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Abstract 

Through-the-Wall Imaging and Multipath Exploitation 

by 

Marija Nikolic 

Doctor of Philosophy in Electrical Engineering 

Washington University in St. Louis, December 2011 

Research Advisor: Dr. Arye Nehorai 

 

We consider the problem of using electromagnetic sensing to estimate targets in complex 

environments, such as when they are hidden behind walls and other opaque objects. The 

often unknown electromagnetic interactions between the target and the surrounding area, 

make the problem challenging. To improve our results, we exploit information in the 

multipath of the objects surrounding both the target and the sensors. 

First, we estimate building layouts by using the jump-diffusion algorithm and employing 
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prior knowledge about typical building layouts. We also take advantage of a detailed 

physical model that captures the scattering by the inner walls and efficiently utilizes the 

frequency bandwidth. 

We then localize targets hidden behind reinforced concrete walls. The sensing signals 

reflected from the targets are significantly distorted and attenuated by the embedded 

metal bars. Using the surface formulation of the method of moments, we model the 

response of the reinforced walls, and incorporate their transmission coefficients into the 

beamforming method to achieve better estimation accuracy. 

In a related effort, we utilize the sparsity constraint to improve electromagnetic imaging 

of hidden conducting targets, assuming that a set of equivalent sources can be substituted 

for the targets. We derive a linear measurement model and employ 1l  regularization to 

identify the equivalent sources in the vicinity of the target surfaces. The proposed inverse 

method reconstructs the target shape in one or two steps, using single-frequency data. 

Our results are experimentally verified. 

Finally, we exploit the multipath from sensor-array platforms to facilitate direction 

finding. This in contrast to the usual approach, which utilizes the scattering close to the 

targets. We analyze the effect of the multipath in a statistical signal processing 

framework, and compute the Cramer-Rao bound to obtain the system resolution. We 

conduct experiments on a simple array platform to support our theoretical approach. 
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Chapter 1  

Introduction 

1.1 Background 

Estimating the location, number, and shape of hidden targets using electromagnetic 

sensing is an inverse scattering problem with many applications, such as in 

nondestructive testing, subsurface probing, and through-the-wall imaging. Solving this 

problem is difficult because of the complex and often unknown environment. In 

through-the-wall imaging, for example, the targets are located inside buildings of 

unknown layout and material. Sensor arrays receive signals which are distorted due to the 

electromagnetic interaction among the targets, unidentified walls, and furniture.  

The unwanted scattering from nearby objects is usually considerably stronger than the 

back-scattered signals from the targets. In addition, the physical modeling of electrically 

large structures, such as buildings, is computationally intensive, thus limiting the 

practical aspects of the estimation. The estimation accuracy and the computational speed 
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are dictated by the operating frequency. Hence, efficient usage of the bandwidth is 

critical for real-life implementations. In a similar way, the useful scattering from a buried 

target is substantially disguised by the reflections at the interfaces of the embedding 

medium. The unwanted multiple reflections may also originate from the corners of the 

target itself. These multiple scattered signals introduce difficulties in the target imaging, 

causing artifacts in the reconstructed images. Yet, the electromagnetic interaction 

between the target and the environment contains data useful in inferring the target. The 

multipath from the objects surrounding the target, as well as from the sensor array, 

enlarges the illumination zone of the targets and increases the effective aperture of the 

array. The resultant electromagnetic field in the multipath environment changes rapidly 

with the frequency. This increased frequency sensitivity, compared to situations without 

the multipath, is useful in resolving the ambiguity of the inverse scattering problems.  

Hence, the role of electromagnetic modeling in target estimation is twofold: to provide an 

accurate representation of the measurement scene and to extract additional pieces of 

information due to the multipath. In this dissertation, we address both aspects of  

electromagnetic sensing in the complex environments. We focus our work on the 

following examples: building layout estimation, identification of targets hidden behind 

reinforced concrete walls, buried target imaging, and exploitation of the multipath from 

sensing arrays. 
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1.2 Estimating Building Layouts 

Estimating building layouts is an important task in urban warfare. If the positions of the 

inner walls have been previously revealed, the localization of humans or other objects 

hidden inside buildings is much facilitated. Moreover, the scattering of the transmitted 

signals inside the building provides additional “views” of the target that are helpful in the 

classification. Reconstruction of the building interior belongs to the broad area of inverse 

scattering. To solve this problem using purely electromagnetic (deterministic) tools is 

difficult because the investigated domain is very large in terms of wavelengths. At the 

same time, inner walls have some a-priori known information that we take advantage of 

[1], [2].  

In general, procedures for solving inverse scattering problems can be classified into 

deterministic and stochastic. Among deterministic algorithms, many applications use 

iterative techniques based on the linearization around a current estimate [3]-[5]. Because 

the inverse scattering problems are intrinsically ill-posed [6]-[8], the reconstruction 

methods may diverge or converge to a false solution. A globally convergent stochastic 

algorithm for the inverse scattering based on simulated annealing is given in [9]. The 

algorithm of [9] is extremely time consuming, and cannot be applied for the estimation of 

electrically large structures such as buildings.  

Here, we exploit the knowledge of typical building layouts to improve the estimation. 

Instead of dividing the unknown area into uniform cells with unknown properties [9], we 

consider more natural division into “walls” and “rooms.” We use a stochastic algorithm 
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that enables efficient inclusion of the prior knowledge – the jump-diffusion algorithm 

[10], [11]. Prior information reduces the parameter space, and consequently expedites the 

convergence. Jump-diffusion has been widely used for solving problems where the 

dimensionality of the parameter space is unknown. However, most of its applications lie 

in image processing, e.g., [12] and [13]. We adapt that algorithm to solve the inverse 

electromagnetic problem. At the same time, we take advantage of the detailed physical 

model that captures the multipath from the inner walls and efficiently utilizes the 

frequency bandwidth. 

Works that exploit rectangular floor plans and employ graph theory to estimate the rooms 

are [14] and [15]. In [14], the solutions are generated via a Markov chain Monte Carlo 

procedure, whereas in [15] a constrained least squares approach is used. 

1.3 Estimating Targets Hidden behind 

Reinforced Concrete Walls 

The goal of through-the-wall imaging is to find targets located behind opaque obstacles, 

using exterior electromagnetic sensing. There are many civilian and military applications 

that benefit from the research in this field, such as saving hostages and earthquake 

victims. The presence of the walls significantly influences the estimation process. If the 

walls are not included in the model, due to the refraction of the electromagnetic waves, 

the target estimates are delocalized from their true positions. In addition, only a fraction 

of the transmitted power reaches the targets because of the absorption and refraction 
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losses in the walls. The attenuation and dispersion of the transmitted waveforms are 

particularly pronounced in the case of the inhomogeneous walls, such as reinforced and 

cinder-block walls. The periodic structure of these walls poses significant difficulties in 

hidden target imaging. Typically, images are blurred with ghost target estimates.  

In prior studies, the walls were treated as homogeneous dielectric slabs of known 

thickness and permittivity. In [16] and [17], a beamforming imaging scheme that 

accommodates the refractions from a single wall was presented. In [18] and [19], the 

linear Born model was applied to obtain the image of targets hidden inside the known 

building. The case in which the parameters of the homogeneous wall were unknown was 

tackled in [20]. Radar imaging through a wall made of cinder blocks was addressed in 

[21]. Recently, methods based on the compressive sensing were suggested for the 

through-the-wall imaging [22]-[25]. 

In this dissertation, we consider the estimation of targets hidden behind concrete walls 

reinforced by parallel steel bars [26]. Electromagnetic propagation through reinforced 

concrete walls is well covered in the literature for the purpose of mobile channel 

modeling [27]-[29]. Here, the goal is to take advantage of accurate electromagnetic 

modeling to improve imaging accuracy. We model the response of the reinforced walls 

using the surface formulation of the method of moments (MoM) [30], [31]. We 

investigate the cases of known and unknown wall parameters. To localize the targets, we 

incorporate the near-field transmission coefficients of the reinforced walls into the 

beamforming method. Significant improvement is achieved when the bar characteristics 

are taken into account. This improvement is particularly pronounced when the 
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signal-to-noise ratio is low.  

1.4 Estimating Hidden PEC Targets Using 

Sparsity 

Another important problem in inverse scattering is the estimation of conducting targets 

concealed inside a dielectric domain. The general algorithms for restoring dielectric 

profiles, such as the distorted Born iterative method (DBIM) and equivalent Gauss-

Newton methods, are not suitable for the imaging of non-penetrable objects, due to the 

high contrast in the electromagnetic properties between the target and surroundings (e.g., 

[3]-[5]). The electric currents induced on the metallic targets are typically concentrated in 

small areas around the so-called scattering centers. These currents rapidly decrease 

towards the interior of the targets, due to the small penetration depth of conducting 

objects. Hence, the induced currents are sparse throughout the domain in which the 

targets are hidden. Herein, we study the utilization of a sparsity constraint (l1 

regularization [32]-[40]) in the electromagnetic imaging of hidden conducting targets 

[42]-[44]. 

Algorithms used in the inverse scattering of perfect electrically conducting (PEC) targets 

include the following, among others. In the equivalent-source method [45]-[47], the 

metallic cylinders are replaced by equivalent sources whose locations and currents are 

unknown. The equivalent sources are restored iteratively, through a non-linear 

optimization process. If the targets are embedded in a dielectric medium, the volume 
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equivalence theorem is usually applied [48]. Examples of direct methods based on the 

volume formulation of the electric field integral equation are given in [49], [50]. 

Estimated volume equivalent currents are used as indicators of the target existence. The 

prominent non-iterative, single-frequency methods are linear sampling (LSM) [51]-[59] 

and MUSIC [60]-[66]. The advantages of LSM and MUSIC are the computational 

efficacy, straight-forward implementation, and applicability to both metallic and 

dielectric targets. The physical optics (PO) method is also widely used in high-frequency 

imaging of PEC targets [67]-[69]. However, the PO approximation neglects multiple 

scattering and therefore is typically associated with smooth-target imaging. There is also 

a group of model-based algorithms that iteratively estimate the parameterized contours of 

targets [70], [71]. Recently, sparse signal processing has been successfully applied in 

radar imaging (see e.g., [41] and references therein). Sparse localization of buried targets 

and targets behind walls was considered in [72] and [22]-[25], respectively. The 

underlying electromagnetic models assumed far-field measurements and point-like 

targets. The joint application of 1l  and 2l  regularizations with the DBIM algorithm was 

proposed in [73] for medical imaging purposes. This general estimation scheme restores 

the permittivity of the 3D domain with arbitrary heterogeneities. However, the DBIM 

algorithm does not converge for highly conductive scatterers such as metals, which we 

consider here. 

We develop an inverse algorithm that is based on the equivalent-source method [45]-[47] 

and the surface formulation of the electric-field integral equation (EFIE) [30], [31]. We 

define a grid of the equivalent sources uniformly spread in the interior of the known 
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embedding medium. The currents of the equivalent sources are unknown. However, we 

suppose that there are only a few equivalent sources with non-zero currents, and that 

those equivalent sources are located close to the target contours. We derive a linear 

measurement model and employ 1l  regularization to emphasize the equivalent sources in 

the vicinity of the target surfaces and thus provide information about their shape. The 

proposed inverse method allows reconstructing the target shape in one or two steps, using 

single frequency data. We verify our results experimentally. 

1.5 Estimating Direction of Arrival Using 

Multipath from Array Platforms 

In the previous examples, the intricacy of estimation stems from the complex target 

environment. Moreover, sensors are often mounted on platforms which may be seen as a 

significant source of the scattering. We examine whether the scattering (multipath) from 

sensing systems alone can be exploited in target localization. This approach is in contrast 

to investigations in which the multipath from the target surroundings is utilized for 

improving the localization characteristics of sensing arrays [74]-[79]. Although the 

multipath from the sensors (to the best of our knowledge) has not been used in 

electromagnetic sensing, it holds great advantage over using the multipath close to the 

targets: the platform response is usually completely known, whereas the target 

environment is only partially known. A preliminary study [80] proved that placing ideal 

reflectors near an isotropic sensor lowered the variance of the DOA estimation.  
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Some examples of the exploitation of the multipath close to the targets include the 

following. In [74]-[79], the reflections from land or buildings are taken into account to 

improve source localization. The phenomenon of “super-resolution” in a complex 

propagation medium using phase conjugation and time reversal was studied in [81] and 

[82]-[84], respectively. In [85], it was demonstrated that the number of measurements 

needed for inferring the radiation pattern of a two-dimensional current source is reduced 

if the source is situated between two parallel plates instead of in a free space. Similar 

exploitation of propagation complexity and multipath has also been used in 

telecommunications, for example in [86]. 

We consider an example of a realistic airborne platform, the Unmanned Aerial Vehicle 

(UAV) Predator. We show here that exploiting the multipath from the sensing platforms 

allows estimating both azimuth and elevation of multiple unknown incident signals, even 

at a single frequency, which would otherwise be impossible with uniform linear arrays. A 

substantial body of previous work considered the performance of antenna (sensing) 

arrays in the presence of mounting structures [87]-[92]. These efforts typically went in 

two directions: reducing the interaction between the array and the platform, or optimizing 

the array pattern in the presence of the platform. In the first approach ([87], [88]), the 

maximum field level in the array’s surrounding was controlled by imposing the constraint 

that the electric field be zero for a suitable set of points. In the second group are 

algorithms (e.g., [89]-[92]) in which the influence of the platform is taken into account in 

the pattern synthesis and directivity optimization. Moreover, the results in [89]-[92] 

demonstrated that high-performance radiation patterns can be achieved by including the 
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presence of mounting platforms.  

Unlike previous work that is focused on beamshaping in the presence of the platform, the 

present work aims to demonstrate the positive impact of the platform on DOA estimation. 

We study the effect of the multipath in the framework of statistical signal processing and 

compute the Cramer-Rao bound (CRB) to solve the theoretical resolution of the system. 

To determine the empirical resolution of the system, we use the maximum likelihood 

(ML) [93] and the minimum description length (MDL) [94]. Finally, we verify 

experimentally the proposed approach by considering a uniform linear array mounted on 

a finite plate. 

1.6 Dissertation Outline 

The organization of the dissertation is as follows. In Chapter 2, we explain the physical 

model that we used throughout the thesis. We study the building layout estimation in 

Chapter 3. In Chapter 4, we investigate the localization of the targets behind reinforced 

walls. We describe the sparse estimation of buried targets and targets behind walls in 

Chapter 5. In Chapter 6, we examine the exploitation of the multipath from sensor 

platforms. Finally, in Chapter 7 we summarize our contributions and discuss some 

possible future work. 
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Chapter 2  

Forward Electromagnetic Modeling 

2.1 Introduction 

In this chapter we describe the electromagnetic model that we have used in the thesis, 

with the exception of Chapter 6. We refer to the computation of the electromagnetic 

response of a completely known system as the forward electromagnetic problem. We 

consider two-dimensional (2D) electromagnetic systems, because the three-dimensional 

(3D) electromagnetic modeling of electrically large objects, such as buildings, is still 

inadmissibly time-consuming. However, if an efficient 3D analysis is feasible, it can be 

smoothly incorporated into the recognition procedures. 

The computational model used in this thesis is based on the surface equivalence theorem 

and the method of moments (MoM). 

2.2 Surface Equivalence Theorem 

We consider an electromagnetic system that consists of N  dielectric bodies placed in a 

vacuum. The dielectric bodies are made of linear homogenous materials. The 
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permittivity and permeability of the ith body are 
iε  and 

iµ , Ni ,,1 K= , respectively. 

Inside the dielectric bodies there may be hidden metallic objects. An example of the 

system that we study is depicted in Fig. 2.1.  

 

Fig. 2.1: Cross-section of a 2D electromagnetic system.  

We model the excitation of the system by impressed electric fields. The impressed fields 

can exist only inside the bodies. We assume that the impressed fields are axial and 

independent of the z-coordinate. However, instead of directly specifying the impressed 

fields, we define the sources of these fields. The sources are uniform solenoidal magnetic 

currents, which wrap individual bodies. We denote the density of these currents by siM . 

If the cross-sectional dimensions of a body are small in terms of the wavelength, the 

impressed electric field is practically uniform within the body. As a result of the 

excitation, axial currents (electric currents and polarization currents), also independent of 

the z-coordinate, are induced in all bodies. The goal of the computations is to determine 

these currents and, subsequently, evaluate the electromagnetic fields they radiate.  

In the numerical solution of this electromagnetic problem, we first homogenize the 

medium by means of the equivalence theorem [95]. The application of the equivalence 
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theorem is illustrated in Fig. 2.2. We denote the domain outside the bodies as the exterior 

region, the domains inside the bodies as the interior regions, and the boundary surfaces of 

the bodies as the interfaces. The electromagnetic field in the exterior region remains 

intact if we replace the bodies (along with the hidden objects inside) with equivalent 

surface electric and magnetic currents, whose densities are 

 HnJ ×=s , (2.1) 

 EnM ×−=s , (2.2) 

where sJ  is the vector of the equivalent surface electric currents, sM  is the vector of the 

equivalent surface magnetic currents, H  is the magnetic-field vector at the interface, E  

is the electric-field vector at the interface, and n  is the normal unit vector pointing 

outside the body. We consider the TM polarization; the electric currents are axial, and the 

magnetic currents are circumferential. The surface magnetic currents that are the sources 

of the impressed field ( siM ), remain in the exterior region, on top of the equivalent 

currents. 

In the equivalent system thus obtained, the electromagnetic field in all interior regions is 

zero. Hence, we can substitute the interior regions with an arbitrary medium, because this 

medium does not have any influence on the electromagnetic field. If we assume that a 

vacuum is inside the zero-field regions, we obtain an electromagnetic system with a 

homogeneous medium everywhere [95] (i.e., a vacuum). In this case, which we refer to 

as the exterior problem (Fig. 2.2a), the field sources are the surface electric and magnetic 
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currents on the bodies ( sJ , sM ).  

 

(a) 

 

(b) 

Fig. 2.2: Application of the equivalence theorem (a) exterior problem and (b) interior 
problem.  

In the second problem, we consider only one body of Fig. 2.1 at a time. On the surface of 

that body, there is a layer of electric and magnetic currents with the same magnitude as in 

the exterior problem, but opposite in direction ( sJ− , sM− ) [95]. Those currents, along 

with all other field sources which are within this body, produce the exact field in the 

interior region of that body, but zero field outside the body. Hence, we substitute the 

zero-field region with the same medium as of that body. Assuming that the hidden 

objects inside that body are perfectly conducting, we replace these objects with their 

surface electric currents ( shJ ). Hence, the sources of the electromagnetic field in the 

interior problem are the equivalent electric and magnetic currents on the surface of the 

body ( sJ− , sM− ) and the electric currents on the surfaces of the hidden objects ( shJ ). 

All these currents are placed in a homogeneous medium, as shown in Fig. 2.2b. 
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2.3 Electric Field Integral Equation 

We compute the unknown equivalent surface currents by applying the method of 

moments [30] on an electric-field integral equation (EFIE) [31]. To formulate the EFIE, 

we express the electric field in terms of the potentials as 

 irot
1

jgrad EFAE +
ε

−ω−−= V , (2.3) 

where V is the electric scalar-potential, A  is the magnetic vector-potential, F  is the 

electric vector-potential, ω  is the angular frequency, and ε  is the permittivity of the 

medium. The electric currents are z-directed, with no z-variation. Because of the 

continuity equation [95], there are no electric charges associated with such currents. 

Consequently, the Vgrad  term is zero. The vector potentials are given by 

 ( ) ( ) ( )∫µ=
s

srg d's rJrA , (2.4) 

 ( ) ( ) ( )∫ε=
s

srg d's rMrF , (2.5) 

where g  is Green’s function, r  is the position vector of the point in which we compute 

the potentials (field point), 'r  is the position vector of the current element (source point), 

r is the distance between the field point and the source point, and s is the circumference 

of the boundary surfaces where the currents are located. In the exterior problem, the 

medium is a vacuum. so that Green’s function is 
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 ( ) ( )( )rHrg 0
2

04

j
β−= , 000 µεω=β , (2.6) 

where ( )2
0H  is the Hankel function of the second kind and order zero, 0ε  is permittivity of 

a vacuum, 0µ  is the permeability of a vacuum, and 0β  is the phase coefficient in a 

vacuum. In the interior problems, Green’s functions are  

 ( ) ( )( )rHrg ii γ−−= j
4

j 2
0 , (2.7) 

 iii µεω=γ j , Ni ,,1K= , (2.8) 

where iε , iµ , and iγ  are the respective permittivity, permeability, and propagation 

coefficient of the ith body.  

2.4 Numerical Solution 

We use pulse expansion (basis) functions to approximate the unknown current 

distribution [30], [31]. To that purpose, we divide all interfaces into a number of straight-

line segments and assume that the surface currents are uniformly distributed along each 

segment:  

 ( ) ( )∑
=

≈
K

k

kk yxfJyxJ
1

s,s ,, , (2.9) 
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 ( ) ( )∑
=

≈
K

k

kk yxfMyxM
1

,ss ,, , (2.10) 

 ( )




=
otherwise.0

segment,th  on the1
,

k
yxfk  (2.11) 

In (2.11), kJs,  is the electric-current density on the kth segment, kM s,  is the 

magnetic-current density on the kth segment, and K is the total number of the segments 

on all interfaces. Similarly, we denote by lJsh, , Ll ,,1 K= , the electric-current densities 

on the segments belonging to the hidden objects. The total number of the unknown 

current coefficients is LK +2 . 

The electric field due to the unit electric-current source (surface electric currents) and 

unit magnetic-current source is (surface magnetic currents) is, respectively, 

 ( ) ( )∫ωµ−=
ks

z srg dj irE , (2.12) 

 ( ) ( )∫ ×=
ks

rk s
r

g
d

d

d
uurE , (2.13) 

where ks  denotes the kth segment where the currents are located, 
ru  is the unit vector in 

the direction of the distance r (pointing from the source point towards the field point), 

and ku  is the unit vector in the direction of the segment ks . The cross-product rk uu ×  is 

parallel to the z-axis. Hence, the electric field has only the z-component, which is in 

accordance with the assumed TM polarization. 
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We use the point-matching technique [30], [31] to compute the unknown current 

coefficients. For the exterior region, we impose the condition that the electric field is zero 

on the inner faces of the surfaces of all bodies (EFIE constraint). The overall number of 

matching points is K. After substituting the current approximations (2.9) and (2.10) into 

(2.3), we obtain the first set of linear equations, 

 ( ) ( ) ( )k

K

k s

rkk

K

k s

k Es
r

g
MsrgJ

kk

riuu i
1

z,s
1

0,s d
d

d
dj −=














⋅×+














ωµ− ∑ ∫∑ ∫

==

, (2.14) 

where kr  is the kth matching point, Kk ,,1 K= , and ( )kE ri  is the impressed electric field 

at the kth matching point. The matching points are located at the midpoints of the 

segments.  

The remaining set of LK +  linear equations is obtained from the interior problems. In 

this case, we derive equations separately for each body. We impose the condition that the 

electric field is zero on the outer face of the surface of the considered body and on the 

surfaces of the objects hidden in that body. The EFIE constraint applied on the ith body 

yields 
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1
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1
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=

=
N

i

i KK
1

, ∑
=

=
N

i

i LL
1

, (2.16) 

where iK  is the number of the segments on the surface of the ith body, iL  is the number 

of the segments on the surfaces of the hidden objects in the ith body, and kr  is the kth 

matching point, ii LKk += ,,1 K . (The impressed electric field is zero at the considered 

matching points, because the sources of the impressed field remained in the exterior 

region.)  

The integrals in (2.14) and (2.15) are computed numerically. Equations (2.14) and (2.15) 

constitute a complete system of the linear equations for the unknown densities of the 

electric and magnetic currents. This system is solved using LU decomposition. 

2.5 Matrix Parameters 

The response of an electromagnetic system is typically represented using matrix 

parameters, such as the impedance ( Z ), admittance (Y ), or scattering parameters ( S ) 

[96]. In the 2D systems under consideration, the admittance parameters relate the induced 

currents in the bodies to the excitation modeled by the impressed electric fields, 

 Yei = , (2.17) 

 [ ]T
1 NII L=i , (2.18) 
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 [ ]T
1 NEE L=e , (2.19) 

where i  is the vector of the net electrical currents in the bodies, e  is the vector of the 

impressed electric fields in the bodies, and Y  is the admittance-parameter matrix. The 

element [ ]( )nm,Y  is the net current induced in the nth body when the mth body is excited 

by a unit impressed electric field. The net current in the nth body is computed as 

 ∑=
k

kkn lJI s, , (2.20) 

where kl  is the length of the kth segment, and the summation is performed over all 

segments that belong to that body. The impedance matrix is obtained from the admittance 

matrix as 1−=YZ .  
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Chapter 3  

Estimating Building Layouts Using 

Jump-Diffusion Algorithm 

3.1 Introduction 

The ultimate goal in through-the-wall imaging is to find the objects of interest (i.e., 

targets) hidden inside buildings. However, the performance of the estimation, detection 

and classification algorithms depends greatly on the knowledge of building layouts. The 

simplified models that comprise only outer walls neglect the electromagnetic interaction 

between the target and inner walls. If this interaction is not properly modeled, the 

important piece of information about the target is lost. 

Reconstruction of the dielectric profile of electrically large objects such as buildings is a 

severely ill-posed problem. Instead of looking for a general solution, we take advantage 

of the prior knowledge on typical building layouts [1], [2]. We assume that the unknown 

domain may be suitably represented by rectangular walls. We use the jump-diffusion 

algorithm [10]-[13] to estimate the number, position and the length of the unknown inner 

walls. 
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The forward modeling has an important role in the estimation. It influences the accuracy 

and computational efficiency of the solution. To compute the electromagnetic response of 

the considered system, we use the numerical procedure based on the method of moments 

described in Chapter 2.  

We investigate the application of the jump-diffusion algorithm with wideband data. We 

obtain the rough estimates at the low-frequency part of the bandwidth that are later used 

to initiate more accurate estimation at higher frequencies. 

 

Fig. 3.1: Building layout and the four-sensor array. 

3.2 Electromagnetic Modeling 

We show an example of a building layout and a moving sensor array in Fig. 3.1. The 

array consists of M sensors taking measurements at N known positions and at L 

frequencies. In Fig. 3.1, the discrete measurement locations of the supposed four-sensor 

array are represented by dots.  
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3.3 Jump-Diffusion Algorithm 

The building layout estimation belongs to the group of problems with unknown 

dimensionality, since besides position and characteristics of the walls, their number is 

also unknown. The application of the jump-diffusion algorithm in the cases where the 

dimensionality of the parameter space is not fixed was studied in e.g., [11], [12]. The 

jump-diffusion allows traversing through parameter space by two types of 

transformations: jumps between subspaces of different dimensionality and stochastic 

diffusions within continuous subspaces. 

In the problem we consider, the dimensionality of the subspace is equal to the number of 

walls. Within each subspace, the unknown parameters for each wall are: center 

coordinates (x, y), length (l), and orientation ( α ). We assume that the thickness and the 

dielectric permittivity of the walls are known. However, we also consider cases in which 

these parameters are not exactly known. In the subspace with k walls, the vector of the 

unknown parameters is kk 4)( ℜ∈θ . We represent the pair ( ))(, kk θ  as X. Generally, X 

varies within parameter space U
maxkk

k

∈

ℑ=ℑ , where { } k

k k 4ℜ×=ℑ  and maxk  is the 

maximum number of walls.  
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Fig. 3.2: Merge transformation. 

We seek for the solution X̂  that maximizes the likelihood function. To explore the 

parameter space ℑ , we use two types of transformations: transformations that change the 

number of walls (jumps), and transformations that only perturb the parameters of the 

existing walls (diffusion). Some of the transformations are inspired by [12], where the 

segmentation of radar images of urban areas is considered. In the first group of 

transformations, we have: 

• Birth: A new wall is added to the current configuration. The parameters of the 

new wall are ( )',',',' αlyx . We assume walls with the orientation: 

{ }°°±∈α 90,45,0 . 

• Death: A randomly selected inner wall is removed from the current configuration. 

• Merge: A randomly selected inner wall is merged with a nearby wall (Fig. 3.2). 

The number of the walls is decreased, and the parameters of the merged wall are 

( )',',',' αlyx . 

In the second group are the transformations that change one or more parameters of a 

randomly selected wall from the current layout: 
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• Translation: The position of the wall is perturbed ( )',' yx . 

• Elongation: The length of the wall is perturbed ( )'l . 

• Rotation: The orientation of the wall is perturbed ( )'α .  

• Regeneration: All parameters of the wall are perturbed ( )',',',' αlyx . 

• Optimization: The parameters of the wall ( )',',' lyx  are optimized using simplex 

algorithm [97]. 

In each iteration, one of the transformations is selected according to the adopted 

probability distribution. The probabilities for transformations are chosen empirically and 

depend on the current scene estimate, X. The details for the above transformations and 

their probabilities are given in Appendix. The selected transformation is applied on a 

randomly chosen wall (unless birth is selected), where the probability of the drawing is 

the same for all walls. The result of the transformation is a proposed layout 'X . This 

layout may be accepted or rejected, depending on the definition of transition kernel. The 

popular solution is the Metropolis-Hastings algorithm [98], [99] that enables escaping 

from local minima. However, we decided for the greedy algorithm since it is faster, and 

the speed of the algorithm is critical for practical applications of building layout 

estimation. Nevertheless, the probability for falling into local minima is reduced by 

proper frequency selection and wide exploration of the parameter space. The proposed 

layout will be accepted depending on the likelihood function only: if the likelihood for 

the proposed layout 'X  is larger than the likelihood for the current layout X, the proposed 
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layout will be accepted. Otherwise the current layout X remains. 

3.4 Measurement Model 

Sensor arrays can be considered as multiport networks. Therefore, measurements may be 

represented by impedance, admittance or scattering parameters [96]. Here, we use the 

impedance parameters. Hence, in the sensors, the known excitations are the currents and 

the observed variables are the induced electric fields. The measured signal at the ith 

sensor, when the jth sensor is transmitting reads,  

 ( ) ( ) wIfnjizfnjiE jlijl += ,,,,,, ,  

 Mji ,,1, K= , Nn ,,1 K= , Ll ,,1K= ,  (3.1) 

where lf  is the operating frequency, n  is the index of the measurement position, ijz  is 

the mutual impedance parameter between the ith and jth sensor, 
jI  is the feeding current 

of the jth sensor and is w  additive noise.  

We assume that the noise is a complex zero-mean Gaussian random variable with 

variance 2σ . In this case, the likelihood function is given by 

 ,/)|,(),,,(exp~)|( 2

1 1 1 1

2









σ−− ∑∑∑∑

= = = =

L

l

M

i

M

j

N

n

jlijl IXfnzfnjiEXp e  (3.2) 

where e  is the NLM 2  dimensioned vector in which we stack all the measurements 
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),,,( lfnjiE . We seek for the solution X̂  that maximizes the likelihood (3.2).  

For a given current estimate X, the summary of the algorithm is given below. 

Summary of the Single-Frequency Algorithm 

• Draw a transformation according to the probability distribution ( )XpT . 

• Draw a wall from X, where the probability is the same for all walls  

(unless the birth is selected). 

• Calculate the proposed layout, 'X . 

• Compare the likelihood functions for both layouts. If )|()'|( XpXp ee > , accept 

the proposition. Reject it otherwise. (The algorithm also rejects absurd layouts 

such as building with two crossing walls.) 

• Repeat the procedure, unless the maximal number of the iterations is reached or 

the improvement becomes negligible. 

3.5 Multiple-Frequency Approach 

For sensing through the walls, a wideband approach is necessary to achieve the desired 

feature resolution. The positive influence of the multiple frequencies on the inverse 

scattering algorithms has been widely studied [8], [100]-[106]. The inverse problems are 

ill-posed due to the finite dimensionality of the scattered field [7]. Consequently, the 

number of parameters that can be estimated from the scattered field is limited. If the 
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number of sought parameters exceeds the dimensionality of the scattered field, the 

solution is not unique and the procedure diverges. The dimensionality increases with 

frequency; nevertheless the inverse scattering at high frequencies is easily trapped at a 

false solution. The multifrequency data processing mitigates the ill-posedness and 

improves the robustness against false solutions. A common multi-frequency approach is 

frequency hopping where the low-frequency solution is used to initialize the 

high-frequency solution (e.g., [100]). However, the frequency hopping technique is 

suitable to the problems where the low-frequency spectrum of the unknown profile has 

significant contribution to the overall spectrum content [7]. Otherwise the procedure may 

yield erroneous results. The alternative is to perform simultaneous analyses of 

multi-frequency data [8], [106]. Finally, a hybridization of above methods is possible.  

Previous results were derived using deterministic analysis. However, similar conclusions 

hold when the unknown profile is reconstructed using the jump-diffusion algorithm. The 

low-frequency measurements are not very sensitive to small perturbations of the building 

layout. Consequently, the probability of acceptance of the proposed transformation is 

high. The jump-diffusion algorithm applied at low frequencies traverses quickly through 

different building layouts, converging to the solutions that are close to the exact layout. 

The method of moments models are also very efficient at low frequencies. However, the 

low-frequency estimation with jump-diffusion lacks desired resolution, and might detect 

false walls, etc. At high frequencies, the probability of acceptance of the proposed layout 

is small unless it is very close to the exact solution (probability of adding a new wall is 

particularly low). Therefore, the proposed algorithm remains in one state too long unless 
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the proposed state is very close to the exact solution. Consequently the convergence at 

high frequencies is very slow. In addition, the forward calculations are exceptionally 

time-consuming. Hence, we use low frequencies for the initial estimation. 

We investigated the application of frequency hopping, joint processing, and hybrid 

approach for the building layout estimation. The best results were achieved using the 

hybrid approach. The estimation was performed in steps, where we use the estimates 

obtained at lower frequencies to feed the estimation at higher frequencies. We start at the 

lowest frequency in the available frequency band, initially assuming there are no inner 

walls. The algorithm converges to the first-step estimate 1X̂ . We use this estimate to 

initiate the second-step jump-diffusion, which is performed simultaneously at frequencies 

(f1, f2), where 12 ff > . The selection of the next frequency has important role in the 

estimation process. If the next frequency is too close to the previous frequency, the 

estimate improvement is negligible. On the other hand, if it is much higher, the analysis 

diverges. In the latter case, the algorithm removes walls from the scene unless they are 

almost identical to true walls. At the same time, the acceptance rate for transformations 

other than death is very low. Therefore, the next frequency should be chosen adaptively 

based on the transformation acceptance rate.  

We repeat those steps, each time including a new higher frequency into the set of the 

operating frequencies. Keeping lower frequencies instead of just jumping to higher 

frequencies does not increase the calculation time significantly, but it is essential for the 

robustness of the algorithm. Similar behavior is recorded in [8] where deterministic 
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approach is applied.  

As we increase the frequency, we accordingly reduce the space for the parameter search. 

The probabilities of the transformations are also frequency dependent, e.g., as the 

frequency increases, the probability of fine transformations, such as optimization, 

becomes higher. We give the practical details of the algorithm in the Appendix. 

The summary of the multiple-frequency version of the algorithm is given below.  

Summary of the multiple-frequency algorithm  

• Given the estimate from the step 1−i ( )1
ˆ

−iX , in the step i : 

• Select the frequency if , where 11 fff ii >>> − L . 

• Update the transformations and their probabilities. 

• Apply the jump-diffusion algorithm at frequencies ( )ifff ,,, 21 K  where the initial 

estimate is 1
ˆ

−iX . 

• Repeat the procedure, unless the maximal frequency is reached or the 

improvement becomes negligible. 

3.6 Numerical Results 

We examined the performance of the proposed method through many numerical 

experiments. We estimated the number, positions, orientations, and lengths of the inner 
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walls in a m4m4 ×  building. For simplicity, we assumed that the thickness and the 

relative permittivity of the walls were known. However, we addressed the cases in which 

those parameters were not exactly known. Besides walls, there were unknown clutter 

objects in the building simulating furniture. The adopted thicknesses of the exterior and 

interior walls were 20 cm and 15 cm, respectively. The clutter objects had square cross 

section (side 20-30 cm) and circular cross sections (diameter 20-30 cm). We tested the 

algorithm in a wide range of wall permittivities. We considered both simplified and 

realistic models for wall permittivity. The permittivity of the clutter objects was the same 

as the permittivity of the walls. In our simulations, the measurements were taken by a 

4-sensor array (M = 4). There were 25 measurement locations at each side of the 

building. The separation between the adjacent sensor was cm15 . We define the 

signal-to-noise ratio (SNR) as 

 2
s /2 σ−= eeSNR . (3.3) 

where se  is the vector of the induced electrical fields in the sensors located in a free 

space. 

As the first example, we considered the layout with five unknown walls and three square 

clutter objects (Fig. 3.3). The assumed wall permittivity was 45.0j3r −=ε . The 

first-step estimate was computed at MHz101 =f , the second-step estimate at 

MHz101 =f  and MHz1002 =f , and the third-step estimate at MHz101 =f , 

MHz1002 =f , and MHz2003 =f . The number of iterations for each step was, 
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respectively, 400, 200, and 100. We performed 10 independent estimations. We 

overlapped the results obtained in different simulations and showed them jointly in 

Fig. 3.3. The estimated walls are represented as the gray rectangles, while the black lines 

denote the true layout. We did not estimate the clutter objects. Dark areas correspond to 

more probable layouts. The parameters of the estimated walls fluctuate around their true 

values. As the frequency increases, the variances of the estimated parameters decrease. 

The third-step layout is very close to the exact solution, and it suffices to perform 

deterministic optimization at higher frequencies if more accurate estimate is needed. 

In the second example, we considered the layout with oblique walls. Since the layout is 

more complex, there are more unknown parameters. We initiated the estimation at 

MHz101 =f , but the algorithm converged slowly. We added a higher frequency 

MHz502 =f , which is sufficiently separated from 1f . Therefore, we computed the 

first-step estimate at MHz101 =f and MHz502 =f , the second-step estimate at 

MHz101 =f , MHz502 =f , and MHz1003 =f , and the third-step estimate at 

MHz101 =f , MHz502 =f , MHz1003 =f , and MHz1504 =f . The number of 

iterations for each step was 400, 200, and 100. The results are presented in Fig. 3.4. The 

parameters of the walls oscillate around their true values, due to the presence of clutter.  
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(a) 

 

(b) 

 

(c) 

Fig. 3.3: (a) First step: MHz101 =f , 400 iterations, (b) second step: MHz101 =f , 

MHz1002 =f , 200 iterations, (c) third step: MHz101 =f , MHz1002 =f , 

MHz2003 =f , 100 iterations. The results are shown jointly for 10 

independent simulations. The wall permittivity is 3−j0.45.  

 

(a) 

 

(b) 

 

(c) 

Fig. 3.4: (a) First step: MHz101 =f , MHz502 =f , 400 iterations, (b) second step: 

MHz101 =f , MHz502 =f , MHz1003 =f , 200 iterations, (c) third step: 

MHz101 =f , MHz502 =f , MHz1003 =f , MHz1504 =f , 100 iterations. 

The results are shown jointly for 10 independent simulations. The wall 
permittivity is 3−j0.45.  

We also considered concrete walls with realistic models for permittivity. The permittivity 

of concrete changes significantly at low frequencies [107], [108]. We used the Cole-Cole 

model [108]  
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 ( ) ( )( )α−
∞∞ +ε−ε+ε=ε 1

0sr /j1/ ff , (3.4) 

to fit the experimental data for concrete provided in [107]. We obtained values: 7=ε∞ , 

22s =ε , 3.0=α , and MHz200 =f . The algorithm performed similarly as in the case 

with the constant permittivity. The algorithm also detected clutter objects, as illustrated in 

Fig. 3.5. The first step estimate was computed at MHz501 =f , the second-step estimate 

at MHz501 =f , and MHz1002 =f , and the third-step estimate at MHz501 =f , 

MHz1002 =f , and MHz1503 =f . The number of iterations for each step was 400, 300, 

and 200. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3.5: (a) First step: MHz501 =f , 400 iterations, (b) second step: MHz501 =f , 

MHz1002 =f , 300 iterations, (c) third step: MHz501 =f , MHz1002 =f , 

MHz1503 =f , 200 iterations. The wall permittivity is 

( )( )7.0
r 20/]MHz[j1/157 f++=ε . 
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(a) 

 

(b) 

Fig. 3.6: (a) Estimation with erroneous wall thickness: true and assumed values are 
0.2 m and 0.15 m, respectively. The third-step estimate, MHz101 =f , 

MHz502 =f , MHz1003 =f , and MHz1504 =f . (b) Estimation with 

erroneous wall permittivity: true and assumed values are 3-j0.45 and 
3.45−j0.55, respectively. The second-step estimate, MHz101 =f , 

MHz502 =f , and MHz753 =f . 

We also examined the robustness of the algorithm to the errors in the wall thickness. 

Various experiments showed that the algorithm is capable to estimate properly the layout 

in the case where the wall thickness was known only approximately. We considered the 

case in which the true thickness of the walls was 20 cm, whereas in simulations we 

assumed that it was 15 cm. We used the same frequencies and the same number of 

iterations as in the case of exact wall parameters. The results for the third-step estimate, 

obtained by 5 independent simulations, are shown in Fig. 3.6a. The estimated layouts 

provided a good initial representation of the exact solution. Due to the thickness error, the 

variance of estimated parameters was larger. However, the algorithm was able to provide 

useful insight into the building layout.  

Finally, we investigated the case when the dielectric permittivity was known only 

approximately. In the considered example, the exact permittivity was 45.0j3r −=ε  and 
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the assumed permittivity was 55.0j45.3r −=ε . (The relative error was 15 %.) In the 

first step, computed at MHz101 =f and MHz502 =f , the algorithm performed similarly 

to the case without the error. However, in the second step, calculated at MHz101 =f , 

MHz502 =f , and MHz1003 =f , the number of accepted moves was extremely low. 

Therefore we decreased the third frequency to MHz753 =f . In the third step we a 

choose new frequency to be MHz1004 =f . However, the improvement in the third step 

was insignificant. In Fig. 3.6b we show results for the second-step estimate, obtained by 5 

independent simulations. Compared to the case with the exact wall parameters, lower 

frequencies were used and less accuracy was achieved. 

3.7 Summary 

We have developed a scheme for estimating unknown building layouts. The proposed 

approach uses the jump-diffusion algorithm with a moving sensor system to determine 

the number and parameters of the unknown inner walls (position, length, orientation). We 

demonstrated that the jump-diffusion algorithm is an efficient tool for solving inverse 

electromagnetic scattering problems for which we have some prior knowledge.  

We designed an adaptive procedure that uses low-frequency (low-resolution) estimates to 

initiate high-frequency (high-resolution) estimation. The choice of the operating 

frequency has significant influence on the convergence of the jump-diffusion algorithm. 

Accurate estimates may be obtained using only a few frequencies, thus making possible 
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the use of jump-diffusion in real scenarios. We examined the robustness of our approach 

in the presence of unknown clutter objects. The algorithm proved capable of 

discriminating between walls and smaller-size clutter objects. We also showed that the 

algorithm was not sensitive to small errors in the wall thickness or material relative 

permittivity. 
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Chapter 4  

Estimating Targets behind Reinforced 

Concrete Walls 

4.1 Introduction 

In Chapter 3, we estimated building layouts using stochastic geometry and 

electromagnetic sensing. Once we have determined the displacement of the inner walls, 

we may be able to find the targets more easily. Nevertheless, the interaction between 

electromagnetic waves and walls can be far more complex than that predicted by simple 

wall models such as homogeneous dielectric slabs [16], [17]. The difficulties in target 

imaging are particularly pronounced in the case of walls reinforced by parallel steel bars 

or cinder-block walls. Typically, target spreads are large and false targets appear. The 

localization of the targets behind cinder blocks is tackled in [21]. Here, we investigate the 

case of reinforced concrete walls [26]. 

Rigorous analyses of the transmission and reflection properties of reinforced walls for 

far-field incidence have been carried out in [27]-[29]. In contrast, we assume an arbitrary 

distance of the sensors and targets from the wall. Moreover, our focus is on estimating 



 39

the targets hidden behind reinforced walls rather than computing the electromagnetic 

response of such walls. 

We compare the cases of known and unknown wall parameters. We compute the 

near-field transmission and reflection characteristics of the wall using the forward 

electromagnetic model of Chapter 2, then incorporate these parameters in a beamforming 

imaging method for improved results. 

4.2 Electromagnetic Model 

Wall reinforcements are either bars or mesh. When the incident electromagnetic field is 

parallel to vertical bars, the horizontal bars (cross bars) have only a small influence on the 

wall response [27]. The same reasoning applies when the incident electric field is parallel 

to the horizontal bars. Therefore, without loss of generality, we will consider a wall 

reinforced with vertical bars.  

Fig. 4.1 depicts the cross section of a system comprising the sensor array and the target 

hidden behind the wall. The distance between adjacent bars (bar period) is bard , the bar 

diameter is barD , and the wall thickness is w. The bars are perfectly conducting and 

immersed in a homogeneous material of relative dielectric permittivity rε . We model the 

sensors as thin, perfect conductors, excited one at a time by known currents. We compute 

the array response using the forward model described in Chapter 2. 
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Fig. 4.1: Cross section of the reinforced concrete wall. 

4.3 Measurement Model 

We suppose that a uniform linear array of M sensors is positioned in front of the 

reinforced wall. The array moves along the wall and takes measurements at N known 

positions. The measurements are performed in a wide frequency range at L frequencies. 

In the considered scenario, one sensor transmits at a time and all sensors receive the 

reflected signals. The observed variables are the electric fields induced in the sensors. 

The measured signal in the ith sensor when the jth sensor is excited reads 

 ( ) ( ) ( ) ufIfnzfnE ljlijlij += ,, ,  

 Mji ,,1, K= , Nn ,,1K= , Ll ,,1K= ,  (4.1) 

where 
lf  is the operating frequency, n is the index of the measurement position, ( )lij fnz ,  

is the mutual impedance parameter between the ith sensor and the jth sensor, ( )lj fI  is the 

feeding current of the jth sensor, and u is the additive noise. The feeding current is the 



 41

same for all sensors. We assume ( )lj fI  is the Fourier transform of a Gaussian pulse, 

( )lfG .  

4.4 Estimating Wall Parameters 

Electromagnetic waves are reflected from interfaces of media with different 

electromagnetic properties. We can separate these reflections in the time domain if the 

measurements have sufficiently wide bandwidth. Hence, we perform a Fourier transform 

on (4.1) to obtain the time-domain waveforms of the received signals.  

We compute the dielectric permittivity of reinforced walls in the same manner as the 

permittivity of homogeneous walls (see, e.g., [109]-[112]). The responses of both walls in 

the time domain are identical until the moment when the reflections from the bars reach 

the sensors [113]. In order to extract the reflection from the front side of the wall, the 

transmitted waveform should satisfy cdTT /2 rmax ε=≤ , where T is the waveform 

duration, d is the distance of the rebar from the front side of the wall, and c is the 

propagation speed of electromagnetic waves in a vacuum.  
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(a) 

 

(b) 

Fig. 4.2: Scheme used for (a) wall-permittivity estimation and (b) wall-thickness 
permittivity estimation. 

In the case of small losses, the reflection coefficient of the TM wave at the air-dielectric 

interface is  

 ( )
θε+θ

θεθ
=θ

2
r

2
r

sin-cos

sin--cos
R , (4.2) 

where θ  is the incident angle, computed with respect to the wall normal. We assume that 

angle θ is small; hence ( ) ( )0RR ≈θ . To estimate the permittivity, we coherently add the 

received signals. The time delay ( ikτ ) between the ith and kth sensors, according to 

Fig. 4.2a, is given by: 

 ( ) ( ) ( ) ( )22
w

22
w ---- kwkiwiik yyxxyyxxs +++= , 0/ csikik =τ , (4.3) 

where ( wx , wy ) are the Cartesian coordinates of the reflection point on the wall. The 

focused signal reads 
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 ( ) ( ) ( )nstnE
NM

tE ik

N

n

M

i

M

k

ikik∑∑∑
= = =

τ+=
1 1 1

20 ,
1

, (4.4) 

where ( )tnEik ,  is the time-domain waveform of the electric field induced in the kth 

sensor when the ith sensor is excited, and n is the index of the measurement position. 

Multiplication by the factor ( )nsik  ensures that all received signals have the same 

attenuation, corresponding to the attenuation at distance s = 1 m. We calculate the 

reflection coefficient for small θ as 

 ( ) ( ) ( ) ( )





















= ∫∫

TT

dtthdtthtER
0

2

0

0 /0ˆ ,  (4.5) 

where ( )th  is the reference pulse. The delayed pulse, ( )0/ csth − , is the induced electric 

field in the sensor that is separated by distance m1=s  from the transmitting sensor 

(sensors are in vacuum). We compute h(t) numerically, using the forward model of 

Chapter 2. The estimate of the wall permittivity from (4.2) is 

 
( )
( )

2

r
0ˆ1

0ˆ1
ˆ 











+

−
=ε

R

R
.  (4.6) 

In order to estimate the wall thickness, we focus the received signals in the time domain 

with respect to the delay of the reflection from the back side of the wall. If the wall is 

reinforced, this reflection is substantially concealed by the multiple reflections from the 

bars. We illustrate the signal path in this case in Fig. 4.2b. The signal transmitted by the 

ith sensor, reflected from the back side of the wall and received by the kth sensor, is 
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delayed for time 

 ( ) ( ) ( ) 0
2

rr /sin/2cos/-2 cwyyyw kiwik 




 θ−εε+θ−=τ , (4.7) 

 ( ) ( ){ }.sin/sin2tan-2minarg 2
rw θ−εθ−θ−−−=θ

θ
wyyyxx kiik  (4.8) 

The summation of the received signals, focused using delay ( )wikτ , is  

 ( ) ( )( )∑∑∑
= = =

τ+=
N

n

M

i

M

k

ikik wtnE
NM

tE
1 1 1

20 ,
1

. (4.9) 

We compute the correlation of the focused electric field and the reference pulse h(t) by 

 ( ) ( ) ( )∫=
T

dtthtEwI
0

0  (4.10) 

for different wall thicknesses, w. The estimate of the wall thickness is defined as the 

maximum of (4.10). Due to the periodicity of (4.9), the correlation does not yield a 

unique solution. Nonetheless, practical limits on the wall thickness reduce the number of 

estimates to only a few.  

4.5 Estimating Target Positions 

Assuming that measurements of the stationary scene (scene without moving targets) can 

be made, we obtain the signals reflected from the targets by subtracting the measurements 

of the stationary background from the measurements altered by the appearance of 
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the targets. The typical approach in localizing targets behind walls is to apply 

beamforming on the reflected signals [16]. Here, we adapt the beamforming to include 

the response of the reinforced wall. We compare the performances of the method when 

the wall parameters are known and when they are unknown. 

 

Fig. 4.3: Target position estimation. 

4.5.1 Unknown Bar Parameters 

We first determine the target position without considering the influence of the 

reinforcement. Fig. 4.3 depicts the estimation setup. The delay of the signal reflected 

from the target when the ith sensor is transmitting and the kth sensor is receiving reads,  

 ( ) ( ) ( )yxyxyx kiik ,,, τ+τ=τ , (4.11) 

 ( )( ) ( ) ( ) 0
2

,rr,, /sin//cos--, cwwyyyx kikikiki 




 θ−εε+θ=τ , (4.12) 

where 
iτ  and 

kτ  are the respective propagation times from the ith and the kth sensor to 

the target, and ( yx, ) are the Cartesian coordinates of the target. As illustrated in Fig. 4.3, 

the ith sensor launches the signal at angle 
iθ  whereas the kth sensor receives the signal 
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from the target at angle  
kθ . We calculate those angles as  

 ( ) ( ){ }2
r.,, sin/sintan--minarg θ−εθ−θ−−=θ

θ
wwyyxx kikiki . (4.13) 

The received signals are delayed for ( )yxik ,τ  and summed. The focused electric field is 

 ( ) ( )( )∑∑∑
= = =

τ+∆=∆
N

n

M

i

M

k

ikik yxtnEyxtE
1 1 1

,,,; , stat
ikikik EEE −=∆ , (4.14) 

where stat
ikE  is the induced electric field in the stationary scene and ikE  is the induced 

electric field due to the appearance of the targets. We compute the target image as the 

correlation between the focused electric field and reference pulse h(t): 

 ( ) ( ) ( )dtthyxtEyxI

T

∫∆=
0

,;, . (4.15) 

4.5.2 Known Bar Parameters 

We now consider the computation of the reference pulse, which takes into account the 

waveform distortion due to the presence of the bars. We assume that the distance between 

the bars and the diameter of the bars are known. (The estimation of the unknown bar 

parameters is studied in [109] and [110].) The transmission coefficient of the reinforced 

wall for the plane wave incidence is given by 

 ( ) it /, EEfT =θ , (4.16) 
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where θ  is the incident angle, iE  is the incident electric field at the front side of the wall, 

and tE  is the electric field transmitted through the wall. The computation of (4.16), 

which exploits the periodic structure of infinitely long reinforced walls, can be found in 

[27], [29].  

 

Fig. 4.4: Numerical calculation of the wall transmission coefficients. 

In the considered problem, the reinforced wall is not necessarily in the far field of the 

sensors. Therefore, we compute the transmission coefficient exactly, using the forward 

procedure described in Chapter 2. We illustrate the corresponding model in Fig. 4.4. We 

assume that the sensor located at ( 21, yx ) is excited and compute the induced electric field 

in the sensor located at ( 22 , yx ). The near-field transmission coefficient is given by 

 ( ) ( ) ( )θθ=θ ,/,, 0
1212 fEfEfT , (4.17) 

where 12E  is the induced electric field with the wall present, and 0
12E  is the induced 

electric field when the sensors are in a vacuum. The dependence of (4.17) on 1x , 2x , 1y , 

and 2y  is assumed and suppressed. 

The signal reflected from the target goes through the wall twice. For the target in Fig. 4.3, 

the signal transmitted at angle iθ  passes through the wall, gets reflected from the target, 
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passes through the wall again, and reaches the sensor at angle 
kθ . In the receiving sensor, 

the induced electric field (neglecting the complex scaling constant) is approximately  

 ( ) ( ) ( ) ( )kiik fTfTfHfE θθ ,,~ , (4.18) 

where ( )fH  is the Fourier transform of ( )th . Hence, we adopt a new reference pulse:  

 ( ) ( ) ( ) ( ) ( ){ }0
1 2jexp,,rect

~
τπθθ







= − ffTfTfAHF
T

t
th ki ,  (4.19) 

where 0τ  is the time delay that assures that the reference pulse is centered at t = 0, and A 

is the normalization constant.  

We showed in [26] that (4.19) does not vary notably with the angle. Hence, in the 

experiments we used an approximation of (4.19):  

 ( ) ( ) ( )( ) ( ){ }0
21 2jexp0,rect

~
τπ°







= − ffTfAHF
T

t
th . (4.20) 

4.6 Results 

We used the electromagnetic solver from Chapter 2 to simulate the measurements of the 

scene behind a reinforced wall. The number of the targets, as well as their properties, was 

unknown. The thickness of the wall was assumed to be m2.0 and the length was 

similarly m8 . We considered various bar periods: m15.0bar =d , m1.0bar =d , and 
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m05.0bar =d . The bar diameter was set to cm1bar =D . The adopted relative permittivity 

of the wall material was 15.0j3r −=ε . The targets were modeled as perfectly conducting 

cylinders of radius m2.0 , with respective centers at 1.5m) m,1( −  and 0.75m) m,5.1(− . 

Besides the targets, there were clutter objects representing furniture and interior walls. 

We modeled the clutter as dielectric rectangles. The adopted relative permittivity for the 

clutter was the same as the wall permittivity. 

The measuring system consisted of a uniform linear array of 3=M  sensors. The 

separation between adjacent sensors was m4.0 . The array moved parallel to the wall at a 

distance of m75.0  from the front side of the wall. The array took measurements every 

m,2.0  at a total of 32 measurement locations. 

The sensors transmitted a Gaussian pulse, ( ) ( )2

e attg −= , where 19se3 −−=a . The pulse 

duration was ns2.1=T , which allowed estimating the wall permittivity. We calculated 

the frequency response from MHz5  to GHz2  in MHz5  steps. We also examined the 

cases in which the spectrum of the signal, ( )fG , was centered at frequencies 0f , where 

GHz10 0 ≤≤ f . 

The measurements were corrupted with complex additive white Gaussian noise. We 

calculated the SNR with respect to the power of the electric field induced in the sensor. 

Most of the induced electric field was due to the direct coupling between the sensors. The 

power of the electric field scattered from the target was several orders of magnitude less 

than the total electric field induced in the sensor. For this reason, the signal-to-noise ratio 
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could not be very low.  

4.6.1 Unknown Bar Parameters 

In the first example we set cm15bar =d  and 00 =f . We obtained 3ˆ
r =ε  as the estimate 

of the wall permittivity. The wall thickness estimation is shown in Fig. 4.5. The dotted 

curve represents the correlation of the reference pulse and the focused electric field. 

There is a maximum corresponding to the real wall thickness, m2.0ˆ =w . There are also 

maxima for m3.0ˆ =w  and m4.0ˆ =w . These other maxima are a consequence of the 

focusing reflections from the bars. The separation between the maxima depends on the 

bar period. For comparison, we repeated the analysis for the case in which the bar period 

is cm25bar =d  and all other parameters are the same. The result is also shown in Fig. 4.5 

(solid line). Again, we have a maximum corresponding to the real wall thickness, 

m2.0ˆ =w , as well as other spurious maxima. Hence, beamforming does not produce a 

unique value for the wall thickness.  

 

Fig. 4.5: Estimation of wall thickness: correlation of focused electric field and reference 
pulse. 
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We estimated the target positions, using the wall permittivity and thickness estimates 

m2.0ˆ,3ˆ r ==ε w  and m3.0ˆ,3ˆ r ==ε w . We adopted SNR = 30 dB. The power of the 

field reflected from the targets was 20 dB less than the power of the total field induced in 

the sensors. Fig. 4.6a shows the image calculated using the exact wall thickness, and 

Fig. 4.6b shows the image calculated using the first erroneous wall thickness. The circles 

denote the true positions of the targets, and the rectangles represent the clutter objects. 

Because the targets were metallic (non-penetrable), the sensors should have identified 

only small pieces of the targets’ contours facing the wall. However, because of the 

oscillations in the reflected signal, the image resolution is poor even at high SNR. The 

contours of the targets are blurred, particularly when the erroneous wall thickness is used 

(Fig. 4.6b).  
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(b) 

Fig. 4.6. Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed using 3r =ε , 

00 =f , and (a) 2.0=w  (real wall thickness) and (b) 3.0=w  (erroneous wall 

thickness). The waveform distortion was not taken into account. The adopted 
SNR was 30 dB. 

4.6.2 Known Bar Parameters  

When the bar characteristics are unknown, the analysis reduces to the case in which the 

objects are hidden behind a homogeneous wall of the same permittivity. If information 

about the bars is available, we can refine the estimation by modeling the influence of the 

bars on the signal waveform. We examined this improvement for various bar periods and 

different frequency content of the excitation waveform. We repeated the experiment from 
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Fig. 4.6, assuming the bar parameters were known.  
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(b) 

Fig. 4.7: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed using 3r =ε , 

00 =f , and (a) 2.0=w  (real wall thickness) and (b) 3.0=w  (erroneous wall 

thickness). The waveform distortion was taken into account. The rebar period 
( m15.0bar =d ) was assumed to be known. The adopted SNR was 30 dB. 

We calculated the target positions using 3ˆ r =ε , m2.0ˆ =w  (Fig. 4.7a) and 3ˆ r =ε , 

m3.0ˆ =w  (Fig. 4.7b). The contour estimates (Fig. 4.7a) are significantly sharper when 

the corrected pulse shape )(
~
th  is used compared with the case in which the distortion is 

not modeled (Fig. 4.6a). The pixels with the most intensive colors now clearly represent 

the pieces of the contours seen by the sensors. In the image obtained using the erroneous 
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wall thickness the targets are slightly misplaced (Fig. 4.7b). 
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(b) 

Fig. 4.8: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed for SNR = 10 dB, 

3r =ε , 2.0=w , m15.0bar =d , and 00 =f . The waveform distortion was 

(a) taken into account, and (b) not taken into account. 

The significance of the waveform correction was more apparent for low SNR. We 

computed the image of the same scene for SNR = 10 dB, which was anticipated as the 

SNR threshold in this example. The target traces are clearly visible if the bar parameters 

are known (Fig. 4.8a). In contrast, for low SNR, the targets cannot be discerned without 

waveform correction (Fig. 4.8b). 

Transmission and reflection coefficients of the reinforced wall are greatly influenced by  
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(b) 

Fig. 4.9: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed for SNR = 10 dB, 

3r =ε , 2.0=w , m15.0bar =d , and (a) GHz5.00 =f and (b) and GHz10 =f . 

The waveform distortion was not taken into account. 

the ratio of the signal wavelength in the dielectric ( cλ ) and the bar spacing. The 

investigations in [109], [110] showed that when the ratio cbar / λd  is larger than 0.7–0.8, 

the influence of the bars is reduced. Hence, if the central frequency of the pulse is 

sufficiently high, the position of the targets can be estimated even in the case for which 

the bar parameters are unknown. However, the losses in the wall dielectric increase with 

the frequency. In Fig. 4.9 we show the results obtained without the correction, for 

GHz5.00 =f  and GHz.10 =f  
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(b) 

Fig. 4.10: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed for dB15=SNR , 

3r =ε , 2.0=w , m1.0bar =d , and GHz75.00 =f . The waveform distortion 

was (a) taken into account, and (b) not taken into account. 

We repeated the experiment for cm10bar =d  and dB15=SNR . According to [109], in 

this case the rebar would have a major influence for frequencies smaller than 0.7 GHz. 

We show in Fig. 4.10 the results obtained for GHz75.00 =f . The improvement is still 

visible, whereas there is almost no difference at GHz10 =f . 
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(b) 

Fig. 4.11: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed for dB20=SNR , 

3r =ε , 2.0=w , cm6bar =d , and GHz10 =f . The waveform distortion was 

(a) taken into account, and (b) not taken into account. 

Finally, for cm6bar =d , the improvements due to bar modeling should be evident for 

GHz10 ≤f . In Fig. 4.11 we show the images computed for GHz10 =f  and 

dB20=SNR , with and without correction.  
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Fig. 4.12: Scene consisting of two metal targets (circles) placed behind the reinforced 
wall and clutter objects (rectangles). Image was computed for dB10=SNR , 

3r =ε , 2.0=w , cm15bar =d , and GHz00 =f . Waveform distortion was 

modeled using an erroneous bar period ( cm10bar =d ). 

We examined the robustness of the algorithm to errors in bar parameters. In Fig. 4.12 we 

present the results obtained assuming that the bar period was cm10bar =d , while the true 

value was cm15bar =d . The image does not differ significantly from the image obtained 

with real wall parameters (Fig. 4.8a).  

4.7 Summary 

We have addressed the important problem in urban warfare of estimating moving targets, 

such as personnel, behind a reinforced wall, using radar measurements. Reinforced walls 

significantly attenuate low frequencies and distort the transmitted waveforms. The signals 

reflected from the objects behind reinforced walls are oscillating in nature and are of long 

duration because of the bar periodic arrangement. First, we considered the case in which 

the reinforced wall parameters were completely unknown. We added coherently 

measured electric fields in various time gates to estimate wall thickness and concrete 
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permittivity independently. We assumed the availability of measurements of the static 

scene behind the wall (walls, furniture, etc.) and measurements altered by the appearance 

of people. The difference between these two measurements is associated with the 

electromagnetic field scattered from the moving targets. We applied beamforming to the 

field reflected from the targets to estimate their number and locations. The algorithm 

performed satisfactorily in the case in which the bar diameter and period were both 

unknown. However, due to multiple echoes, the target spreads were large. We also 

analyzed the problem in which the characteristics of the metal rebar were known. We 

improved the estimation by modeling the waveform distortion due to the bars. The 

resulting images are focused and accurately represent the contours of the targets. The 

algorithm is robust to ambiguities in bar parameter values. In addition, the minimal 

necessary SNR is lower compared with the case than in the case where the influence of 

the bars on the signal shape is ignored. 
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Chapter 5  

Electromagnetic Imaging of Hidden 2D 

PEC Targets Using Sparse Signal 

Modeling  

5.1 Introduction 

Electromagnetic scattering has been widely used to infer the properties of concealed 

objects. Many applications benefit from the research in this field, such as nondestructive 

testing and subsurface probing. Here, we consider the reconstruction of perfectly 

conducting targets hidden in a homogeneous medium [42]-[44]. Because of the high 

contrast, the general algorithms for restoring dielectric profiles, such as the distorted Born 

iterative method (DBIM) and equivalent Gauss-Newton methods, either do not converge 

or else converge slowly in this case [3]-[5]. For this reason, many algorithms have been 

developed particularly for imaging metallic targets, e.g., [45]-[47] and [67]-[71]. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.1: (a) Hidden PEC objects inside dielectric body and sensor array, (b) equivalent 
sources representing the target, and (c) grid of equivalent sources. 

We developed an inverse algorithm that is based on the equivalent-source method 

[45]-[47] and the surface formulation of the electric-field integral equation described in 

Chapter 2. We employ 1l  regularization to exploit the sparsity of the induced currents on 

the surfaces of the targets. We consider a two-dimensional (2D) case; however, the 

analysis is easily generalized for three-dimensional (3D) geometries.  

The original problem with the hidden targets and surrounding sensor array is depicted in 
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Fig. 5.1a. We assume that, in terms of the scattered field, the targets may be substituted 

by a few equivalent sources located close to the target contours (Fig. 5.1b). We model the 

equivalent sources as infinitely long filament currents. In the inverse problem, the goal is 

to find the locations of the equivalent sources. For this purpose, we define a grid of the 

equivalent sources uniformly spread in the dielectric interior, as shown in Fig. 5.1c. We 

derive a linear measurement model and employ 1l  regularization to emphasize the 

equivalent sources in the vicinity of the target surfaces and thus provide information 

about their shape.  

The other common regularization in inverse scattering problems is 2l  regularization, 

known for stabilizing the solution. When 2l  regularization is applied, almost every 

element in the solution is non-zero, even if there are only a few significant elements in 

the true solution [114]. Hence, because of its smoothing effect, 2l  regularization cannot 

capture abrupt changes in the shape of the targets. On the other hand, 1l  regularization 

spots the details in the targets’ shape because the induced currents are concentrated close 

to the wedges and other irregularities. The limitations of 1l  regularization occur in the 

case of large number of unknowns, particularly when there is strong correlation among 

the unknown variables. In this case, 1l  regularization tends to select randomly only one 

variable from the group [114]. Therefore, 1l  regularization reveals the isolated scattering 

centers rather than the continuous target contours. However, we derive a two-step 

algorithm to expand the length of the reconstructed portions of the contours.  

Sparse localization of buried targets and targets behind walls was considered in [72] and 
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[22]-[25], respectively. The underlying electromagnetic models assumed far-field 

measurements and point-like targets. In contrast, we use more detailed models that allow 

target shape reconstruction. 

5.2 Electromagnetic Modeling 

We consider several perfectly conducting targets hidden inside a homogeneous dielectric 

body with known permittivity dε  and permeability dµ , as illustrated in Fig. 5.1a. The 

dielectric body is located in a vacuum. The body is interrogated by an array of 

electromagnetic sensors. We assume electrically thin, perfectly conducting sensors. The 

sensors are excited by an axial electric field, and the magnetic field is transverse to the 

z-axis. 

In the inverse problem, instead of real targets, we consider the equivalent sources 

depicted in Fig. 5.1c. To compute the currents in the equivalent sources, we adapt the 

electromagnetic model of Chapter 2. We begin by applying the surface equivalence 

theorem as illustrated in Fig. 5.2. 
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(a) 

 

(b) 

Fig. 5.2: Equivalence theorem: (a) exterior problem and (b) interior problem. 

In the exterior problem, we replace the dielectric body (along with the equivalent sources 

within it) with equivalent surface electric and magnetic currents. The field sources are the 

electric currents on the sensors, of surface densities MJJ s,1s, ,, K  (M is the number of 

the sensors), and the equivalent surface electric and magnetic currents on the dielectric 

body ( dJ , dM ). The currents are located in a vacuum. (For better readability we use 

separate notations for the surface currents induced on different bodies.) 

In the interior problem, we consider the equivalent surface currents on the interface with 

reversed direction ( dJ− , dM− ) and the currents on the equivalent sources. The surface 

densities of the electric currents on the equivalent sources are LJJ t,1t, ,, K , where L is 

the size of the grid. The currents are now located in a homogeneous medium with 

parameters ( dε , dµ ).  

We divide the dielectric surface into a number of strips (segments) and assume that the 

current distribution is constant on each strip. We define the vectors of the surface electric 
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and magnetic current densities on the strips as [ ]Td,1d,d PJJ K=j , 

[ ]Td,1d,d PMM K=m , respectively, where P is the number of strips. Similarly, we 

define the vectors of the current densities on the sensors and targets as 

[ ]Ts,1s,s MJJ K=j  and [ ]Tt,1t,t LJJ K=j , respectively, where the superscript T 

denotes transpose.  

We use the point-matching technique to derive a set of linear equations from the electric-

field integral equations. The integral equations are associated with the exterior and 

interior cases depicted in Fig. 5.2. In the exterior problem, we use the constraint that the 

tangential component of the electric field is zero (EFIE constraint) on the surfaces of the 

sensors and on the inner side of the surface of the dielectric body. In the interior problem, 

we impose the EFIE constraint on the outer side of the surface of the dielectric body. (We 

do not impose the EFIE constraint on the equivalent sources, since we do not know a 

priori which of them belong to the targets.) The number of matching points is PM +  in 

the first case and P in the second case. The system of equations in matrix form reads 

 Gje −= ,  (5.1) 

 [ ]T

1tdds ×=
N

jmjjj ,  LPMN ++= 2 , (5.2) 

 ( ) ( )[ ]T 1i1i ×=
KKEE rre K ,  PMK 2+= , (5.3) 

where j  is the stacked vector with the current densities, G  is the system matrix, e  is the 

excitation vector, 
kr  is the matching point, ( )kE ri  is the impressed electric fields at the 
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kth matching point, and Kk ,,1 K= . ( )nk ,G  is the electric field at the kth matching 

point due to the nth element of j : 

 ( )
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 ( ) ksr rr −= ' ,   Nn ,,1 K= , (5.4) 

where the definitions of all variables are given in Chapter 2.  

In the exterior problem, 0ε=ε  and 0µ=µ ; in the interior problem, dε=ε  and dµ=µ . 

We assume that one sensor is excited at a time with a unit impressed electric field. Hence, 

( )kE ri  is one if kr  is on the excited sensor (transmitter), Kk ,,1 K= ; otherwise it is 

zero. 

5.3 Sparse Signal Processing 

5.3.1 Measurement Model 

The current distribution on the targets varies with the different excitations (i.e., incident 

angles). Therefore, we cannot exploit simultaneously data collected under different 

illumination directions (multiview measurement configuration). However, we can 

superimpose the images of the targets obtained for different incident angles and thus 
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enlarge the reconstructed portion of the target contours. Hence, we first consider the case 

in which only one sensor in the array transmits the incident field and all sensors receive 

the scattered field (singleview/multistatic configuration) and later proceed to the case in 

which several sensors are the transmitters (multiview/multistatic configuration).  

We rearrange (5.3) in order to separate the currents on the sensors from the currents on 

the equivalent sources and the dielectric:  

 [ ] 







−=

2

s
2s

j

j
GGei ,  [ ]TT

t
T
d

T
d2 jmjj = ,  ,,,1 Mi K=  (5.5) 

where MKC ×∈sG  is the matrix composed of the first M columns of the matrix G  defined 

in (5.4), and ( )LPKC +×∈ 2
2G  is the matrix composed of the remaining PL 2+ columns of 

G . The subscript i  in the excitation vector denotes the index of the transmitting sensor. 

(The dependence of the currents on i  is assumed and suppressed.)  

In the implementation of the inverse algorithm, sj  is the vector of the known current 

densities in the sensors due to the real targets (instead of the equivalent sources). Hence, 

(5.3) is only approximately satisfied:  

 ss22 jGejG −−≈ i . (5.6) 

The unknowns are the densities of the currents on the equivalent sources ( tj ) and the 

densities of the currents on the dielectric surface ( dj , dm ). If we suppose that the 

equivalent sources are removed from the dielectric, (5.6) becomes 
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 0s202 si jGejG −= , [ ]TTT
d0

T
d020 0mjj = ,  (5.7) 

where s0j  is the vector of the electric current densities on the sensors, 0dj  is the vector of 

the equivalent electric current densities, and 0dm  is the vector of the equivalent magnetic 

current densities. We subtract (5.7) from (5.6) to obtain the measurement model. After 

inclusion of additive noise, the measurement model reads 

 wxGy += 2 , (5.8) 

 ( )0sss jjy −−= G , (5.9) 

 ( ) ( ) ( )[ ]TT

t

T

d

T

d jmjx ∆∆= ,  (5.10) 

and 

 d0dd jjj −=∆ , d0dd mmm −=∆ . (5.11) 

Here, y  is the known measurement vector because 0sj  is numerically computed from 

(5.11), x  is the unknown parameter vector, and w is the noise term that includes both 

the measurement noise and modeling errors.  

We are interested in the unknown current densities on the equivalent sources ( tj ). The 

vectors dj∆  and dm∆  are considered as nuisance parameters.  
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5.3.2 Current Distribution Model  

If the electrical size of the dielectric is large and/or it has complex shape, the number of 

the unknowns ( dj∆ , dm∆ ) necessary to adequately model the dielectric may be large. In 

order to reduce the number of unknowns, we take advantage of polynomial expansion. 

We define the polynomials as follows: 

 ( ) ∑
=

α≈∆
R

r

r

r ssJ
0

d ,  ( ) ∑
=

β≈∆
R

r

r

r ssM
0

d ,  10 ≤≤ s  , (5.12) 

where ( )sJ d∆  and ( )sM d∆  are the respective differences in the surface densities of the 

equivalent electric and magnetic currents due to the presence of the targets, R is the 

polynomial order, rα  is the rth coefficient of the electric current approximation, rβ  is the 

rth coefficient of the magnetic current approximation, and s is the length coordinate along 

the dielectric contour. (Depending on the size of the dielectric, it may be necessary to 

first divide the contour into several segments and then define a polynomial for each of the 

segments.) The elements of the vectors dj∆  and dm∆  are, respectively, samples of the 

polynomials ( )sJ d∆  and ( )sM d∆  at the matching points. Their relationship in matrix 

form reads 
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, (5.13) 

 [ ] ( )
T

11d +×=
RPPhhH K , (5.14) 
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 [ ]T0 R

ppp ss K=h ,  ( ) Pps p /5.0−= ,  Pp ,,1 K= , (5.15) 

and 

 [ ]T
0 Rαα= Kα ,  [ ]T

0 Rββ= Kβ , (5.16) 

where dH  is the transformation matrix, ps  is the length coordinate of the pth matching 

point, and α  and β  are the vectors of the polynomial coefficients. 

We use the currents on the equivalent sources to model the induced currents on the 

contours of the targets. It is expected that equivalent sources with significant currents will 

appear in groups around the scattering centers. Hence, we divide the equivalent sources 

into small groups, where each group is associated with a potential scattering center. 

Groups are identical, consisting of VV ×  equivalent sources. An example of a 

22×  group enclosed by a solid line is given in Fig. 5.2b. We assume that the currents on 

the equivalent sources in each group are the samples from the unknown 2D polynomial 

distribution 

 ( )( ) ( )∑∑
−

=

−

=

σ≈
1

0

1

0
t ,

V

i

ji
V

j

k

ij

k tspsJ ,  1,1 ≤≤− ts ,  

 g,,1 Nk K= ,  2
g /VLN = , (5.17) 

where ( )( )psJ k ,t  is the 2D polynomial of the kth group; ( )k
ijσ  are the polynomial 

coefficients in the kth group, 1,,0, −= Vji K ; s  and t  are the local coordinates defined 
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in Fig. 5.2b; and gN  is total number of groups. The matrix relationship between the 

current densities on the equivalent sources and the polynomial coefficients reads 

 ( ) ( )kk Uσj =t , (5.18) 

 T
1 222 ][

VVV
U

×
= uu K , (5.19) 

 [ ]T

1
111000

2×
−−=

V

V

i

V

iiiiii tststs Ku ,  2,,1 Vi K= ,  (5.20) 

and 

 ( ) ( ) ( ) ( )[ ]T

1110100 2×−−σσσ=
V

k

VV

kkk Kσ ,  (5.21) 

where ( )k
tj  is the vector of the electric current densities on the equivalent sources in the 

kth group, ( )kσ  is the vector of the polynomial coefficients in the kth group, ( )ii ts ,,  are the 

local coordinates of the ith equivalent source, 2,,1 Vi K= , in the kth group, and U  is the 

transformation matrix. The currents in all groups are stacked in a vector 

 σj tt H= , (5.22) 

 ( )( ) ( )( ) T
TN





= g

t

T1
tt jjj K , (5.23) 

 ( )( ) ( )( ) T
TN





= g

T1 σσσ K , (5.24) 

and 
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5.3.3 Single Step Algorithm 

We substitute the current approximations (5.13) and (5.22) in (5.8). The measurement 

model in the single-step algorithm reads  

 wzGy += ΨΨΨΨ2 ,  zx ΨΨΨΨ= ,   (5.26) 

 [ ]TTTT σβαz = ,  
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00

00

00

ΨΨΨΨ , (5.27) 

where z  is the new unknown vector and ΨΨΨΨ  is the transformation matrix.  

The scattering centers are parsimonious on the target surface; therefore we want to reduce 

the number of groups with non-zero currents. In addition, to better estimate the contours 

of the targets, we want the polynomials to decrease quickly in the direction normal to the 

target surface. Hence, we aim to reduce the number the significant elements of ( )k
tj . 

These two desired characteristics are obtained by minimizing the 1l  norm of the vector 

tj . Hence, we look for the solution 

 ( ){ }
1t

12

22minargˆ jyzGz
z

γ+−= ΨΨΨΨ ,  (5.28) 
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where the 2l -norm on the right-hand side is the data fidelity term and the 1l -norm is the 

sparsity constraint. The scalar ( )1γ  is the regularization parameter in a single-step 

algorithm that balances the tradeoff between those two constraints. We discuss the 

selection of the regularization parameter in detail in Section 5.4. To solve (5.28), we use 

CVX [115], a package for specifying and solving convex programs [116]. We compute 

the corresponding image as 

 ( ) ( ) ( )tt
ˆmax/ˆ jj llI = , (5.29) 

where ( )lI  is the lth pixel of the image and ( )ltĵ  is the lth element of the solution vector. 

In the case of multiple incidences (i.e., multiple transmitters), we compute the images 

obtained for each transmitting sensor separately (5.29), and then we add those images.  

5.3.4 Two-Step Algorithm 

We now consider a two-step extension of the algorithm. We refer to the solution of 

(5.28), i.e., tĵ , as the first-step estimate (due to the ith incidence). Because of the l1 

regularization, most elements of tĵ  are negligible. If the targets are electrically large, the 

one-step procedure may not be sufficient to estimate their shapes. The purpose of the 

two-step algorithm is to enlarge the reconstructed portion of the target surfaces. 

As in the single-step algorithm, we assume that the ith sensor is excited. We denote by 

1Q  the subset of indices corresponding to the non-zero elements of tĵ ; i.e., 
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( ){ }δ>∈= lQlQ t1
ˆ| j , where δ  is the adopted threshold and { }LQ ,,2,1 K= . We denote 

by 2Q  the complementary set of indices, i.e.; 12 \ QQQ = . We formulate the system of 

linear equations in the same manner as in the single-step algorithm. The only difference 

is that, in addition to the boundary surfaces of the sensors and dielectric, we also enforce 

the EFIE constraint on the equivalent sources with indices in 1Q . Hence, we rewrite (5.6) 

as  

 ss
)2(

22 jGejG −−≈ i ,  ( ) ( )( ) ( )( ) ( )( )[ ]TT2
t

T2
d

T2
d

2
2 jmjj = , (5.30) 

where ( ) MQK
C

×+∈ 1

sG  and ( ) ( )LPQK
C

+×+∈ 2
2

1G  are the submatrices of the system matrix 

( ) NQK
C

×+∈ 1G  (the symbol ⋅  stands for the cardinality of the set). The definitions of the 

vectors )2(
dj , )2(

dm  and )2(
tj  are identical to those as in (5.6), except that (2) in the 

superscript refers to the second iteration. The size of the excitation vector is now 

( ) 11 ×+∈ QK

i Ce . The observed vector sj  remains the same as in the first step. 

We now model the response of the system consisting of the dielectric body and the 

equivalent sources from 1Q , i.e., the first estimate of the targets. The equivalent sources 

from 2Q  have been removed. As in (5.7), we define  

 )2(
s0s

)2(
202 jGejG −−= i ,  ( ) ( )( ) ( )( ) ( )( )[ ]TT2

t0

T2
d0

T2
d0

2
20

~
jmjj = , (5.31) 

and 
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Here, )2(
s0j  is the vector of the electric current densities on the sensors, ( )2

d0j  and ( )2
d0m  are 

the vectors of the respective densities of the equivalent electric and magnetic currents on 

the dielectric, and 1)2(
t0

1 ×∈ Q
Cj  is the vector of the electric current densities on the 

equivalent sources from 1Q . The vector 1)2(
t0

~ ×∈ Q
Cj  has the same non-zero elements as 

the vector )2(
t0j . We introduce )2(

t0

~
j  to insure that vectors ( )2

20j  and ( )2
2j are the same size.  

To derive the measurement model in the second step, we follow the same procedure as in 

the single-step algorithm. We subtract (5.31) from (5.30) and apply the polynomial 

expansion described in Section 5.3.2. We obtain 

 )2()2(
2

)2( wzGy += ΨΨΨΨ ,  (5.33) 

where )2(y  is the known measurement vector in the second step,  

 ( ))2(
0s

)2(
ss

)2( jjGy −−= ,  (5.34) 

and vector )2(
s0j  is numerically computed from (5.31). The unknown vector in the second 

step is 

 ( ) ( ) ( )[ ]TT)2(
t

T)2(
d

T)2(
d

)2(
jβαz ∆= ,  (5.35) 

with  
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 )2(
t0

)2(
t

)2(
t

~
jjj −=∆ ,  (5.36) 

 ( ) ( ) ( )[ ]TT)2(
t

T)2(
d

T)2(
d

)2( jmjx ∆∆∆= , (5.37) 

and 

 )2()2( zx ΨΨΨΨ= . (5.38) 

All variables have already been defined in Section 5.3.2, except that the superscript (2) 

again refers to the second step. The minimization function now reads 

 ( ){ }
1

)2(
t

22

2

)2()2(
2

)2( minargˆ jyΨzGz
z

∆γ+−= ,  (5.39) 

where ( )2γ  is the regularization parameter in the second step. The computed image for a 

single incidence in the two step algorithm is  

 ( ) ( ) ( ) ( )( ) ( )( )2
t

2
ttt

ˆmax/ˆˆmax/ˆ jjjj ∆∆+= lllI ,  Ll ,,1 K= , (5.40) 

where ( )2
tĵ∆  is the vector with the estimated currents on the equivalent sources in the 

second step. The complete image is obtained as in the first step, by superimposing images 

computed for different incidences. 
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5.4 Numerical Experiments 

5.4.1 One-Step Estimation 

We examined the ability of the algorithm to reconstruct the geometrical features of 

hidden PEC targets with various shapes. We considered an embedding dielectric body 

with a square cross-section and side length cm30 . The relative permittivity of the 

dielectric was assumed to be 3j0.3r −=ε . The operating frequency was GHz1=f . The 

scene was interrogated by an array of 16 transducers, as in Fig. 5.1. The standoff distance 

of the array from the dielectric surface was cm45 . The separation between the adjacent 

sensors was cm30 . 

For the first example, we considered a single target with the cross-section in the shape of 

a cross. The target contour is denoted by the solid line in Fig. 5.3. Because the 

circumference of the dielectric was electrically large, we defined the polynomials that 

approximated the equivalent currents on each side of the dielectric body separately. The 

order of the polynomials depends primarily on the electrical length of the segments. 

Hence, it can be determined in advance without knowing the target. We adopted 7=R .  
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(a) 

 

(b) 

 

(c) 

Fig. 5.3: Reconstruction of cross-like cylinder (“noiseless” model). Results were 
computed using (a) ( ) 4.11 =γ , (b) ( ) 8.11 =γ , and (c) ( ) 21 =γ . 
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We studied the influence of the regularization parameter ( )1γ  on the target reconstruction. 

We divided the interior of the dielectric into a uniform grid with equal steps in the x and y 

directions: λ=∆=∆ 075.0yx . (The number of the grid nodes was 441212 ==L .) We 

first considered a trivial case in which each group of the equivalent sources consisted of a 

single source ( 1=V ). 

A common way to compute the regularization parameter is by means of the L-curve 

[117]. The knee of the L-curve determines a trade-off between the stability (represented 

by the solution norm 
1

tĵ ) and accuracy (measured by the discrepancy 
22 yzG −ΨΨΨΨ ) of 

the reconstruction. We show in Fig. 5.4a the L-curve computed for the cross-like target 

when the sensor in the lower left corner was excited. The shape of the curve is typical for 

inverse scattering problems. The values of the regularization parameter corresponding to 

the knee of the L-curve are labeled 0γ . We also computed the number of non-zero 

elements (i.e., 0l -norm) of the solution vector t̂j  versus the regularization parameter. Our 

numerical experiments showed that this curve also exhibits the typical shape as illustrated 

in Fig. 5.4b. We observed three distinctive regions: 0γ  (the same as in the case of the 

L-curve), in which the minimal 0l -norm was achieved; ( )
0

1 γ>γ , in which the 0l -norm 

diverged (i.e., the solution was not sparse anymore); and ( )
0

1 γ<γ , in which the 0l -norm 

was large but the solution was still sparse. We obtained the best reconstructions for 

( )
0

1 γ∈γ  and for the values that were slightly less than ( )0min γ . Hence, both curves 

identically determined the “optimal” parameter value, although we found the utilization 

selected parameter ( )1γ  was approximately of 0l -norm to be more practical. The 
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the same for all excitations, which reduced the computational cost. In Fig. 5.3, we plot 

the target images computed for several characteristic values of parameter ( )1γ : 

(a) ( )
0

1 4.1 γ<=γ , (b) ( )
0

1 8.1 γ∈=γ , and (c) ( )
0

1 2 γ>=γ . We assumed no additional 

noise. 

As predicted by the 0l -norm, the most compact solution was obtained for ( )
0

1 8.1 γ∈=γ . 

If the value of the regularization parameter was slightly less than ( )0min γ , a few 

additional points on the target contour were revealed. If ( )1γ  was further decreased, the 

solution became meaningless. Similarly, if ( )1γ  was larger than ( )0max γ  we obtained a 

blurred image with no additional information about the target’s shape.  
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(a) 

 

(b) 

Fig. 5.4: (a) L-curve and (b) l0-curve for target of Fig. 5.3. 

For comparison purposes, we also reconstructed the target shape using LSM [51]-[59] 

and MUSIC [60]-[66]. In LSM one tries to focus the scattered fields obtained for 

different incident angles as they emanate from the equivalent source in the interior of the 

target. Mathematically, one seeks to solve the matrix equation 

 ( ) ( )ll tftFg =  , Ll ,,1 K= , (5.41) 
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where ir , Mi ,,1 K= , are the locations of the sensors, ( )jiE rr ,s  is the scattered field at 

the ith sensor when the jth sensor is excited, lt , Ll ,,1 K= , are the locations of the 

equivalent sources, ( )liG tr ,  is the scattered field (Green’s function) at ir  due to the 

equivalent sources located at lt , and F is the multistatic measurement matrix. The norm 

of the solution vector ( )ltg  is the so-called indicator function, which is shown to be finite 

for the points inside scatterers and infinite for the points that are outside scatterers. Here, 

we assume that the observed values are the induced currents instead of the scattered 

electric field. Hence, in this case F reads 
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 ( ) ( ) ( )jijiji JJJ rrrrrr ,,, s0ss −=∆ , (5.45) 
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where  ( )jiJ rr ,s  and ( )jiJ rr ,s0  are the currents in the ith sensor when the jth sensor is 

excited, with and without targets, respectively. Likewise, ( )liJ tr ,s  is the current in the ith 

sensor due to the equivalent source at lt  (excited by the impressed electric field).  

We computed (5.44)-(5.46) using our forward model of Chapter 2. We solved (5.41) by 

means of the singular value decomposition (SVD), where we applied the regularization 

from [58]. The target image was obtained by plotting the reciprocal value of ( )ltg  for 

all sampling points. We show the result in Fig. 5.5a. As opposed to the sparse processing 

algorithm which recovered the target shape, the LSM recovered only its complex hull. 

However, LSM estimated better the ending points of the target. We note that we did not 

use the standard formulation of LSM in which electric fields are focused ((5.44)-(5.46)). 

Instead, we focused the observed currents ((5.41)-(5.43)) which might slightly worsen the 

performance. However, similar performance of the standard LSM was reported in [53] 

where a cross-like cylinder in free space was considered. 

The MUSIC algorithm employs the singular vectors associated with the vanishing (or 

small) singular values of the multistatic data matrix F. The target image is computed as  

 ( ) ( )( ) 









= ∑

δ<σm

m

H

llI
2

/1 utft , (5.47) 

where mσ , Mm ,,1 K= , are the singular values, 
mu  are the associated singular vectors 

of matrix F (given by (5.44)), δ  is the threshold, and f  is defined in (5.46). We 

determined the optimal value for δ  empirically. The image obtained using MUSIC is 
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shown in Fig. 5b, and very accurately represents the target.  

 

(a) 

 

(b) 

Fig. 5.5: Reconstruction of cross-like cylinder computed using (a) LSM and 
(b) MUSIC. “Noiseless” model. 

 

(a) 

 

(b) 

Fig. 5.6: Reconstruction of cross-like cylinder computed using (a) sparse signal 
processing and (b) MUSIC for SNR = 20 dB.  

We further assumed that the observed data ( 0ss jj − ) in the sparse processing, as well as 

the elements of the multistatic matrix F in LSM or MUSIC, were corrupted by CAWGN. 

Fig. 5.6 shows the images computed for dB20=SNR . The sparse processing proved 

robust with respect to the noise, whereas the performance of MUSIC was strongly 
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deteriorated.  

We considered two metallic targets in close proximity, denoted by the solid lines in 

Fig. 5.7. We show the results for the “noiseless” case in Fig. 5.7 and for dB10=SNR  in 

Fig. 5.8. If no noise is added, both MUSIC and sparse processing correctly estimated the 

number of the targets, whereas the number of the targets was ambiguous in the LSM 

image. The results were aggravated if the measurements were corrupted by CAWGN; yet 

the targets were well resolved if sparse processing or MUSIC is applied.  
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(a) 

 

(b) 

 

(c) 

Fig.5.7: Reconstruction of two metallic targets computed using (a) sparse signal 
processing ( ( ) 4.11 =γ , 1,212 == VL ), (b) MUSIC, and (c) LSM. “Noiseless” 
model.  
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(a) 

 

(b) 

 

(c) 

Fig.5.8: Reconstruction of two metallic targets computed using (a) sparse signal 
processing ( ( ) 4.11 =γ , ,212=L  1=V ), (b) MUSIC, and (c) LSM for 
SNR = 10 dB. 
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We also tested the algorithm against the irregularities of the dielectric body. Fig. 5.9 

shows the shape of the dielectric and two targets. In this case, we used the array with 

20=M  sensors. The separation between the adjacent sensors was cm20 . Because of 

small details in the shape of the targets, we increased the number of the equivalent 

sources ( 232=L ).  

Without grouping ( 1=V ), the performance of the sparse algorithm was numerically 

instable. Consequently, the computation time increased considerably. The polynomial 

model for the currents of the equivalent sources stabilized the solution. We show in 

Fig. 5.9a the reconstruction obtained for ( 232=L , 4=V ).  

The reconstructions obtained using LSM and MUSIC are given in Fig. 5.9b and Fig. 5.9c 

respectively. Whereas sparse processing revealed parts of the targets’ contours, the LSM 

and MUSIC gave insight into the targets’ shape. However, when LSM was applied the 

edges of the targets were unclear.  

In Tab. 1, we compared computational times of the algorithms. The results were similar. 

However, the computational speeds of LSM and MUSIC are dictated by the efficacy of 

the electromagnetic solver because the forward calculations are repeated for each point in 

the grid. In contrast, the computational speed of the sparse algorithm is influenced by the 

convex optimization which is solved for each sensor. However, the convex optimization 

may become slow if the number of the unknowns is too large. 
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(a) 

 

(b) 

 

(c) 

Fig.5.9: Reconstruction of two star-shaped cylinders computed using (a) single-step 
sparse processing ( ( ) 4,32,4.1 21 ===γ VL ), (b) LSM, (c) and MUSIC for 
SNR = 20 dB. 
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TABLE I 
COMPUTATIONAL TIMES OF INVERSE ALGORITHMS 

Number of  
grid points 
(L) 

Number of 
sensors  
(M) 

LSM  
 
time [min] 

MUSIC 
 
time [min] 

SPARSE 
(V = 1) 
time[min] 

SPARSE 
(V = 4) 
time [min]  

441212 =  16 28 28 21 20 

576242 =  16 36 36 60 25 

784282 =  16 52  52 70 40 

 

5.4.2 Two-Step Estimation 

We considered a metallic cylinder in the shape of a thick letter U. The target is denoted 

by the solid line in Fig. 5.10. The difficulties in LSM imaging of a dielectric cylinder of 

the same shape were observed in [58]. It was expected that these problems would become 

more severe in the case of a metallic cylinder because of the multiple scattering. In 

Fig. 5.10, we show the results obtained for dB20=SNR , 221=L , 1=V , ( ) 4.11 =γ  and 

( ) 8.11 =γ . The estimated scattering centers were around the target surfaces; however 

some parts of the target’s contour were not revealed. Next, we used the data obtained in 

the first-step estimation (Fig. 5.10b) as the feed for the second-step estimation. We 

applied the EFIE constraint to the equivalent sources found in the first step whose 

currents exceed the adopted threshold: ( )t
ˆmax5.0 j=δ . As shown in Fig. 5.11, the 

second-step estimation yielded much better results. We selected values for the 

regularization parameter ( 6.1,4.1)2( =γ ) that were slightly less than the values of the 
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regularization parameter in the first step (inferred from the solution’s 0l -norm). In 

Fig. 5.12, we show the computations performed for 1,212 == VL  and 3,242 == VL , 

We set SNR = 10 dB (anticipated as the minimal necessary SNR).  

 

(a) 

 

(b) 

Fig. 5.10: Reconstruction of U-shaped target computed using single-step sparse 

processing for (a) ( ) 4.11 =γ , 1,212 == VL  and (b) ( ) 8.11 =γ , 1,212 == VL  
(SNR = 20 dB).  

 

(a) 

 

(b) 

Fig. 5.11: Reconstruction of U-shaped target computed using two-step sparse processing 

for ( ) 8.11 =γ , 1,212 == VL  and (a) ( ) 4.12 =γ  and (b) ( ) 6.12 =γ  
(SNR = 20 dB). 
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(a) 

 

(b) 

Fig. 5.12: Reconstruction of U-shaped target computed using two-step sparse processing 

for ( ) 8.11 =γ , ( ) 4.12 =γ  and (a) 1,212 == VL  and (b) 3,242 == VL  
(SNR = 10 dB). 

 

(a) 

 

(b) 

Fig. 5.13: Image of thick U-shaped cylinder computed using (a) LSM and (b) MUSIC 
(SNR = 20 dB). 

For comparison, we applied LSM and MUSIC. As depicted in Fig. 5.13a, LSM failed to 

recover the non-convex shape of the target. This is in accordance with [58] where the 

imaging of a dielectric cylinder of the same shape was studied. The performance of 

MUSIC was similar to that of LSM (Fig. 5.13b). 

We also investigated the reconstruction of a thin U-shaped cylinder. The LSM 
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algorithm yielded an excellent estimate of the target (Fig. 5.14a), as also observed in [58]. 

The MUSIC estimate was also accurate, as shown in Fig. 5.14b. In Fig. 5.14c, we present 

the result of the two-step estimation ( 3,242 == VL ). In this case, the images of the thin 

and thick U-shaped targets were very similar. Hence, the LSM predicts the thickness of 

the target, whereas the sparse processing assesses the target’s contour. In Fig. 5.15, we 

illustrate the robustness against noise of the sparse algorithm ( dB10=SNR ).  
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(a) 

 

(b) 

 

(c) 

Fig. 5.14: Image of thin U-shaped cylinder computed using (a) LSM, (b) MUSIC, and 

(c) two-step sparse processing ( 3,242 == VL  ) for SNR = 20 dB. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.15: Image of thin U-shaped cylinder computed using (a) LSM, (b) MUSIC, and (c) 

two-step sparse processing ( 3,242 == VL ) for SNR = 10 dB. 
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(a) 

 

(b) 

Fig. 5.16: Reconstruction of thick U-shaped cylinder computed using erroneous 
dielectric permittivity ( j33.03.3r −=ε ) in the two-step sparse algorithm for 

( ) 8.11 =γ , ( ) 4.12 =γ , SNR = 20 dB, and (a) 221=L , 1=V  and 

(b) ,242=L 3=V .  

Finally, we studied the sensitivity of the algorithm to the errors in the permittivity of the 

background medium. In Fig. 5.16, we present the reconstructions obtained for 

)j1.01(3.3r −=ε , which was 10% larger than the true permittivity. The quality of the 

reconstruction was worse than that obtained using the real dielectric permittivity, 

however the target shape could be discerned. 
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5.5 Experiment 

In this section, we discuss the experimental verification of the proposed imaging method. 

We first explain a 3D electromagnetic model that is equivalent to the considered 2D 

problem. We use this equivalent model to validate both the forward and inverse method, 

as we detail below. 

5.5.1 Theoretical Model 

We show in Fig. 5.17 an example of 2D electromagnetic system consisting of infinitely 

long conductors and dielectric bodies of arbitrary cross-section. We assume that the 

conductors are excited by an axial impressed electric field ( iE ) which is independent of 

the z-coordinate.  

 

Fig. 5.17: An example of a 2D electromagnetic system. 

As a response to the excitation, the axial currents are induced in the dielectric and 

conducting bodies. The currents are independent of the z-coordinate. We take a short 

horizontal section of the system of Fig. 5.17 and place it between two PEC 
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planes, as illustrated in Fig. 5.18. After multiple mirroring from PEC planes, the system 

in Fig. 5.18 becomes infinitely long.  

We assume that the conductors in the 3D model are excited by voltage delta-generators. 

If the height of the system is electrically small, i.e., 005.0 λ<h  ( 0λ is the wavelength in 

the air), the induced currents are practically constant along the z-axis. Setting the 

electromotive force of the generators to hEV i=  provides that the currents in both 

systems are approximately the same. This yields a simple relationship between the 

admittance parameters (Y ) of the 3D system and the per-unit-length admittance 

parameters (Y ) of the 2D system: hYY = . 

 

Fig. 5.18: The equivalent 3D model of the electromagnetic system of Fig. 5.17. 

In the experiment, instead of PEC planes, we use finite metallic plates. In order to 

achieve good mirroring, it is necessary that the electric and magnetic fields are negligible 

at the edges of the plates. Otherwise, a substantial radiation from the edges occurs which 

does not exist in the 2D model. To avoid this unwanted radiation, the plates must be 

wavelengths large. An alternative is to close the vertical sides of both systems by metallic 

walls.  
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Fig. 5.19: The measurement setup. 

In Fig. 5.19, we depict the 3D experimental model. The system was shielded by vertical 

aluminum walls, located along the sides of the square plates. The plates were also made 

of the aluminum with the side length 900 mm. The sensors were thin wires with the 

diameter mm3=D . A dielectric cylinder with the immersed target was located in the 

center of the structure. The dielectric had a square cross-section with the side length 200 

mm. The permittivity of the dielectric was 5,4r =ε  and the loss tangent 025.0tan =δ . 

The target was the thick U-shaped cylinder, described in Section 5.4.2. The height of the 

system was mm12=h . The operating frequency was about 1 GHz.  

We used the forward model of Chapter 2 to compute the response of the corresponding 

2D system. We calculated the admittance parameters of the 3D system by means of 

WIPL-D Pro software [118]. We measured the scattering parameters of the experimental 

model, and then obtained the admittance parameters using the relationship as given in 
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[119], 

 ( )( ) c
1

c YSISIYY
−+−= MM ,  (5.48) 

where S  is the measured scattering matrix, M  is the number of the sensors, cY  is the 

diagonal matrix whose elements are the characteristic admittances of the ports, and 
MI  is 

the identity matrix. In our case: ( ) MM IY Ω== 50/1,20 c . We show in Fig. 5.20 the 

results for the admittance parameter 56Y  associated with the coupling between two 

adjacent sensors. The excellent agreement among the results validated the proposed 

measurement model. The results for other parameters were similar. 

|Y
5
6
| 
[m
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m
]

 

Fig. 5.20: Admittance parameter 56Y  obtained by 2D simulation, 3D simulation, and 

measurements. 

5.5.2 Inverse Method  

In the experimental model, the induced electric currents appear on the inner surfaces of 
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the metallic walls. We include those currents in the measurement model (5.8)-(5.11) 

 wxGy += 2 , (5.49) 

where now 

 ( )0sss jjGy −−= , (5.50) 

 ( ) ( ) ( ) ( )[ ]TT

t

T

w

T

d

T

d jjmjx ∆∆∆∆= ,  (5.51) 

 w0ww jjj −=∆ . (5.52) 

Here, J
C∈wj  is the unknown vector of the electric current densities on the metallic 

walls when the equivalent sources are in the dielectric, JC∈w0j  is the unknown vector 

of the electric current densities on the metallic walls with the equivalent sources being 

removed from the dielectric, and J is the number of the unknown current coefficients on 

the metallic walls. The matrices ( ) MJKC ×+∈sG  and ( ) ( )LJPJKC ++×+∈ 2
2G  are expanded to 

account for the currents and matching points on the walls.  

Again, we use polynomial expansion to model the induced electric currents on the walls,  

 ( ) ∑
=

τ≈∆
I

i

i

i ssJ
0

w ,  10 ≤≤ s , (5.53) 

where ( )sJw∆  is the difference in the electric current density due to the presence of the 

targets, iτ  is the ith coefficient of the approximation, Ii ,,0 K= , and s is the length 
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coordinate along the contour of the walls. (Depending on the electrical size of the walls, 

it may be necessary to divide the wall contour into smaller segments.) The elements of 

the vector wj∆  are samples of the polynomial (5.53) at the matching points. We relate the 

unknown current densities with the polynomial coefficients as  

 τHj ww =∆ , (5.54) 

with 

 [ ] ( )
T

11w +×=
IJJssH K , (5.55) 

 [ ]T0 I

jjj ss K=s ,  ( ) Jjs j /5.0−= ,  Jj ,,1 K= ,  (5.56) 

 [ ]T
0 Iττ= Kτ . (5.57) 

Here, τ  is the vector of the polynomial coefficients, wH  is the transformation matrix, 

and js  is the length coordinate of the jth matching point. The final measurement model 

reads 

 wzGy += ΨΨΨΨ2 ,  zx ΨΨΨΨ= ,  (5.58) 

 [ ]TTTTT στβαz = ,   
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where z  is the new unknown parameter vector and ΨΨΨΨ  is the transformation matrix. The 
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model (5.59) is further substituted into the one-step (5.28) and two-step cost functions 

(5.39).  

We obtained the vector of the current densities on the sensors (
sj ) from the admittance 

parameters which are related to the measured scattering parameters by (5.48). When ith 

the sensor was excited, we computed the jth element of the vector sj  as 

( ) ( )
D

h
jiijj

π
= ,;s Y . 

Fig. 5.21a shows the single-step reconstruction computed using the synthetic data and 

Fig. 5.21b shows the reconstruction computed using the measurements. The agreement 

was excellent. The operating frequency was GHz2.1=f  and the algorithm parameters 

were ( ) 21 21,3,4.1 ===γ LV . We also present in Fig. 5.22 the results obtained at 

GHz1.1=f . The agreement was also good; however the target image was somewhat 

ambiguous in this case. Because of the multiple scattering from the metallic enclosure, 

the induced currents on the targets varied significantly with the frequency. Hence, the 

images Fig. 5.21 and Fig. 5.22 recovered different parts of the target’s contour.  
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(a) 

 

(b) 

Fig. 5.21: Reconstruction of the U-shape target using the system of Fig. 20. Results are 
obtained using (a) synthetic data and (b) measured data at GHz2.1=f  for 

( ) 4.11 =γ . 
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(a) 

 

(b) 

Fig. 5.22: Reconstruction of the U-shape target using the system of Fig. 20. Results are 
obtained using (a) synthetic data and (b) measured data at GHz1.1=f  for 

( ) 4.11 =γ . 

We did not observe the significant improvement due to another iteration (neither in 

numerical nor in experimental reconstructions) as we did in the system without the 

metallic enclosure (Fig. 5.11). The reason for this may be the fact that the currents are not 

truly sparse in the presence of the enclosure.  
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5.6 Summary 

We proposed a method for estimating obscured 2D PEC targets based on the equivalent-

source method and l1 regularization. We used the surface equivalence theorem to derive a 

linear measurement model with respect to the unknown equivalent sources. The 

application of the sparsity constraint emphasized the equivalent sources located on the 

scatterer surfaces (in particular, the scattering centers). Exploiting the information content 

of a multiview/multistatic configuration, the method reliably reconstructed the target 

shapes using monochromatic scattered data. We considered both single-step and two-step 

versions of the method. We tested the performance of the algorithm on the examples of 

non-convex targets with pronounced wedges and on closely spaced targets. The 

performance of the method was compared to that of LSM and MUSIC. The examinations 

showed that sparse processing was able to recover the target shapes in cases for which 

both MUSIC and LSM failed, typically bulky non-convex targets. Nevertheless, LSM 

and MUSIC inferred about the target’s interior, whereas the sparse imaging recovered 

only the target contour. Hence, sparse imaging and LSM (MUSIC) provided the 

complimentary pieces of data. We examined the accuracy of the proposed inverse method 

experimentally. We designed the 3D model that is equivalent to the 2D problem using the 

mirroring theory. The obtained experimental results were in agreement with the 

numerical experiments. However, in the experimental model, the system under 

investigation was inside the metallic box. The multiple scattering from the box 

significantly influenced the target reconstruction. Unlike in the case without the box, the 

target images significantly varied with the frequency. Hence, the target images obtained 
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at different frequencies provided the complimentary pieces of information. However, 

because of the multipath, the currents on the target surfaces were not entirely sparse. The 

reflections from the metallic walls enlarged the illuminated portion of the target surface, 

and therefore the induced currents became significant almost everywhere on the target’s 

surface. In order to take advantage of both the multipath and sparse processing, it is 

necessary to find the basis functions in which the currents on the targets are sparser. 
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Chapter 6  

Estimating Direction of Arrival Using 

Multipath from Array Platforms 

6.1 Introduction 

Electromagnetic scattering from environment poses difficulties in target estimation, but 

also provides additional information about the targets. Sensor arrays are often mounted 

on platforms, which are significant sources of scattering (multipath). In this Chapter, we 

study the exploitation of the multipath information from sensing systems in the direction 

of arrival estimation (DOA) [120]. This is in contrast to recent investigations in which the 

multipath from the target’s surroundings is utilized for improving the localization 

characteristics of sensing arrays [74]-[79].  

We consider an example of a realistic airborne platform, the Unmanned Aerial Vehicle 

(UAV) Predator. Because of the low profile of the Predator, diffraction is the main source 

of the multipath. We show that employing the multipath allows estimating both the 

azimuth and elevation of multiple unknown incident signals, even at a single frequency, 

which would otherwise be impossible with uniform linear arrays. Interestingly, human 

and similar auditory systems use the diffraction of sound waves to enable 
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three-dimensional (3D) direction finding [121]. 

We use the Cramer-Rao bound (CRB) to study the performance improvement due to the 

multipath. We verify the proposed approach experimentally, by considering the DOA 

estimation using a linear array mounted on a plate. To provide physical insight on the 

influence of the multipath on the effective array aperture, we show that the performance 

of arrays on platforms is similar to that of arrays with parasitic elements [122]-[126]. 

6.2 Measurement Model 

We assume that K plane-wave signals impinge on a sensor array mounted on a platform. 

The output of the array element located at r  is given in [127] as 

 ( ) ( ) ( ) ( ) ( )fefffx kkk

K

k

k ,jexp,,,, 0
1

rrrrlsr +⋅β−φθ⋅= ∑
=

, (6.1) 

 φφθθ += iil ll , (6.2) 

 φφθθ += iis ,, kkk ss , (6.3) 

and 

 T
0 ]cossinsincossin[

kkkkkk θφθφθ=r , (6.4) 

where l is the effective length of the sensor that encompasses mutual coupling, 

reflections, and diffractions on the platform; 
kθ is the elevation of the kth signal; 

kφ is the 
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azimuth of the kth signal; θ,ks and φ,ks  are the complex magnitudes of the signal at the 

operating frequency that are associated with the θ and φ components of the incident 

electric field, respectively; 
k0r is the unit vector in the direction of propagation of the kth 

signal; and the operator T stands for transpose. Finally, β  is the propagation coefficient, f 

is the operating frequency, and e is the complex additive white Gaussian noise 

(CAWGN) of unknown variance 2σ .  

We consider linearly polarized arrays. Without loss of generality, we assume that θ is the 

co-polar component of the array response and φ is the cross-polar component. The 

locations of the sensors in the array are given by mr , .,,1 Mm K=  The induced voltage in 

the mth sensor is 

 ( ) ( ) ( ) ( ) ( ) ( ),,,,,,,,,
1

,
1

θθ, nm

K

k

kknmnk

K

k

kknmnknm fefhfsfhfsfx rrrr ∑∑
=

φφ
=

+φθ+φθ=  (6.5) 

and 

 ( ) ( ) ( )kmkknmpkknm flfh
p 0jexp,,,,,, rrrr ⋅β−φθ=φθ , (6.6) 

 Mm ,,1 K= , Nn ,,1 K= , 

where nf  is the nth frequency and the subscript p in (6.6) stands for either θ or φ. We put 

the array output in compact form: 

 eHsx += ,  (6.7) 
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 [ ]T
1

TT
2

T
1 ×=

NMNxxxx K , (6.8) 

 ( ) ( ) ( )[ ]T

121 ,,, ×=
MnMnnn fxfxfx rrrx K ,   Nn ,,1 K= , (6.9) 

where x is the stacked measurement vector. Further, 

 [ ]
KNM 2×φθ= HHH , (6.10) 

and 

 ( )
KNMpNppp ×

= ,,2,1 ,,,blkdiag HHHH K , (6.11) 

where H is the measurement matrix; θH  and φH  are the submatrices associated with the 

co-polar and cross-polar array response, respectively; blkdiag denotes the block-diagonal 

matrix; and p denotes either θ or φ. θH  and φH  are the block-diagonal matrices where 

each non-zero block is 

 ( ) ( ) ( )[ ] ,,,,,,, 2211, KMKKnpnpnppn fffH
×

φθφθφθ= hhh K  (6.12) 

and 

 ( ) ( ) ( ) ( )[ ]T

121 ,,,,,,,,,,,
×

φθφθφθ=φθ
MMpppp fhfhfhf rrrh K . (6.13) 

The samples of the complex magnitudes in the frequency domain are stacked in vector s, 

defined by  
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 [ ]T
12

TT

×φθ=
NK

sss , (6.14) 

 [ ]T
1

T
,

T
,2

T
,1 ×

=
NKpNppp ssss K , (6.15) 

 ( ) ( ) ( )[ ]T

1,,2,1, ×
=

KnpKnpnppn fsfsfs Ks ,  (6.16) 

 [ ]T 1
TT

2
T
1 ×=

NMNeeee K ,  (6.17) 

and 

 ( ) ( ) ( )[ ]T
MnMnnn fefefe 121 ,,, ×= rrre K . (6.18) 

The goal of the estimation is to compute the unknown angles angles [ ]T
1 ,, Kφφ= Kφ  and 

[ ]T
1 ,, Kθθ= Kθ . The signal coefficients (s) and the noise variance 2σ  are also unknown, 

but they are considered to be nuisance parameters. The array response (H) depends only 

on the electromagnetic characteristics of the array and the platform; hence it is known. 

Finally, we consider the cases when the number of incident waves (K) is known and 

when it is unknown. 

6.3 Electromagnetic Model 

Herein we consider a realistic airborne platform (Predator), shown in Fig. 6.1. The 

Predator is a medium-altitude, unmanned aerial vehicle system. The airplane is m1.8  

long with a m8.14  wingspan. We assume that a uniform linear array of monopoles is 
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mounted on the Predator. The position of the array and the adopted coordinate system are 

depicted in Fig. 6.1. We study the passive case; i.e., all antennas in the array work as 

receivers. The antennas receive both direct signals and signals diffracted from the UAV 

chassis. Due to the non-dihedral shape of the platform, the signals reflected from the 

platform do not reach the antennas. The main sources of diffraction are the wings, tail, 

and wedges at the bottom of the aircraft. For comparison, we also consider the scenario 

without the multipath. These data are obtained when the arrays are placed on an infinite 

plane made of a perfect electric conductor (PEC). 

The array takes the measurements in the frequency domain. We compute the 

electromagnetic response of the array on the UAV [128] using the full-wave 

electromagnetic solver WIPL-D Pro [118]. We assume that the Predator is perfectly 

conducting. We adopt the central frequency of the computations to be f = 1 GHz. The 

height of the monopoles is 80 mm, the radius of the monopoles is 1.2 mm, and the 

distance between adjacent monopoles is 0.15 m.  

 

Fig 6.1: Geometrical model of the Predator with the adopted coordinate system. We 
show the uniform linear array of monopoles mounted on the bottom of the 
UAV and the multipath due to the diffraction (black arrows). 

In general, the responses of the arrays should be modified to include the Doppler effect. 
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However, the maximal speed of the UAV Predator is about 60 m/s, yielding a Doppler 

shift of 0.2 kHz at 1 GHz, which is insignificant in the considered frequency range.  

6.4 Cramer-Rao Bound 

We compute the Cramer-Rao bound (CRB) on the variances of the spherical angles of the 

incident signals to demonstrate the estimation improvement due to the multipath. The 

covariance matrix of any unknown parameter vector is lower-bounded by the CRB, and it 

is attainable by statistically efficient unbiased estimators. For large data records, 

maximum likelihood (ML) asymptotically achieves the CRB. The CRB is obtained from 

the Fisher information matrix, which for a measurement model (6.7) reads as follows 

[129]: 

 
( )[ ] ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
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,  

 ( )ξdim,,1, K=ji , [ ]T2T
i

T
r

TT σ= ssφθξ , (6.19) 

where I is the Fisher information matrix, C is the covariance matrix of a Gaussian noise, 

ξ is the vector of unknown parameters, rs is the real part of s, is is the imaginary part of s, 

tr denotes the trace operator, the superscript H denotes the conjugate transpose, Re 

denotes the real part, and dim denotes the dimension of a vector. The considered noise 

covariance matrix is MNIC
2σ= , where MNI  is the identity matrix of size MN. We 
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assume that the noise is independent of the signal; hence the Fisher information matrix is 

given by 

 ( ) ( )








=

B

A

0

0η
ξI ,  (6.20) 

and 
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 ( )ηdim,,1, K=ji , [ ]TT
i

T
r
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where η  is the vector of unknown parameters apart from 2σ . The CRB matrix is the 

inverse of the Fisher information matrix 

 .1−= ICRB  (6.22) 

The elements on the main diagonal of the CRB matrix contain the theoretical, lower 

bound on the parameter variances. Due to the block diagonal nature of the Fisher matrix 

(6.20), the CRB for the parameter vector η  is the same when 2σ  is known and when it is 

unknown.  

The derivatives with respect to azimuth and elevation of the kth wave are computed as 
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where both p and q stand for either θ or φ, and  

 ( ) ( )[ ]Tq,1q,q,
~

Nkkk fsfs K=s  (6.26) 

is the vector containing the complex magnitudes of the co-polar or cross-polar component 

of the kth signal at the frequencies Nff ,,1 K . Finally,  

 
( ) ( )

H
s

Hs

s

Hs
=
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∂

−=
∂

∂

ir

j . (6.27) 

Since there are no closed-form expressions for the derivatives in (6.25), we resort to 

numerical differentiation. To obtain numerically stable results, we first use polynomials 

to approximate the expressions for the effective length with respect to the azimuth and 

elevation [130]. Then, we compute analytical derivatives of the polynomial 

approximation. 
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6.5 DOA Estimation 

We estimate the unknown parameters using the ML approach [93] when the number of 

waves is a priori known. Otherwise, we use the minimum description length (MDL) [94].  

We also consider another application of the MDL for model-selection. In Fig. 6.2, we 

show the ratio of the co-polar and cross-polar components of the radiated electric field at 

1 GHz for one of the sensors in the array on the platform. For many incident angles, the 

cross polarization is negligible (below 10 dB). However, there are also directions of 

arrival for which the cross-polar and co-polar components of the array response are 

comparable. Including the cross-polarized component of the received signal in the 

measurement model, in the case when it is actually insignificant, may cause erroneous 

estimation due to “over-fitting” the data. Similarly, ignoring the cross-polarization in 

cases when it is truly pronounced will also deteriorate the estimation [131]. Hence, we 

need a tool to decide whether to include the cross-polarization in the model. The decision, 

made for each incident signal, depends on the signal polarization and the DOA.  

It is well known that ML is not suitable for model selection problems. ML gives favor to 

more complex models, which may lead to overfitting. In contrast, from a set of candidate 

models, MDL selects a model that balances the data fidelity and compactness of the 

representation. 



 118

 

Fig. 6.2: Ratio of cross-polar and co-polar components of the radiation pattern of a 
sensor mounted on the UAV, computed using WIPL-D Pro at 1 GHz. 

The cross-polar components of the array response are contained in the columns of the 

submatrix φH  (6.10). Each column of φH  corresponds to a different incident wave. We 

decide for each impinging wave whether to take into account the cross-polarization. If the 

maximal number of incident waves is K, and we assume that there is at least one incident 

wave, the total number of possible hypotheses is 222 1

1
max −== +

=
∑ K
K

k

kk . We select one of 

the maxk  hypotheses for which the MDL criterion is minimal [94]: 

 
( ) ( )MN

MN
MDL log

2

dim
ˆlog

2

2 γ
γγγ +−=

s
sHx ,  max,,2,1 kK=γ , (6.28) 

where γMDL  is the MDL criterion for hypothesis γ , 
2

⋅ denotes the Euclidian norm, 

γH  is the measurement matrix of hypothesis γ, γs  is the vector of unknown complex 

coefficients, and γŝ  is ML estimate of γs . γH  is obtained from H  by eliminating the 

columns corresponding to the cross-polar responses of the waves for which we neglect 

the cross-polarization in this hypothesis. The second term in (6.28) penalizes long 
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representations of data, i.e., the inclusion of a large number of incident waves or addition 

of cross-polarization in the model.  

We assume that the additive noise is spatially white and that the noise power is equal in 

each frequency bin. The ML solution for the complex amplitudes is 

 ( ) xHHHs
H1Hˆ γ

−

γγγ = . (6.29) 

We perform a simplex optimization [97] to compute the angle estimates from the 

concentrated likelihood:  

 ( ) 2

,

ˆminargˆ,ˆ
γγγγ −=

γγ

sφθ,Hxφθ
φθ

, (6.30) 

where γθ̂  and γφ̂  are the estimated azimuth and elevation angles associated with model γ. 

6.5.1 Single Source 

We first assume there is only one incident wave impinging on the array. We study the 

angular error (δ) between the unknown source direction 0r  and its estimate 0r̂ . For small 

angular errors, δ is given by  

 ( ) ( )222 sin θ∆+φ∆⋅θ=δ , (6.31) 

where φ∆  and θ∆  are the angular errors in the azimuth and elevation, respectively.  The 

asymptotic mean-square angular error (MSAE) of a DOA estimator is defined [132] as  



 120

 ( )2MSAE δ= E , (6.32) 

where E stands for the expectation. The Cramer-Rao lower bound for MSAE that is 

asymptotically attainable by ML is [132]  

 ( ) ( ) ( )θ+φθ= CRBCRBsinMSAE 2
CRB . (6.33) 

Fig. 6.3a shows the CRB on the MSAE computed for the array of monopoles on the 

UAV, and Fig. 3b shows the computation for the same array on the PEC. Here, 

SNR = 15 dB and N = 1. (We define SNR as the ratio of the average power received by 

the array and the noise power.) The lower bound on the MSAE for the array on the UAV 

is reasonably small. Hence, because of the multipath, the linear array on the UAV is able 

to estimate separately both azimuth and elevation using single-frequency data. If there is 

no multipath, the CRB grows extremely large, confirming that the uniform linear array is 

not capable of resolving both spherical angles of the incident wave. Fig. 6.4 shows the 

lower bound on the MSAE computed using N = 15 frequency samples. In the case of the 

array on the UAV, the frequency-swept measurements improved the estimation accuracy. 

In the case without the multipath, the improvement was negligible.  

The response of the antennas varies with the frequency. This variation is not the same for 

all directions, particularly for antennas in complex environments such as platforms.  
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Fig. 6.3: The lower bound for MSAE computed for a uniform linear array of seven 
monopoles mounted on the (a) Predator and (b) PEC using N = 1 frequency 
sample. The adopted SNR is 15 dB.  

    

Fig. 6.4. The lower bound for MSAE computed for a uniform linear array of seven 
monopoles mounted on the (a) Predator and (b) PEC using N = 15 frequency 
samples. The adopted SNR is 15 dB.  

 

When the number of frequency samples is increased, the CRB decreases because new 

pieces of information are added. However, this decrease is not the same for all DOAs 

because the response of the array on the UAV changes with both the DOA and frequency. 

In contrast, the radiation pattern of the array on the PEC changes with the frequency in 

almost the same way for all directions. (The coupling among antennas is the only source 

of this spatial variation.) Hence, in this case the CRB almost uniformly decreases for all 
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DOAs with increased frequency samples.  

We further investigate the influence of the multipath by performing an ML estimation of 

the unknown parameters. We compare two measurement models for the array of 

monopoles on the UAV: (a) a model that takes into account both the co-polar and the 

cross-polar components of the array response (full model) and (b) a model that neglects 

the cross-polarization (co-polar model). The measurement matrix for the full model is H 

given by (6.10), and the measurement matrix for the co-polar model is θH  defined in 

(6.10). We use MDL (6.28) in deciding between these two models.  

We compute MSAE numerically using Monte Carlo (MC) simulations and assuming 

N = 15 frequency measurements with SNR = 15 dB. In Fig. 6.5, we present results 

obtained by 200 independent numerical experiments. If the cross-polar component of the 

received signal is not significant, the co-polar model (white circles) yields smaller MSAE 

than the full model (red squares). This situation is illustrated in Fig. 6.5a for °<φ 70 . 

Otherwise, the full model yields better results.  
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(a) 

 

(b) 

Fig. 6.5: Square root of MSAE for (a) °=θ 50 and (c) °=φ 50 . Results are obtained by 
200 independent Monte Carlo simulations with dB15=SNR . 

6.5.2 Two sources 

We now study the capability of the system with multipath to resolve two sources with 

closely spaced angles of arrival. In this case, we define SNR as the ratio of the average 

received power from one of the sources and the noise power. We suppose that the signals 

have equal power. 

We first consider the scenario in which the number of the signals is known in advance 
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( 2=K ) and compute the theoretical resolution by means of the CRB. In this approach, 

two signals are said to be resolvable in some parameter 21 δ−δ=δ  (e.g., frequency or 

angle) if  

 ( )
21

,max2 δδ σσ>δ , (6.34) 

where 1δ  and 2δ  are the parameter values corresponding to the first and second signal, 

respectively; and 
1δσ  and 

2δσ  are their respective standard deviations determined by the 

CRB [133]. Since both the azimuth and elevation of each signal are unknown, we define 

the resolution as 

 ( ) ( ) ( )( )222CRB111CRB2211 ,MSAE,,MSAEmax2,,, φθφθ>φθφθδ , (6.35) 

where ( 11,φθ ) and ( )22 ,φθ  are the respective DOAs of the first and the second wave, and 

the 1CRBMSAE  and 2CRBMSAE  are the respective Cramer-Rao bounds on the MSAE of 

the first and the second wave. We determine these bounds assuming that both waves are 

present. In this way, we take into account the correlation between the estimation errors. 

Performing computations (6.35) for every incident direction, assuming 12 θ=θ , 

δ+φ=φ 12 , we obtain that ( )( ) °=φθφθδ 8,,,max 2211  is the worst-case theoretical limit 

for resolving two waves using the array on monopoles on the UAV, under the given SNR. 

We show in Fig. 6.6 the CRB for the MSAE of the first wave for °=δ 8 . Due to the 

increase of the number of the unknown parameters, the MSAE is now larger than the 

MSAE obtained for a single incident wave. The results for the second wave are similar. 
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Fig. 6.6: Square root of lower bound for MSAE of the first wave as a function of its 
DOA. The DOA of the second wave is 12 θ=θ , ,12 δ+φ=φ  °=δ 8 . 
Computations are performed for the array of monopoles on the UAV with 
SNR = 15 dB and N = 20. 

We now consider the scenario in which the number of the waves is unknown. In this case 

we study the resolution of the system empirically by means of MDL, letting MDL decide 

whether one signal or two signals are present. (At reasonably high SNR, the probability 

that MDL will decide that three signals are present or no signal is present is negligible). 

Hence, MDL chooses among six hypotheses: one co-polarized wave; one fully polarized 

wave; two co-polarized waves; two fully polarized waves; two waves, with the first being 

co-polarized and the second being fully polarized; and two waves, with the first being 

fully polarized and the second being co-polarized). The approximate success rate of MDL 

is [133] 

 ( ) ( )∑ ∑
= =

δ=≈φθφθδ
2/

1

2

1exp
2211d

exp

|ˆ1
,,,;

N

i K

i KKI
N

P , (6.36) 

where K is the actual number of waves, K̂  is the estimated number of signals, expN  is the 

number of experiments, and ( )KKI i =ˆ  is one if KK =ˆ  in the ith experiment and zero 

otherwise. For the first half of the experiments we assume only one incident 
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signal; for the second half we assume two incident signals. The empirical resolution is the 

value of ( )2211 ,,, φθφθδ  for which ( ) α=δdP , where α  is the desired success rate. As an 

illustration, we present in Fig. 7 the empirical resolution limit for °=φ 201 and .601 °=φ  

The results were computed in 200 experiments for 99.0≈α . In the same figure we also 

show the resolution predicted by the CRB. However, in the latter case the number of the 

waves is assumed to be known. 

 

Fig. 6.7: Resolution of the array of monopoles on the UAV computed by CRB and 
MDL with dB15=SNR  and N = 20. 

6.6 Experiment 

We show experimentally that exploiting diffraction allows estimating both azimuth and 

elevation of the incident signal, using a uniform linear array of monopoles at a single 

frequency. Since we did not have a UAV Predator, we used a square metallic plate as the 

mounting platform. The side length of the plate was 1 m. The array was located along the 

diagonal of the plate as illustrated in Fig. 6.8. As in the case of the UAV, the only source 

of the multipath for the array in the experiment was the diffraction. The parameters of the 

array, except for the number of sensors, were the same as the ones used in Section 6.3. 
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For technical reasons, the array in the experiment had eight monopoles instead of seven. 

We took a folded dipole as the unknown radiation source. The distance between the feed 

of the folded dipole and the center of the plate was approximately 2.2 m. We acquire the 

measurements in the frequency domain with the Agilent E5062A Vector Network 

Analyzer. 

 

Fig. 6.8: The receiving array on the plate and the adopted coordinate system. 

We used phase conjugation [81] to compute the signal spectrum from the measurements, 

 ( ) ( ) ( )∑
=

φθ=φθ
M

m

mnmnn fVfEfI
1

* ,,,,,, rr , (6.37) 

where ( )mnfV r,  is the measured signal at the nth frequency at the mth sensor, 

( )mnfE r,,,φθ  is the embedded radiation pattern of the mth sensor at the nth frequency in 

the direction of ),,( φθ  and the asterisk stands for conjugation. The radiation pattern of the 

array on the plate (without the folded dipole) was obtained using WIPL-D Pro.  

In the experiment, we kept the zenith angle fixed at °=θ 75  and varied the azimuth so 

that °=φ 0 , °=φ 45 , and °=φ 90 . We computed the spectra at each of the frequencies: 

GHz75.0=f , GHz1=f , GHz5.1=f , and GHz2=f . We show the results in 

Figs. 6.9-11. In all considered directions and at all frequencies, the azimuth was 
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estimated accurately. Due to symmetry, the array could not resolve whether the signal 

impinged from the left or right side of its axis. However, this ambiguity could have been 

resolved by placing the array asymmetrically on the plate or by using a plate with an 

irregular shape. The estimated elevation was smaller than the real one at lower 

frequencies (f = 0.75 GHz, f = 1 GHz). As the frequency increased, the electrical size of 

the plate became larger and the error diminished.  

In Fig. 12, we show the direct path (denoted by r) and the diffracted paths (denoted by r1 

and r2) for one of the sensors, computed using the geometrical theory of diffraction 

(GTD). The diffraction points (white circles) behave as variable parasitic elements that 

transform a linear array into an equivalent spatial array. In this way, it is possible to 

resolve both the azimuth and elevation using single-frequency data, unlike the case for 

which there is no diffraction (i.e., the array is mounted on the PEC). According to 

Keller’s diffraction functions [127], the magnitude of the diffracted field varies as 

,//1 λd where d is the distance between the diffraction point and the sensor, and λ is the 

free-space wavelength at the operating frequency. Because of this slow decay, the 

effective aperture grows with the electrical size of the plate, as in the case of a standard 

spatial array. However, if the electrical size of the plate becomes very large, the 

diffraction becomes negligible, and the performance of the array becomes the same as for 

an array on the PEC.  



 129

  

(a) 

  

(b) 

  

(c) 
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Fig. 6.9: The experimental verification of the 3D localization by means of diffraction. 
( ,90°=φ °=φ 75 ) was computed using single-frequency measurements at 
(a) 0.75 GHz, (b) 1 GHz, (c) 1.5 GHz, and (d) 2 GHz. 
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Fig. 6.10: The experimental verification of the 3D localization by means of diffraction. 
( ,45°=φ °=φ 75 ) was computed using single-frequency measurements at 
(a) 0.75 GHz, (b) 1 GHz, (c) 1.5 GHz, and (d) 2 GHz. 
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Fig. 6.11: The experimental verification of the 3D localization by means of diffraction. 
( ,0°=φ °=φ 75 ) was computed using single-frequency measurements at 
(a) 0.75 GHz, (b) 1 GHz, (c) 1.5 GHz, and (d) 2 GHz. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.12: Diffracted rays and direct ray for DOA: (a) ( °=θ°=φ 75,90 ), 
(b) ( °=θ°=φ 75,45 ), and (c) ( °=θ°=φ 75,0 ). 

6.7 Summary 

We have demonstrated that the multipath due to the interaction between sensor arrays and 

the hosting platform enables 3D direction of arrival estimation with uniform linear arrays 

even at single frequency measurements. We considered, theoretically, the array mounted 

on the UAV Predator and, experimentally, the array mounted on a finite conducting plate. 

In both cases, the diffraction of the incident signals from the platform was the only source 

of multipath. In this way, the sensing arrays mimic the human auditory system, which 

exploits diffraction from the head.  

We used the Cramer-Rao bound to compare the performance of the array with and 
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without the platform. The response of the array on the platform was similar to the 

response of the array consisting of driven elements (sensors) and several parasitic 

elements (diffraction centers). These parasitic elements enlarged the effective size of the 

sensing system and improved the ability of the system to resolve closely spaced signals.  
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Chapter 7  

Conclusions 

In real-life scenarios, targets are often obscured and can be inferred only indirectly by 

means of electromagnetic sensing. We used stochastic and deterministic methods to infer 

the unknown targets and their environment. To achieve better results, we employed 

physical models of the electromagnetic interaction among the targets, surroundings, and 

sensing arrays. Below, we summarize our key contributions. 

7.1 Contributions 

Using jump-diffusion algorithm and prior knowledge of typical building layouts, we have 

developed an iterative method that identified the number and positions of inner walls. To 

reduce the unknown parameter space, we regarded the interior as a collection of unknown 

rectangular walls. By means of stochastic geometry together with a physical model that 

accounted for the scattering among the walls, we optimized the characteristics of the 

walls. The method employed a wide frequency bandwidth; it used low-frequency 

estimates to initiate more accurate estimation at higher frequencies. The higher 

frequencies were chosen in an adaptive manner, based on the convergence rate in the 
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previous iteration. Efficient utilization of the frequency spectrum, as well as the inclusion 

of the multipath, made it possible to estimate building layouts using only a few 

frequencies. 

To address the estimation of targets hidden behind reinforced concrete walls, we studied 

the influence of the reinforcement on target imaging. Unless the frequency was 

sufficiently high (depending on the distance between adjacent bars), neglecting the wall 

response yielded poor estimation results. We improved the estimation significantly by 

modeling the waveform distortion caused by the reinforced wall. We obtained focused 

images that accurately represented the contours of the targets. The algorithm was robust 

to ambiguities in bar parameter values. 

Using the equivalent source method and 1l  regularization, we derived a two-step method 

that estimated the number and shape of PEC targets concealed in a dielectric medium The 

method determined positions of the equivalent sources close to the targets’ contours, thus 

revealing their shape. Because of 1l regularization, a single step algorithm recovered only 

pieces of the targets’ contours. Hence, we used the equivalent sources found in the first 

step to enlarge the reconstructed areas in the second step. By means of mirroring theory, 

we designed an experimental model to verify our numerical results. The agreement was 

excellent. However, a metal enclosure in the experimental model, created multiple 

scattering, so the induced currents on the targets were not sparse. Because of the 

enclosure, the induced currents varied significantly with the frequency. Hence, the 

images obtained at different frequencies recovered different parts of targets’ contours, 
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unlike the case without the enclosure.  

We have demonstrated that the multipath from sensor-array platforms allows 3D 

direction finding with uniform linear arrays, even with single-frequency measurements. 

To the best of our knowledge, the scattering from platforms has not been utilized in 

estimating direction of arrival. In contrast, the utilization of the multipath from the target 

surrounding has been widely studied. However, the multipath close to the sensors is 

known in advance, unlike the multipath close to the targets, which is only partially 

known. We used the Cramer-Rao bound to investigate the influence of the multipath. 

Moreover, we verified our approach experimentally by considering an array mounted on 

a finite conducting plate.  

7.2 Future work 

In future work, we will extend our models to accommodate 3D space. Besides being 

more accurate, 3D models efficiently use polarization diversity, which is particularly 

important in cluttered environments. 

We will adapt the sparse localization method for through-the-wall applications, applying 

a hybrid approach that combines electric field integral equations and geometrical optics. 

In this way, we will utilize the efficiency of geometrical optics, necessary for wall 

modeling, and the accuracy of the integral equations, helpful in target modeling. We will 

also introduce the equivalent magnetic sources. By using both types of equivalent 

sources, we will be able to infer the targets’ material in addition to their shape. 
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We will also study the application of sparse electromagnetic imaging in scenarios with 

pronounced multipath. 
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Appendix 

In the appendix, we describe in detail the transformations from the jump-diffusion 

algorithm used in Chapter 3: 

• Birth: A new wall is added to the current configuration. The parameters of the 

new wall are drawn as [ ]maxmin ,Unif~' xxx , [ ]maxmin ,Unif~' yyy , 

[ ]maxmin , Unif~' lll , where xmin,max, ymin,max, are the boundaries of the building, and 

lmin,max are adopted limits for the wall length. For the m4m4 ×  building we set: 

m2maxmin, ±= x , m2maxmin, ±= y , lmin = 0.5 m, lmax = 2 m. 

• Death: A randomly selected inner wall is removed from the current configuration. 

• Translation: New coordinates of the center of the wall are drawn as 

( )ixNx x /,~' 2σ , ( )iyNy y /,~' 2σ , where x, y are the current center coordinates, i is 

the frequency step, and yx σσ ,  are the adopted constants. We set m1=σ=σ yx . 

• Elongation: The new length is drawn as ( )ilNl l /,~' 2σ , where l is the length of 

the wall. We set m5.0=σl . 

• Rotation: The orientation of a randomly selected wall is flipped ( )'α . The 
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assumed wall orientations are °0 , ± °45 or °90 .  

• Regeneration: All parameters of the randomly selected wall are perturbed. The 

new wall parameters are drawn as [ ]maxmin ,Unif~' xxx , [ ]maxmin ,Unif~' yyy , 

[ ]maxmin , Unif~' lll , }90,45,0{Unif~ °°±α . 

• Merge: A randomly selected inner wall is merged with a nearby wall of the same 

orientation. The center of the merged wall is the centroid of the tightest rectangle 

encompassing the original two walls, and its length is drawn as 

[ ]maxmin , Uniform~' ddl , where mind  and maxd  are defined in Fig. 3.2. 

• Optimization. The parameters of a randomly selected wall ( )',',',' αlyx  are 

optimized using simplex algorithm.  

• We adopted the probabilities for the above transformations as in Tab. I, where k is 

the number of the walls in the layout ( )151 ≤≤ k . In this table, c is a constant that 

assures ∑ =
i

T ip 1)( .  
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TABLE II  
PROBABILITY DISTRIBUTIONS FOR TRANSFORMATIONS. 

Transformation 
Probabilities  

(step i = 1) 

Probabilities 

(step i > 1) 

Birth 10exp(−0.2k)c 4exp(−0.2k)c 

Death c c 

Translation 2c 2 c 

Elongation c 2 c 

Rotation c c 

Regeneration c 0 

Merge 0 2 c 

Optimization 0 c 
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