Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-91-09

1991-01-01

SwarmView: A Graphical Engine for the Interpretation and Display
of Visualizations

Kenneth C. Cox

We have implemented a C-based graphic engine, called SwarmView, which is used to display
animation traces as produced by SwarmExec the Prolong-based Swarm execution engine.
SwarmView runs on a Silicon Graphics Personal Iris running IRIX, a UNIX-based operating
system. This paper describes the major design elements of SwarmView. A basic familiarity with
Swarm and its visualization extension is assumed; the interested reader is referred to the
referenced papers. Familiarity with the paper "SwarmView Animation Vocabulary and
Interpretation” is required; the appendices of this paper are reproduced from that one.

... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cox, Kenneth C., "SwarmView: A Graphical Engine for the Interpretation and Display of Visualizations"
Report Number: WUCS-91-09 (1991). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/627

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/627?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/627

SwarmView: A Graphical Engine for the Interpretation and Display of
Visualizations

Kenneth C. Cox

Complete Abstract:

We have implemented a C-based graphic engine, called SwarmView, which is used to display animation
traces as produced by SwarmExec the Prolong-based Swarm execution engine. SwarmView runs on a
Silicon Graphics Personal Iris running IRIX, a UNIX-based operating system. This paper describes the
major design elements of SwarmView. A basic familiarity with Swarm and its visualization extension is
assumed; the interested reader is referred to the referenced papers. Familiarity with the paper
"SwarmView Animation Vocabulary and Interpretation” is required; the appendices of this paper are
reproduced from that one.

https://openscholarship.wustl.edu/cse_research/627?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/627?utm_source=openscholarship.wustl.edu%2Fcse_research%2F627&utm_medium=PDF&utm_campaign=PDFCoverPages

SwarmView:

A Graphical Engine

for the Interpretation and Display
of Visualizations

Kenneth C. Cox

WUCS-91-09

January 1991

Department of Computer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Lonis, MO 63130-4899

1 Introduction

We have implemented a C-based graphic engine, called SwarmView, which is used to display
animation traces as produced by SwarmExec, the Prolog-based Swarm execution engine. SwarmView runs
on a Silicon Graphics Personal Iris® running IRIX®, a UNIX®-based operating system. This paper
describes the major design elements of SwarmView. A basic familiarity with Swarm and its visualization
extension is assumed; the interested reader is referred to the referenced papers. Familiarity with the paper
“SwarmView Animation Vocabulary and Interpretation” is required; the appendices of this paper are
reproduced from that one.

Section 2 of this paper describes SwarmView's design. Section 3 briefly discusses the user
interface with SwarmView.

2 SwarmView Design

The SwarmView system actually consists of two parts, which together act as the client in a client-
server communications model using the Ethemet. The first part is a server daemon which runs
continuously. The daemon responds to requests for service by initiating the SwarmView program proper.
SwarmView then completes the connection with the client and begins to read and display animation spaces.
In our current configuration, the client is a Macintosh running SwarmExec; however, the system can
service requests from any source. Both the daemon and SwarmView are implemented in C running under
Silicon Graphics' IRIX operating system. In addition, SwarmView uses the Silicon Graphics graphical
library for the rapid definition and display of graphics. The daemon is a standard example of its type and
will not be discussed further,

2.1 Design Overview

SwarmView has three major functions. First, it reads and stores collections of animation tuples
from the client process. Secondly, it interprets these collections of tuples to produce images consisting of
collections of graphical objects and renders these graphical objects in a window on the Silicon Graphics
screen. Finally, SwarmView interacts with the viewer through both a keyboard and a mouse, providing
functionality including pausing and restarting the animation, changing the viewpoint, and capturing the
image in a file. This last function is controlled by the user interface, which is discussed in section 3.

SwarmView is a time-based system. At regular intervals, an update occurs; each update
corresponds to one “tick” of the animation. During the update, the collection of tuples is examined; if
necessary (i.¢., the current animation has completed) a new collection is read from the client. The taples are
processed and values for all the parameters of each object are determined. The objects are then rendered,
completing the update.

The next three subsections discuss the input, storage, interpretation, and rendering of tuples in
greater detail.

2.2 Tuple Input and Storage

Tuples are transmitted from the client as strings. These strings are passed through a lexical
anatyzer written in LEX and a parser written in YACC. YACC produces an LALR(1) parser with
associated actions; in this case, the actions are chosen such that each tuple parsed resuits in the creation of a
dynamic data structure of type SV_Object and storage of this object in a Jist which represents the
collection of tuples.

An 8V_Cbiject is actually a pointer to a C structure, declared as follows:

typedef struct s_object |
5V_Obitype o_type;
struct s_oparam {
short p deftype;
SV_Value p_value;
SV_Func p func;
} ¢_params[MAX PARAMS];
struct s_object *o_next;
} *8V_Object:

The first component of this structure, o_type, is a pointer to the master description of the object's type,
which contains such information as the number of parameters, the permitted type of each parameter, the
function used to render the object, and so on. All graphical objects of a particular type (i.e., all spheres)
share the same type information.

The next component is an array o_paxrams of three-component structures. This array stores the
information associated with each parameter of the object. Returning to the sphere example, since spheres
have four parameters (lifetime, center, radius, and color), the first four entries in the array will be used to
store the information. When an object of a particular type is created, the default values for each object
parameter are entered in the array; as with the type information, the default information is shared among all
instances of each object.

Each array structure has three components. The first component, p_deftype, indicates if the
parameter is the default value. The second component, p_value, is the value of the parameter. This
component is used both when creating the object to store the value read (or the default value) and during
interpretation and rendering to store the current value of a function. The third component, p_func, is used
when the value of the parameter is a function. The type (i.e., number, list of » numbers, etc.) of each value
or function is checked against the required type of the parameter when the tuple is read and any errors are

reported.

The Iast component of the structure, o_next, is a pointer to another such structure. It is used for
creating linked lists of objects. One such linked list represents the current collection of tuples, while
another is used in memory management.

Functions are represented by objects of type SV_Func:

typedef struct s_function {
SV_Functype £ type;
int £ vtype:;
SV_Value f args[MAX ARGS]:
struct s_function *f next;
} *8V_Func;

The first component, £_type, is a shared function type similar in use t0 o_type in the object class. In
this case, the shared information includes the number of arguments to the function and the C function that
is called to evaluate the function. The last component, £ next, is also similar to o_next of the object

type.

£_vtype is the “type” of the function, that is, the type of value produced by the function; this is
determined by examining the function arguments. The C functions which evaluate each function are written
to accept any input value types; in particular, it is possible to provide the functions with lists as input, and
the resulting output value will also be a list. The third component is an array of values which store the
function arguments. At this time, function arguments are limited to numbers and lists of numbers, so a
simple representation suffices. If future expansions require additional capabilities (use of functions as
function arguments, for example), this field will be enlarged.

Values are represented by objects of type SV_value:

typedef struct s_value {
int v_type:;
union {
int v_int;
double v_dbl;
struct s_value *v_val;
b _u;
struct s_wvalue *v_next;
} *8V_Value;

The first component of this structure, v_type, determines the value stored. Values are one of
four types: integer, double, t_max (a symbolic representation of the maximum time in an animation
transition), or list of values. The type determines which of the components of the union v_u is used to
store the data. v_next is used in a manner similar to o_next; in particular, v_next is used to create

lists of values.
2.3 Tuple Interpretation

Interpretation occurs once per update, after the global animation time (the current “tick™) has been
updated. The linked list of SV_Object structures is processed in order. For each object, every parameter
is examined. If a function is defined for the parameter (i.e., the p_func field is defined), the function is
evaluated at the current tick using the appropriate C routine and the resulting value is stored in the
parameter's p_value field, The result of the processing is a list of objects, each having a value for each
parameter.

2.4 Rendering
Rendering refers to the transformation of the object descriptions to graphical form. The process of
rendering in SwarmView is greatly simplified by the hardware capabilities of the Personal Iris and the
software capabilities of the graphical library. The Personal Iris hardware provides the following useful
functions:
= Three-dimensional coordinate calculations

* Transformation of 3-D model coordinates to 2-D screen coordinates, with clipping and
perspective transformations

» Rapid rendering of vectors (lines) and filled polygons

*+ Viewpoint transformations, permitting a particular 3-D model to be quickly rotated, scaled,
and tranglated

» Z-buffering, which automatically performs hidden-surface removal.

= Lighting calculations to permit a realistic, shaded 3-D appearance
The software provides clean interfaces to these (and other) hardware capabilities.

Each type of graphical object has an associated C routine which renders the object. Each object in
the list is rendered by the appropriate routine, which extracts the calculated parameter values from the object
and uses the graphics library functions to add the object to the image. Use of the Z-buffer means that the

objects do not have to be sorted (into, for example, back-to-front order) for rendering, and object
intersections are properly handled. As an example, spheres are rendered by the following code:

void draw_sphere (SV_Object obj,int t)
{

double x1,vy1,zl,rad;

int red, green,blue;

float sp params{4];

if (!in_ lifetime{obj,t)) return;

val_get list dbl({obj->c_params[l].p value,3,&xl,&yl,&zl);
val_get dbl{obj->0_params[2].p_value,&rad);

val_get_list_int (obj->o_params[3].p value, 3, &red, &green, &blue);
if (rad <= 0.0) return;

set colors (red,green,blue);

sp_params[0] = x1; sp params[l] = y1; sp params{2] = zl1;
sp_params{3] = rad;

sphdraw (sp_params) ;

"The routine first checks if the sphere is currently “alive”, that is, whether it should be rendered at tick . If
so, the coordinates, radius, and color of the sphere are extracted from the object parameter array. The color
is set, and the routine sphdraw (included in the graphics library) is used to produce the sphere. The
routine actually produces the sphere using a mesh of polygons and performs the lighting calculations
necessary to give the sphere a three-dimensional appearance.

o | [T

Figure 1. Diagram of SwarmView user interface.

3 User Interface

The user interface with SwarmView is depicted in Figure 1 in diagrammatic form. The large gray
area in the left center is the main viewport, where the graphical objects are rendered. To the top right are
three buttons, labeled Pause, Reset, and Quit, which are activated by clicking with the Silicon Graphics
mouse.. Pause stops the animation while still allowing the user to manipulate the other controls. Reset
restores the viewpoint controls to their initial values. Quit exits Swarm View.

Below the three buttons are four sliders; the values of these sliders are changed by dragging the
slider with the mouse, These sliders control the user viewpoint in space in a polar coordinate system, as
illustrated in Figure 2, The Dist slider changes the distance between the viewpoint and the model origin;
Azim and Incid change the azimuthal and incidence angles; and Spin defines an increment to be added to the
azimuthal angle at each update, thus causing the model to rotate about the Z-axis. In addition to these
controls, the user can change the origin of the coordinate system by dragging in the viewport, thus
“pulling” the model in some direction.

The final set of controls is used for capturing single images from the viewport into a file (our
facilities also permit videotaping of entire SwarmView sessions). The Snapshot button pauses the
animation; the viewpoint controls may still be used. A square is displayed in the image; its position and
size are controlled by the X, Y, and Size sliders. Clicking the Snapshot control again saves the image;
clicking Cancel ends the snapshot session without saving an image,

Z

A

Incidence

Azimuth

Figure 2. Polar coordinate system used by SwarmView interface.

5 Acknowledgments

The author would like to thank Dr. Jerome R. Cox of the Department of Computer Science at
Washington University for his support. This research was supported in part by the National Fellowship
Program in Parallel Processing, supported by DARPA/NASA and administered by the University of
Maryland Institute for Advanced Computer Studies (UMIACS).

Bibliography
Research on visualization of concurrent computations at Washington University:

Cox, K. C., Visualization of Concurrent Computations (Doctor of Science Dissertation Proposal),
Technical Report WUCS-89-32, Department of Computer Science, Washington University in St.
Louis (June, 1989).

Cox, K. C. and Roman, G.-C., “Visualizing Concurrent Computations”, Technical Report
WUCS-90-31, Department of Computer Science, Washington University in St. Louis, September
1990. Submitted to the 13th International Conference on Software Engineering.

Cox, K. C., “Visualization in Concurrent Contexts: A Model", Technical Report WUCS-91-7,
Department of Computer Science, Washington University in St. Louis, November 1990.

Cox, K. C,, Wilkox, C. D., and Plun, J. Y., “SwarmExec: A Prolog-Based Execution Engine for
a Shared-Dataspace Language with Visualization Capabilities”, Technical Report WUCS-91-8,
Department of Computer Science, Washington University in St. Louis, December 1990,

Cox, K. C., “SwarmView: A Graphical Engine for the Interpretation and Display of
Visnalizations”, Technical Report WUCS-91-9, Department of Computer Science, Washington
University in St. Louis, Janoary 1991,

Cox, K. C., “SwarmView Animation Vocabulary and Interpretation”, Technical Report WUCS-
91-10, Department of Computer Science, Washington University in St. Louis, November 1990.

Roman, G.-C. and Cox, K., “A Declarative Approach to Visualizing Concurrent Computations”,
IEEE Computer, Vol 22 No. 10, pp. 25-36 (October 1989).

Roman, G.-C. and Cox, K., “Declarative Visualization in the Shared Dataspace Paradigm”,
Proceedings of the 11th International Conference on Software Engineering (May 1989).

Swarm notation and proof system:

Cunningham, H. C., The Shared Dataspace Approach to Concurrent Computation: The Swarm
Programming Model, Notation, and Logic, Doctor of Science Dissertation, Department of
Computer Science, Washington University in St. Louis, August, 1989.

Cunningham, H. C. and Roman, G.-C., "A UNITY-Style Programming Logic for a Shared
Dataspace Language," IEEE Transactions on Distributed and Parallel Computing Vol.1, No. 3, pD.
365-376 (July 1990).

Roman, G.-C. and Cunningham, H. C., "A Shared Dataspace Model of Concurrency - Language
and Programming Implications,” Proceedings of the 9th International Conference on Distributed
Computing Systems, pp. 270-279 (June 1989).

	SwarmView: A Graphical Engine for the Interpretation and Display of Visualizations
	Recommended Citation
	SwarmView: A Graphical Engine for the Interpretation and Display of Visualizations

	tmp.1455646060.pdf.e5Ieb

