */ 

    /*    printf("SEDFWS: tD cannot be negative."); */ 

    /*    abort_flag=1; */ 

    /*    } */ 

 

  /* RELAXATION DELAY */ 

    seqtime = te + p1/2.0 + rof1 + at; 

    if ((ws[0]=='y') || (ws[0]=='Y'))   

 seqtime = seqtime + 3*(psat + tspoil + trise + 

2.0*rof1);  

    predelay = tr - seqtime; 

    if (predelay < 0.0) { 

      printf("SEDFWS: Requested tr too short.  Min tr = 

%f\n",seqtime); 

      abort_flag=1; 

    } 

 

    if (abort_flag == 1) { 

      abort(1); 

    } 

 

  /* COMPUTE b VALUES ***********************************/ 

 

    gmr = 26750/199.35*sfrq;     /* gmr = gyromagnetic 

ratio */ 



137 

 

  /* gdiff=(sqrt(b/(gmr*gmr*tdelta*tdelta*(tDELTA-

tdelta/3.0))))/vectorsum; */ 

    gdiff=(sqrt(b/(gmr*gmr*(tdelta*tdelta*(tDELTA-

tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff)))))/vectorsum; 

     

    

bmax=(vectorsum*gmax)*(vectorsum*gmax)*(gmr*gmr*(tdelta*tde

lta*(tDELTA-tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff))); 

     

    printf("Gradient: %7.4f  Grad vector sum: %7.3f  tdiff: 

%7.3f  ",gdiff,gdiff*vectorsum,tDELTA-tdelta/3); 

    printf("gmax: %7.3f  bmax: %7.3f  GradTrise req: %7.6f  

SysTrise for gdiff: 

%7.6f\n",gmax*vectorsum,bmax,rgdiff,gdiff*0.000378/60+0.000

022); 

    if (gdiff>gmax) {  

 text_error("ERROR:  max gradient exceeded"); 

 abort(1); 

 } 

    if (gdiff*0.000378/60+0.000022>rgdiff) { 

        printf("Requested gdiff rise time exceeds system 

capabilities, eg. rgdiff: %7.6f  systems: %7.6f\n", rgdiff, 

gdiff*0.000378/60+0.000022); 

        } 

     

  /* PULSE SEQUENCE *************************************/ 

 

      /* PHASE CYCLE, 16 TRANSIENT 

EXORCYCLE*****************/ 

      mod4(ct,v4);    /* v4  = 0123012301230123 */ 

      hlv(v4,v3);     /* v3  = 0011223300112233 */ 

      hlv(v3,v1);     /* v1  = 0000111122223333 */ 

      add(v1,v4,v2);  /* v2  = 0123123023013012 */  

      mod2(v4,v4);    /* v4  = 0101010101010101 */ 

      dbl(v4,v4);     /* v4  = 0202020202020202 */ 

      add(v4,v1,oph); /* oph = 0202131320203131 */ 

      mod4(v1,v1); 

      mod4(v2,v2); 

      mod4(oph,oph); 

 

      /* Relaxation delay 

***********************************/        

      status(A); 
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      delay(predelay - 3*tdelta-3*trise-0.3); 

      

oblique_gradient(dircg_ro*crushg,dircg_pe*crushg,dircg_ss*c

rushg,0.0,0.0,0.0); 

      delay(tdelta); 

      zero_all_gradients(); 

      delay(trise + 0.0005); 

      /* 

oblique_gradient(dir_pe*gdiff,dir_ro*gdiff,dir_ss*gdiff,0.0

,0.0,0.0);   */ 

      /* delay(tdelta);         

*/ 

      /* zero_all_gradients();      

  */ 

      /* delay(trise + 0.1);        

*/ 

      /* 

oblique_gradient(dir_pe*gdiff,dir_ro*gdiff,dir_ss*gdiff,0.0

,0.0,0.0);  */ 

      /* delay(tdelta);         

*/ 

      /* zero_all_gradients();      

  */ 

      /* delay(trise + 0.1);        

*/ 

 

      /* Optional water suppression 

*************************/ 

 

      if ((ws[0]=='y') || (ws[0]=='Y')) { 

 obspower(satpwr); 

 obsoffset(wsfrq); 

 

 shapedpulse(satpat,psat,zero,rof1,rof1); 

 

 if (wstype == 1) { 

            

oblique_gradient(quarter_gspoil,quarter_gspoil,quarter_gspo

il,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(half_gspoil,half_gspoil,half_gspoil,0.0,0.

0,0.0); 
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            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(gspoil,gspoil,gspoil,0.0,0.0,0.0); 

 } 

 else {       

     oblique_gradient(gspoil,gspoil,0.0,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(0.0,gspoil,gspoil,0.0,0.0,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            

oblique_gradient(gspoil,0.0,gspoil,0.0,0.0,0.0); 

 } 

 delay(tspoil); 

 zero_all_gradients(); 

 delay(trise); 

     } 

  obsoffset(tof); 

 /* Optional Inversion-Recovery pulse */ 

        if (ir[0] == 'y') { 

                obspower(tpwri); 

                shapedpulse(pipat,pi,v1,rof1,rof1); 

                delay(ti);  

        } 

  

      /* 90 degree pulse 

************************************/  

      obspower(tpwr1); 

      shaped_pulse(p1pat,p1,v1,rof1,rof1); 

 

      /* First half-TE period and diffusion gradient 

********/ 

      delay(0.0005); 

      

      if((gpn[0]=='p') || (gpn[0]=='P')) { 
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obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gdiff,1,

WAIT);  

          delay(tdelta-rgdiff); 

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gd

iff,1,WAIT); 

      }  

      else { 

          

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT);  

          delay(tdelta-rgdiff);  

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT); 

      }       

      zero_all_gradients(); 

      delay(tB + trise); 

 

      /* 180 degree pulse 

***********************************/ 

      /* obspower(0); */ 

      /* shaped_pulse(p2pat,p2,v2,rof1,rof1); */ 

 

      /* Second half-TE period and diffusion gradient 

********/ 

      delay(tC);  

       

      if((gpn[0]=='p') || (gpn[0]=='P')) { 

           

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea

r_ramp_up",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT);  

           delay(tdelta-rgdiff);  

           

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,-dir_ro*gdiff,-dir_pe*gdiff,-

dir_ss*gdiff,1,WAIT); 

      }  

      else { 

          

obl_shapedgradient("linear_ramp_up","linear_ramp_up","linea
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r_ramp_up",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gdiff,1,

WAIT);  

          delay(tdelta-rgdiff); 

          

obl_shapedgradient("linear_ramp_down","linear_ramp_down","l

inear_ramp_down",rgdiff,dir_ro*gdiff,dir_pe*gdiff,dir_ss*gd

iff,1,WAIT); 

      }  

      zero_all_gradients(); 

      delay(trise + tD); 

 

      /* Acquire echo 

***************************************/ 

} 

 

  

B2 Pulse Sequence for Demonstrating Anisotropy 

 

#ifndef LINT 

static char SCCSid[] = "@(#)semsdw.c 13.1 10/10/97 

Copyright (c) 1991-1995 Varian Assoc.,Inc. All Rights 

Reserved"; 

#endif 

/*  

 * Varian Assoc.,Inc. All Rights Reserved. 

 * This software contains proprietary and confidential 

 * information of Varian Assoc., Inc. and its contributors. 

 * Use, disclosure and reproduction is prohibited without 

 * prior consent. 

 */ 

/**********************************************************

************* 

SEDFWS.C 

Spin-echo diffusion spectroscopy sequence with optional 

CHESS  water suppression 

010104 deleted acquire command.  This added or subtracted a 

delay so that echo was not centered.  This caused a 

1st order phase shift. 

000511 Add ir option. Can be used to find null point for 

STIR imaging. Suppress water with diffusion. 

991001 Add option of putting gradients for water 

suppression on in two directions and alternating the 
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axis so all three are orthogonal. Usage is wstype = 1 

or 2 where 1 is the 1-2-4 height from earlier. 

990903 Added the option to turn on all gradients at once 

for diffusion. Direction refered to as 'a' for all. 

Allows 1.732x gradient height by vector sum. Added 

notification of gmax and bmax. 

990813 phase cycling changed to 4 transient EXORCYCLE of 

Bodenhausen (1977) with subsequent increment in p1 to 

give 16 transient cycling. The previous phase cycling 

was from the imaging sequence and inappropriate. 

990812 CHESS gradient height changed to 1-2-4, and on in 

all three directions to get a higher maximum spoiler 

by vector addition. Different heights suggested by 

Moonen and van Zijl. 

990811 abort_flag created so all timing errors are listed 

at one time 

990329 created from semsdw.c by Jon Sehy water suppression 

and b calculation from presstd2.c gradient direction 

code from Victor Song 

080601 retrofitted the code for 3He by using one 

independently set crusher gradient scaled down 

expression for "b", use one 90 degree pulse only and 

the second gradient negative, making "b" variable 

real  -Emir Osmanagic  

 

081125 removed unused variables and calculations - Emir 

Osmanagic 

 

091016 3D sequence (3-dir 2-grad pulses) with 

dir='xxx'/'xyz'/'zzz'.- Emir Osmanagic 

 

 

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-*-*-*-*-*-*-* 

 

RF   ------ [90] ------------------------------------------

- |** ACQ **|- 

 

              < - - - - - - - - - - - te - - - - - - - - - 

- - - > 

 

                           _______                        

GDIFF ____________________////////\         _______________ 

                                   \\\\\\\\/ 

                          <tdelta> <tdelta>      

 

     <tDELTA >                    



143 

 

 

                         hint: tdelta=tDELTA 

*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-

*-*-*-*-*-*-*-*-*/ 

 

#include <standard.h> 

 

pulsesequence() 

{ 

    /* INTERNAL VARIABLE DECLARATIONS 

*********************/ 

    double  predelay,seqtime,rgdiff,crushg,gspoil=30; 

    double  temin,tDELTAmax,tDELTAmin,tau1,tau2,b; 

    double  

grate,gmr,half_gspoil,quarter_gspoil,vectorsum=1,bmax; 

    char    dir1[MAXSTR],dir2[MAXSTR],dir3[MAXSTR]; 

    int     

dir_ro1=0,dir_pe1=0,dir_ss1=0,dir_ro2=0,dir_pe2=0,dir_ss2=0

,dir_ro3=0,dir_pe3=0,dir_ss3=0,wstype=1;    

  

    initparms_sis(); 

    grate = trise/gmax; 

    half_gspoil=gspoil/2.0; 

    quarter_gspoil=gspoil/4.0; 

    rgdiff=getval("rgdiff");  

 

    wstype = getval("wstype"); 

    b = getval("b"); 

    crushg = getval("crushg"); 

    getstr("dir1",dir1); 

    getstr("dir2",dir2); 

    getstr("dir3",dir3); 

 

 if(dir1[0]=='x') 

    dir_ro1=1; 

 else if (dir1[0]=='y') 

    dir_pe1=1; 

 else 

    dir_ss1=1;  

 

 if(dir2[0]=='x') 

    dir_ro2=1; 

 else if (dir2[0]=='y') 

    dir_pe2=1; 

 else 

    dir_ss2=1;  
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 if(dir3[0]=='x') 

    dir_ro3=1; 

 else if (dir3[0]=='y') 

    dir_pe3=1; 

 else 

    dir_ss3=1; 

  

 

  /* CHECK MAXIMUM tDELTA FOR TE, AND MINIMUM TE FOR tdelta 

*/ 

        tDELTAmax = te - p1/2.0 - tdelta; 

        temin = tDELTA + tdelta + p1/2.0 + rof1; 

     

    if (tDELTA > tDELTAmax) { 

 abort_message("SEDFWS: tDELTA too large for te.  Max 

tDELTA = %f.",tDELTAmax); 

 abort_message("  Min te = %f\n",temin); 

         

    } 

 

  /* CHECK MINIMUM tdelta FOR rgdiff  */ 

    if (tdelta < 2*rgdiff) { 

 abort_message("tdelta too small for rgdiff. Min tdelta 

= %f.",2*rgdiff); 

 abort_message("  rgdiff = %f.",rgdiff); 

  

    }  

 

  /* CHECK MINIMUM tDELTA FOR tdelta */ 

    tDELTAmin = tdelta; 

    if (tDELTA < tDELTAmin) {   

  /*    abort_message("SEDFWS:tDELTA too small for p2; Min 

tDELTA = %f\n",tDELTAmin); */ 

       abort_message("SEDFWS: tDELTA too small;  Min tDELTA 

= %f\n",tDELTAmin); 

          

    } 

 

  /* TAU1 AND TAU2 ARE THE SUMS OF ALL EVENTS IN EACH HALF-

ECHO PERIOD */ 

    tau1 = p1/2.0 + rof1 + tdelta; 

    tau2 = rof1 + tdelta; 

    temin = (tau1 < tau2) ? 2.0*tau2 : 2.0*tau1;   

    if (te < temin) { 

 abort_message("SEDFWS: te too small for tdelta.  

Minimum te = %f\n",temin); 
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    } 

 

 

  /* RELAXATION DELAY */ 

    seqtime = te + p1/2.0 + rof1 + at; 

    if ((ws[0]=='y') || (ws[0]=='Y'))   

 seqtime = seqtime + 3*(psat + tspoil + trise + 

2.0*rof1);  

    predelay = tr - seqtime; 

    if (predelay < 0.0) { 

      abort_message("SEDFWS: Requested tr too short.  Min 

tr = %f\n",seqtime); 

       

    } 

 

     

       

     

 

  /* COMPUTE b VALUES ***********************************/ 

 

    gmr = 26750/199.35*sfrq;     /* gmr = gyromagnetic 

ratio */ 

    gdiff=(sqrt(b/(gmr*gmr*(tdelta*tdelta*(tDELTA-

tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff)))))/vectorsum; 

     

    

bmax=(vectorsum*gmax)*(vectorsum*gmax)*(gmr*gmr*(tdelta*tde

lta*(tDELTA-tdelta/3.0)+rgdiff*(tdelta*tdelta-

2*tDELTA*tdelta+rgdiff*tDELTA-

7/6*rgdiff*tdelta+8/15*rgdiff*rgdiff))); 

     

    printf("Gradient: %6.4f; Grad vector sum: %6.4f; tdiff: 

%6.3f; ",gdiff,gdiff*vectorsum,tDELTA-tdelta/3); 

    printf("gmax: %6.2f; bmax: %6.1f; GradTrise req: %7.6f; 

SysTrise for gdiff: %7.6f; tDELTAmin: 

%7.5f;\n",gmax*vectorsum,bmax,rgdiff,gdiff*0.0002575/60+0.0

00007,tDELTAmin); 

    if (gdiff>gmax) {  

 text_error("ERROR:  max gradient exceeded"); 

 abort_message(""); 

 } 

    if (gdiff*0.0002575/60+0.000007>rgdiff) {    



146 

 

    printf("Requested gdiff rise time exceeds system 

capabilities, eg. rgdiff: %7.6f  systems: %7.6f\n", rgdiff, 

gdiff*0.0002575/60+0.000007); 

        } 

     

  /* PULSE SEQUENCE *************************************/ 

 

      /* PHASE CYCLE, 16 TRANSIENT 

EXORCYCLE*****************/ 

      mod4(ct,v4);    /* v4  = 0123012301230123 */ 

      hlv(v4,v3);     /* v3  = 0011223300112233 */ 

      hlv(v3,v1);     /* v1  = 0000111122223333 */ 

      add(v1,v4,v2);  /* v2  = 0123123023013012 */  

      mod2(v4,v4);    /* v4  = 0101010101010101 */ 

      dbl(v4,v4);     /* v4  = 0202020202020202 */ 

      add(v4,v1,oph); /* oph = 0202131320203131 */ 

      mod4(v1,v1); 

      mod4(v2,v2); 

      mod4(oph,oph); 

 

      /* Relaxation delay 

***********************************/        

      status(A); 

      delay(predelay - 3*tdelta-0.3); 

      obl_gradient(crushg,crushg,crushg); 

      delay(tdelta); 

      zero_all_gradients(); 

      delay(0.0005); 

 

      /* Optional water suppression 

*************************/ 

 

      if ((ws[0]=='y') || (ws[0]=='Y')) { 

 obspower(satpwr); 

 obsoffset(wsfrq); 

 

 shapedpulse(satpat,psat,zero,rof1,rof1); 

 

 if (wstype == 1) { 

            

obl_gradient(quarter_gspoil,quarter_gspoil,quarter_gspoil); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 
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obl_gradient(half_gspoil,half_gspoil,half_gspoil); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            obl_gradient(gspoil,gspoil,gspoil); 

 } 

 else {       

     obl_gradient(gspoil,gspoil,0.0); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            obl_gradient(0.0,gspoil,gspoil); 

            delay(tspoil); 

            zero_all_gradients(); 

            delay(trise); 

 

            shapedpulse(satpat,psat,zero,rof1,rof1); 

            obl_gradient(gspoil,0.0,gspoil); 

 } 

 delay(tspoil); 

 zero_all_gradients(); 

 delay(trise); 

     } 

  obsoffset(tof); 

 /* Optional Inversion-Recovery pulse */ 

        if (ir[0] == 'y') { 

                obspower(tpwri); 

                shapedpulse(pipat,pi,v1,rof1,rof1); 

                delay(ti);  

        } 

  

      /* 90 degree pulse 

************************************/  

      obspower(tpwr1); 

      shaped_pulse(p1pat,p1,v1,rof1,rof1); 

 

      delay(0.00001); 

 

      /* First positive-TE period and diffusion gradient 

********/ 
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obl_shapedgradient("linear_ramp_up",rgdiff,dir_ro1*gdiff,di

r_pe1*gdiff,dir_ss1*gdiff,WAIT);  

      delay(tdelta-2*rgdiff); 

      

obl_shapedgradient("linear_ramp_down",rgdiff,dir_ro1*gdiff,

dir_pe1*gdiff,dir_ss1*gdiff,WAIT); 

      zero_all_gradients(); 

 

      /* First negative-TE period and diffusion gradient 

********/ 

      obl_shapedgradient("linear_ramp_up",rgdiff,-

dir_ro1*gdiff,-dir_pe1*gdiff,-dir_ss1*gdiff,WAIT);  

      delay(tdelta-2*rgdiff);  

      obl_shapedgradient("linear_ramp_down",rgdiff,-

dir_ro1*gdiff,-dir_pe1*gdiff,-dir_ss1*gdiff,WAIT); 

      zero_all_gradients(); 

 

      /* Second positive-TE period and diffusion gradient 

********/ 

      

obl_shapedgradient("linear_ramp_up",rgdiff,dir_ro2*gdiff,di

r_pe2*gdiff,dir_ss2*gdiff,WAIT);  

      delay(tdelta-2*rgdiff); 

      

obl_shapedgradient("linear_ramp_down",rgdiff,dir_ro2*gdiff,

dir_pe2*gdiff,dir_ss2*gdiff,WAIT); 

      zero_all_gradients(); 

 

      /* Second negative-TE period and diffusion gradient 

********/ 

      obl_shapedgradient("linear_ramp_up",rgdiff,-

dir_ro2*gdiff,-dir_pe2*gdiff,-dir_ss2*gdiff,WAIT);  

      delay(tdelta-2*rgdiff);  

      obl_shapedgradient("linear_ramp_down",rgdiff,-

dir_ro2*gdiff,-dir_pe2*gdiff,-dir_ss2*gdiff,WAIT); 

      zero_all_gradients(); 

 

      /* Third positive-TE period and diffusion gradient 

********/ 

      

obl_shapedgradient("linear_ramp_up",rgdiff,dir_ro3*gdiff,di

r_pe3*gdiff,dir_ss3*gdiff,WAIT);  

      delay(tdelta-2*rgdiff); 

      

obl_shapedgradient("linear_ramp_down",rgdiff,dir_ro3*gdiff,

dir_pe3*gdiff,dir_ss3*gdiff,WAIT); 
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      zero_all_gradients(); 

 

      /* Third negative-TE period and diffusion gradient 

********/ 

      obl_shapedgradient("linear_ramp_up",rgdiff,-

dir_ro3*gdiff,-dir_pe3*gdiff,-dir_ss3*gdiff,WAIT);  

      delay(tdelta-2*rgdiff);  

      obl_shapedgradient("linear_ramp_down",rgdiff,-

dir_ro3*gdiff,-dir_pe3*gdiff,-dir_ss3*gdiff,WAIT); 

      zero_all_gradients(); 

 

      delay(0.00001); 

 

      /* Acquire echo 

***************************************/ 

} 
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