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1 Introduction

Visualization is defined as the transformation of information into a graphical form. In recent
years, visualization has increasingly been used in a variety of applications. Our work focuses on the
visualization of concurrent computations. We wish to collect information about the operational behavior of
concurrent programs, transform that information into a graphical representation, and display the resulting
image,

The primary thrust of our work has been involved with the development of a model suitable for the
concurrent domain. Existing visualization systems (designed for visualization of single-processes) use an
imperative model; events occurring in the computation are detected, and as a side effect cause changes in the
image. We feel that this approach, although suitable for sequential processes, is unsuited for the concurrent
domain where the concept of event is often ill-defined.

We instead model visualization in a declarative fashion, as a transformation from the state of the
computation to an image. The visualization is specified by defining the mappings that transform the state
to the image. The concept of event still exists, in that changes in the state result in changes to the image;
but events per se are not detected We believe that this approach has a number of significant advantages
compared (o existing models. In particular, it provides easy separation, both conceptually and
operationally, between the computation being visualized (the underlying computation) and the process of
visualization. For this reason we refer to the visualization as being superimposed on the underlying
computation,

The remainder of this paper describes our visnalization model. Section 2 is an overview of the
model. Sections 3 and 4 describe the two major components of the model, the spaces and the mappings
between spaces, in greater detail. Section 5 contains several example visualizations. Additional
information about the model and our testbed implementation can be found in the papers listed in the
Bibliography,

2  Overview

We treat visualization as a series of transformations or mappings from the state of the computation
to an image. The various intermediate results of the mappings are referred to as spaces. Each space
consists of a set of tuples having the general form

typename(component], component, ..., componenty).
Four spaces are included in the modei:
*  The state space is that used by the computation.

*  The proof space is an abstraction of those properties of the state space which are required in
the visualization. Both the current and previous instances of the proof space are available for
examination in the model. Each successive instance of the proof space is produced from the
state space and the previous instance of the proof space by the proof mapping.

*  The object space contains the collection of graphical objects making up the image. Both the
current and previous instances of the object space are available for examination in the model.
Each instance of the proof space is produced from the state space and the previous instance of
the object space by the object mapping.

*  The animation space contains tuples which represent graphical events. It is produced from the
object space and previous object space by the animation mapping.



We consider production of the animation space to complete the process of visualization; in practice, a
graphical engine is required to transform the animation space into the final images. We have developed

such an engine, called SwarmView, which runs on a Silicon Graphics Personal Iris®,

Each of the three mappings are specified declaratively as collections of rules. Each rule defines a
logical relationship between two of the spaces of the model, called the rule’s input space and output space.
Any change in a rule's input space are instantaneously reflected in the output space. A complete
visualization consists of declarations of all three mappings; the composition of these mappings defines a
logicat relationship between the state space and the animation space (and hence, the final image).

Rules belonging to the proof mapping are called proof rules; they have as input space the state
space and as output space the proof space. Rules belonging to the object mapping are called object rules,
have as input space the current and previous proof spaces, and have as output space the object space. Rules
belonging to the animation mapping are called animation rules, have as input space the current and previous
object spaces, and have as output space the animation space. The relations between the various spaces and
mappings are represented in Figure 1.

Each visualization rule contains an optional list of variables, a query and a production:
variables : query = production

The query is an arbitrary predicate which may include patterns to be matched against the rule's
input space. The production is a list of tuples from the rule's output space. Informally, such a rule can be
treated as producing a collection of tuples as follows: For every instantiation of the variables such that the
query is true for the particular input space, the corresponding tuples of the production will be present in the
output space.

Operationally, a visualization is performed by taking a particular state space, applying all the rules
of the proof mapping and collecting the resulting tuples as the new proof space. This proof space and the
previous space are then used as input space for the object mapping and produce the new object space.
Finally, the new object space and the previous space are used as input space for the animation mapping and
produce the new animation space.

We assume that the state space undergoes atomic transitions, and that the visnalization process is
sufficiently fast that each state can be completely transformed to the animation space before the next
transition. We also assume that only the current state of the computation may be examined by the
visualization process; this assumption may prove to be overly pessimistic in practice, but is required to
keep the model general.

We have selected Swarm as our underlying computational model. Swarm models the state of a
concurrent computation using an entity called the dataspace. The information contained in the dataspace is
represented by tuples. Tuples represent both data and process activity; the latter is embodied by
transactions, which specify atomic transformations to be applied to the dataspace, and the synchrony
relation, which specifies collections of transactions which are to be executed simultancously.

Transactions are represented in the dataspace by tuples, each representing a specific instance of the
transaction type; the transaction behavior is specified separately. A transaction is made up of one or more
subtransactions. A subtransaction consists of a query which attempts to match certain patterns against the
dataspace and an action which specifies a modification of the dataspace. The synchrony relation is also
represented by tuples, each linking two transactions. The reflexive symmetric transitive closure of the
synchrony tuples present in the dataspace defines the synchrony relation; naturally, this is an equivalence
relation. The synchrony relation partitions the transactions into collections called synchronic groups.
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Compatations under the Swarm model begin with an initial dataspace containing data tuples and
transaction tuples. Computation proceeds by selecting one of the synchronic groups in a non-deterministic
but fair fashion and executing the transactions which are contained within the group in parallel. When a
transaction is executed, the tuple representing it is removed from the dataspace and the corresponding
transaction specification is performed. The subtransactions making up the transaction are executed in
parallel (and thus all subtransactions in the synchronic group are executed in parallel). Each subtransaction
atterpts to match the pattern in its query against the dataspace. If the match is successful, the action part
of the subtransaction is executed and modifies the dataspace; if it is unsuccessful, the subtransaction takes
no action. Selection and execution of synchronic continues until no more transaction tuples are present in
the datagpace.

Swarm's greatest advantage for visualization is that all the information about the computational
state is contained in a single, uniform, easily-accessed form. Issues of extracting the computational state
from the running computation are thus minimized, allowing us to focus our efforts on the development of
the model.

3 Model Spaces

The model has four spaces, the state, proof, object, and animation spaces. The state space is part
of the underlying computation; we assume it to be organized as a set of tuples which changes by a series of
atomic transitions. The remaining three spaces are collectively called the model spaces, Two separate
instances of the proof and object spaces, the current space and the previous space, are maintained by the
model and can be accessed by the mappings.

Each of the model spaces is a set of tuples having the syntactic form
typename(component |, componenty, ..., COmponenty).

In the proof and object spaces, the fypename is an identifier chosen by the visualization designer; it need not
have any particular meaning, but of course careful choice of typenames will make the purpose of each type
more apparent to the reader. The components are also arbitrary and may include structured data such as sets
and lists.

The structure of the tuples in the animation space is somewhat different. In the animation space,
the rypename of the tuple is one of a limited set of identifiers, each associated with a primitive graphical
object which can be rendered by the graphical engine. The Swarm View graphical engine provides a number
of such objects, including lines, polygons, circles, and spheres. The components have the strocture

attribute = expression

where the attribute is some property of the graphical object represented by the typename and the
expression is a value to be assigned to the attribute. The expression may be a constant or a time-dependent
function; the time-dependence is used to create animation in the final image. The process of translating the
animation space into the final images is described in the paper “SwarmView Animation Vocabulary and
Interpretation”, the appendices of which are reproduced in this paper.

We make one restriction on the tuples that may be used: the typenames associated with the state
space, proof space, object space, and animation spaces must be disjoint. This permits us to immediately
identify the space to which a given tuple belongs.

The proof space is an extraction of those properties of the underlying computation which are
deemed to be significant to the visualization. The term proof space derives from our methodological belief
that the program correctness properties describing the behavior of the program serve as a basis for
determining which properties of the program should be visualized. Becanse it is often the case that proof
rely on the use of auxiliary variables which maintain historical information, the proof rules need to access
the old value of the auxiliary variables — in other words, the previous proof space — in order to compute the



new ones. We therefore permit the rules creating the proof space to examine both the state space and the
previous proof space.

The proof space and associated proof mapping also embody the concept of state collection. In our
model, we are not overly concerned with how information about the underlying computation is collected and
made available to the superimposed visualization (indeed, we selected Swarm as a computational model
precisely for this reason). However, this issue is of great concem in visualization implementations;
program state information must be collected and relayed to the visualization process. The proof mapping
indicates what information must be collected and how it should be presented.

The object space is an abstraction in graphical form of the properties contained in the proof space.
The tuples in the object space do not directly represent graphical objects in the final image — that is the
function of the animation space - but instead embody abstract objects that the visualization designer finds
most convenient. A single mple of the object space may generate several objects in the final image (for
example, an object-space tuple representing a cube might be rendered using six rectangles), or an object in
the image might use information from several tuples in the object space.

We permit the rules generating the object space to examine both the proof space and the previous
object space. This ability has a number of applications. The most imporiant is the ability to store
geometric information in the object space and access this information, either when creating the new object
space or when creating the animation space. For example, we might logically identify certain object in the
object space by a number. We would then store a function mapping the identification numbers to
geometric coordinates; the function would be stored as a collection of tuples. The function is preserved by
rules which copy the tuples from the previous object space to the new one. This ability can also be utilized
to facilitate implementation of certain types of viewer interaction with the image. The viewer might decide,
for example, to move one of the graphical objects in the final image; the object then should remain in its
new location. If the coordinates of the object are stored as suggested above, this is easily accomplished;
moving the object would change the corresponding tuple of the stored function, and the new position will
be preserved because the new tuple value is copied.

The animation space is the final graphical representation of the program visualization. The tuples
in the animation space are in one-to-one correspondence with the graphical objects making up the final
image. The animation space is the only point in the visualization process where we recognize the concept
of an event; the animation mapping is permitted to examine the current and previous object spaces, detect
changes between these spaces, and animate the changes appropriately. This ability is incorporated to permit
smooth transitions between the graphical representations of two successive state spaces. Animation was
not incorporated in an earlier version of our model, and the resulting animations suffered from
discontinuities which made them difficult to follow.

Each tuple in the object space represents a single primitive graphical event in the final image. A
primitive graphical event or PGE is a description of the attributes of a single primitive graphical object
over a short span of time. Animation is achieved by making the attributes of the object time-dependent; for
example, to make an object move from one location to the other we give the positional attribute of the
object a value which changes with time. The graphical engine takes the tuples of a single animation space
and transforms them into a series of frames. Each frame is a single image representing the results of
evaluating the animation space tuples at a particular time,

4 Mappings

The mappings of the visualization model specify relations between the various spaces. Each
mapping has an input space (actually consisting of two spaces in all of the model's mappings) and an
output space. The mapping specifies relations between the input and output spaces using rules. Each rule
is of the general form “given that some property Q is true of the input space, the tuples in the list 7 will be
present in the output space”.



4.1 Notation and Terminology
A visualization rule has the general form
v:Q=P

where vis a collection of variables, @ is a query over the rule’s input space and P is a list of patterns from
the rule's output space,

The query Q consists of a comma-separated list of predicates and tuple patterns. Predicates are any
logical expression which is either true or false; the predicate may test the values of the variables. Tuple
patterns have the same notation as tuples: a typename and a list of components which may include
variables. The typename of the tuple must be associated with one of the input spaces of the rule. Except
in one case, the space to which a tuple pattern appearing in a query belongs can be deduced from the tuple's
type and the mapping to which the rule belongs (i.e., a tuple appearing the query part of a rule from the
proof mapping must belong to either the state space or the previous proof space, and since the typenames
are disjoint between spaces we can determine the space by inspection). The sole exception is in the case of
the animation mapping, which accesses tuples from both the current and previous object spaces. In this
case, we prefix the tuple pattern with “old.” to indicate the tuple is to belong to the previous instance of the
object space; tuple patterns without this prefix belong to the current instance.

The production P consists of a comma-separated list of tuples. The typename of the tuples must
be associated with the output space of the rule. We say a variable from v is instantiated by € if the variable
appears in Q; we require that all variables from v that appear in P be instantiated by Q. This restriction is
common to most rule-based languages.

4.2 Formal Basis
For model purposes, we assume that any change in the input space of a mapping is
instantaneously reflected in the output space. Let the configuration of spaces be represented by a 6-tple
(S.P,Pp,0, Op. A ) where § is the state space, P is the proof space, Pp is the previous proof space,
O is the object space, Op is the previous object space, and A is the animation space. Let the output space

produced by a mapping M given an input space I be represented by our(M, I); since in all cases F consists
of two spaces, we also use the notation out(M, {s7, 52 )) Then given a particular configuration of spaces

{s,p.pp,0,0p,a)

with proof mapping Mp, cbject mapping M, and animation mapping M4, an atomic change in the state
space from s to 5" results in a new configuration given by
(s%p'p,0%0,a")

where p”= ouwt(Mp, {s', p)), 0"=ouwt(MQ, (v, 0)), and a”= out(M4, {0’, 0)). That is, the new proof
space is derived from the new state space and the old proof space, the existing proof space becomes the
previous proof space, and so on. The first two mappings use two distinct spaces, while the third uses two
instantiations of the object space; this has certain effects on the syntax of the rules as discussed above.

We now need to define the out function.which is used above. We start by defining our for rules,
Consider a rule R having the form v : Q = P. Let i represent an arbitrary instantiation of the variables v
(that is, { is a vector of values having the same length as v). Then Q; (@ with all occurrences of v replaced
with {) represents a predicate that is either true or false for any given input space (using the convention that

the presence of a tuple in Q;." is to be read as “the tple Q:f is present in the input space), and P;’ is a list of

tuples in the ontput space. The set of tuples produced by the rule R for a given input space (s7 ,52)is



formed by collecting all tuples appearing in any list P;, where { is any instantiation of v such that the

predicate Ql? is true given the input space:
out(R,{sy s2N={i: Q; is true for (s7_ 52 ): P:}

Given a mapping M which consists of a set of rules, the output space of M is defined as the union
of the sets produced by all rules in M:

out(M,(sy, 52 =(0R:Re M:out{R,{(s7 52}
5 Examples

Each of the subsections of this section begins with a description of some aspect of a computation
to be visualized. We then determine a suitable visual representation of the properties to be captured.
Finally, the three mappings are specified.

5.1 Array Summation

The underlying computation contains an array stored as a collection of tuples of the form
array(index, value) where the index components are integers in the range from 0 up to the size of the array
and the value components are positive numbers. During part of the computation, the sum of the array will
be computed. The summation will be performed by selecting and deleting two distinct array tuples having
different index components and inserting a new tuple whose index is the smaller of the two index
components and whose value is the sum of the two value components. This can be expressed in Swarm as
a transaction Sum whose behavior is

Sum() =
Ljv,w:
array(i, v)T, array(, w)t,i<j
9
array(i, v + w), Sum()

(The dagger (t) symbol indicates deletion of the tuple from the dataspace. The Sum transaction reproduces
itself as long as it succeeds in finding at least two array tuples; when the query fails, there is no more work
to be done and the transaction disappears.)

We want to visualize the correctness and progress of this simple algorithm. Specifically, we want
to illustrate the following two correctness properties:

*  (Invariant) The sum of value components over all array tuples is constant.
= (Progress) If the number of array tuples is greater than one, the number will become smaller.

We can represent the first property by constructing a bar whose length is equal to the sum of the value
components. Invariance of the property is indicated by the length of the bar remaining constant, The
second property can be visualized using the same bar, by composing the bar out of a number of sub-bars,
each having a length equal to the value component of one of the array entries. The progress is indicated by
a reduction in the number of sub-bars. Figure 2 illusirates the desired visualization behavior; the bars
indicated are generated from several successive state spaces, reading down the page.



State space: array(0,8), array(1,7), array(2,3), array(3,7), array(4,1), array(5,12)

State space: array(0,11), array(1,7), array(3,7), array(4,1), array(5,12)

State space: array(0,11), array(1,7), array(3,19), array(4,1)

State space: array(0,11), array(1,26), array(4,1)

State space: array(0,12), array(1,26)

State space: array(0,28)

Figure 2. Successive state spaces and corresponding bar for the array-summation example.

Our proof space will contain tuples of the form array_bar(index,value), one for each array tuple in
the state space. The proof mapping rule producing this is:

i, v:
array(i, v)
=

array_bar(i, v)

Although this seems trivial, and indeed might lead one to question the need for a proof space, recall that the
array tuples may be only a small part of the state space; indeed, there may be thousands of other tuples in
many different tuple types. This proof rule clearly states that of all these tuples, the only ones we are
interested in are the array wples, and indicates how the data from the array tuples is to be made available to
the visualization.

Our object space will contain tuples of the form sub_bar(position,length), where position will be
the “X-coordinate” (in some arbitrary units) of the left edge of the rectangle and length will be the size of
the rectangle in the X-direction. The following object mapping rule produces the required tuples:

iL,v,p:

array_bar(i, v), p=(Zj, W : j <i A array_bar(j, w) : w)
=D

sub_bar(p,v)

The length of each sub_bar is just the value of the corresponding array_bar, while the position is computed
by summing the values of the array_bars with smaller index components. Note that this means that each
time the underlying computation takes a single atomic action, the superimposed visualization must do an



amount of work equal to that being performed by the array summation itself. This is unfortunately
common in visualization; even with specialized hardware, the generation and display of graphics is a
lengthy process and results in a slowdown of the underlying computation.

Our animation space will contain rectangle tuples, one for each array_bar. No special animations
are required; however, we do want to transform the arbitrary coordinate system of the array_bar tuples into a
system that is appropriate for our display. For this reason, we return to the object space and include a tuple
of the form bar_position(xpos,ypos,xscale,yscale) which will be used to position and size the rectangle
tuples of the animation space. The initial values stored in the bar _position mple are chosen appropriately
by the designer of the visualization, and an object mapping rule is included to propagate the tuple;

XP, YD, XS, ¥S ©
bar_position(xp, yp, Xs, ys)
1
bar_position(xp, yp, xs, ys)

In this rule, the bar_position pattern on the query side refers to a test for the tuple in the previous instance
of the object space; the tuple on the production side refers to production of the tuple in the new instance of
the object space. This can be determined by examination, since the rule is known to be an object mapping
rule,

Returning to the animation space, we want to produce the rectangle tuples. Referring to the
“library” of graphical objects (see the appendices, which are reproduced from the paper “SwarmView
Animation Vocabulary and Interpretation™) we find that the rectangle tuples require the center of the
rectangle {in XYZ coordinates) and the X and Y sizes; we will use the default values of the other attributes,
The rectangles are produced by the animation mapping rule:

Xp, ¥p, X8, VS, pos, len :
bar_position(xp, yp, Xs, ys), sub_bar(pos, len)
=
rectangle(  position = [ xp + xs * (pos + len /2), yp-ys/2,0],
xsize = xs * len,
ysize =ys }

The rectangle's X-size is obtained by multiplying the sub_bar's length by the scaling factor stored in the
bar_position tuple and its Y-size is that stored in the bar_position tple. The position of the center is
calculated in a similar fashion.

5.2 Communication Monitoring

The underlying computation consists of a number of processes which communicate by passing
messages over channels. The processes are interconnected in a toroidal configuration of some known size
M by N, and each process is identified by a pair [x,y] (with 0< x < M and 0 < y <N} of “coordinates™
which give its position in the torus (Figure 3). Message-passing occurs by means of a rendezvous during
which one process sends a message and another receives it. The message-passing protocol is such that the
sending process blocks until the message is received, and thus at most one message can be “in transit” on
any channel at any time. A rendezvous begins when process P attempts to send a message to process P;
this is indicated by the presence of a tuple sending(PJ, P2} in the state space. When process P begins
receiving the message a tuple receiving(P2, P1) is present. When the rendezvous completes both tples are
removed from the state space simultaneously (i.e., as part of a single atomic change in the state space).

We wish to provide a visnal monitor of the communication behavior of this computation. No
correctness properties are provided - we are not observing a concurrent algorithm to gain understanding of
its behavior, but instead are simply examining the message traffic. We therefore will use an ad-hoc
approach to constructing the visualization,
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Figure 3. A 4 x4 toroidal configuration of processes.
Left — Two-dimensional representation, with the processes arranged in an array by [x, y] identifiers.
Right — Three-dimensional representation of the same configuration.

We will generate a three-dimensional representation as illustrated on the right of Figure 3,
representing the processes by spheres and the channels by lines connecting the spheres, Process state
information will be indicated by colors — for example, a non-communicating process will be blue, a process
that is waiting to send will be red, a process that is sending will be green, and a process that is receiving
will be yellow. These colors are chosen quite arbitrarily, and it is possible that they would prove difficult
to interpret or unattractive. For this reason, we will use the technique of storing the colors in the object
space where they can be easily changed. We will use a similar color technique to represent channel activity;
an inactive channel will be gray and an active channel will be white.

Our proof space will contain tuples of the form process_state(id, siate, partner) for each
communicating process. The id is the process' identifier; the state is one of blocked, send, or receive; and
the partner is the identifier of the process with which the id process is communicating. The following
proof mapping rules generate the needed tuples:

id, pid :
sending(id, pid), receiving(pid, id)
=
process_state(id, send, pid), process_state(pid, receive, id)

id, pid :

sending(id, pid), —receiving(pid, id)
=

process_state(id, blocked, pid)

The object space tuples represent both the processes and communications links; further, we need to
have tuples for all processes and links, not just those involved in communication. There are two ways 1o
generate the needed information about the topology. The first would be 1o use the facts that the processes
are toroidally-connected and process identifiers are pairs of integers [x,y] with 0 S x <M and 0 < y<N,
where M and N are the torus size. By using several rules we can generate the required information; for
example, one rule to detect an inactive channel and generate the needed tuple would be

M,N,x,y:
torus_size(M,N),0<x<M,0<y <N,
—process_state([x,y], send,[(x+1) mod M, y]),
—process_state([x,y], receive,[(x+1) mod M, y])

link{[x,y], [(x+1) mod M.,y])

10



This approach has a number of disadvantages; most obviously, the rules are rather long. A more
significant disadvantage is the lack of flexibility. The above rule is suitable for a toroidal topology, but
completely inapplicable to other topologies. For these reasons, the second approach is preferable. In this
approach, we store the needed information about the topology in either the proof space or the object space.
This approach is used below, where we assume proof-space tuples process_sel(S} and channel_set(S) are
used to store the set of all processes and the set of all channels. (The topography could be stored in other
ways, depending on both personal preference and efficiency considerations.)

We also select the color of the nodes and links in this mapping. The colors are stored as tples in
the object space (and copied by appropriate rules). We generate tuples of the form node(id, color) and
link(id}, id2, color). The following rules generate the object space:

id, pid, be:

process_state(id, blocked, pid), blocked_color(bc)
=

node(id, bc)

id, pid, sc, ac:

process_state(id, send, pid), send_color(sc), active_chan_color(ac)
=

node(id, sc), link(id, pid, ac)

id, pid, rc, ac:

process_state(id, send, pid), receive_color(rc)
=

node(id, 1c)

P8, id, nc:
process_set(PS), id € PS,
—(3 pid : pid € PS : process_state(id, blocked, pid) v
process_state(id, send, pid) v
process_state(id, receive, pid) 3,
noncom_color(nc)
=5
node(id, nc)

PC, id, pid, ic :
channel_set(PC), [id, pid] € PC,
—process_state(id, send, pid), —process_state(pid, send, id),
—process_state(id, receive, pid), —process_state(pid, receive, id),
inactive_chan_color(ic)

=
link([id,pid], ic)

The fourth rule may require some notational clarification. It states, “if a process id is in the process set, and
it is not the case that there exists another process pid such that id is blocked, sending, or receiving in a
communication with pid, then id must be non-communicating”. Also note that active channels are
identified in the second rule; they could also be identified in the third, or even both (since the spaces are

sets, it does not matter if a particular tuple is generated multiple times).

The animation-space tuples are easily created from the object-space tuples. We need to position
the various graphical objects; again, there are two approaches. We can store (in the object space) tuples
which serve to map process identifiers to three-dimensional coordinates. Alternatively, we can store
information about the torus as a whole (X and Y center, radius, eic.) and use this information to generate
the coordinates. Both approaches have advantages and disadvantages. The first is more flexible (any
topology can be so represented) but requires considerable initialization and does not permit the torus to be
treated as a single object. The second allows the torus to be treated as a single object, but does not allow
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the individual elements of the torus to be treated separately. The rules below use the second approach, in
which a tuple

torus_configuration(M, N, xcenter, ycenter, zcenter, radius, thickness, sphere_rad)

stores the information used to generate the torus. The expressions involved map the fx,y] pairs of process
identifiers to three-dimensional coordinates.

M, N, xc, yc, 2, T, &, SF, X, ¥, C ¢
torus_configuration(M, N, xc, yc, zc, 1, t, s1), node([x, y], ¢}
=
sphere(  center = [ xc + (r + t * cos(360*y/N)) * cos(360*x/M),
ye + (1 + t * cos(360*y/N)) * sin(360*x/M),

zc + t * gin(360*y/N) 1,
Tadius = sr,
color=c}

M, N, xc, yc, z¢, 1, t, st, x1, y1, %2, y2, ¢ :
torus_configuration(M, N, xc, yc, zc, , t, sr), link([x1, y1], [x2, y2], ©)
—_
line(  from = [ xc + (r + t * cos(360*y1/N)) * cos(360%*x1/M),
ye + (1 + t* cos(360*y1/N)) * sin(360*x1/M),
ZC + t* sin(360+y1/N) 1,
to=[x¢+ (r + t* cos(360*y2/N)) * cos(360%x2/M),
ye + (1 + t * cos(360*y2/N)) * sin(360*x2/M),
zc + t * sin(360*y2/N) 1,
color=¢)

(Clearly it would be desirable to add some sort of function definition, or at least a macro facility, to any
implementation in order to avoid expressions such as the above.)

5.3 An Extension

Assume that we want to make the visualization of the previous subsection a little more
interesting. Let us say that we want to animate the act of message-passing by having a small “zap”,
colored differently from the main link, transfer from the sender to the receiver during the communication, as
illustrated on the left in Figure 4.

Most of the rules of the previous mapping remain the same (one of the advantages (o a declarative
approach to visualization). The first change is in the object mapping, where we identify those links where
the effect is to occur. Since these are exactly those links which correspond to active channels, we only need
to make a minor change to the second object mapping rule from the previous subsection:

id, pid, sc, ac, zc:

process_state(id, send, pid), send_color(sc), active_chan_color(ac,zc)
—]

node(id, sc), zap_link(id, pid, ac, zc)

As before, we assume that the desired colors are stored in the object space and copied by appropriate rules.
In this case, there are two colors corresponding to the active channel color and the color of the zap.
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Figure 4. Tllustration of a “zap” animation, with motion from left to right (time increases down the page).
Left — Desired effect.
Right - Breakdown of “zap” into three separate lines.

The next stage is to determine how to generate the zap animation. The basic problem is, given the
two endpoints, to generate a line with the time-changing pattern illustrated in Figure 4. The obvious way,
generating the entire line in the active color then “overwriting” part of it in the zap color, does not work,
The order in which the animation tuples are interpreted and produced is deliberately unspecified, so the
interpreter could generate the zap color part then “overwrite” it with the active color part.

One method which works is illustrated to the right of Figure 4, where the link is decomposed into
three lines — two in the active color and one in the zap color — which together make up the whole pattern.
Examining the endpoints of each line, it is clear that we need to smoothly change the endpoints during the
course of the animation. The ramp function provided by the animation vocabulary is ideal. We also need
to make certain timing decisions, specifically when the various ramp functions begin and end. As in the
case of geometric constants, these times should be stored in a tuple in the object space and retrieved as
required. The rule which generates the desired animation tuples is:

M, N, xc, yc, z¢, 1, t, st, x1, y1, x2, y2, ac, zc, P1, P2:
torus_configuration(M, N, xc, yc, z¢, 1, t, sr),
zap_link([x1, y1], [x2, y2], ac, zc),
Pl = [xc + (r+ t * cos(360*y1/N)) * cos(360*x1/M),
yc + (r + t * cos(360*y1/N)) * sin(360*x1/M),
zc + t * sin(360*y1/N) ],
P2 =[xc+ (r+t*cos(360*y2/N)) * cos(360*x2/M),
ye + (1 + t * cos(360*y2/N)) * sin(360%*x2/M),
zc + t * sin(360*y2/N) ]
zap_times(start_leading, start_trailing, end_leading, end_trailing)

tine(  from=Pl,
to = ramp(start_trailing, P1, end_trailing, P2),
color = ac),

line(  from = ramp(start_trailing,P1,end_trailing,P2),
to = ramp(stari_leading, P1, end_leading, P2),
color = z¢),

line( from = ramp(start_leading, P1, end_leading, P2),
to = P2,
color = ac)

If we assume the lines in Figure 4 represent successive frames of animation, then appropriate values for the
times would be: stari_leading =0, start_trailing = 3, end _leading = 8, and end_trailing = 11.
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