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Efficient Queries For
Quasi-Ordered Databases

Victor Jon Griswold

1. Infroduction

1.1 Background

The project leading to the work presented in this report involves the monitoring ol
distributed systems by means of observing "events” generaled by the systems being monitored.
By comparing functions of their attributes, these events are ordered in logical time and validated
against user-specified behavior constraints.[6, 7} Within the monitor, incoming events arc most
naturally treated as database tuples.* The cvent attributes correspond directly to tuple
COmponenis.

The validation and time-ordering subsystems of the monitor must frequently query the
event database. By far the most common form of these queries picks a single event V (generally
the event just received by the monitor), finds all the previously-recorded events related 1o V by
some criterion (such as "find the transmit corresponding to V, a receive™), and performs some
action on each of those events related to V.

The goal of this report is 1o find algorithms which respond efficiently to this form of

query on the event database. Towards this goal, we will make usc of a novel property of our

* To be precise, the term database refers not just to a set of wples, but rather Lo the higher-level structure which
includes the tuple set, indices used to access those wples, and other auxiliary information. In this report, though,
we will abstract somewhat and use database synonymously with "set of wples” excepl where ambigoily may
result.
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application. With most database systems, the database is relatively stable and arbitrary queries
may be posed against it. The above monitor, however, knows the exact form of each query before
any events are received. Tuples, the received cvents, are subsequently entered into the database
incrementally (starting with an empty database).* This prior knowledge of the queries to be
posed allows significant optimization of the structures used to store the database. Given the same
events, two monitor executions with different inference rules (which define which queries will be

posed) will generally use different structures to store those events,

1.2 General Problem

The monitor’s inference rules compare one event V al & lime with those events in the
database "related t0" V. The question now becomes "what relationships can be specified which
arc both useful and can be resolved efficiently?” In general, these relationships arc comparisons
between event atiributes. Consider, for example, events associated with a communications
channel. The packet identifiers for a "transmit" and a “receive" evenl may be compared 10
determine if they match. Similarly, the "sequence number” attributes of (two cvents may be
compared to decide which should have been processed first.

The first example above checks for equality between two event attribuies; the second
checks for a "less than” or "greater than" ordering between attributes. The relationships supported
for the monitor’s database queries are conjunctions (combinations via 'and’) of such checks, If
disjunctions ("or’ combinations) are needed, one may simply pose more than one query and
combine the results. **

Many, if not most, of the queries posed by the monitor are done in order to determine the
temporal (time) orderings between a newly-recorded event and those events already known to the
monitor. Time imposes a transitive ordering between events; if A occurs before B and B occurs
before C, A occurs before C. Suppose the monitor has just been notificd of C and is aticmpting
to order its already-known events with C. A database query could be posed which resolves 1o
both A and B. The inclusion of A in this result, however, is redundant; the fact that A occurs
before C may be inferred through other information and does not need 1o be known explicitly.

Though the inefficiency for this example is small, consider what might happen when monitoring

* Note that queries are interleaved with these additions.

*k This involves reducing the original query Q to disjunctive normal form and posing separate queries for cach of
Q’s conjunctive terms,
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a system which generates thousands of events. Given the format of the relationships in the
monitor’s database querics, any relationship involving one or more "less than" or "greater than"
checks will be transitive in this manner and thus might produce query resulls with redundant
information,

For this reason, it is deemed a monitor efficiency requirement that a query Q(V) (i.e. "find
those events related to V according to relationship Q") not return events the relationship of which
may be inferred through an additional posing of  with some other event in the result of Q(V).
Stated another way, assume that U and W are in the result of Q(V). This implies that U can not
also be in the result of Q(W), since, if it were, the inclusion of U in Q(V)’s result would be

redundant through transitivity.

1.3 Definitions

As stated above, the monitor treats events as database tuples and event attributes as tuple
components. This allows us to formally define the query problem using more traditional database
terminology. We also generalize the query format to allow comparisons of functions of tuple
components (such as "time + 5 milliseconds™) in addition to just the component values themselves.
Of course, the monitor can (almost always docs) pose many different querics on the database, each
complying with the format below.

Q. Given a tuple v, a set of tuples D, and a relation precedes (denoted by "<’) which

imposes an irreflexive partial ordering™ on the tuples in D, determine the maximal elements of

the set of D’s tuples which precede v. This query Q(v) is defined as:

Q(v)={reD} ey }

AueD {1<u<v]

where: D is a set of tuples, a database; d = 1D

< is an irreflexive partial order relation between tuples

Precedes is defined in terms of comparisons between functions of tuple components.
These comparisons may involve the equality or the total (linear) ordering of [unction values. The

complete definition of precedes is:

* An irreflexive partial order is a quasi order, meaning that A < A is false. Though quasi order is the proper
description of the ordering we require, few people regularly use this term. Throughout the remainder of this
paper, partial order will be used for quasi order excepl when ambiguily may otherwise result.,
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txv= FI(O R Gi(») A F0 R, G, A . A F i R, G(»

where: ¢, vare tuples; te D
there are a finite number & comparisons making up the relation
foreachi,1<i<k
Let C; be a set whose elements can be partitioned into equiva-
lence classes by a relation "=’ and might additionally be
totally (linearly) ordered by a relation *<'*
F.otple = C;; G;: tple = C;

R; is one of = or # over C,;, or <, >, £, or 2 if applicable®*

Each "FRG” group above is called a factor in the definition of precedes. Each F; and G;

1

can be any function of the designated type. Factors which involve '=" or '#' comparisons arc

called equivalence factors; those which involve *<’, ">, ’<’, or *>’ are called total-order factors.

For convenience, we define the relation follows, denoted by >, in terms ol precedes. The
stalement "¢ < " is equivalent to "u > +." Tuple components are designated by dotied notation
on a tuple; for instance, t.c; is the first component of .

To illustrate such a precedes relation, consider a database of 2-tuples over the integers.
We wish to define ¢ < v = (r.c; = v.¢y) A (t.c; < v.¢y). There are two faclors (k = 2), the first of
which is an equivalence factor and the second a fotal-order factor. Cy, Fy, R;, G, are I, ¢;(),
=", and ¢; (), respectively, u the tuple parameter of the functions. Likewise, Cy, Fy, R,, G, are

I, co{uy, ’<’, and c4(10), respectively.

1.4 Primary Issues

Three main issues are distinguished in the resolution of this class of queries. This report
devotes a section towards addressing each of these.

The first problem is the efficient evaluation of all equivalence factors of a precedes
relation. Though the solution presented is relatively straight-forward, it organizes a framework

for the evaluation of total-order factors and presents an enticing optimization problem.

* Allowing partial orders was investigated, but difficulties were found with the convergence of several search
strategies when applied to “realistic" partial orders.

ok We deline #, >, %, and 2 according to their classical meanings in terms of < and =.
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The second issue is, naturally, the efficient evaluation of all total-order factors of a
precedes relation. Each relation can include the conjunction of several total-order factors.
Though a single total order is trivial to search for maximal elements (remember the query’s non-
redundancy requirement), the conjunction of multiple total orders results in a partial order which
can be difficult to search for maximal elements.

The third issue concerns equivalence factors and multiple non-identical queries over a
database. When several queries are posed, it is desirable o find information common between
those queries so that some evaluation need only be performed a single time. This report addresses

the use of equivalence factors common between queries to form the basis of such optimizations.

1.5 Orthogonal Range Queries

An orthogonal range query[161[3]1[11] over D, a set of k-tuples, is a query delined as:

te D
a;S1.c;Sb;

More simply put, an orthogonal range query is a multi-dimensional (or mulii-keyed)

RQ(D, al..bl, az..bz, -y ak..bk)'—' {t

search across a database in which a range of values for each of the dimensions (components, keys)
may be specified.

The class of queries Q is similar to a class of orthogonal range queries, with the exception
of the "maximal elemenis” requirement. Thus, range query techniques [requently are either
incorporated directly into the algorithms presented in this report or are used as a standard for
comparison. Since they will soon be important, we take this opportunity (0 examine the time and
space requirements of orthogonal range queries.

Let m = the maximum number of distinct values in any tuple component. The search time
for the best orthogonal range query algorithms is O((loga’)"'l), k2 2. Insert/delete time is
similar, O((log d)"). Space requirements are O(d (logm)"'l). As can readily be seen, both time
and space considerations make these algorithms useful only for small dimensionalities

(realistically, dimension 2, maybe 3, due 10 space considerations).
Appendix 5.2 describes how a search is performed using common range query data

structures.
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2. Equivalence Factors

2.1 Requirements

For a single query Q, equivalence factors might be handled by concatenating the factors’
C; values into a single key and using an ordinary search tree, resulting in O(logd) resolution
time*. The goals of this report, however, include (he efficient resolution of a set @ of queries,
q = |2/, not all of which employ the same equivalence factors. Queries Q, and Q, in @, for
example, might have three equivalence factors in common, while Q; and Q5 might have none in
common. Furthermore, when selecting a resolution algorithm, one must keep in perspective that
the algorithm must facilitate efficient maintenance of the data structurcs necessary for query
resolution, given an incrementally constructed database D.

It is the multi-dimensional aspect of this problem which made algorithms for orthogonal
range queries[16][3][11] appear promising. Each equivalence faclor in the elements of @ could
be represented as a separate dimension to the range query. ‘To resolve a particular query Q € O,
cach factor i present in Q would be searched for the single C; value significant to Q, while each
factor in some element of @ but not in Q would be searched along its entire range of values
(effectively "wildcarding” that factor). Though range queries are capable of far more elaborate
searches, the query problem Q has no obvious use for them.

Let the number of equivalence and total-order factors in a query be distinguished by
defining k, = the number of equivalence factors and k, = the number of total-order factors
(k = k,+k). When discussing sets of queries, it is useful to define K, = the number of distinct
equivalence factors across all Q € Q. Finally, considering only the equivalence factors of the

queries in @, let m, = max {C;/D|, where C./D is that subset of C; induced by application of
1<K,
F;over the tuples in D (i.e. the number of unique C; values actually used when evaluating querics

over D). Given the above "brute force” range query approach, the search time for the best
- K
orthogonal range query algorithms is (Eogd)K“ 1. Insert/delete time is similar, (logd) ©, and
. K1
space requirements are d(logm.) © .
If Q needed the full power of range querics, this would be considered good. The fact,

however, is that Q does not. The data structures and algorithms chosen for use in query

* For brevity in the remainder of this report, all time and space complexity measurements shall be assumed Lo be
asymptotic complexities ("0™) unless otherwise staled.
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evaluation are derived from those used for orthogonal range queries via the two-stage reduction
presented below. This reduction yields search and update times which remove the exponential
dependency on K, at the cost of additional multiplicative factors. Space cost is similarly

improved.

2.2 Approach

The first optimization to range queries derives from the "one vatue or all" nature of the
searches across each factor. Range queries are designed to allow any range of values to be
sclected: that is the purpose of the logm, auxiliary tree levels for each dimension, as shown in
Appendix 5.2. If onc only requires single-value or all-value searches, however, just the top and
bottom auxiliary tree levels are required. This corresponds to the auxiliary trees for the entire
current database subset and those for the leaves of each subset’s dimension’s search tree.

The time and space savings for this first reduction are already appreciable. Search time
and insert/delete time decrease o O(K logd) and O(ZK“_1 logd), respectively. Space require-
ments diminish to 0(2K““1d). There are still, however, {actors in these measures which are
exponential in K,. The second reduction removes these complexity aclors at the cost of requiring
multiple query search structures, perhaps one per query, instead of one structure sufficient for all
queries.

The K,-exponential complexity factors occur because the range query data structure must
lake into account two possibilities for each dimension. The first is that a given query will indeed
search on that dimension; the second is that a given query will "ignore" that dimension.
Considering the application domain of a query sel © (monitoring a distribuicd system), it appears
quite likely that there will be a large number of equivalence factors, but that only a few faclors
will be present in each query. For this case, a substantial majority of dimensions will be ignored
when resolving each query.

The second optimization, thercfore, constructs a separate search dala structure for each
Qj e (. Each of these structures is of dimension & ;' not K, and is concerned only with
searching across the factors actually present in QJ,-. The "all values” auxiliary trees are no longer
needed, so each dimension has only a single level of auxiliary trees — the level [or each distinct

value of the dimension.
Figure 1 shows an example of the structure used for resolution of a query with three

equivalence factors (three dimensions), the domain of each factor being values in the sets A, B,
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A

A=11,2,3,4}

B=1{5,6,7, 8} {1, 7, B {2,nM

J = {9, 10, 11, 12} (€, 5, 0} {2, 6,7}

Figure 1. Equivalence-Factor Search Data Structures

and J. Tree roots are shown in boxes. At the root of the base tree, a tuple may have any value
for any of the three factors. The base tree sorts by the first dimension, so it has one leaf for each
value in set A. For each tree in the first level of auxiliary (rees, the tuples in that tree share a
property similar to those in standard range query data structures. In a standard structure, the first-
dimension values of those tuples would all lic in a certain range. With this modified structure,
that range is a single value. The first level auxiliary trees all sort by the sccond dimension and
thus have one leaf for each value in B (so long as there is a tuple with that value, of course). The
third dimension is correspondingly handled by the second level of auxiliary trees.

Searching this structure is straight-forward. For each query, scarch the base trec by the
first factor. Next, search the first-level auxiliary tree just found (leaf of the base tree) by the
second factor. To finish, search the appropriate second-level auxiliary tree by the third factor.
The end of this search is a leaf of a second-level auxiliary tree, the tuples at which comprise the
result of the query.

Since the data structure used by the first range query optimization is used for all queries,
care must be taken when comparing it to the second optimization, which requires a separate
* structure for each query. Search time is still in terms of a single query, but insert/delete time and
space requirements must be stated in a manner applying to all queries. Since not every query can
be applied to each tuple ¢ added to D, g(¥) is defined as the number of queries Q in Q for which
t is in the domain of every factor of Q. Let us call this set of queries Q). Generally, g(f) will
be much less than q. We also define K (») in terms of Q(z). Slightly different from K, K. (1) is

the maximum k, for any QJ- in Q(2), not the total of all k, .
7 }
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The second optimized algorithm has a search time of O(kcj log(d /kcj)) for query Qj
(time just slightly lower than the obvious). Time to insert or delete a tuple ¢ is
O(q() K, (1) log(d/ K. (1))). Both of these occur when |C;} is the same for cach dimension (i.c.
all dimensions have substantial search time) and an O(logm,) search through each dimension is
forced by having single tuples rooted in all the leaves of each level’s tree structure except for the
leaf corresponding to the that level's search key, where all the remaining tuples are rooted for the
next dimension. Space cost for the algorithm is at absolute worst O(gd max X (D), which occurs
when |C;| = d for the first factor of every query (i.e. when tuples have uﬁi‘aue first-factor values;
all auxiliary trees have only a single node, but there must still be &, auxiliary tree levels). This
measure is terribly pessimistic since it assumes that ¢(¢) = ¢ for all z € D and uses the largest
K (1), as well.

Comparing the first and second optimized query algorithms, search time for the second,
O(kejlog(d / kej)), is distinctly better than the O(K logd) time required for the first. The
O(q()K (D log(d /K (2))) insert/delete time for the second algorithm becomes better than that of
our first algorithm, IZK“_1 logd, as soon as K, becomes moderately large. Storage cost for the

second algorithm, O(gd maxK (#)), also becomes belter than the 0(2K°_Ed) cost of the first
D

algorithm as K, becomes moderately large.
The only problem with the second algorithm is the waste of time and space forced by

entering each tple ¢ into g(¢) data structures. This problem, however, can be substanlially avoided
by combining the search data structures for queries with equivalence factors in common into a
single, though slightly more complex, data structure. Determining the optimal combination of

such query structures is the topic of Section 4 in this report,
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3. Total-Order Factors

3.1 Requirementis

In this section, the problem of evaluating the total-order factors of a precedes relation is
addressed, ignoring any equivalence factors. To simplify the discussion without loss of generality,
we restrict factor definitions to functions directly on tuple components (this is how precedes
relations were first introduced in the early part of Section 1). The specific restrictions necessary
for this are listed below; a query mecting these restrictions is referred 1o as a Q_t(v) query, instead
of as the general Q(v) query.

Restrictions on this section’s factor definitions:

1) all (total-order) factors use the ’<’ relalion
2) for each k-tuple ¢ = {c{, ¢5, ..., € k{), all components ¢; € I
3) foreachi, 1<i<k, C;=1, Fi(f) =tc, and G(v) = vg;

4) for all components c; and all distinct t,u € D, t.c; # w.c;

With respect to restriction 1 above, the algorithms prescnted here can be readily modified
to handle the relations ’>’, *<’, and "2, as well. Explicit handling of these other relations will
needlessly complicate discussion. Restrictions 2 and 3 simply make each factor an integer
comparison between the values of the same component of two tuples. Restriction 4 is useful both
for stating algorithms and for stating LEMMA 1 below. With algorithms, the use of distinct
component values obviates the need for tedious list operations for cases of multiple tuples with
the same component value. With LEMMA 1, the use of distinct component values allows a much
simplified problem definition which can ignore the lengthy bul non-substantive case analysis
involved when components of two tuples have the same value.

Given these restrictions, an example precedes relation ¢an now be defined as:

t, v are 2-wples {x, y)
t<v=E fx<vy A LY < VY
instead of
Lve ({,y|xelayel}
t<v=Ji[ISiS2 AF (<G A Bj[1£j$2 A Fi(n>G;(v]
Fi=tx;Gi(v)=vx
Fyy =ty ; Go(v) = vy
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without misunderstanding. This relation is the partial order which results when ¢ < v means that
both components of ¢ are less than the corresponding components of v (or, more verbosely, that
no z.c; equals v.c;, at least one r.c; is less than v.c;, and no t.¢; is greater than v.c;).

In fact, the result of imposing any ordering relation of this class across all the k-tuples
in a database D, k. =2, is a partial order of those tuples (k=1 results in a trivial total order). For
example, suppose 3-tuples of type {x, y, z) with ordering relation < defined as:

t<veE X<V A LY<SVY A LZ<V2
And suppose the database is;
D = {{2,1,5), {3,3,3), {5,5.4), {4,6,8), (6,2,2), (8,7.6)}.

Figure 2 shows a representation of D in the right-hand diagram. A data struclure
analogous to this is used by all the Q _t algorithms below and would cxist for cach query in Q
(thus a given tuple ¢ is referenced in g(#) structures). The dotted vertical lines represent the set
of values for components x, y, and z. Each tuple is shown as two solid (non-vertical) lines
connecting its three specific component values. With this type ol diagram, it is casy to visually
determine which tuples precede each other, which follow, and which are incomparable or "cross”
cach other, The graph G in Figure 2 shows the transitive reduction of the partial order imposed
on D by <. As defined in Section 1, the resolution of the query Q(v) must include all tuples
t € D such that t < v and for which there does not exist a tuple u € D such that ¢ < u < v.
Simply put, Q(v) is the tails of all edges with head v in the graph G. This means:

QG = {} Q) = {5} Q) = {}
Q) = {} QUy) = {4, 1} Q) = (1, 13, 15}

Note that Q(z5) does not include #,. That ordering is implied through transitivity.

We now investigate three approaches to resolving Q _t queries. The first algorithm
employs classical search techniques. The second is primarily an investigation into the possibility
of resolving a query on a tuple v by using data generated during the resolution of that query on
previous tuples (i.e. an incremental approach). The last algorithm resolves a Q_t query through
use of a series of orthogonal range queries. Each of these three algorithms makes use of the
observation that all tuples ¢ in the resolution of Q_t(v) "cross" cach other when viewed as in the

right-hand diagram in Figure 2 (more formally, the tuples are incomparable).

LEMMA 1. Given tuples 7, 7, € Q_t(v), there cxists a component ¢; such that r.¢; < t..c;

and there exists a component ¢; such that t.¢; > 1..c;
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D = (=(2,1,5), t,=(3,3,3), £s=(5,5.4),
2,=(4,6,8), 15=(6,2,2), £,=(8,7.6))

N O R Y 7. T = N B}

1

Figure 2. Precedence Resulting From Three Components Each Ordered By "<’

PROOF. This is direct from the definitions of  and Q_t. If there is no
component ¢; 3 £.¢; < t.¢;, it means that £, > ¢, (remember: component values are
unique in Q_t) and thus z, could not be an element of Q_t(v) duc to the
"Aue D [t<u<v]" clause of Qs definition. Similarly, if there is no component
Cj 3 £.0; > 1o.Cjy 1, < £ SO £, could not be an clement of Q_t(v).

J
Q.ED.

3.2 Non-Incremental Algorithm

Figure 3 shows the first Q_t algorithm, Q_t_NI, using the Pascal-like notation described
in Appendix 5.1 and introduced in [6, 7). As can be seen in the declaradons, tuples are ireated

as simple arrays of integers and the columns in the right-hand diagram of Figure 2 are recorded
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constanis
k, : natural := the number of (total-order) components in a tuple;

types
tuple = array [1..k] of integer;
C_node = record
val : integer;
t:  Auple;
end C_node:

globals
C : array [1.k&] of srt_set of C_node key val;

function next_candidate( : natural; bound : wple) : Auple;
candidate : AMuple == Clf]prev(}; /f the tple below the latest one found on C[J]
begin
while candidate # null andif candidate® « bound do  // make sure candidate is admissible
candidate := C[{].prev(};
endwhile;
return candidate;
end next_candidate;

function Q_t_NI(v : tuple) : lst of *uple;
Qlist ; list of Auple := [J;
candidate : ~tuple;

by @ Muple; {/ inspect all tuples with component valucs between v and fy
i@ natural; /f the tuple component on which Q_t is working
begin

ty = CI1][vI1]]-4 i Find the first wple < v whose ¢; value is less than
ty = next_candidate(l, v); // that of v. All other tuples put into Qlist will "cross” ry.
if &y # null then // make sure there is at least one tuple < v

Qlist += #;

for [ in [2..k] do

candidate = C[{}[v[{]]—1; /1 find the first tuple < v with ¢; between v.c; and &.c;

candidate = nexi_candidate(i, v};
while candidate + null andif candidate[] > #[¢] do /1 examine all such admissible luples
if Aue Qlist [candidate® < u~] then  // make sure candidate is maximal
Qlist += candidate;
endif:
candidate := next_candidate(i, v); // next admissible wple
endwhile;
endfor;
endif;
return Qlist;
end Q_t _NI;
Figure 3. Query by Total-Order Factors (Non-Incremental)
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as sorted sets* of {integer, Muple) pairs in the array C. Intuitively, each C[{] corresponds to the
"used" component vatues of set C;. Since values of a given component are unique across tuples,
the nodes in each C[{] point to every tuple in D exacty once. Because the example from Figure 2
will be referenced frequently, specifically Q(z), Figure 4 shows the contents of C for this D.

The auxiliary routine next_candidate should be explained before proceeding with the
discussion of Q_t_NI. Next_candidate "filters out" those tuples which can not, by definition, be
in Q_t(v) because they do not precede v, Specifically, next_candidate retumns the next wple
which both precedes v and has c; less than that of the "current” tuple. This is done by searching
down C[/] from the current value until some value is found whose associated tuple precedes v.
For instance, if one were evaluating Q(t;) and had just inspected # itself along component 2,
next_candidate(2, i5) would skip over ¢, because ¢, + t; and would go on 1o relum ;.

The approach taken by Q_t_NI is to find a single tuple which is in Q_t(v), then to make
use of the observation in LEMMA 1 that all other tuples in Q_t(v) musL cross that "seed” tuple.

Step by step, the algorithm proceeds as follows to resolve Q_f(v):

o Find a seed tuple which is known to be in Q_t(v). This tuple is called ty, and
is the tuple preceding v which has the highest ¢, value. It is found by scanning
down C[1] for decreasing values of Cy, starting at v.c; (i.e. f5; < v and no tuple
can be between y and v).

® Find all wples which both precede v (are admissible) and "cross” ¢y, as described
in LEMMA 1. These tuples are then added to the query result list, Qlist. They are

found by scanning, down each component {, for tuples whose ¢; value is belween

D = [t1=(2,1,5), [2*"-"*(3,3,3), r3=<5,5,4>,
I4=(4,6,8), f5x<6,2,2>, t6=(8,7,6>}

C={
{<8’ t6>v (6‘ fs), <51 t3)’ (4s I4>’ (3: [2), <21 [1>}:
[(7s f6>= <61 I4), (51 [3)! <3? [2>1 (2’ t5>’ (1’ [1>},
[(8? td)a (61 [6>5 <5= t1>’ (41 t3>: (3! [2)1 (2: [5>]-

)

Figure 4. Example of Q_t_NI Data Structures

* Specifically, threaded AVL trees[8][15] are used.
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those of v.c; and ty.c; (note: this decreasing-value scan is important for proof of
the algorithm). Any such tuple, Iet us say candidate, which precedes v must
cross ry for two reasons. First, candidate does have a ¢; greater than ry.cp.
Second, candidate can not have every ¢; grealer than fy.c; because £y has the

highest ¢, value of any tuple preceding v. Thus, candidate crosses fy.
® Filter out those tuples which violate the "AueD [t<u=<v]" clause of Q’s

definition. This is done on a per-tuple basis, before the tuple is added to Qlist.

We now show how Q_t NI operates on the example from Figure 2, Q(%). The first
action taken by Q_t_NI is to find #y. Q_t NI finds 75.cy, 8, then scans down the values of ¢,
until it finds the first tuple #y < ;. This tuple is 5. Q_t NI next goes into a component-
scanning loop. It inspects the tuples associated with values between 7 and 2 on ¢, (that is,
between fg.c and ts.c,), and then the tuples associated with values between 6 and 2 on ¢4 (4.¢5
and fs5.c4).

When scanning ¢,, Q_t NI first encounters ¢, but skips over that tuple (in
next_candidate) because it is inadmissible — it does not precede ;. Q_t_NI then encounters
t, finds it admissible, and adds it to Qlist. The last tuple encountered in the ¢, scan is £,. This
is not added to Qlist, even though it precedes z;, because it also precedes 3 which is already in
Qlist. The first tuple encountered in the scan of ¢4 is #;, which is added (o Qlist. After that, #;
is encountered a second time and not added to Qlist since it is already there. Finally, & is
encountered again and not added to Qlist for the same reason as before.

Update of the Q_t NI data structures when adding a new wple ¢ 1o D (which Q_t NI
only accesses indirectly through tuple pointers) requires the insertion of the values of cach of s
componenis into the corresponding C[i] sorted sets (scarch trees). It is for this update operation
that sorted sets are used in C instead of lists. While list traversal would be slightly faster than
thread traversal during the down-scans of the valucs in each C[i], sorted scts are distinctly more

efficient than lists when updating each C[{] with the value [rom a new tuple.

3.3 Proof and Analysis

The proof of Q_t NI, as for other algorithms returning sets, has two obligations. First,
it must be shown that Q_t NI never returns tuples not permitled by the definition of Q_t.

Second, it must be shown that Q_t NI returns all tuples required by the definition of Q_t.



Efficient Queries For Quasi-Ordered Databases 17

Proof of the first obligation is itself in two parts. Part 1 shows Lhat no tuple ¢ is added
to Qlist such that Jue Qlist [¢ < u], and Part 2 shows Lhal no tuple ¢ is added to Qlist such that
due Qlist [ < ¢]. Part 1 derives from inspection of _t NI which reveals that all tuple additions
to Qlist are guarded with this particular invariant. We demonstrate Part 2 by contradiction. If
1 < t, the value of every component in ¢ must be greater than that of the corresponding component
in u. Candidate tuples to be added to Qlist arc chosen during a descending scan of component
values. This contradicts the possibility that u < ¢: since ¢ is a candidate for addition to Qlist after
u was added, at least one of r's components must have a value less than that of the corresponding
component in ¥ — somehow, 1 was encountered first, but it could not have been.

To begin the second proof obligation, it is known that ry € Q_{(v) because both z < v
and there is no tuple 4 € D between ty and v. By LEMMA 1, therefore, every other tuple
t & Q_t(v) must have the value of at least one component greater than that of the corresponding
component in #y, and also must have the value of at least one component less than that of the
corresponding component in #;. Additionally, the value of no component of a tuple r may be
greater than that of the corresponding component in v, since it is required that ¢ < v.

The conjunction of these requirements is thal every ¢ € Q_t(v) must have al least one
component ¢; such that ty.c; < L.¢; < v.¢; and another component ¢ such that Le; < hy.Cp. The ¢;
clause is guaranteed on c¢; by the way in which #y; is determined and the fact that no tuples are
added to Qlist which do not precede v. The range of component values in the ¢; clause is exactly
what Q_t_NI searches after it determines ty. During this search, the only tuples which are not
added to Qlist are those which are not allowed by the definition of Q_t. Specifically, these are
any tuples which do not precede v and any which precede some tuple already in Qlist. Thus,
given this selection procedure in Q_t NI, all tuples which should be in Q_t(v) are added to Qlist.

Q.E.D.

For analysis, it is wuseful to define r = |Q_t(v)| and
b= {t|te D A Ji[1y.c;<tec;<v.c;]}] (thatis, the number of tuples with the value of at least
one component between the values of the corresponding components of ty, and v). Q_t_NI visits
cach of the &, components exactly once by performing a scan down the appropriate C[{]. Each
of these scans can examine the values of up to b tuples’ components. Now, for every value which
is associated with an admissible tuple, that tuple will potentially need to be compared with » tuples
in Qlist. Considering that a tuple compare takes O(k,) lime and remembering that the sorted set

operations used by Q_t NI to scan each component are initiated with a single O(logd) search
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followed by a sequence of O(1) thread traversals, we arrive at an O(ktzbr + klogd) overall time
complexity for Q_t NIL

A simple optimization, however, can substantially reduce this time. Much of the above
effort is spent performing comparisons between tuples which have already been examined with
respect to either Qlist or v. By marking each tuple as it is examined, those repeated comparisons
can be eliminated (though Q_t NI must still scan over the marked tuples). This results in an
Ok (b+br+logd)) time for Q_t_NI, of which k. br is the remaining comparisons, kb is the
admissibility checks, and another kb is scanning past already-marked tuples.

Update of the Q_t NI data structures requires simple O(logd) component value insertions

into each element of C. There are &, elements in C, so the tolal update lime is O(k logd).

3.4 An Incremental Algorithm

One might notice that three categories of tuples are encountered during the component-
value scans made by Q_t_NI: tuples which cross #y, tuples which precede some tuple already in
Qlist, and tuples which cross v. Tuples in all but the first category are ignored. Can this
discarded information be used for subsequent queries?

The answer is a qualified "yes." Intition suggests that the tuples which are found to
cross v would be prime candidates for inclusion in Qlist during subsequent queries in which v
takes the role of &, This might alleviate the problem of encountering a tuple multiple times
during the component scans, since the results of a previous series of scans arc already known.

Specifically, the available information is a list of all tuples which cross v and have Lhe

value of at least one component between those of the corresponding components in v and fy.

What is needed to resolve a subsequent query Q_t(v,), for which v takes the role of I, is all

teples which cross v and for which the value of at least one component is between those of the
cotresponding components in v and v,. The cross-v tuples for a range of component values below
v is known, but what is needed is the cross-v tuples for a range above v.

If one were asking queries only of the form of Q_t(v), this situation would present a
considerable problem. For the monitor application, however, not only is the query Q_t(v) made,
but also the query Q_f_(v) is made. Q_t,(v) finds the minimal clements of the set of tuples in

D which follow v, instead of the maximal elements of the set of wples in D which precede v



Efficient Queries For Quasi-Ordered Databases 19

(Q_t(») = Q_t_(v)). The evaluation of Q_t, (v) can provide the component value range above
v which is needed for the evaluation of subsequent Q_t(v,) queries.

Figure 5 shows how the cross-v tuple information might be used. In Figure 5a, we see
that the tuple &, delimits the range of component values scanned during a Q_f,(v) query.
During this scan, t. was found to cross v. Later, as shown in Figure 5b, v, is added to the
database and we wish to resolve Q_t(v,}. The X, for the new query is v. Because of the results
from Q_t,(v), it is known that the only tuple which crosses v in the highlighted component range
between v and ty, (and thus might be in Q_t(v,)) is r,. The evaluation of Q_f(v,) does not need
to scan component values in that range.

There are several problems with this approach even before the difficulties of updating v’s
crossover list are considered. Observe in Figure Sb that ¢y, crosses v,. This, or that &, > vs,
is guaranteed to occur for every query. Otherwise, ty,, not v, would be th‘ For components
such as x in Figure 5b, this results in a wider range of some componcnt values being scanned than
is necessary. While such a ty, /v, crossing can lead to the wasteful comparison of v, with cross-v

tuples which do not precede v, (whenever ¢y, .c; > v,.c;), this only increases the time complexity

@ ' ®)

Figure 5. Example for Incremental Total-Order Query Algorithm
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of the algorithm by effectively making b larger. What does significanily increase the algorithm’s
time complexity is that, whenever #y,.c; < v,.¢; (as with components y and z in Figure 5b), too
narrow a range of component values is scanned than necessary. When this occurs, the algorithm
must find some means to finish scanning the "gaps” in the component range between v, and v.
There appear to be two approaches to remedy this problem. The first is to perform a
search for some alternative to v, let us say v/, down each component for which the range of values
covered by #, is insufficient. Cross-v' tuples would then be checked for addition to Q_t(v,).
A second approach is 1o revert to the non-incremental algorithm Q_t NI for the troublesome
components. Both of these approaches raise the possibility of double-checking cross-v tuples,
especially if the tX>/ /v’ and ty, /v ranges overlap. This means that the overalt time complexity
of the proposed incremental algorithm can be no better than that of Q_t NI, though the
incremental algorithm will have increased storage requirements and a subslantially larger constant

multiplier factor in the time complexity.

Update of the incremental algorithm’s data structures when a new tuple v is added to D
appears best performed by a 2-dimensional range query on each component. This query would
find those existing tuples whose "scanned” range includes v. A lotal of  component-range
searches is needed, each requiring Q(logd) time. Following each of these is a series of O(k)
tuple comparisons to determine if v crosses any of the tuples found in the component-range search
{(along with marking tuples to avoid double-checking, etc.). It is expecled that the number of
tuples found in each component-range search will be on the order of 4. So, the new complexity
terms required in order to update the "tuple crossing” lists do not appear to add to the time
complexity of the incremental algorithm since Q_t NI already requires comparable terms.
However, the time required to update the component-range structure with each of v’s components
has a worst-case time of 0((10gd)2) and expected time of G(logd), pulling the incremental
algorithm’s total worst-case update time at Ok (logd )2).

Such an update time can easily become appreciable, adding 1o the algorithm’s already
considerable constant-multiplier time penalty and increased storage space. For these reasons,
further investigation of the incremental algorithm described above has been suspended in favor

of the following alternative non-incremental algorithm.
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3.5 An Algorithm Using Range Query Techniques

Q_t_ORQ, like Q_t_NI, builds Qlist by examining all wples which have the valuc of at
least one component between the values of the corresponding components of v and £y, Unlike
Q_t NI, Q_t_ORQ finds that set of tuples through use of a sequence of orthogonal range queries
instead of through direct traversal of scarch tree threads. It is known that general-purpose
orthogonal range queries* are quite costly for any application requiring more than a small
number of search dimensions. Pleasantly, for the monitor application, any Q(v) usually contains
no more than two or three total-order factors. Given this, a range query approach to Q_t is
feasible.

Figure 6 shows how Q_t_NI is modified to use range querics. Q_t_ ORQ begins by
finding £y in the same manner as Q_t_NI. Note that the C search tree is nceded only for ¢; D’s
range query structure performs the role of C[2] through C[4]. For each iteration of { from 2 o
k,, a range query (whose format is specified below) is performed instead of a search through C[i].
The tuples returned from those queries are checked for admissibility** and, as in Q_t_NI, are
checked to make sure that they do not precede any tuple already in Qlist. If both conditions
hold, the new candidate tuple is added 1o Qlist.

For each component ¢; other than ¢;, a range query is issued by Q_t ORQ. As would
be expected, the range specified for c; is those values between fy.c; and v.c; For components c;
"before” ¢; (j < i), Q_t_ORQ needs to exclude tuples it has already examined and so specifies
those component values less than Ix.Cj. The only reason 1o specify values for components "afier"
¢; would be to ensure that each tuple returned by the query precedes v. Since it is faster to just
explicitly check each tuple against v than to add more specifications 10 the query, the trailing
components allow the full range of component values.

The leading components of ¢;'s range query are, excepl for the change in the range
specification of ¢;, the same as those of ¢;, ;. Because the queries have these range specifications

in common, it is possible to retain the intermediate evaluation data for ¢;’s query and use it to

* Untike the optimized equivalence-factor algorithm in Chapter 2, Q_t_ORQ must use the full power of 2 general-
purpose orthogonal range query.

Fk It is possible to avoid the comparison against v by explicily specifying the range of Lhe trailing compenents in
the range query (expressly, use ..v[i+1], ..., .v[k]}. Putting this check in RQ, however, lakes more time than
the comparison against v.
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constants
k, : natural := the number of (total-order) components in a tuple;

types
tuple = array {1..k] of integer;
C_node = record
val : integer;
{:  Muple;
end C_node;

globals
C, : srt_set of C_node key val; /{ unlike with Q_1_NI, D handles the othcr componeni(s
D : range_query structure of tuple;

// Similar to that of Q_t_NI before, but only applies 10 C;

1
function next_candidate(bound : tuple) : AMuple;

fumction Q_t_ ORQ(v : tuple) : list of Auple;
Qlist : list of Muple = {);
candidate : Atuple;

ty : tuple; / inspect all tuples with component values belween v and £y
i © natural; //  the wple component on Q_t_ORQ is working

begin
ty 1= Cy[v[1]]—4 i Find the [irst wple whose ¢, value is less than
ty = next_candidate(v); //  that of v. All other tuples put into Qlist will "cross" fy.
if t; # null then /f make sure there is at least one tuple < v

Qlist += #y;
for [ in [2.4] do

// scanning down values of ¢;

i

for candidate € RQD, .tx[1], ..., ..&x[i-1], &lil..vEd]) do
if candidate® < v andif Bue Qlist {candidate® < u”] then

Qlist += candidate:

endif;

endfor;

endfor;
endif:

return Qlist;
end Q_t_ORQ;

Figure 6. Query by Total-Order Factors (Using Range Queries)
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"pre-load” ¢;,’s query. Given this optimization, the time to evaluate the k-1 range queries in
Q_t_ORQ is comparable to the time to evaluate only two queries, not k-1 queries.

All time and space costs for Q_t NI could be expressed in terms of a single Qj e 0.
Unlike Q_t_NI, Q_t_ORQ directly references D. Thercfore, though some of the Q_t_ORQ costs
are in terms of a single query, some must be in terms of Q. For this purpose, as with Section 2°s
equivalence factor algorithm, it is useful to define K, = the number of distinct total-order factors
across all Q € Q. As done with m,, consider only the total-order factors of the queries in ¢ and

let m = max |C;/D[, where C,/D is that subset of C; induced by application of F; over the
1<i<K,
tuples in D (i.e. the number of unique C; values actually used when evaluating queries over D).

Analysis yields a time complexity for Q_t_ORQ(v) of O(k(b+br)+(log d)k‘_l), derived
as follows. The time for checking whether or not a scanned tuple should be put into Qlist is
k,br, the same time as for Q_t_NI. The £ b admissibility check is also the same as for Q_t_NL
Range query time is b + (logd)k‘_l, which compares to the search time of k(& + logd) for
Q_t NI. This time appears favorable for small &, but must bc weighed against the very high
memory cost of the range query data structures and the fact that, for small £, the & br term
common to both algorithms might tend 1o dominate.

Update of the Q_t_ORQ data structures requires insertion of cach new v into C; and into
D’s range query data structures, an operation requiring O((log d)K‘) worst-case lime and
O(Gogd)K‘_l) expected time. Since this update applics to all Q € O, the time compares (0
O(qk,logd) worst- and expected-case time for Q_t_NI. Space cost for Q_t_ORQ is a substantial
0(dQogm)~ ™.

Q_t_ORQ would become much more economical if a restricted-domain D; were searched
for each Qj-, thus making K, = kcj. This is exactly what happens when the cquivalence and total-

order factors of a query are re-combined as described in the next subscclion.

3.6 Queries With Both Equivalence and Total-Order Factors

As described in Section 2, the equivalence factors of a query Q ; are evaluated through use
of a highly-optimized range query structure which maintains auxiliary trees only for the leal nodes
of each search dimension. The set of tuples at the leaves of the last set of auxiliary trees have
the same values for all equivalence factors. Quite literally, D has been partitioned not only by
each query (as desired in the previous subsection) bul also by the valucs of thal query’s

equivalence factors.
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Evaluation of total-order factors fully exploits this fine-grained database partitioning. For
each query in (, the "database" to which either Q_t NI or Q_t ORQ is applied is not D, but is
rather one of these auxiliary tree leaves’ tuple sets. There is one Q_t NI or Q_t ORQ structure
per set of equivalence factor values per query. Time and space costs for lotal-order factor
evaluation are significantly reduced. Intuitively, one can view the total-order faclor data structures

as one additional level of auxiliary trees in the equivalence factor structures.
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4. Equivalence-Factor Query Optimization

4.1 Requirements

Generally, a query Q_(v) has several equivalence factors in addition to a small number of
total-order factors. Other queries, let us say Q(v), might have one or more equivalence factors
in common with Q(v). As mentioned in Section 2, sharing intermediate search results between
queries with common equivalence factors would save both time and space when resolving a set
Q of queries. The topic of this section is to find how best (o optimize the equivalence factor
search structures for a set of queries so that intermediate results can be shared between queries.

Since total-order factors are not involved in these oplimizations, they are ignored for the
rest of this section. Furthermore, it is found uscful to abstract the conjunction of equivalence
factors in a query into a sequence of tokens (letting adjacency indicate conjunction). For example,
suppose that Q (v) has three equivalence factors. These can be abstracted as abd (using letters
from the beginning of the alphabet for the tokens). If Q (v)’s equivalence factors were abstracted
as cab, we would know that Q(v) and Q () have two factors in common, a and b.

Continuing this example, how can intermediate results be shared between the resolutions
of Q,(v) and of Q. (v)? First, it must be realized that since the factors in a query are part of a
conjunction, their order commutes. Q(v) and Q(v) can thus also be represented as bad and bac,
respectively. The ba "prefix” is common between the querics and is the basis for the shared
information. Now, the query tree structure for Q,(v) contains a base tree for b and auxiliary tree
levels for a and d; the structure for Q (v) contains a base tree for b and auxiliary tree levels for
a and ¢. To optimize the resolution of the pair of queries, their base trees and first level of
auxiliary trees are combined. Only the second level of auxiliary trees remains distinct between
the queries. During resolution, the search for those tuples for which both factor b and factor a
are true is only performed once. The results of this search are then used separately to resolve
Q,(v) and Q,(v) according to factors d and ¢, respectively. Figure 7 illustrates such a combined
query structure, This practice saves space whenever a tuple is in the domain of both queries, and
always reduces combined update and query time.

In order to represent query structures more succinclly for optimization purposes, we
introduce one more slight abstraction of the problem. Let the k. tree levels in a query Qj-’s data

]

structure be represented as an undirected path of length &, with verlices labeled by the
]

equivalence factors in Qj. The unoptimized query structure for a query set @, therefore, is a forest
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Figure 7. Combined Structure for Two Queres

of ¢ disjoint paths. Optimization of this query structure (if optimization is productive, of course)
tumns the forest of paths into a forest of trees, where the root veriex of cach subtree represents an
equivalence factor common between two or more queries. Each query in Q is still represented
by a path originating* at the root of some tree in this forest. Figure 8 uses this notation 1o show
the optimization steps for the Q (v)/Q (v) example.

It is not always possible for each equivalence factor to be represented exactly once in an
optimized forest. Consider three queries with the factors ab, be, and ca. Optimization results in
some forest isomorphic (discounting vertex labels) with that illustrated in Figure 9. No maltter
how the forest is constructed, at least two of a, b, or ¢ will be duplicated. To evaluate all the
queries in (), those factors will be encountered as a search dimension more than once.

The query structure optimization problem is formally defined in terms of sets of tokens

and a forest of trees. It is stated as a decision problem to aid in a proof in the next subsection.

QOPT. Given an alphabet E, a set Q of sets Qj of tokens over E, and a positive integer
J. Ts there a forest F with the following properties such that the number of vertices in F is no
greater than f?7
1) Each vertex in the forest is labeled (not necessarily uniquely)
with one token e € E.
2) For each QJ- e Q, there exists a path p ; with these two character-

istics. First, the origin of p; is the root of some tree T in F.

* Since the paths are undirected, origin and terminus are notational convenicnces in this discussion. For a query’s
data structure itself, however, the "origin" of a path has meaning since that iden(ifies the siruclure’s base lree.
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ooo

©

unoptimized = optimized

Figure 8. Optimization of Equivalence-Factor Search Structures

Second, the labels of the vertices on p; enumerate the tokens in
set Qj and no tokens not in Qj.

)] Given the roots of two trees in F, those verlices are labeled with distinct
tokens. Similarly, given two sublrees in F which share the same parent

veriex, the roots of those subtrees are labeled with distinet tokens.

4.2 NP-Completeness Analysis

Unfortunately, it proves to be the case that the above optimization problem is NP-
complete. QOPT turns out to be a multi-level version of the HITTING SET problem as defined
in [9] and [5]:

HITTING SET. Given a set I/ of subsets of a finile set S and a positive integer £ < |S].

Is there a subset §* ¢ S with |$7] < & such that § contains at least one element from each subset

unoptimized optimized
Figure 9. Optimized Query With Duplicate Equivalence Factors
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It will be shown that the HITTING SET problem, subject to the restrictions that
VUjeU [lUjl = 2] and that no two UJ,- and Uj’ are identical, can be solved in polynomial time
by any algorithm which solves the QOPT problem subject to the restrictions that
VQJ—eQ [Ile = 2] and that no two QJ- and QJ-’ are identical. HITTING SET remains NP-
complete with these restrictions[5]. To show that QOPT is NP-complete, we must demonstrate
that a) it is in NP, and that b) an algorithm which solves QOPT can solve a known NP-complete
problem in polynomial time. Let uvs define g = |Q|, K, = |E|, s= |S|, u= |U], and [F| =
the number of vertices in F.

For part a) of this obligation, consider a nondeterministic Turing machine with two
functional blocks: a forest generator, and a recognizer. The forest generator accepts £ and f, then
nondeterministically generates a forest with f vertices, each labcled with some token from E. The
NTM can do this in polynomial time.* F, the output of the forest generator, is passed to the
recognizer, which also accepts (0. By traversing all paths in F which originate at the root of some

tree in F, the recognizer generates a set O of token sets with which F is related according to

Property 2 in the definition of QOPT. This can be done in deterministic O(f 2) time. Finally,
the recognizer compares O’ to O (deterministic O{(g2K, o) lime) to find if @ ¢ @', If so, Fis atree
of size f which is related to Q (not only o Q") by Property 2 of QOPT. The NTM has decided
QOPT in polynomial time, so QOPT is in NP.

Part b) of the proof obligation is shown by proving that there exists a one-to-many
mapping to S” from the tokens of the roots of the trees in F. Let QOPT's @ and E correspond
to HITTING SET’s U and S, respectively. Define £y as the set of tokens associated with the
roots of the trees in F. In QOPT, the enumeration paths p; are defined 1o originate at the root of
one of the trees in F. Therefore, £, contains at least onc token from cach enumeration path and
thus one token from each Q € Q: Ey corresponds to S”. The question now becomes, "how are
fand h related?”.

One of the restrictions above guarantees thal no two Qj and Qj’ are identical. This implies
that no two Qj and Qj’ have coincident enumeration paths; the paths can share the same origin,
but they can not share the same terminus. The size ol every Q e @ is 2; £, contains the distinct

label of the origin of every path - the only other vertices in F are the termini, and they are all

* A variety of forest-generation algorithms are available. One such algorithm is used in the test-casc generators
which provide sample Q sets to implementations of QOPT_TF and QOPT_SO.
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unique. [F| = |the path origins| + [the path termini| = |Ep| + gq. In other words, when
QOPT specifies a value for f, it is specifying a value of f - ¢ for |Ep]|.
It is now trivial to solve a HITTING SET problem by solving a QOPT problem. Let
Q=U,S=E,andf= h+q. Use Ep as a solution to §; [ER| < A
Q.ED.

Let QOPT and HITTING SET now be treated as optimization, not decision, problems.
A major difference between the definitions of QOPT and HITTING SET is that HITTING SET
is concerned only with minimizing a set which intersects (at least) a single element in each
U e U. QOPT is concemned with minimizing, in a way, a group of sets (each "level” of each tree)
which must cover gvery element in each Q € Q. Consider attempling to solve a QOPT problem
by recursively applying a series of HITTING SET problems 1o each level of F. When the token
sets in ¢J have many tokens in common but have a small number of differentiating tokens, the
recursive HITTING SET will fail. Such a situation is illustrated in Figure 10, where t and f
differentiate several "pairs" of sets which have other tokens in common. Recursive HITTING
SET would choose to use t and f for the tree roots. QOPT, concerned with total tree size, would
recognize the other common tokens, root the trees with those, and put t and f at the trees’ leaves.
It is for this reason that the size of the sets in &/ and O were restricted to 2 in the above NP-

completeness proof; this discrepancy does not arise with such small scis.

4.3 General Heuristics

There are some basic reductions can be made in order to narrow the scope of the QOPT

problem. These involve collapsing queries with duplicate equivalence factors, partitioning the

Figure 10. Optimization Differences Between QOPT and Recursive HITTING SET
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original reduced
1) @={{abec}, {cde}, {bac)} Q= {{abc}, {cde}}

2) Q={{abcj, {dfh}, {ce}, {fhk})}

{{fabe), {ce}}
{{d fh}, {f hk)}

o]
@
3) @={{abc},{bec}, {edh}, {dhf})] Q= {{ab), (be}, (ed], (df}}

9 ¢={{abc), (bde}, {bfg}} root b, @’ = {{ac}, {d e}, {Fg}}

Figure 11. Examples of Basic Equivalence-Factor Query Set Reductions

problem so that the queries have some equivalence factors in common, collapsing "mated”

equivalence factors, and processing any common equivalence factor as a special casc. Stated in
terms of the QOPT definition above, the reductions are, respectively:
1) Collapse equivalent sets Qj and j’ into a single set.

2) Partition the set O into subsets QP $0 that each Q, & QP has at least one token in

common with some Qe O, Q.= Q,. Apply the optimizalion algorithm

separately to each QP.

3) Collapse any tokens e, and e’ such that VQJ- [e,e Qj =e’e Qj} into a single
token.
4) For any token e_ such that VQjeQ[ece QJ-], use e, as the root of a tree

common to all paths p;, construct Q"= {Q; - ¢, | Q;& Q}, and apply the
optimization algorithm recursively to Q'.
Examples of each of these reductions is shown in Figure 11. Their use should enhance

the performance of the following two approximate-optimization algorithms.

4.4 Token-Frequency Algorithm

Our first approximate-optimization algorithm, QOPT TF, follows the line of intuition
which suggests that the token occurring most frequently in @ should be the root of a tree in F.

Though this intuition is often correct, the previous example in Figure 10 illustrates one scenario
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types
token = an identifier (in our case, for an equivalence factor);

token_set = set of token; // here, implement as a list of values

tree_node = record

e : token;

children : list of Aree_node;
end tree_node;

globals
F 1 ree_node; //  toot of the query forest QOPT_TF constructs
@ : set of token_set; /f  the original query sct

// Add a new child to node, labeling this child with token.
ff
function add_child(node : AMree_node, child : loken) : Aree_node;
child_node : Atree_node;
begin
child_node := new tree_node;
child_node—e := child;
child_node—schildren := ];

node-schildren &= child_node:

return child_node;
end add_child;

procedure QOPT_TF(F' ;. Mree_node, 0 : set of token_set);
€pigh - loken;
thgh : set of token_set;
new_child : Atree_node:

begin
€high i~ the token occurring most frequently as an element of each Q € Q'
Onigh = {Q | Qe Q" ney e Q;
new_child := add_child{#", ehigh);
QOPT_TF(new_child, { Q - €high | Qe thgh 1
QOPT_TF(F, @' - thgh);

end QOPT_TF;

Figure 12. Token-Frequency Query Optimization Algorithm
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Q={{amx}, {anx)},{ao0y}{apyhbqgx){cry]}
Token-frequency selects a and one Optimal sclects x and y as rools,
each from {b, ¢, x} and {c, r, y} to be resulting in 12 tree nodes.
roots, leading to 13 tree nodes.

Figure 13. Example of Non-Optimal Result From Token-Frequency Algorithm

in which QOPT_TF generates a less-than-optimal query tree.  Another example in which
QOPT_TF leads to inefficiency is shown in Figure 13.

Nonetheless, QOPT_TF executes quickly and is readily understood. A simple tree node
data structure is defined in Figure 12 and a recursive implementation of QOPT_TF is shown
which operates on that structure. Execution begins with a call of "QOPT_TF(&F, Q)",

referencing the top-level forest and the original query set. QOPT _TF has four basic steps:

® Find the token, €highs which occurs most frequently in the scts making up Q.
Determine every set in Q° which contains ey, This s Qpigp.
Add a new child to F’. Label this child with Chigh
Apply QOPT _TF to the new child, optimizing the queries which contained €high
(less ey;0, Of course, so that there is no endless loop).

® Apply QOPT_TF again to ¥, this time for all the sets in ¢" which did not

contain ehigh.*

QOPT_TF has a relatively low time complexity. Finding Chigh dominaies the lime in
cach invocation. Assuming that token_sets arc represented as lists instead of as bit vectors, this
scan takes O(qkem“+Ke) time, letting ke = (Ilnng |Q;l, or just ()(chmu) since K, is no larger
than required for the case of unique tokens in each Q; e Q.** After determining ey, an O(1)
add_child takes place and then two recursive calls are made. It is critical for the analysis o

observe that, for this next level of recursion, time for the two immediate €pigh SCANS will be

* Alternatively, this could be implemented as a loop instead of as a second recursive call.
o Even for deeper levels of calls to QOPT_TF where 4 and kc change, the effectiive K" will siill be no
TaEx
greater than ‘?ke because a linked list of occurring tokens can be made during the frequency scan,

max
climinating the need to maximize token frequency across each value of the original £.
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O(|Cpignl k. ) and O((g-| OhignDke_ ), for a total of still just O(gk, ). The question now
becomes “"how many levels deep can QOPT_TF recurse?"

The worst case occurs when all tokens are unique in each QJ- e . In that case, only one
Qj will be placed in thgh for each level of recursion. So, after ¢ levels of recursion, there will
be at most one element in @', allowing QOPT _TF to trivially finish that branch of the forest in
O(kemx) time. In total, there are O(q) levels, each at O(lemax) time, plus at worst g O(kcmax)
"leaf” branches, for an aggregate O(q2 kcmu) time for QOPT_TF. This is a tight bound, since the

unique-tokens case does reach it.

4.5 Set-Overlap Algorithm

Another line of intuition about how to approach QOPT suggests that those sets which have
the most elements in common should be combined inlo one trec in £, While this algorithm,
QOPT_SO, does take somewhat more time than QOPT _TF, it also produces significantly better
results in most test cases.

The revised tree node data structure is shown in Figure 14. Whereas QOPT_TF
combines several scts by a single token they have in common, QOPT_SO combines just two scts
at a time by all the tokens that pair has in common. These tokens in common between the scts
which were merged to create the node are the node’s leading tokens; the tokens which are not
common between the node’s constituent sets make up the node’s children. In QOPT_TF, the
basic operation on a tree_node is adding a single token as a child; in QOPT SO, the basic
tree_node operation is combining the leading iokens and children of two nodes.

QOPT_SO, shown in Figure 15, begins with a call of "QOPT SO(F, 0)". Initialization
involves building separate, uncombined trees for each Qj e @ and building a table (common)
whose values contain the number of tokens in common between each of the uncombined trees.
For each tree[j], QOPT_SO keeps track of the other tree with which treef/] has the most tokens
in common. This is done by means of the ordered_common{j] heap, keyed by the number of
common tokens. We keep track of the tree with the most tokens in common with any other tree
by means of another heap, max_common,

The main loop of QOPT_SO combines two trees with cach pass. Its operation proceeds

in three primary phases:
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types
token = an identifier (in our case, for an equivalence factor);

token_set = set of token; //  here, implement as bit vectors

tree_node = record
leading : token_set; //  tokens in common between all children
children : list of Mree_node;
end tree_node;
common_node = record
in_common : natural; /f  # of leading tokens in common between this tree and treefidx]
idx : range [1..g] of natural;
end common_node;

globals
7o tree_node; /f root of the query forest QOPT_SO constructs
O : set of token_set; //  the original query set

function combine(nodel, node2 : AMree_node) : Mree_node;
new_nade : Mree_node;

begin
new_node := new tree_node;
new_node—leading := nodel—leading N node2—leading;

nodel—leading -= new_node—»leading;
node2—leading -= new_node—leading;

new_node—ychildren &= nodel:
new_node—children &= node2:

return new_node;
end combing;

Figure 14. Data Structures For Set-Overlap Query Optimization Algorithm

® A tree, high_commen, is found which has the most tokens in common with
some other tree, other common.*

] These two trees are combined into one and placed in the position formerly
occupied by high common,

e The common data structures are updated (o reflect the combined trees. Step one

of this cleanup involves removing the other common tree from reference

* As written in Figure 15, an arbitrary resolution is made between tics. A better heuristic, though, counts the
number of other trees with which each tree has one or more tokens in common. Ties are broken in favor of
the tree which has some token in common with the fewest number of other trees. This practice combines those
trees with the fewest combination options first; carly combination of trees with many options might otherwise
interfere with some tree’s only option,



Efficient Queries For Quasi-Ordered Databases

procedure QOPT_SO(F : Mree_node, (0 : set of token_set);
tree : array [1..4] of Mree_node

/1 Yes, this really should include a heap index for ordered_common to assist deletions.

i

common : array [i..q, 1..g] of natural := 0;

ordered_common : array [1..q] of d-heap [g] of common_node ascending key in_common;
max_common : d-heap [g] of common_node ascending key in_common;

high_common, other_common, £, j : range [1..g] of natural;

begin
/f Initally, all query sets are uncombined.
i
for Qj e Qdo // jwill range in 1.9
treeff] = new tree_node;
tree{fl—leading = Q;;
endfor;

/f  Generate initial information about number of common (okens.
i
for jin [1..4] do

for i in [1..4] do

if j = i then /f don’t combine with self!
commonlj, i := IQJ- N Q;l
else
commonl[j, i} := 0
endif;
endfor;
ordered_common(f] = makeheap({(commonl(j, £, £); /i implicd { in [L.g)

endfor;
max_common := makeheap({findmax{ordered_common(/]), /%; /# implied j in [1..g]

while findmax(max_common).in_common > 0 do
high_common := deletemax(max_common).idx;
other_common := deletemax(ordered_common[high_common]).idx;

tree[high_common] := combine(irec[high_common], tree{other_common]);
tree[other_common] := null;

remove other_common from max_common and al! ordered_common;

recalculate commonfhigh_common, ..] and common].., high_common};
endwhile;

F—children &= all non-null elements of iree;
end QOPT_SQO;

Figure 15. Set-Overlap Query Optimization Algorithm
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throughout the data structures. This requires zeroing-out that tree’s cormmon row
and every other tree’s other_common column. These trees’ ordered_common
heaps will have to be updated, as well, 10 delete (he heap node for
other_common. Step two of the cleanup involves rebuilding the common
information for the new tree (including re-inserting a node for it into
max_common) and propagating these leading-token intersection counts to all the
remaining trees’ rows in common. Again, this might involve changing the other
trees’ ordered_common heaps and, perhaps, their nodes in max_common as

well.

QOPT_SO takes a bit longer than QOPT_TF, but not terribly so. Note that, unlike for
QOPT_TF, it is suggested that token_sets are best implemented as bit vectors for this algorithm.
The first phase of initialization requires O(¢K,) time to build the original uncombined trees. The
second initialization phase uses O(que) time 1o build the ¢ X ¢ common structure. Remember
that makeheap takes only O(q) time per tree to build ordered _common, not O(gloggq), since
all key values are known at build time. Similarly, the makeheap for max_common takes only
O(q) time.

Since one tree is combined into another for cach pass of QOPT_SO’s main loop, there
can be at most ¢ - 1 passes. Within each pass, the two deleternax operations lake O(logg) time
and the combine just O(K,). The significant time is spent in updating common, The first stage
of this cleanup requires O(logg) time to remove the reference to other common from
max_common, and then ¢ O(logg) deleteitem operations to remove other_common from every
tree’s ordered common. The second stage of the cleanup requires O(gK,) time 1o recalculate
common(high_common], an O(logg) insert into max_common, and up to ¢ O(logg) operations
to update other tree’s ordered_common heaps if their commmoni.., high_common] values were
changed by this recalculation. Similarly, if these changes altered the maximum value of an
ordered_common heap, another O(logg) update t0 max_common is required for each such
modification, though it is believed that this frequency is small.

Adding things up, it is found that each of the O(g) passes through QOPT_$0’s main loop
takes O(q(K +logg) time. Initialization takes O(que) lime, so total time for QOPT SO is

O(GX(K +1ogq)).
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4.5.1 Non-Optimal Cases for QOPT SO

As does QOPT_TF, QOPT SO fails to yield optimal query structures in some cases.
Since QOPT_SO0, in general, performs significantly better than QOPT_TF, QOPT SO’s non-
optimal cases have generated sufficient interest to warrant a more detailed investigation. Two
such cases are presented here, the first showing how QOPT_SO can produce a query structure
of size approaching 5/4 optimal size, and the second showing a QOPT_SO structure which is 4/3
optimal size.

In the following discussion, let X, Y, and Z indicate sets of tokens. Appropriately, let
x=|X|,y=|Y|,andz= |Z|. Ttisgiventhat X nY =@, YNZ=T,and ZN X = @.

Figure 16a presents a set of four token sets for which QOPT_SO yiclds a non-optimal
structure if the conditions x+z>y, x<y, and z<y hold* QOPT_SO’ initial common
(overlap) array is displayed in Figure 16b. This shows that, given the above conditions, it is
always possible for QOPT_SO to select sets 2) and 3) for the first set combination, This choice
results in the query structure illustrated in Figure 16¢, which has size 2x+y+2z+4. The optimal
structure, size x+2y+z+4, would be as shown in Figure 16d.

The maximum size differential between Figure 16¢ and Figure 16d occurs when x = y = z.
In this case, QOPT_SO’s structure has size 5y + 4, while the optimal structure has size 4y + 4.
As y increases in size, the ratio of the sizes approaches 5/4.

One might observe that, at first inspection, the heuristic described on page ? could avoid
this non-optimal solution. Though this is sometimes (rue, test cases have been creaied which
nonetheless yield non-optimal results via this scenario. An gven better heuristic than that on page
? is to choose the set combination which keeps the most potential choices available for the next
set combination. This is a form of one-move look-ahcad, the logical extension of which is to look
ahead two or more combinations in advance, Such a practice, however, quickly leads to the
combinatorial explosion of decisions which QOPT _SO is designed to avoid.

A variation on Figure 16a can produce a QOPT_SO/optimal size ratio of 4/3. This is
shown in Figure 17a. Two more token sets are required, both of which are supersets of the oken

set Y. Y <Y, and y = |Y’|. For this case, QOPT SO yields a non-oplimal structure when

* The condition x + z > y reflects the difference in size between the optimal struclure and that generated by
QOPT_SO. The conditions x < y and z < y guaraniee that QOPT_SO can choose to first combine scis 2) and
3), which overlap by y tokens (instead of, for instance, sets 1) and 2) which overlap by x tokens).
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Figure 16. QOPT _SO Structure 5/4 Optimal Size

the conditions x+z+ 2y >y, x+y <y, z+y <y, x=2y, and z2y hold. Once more,

Figure 17b displays QOPT _SO’s initial common (overlap) array.

As with the first example, QOPT_SO can always select sets 2) and 3) for the first set

combination (given the above conditions). That combination, followed by two more combinations

involving sets 5) and 6), can result in the structure shown in Figure 17¢. This is of size

2x+y+2z+2y’+6. The optimal structure is shown in Figure 17d. It is of size x+2y+z+6.
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For this example, the maximum size differential occurs when x = z = y' and 2x = y.
QOPT_SO’s structure size is thus 4y + 6, while the optimal size is 3y + 6. A 4/3 ratio is

therefore achieved for large values of y.
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Appendix 5.1 Pseudocode Representation

The representation of algorithms in (his report is done using pseudocode which resembles
a mixture of Pascal, Ada, and C++. All the standard control structures are available, defined types
may be expressed, and a variety of operators may be used.

Below are listed the details of this representation. In pseudocode tradition, however, the
more obvious operations in our algorithms are generally expressed with a certain amount of
English instead of detailed statements (such as "for every child ¢f..." instead of "child:=
foo—child; while child # null do..."). When such use of English is made instead of formal code,
this will be clarified by italicizing any English in our algorithms (c.g. "for every child of..." in the
above example).

In the following discussion, bold brackets ([ ]) indicate 0 or 1 occurrence of the enclosed
item, and bold braces ({ }) indicate 0 or more occurrences. Comments in this pseudocode are as

in C++: /" indicates that the rest of the line is a comment.

5.1.1 Control Structures

Flow of control is Ada-like. Semicolons are stalement lerminators, not separators, and
loop entry statements are paired with matching loop exit statements. Procedures and functions

may be defined and nested, following the usual scope rules. Syntax is:

Sequence Conditional Alternative
statement, if condition then case expression of
{statement;} sequence, value_list:
else (sequence;);
sequence; e
endif: others:
(sequence;);
endcase;
Iteration Repetition, Test At Entry Repetition, Test At Exit
for variable in range do while condition do repeat
sequence; sequence; sequence;

endfor; endwhile; until condition;
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Procedure Function
procedure proc_name(formal_parameters); function func_name(formal_parameters) :
declarations; resull_type;
begin declarations,
sequence; begin
return; Sequé‘ﬂce;
end proc_name; return value;

end func _name;

— where formal_parameters is a list, the elements of which are separated by semicolons and
have the form variable_name{, variable_name} : type

5.1.2 Operators

assignment: = {l var = value
arithmetic: +, -, *,/, % /l add, subtract, multiply, divide, modulus
arithmetic assign: +=, =, *=, /=, %= /| var op= value = var = var op value
comparison: =, %, <, < >, 2
logical: and, or, xor, not, andif, orelse // two "short circuil” operators

5.1.3 Simple and Structured Types

Basic types include the standard integer, real, Boolean, and character. Derived types
include enumerations and subranges of any ordinal type. Structure is expressed by use of array,
record, and pointer types which may be arbitrarily nested. As with Ce+, indexing of an array
and of a dereferenced pointer to an array is not distinguished; if a_p is a pointer to an array,

a_p?i] and a_p(i] are equivalent. Records can have Pascal-like variant fields. Syntax is:

Subrange Enumeration Array
subrange type = enumeration_type = array_type =
range (first..last] (value{, value}); array [range{, range}]

of base_type; of base_type,



Efficient Queries For Quasi-Ordered Databases 45

Record Variant Record Pointer
record_type = record record_type = record pointer_type = ~base_type;
field_name : type; {lfield_name : type;]
[case [tag :] type of Pointer Dereference

end record_type; value _list: pointer_variable®
(field_name : type; Also,
e ) pointer variable—
others: is equivalent to
(field_name : type; pointer_variable™.
%
endcase;]}

end record type;

5.1.4 High-level Structured Types

Collections of elements of any other type may be built as sets, lists, and sorted sets (search
trees). The syntax for declaring such collections and the operations allowed with them are as
follows:

Sets

Sets are defined as unordered collections of objects with no duplicates. Basic set
operations of union, intersection, symmetri¢ difference, proper subset and superset, construction,
and element containment may be expressed W, M, -, <, O, { element{, element} } and e,
respectively.

declaration: type_name = set of base_type;
operators: U, N, -, =, C, C, 3, D, €, and the assignment operators U=, M=, and -=

constants: & — the empty sct

Lists
Lists are defined as collections of objects ordered by their sequence of appearance within
the list; duplicates are allowed. Operations include concatenation, construction, element reference,
and sublist reference expressed by &, [ element, element} ], list(element_number), and
list{element_range], respectively.
declaration: zype_name = list of base_type;
operators: &, (element_number), [element_range], and the assignment operator &=

constants: [ ] — the empty list
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Sorted Sets

Sorted sets are defined as collections of objects ordered by means of a "key" value, with
no duplicate key values allowed between two elements. This key may either be the element itself,
if the sorted set is of a simple type, or is the value of one field of an element, if the sorted set is
of a record type. Operations include insertion and removal of elements and search according Lo
a key.

Insertion of an element into a sorted set either adds an entirely new clement or replaces
an existing element of the same key. This operation is expressed as sef + element. Removal of
an clement from a sorted set, expressed as set - element, fails if the element is not part of the
sorted set. Reference to an element by key has many search criteria and retums a pointer to that
element (or null if no such element is found). The search may be for the element with key equal
to the search key (’=’ search); for the element with the greatest key less than the search key (<’
search); for the element either with the search key or, if not found, with the greatest key less than
the search key ("<’ search); and so on for ">’ and *>’ secarch. Equal-to search is common enough
to be expressed as sorted_set[key]; searches with other criteria are expressed as sorted_set(cri-
terion, key).

Algorithms which perform a search for a particular element in a sorted set and then scan
successive elements of that set starting at that search point are quite common. To this end,
operations next and prev are provided to scan in increasing and decreasing order, respectively.
If no further elements exist in that "direction” in the set, these operations return null. So that a
scan may begin at either the start or end of a sorted set, the operations first and last are provided.
These operations return the appropriate element, or null if the set is empty.

declaration: type_name = srt_set of base_type | key field_name )
operators: +, -, e, [key] — equivalent to ’=" criterion below,
(criterion, key), where criterion is one of =, <, >, <, or 2,
next(), prev(), first(), last(), and the assignment operators += and -=

constants: & — the empty sorted set
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Appendix 5.2 Orthogonal Range Query Search

An orthogonal range guery[16]{3}{11] RQ over D, a set of k-tuples, is defined as:

te D
RQ(Dy a1..b1; az..bZ’ LITIE ] ak“bk)z {t Vf [lsigk o alst.cisbt] }

RQ is a multi-dimensional (or multi-keyed) search across D in which a range of values
for each of the dimensions (keys) may be specified. Let d = |D| and m = the maximum number
of distinct values for any tuple components. The search time for the best orthogonal range query
algorithms is (Iogd)"‘l, insert/delete time is (logd)", and space requiremenis are d(logm)"‘"l.
Because of both the time and the space requirements of these algorithms, they are useful only for
small dimensionalities (realistically, dimension 2, maybe 3, due 10 space considerations).

Though variations exist, the basic sirategy employed for building range query data
structures is to have a separate set of component search trees for each of the logm levels of the
search tree for the previous component. Intuition shows that the space analysis is correct; this
uses a tremendous amount of space. Regardless of this, for small dimensions the space penalty
might be worth while if speed is essential for the search of a large database.

Figure 18 shows a diagram of a 2-dimensional (£ = 2) range query dala structure similar
to that shown in [16]. A search tree for the first component, ¢,, makes up the base tree B. For
our example, it is easiest to assume that the tuples are stored at the leaves of B. Given a range
of values a,..b, for ¢y, there will exist certain interior nodes x of B for which the ¢, values for
all x’s descendant leaves fall in the range, but not all of x’s parent’s descendant leaves’ ¢; values

fall in the range. These nodes are called critical for the range a;..5;. In our example, nodes b

and f are critical for the range 1..3. There are at most logd of these critical nodes lor any range,

and they may all be found in logd time.

When we have the critical nodes for a given ¢, range, we know the subtrees containing
all the tuples which have c; values in that range. We now need to know which of the leaves of
those subtrees also have a ¢, value in the range a,..b,. Each critical node is the root of a sublrec
of B; the algorithm makes use of this by maintaining an auxiliary search tree (sorted by ¢,) for
each possible subtree of B. For the root of B, this is simply the entire database sorted on ¢,. For

interior nodes b and c, the auxiliary trees each contain half the wples in the database, again sorted
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base tree B auxiliary trees
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Figure 18. Orthogonal Range Query Data Structures

on ¢,. This continues for each level in B: for each level in B, there is a corresponding level of
auxiliary trees which sorts the entire database by Cy.

Given the critical nodes for the ¢; range, we find those nodes’ corresponding auxiliary
trees and search each of them for those children with ¢, values in the desired range. Since each
auxiliary tree contained only those nodes with ¢ € [ay..b], the result of the ¢, search is exactly
what we desire. For example, let us continue our example and scarch for those tuples with
¢ € [1.3] and ¢y e [4..6). We know that the critical nodes for the ¢, range are b and f.
Therefore, we search their auxiliary trees for all nodes with ¢, values in the range 4..6. We find
one such tuple, {1,6), in b’s auxiliary tree, and no maiching tuples in s auxiliary trec. This
single tuple is thus the answer to our query. Higher dimension queries apply this procedure

recursively, treating c;’s auxiliary nodes as new base trees with their own auxiliary nodes.
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