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ABSTRACT OF THE DISSERTATION 

 

Dynamic Characterization of the IKK:I B :NF- B Negative Feedback Loop 

Using Real-Time Bioluminescence Imaging 

by 

Britney Lane Moss 

Doctor of Philosophy in Molecular Cell Biology 

Washington University in St Louis, 2011 

Dr. David Piwnica-Worms, Chairperson 

 

The transcription factor NF- B is a pivotal regulator of mammalian cell 

function, modulating genes implicated in cellular stress responses, proliferation, 

differentiation, cell survival and apoptosis, as well as immune and inflammatory 

responses.  Improper regulation of NF- B signaling has been implicated in a myriad of 

human pathological disorders, including cardiovascular and neurodegenerative diseases, 

chronic inflammation, and various cancers. A key regulatory node within canonical NF-

signaling is the IKK:NF- :  negative feedback loop that plays a major role in 

regulating the strength and duration of NF- transcriptional activity.  We have 

developed and characterized an unique bioluminescent reporter ( -FLuc) that 

recapitulates this transcriptionally coupled negative feedback loop, and have extensively 

utilized this reporter to interrogate how diverse stimuli (i.e., ligand type, duration, 

concentration, sequential stimulation, etc.) impact the IKK:NF- :  negative 

feedback loop in cellulo and in vivo.  We found that the  negative feedback loop 
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exhibits differential and reproducible dynamic patterns in response to modulation of 

TNF  concentration or pulse duration, and that responses to TNF  exhibited a 

remarkable degree of synchronicity at the level of single cells, cell populations, and in 

vivo.  Furthermore, we discovered a TNF �–induced transient refractory period (lasting 

up to 120 min) during which cells were unable to fully degrade following a 

second TNF  challenge, and identified nuclear export of NF- :  complexes as a 

rate-limiting step that may impact this refractory period.  A high-throughput RNAi 

screen to identify new phosphatase and kinase regulators of TNF -induced IKK:NF-

:  negative feedback loop dynamics revealed a vast array of different I B -FLuc 

dynamic profiles, highlighting the large number and diverse activities of kinases and 

phosphatases regulating the NF- B pathway.  Two of these hits, PTPRJ and DAPK3,  

have been validated and are the subjects of current investigations to understand the 

physiological and/or pathophysiological relevance in NF- B, especially in the context 

of TNF  signaling during cancer and inflammation in the liver.  In conclusion, our 

studies using dynamic, real-time bioluminescence imaging have demonstrated the utility 

of employing bioluminescent reporters alongside traditional biochemical assays, in 

silico modeling, and cell/molecular biology techniques to rigorously interrogate how 

diverse stimuli impact the IKK:NF- :  negative feedback loop in single cells, cell 

populations, and at the organ- and tissue-level in vivo. 
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CHAPTER ONE 

 

Introduction 
 

The transcription factor NF- B is a pivotal regulator of mammalian cell function, 

modulating genes implicated in cellular stress responses, proliferation, differentiation, cell 

survival and apoptosis, as well as immune and inflammatory responses [1].  Improper regulation 

of NF- B signaling has been implicated in a myriad of human pathological disorders, including 

chronic inflammation, various cancers, as well as cardiovascular and neurodegenerative diseases 

[2, 3].  In recent years, bioluminescence imaging has proven an invaluable tool to probe the 

complex dynamics of NF- B signaling both in vitro and in vivo. 

 

1.1 NF- B SIGNALING : A HISTORICAL PERSPECTIVE 

The NF- B transcription factor was originally identified by Sen and Baltimore as a 

protein bound only to the k light-chain enhancer DNA at the sequence GGGACTTTCC and was 

called NF- B because it was a nuclear factor that bound selectively to the k enhancer and was 

originally found in extracts of B-cell tumors but not other cell lines [4, 5].  Soon after they  also 

showed that NF- B is a factor that pre-exists in an apparently inhibited state, is released from that 

inhibition by LPS treatment, and that inhibited NF- B is not specific to B-lineage cells as it was 

evident in T cells and even HeLa cells [6]. Furthermore, work in the Baltimore lab established 

that the inactive form of NF- B is in the cytoplasm and can be liberated from its inhibited form 

by treatment of cytoplasmic extracts with a detergent [7]. This discovery led to purification of the 
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inhibitor, which was named I B [8]. Years of intense research that followed demonstrated that 

NF- B is expressed in almost all cell types and tissues, and specific NF- B binding sites are 

present in the promoters/enhancers of a large number of genes, especially those involved in 

inflammation, innate immune responses, adaptive immune responses, secondary lymphoid organ 

development and osteoclastogenesis [9, 10].  Concurrent to the discovery and elucidation of NF-

B transcription factors and NF- B signaling pathways, other researchers were investigating two 

proteins, v-Rel and Dorsal, that also exhibited variable nucleo-cytoplasmic subcellular 

localization.  Along with NF- B, these proteins were eventually recognized as members of the 

same family, and the biological processes investigated in these original studies �– immunity (NF-

B), oncogenesis (v-Rel), and development (Dorsal) �–continue to be areas that provoke much of 

the interest in NF- B [11]. 

 

1.2 CANONICAL NF- B SIGNALING & THE IKK:I B :NF- B NEGATIVE 

FEEDBACK LOOP 

  The vertebrate NF- B transcription factor family consists of five members: p50/p105, 

p52/p100, c-Rel, RelA (aka p65), and RelB; different NF- B complexes are formed from homo- 

and heterodimers of these family members [12].  These proteins are related via a highly 

conserved N-terminal DNA binding/dimerization domain called the Rel homology domain 

(RHD) and bind to 9-10 base pair DNA sites ( B sites) which have a remarkably loose consensus 

sequence (5'-GGGRNWYYCC-3'; R, A or G; N, any nucleotide; W, A or T; Y, C or T) [13].  The 

vertebrate NF- B family proteins can form both homo- and heterodimers in vivo, except for RelB 

which only forms homodimers in vivo.  Interestingly, use of cell lines null for various NF- B 

family members has shown that there is little correlation between the sequence of the B DNA-
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binding site and the function/subunit specificity of NF- B dimers, indicating that NF- B family 

member specificity for endogenous promoters is not solely encoded by the B site sequence itself 

[14].   

 NF- B transcription factors are rapidly activated in response to numerous stimuli 

allowing quick regulation of a few hundred genes [15-17] that can be divided into four major 

families [2, 17]: (1) pro-inflammatory genes (e.g., COX 2, IL-1, TNF  iNOS, ICAM-1, E-

selectin, etc.), (2) pro-proliferative genes (e.g., Cyclin D, c-Myc), (3) anti-apoptotic genes (Bcl2, 

BclXL, xIAPs, cIAPs), and (4) auto-inhibitory genes (e.g., A20, CYLD, SOCS-1 and I B ).  This 

rapid response system requires the sequestration of NF- B dimers in the cytoplasm through 

interaction with inhibitory I B proteins.  As with the NF- B transcription factors, there are 

several I B proteins (I B , I B , BCL-3, I B , I B , and the NF- B precursor proteins p100 

and p105) that are characterized by five to seven ankyrin repeats that assemble into long cylinders 

capable of interacting with the nuclear localization signal (NLS) of the given NF- B dimer and of 

interfering with sequences involved in DNA binding [13, 18].  For I B , this NLS masking is 

only partially effective and thus NF- B�–I B  complexes shuttle into the nucleus even in the 

absence of cellular stimulation; however, I B  also contains a nuclear export sequence (NES), 

which causes the rapid export of NF- B�–I B  complexes back to the cytoplasm, resulting in 

steady state population within the cytosol [19-21]. 

 In resting cells, NF- B dimers are sequestered in the cytoplasm through binding to 

isoforms of the I B family. Canonical activation of NF- B (Fig 1.1) relies on ligand-dependent 

stimulation of IKK, a large heterotrimeric kinase complex containing two catalytic subunits 

(IKK  and IKK ) and a regulatory subunit (IKK , NEMO) [20, 22].  Many different surface 

receptors signal to IKK through multiprotein complexes containing TRAFs (TNF receptor 
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associated factors which seem to serve as adaptors and may mediate K63-linked regulatory 

ubiquitination events) and a multitude of other adaptor proteins (with specific receptors 

interacting with specific subsets of TRAFs and other adaptors;  Fig 1.1) that recruit and activate 

the IKK complex [22, 23].    Activation of IKK requires phosphorylation of T loop serines, 

however, the precise mechanism by which this occurs (trans-autophosphorylation or through 

phosphorylation by an upstream kinase) remains a major unanswered question, and adaptor 

protein mediated multimerization also seems to significantly contribute to IKK activation [23].  

Upon activation, IKK phosphorylates I  (on Ser 32/36), thus rendering I B  a substrate for 

poly-ubiquitination and proteasomal degradation. This series of events releases NF- B to freely 

translocate to the nucleus where it can modulate expression of its target genes, including I B , 

thus forming a transcriptionally-coupled negative feedback loop [24].  This newly synthesized 

I B  enters the nucleus and binds to NF- B which dissociates from the DNA and the complex 

translocates back to the cytoplasm [24-26], and, along with the activity of I B , drive NF- B 

nuclear:cytoplasmic oscillations [24, 27, 28]. Thus, this negative feedback loop plays a major role 

in regulating the strength and duration of NF- B transcriptional activity [29-32].   With respect to 

the negative feedback, other transcriptionally-independent processes, aimed at auto-inhibition of 

NF- B activity, do exist. Such mechanisms down-regulate NF- B signaling on a much shorter 

timeframe (sec-min). These include homologous receptor desensitization [33, 34], asymmetric 

heterologous receptor desensitization [34, 35], autocatalytic C-terminal IKK 

hyperphosphorylation [36] and protein phosphatase 2  (PP2 )-dependent dephosphorylation of 

IKK [37]. 
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1.3 CLINICAL RELEVANCE OF NF- B SIGNALING IN THE LIVER 

NF- B is well established as a regulator of a large number of genes involved in the 

different aspects of oncogenesis defined by Hanahan and Weinberg [38], and in the last few 

years, constitutive activation of NF- B has been causally linked to liver neoplastic progression 

via the transcriptional activation of genes involved in oncogenesis (reviewed in [39]).  In 

hepatocytes, inappropriate and persistent NF- B activation can occur as a result of viral infection, 

carcinogen exposure, growth factor stimulation, and chronic inflammation (which can result from 

viral hepatitis and eventually lead to cirrhosis and hepatocellular carcinoma (HCC) development).  

Furthermore, it has been posited that chronic inflammation may actually account for 

approximately 20% of all human cancers [40].  Because NF- B is a central regulator of 

inflammatory processes, it has been proposed that NF- B activation during inflammation may 

represent a mechanism of protection against pro-apoptotic signals from the immune system [41-

43].  To this end, Pikarsky and colleagues employed an Mdr2-knockout mouse model of 

hepatitis-induced HCC formation to show that the inflammatory process triggered hepatocyte NF-

B activation through upregulation of TNF  in adjacent endothelial and inflammatory cells [43].  

They further found that suppressing NF- B through anti-TNF  therapy or induction of an I B-

superrepressor during the late stages of tumor development induced apoptosis and blocked 

progression of HCC.  However, recent mouse models utilizing an inducible, hepatocyte-specific 

NEMO knockout have indicated that loss of NF- B activity can actually promote HCC tumor 

development [41, 44], showing increased rates of both apoptosis and proliferation.  Thus, a more 

in-depth understanding of the complexities and intricacies of NF- B signaling in the liver is 

required to appropriately translate the use of NF- B-targeted therapeutics to liver pathologies. 
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1.4 THE NF- B SIGNALING PATHWAY AS AN EXEMPLARY PROVING 

GROUND FOR SYSTEMS BIOLOGY APPROACHES IN MAMMALIAN CELLS 

Cells have evolved complex molecular networks to sense cues from the environment and 

transmit them throughout the cell to elicit appropriate biological responses.  These signaling 

pathways require certain elemental properties (such as sensitivity, reversibility, a capacity to be 

regulated, and robustness) that are crucial to reliably maintaining the organization and function of 

cells within organisms.  In addition, these networks equip cells with the ability to distinguish 

often weak signals from background noise with high precision and selectivity [45, 46].  These 

molecular networks are made up of sets of recurring regulation patterns, network motifs, that link 

together in a variety of combinations to create a web of connectivity within a given signaling 

cascade or between multiple cascades [47].  Feedback loops, processes that connect output 

signals back to their input, represent one of the most frequently observed biological network 

motifs and are now appreciated as a useful framework for understanding how signaling networks 

elicit specific cellular responses.  In particular, negative feedback loops, defined as sequential 

regulatory steps that feed the output signal (inverted) back to the input, represent a single motif 

that is capable of generating many distinct signaling functions, including stabilizing basal 

signaling levels, limiting maximal signaling output, enabling adaptive response, and creating 

transient signal responses [46].   

 In the past, much of the work elucidating these complex molecular networks focused on 

identifying the key molecules within the network and biochemically defining their individual 

interactions [45, 48].  Additionally, the techniques typically employed to define these networks 

were static, destructive, semi-quantitative, in vitro biochemical methodologies that lack 

spatiotemporal resolution and average information from a large number of cells.  Recently, the 

focus of attention is shifting towards experimental and computational modeling approaches that 
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address the question of how biological networks operate as a system to perform biological 

functions, specifically within the context of a single cell.  Recent developments in optical imaging 

and biophysical methods have enabled significant advances in the ability to capture 

spatiotemporal signaling information in a single cell, leading to the development and refinement 

of mathematical and dynamical models of molecular networks [49]. 

One cellular signaling pathway that has emerged as an exemplary illustration of how 

molecular network topology can be probed through the coupled use of live-cell imaging and 

computational simulation is the NF- B pathway.  Because of its biological importance, the NF-

B pathway has been extensively studied and has emerged as an exemplary proving ground for 

systems biology approaches that couple computational modeling and cellular imaging with 

conventional cell biology methods to study dynamic NF  responses to cytokines.  

Recent studies have shown that continuous stimulation or sequential pulsing of TNF  can 

induce oscillations in NF  nuclear translocation that are dependent upon cycles of degradation 

and re-synthesis of I B proteins (i.e., negative feedback loops), and that the frequency of these 

NF  oscillations encode distinct gene expression profiles [27, 28, 31, 50, 51].  Additional 

work has suggested that the amplitude of NF  activity, but not the temporal profile, is 

particularly sensitive to changes in TNF  concentration and is crucially dependent on the 

transient nature of IKK activity [52].  Recently, single cell imaging has emerged as a paradigm-

of-choice to study the dynamics of NF  nuclear localization as monitored by 

nuclear:cytoplasmic shuttling of NF  proteins fused to fluorescent protein reporters. Coupled 

with computational modeling, these single cell studies have revealed stochastic, heterogeneous, 

and paracrine NF  responses at the single cell level, especially in response to low 

concentrations of TNF  [53-56].  A key unresolved issue in the field relates to how biological 

robustness is achieved within cell populations displaying heterogeneous and dynamic single-cell 
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behavior [49, 55, 56], and the physiologic relevancy of these single-cell phenomena to tissue- and 

organ-level biological responses in vivo.  And if these asynchronous and oscillatory NF- B 

signaling behaviors are relevant in vivo, what impact do they have on responses to chronic and/or 

acute waves of TNF  (or a variety of other cytokines), and what are the implications for 

therapeutic targeting of NF- B?  As has been posited by others [57], �“�…it may be necessary to 

develop a new generation of biomarkers that predict �‘�‘healthy�” asynchronised oscillatory NF- B 

activity versus �‘�‘unhealthy�” synchronised oscillatory NF- B. Distinguishing between these 

variables may enable us to effectively target NF- B to promote resolution of inammation and 

wound-healing in the context of ongoing injury.�” 

 

1.5 BIOLUMINESCENCE IMAGING AND THE NF- B PATHWAY 

  One goal of molecular imaging is to advance the understanding of biology and medicine 

through noninvasive in vivo investigation of the cellular and molecular events mediating normal 

physiology and pathologic processes [58, 59]. While some aspects of molecular imaging relate to 

clinical applications, a great deal of basic research is performed with cellular and animal models 

of development, normal physiology, and disease.  In practice, molecular imaging can complement 

and, in some cases, replace conventional laboratory techniques.  Routinely used methodologies in 

the laboratory and in vitro settings are based on destructive sampling of cells or tissues which 

yield only a static snapshot at a given experimental endpoint.  New molecular imaging 

technologies now allow for noninvasive, repetitive, real-time in vivo imaging of dynamic 

biological processes. 

One of these molecular imaging strategies, genetically-encoded imaging reporters, can be 

introduced into cells and transgenic animals to enable noninvasive, longitudinal studies of 



9 

 

dynamic biological processes in intact cells and living animals [58, 59].  These reporters can 

produce signal intrinsically (e.g., fluorescent proteins), through enzymatic activation of an 

inactive substrate (luciferases), by enzymatic modification of an imagable (e.g., optical) substrate 

with selective retention in reporter cells, or by direct binding or import of an active (e.g., 

radiolabeled) reporter substrate or probe.  Except in the context of gene therapy, genetically-

encoded reporters are less likely to be used in humans, but possess a fundamental advantage in 

basic and pre-clinical research in that once validated, a single genetically-encoded reporter can 

theoretically be cloned into a variety of vectors to interrogate a broad array of regulatory 

pathways.  Compared to injectable radiopharmaceuticals, for example, this eliminates constraints 

inherent to traditional routes of synthesizing, labeling and validating a new and different 

radioligand for every new receptor or protein of interest.   

The most common reporters include firefly luciferase (bioluminescence imaging), green 

fluorescence protein (fluorescence imaging), transferrin receptor (magnetic resonance imaging), 

Herpes Simplex Virus-1 thymidine kinase (positron emission tomography) and variants with 

enhanced spectral and kinetic properties optimized for use in vivo [58, 60]. When cloned into 

promoter/enhancer sequences or engineered into fusion proteins, imaging reporters enable 

fundamental processes such as transcriptional regulation, signal transduction cascades, protein-

protein interactions, protein degradation, oncogenic transformation, cell trafficking and targeted 

drug action to be temporally and spatially recorded in vivo.  Ideally, the magnitude and time 

course of reporter gene activity should parallel the strength and duration of endogenous target 

gene expression.  Genetically-encoded imaging reporters also provide the potential for a stable 

source of signal enabling longitudinal studies in living organisms with high temporal and, in 

some cases, high spatial resolution.  
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Bioluminescence imaging (BLI) assays rely on the use of luciferase enzymes that 

catalyze the oxidation of a specific substrate, luciferin, into an oxyluciferin (in the presence of 

molecular oxygen and ATP), with the concurrent emission of one photon of light [61].  There are 

many naturally-occurring luciferases with matching substrates available, though most are 

blue/green and therefore less suitable for deep tissue imaging.  The luciferases that have been 

found to be most useful for molecular imaging are firefly luciferase (550-570 nm peak emission), 

Renilla luciferase (480 nm), green or red click beetle luciferases (537 nm, 613 nm) and Gaussia 

luciferase (460 nm) [62-65].  Nonetheless, the favorable attributes of luciferin-based imaging 

provide a versatile platform for studying biology in vivo.   

BLI of luciferase reporters provides a relatively simple, robust, and cost-effective means 

to image fundamental biological processes in live cells and in vivo.  Luciferases exhibit 

exceptionally high signal-to-noise levels (almost no background noise sources exist, save for 

food-derived phosphorescence), provide an extremely quantitative read-out, are active 

immediately after translation (a favorable property as compared to many fluorescent proteins), 

and have a relatively short half-life (t1/2  3�–6 h, and even shorter when artificially modified with 

degradation sequences) allowing for dynamic measurements with high temporal sensitivity [66].  

Nevertheless, bioluminescence remains dependent on substrate pharmacokinetics, except in the 

case of bacterial lux operons, and relies upon ultrasensitive CCD cameras for detection due to the 

extremely dim light out of luciferases.  BLI has also traditionally been subject to restricted spatial 

resolution, but recent advances in low-light microscopy are enabling microscopic analysis of 

bioluminescent reporters in single cells and sub-cellular compartments [49, 59, 67-69], making it 

possible to use a single bioluminescent reporter for microscopic and macroscopic studies.  

In particular, BLI has proven useful to study NF-  transcriptional activity in vivo.  

Recently, a transgenic mouse expressing a luciferase driven by an NF-  responsive promoter 
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has been used to examine prostate NF-  activity in response to acute and chronic cytokine 

exposure [70], an approach that may be amenable to the in vivo study of pharmacological NF-  

modulators.  In another study, Ma et al used NF- -Luc mice as donors or recipients in mouse 

models of cardiac transplantation and tissue ischemia-reperfusion injury (IRI) [71].  They showed 

elevated NF-  activity in both the cardiac allografts and the IRI cardiac grafts, and used mAbs 

and ligands to examine inhibition of NF-  signaling in vivo. 

Imaging post-transcriptional events in the NF-  signaling pathways, such as 

translational regulation, protein-protein interactions (PPI), protein processing or protein 

degradation, can be accomplished by fusing the reporter gene to the protein of interest, thereby 

generating a molecular sensor that activates (or deactivates) the reporter in response to a given 

protein interaction or modification. For example, we have previously shown that an I B -firefly 

luciferase (I B -FLuc) fusion reporter driven by a constitutive CMV promoter enables 

quantitative monitoring of I B  degradation (which can be directly correlated to IKK activity) 

and can be used in cultured cells to provide a continuous, noninvasive readout of the kinetics and 

dynamics of ligand-induced IKK activation [72].  This reporter was additionally used in vivo to 

monitor the real-time activity of IKK in response to LPS-mediated activation.  Applying this 

approach to a tumor xenograft model expressing the -FLuc fusion reporter, robust time- and 

dose-dependent pharmacodynamic characterization of a novel IKK inhibitor (PS-1145) was 

characterized using a minimal number of animals. Thus, bioluminescence imaging provides a 

unique toolkit that is well-suited to rigorously interrogate the real-time dynamics of NF-  

signaling in live cells and live animals. 
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1.6 FIGURES 

 

Figure 1.1: Activation of Canonical NF- B Signaling by TNF- .  Binding of homotrimeric 

TNF  ligands drives trimerization of TNF-R1 and results in TRADD-dependent TRAF2 and 

RIP1 recruitment.  TRAF2 mediates K63-linked ubiquitination of RIP1 and recruits the IKK 

complex via the catalytic subunit NEMO.  Autoubiquitination of TRAF2 causes TAK1 activation 

by interaction via TAB2/3.  In consequence, TAK1 phosphorylates and activates IKK  (IKK2), 

which in turn phosphorylates I B , leading to proteasomal degradation and release of NF- B 

which can then translocate into the nucleus and modulate transcription.   Modified from Vucur, et 

al [73].  
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CHAPTER TWO 

 

Identification of a Ligand-Induced Transient Refractory 
Period in Nuclear Factor- B Signaling 

 

2.1 INTRODUCTION 
Adequate resolution of an inflammatory reaction is as equally important as 

initiation. Persistent or fulminant responses can cause detrimental consequences both 

locally and systemically [1], and resolution of inflammation is important for both 

termination of an acute response as well as for prevention of destructive chronic 

responses. It is therefore not surprising that mechanisms aimed at rapid and specific 

initiation of pro-inflammatory reactions have co-evolved with mechanisms that provide 

timely termination of such processes. From a systems biology perspective, such 

�“switchability�” can be achieved by intracellular feedback loops that permit ligand-

induced desensitization and re-sensitization of pro-inflammatory signaling cascades [2].  

 In this regard, recent studies have shown that nuclear factor- B (NF- B) 

signaling plays a critical role in both initiation and resolution of inflammation [2, 3]. The 

transcription factor NF- B is a key regulator of innate and adaptive immune responses, as 

well as a mediator of cell survival and proliferation [4]. Improper regulation of NF- B 

contributes to induction and progression of a wide range of human disorders, including a 

variety of pathological inflammatory conditions, neurodegenerative diseases as well as 
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many types of cancer [5, 6]. In resting cells, inactive NF- B is sequestered in the 

cytoplasm by binding to members of the inhibitor of NF- B (I B) family. Canonical 

activation of NF- B depends on I B kinase (IKK)-regulated proteasomal degradation of 

I B , an event that frees NF- B for nuclear translocation within minutes [4, 7]. Upon 

nuclear transport, NF- B regulates the transcription of a few hundred genes [8-10] that 

can be divided into four major families [10, 11]: (1) pro-inflammatory genes (e.g., COX 2, 

IL-1, TNF  iNOS, ICAM-1, E-selectin, etc.), (2) pro-proliferative genes (e.g., Cyclin D, 

c-Myc), (3) anti-apoptotic genes (Bcl2, BclXL, xIAPs, cIAPs), and (4) auto-inhibitory 

genes (e.g., A20, CYLD, SOCS-1 and I B ). 

 With respect to the latter, other transcriptionally-independent processes, aimed at 

auto-inhibition of NF- B activity, do exist. Such mechanisms down-regulate NF- B 

signaling on a much shorter timeframe (sec-min). These include homologous receptor 

desensitization [12, 13], asymmetric heterologous receptor desensitization [13, 14], 

autocatalytic C-terminal IKK hyperphosphorylation [15] and protein phosphatase 2  

(PP2 )-dependent dephosphorylation of IKK [16]. 

 Considering the complex nature of the inflammatory milieu, one would expect 

that stationary tissue-residing cells are exposed to a myriad of temporally-distinct NF-

B-stimulating cues. For instance, cells can be directly stimulated by pathogen-derived 

products (e.g., LPS through TLR4 receptors [17]), exposed to numerous soluble pro-

inflammatory stimuli produced by circulating effector cells (e.g., cytokines, chemokines, 

etc.), and/or experience inflammation-induced oxidative stress [18]. These signals can 

occur simultaneously or sequentially to one another. For example, systemic 
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administration of bacterial LPS to mice was shown to induce transient production of 

TNF  (serum levels peaking at ~1.5 h and quickly returning to baseline), but IL-1  

production was delayed and prolonged (first detected at 2 h, but lasting >5-6 h) [19]. 

Thus, cells co-expressing TLR4, IL-1 and TNF  receptors would sequentially interrogate 

signals arising from LPS, TNF  and IL-1 each of which could independently activate 

NF- B. 

 Central to any signaling desensitization mechanism is a refractory period during 

which cells cannot fully respond to a second insult (autologous or heterologous 

desensitization). Therefore, consideration of the dynamic pattern of stimulus exposure 

described above begs the immediate question of whether cells can instantly initiate an 

NF- B response to a second activating stimulus, and if not, when will such cells be able 

to remount a full response again? Specifically, are ligand-preconditioned cells capable of 

eliciting NF- B activation to the same extent as naïve cells? 

 Little is known about the capacity of cells to activate NF- B in response to a 

second activating challenge since the highly dynamic nature of this process presents 

many technical difficulties. These include low temporal resolution of conventional 

transcriptionally-dependent NF- B reporter gene assays, low throughput, inability to 

acquire longitudinal data and the semi-quantitative nature of traditional biochemical 

assays (e.g., EMSA, immunoblotting, etc.). Such limitations render these assays 

incapable of accurate analysis of the early, ligand-induced dynamic changes in the 

capacity of cells to elicit a response to a second challenge. 
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 To efficiently address this question, we generated an improved, transcriptionally-

coupled version of a previously published genetically-encoded I B -firefly luciferase 

(I B -FLuc) fusion reporter [20] in conjunction with dynamic, live-cell bioluminescence 

imaging of cultured cells. We chose to focus on HepG2 human hepatoma cells as a model 

system because, (1) NF- B signaling has been extensively studied in these cells, (2) 

HepG2 cells have been shown to activate NF- B in response to a variety of pro-

inflammatory ligands [21], (3) these cells can be easily transfected with readily-available 

reagents, and most importantly, (4) the pivotal role that NF- B signaling plays in 

hepatocytes to regulate inflammation, apoptosis and carcinogenesis [22]. 

 Using bioluminescence imaging of live cells in conjunction with a variety of 

biochemical assays, we demonstrate herein that a 30 sec preconditioning exposure to 

TNF  is sufficient to robustly activate IKK, culminating in I B  degradation, NF- B 

nuclear translocation, and strong transcriptional up-regulation of I B . Furthermore, the 

capacity of preconditioned cells to degrade I B  in response to a second TNF  challenge 

is transiently refractory, regaining full responsiveness approximately 120 min later. 

Finally, both IKK regulation and possibly NF- B nuclear export, but not receptor 

dynamics, govern this transient refractory period. This study highlights the interlocking 

layers of NF- B regulation, ensuring efficient and timely propagation as well as 

termination of pro-inflammatory signals.  
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2.2 RESULTS 

Real-time bioluminescence imaging of p B5 I B -FLuc-expressing cells 

recapitulated IKK-induced dynamics of endogenous I B . To monitor ligand-induced 

I B  rapid dynamics as well as physiologic transcriptionally-coupled behavior, we 

modified our previous I B -FLuc fusion reporter [20] to be driven by a synthetic 

promoter comprised of 5 tandem B response elements (TGGGGACTTTCCGC) 

followed by a minimal TATA-box. We hypothesized that this reporter would allow 

quantitative measurements of IKK-induced degradation as well as NF- B-induced re-

synthesis and post-translational stabilization of I B  from intact living cells (Fig. 2.1A). 

To validate use of this reporter, HepG2 cells were transiently transfected with a plasmid 

encoding the reporter and allowed to recover for two days before stimulation with a 

continuous or 30 sec pulse of TNF  (20 ng/mL) to induce IKK activation. Upon addition 

of TNF , a rapid and dramatic decrease in bioluminescence was observed when readouts 

were normalized to untreated controls [20] under both continuous (C) and 30 sec pulse 

(P) regimens (Fig. 2. 1B, C). This decrease in normalized bioluminescence, reflecting 

IKK-induced reporter degradation was followed by a sharp increase in bioluminescence, 

reflecting NF- B-dependent reporter re-synthesis, reaching maximum values at ~120 min 

and then gradually declining toward baseline. Note that the rate at which I B  levels 

return to baseline is steeper under continuous TNF  treatment compared to the 30 sec 

pulse, providing evidence for reactivation of ligand-induced I B  degradation during 

continuous stimulation [23]. The magnitude of the initial decrease in bioluminescence 

was greater in continuously-treated cells than in 30 sec-pulsed cells (70% vs. 40% of 
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initial, respectively), indicating that a 30 sec pulse of TNF  leads to approximately 50% 

depletion of the I B -NF- B pool compared to continuous TNF  exposure (Fig. 2.1C, 

120 min). These data suggested that, (a) this reporter construct could report on both IKK-

induced I B  degradation and successive re-synthesis of I B , (b) a 30 sec pulse of 

TNF  at a saturating concentration (20 mg/mL) elicited robust IKK activity, culminating 

in I B  degradation and a full I B  transcriptional up-regulation, and (c) with the 

current B5 synthetic promoter system, there was a non-linear relationship between I B  

degradation and NF- B-dependent re-synthesis of I B  (i.e., saturation of I B  re-

synthesis even at sub-maximal I B  degradation levels).  

Strikingly, Western blot analysis revealed that endogenous I B  behaved exactly 

as the reporter under both C and P conditions, recapitulating the degree of degradation, 

recovery, and return to baseline (Fig. 2.1D). Pretreating p B5 I B -FLuc-expressing 

HepG2 cells with cycloheximide did not affect degradation of I B -FLuc, but abolished 

signal recovery, indicating that this phase was totally dependent upon transcription and 

translation of new I B -FLuc (Fig. 2.1E). 

 

TNF  preconditioning induces a transient refractory period of I B  processing. 

Upon a pro-inflammatory insult in vivo, effector cells (e.g., circulating macrophages) 

release TNF  and other activating cytokines in a temporally- and spatially-discrete 

manner. As a consequence, stationary target cells (e.g., epithelial cells, endothelial cells, 

hepatocytes, etc.) will sense a stochastic rise in the levels of such pro-inflammatory 
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ligands. In such a dynamic environment, as ligand-secreting cells continuously migrate to 

sites of inflammation, it is anticipated that over time, target cells will experience multiple 

pulses of activating ligands. 

We therefore aimed to elucidate the effects of such ligand pulses on the capacity of 

hepatocytes to respond to a subsequent challenge of the same ligand. Having shown that, 

(a) p B5 I B -FLuc provided an accurate readout of I B  processing in intact cells 

and that, (b) a 30 sec pulse was sufficient to induce robust IKK activity, we next sought 

to investigate whether a short 30 sec preconditioning pulse with TNF  had a substantial 

effect on the capacity of cells to process I B  upon a subsequent continuous TNF  

challenge. 

HepG2 cells transiently expressing p B5 I B -FLuc were given a 30 sec pulse of 

TNF 20 ng/mL) or vehicle at t0, washed, replaced in media containing D-luciferin and 

repeatedly imaged (every 5 min) prior to a TNF  challenge. At t30, t60, t120, or t240 (min) 

after pulsing, cells were then challenged with a second continuous concentration of 

TNF  (20 ng/mL) and live-cell imaging was continued up to 360 min. To compare the 

processing dynamics of I B -FLuc in naïve (un-preconditioned) cells with that of 

preconditioned cells, the resulting bioluminescence profiles of preconditioned cells (black 

lines, Figure 2.2A) were plotted along with the bioluminescence profile of un-

preconditioned cells (i.e., only treated with continuous TNF  at t0, red line, Figure 2.2A). 

The different graph panels represent the differential dynamics of I B -FLuc processing 

as the preconditioning pulse-challenge (P-C) intervals temporally increased (0-240 min).  
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We observed that challenging preconditioned cells with a continuous exposure to 

TNF  near the time that they had achieved maximal degradation from the 

preconditioning pulse (i.e., 30 min post preconditioning) resulted in a small amount of 

additional I B  degradation.  As the interval between preconditioning and challenge 

increased, the magnitude of challenge-induced I B  degradation also increased. These 

data suggested that the TNF -NF- B system possessed a built-in refractory period 

following TNF  treatment that prevented cells from fully responding to a second 

exposure to ligand. To quantify this phenomenon independent of confounding factors that 

may affect dynamic bioluminescence readouts (e.g., D-luciferin, ATP, O2 or pH 

dynamics), and to verify its existence for endogenous I B , we performed a similar 

experiment, but instead of live-cell imaging, we harvested whole-cell lysates at tX+25 min 

(time of maximal I B  degradation after a ligand challenge given at tX (Fig. 2.1C); for a 

schematic timeline see Fig. 2.2B). I B -FLuc reporter levels in these lysates were 

analyzed by bioluminescence imaging (upon addition of saturating D-luciferin and ATP), 

and endogenous I B  levels were determined by Western blot analysis and semi-

quantitative densitometric analysis (Fig. 2.2C). From these data, we were then able to 

calculate responsiveness levels for both I B  and I B -FLuc as a function of time after 

TNF  preconditioning. Responsiveness at each challenge time was calculated by 

determining the magnitude of I B  degradation induced by TNF  challenge divided by 

the magnitude of I B  degradation in un-preconditioned cells from the same plate. 

Specifically, the ratio at tX+25 min of I B  in preconditioned cells challenged with 

TNF over preconditioned cells challenged with vehicle was divided by the ratio at tX+25 
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min of I B in un-preconditioned cells challenged with TNF  over un-preconditioned 

cells challenged with vehicle, the latter ratio representing the maximal possible response. 

We observed a strong correlation (r=0.95) between levels of responsiveness for 

endogenous I B  and I B -FLuc (Table 2.1). Consistent with our earlier observations 

derived from live-cell dynamic bioluminescence imaging experiments (Fig. 2.2A), we 

observed that at 30 min post-preconditioning, cells were approximately half as responsive 

as naïve (i.e., un-preconditioned) cells to a TNF  challenge, and had gained full 

responsiveness by 120 min. Thus, a transient refractory period seemed to exist from 30-

120 min post TNF  preconditioning that rendered the cells unable to fully respond (as 

measured via I B  degradation) to a second challenge of TNF , and beyond this period, 

the cells were able to mount a full response to a second TNF  challenge. Notably, similar 

experiments performed with HeLa cells stably expressing pCMV I B -FLuc 

(HeLaI B -FLuc [20]), yielded almost identical results (data not shown), suggesting that, (1) 

the TNF -induced transient refractory period was not limited to hepatocytes, and (2) this 

effect was independent of both NF- B-induced I B  transcription and the initial levels 

of I B -FLuc (substantially higher in HeLaI B -FLuc [20]). 

 

The ligand-induced transient refractory period for I B  processing correlated in 

part with temporal down-regulation of IKK, but not receptor dynamics. 

Hypothetically, this loss and regain of the capacity of cells to process I B  can be 

explained by, (1) internalization or shedding of TNF  receptors (TNFR), followed by 
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their recycling to the cell membrane [24, 25], (2) transient down-regulation of IKK 

activity as previously reported [15, 26], or alternatively, (3) by a yet unknown mechanism 

of regulation, downstream of IKK. We therefore sought to establish the relative 

contributions of receptor dynamics and IKK regulation to this refractory period. 

To determine the extent of receptor dynamics in governing the observed loss and 

regain of I B  processing, we took advantage of a discovery, made 20 years ago [14], 

that IL-1  induces transient down-regulation of TNF  receptors, but not vice versa (i.e., 

TNF  has no effect on either the affinity or the number of IL-1  surface receptors), as 

tested in a variety of cell lines and primary cells. Hence, we aimed to determine I B  

responsiveness to an IL-1  challenge as a function of time after TNF  preconditioning in 

HepG2 cells. Cells expressing p B5 I B -FLuc were treated with a 30 sec pulse of 

TNF  (20 ng/mL) followed by a continuous challenge with IL-1 , initiated at increasing 

P-C intervals (0-240 min). I B  processing was analyzed by live-cell dynamic 

bioluminescence imaging (Fig. 2.3A). Using this experimental setup, we again observed a 

transient refractory period (from 30-120 min post-TNF  preconditioning) during which 

HepG2 cells exhibited decreased I B  responsiveness. The magnitude of the ligand-

induced degradation increased as the interval to the IL-1  challenge increased,  becoming 

fully responsive again by 120 min (Fig. 2.3A). These data suggested that even in the 

absence of ligand-induced receptor desensitization or cross-regulation, the capacity of 

cells to process I B  was compromised within the first two hours after a short TNF  

stimulation. 
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We next aimed at deciphering whether transient down-regulation of IKK activity 

could explain the observed loss and regain in I B  responsiveness. We therefore 

performed a series of IKK kinase assays in order to directly measure the temporal activity 

profile of IKK, a central junction of the TNF  and IL-1  pathways that integrates signals 

from a myriad of upstream regulators (e.g., TRAFs, MEKK, TAB, TAK, NIK, RIP, A20, 

PKC , etc. [2, 7, 27]). HepG2 cells were treated with TNF  (20 ng/mL) either as a 30 sec 

pulse or continuously. At the indicated time points, cells were harvested, IKK complexes 

were immunoprecipitated and assayed for their capacity to phosphorylate exogenous 

GST-I B (1-54) [23]. We found that for both 30 sec pulses and continuous TNF  

exposure, temporal profiles of IKK activity were almost identical, with both peaking at 

10 min. However, consistent with our earlier findings that continuous TNF  treatment 

elicits greater I B  degradation than a 30 sec pulse (Fig. 2.1C), continuous TNF  

treatment exhibited slightly elevated and more sustained levels of IKK activity compared 

to pulsed TNF  treatment (Fig. 2.3B). Importantly, Western blot analysis showed that 

IKK complex levels (as determined by IKK  protein) did not change over the 

experimental time course (Fig. 2.3C), confirming that the increase in net kinase activity 

was due specifically to IKK activation. 

IKK-KA data were also collected from preconditioned cells, 10 minutes post-

challenge (at the time of maximal IKK activity, see Fig. 2.3B) at increasing P-C intervals 

(0-240 min). Using these data together with the IKK activity profiles generated for 30 sec 

pulse and continuous TNF  treatment regimens (Fig. 2.3B), we were able to calculate the 

net capacity of IKK to phosphorylate I B  as a function of time after TNF  
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preconditioning (i.e., IKK responsiveness, Table 2.1, see methods section for details on 

this calculation). Based on this calculation, we noted that the capacity of IKK to respond 

to a second challenge of TNF  was significantly compromised at 30 min post TNF  

preconditioning and then gradually increased, reaching ~75% responsiveness by 120 min. 

Up to 240 min, IKK activity did not fully recover to initial levels, consistent with other 

reports indicating that upon TNF  stimulation, IKK activity rapidly and transiently 

declines due to autocatalytic C-terminal hyperphosphorylation [15] and PP2C -dependent 

dephosphorylation [16], followed by late NF- B-dependent down regulation, a process 

attributed, in part, to A20, an IKK-inhibitory protein [27]. Hence, these data suggested 

that, (1) the observed ligand-induced transient refractory period of I B  processing 

(Figs. 2.2 and 2.3, Table 2.1) correlated only in part with ligand-induced transient down-

regulation of IKK activity, and that, (2) the level to which cells are able to degrade I B  

was not linear with the capacity of IKK to phosphorylate I B  i.e., full I B  

responsiveness was observed as soon as 120 min post TNF  preconditioning (Figs. 2.2 

and 2.3A), a time point where IKK responsiveness was  still compromised (Table 2.1). 

These data indicated that either submaximal IKK activity could now fully support ligand-

induced I B degradation following the refractory period, or that additional ligand-

responsive elements existed that converged on I B  to induce a full response. 

 

Computational modeling of NF- B signaling suggested an additional layer of 

regulation, downstream of IKK, governing the observed refractory period for I B  

processing. The NF- B pathway provides an excellent example of a complex signaling 
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system employing numerous temporally distinct auto-regulatory mechanisms and 

negative feedback loops. IKK enzymatic activity, which is both endogenously and 

exogenously regulated, controls the degradation of its own substrate (I B ), which is 

later strongly up-regulated in an NF- B-dependent manner (Fig. 2.1A). Rapid changes in 

substrate availability, conformation and sub-cellular localization imply that alternative 

mechanisms of regulation might exist, other than changes in enzymatic activity. Although 

a ligand-induced transient refractory period of I B  processing could be explained in 

part by down-regulation of IKK activity, we were intrigued to examine whether an 

alternative regulatory mechanism, based on substrate (I B ) dynamics, might exist to 

complement or "back up" IKK regulation. Obviously, inhibition of IKK was not a viable 

option for analyzing downstream regulation, since such inhibition will result in complete 

loss of responsiveness in the absence or presence of preconditioning. We therefore 

decided to undertake a computational approach and explore I B  dynamics in silico, 

assuming no down-regulation of IKK activity. We used a well-accepted computational 

model that used experimentally- or hypothetically-driven IKK activity profiles as inputs 

and in return, calculated ligand-induced dynamics of 24 different sub-populations of 

mediators on the IKK-NF- B axis. 

As a first step, to test the robustness of the model, we sought to compare our I B -

FLuc bioluminescence imaging data for 30 sec pulsing and continuous TNF  treatments 

(Fig. 2.1C) with the dynamics of I B , as predicted by the computational model. To 

accomplish this, we used as inputs the IKK activity profiles generated for 30 sec pulse 

and continuous TNF  treatment regimens (Fig. 2.4A, left panel; see methods section for 
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details on numerical processing of the raw data to fit the model). The dynamics of six 

different free and complexed I B sub-populations could be predicted by the model (i.e., 

free I B cyt, I B :IKKcyt, I B :NF- Bcyt, I B :IKK:NF- Bcyt, free I B nuc and 

I B :NF- Bnuc). Since live-cell bioluminescence imaging of I B -FLuc could not 

distinguish between these populations, we summed up the predicted concentrations of all 

I B  sub-populations and plotted the predicted total I B  levels as a function of time 

(Fig. 2.4A, right panel). For both treatment regimens, we noted an excellent correlation 

between the predicted profiles of I B  and the experimentally-generated profiles of 

I B -FLuc (Fig. 2.1C). The timing and extent of I B  degradation as well as the overall 

dynamic behavior were highly similar. However, differences in the amplitude and timing 

of re-synthesis (experimental: ~8 fold-initial at ~120 min; computational: 1.2-1.5 fold-

initial at ~90 min) were observed and could be explained by dynamic differences between 

the endogenous I B  promoter and the synthetic B5-TATA promoter driving I B -

FLuc (i.e., differences in binding affinity and cooperativity towards NF- B).  

We next generated hypothetical IKK profiles representing IKK activities from 

preconditioned/challenged cells, assuming no upstream receptor or IKK regulation (i.e., 

experimentally-derived challenge-specific IKK activity were overlaid on top of 

experimentally-derived precondition-specific residual IKK activity). These hypothetical 

IKK activity profiles (Fig. 2.4B-E, left panels, each generated with a different P-C 

interval) were used as inputs for computing total I B  dynamics (Fig. 2.4B-E, right 

panels). Surprisingly, the computational model predicted that even in the absence of 

receptor dynamics or IKK regulation, I B  processing would be transiently 
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compromised (compare for example the second, challenge-induced degradation phase at 

120 or 240 min with the ones at 30 or 60 min). These data suggested that although IKK 

down-regulation partially correlated with the ligand-induced transient refractory period 

for I B  processing, an additional regulatory mechanism was present downstream of 

IKK. Importantly, I B  availability per se was not sufficient to explain  changes in I B  

responsiveness because, as confirmed experimentally and computationally, at 60 min 

post-preconditioning, the I B  concentration had already recovered, while degradation 

potential was still low (compare Figs. 2.2A, 2.2C, Table 2.1 and 2.4C). 

 

Nuclear export of I B :NF- B complexes may also control the capacity of cells to 

process I B . Having demonstrated experimentally the phenomenon of a ligand-induced 

transient refractory period for I B  processing and after dissecting biochemically and 

computationally the origins of this observation, we next sought to more closely examine 

the components of the computational model in order to identify candidates, downstream 

of IKK, capable of regulating I B  responsiveness. While examining the rate constants 

of a variety of reactions used by the model, we noticed that free vs. NF- B-bound I B  

differed tremendously in their capacity to associate with IKK (1.35 vs. 11.1 M-1 min-1, 

respectively) and to be degraded in an IKK-dependant manner (0.12 vs. 0.00006 min-1, 

respectively). These differences in IKK association and ligand-induced degradation were 

experimentally established by Zandi et al. [28]. 
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This led us to put forward the following model (Fig. 2.5A): (1) free I B and NF-

B-bound I B represent �“protected�” and �“unprotected�” populations with respect to 

ligand-induced, IKK-dependent proteasomal degradation. (2) Under steady-state 

conditions, there is a stoichiometric excess of I B  over NF- B in the cytoplasm (~0.7 

NF- B per I B  according to the model). This may explain our observations that even at 

saturating concentrations of TNF  or IL-1 , I B  degradation never exceeded 70-80% 

of initial (e.g., Fig. 2.1C). (3) Upon ligand stimulation, NF- B-bound I B  is degraded, 

NF- B translocates to the nucleus and I B  is resynthesized. (4) At this point, although 

I B  is highly abundant, its capacity to be degraded in response to a second stimulus is 

still severely compromised because NF- B is in the nucleus. (5) I B  can freely shuttle 

between the cytoplasm and the nucleus, pulling NF- B molecules (that lack nuclear 

export signals [29]) back to the cytoplasm. This step may be the rate limiting step for 

acquisition of full responsiveness. (6) Newly-synthesized I B  molecules uncomplexed 

with NF- B are rapidly degraded [30], and only after all NF- B molecules are recovered 

back to the cytosol and the NF- B-bound-I B  over free-I B  ratio returns to pre-

stimulation levels (~0.7), are cells able to mount a full response again. 

To experimentally examine the nuclear export hypothesis, we sought to analyze 

ligand-induced changes in cytoplasmic I B :NF- B complexes. However, the 

computational model predicted that ligand-induced changes of cytoplasmic I B :NF- B 

and total cytoplasmic NF- B were essentially the same (i.e., at any given time, virtually 

all cytoplasmic NF- B was bound to I B , Fig. 2.5B , suggesting that monitoring 
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cytoplasmic total NF- B was an excellent approximation for following cytoplasmic 

I B :NF- B complexes. We therefore pulsed HepG2 cells for 30 sec with TNF  (20 

ng/mL) and at various times after stimulation, we fixed, permeabilized and 

immunostained the cells for p65 NF- B (Fig. 2.5C). We found that upon a 30 sec TNF  

pulse, p65 rapidly translocated to the nucleus (maximal by 30 min), but by 60-120 min 

was back in the cytoplasm. The excellent temporal correlation between the levels of 

cytoplasmic NF- B (as derived computationally or experimentally, Fig. 2.5B and 5C, 

respectively) and the competence of cells to degrade I B  in response to a pro-

inflammatory ligand (i.e., Table 2.1) strongly suggested that nuclear transport of NF- B 

provided a potential alternative mechanism to transiently desensitize I B  processing 

(refractory period), in addition to the mechanism of IKK down-regulation (Fig. 2.3B, C; 

Table 2.1). 

 

2.3 DISCUSSION 

Ligand-induced desensitization is a common theme in many biological systems 

[13], thereby allowing cells to mount an appropriate response independently of ligand 

exposure time. Thus, prolonged exposures will not result in excessive responses, but 

instead, cells are enabled to build up a downstream response, while being unable to 

perceive a second activating cue. Desensitization and re-sensitization are traditionally 

perceived to be linked to receptor dynamics (internalization, shedding and recycling), 
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however, any mediator or regulator along a signaling pathway can be hypothetically 

desensitized, therefore transiently blocking signal transduction [13]. 

In this work, we demonstrated that while cells can efficiently activate NF- B in 

response to a TNF  exposure as short as 30 sec, such stimulation was followed by a 

refractory period during which the capacity of cells to respond to a second homologous or 

heterologous stimulus was severely compromised. We further found that this transient 

refractory period correlated in part with a temporal down-regulation of IKK activity, but 

not with receptor desensitization. Computational modeling enabled us to identify an 

additional layer of regulation, downstream of IKK, controlling the capacity of cells to 

respond to a second challenge. Ligand-induced dynamic changes in substrate (I B ) 

availability, conformation and sub-cellular localization form the basis for this 

mechanism. Further analysis led us to conclude that nuclear export of NF- B may be a 

rate limiting step in controlling I B  homeostatic metabolism, a term recently coined by 

O�’Dea et al. [31]. 

Our study highlights the multifaceted regulation of NF- B signaling (Fig. 2.6) and 

sheds light on the refractory nature of I B  processing as a route to transiently 

desensitize NF- B activity upon subsequent rounds of stimulation. Rapid and transient 

deactivation of IKK activity as well as temporal reduction in its capacity to respond to a 

subsequent challenge (IKK responsiveness) seems to play a crucial role in this process. 

Previous studies indicated that both the amplitude and the timing of IKK activation affect 

not only the intensity of NF- B-dependent transcription, but also the specificity of the 

transcriptional response [23, 32]. This indicated that besides resolution of the 
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inflammatory response and induction of a refractory period (temporally preventing 

subsequent rounds of I B  degradation upon re-stimulation), rapid down-regulation of 

IKK activity [26] plays a pivotal role in determining the type of elicited transcriptional 

program.  

In addition to IKK regulation, our work demonstrated that nuclear export of 

I B :NF- B complexes may have also regulated I B  responsiveness (Figs. 2.4 and 

2.5). This suggested that NF- B positively controls I B  both transcriptionally and post-

translationally. Such double-layered feedback regulation ensures that NF- B 

transcriptional activity will fully resume only after reconstitution of the cytosolic pool of 

NF- B. Two other I B isoforms,  I B  and I B  , are degraded more slowly under both 

TNF -induced and unstimulated conditions [23, 33] and have been implicated in 

dampening I B -mediated oscillations of NF- B activity [33-35].  I B  has been shown 

to be highly NF- B inducible in MEFs, and contribute to nuclear export of  NF- B, but 

only at times greater than 3 hrs post-stimulation [36].  Thus, it is seems unlikely that I B  

contributes substantially to the export of NF- B over the 2 hrs of the refractory period 

observed in the present study. It may be interesting to determine whether similar transient 

refractory periods exist for processing of other I B isoforms.   

While TNF -induced re-synthesis of endogenous I B  peaks at ~60-90 min post 

onset of stimulation (as validated both experimentally and computationally, Figs. 2.1D 

and 2.4A, respectively), maximum levels of newly-synthesized I B -FLuc reporter were 

observed ~120 min after TNF  stimulation (Figs. 2.1C, 2.1E, and 2.2A). This 
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discrepancy may be explained by differences likely to be present in affinity and 

cooperativity of binding of NF- B to endogenous vs. synthetic promoters (the 

endogenous promoter contains 3 distant B sites, while the synthetic promoter contains 5 

tandem high affinity B sites). Nevertheless, since both endogenous I B  and I B -

FLuc exhibit similar half-life times [20], differences in the timing of re-synthesis cannot 

be explained by differences in turnover rate.  Following the peak of I B  re-synthesis, 

both endogenous I B  and our I B -Fluc reporter begin returning to baseline levels 

faster under continuous TNF  treatment, suggesting that ligand-induced reactivation of 

I B  degradation is occurring under continuous TNF  exposure, as expected [23]. 

In the present and previous studies [20], we demonstrated that dynamic 

bioluminescence imaging of I B -FLuc reporters in live cells provides robust and 

accurate readouts of ligand-induced I B  dynamics. In effect, real time bioluminescence 

imaging was equivalent to performing continuous on-line Western blots of I B  at five 

minute intervals.  An analogous transcriptionally-coupled reporter (kB5 I B -EGFP) 

was generated by Nelson et al. [34] for monitoring I B  dynamics in single cells by live-

cell fluorescence microscopy. While such a system provides the means to monitor ligand-

induced translocations and oscillations in I B  levels, temporal resolution of this 

reporter is limited by the long maturation time of EGFP (>1 h, [37, 38]). This notion, and 

the fact that Nelson et al. co-overexpressed p65-DsRed [34, 35] may explain the vast 

difference between the observed period of I B -EGFP oscillations (~300 min) and the 

period of endogenous I B  oscillations, as predicted computationally (~90-120 min, 

[33]). While longer term I B  oscillatory behavior was not the focus of the present study, 
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we did observe single oscillations within ~150-180 min. Because FLuc is active 

immediately upon translation, our reporter should afford greater temporal resolution, 

enabling accurate readouts of I B  dynamics and oscillations in live cells for such 

studies as well as the multi-stimulation protocols as described herein. 

Of note, a previous study aimed at analysis of I B  stabilization indicated a role for 

p38 in I B  stabilization, and in some cell lines, in prevention of sequential degradation 

of I B  upon concurrent exposure to TNF  following continuous pretreatment with IL-

1  [39]. However, since IL-1  has been shown to induce rapid and dramatic down-

regulation of TNF  receptors (but not vice versa) [14], inhibition of TNF -induced I B  

processing, as observed by Place et al., could be attributed directly to receptor dynamics 

rather than I B  stabilization. This confounding factor highlights the importance of 

asymmetric receptor cross-desensitization, a phenomenon that remains poorly 

understood, but has far-reaching physiological consequences. 

In conclusion, TNF  preconditioning protocols and dynamic imaging revealed a 

transient suppression of the capacity of cells to process I B . This refractory period for 

I B  processing was controlled both by IKK activity and NF- B distribution. In 

particular, the data suggested that nuclear export of NF- B may provide additional rate-

limiting regulation governing the refractory period machinery. These regulatory 

mechanisms provide a "molecular timer" controlling the amplitude, timing and specificity 

of the NF- B-mediated transcriptional program.  
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2.4 METHODS 

Materials- D-luciferin (potassium salt) was from Biosynth (Naperville, IL). Human tumor 

necrosis factor  (TNF ) and interleukin-1  (IL-1 ) were from R&D systems (Minneapolis, 

MN). Complete protease inhibitors cocktail was from Roche (Basel, Switzerland). 32 -P 5�’-

adenosine triphosphate (32P-ATP) was from Perkin-Elmer (Waltham, MA). Carbenicillin, 

isopropyl -D-1-thiogalactopyranoside (IPTG), ampicillin, kanamycin, glutathione S-transferase 

(GST), -glycerolphosphate, NaCl, NaF, Na3VO4, KOH, MgCl2, ethylenediaminetetraacetic acid 

(EDTA), phenylmethylsulfonyl fluoride (PMSF), NP-40, Tween-20, Triton X-100, ATP, 

dithiothreitol (DTT), paraformaldehyde, cycloheximide (CHX) and HEPES were from Sigma-

Aldrich (St. Louis, MO). 

 

Plasmids- p B5 FLuc (Stratagene, La Jolla, CA) contains five repeats of a B motif upstream 

of a minimal TATA box controlling expression of firefly luciferase. p B5 I B -FLuc was 

produced by cloning an EcoRI – HpaI (blunt) fragment from pCMV I B -FLuc [20] into the 

EcoRI and EcoRV (blunt) sites of p B5 FLuc. p B5 FLuc, pCMV I B -FLuc and 

p B5 I B -FLuc were propagated in TOP10 electrocompetent E. Coli (Invitrogen, Carlsbad, 

CA) and purified using Qiagen HiSpeed Maxi Kits (Qiagen, Valencia, CA). pGST-I B N 

(encoding for GST fused to the N-terminal fragment of human I B  (1-54)) was a kind gift from 

Prof. Alexander Hoffmann (UCSD, San Diego, CA). pGST-I B N was propagated in BL21 

codon+ E. Coli cells (Stratagene). 

Cells and Transfections- HepG2 human hepatoma cells were from the American Type Culture 

Collection (ATCC, Manassas, VA). Cells were cultured in DMEM supplemented with heat-

inactivated FBS (10%) and L-glutamine (2 mM). Cell cultures were grown at 37oC in a 
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humidified atmosphere of 5% CO2. HepG2 cells (105) were transiently transfected (Fugene 6, 

Roche) with p B5 I B -FLuc (200 ng/well) and plated in black-coated 24-well plates (In Vitro 

Systems GmbH, Gottingen, Germany). Cells were then allowed to recover for 48 h prior to 

imaging. 

 

Dynamic Bioluminescence live-cell imaging- Prior to imaging, cells were washed with pre-

warmed phosphate-buffered saline (PBS, pH 7.4) and placed into 900 L of colorless HEPES-

buffered DMEM, supplemented as above and with D-luciferin (150 g/mL). Cells were allowed 

to equilibrate for 1 hour (37°C) before proceeding with ligand stimulation and imaging. Four 

different stimulation regimens were included in this study: 

(1) Continuous TNF  (C): TNF  (final concentration 20 ng/mL) or vehicle (colorless DMEM) 

was added (100 L) to D-luciferin-containing DMEM and imaging was performed before, and at 

the indicated time points after addition of TNF . 

(2) TNF  Pulse (30 sec, P): cells were pulsed for 30 sec with TNF  (20 ng/mL) or vehicle, 

washed with PBS, returned to D-luciferin-containing DMEM and imaged before, and at the 

indicated time points after the pulse of TNF . 

(3) TNF  Preconditioning (30 sec pulse) followed by Continuous TNF  challenge (P+C): At 

t0 cells were pulsed for 30 sec with TNF  (20 ng/mL) or vehicle, washed with PBS, returned to 

D-luciferin-containing DMEM (900 L) and imaged before, and at the indicated time points after 

the pulse of TNF . At tx, TNF  (final concentration 20 ng/mL) or vehicle (colorless DMEM) 

were again added (100 L) and imaging was performed before, and at the indicated time points 

after addition of TNF . 
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(4) TNF  Preconditioning (30 sec pulse) followed by Continuous IL-1  challenge (P+C): As 

in (3), but continuous challenge was performed with IL-1  (10 ng/mL). 

TNF  or IL-1  challenge was performed at the following time points: tx = 0 (no 

preconditioning), 30, 60, 120 and 240 min post preconditioning. Assay plates were imaged using 

an IVIS-100 imaging system (Xenogen Caliper, Alameda, CA). Acquisition parameters were as 

follows: acquisition time, 60 sec; binning, 4; FOV, 10 cm;  f/stop, 1; filter, open; image-image 

interval, 5 min; number of acquisitions, 73 (360 min). 

 To analyze ligand-induced regulation of de novo reporter re-synthesis, cells were 

pretreated with cycloheximide (100 g/mL) for 1 hour before continuous stimulation with TNF  

and bioluminescence imaging (as above).  

 

I B Responsiveness Assays- HepG2 cells, transfected with p B5 I B -FLuc (as above) or 

HeLa cells, stably expressing pCMV I B -FLuc [20], were plated in 4 wells of a six-well plate 

(one plate per time point) and grown for 48 hours.  At t0, all wells were washed with pre-warmed 

PBS, pulsed for 30 sec with TNF  (20 ng/mL, 1 mL) or vehicle (PBS), washed again with PBS, 

returned to regular medium (1 mL) and placed in a 37ºC incubator. This procedure was defined as 

TNF  preconditioning (P). At tx, two wells were treated (continuously) with TNF  (20 ng/mL) 

and two wells were treated with vehicle only (PBS). This procedure was defined as TNF  

challenge (C). Following this TNF  challenge, cells were returned to the incubator. At tx + 25 min 

(time of maximal I B  degradation [20]; see Fig. 2.2A for schematic timeline), cells were 

harvested (by scraping) in reporter lysis buffer (Promega, Madison, WI). Cell lysates were 

normalized for protein content by bicinchoninic acid (BCA) protein assay (Promega), aliquoted 

and frozen (-80 ºC) for in vitro bioluminescence and Western blot analyses (see below). For in 
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vitro bioluminescence assays, lysates (10 L, in triplicate) were mixed with luciferase assay 

buffer (190 L; HEPES, 25 mM; NaCl, 154 mM; MgSO4, 5.4mM; DTT, 10 mM; ATP, 5 mM; 

D-luciferin, 150 g/mL; pH 8.0) in a 96-well plate immediately prior to imaging. Assay plates 

were imaged using the IVIS-100 (acquisition time, 10 sec; binning, 4; FOV, 10 cm; f/stop, 1; 

filter, open).  

 

Western Blot Analyses- Whole-cell lysates were resolved by 10% or 7.5% SDS-PAGE, 

transferred to a PVDF membrane and probed for the indicated proteins using standard 

immunoblotting techniques.  Primary antibodies against total human I B , -actin and IKK  

were from Santa Cruz Biosciences (Santa Cruz, CA). Anti-phospho-I B  (Ser 32/36) was from 

Cell Signaling Technologies (Danvers, MA). Secondary horseradish peroxidase-labeled anti-

mouse and anti-rabbit IgG antibodies were from GE Healthcare Biosciences (Piscataway, NJ). 

IKK Kinase Assay (IKK-KA)- IKK-KA reactions were carried out as per Werner et al [23] and 

quantified in a medium-throughput manner as per Hastie et al [40]. Briefly, HepG2 cells were 

grown in 10 cm tissue culture dishes to confluency. Cells were then washed in PBS (once) and 

treated with 20 ng/mL TNF using three different treatment regimens: P, C or P+C (see above). 

To capture the full IKK activity profiles of cells treated with continuous (C) or pulse (P) 

regimens, cytosolic extracts were prepared at t = 0 (before), 5, 10, 15, 30, 60, 120, or 240 min 

post TNF  treatment. To capture maximal IKK activity of P+C-treated cells, cytosolic extracts 

were prepared 10 min post TNF  challenge (given at 10, 30, 60, 120 and 240 min post 

preconditioning). Cells were harvested by removing media, washing in ice-cold PBS + EDTA (1 

mM), scraping, and pelleting at 2000 g. To prepare cytosolic extracts, cell pellets were 

resuspended in 200 L of CE Buffer (10 mM HEPES-KOH, pH 7.9, 250 mM NaCl, 1 mM 
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EDTA, 0.5% NP-40, 0.2% Tween 20, 2 mM DTT, 20 mM -glycerophosphate, 10 mM NaF, and 

0.1 mM Na3VO4 supplemented with complete protease inhibitor cocktail), incubated on ice (2 

min), vortexed (1 min), and pelleted at 2000 g. Supernatants were collected, normalized for 

protein content by Bradford Assay (Pierce, Rockford, IL) and stored at -80°C. To 

immunoprecipitate IKK complexes, cytoplasmic extracts (100 L) were incubated with anti-

IKK  antibody (15 L, overnight, 4ºC with rotation) and then with Protein G 4FF bead slurry (20 

L, 50% (v/v)). Beads were pelleted at 4600 RPM, washed twice with CE Buffer (500 L) and 

once with Kinase Buffer (500 L, 20 mM HEPES, pH 7.7, 20 mM -glycerophosphate, 100 mM 

NaCl, 0.1 mM Na3VO4, 10 mM MgCl2, 2 mM DTT supplemented with complete protease 

inhibitor cocktail). For the IKK kinase reaction, beads were incubated for 30 min at 30ºC in 

Kinase Buffer (20 L) containing 20 M ATP, 10 Ci 32P-ATP, and 0.5 g GST-I B . 

Beads were removed by centrifugation (4600 RPM) and 15 L of each reaction supernatant was 

spotted onto a 1 cm2 square of P81 phosphocellulose paper (Millipore, Billerica, MA) and 

immediately immersed into phosphoric acid (75 mM) for 5 min. Phosphoric acid washes were 

performed two more times, papers were rinsed in acetone, and then allowed to dry. Each paper 

was transferred to a scintillation vial and radioactivity was determined on a beta counter 

(Beckman Coulter, Fullerton, CA). Blank and no-lysate controls were subtracted from the 

experimental samples. Data were represented as fold-initial (untreated controls). 

 

Calculating Ligand-Dependent IKK Responsiveness- IKK responsiveness profiles (i.e., the net 

kinase capacity of IKK in response to a second challenge of TNF , as a function of time after 

initial 30 sec preconditioning) were calculated numerically from IKK-KA data using the 

following formula: 
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where PCx+10 is IKK activity of preconditioned+challenged cells, as recorded 10 minutes post 

challenge. Px+10 is the residual IKK activity of preconditioned, but un-challenged cells at this 

exact time point. C0 and PC0 are initial IKK activities of challenged but un-preconditioned, and 

fully preconditioned and challenged cells, respectively.  C10 is the maximal IKK activity of 

challenged but un-preconditioned cells (recorded 10 minutes post challenge). Note that while all 

parameter units in the nominator and denominator are in c.p.m., IKK responsiveness is 

dimensionless, similar to I B  responsiveness. 

 

Computational Simulations- To simulate the dynamics of major regulators on the IKK-NF- B 

axis, we used a well-established computational model generated by Hoffmann et al. [33] and 

refined by Werner et al. [23]. Briefly, an experimentally- or hypothetically-derived IKK activity 

profile was fed into the program as an input. Embedded in the model were 24 components, 70 

reactions and 70 parameters or rate constants for these reactions. Differential equations were 

solved numerically using Matlab 7.0 (Mathworks, Natick, MA) with subroutine Ode15. 

Interpolated and extrapolated (0-360 min at 5 min intervals) IKK activity profiles were calculated 

(Origin version 7.5, OriginLab, Northhampton, MA) from experimental IKK-KA data (see 

above). To fit the model, initial steady-state IKK activity (i.e., intracellular concentration of 

active IKK) was set to be 1 nM. To computationally simulate I B  dynamics of cells challenged 

at different times after initial preconditioning, when assuming no upstream IKK or receptor 
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regulation, we used hypothetical IKK activity profiles as inputs, derived from superimposing 

experimentally-acquired IKK activity profiles of 30 sec-pulsed and continuously-treated cells, at 

increasing intervals (30, 60, 120 and 240 min, see Fig 4, black lines). 

Immunofluorescence Microscopy- HepG2 cells were seeded into 35 mm glass bottom culture 

dishes (MatTek Corp.; Ashland, MA) and grown to ~40% confluency. Cells were pulsed for 30 

sec with TNF  as above and fixed at the indicated time points (by washing once with PBS, 

followed by fixation (4% paraformaldehyde for at least 15 min) and permeabilization (ice cold 

methanol, 10 min at -20ºC)). Cells were washed in PBS, blocked in 5% normal goat serum in 

0.3% Triton X-100/PBS (1 hour), and then incubated with anti-p65 antibody (Santa Cruz, 1:200 

in 0.3% Triton X-100/PBS at 4ºC, overnight with rocking). Cells were next incubated with 

AlexaFluor 635-conjugated goat anti-rabbit antibody (Invitrogen, 1:200 in 0.3% Triton X-

100/PBS, 90 min, at room temperature with rocking). Cells were washed three times with PBS 

before being mounted with VECTASHIELD Mounting Media (Vector Laboratories; Burlingame, 

CA). Confocal images were captured using the 40x objective (water immersion) on a Zeiss 

Axiovert 200 (Zeiss, Thornwood, NY) laser scanning microscope equipped with the appropriate 

filter sets and analyzed using Zeiss LSM Image Browser and Adobe Photoshop CS2. 
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2.5 FIGURES 

Figure 2.1: p B5 I B -FLuc: a transcriptionally-coupled reporter for monitoring I B  
dynamics in live cells. A. A schematic representing ligand-induced degradation and 
transcriptionally-coupled re-synthesis of the reporter. B. Raw bioluminescence images of HepG2 
cells transiently expressing p B5 I B -FLuc treated with TNF ng/mL  continuously (C) 
or as a 30 sec pulse (P) or with vehicle only (V) and imaged for 360 min. Images show 
pseudocolor-coded photon flux maps superimposed on black-and-white photographs of the assay 
plate. C. Graphical representation of the changes in photon flux from (b) as a function of time 
after TNF  addition. Data are plotted as fold-initial, fold-vehicle-treated (n=3 for all points; 
s.e.m.  5%; representative of 3 independent experiments). D. Western blot analysis of 
endogenous I B  from HepG2 cell lysates prepared at the indicated times after a 30 sec-pulse or 
continuous treatment with TNF  (20 ng/mL). E. Pretreatment with cycloheximide (CHX, 1 h, 
100 g/mL) totally abrogated TNF -induced I B -FLuc re-synthesis, but had no effect on 
reporter degradation. 
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Figure 2.2: TNF -induced a transient refractory period for I B  processing. A. Dynamic 
live-cell bioluminescence imaging profiles of I B -FLuc from TNF preconditioning+challenge 
experiments. Black arrows denote 30 sec preconditioning pulse; red arrows denote the beginning 
of continuous TNF  challenge; black profiles represent cells pre-conditioned and then challenged 
at the indicated time points; red profiles represent cells treated at time 0 with continuous 
TNF (denoting the maximal possible degradation response of I B  upon continuous TNF  
treatment). Data are presented as fold-initial, fold-TNF -untreated. B. Schematic representation 
of the experimental timeline as used in c. Cells were preconditioned with TNF  for 30 sec and 
then, at increasing intervals (0-240 min), were continuously challenged with TNF . Arrowheads 
represent when cells were harvested and lysates prepared (25 min post challenge for quantitative 
bioluminescence imaging and Western blot analysis). C. I B -Fluc and endogenous I B  levels, 
25 min post TNF  or vehicle challenge, as measured by bioluminescence imaging and Western 
blot, respectively.  
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Figure 2.3:  Impact of receptor dynamics and IKK regulation on I B  responsiveness. A. 
Dynamic live-cell bioluminescence imaging profiles of I B -FLuc from TNF preconditioning, 
IL-1  challenge experiments. Black arrows denote 30 sec preconditioning pulse of TNF ; blue 
arrows denote the beginning of continuous IL-1  (10 ng/mL) challenge; black profiles represent 
cells pre-conditioned and then challenged with IL-1  at the indicated time points; blue profiles 
represent cells treated at time 0 with continuous IL-1 (denoting the maximal possible 
degradation response of I B  upon continuous IL-1  treatment). Data are presented as fold-
initial. B. IKK kinase activity was measured at the indicated time points after initiation of a 
continuous (blue curve) or a 30 sec pulse (red curve) of TNF  (20 ng/mL). Results are presented 
as background-normalized, fold-initial (untreated) controls. C. Western blot analysis of IKK  in 
cytoplasmic fractions, used as inputs for immunoprecipitation and kinase reactions presented in 
(b). 
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Figure 2.4: Computational simulation of I B  responsiveness in the absence of upstream 
receptor or IKK regulation. A. Interpolated and extrapolated (0-360 min, at 5 min intervals) 
IKK activity profiles (right panel) of cells treated continuously (C, green curve) or by a 30 sec 
pulse (P, blue curve) of TNF  (20 ng/mL) were used as inputs to computationally simulate total 
I B  dynamics (right panel). B-E. Left panels: Hypothetical IKK activity profiles of 
preconditioned cells, challenged at the indicated times (denoted by black arrowheads) with a 
second, continuous dose of TNF  were generated by superimposing the continuous 
TNF induced IKK profiles at increasing intervals after the 30 sec pulse TNF induced IKK 
profile. For generating these hypothetical profiles, we assume no preconditioning-induced 
receptor or IKK regulation. Right panels: The hypothetical IKK profiles were used as inputs into 
the model to predict I B  dynamics. Note that challenge-induced I B  degradation (initiated at 
the red arrowhead) is recovered in a time-dependent manner. 
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Figure 2.5: Nuclear export of NF- B may regulate I B  sensitivity to ligand-induced 
degradation. A. A schematic illustrating sub-cellular localization and levels of free I B , free 
NF- B, and NF- B-bound I B  in response to a pulse of TNF .  B. Computationally-predicted 
profile of all cytoplasmic populations of NF- B following a pulse of TNF . Note the exceeding 
small free NF- B population.  C. HepG2 cells were stimulated with a 30 sec TNF  pulse. At the 
indicated time points, cells were fixed, permeabilized and immunostained for p65 NF- B. Shown 
are representative immunofluorescence confocal photomicrographs. 
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Figure 2.6: Refractory period in NF- B signaling. Schematic representation of the different 
ligand-induced autoregulatory mechanisms that control responsiveness in the NF- B signaling 
pathway. 
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2.6 TABLES 

 

               Time after TNF  Preconditioning (min)  

 30�’ 60�’ 120�’ 240�’ 

I B   

(Western blot) 

49% 80% 100% 82% 

I B -FLuc 
(bioluminescence) 

43% 74% 90% 94% 

IKK Activity 35% 56% 75% 69% 

 

Table 2.1:  Percent Responsiveness of I B  Processing  

Quantification of I B -FLuc and I B  responsiveness to a second continuous challenge 
of TNF  at the indicated interval following a 30 sec preconditioning pulse of TNF  was 
determined from the bioluminescence imaging and Western blot data shown in Figure 
2C.  Responsiveness at each challenge time was calculated by determining the percent of 
challenge-specific I B  degradation divided by the percent of I B  degradation in un-
preconditioned cells from the same plate. The responsiveness of IKK was determined by 
IKK kinase assay. 
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CHAPTER THREE  
 

Synchronicity of the I B :NF- B Negative Feedback Loop In 
Cellulo and In Vivo 

 

3.1 INTRODUCTION 
Cells have evolved complex signaling networks that sense cues from the 

environment and transduce this information to elicit appropriate biological responses [1]. 

These networks equip cells with sensitive, reversible, regulated, and robust responses to a 

variety of signaling activators; in particular, these networks can confer on cells the ability 

to distinguish weak signals from background noise with high precision and selectivity [2, 

3]. The NF-  signaling pathway and its downstream transcriptional targets are  

responsive to a large number of different stimuli [4], and recent work has focused on NF-

 pathway responsiveness to the mode of stimulation (i.e., stimulus concentration, pulse 

duration, or pulse interval). Particularly relevant during cellular responses are 

inflammatory cytokines, such as TNF , which are likely perceived as transient pulses or 

waves of TNF  occurring over a wide range of concentrations [5-10].  

The transcription factor NF-  is a pivotal regulator of innate immunity and 

inflammation, and is active in both immune cells and non-immune tissues [11, 12].  In 

this capacity, the NF-  pathway must rapidly decode signals and integrate intracellular 

information to control individual cell fate decisions (proliferation, apoptosis, 

differentiation, etc.) and regulate the production and secretion of cytokines that can 
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amplify and propagate the inflammatory response [13, 14].  NF-  dimers are typically 

sequestered and held inactive in the cytoplasm through binding to isoforms of the 

family, with  representing the prototypical member and major regulator of 

canonical NF-  activity.  TNF -induced stimulation of NF-  relies on activation of 

the kinase complex (IKK), which phosphorylates , marking it for subsequent 

ubiquitination and proteasomal degradation [4]. This series of events liberates NF- , 

allowing it to undergo nuclear translocation and activation of target gene expression, 

including the  gene itself [15], thus establishing a critical transcriptionally-coupled 

negative feedback loop (Fig. 1A, [16]).  Recently, NF-  has emerged as a mechanistic 

link between inflammation and cancer [17, 18].  This has been extensively studied in the 

liver where hepatocellular carcinoma (HCC) slowly unfolds on a background of chronic 

inflammation (often triggered by exposure to infectious agents or toxic compounds) [19].  

TNF -induced activation of NF-  signaling plays a pivotal role in liver homeostasis 

and pathophysiology due to its capacity to induce both hepatocyte cell death and 

proliferation [20, 21].  In the liver, NF-  signaling can have both tumor promoting and 

tumor suppressing effects that are dependent upon the type of cells (i.e., liver resident 

macrophages vs. hepatocytes), the stimuli, and cell context [19, 22, 23].  Thus, a more in-

depth understanding of the complexities and intricacies of NF  signaling in the liver is 

required to appropriately translate the use of NF- -targeted therapeutics to liver 

pathologies. 

Because of its biological importance, the NF-  pathway has emerged as an 

exemplary proving ground for systems biology approaches that couple computational 

modeling and cellular imaging with conventional cell biology methods to study dynamic 
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NF  responses to cytokines.  These studies have shown that continuous stimulation or 

sequential pulsing of TNF  can induce oscillations in NF-  nuclear translocation that 

are dependent upon cycles of degradation and re-synthesis of I B proteins (i.e., negative 

feedback loops), and that the frequency of these NF  oscillations encode distinct gene 

expression profiles [8, 24-27].  Additional work has suggested that the amplitude of NF-

 activity, but not the temporal profile, is particularly sensitive to changes in TNF  

concentration and is crucially dependent on the transient nature of IKK activity [28]. 

Recently, single cell imaging has emerged as a paradigm-of-choice to study the dynamics 

of NF-  nuclear localization as monitored by nuclear:cytoplasmic shuttling of NF-  

proteins fused to fluorescent protein reporters.  Coupled with computational modeling, 

these single cell studies have revealed stochastic, heterogeneous, and paracrine NF  

responses at the single cell level, especially in response to low concentrations of TNF  

[9, 10, 13, 29].  A key unresolved issue in the field relates to how biological robustness is 

achieved within cell populations displaying heterogeneous and dynamic single-cell 

behavior [13, 29, 30], and the physiologic relevancy of these single-cell phenomena to 

tissue-  and organ-level biological responses in vivo.  

To this end, we have developed, characterized, and utilized a dynamic 

bioluminescent reporter for quantitative interrogation of NF- :  negative feedback 

loop regulation in live cells and at the tissue-level in live animals.  Previously we 

demonstrated that fusing  to the firefly luciferase gene ( -FLuc) enables 

quantitative monitoring of  degradation (which can be directly correlated to IKK 

activity) in vitro and in vivo [31].  We then placed the fusion reporter under the control of 

an NF-  responsive promoter ( B5 -FLuc) and showed that it recapitulates the 
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endogenous  negative feedback loop (i.e., IKK-directed  degradation and 

subsequent NF-  driven re-synthesis of the  gene; Fig. 1A) and complements in 

silico experiments conducted with a robust computational model of the NF-  pathway 

[5, 6, 16].  This reporter offers the advantage of monitoring protein activity within 

different subcellular compartments as opposed to simply measuring changes in total 

protein levels or localization.  For example, -FLuc reports both TNF -

induced degradation of  (which is dependent on the activity of IKK, -TrCP, and the 

proteasome) and subsequent NF- -dependent transcriptional up-regulation of  

(which is dependent upon NF-  nuclear translocation as well as additional post-

translational modifications and co-activator associations in the nucleus). Additionally, the 

synthetic B5 promoter has enhanced sensitivity that enables measurement of subtle 

changes in transcriptional dynamics.  In the present work, we have exploited the unique 

characteristics of this negative feedback loop reporter to rigorously characterize dynamic 

 responses in single cells, populations of cell, and in vivo upon stimulation with a 

range of TNF  concentrations and pulses, revealing surprisingly synchronous responses.  

 

3.2 RESULTS 
Characterization of the Effect of Modulating TNF  Pulse Duration or 

Concentration on the :NF  Negative Feedback Loop in Cell Populations. 

The :NF  negative feedback loop represents a major regulatory node 

within the NF  pathway and is a critical determinant of NF  oscillatory behaviors 
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that encode stimulus-specific gene expression programs [8, 24-27, 29]. To temporally 

resolve the dynamics of  degradation and subsequent NF -driven re-synthesis in 

living cells, we used our previously validated -FLuc fusion-protein reporter in 

HepG2 (human hepatocellular carcinoma) cells [5, 31] (Fig. 1A).  Western blot analysis 

of HepG2 cells transiently transfected with the -FLuc reporter and exposed to 

170 pM (3 ng/mL) TNF  indicated that the reporter was expressed at sub-endogenous 

levels and that the kinetics and degree of endogenous  and chimeric -FLuc 

degradation were similar (Fig. 1B).  However, the quantitative kinetics of reporter re-

synthesis were delayed compared to endogenous , a trend noted previously [5] and 

likely due to promoter differences (synthetic 5 vs. endogenous  promoter). 

With this real-time bioluminescent reporter system, we systematically evaluated 

the impact of short duration TNF  pulses on the dynamic regulation of the :NF  

negative feedback loop within populations of cells in culture.  HepG2 cells transfected 

with -FLuc were stimulated with the pro-inflammatory cytokine TNF  (1.2 

nM, 20 ng/ml) either continuously or as a pulse (5 sec, 15 sec, 30 sec, 5 min or 15 min) 

and images of cells were captured sequentially every 5 min for 6 hr. Generally, the 

normalized -FLuc photon flux (Fig. 2A) rapidly decreased to a transient minimum 

(due to TNF -induced degradation of ) and then strongly rebounded above initial 

levels (due to NF -induced re-synthesis of ).  This rebound was previously 

shown to be consistent with de novo transcription and translation of [5] and with 

the previously-reported ligand-induced stabilization of newly-synthesized   [32, 33]. 

 Surprisingly, a TNF  pulse as short as 5 sec in duration was capable of inducing 

substantial  degradation (35 ± 9%, mean ± SEM unless noted otherwise), suggesting 
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that extremely brief exposure can induce significant IKK-dependent activation of 

canonical NF  signaling (Fig. 2A).  This was confirmed by Western blot analysis, 

which exhibited substantial degradation in response to a 5 sec TNF  pulse (Fig. 

2B).  As TNF  pulse duration was lengthened from 5 sec to 15 min, the degree of  

degradation increased, and when pulsed for 5 min or longer  degradation saturated 

at levels (~70%) equivalent to continuous TNF  stimulation (Fig. 2A, inset; Fig. 2C).  

The time at which maximal degradation occurred did not change as TNF  pulse duration 

was modulated (Fig. 2D). 

Examination of the degree of  re-synthesis (measured as percent of 

maximum re-synthesis) in response to TNF  pulse duration revealed increasing levels of 

 re-synthesis that eventually peaked and leveled-off when pulsed for 5 min or longer 

(Fig. 2E).  Interestingly, TNF  pulses elicited a broader  re-synthesis phase with a 

less defined peak when compared to continuous TNF  stimulation.  Furthermore, 

maximal  re-synthesis in response to a 15 min TNF  pulse was higher (97 ± 3% of 

maximum) than observed for continuous TNF  stimulation (65± 8% of maximum).  As 

had been observed for degradation, modulating TNF  pulse duration did not 

greatly affect the timing of the re-synthesis peak (Fig. 2F), suggesting that these cell 

populations were responding synchronously.  Additionally, peak re-synthesis 

occurred later (164 ± 16 min vs. 137 ± 5 min) for a 15 min TNF  pulse when compared 

to continuous.  

 We next investigated the impact of TNF  concentration on the dynamic 

regulation of the :NF  negative feedback loop in cellulo by treating HepG2 cells 

with a range of TNF  concentrations (0.1 - 10 ng/mL, 0.57 - 570 pM) under continuous 
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exposure conditions (Fig. 2G).  The degree of  degradation increased with 

increasing TNF  concentration, eventually saturating (68 ± 2%) at the highest 

concentrations tested (Fig. 2G, inset; Fig. 2H), yielding a degradation EC50 value of 6.7 

pM TNF  (5.7 to 7.9 pM, 95% confidence interval).  Moreover, examination of  

degradation kinetics (Fig. 2I) showed that increasing TNF  concentration resulted in 

faster degradation, with the time of maximal degradation shifting from 53 ± 4 min to 29 ± 

2 min. 

 The relationship between TNF  concentration and  re-synthesis was more 

complex than was seen for degradation.  Increasing the TNF  concentration elicited 

increasing levels of  re-synthesis up to a maximum (corresponding to 57 pM; 1 

ng/mL TNF ) beyond which higher amounts of TNF  actually elicited lower levels of re-

synthesis (i.e., a �“roll-over�” back down to 74 ± 3% of maximum levels; Fig. 2G, J).  

Furthermore, increasing TNF  concentration resulted in faster  re-synthesis kinetics, 

with the maximal re-synthesis time shifting from 278 ± 39 min to 148 ± 3 min and 

eventually leveling off at this time between 57 pM and 171 pM (Fig. 2K).  

Thus, we found that the -FLuc reporter enabled quantitative 

comparison of the effects of modulating TNF  pulse duration versus concentration in 

real-time in live cells.  This systematic analysis revealed that  degradation was 

highly sensitive to both stimulation regimens and in each case eventually saturated at 

approximately 70% degradation. Modulation of TNF  pulse duration had little effect on 

the kinetics of  degradation, while increasing TNF  concentration resulted in faster 

degradation. Both stimulation regimens elicited biphasic patterns in the degree of  



63 

re-synthesis, but only modulation of TNF  concentration had a strong effect on re-

synthesis kinetics.  

 
Characterization of TNF -Induced Regulation of the :NF-  Negative 

Feedback Loop in Single Cells.  

Having discovered complex and reproducible patterns of  dynamics in 

response to modulating TNF  pulse duration and concentration in live cultured cell 

populations, we next utilized the -FLuc reporter to investigate whether the 

:NF-  negative feedback loop exhibits similar dynamic response patterns at the 

level of single cells, or whether single cell responses are less reproducible, and more 

heterogeneous and asynchronous.  In other words, are broad peaks and complex kinetics 

measured within cell populations the sum of heterogeneous single cell behaviors rather 

than the synchronous behavior of cells residing in a population? 

We first verified that we could image single bioluminescent cells in the IVIS100 

imaging system by transiently transfecting HepG2 cells with a dual 

bioluminescent/fluorescent reporter construct, FUW-FLG, comprising pGL3 firefly 

luciferase fused through a flexible linker to EGFP and driven by a constitutive ubiquitin 

promoter [34].  HepG2 cells were transfected with this plasmid as described above for the 

-FLuc reporter; however, 36 hr after transfection the cells were trypsinized 

into a single cell suspension, counted, diluted, and plated at a density of 60 cells/well on 

top of pre-plated, untransfected HepG2 cells in a black 24 well plate (to best simulate the 

same conditions used in the earlier cell population studies).  After a 12 hr recovery 

period, cells were imaged first for bioluminescence and then for fluorescence on an 
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InCell 1000 imager (Fig. 3A).  We found an excellent correlation between single 

bioluminescent foci and single cell fluorescence (a small number of foci corresponded to 

two or three cells).  Thus, single HepG2 cells expressing a dual-imaging reporter could be 

imaged in a lawn of otherwise isogenic cells, establishing the principle for studying the 

TNF �–induced responses of single HepG2 cells expressing -FLuc. 

Using this same procedure with HepG2 cells expressing -FLuc, we 

carried out both continuous- and 30 sec pulse-TNF  stimulations.  Under continuous 

stimulation, the -FLuc profiles of individual cells (Fig 3B) remarkably resembled 

those observed for cell populations (Fig. 2).  Interestingly, while single cells exhibited 

substantial heterogeneity in the amplitude of degradation and re-synthesis, collective 

analysis of the -FLuc re-synthesis peaks of individual cells strongly resembled the 

trends observed in cell populations (Fig. 2A), each peaking at almost the exact same 

times (133 ± 4 min vs. 137 ± 5 min, respectively), indicating that this pattern is a property 

of single cell responses to continuous TNF .  On the other hand, a 30�” pulse of TNF  

yielded much broader -FLuc re-synthesis peaks for single cells (Fig. 3C), which 

strongly resembled the broad peaks observed for population studies (Fig. 2A) also 

peaking at very similar times (154 ± 2 min for single cells vs. 170 ± 23 min for 

populations) and similarly showing a delayed peak compared to continuous treatment 

(Fig. 2F and Fig. 3G).  Again, strong heterogeneity was noted in the amplitude of -

FLuc re-synthesis (Fig 3C), though the amplitudes of the average -FLuc profile for 

all individual cells combined and the -FLuc profile observed for a population of 

cells are nearly the same (Fig. 3C black line versus Fig. 2A red line).  The degree of 

degradation observed in TNF  pulsed cells was less than that observed under 
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continuous TNF , recapitulating another trend noted in the population studies (Fig. 2).  

Interestingly, 18% of continuously stimulated cells exhibited -FLuc oscillatory 

behavior, peaking once at 109 min (102.9 to 114.6, 95% CI) and again at 244 min (227.4 

to 261.3, 95 % CI) (Fig 3E); this phenomenon was never observed in cells given a 30 sec 

TNF . 

We next investigated individual cell responses to a range of TNF  concentrations 

under continuous stimulation as described previously for cell population studies (Fig. 2G-

K).  While heterogeneous -FLuc amplitudes were again observed, an obvious 

general trend emerged with most cells exhibiting increased levels of degradation and re-

synthesis as the TNF  concentration increased (Fig. 3F).  At the lowest doses tested, 0.57 

and 1.7 pM, many cells (62%) did not respond to TNF  stimulation (as defined by falling 

within the 95% CI of vehicle stimulated cells and not exhibiting a local maximum; Fig. 

3F, 0 pM panel).  For each higher TNF  concentration, less than 7% of cells were non-

responders.  When all cells that did respond were considered, increasing TNF  

concentration resulted in faster -FLuc degradation, with the time of maximal 

degradation shifting from 65 ± 8 min to 20 ± 1 min, a trend similar to that seen in our 

population studies (Fig. 2).  However, we did not observe a strong pattern of shifting 

-FLuc maximum re-synthesis times in relation to altering TNF , though the lowest 

concentrations did exhibit a higher degree of variance in peak times (Fig. 3I).  This 

heterogeneity in re-synthesis times at low doses could account for the broad peaks and 

variability in peak timing observed at 0.57 pM and 1.7 pM in cell populations (Fig. 2G, 

K).  Thus, single cell  dynamic profiles showed highly synchronous kinetics and 
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remarkable similarity to  dynamic profiles observed in cell populations, especially 

with regard to profile shape under different conditions.  

 
 
Experimental Investigation of Complex  Re-Synthesis Patterns.  

 Having observed novel and complex patterns in the dynamics of  

degradation and re-synthesis in single cells and cell populations (hereafter combined into 

the term in cellulo) in response to modulation of TNF  pulse duration and concentration, 

we next sought to investigate potential mechanisms behind these highly-reproducible 

behaviors.  We first examined whether the experimentally observed patterns of  

dynamics could be recapitulated in an existing computational model of TNF -induced 

NF-  signaling [6, 16].  We reasoned that if mathematical modeling could reproduce 

the TNF -driven complexities observed for  degradation and re-synthesis, it may 

offer insight into the fundamental processes driving these patterns and assist in the 

development of experimentally-testable hypotheses.  

  The computational model utilizes experimentally-derived IKK kinase activity 

input profiles, of which we employed a previously determined IKK input derived from 

HepG2 cells stimulated continuously with 20 ng/mL TNF  [5].  The IKK activity input 

profile (Fig. 4A) was fitted with a shape-preserving interpolating polynomial in MatLab 

(function pchip) simulating the duration of the IKK activation phase (a), peak IKK 

activity (p), and the duration of the IKK deactivation phase (d).  In an effort to simulate 

the complex patterns in  dynamics seen in cellulo in response to altering TNF  

pulse duration and concentration, the IKK input profile was modified in the following 

ways: 1) alteration of IKK activation phase duration (a: 5, 10, 20, 40, and 80 min from 0 
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to peak activity), 2) alteration of IKK deactivation phase duration (d: 20, 30, 50, and 100 

min post peak activity), or 3) alteration of IKK peak activity magnitude (p: 0.5-, 1-, 3-, 6, 

and 10-fold over the previous experimentally-determined IKK activity peak).  These 

modifications resulted in a collection of 80 IKK activity profiles that could be used as 

input functions into the model (Fig. 4A, Fig. S1) to generate predicted  dynamic 

profile plots (Fig. 4B,C; S2). Generally, there was a remarkable correlation between the 

computationally-predicted  profiles and the experimentally-generated -FLuc 

profiles (Fig. 2, 3), with the timing and extent of  degradation as well as the overall 

dynamic behavior being highly similar. However, as noted previously [5], the 

computationally-predicted amplitude of  re-synthesis was lower than seen for -

FLuc and the kinetics of re-synthesis were faster, discrepancies that may stem from the 

amplified sensitivity of the concatenated B5 promoter driving -FLuc. 

 Interestingly, we found that when the time required for IKK to deactivate was 

prolonged from 20 min to 100 min (Fig. 4B, S2), no effect was observed upon  

degradation, but the magnitude of  re-synthesis increased with little effect on the 

kinetics, resembling the  re-synthesis patterns observed upon stimulation with TNF  

pulses (Fig. 2, 3).  On the other hand, increasing the magnitude of peak IKK activity (Fig. 

4C, S2) yielded computational  plots in which both  degradation and re-

synthesis were enhanced and exhibited faster kinetics, strongly resembling the  

dynamics observed when TNF  concentration was modulated (Fig. 2, 3).  However, 

modifying IKK magnitude did not recapitulate  re-synthesis roll-over, even though 

 degradation had saturated.   
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 Thus far we had observed that (1) pulses of TNF  in cellulo strongly affected the 

level of  re-synthesis without impacting the kinetics or shape of  re-synthesis 

profiles and could be modeled in silico by altering the timing of IKK deactivation, and 

(2) modulating TNF  concentration in cellulo affected the amplitude, kinetics, and shape 

of  re-synthesis and could be accurately recapitulated in silico (with the exception of 

re-synthesis roll-over) by modulating IKK peak magnitude.  We hypothesized that many 

of these complex patterns in  re-synthesis are a consequence of the continuous 

presence of TNF  driving subsequent rounds of IKK-activation (i.e., possibly mimicking 

prolonging the IKK deactivation phase in silico) and  degradation during the re-

synthesis phase.  This hypothesis was supported by our previous finding that HepG2 cells 

given a 30 sec pulse of TNF  regain the capacity to fully re-initiate a second TNF -

induced  degradation only after 60-120 min, the approximate time frame during 

which maximal  re-synthesis and roll-over occur  [5].  

To assess the impact of TNF  presence at various time points before and during 

re-synthesis, HepG2 cells were treated with increasing concentrations of TNF  that 

was then washed out after 1, 5, 10, 15, 30, 60, 90, 120, and 180 min to remove the effect 

of continuous TNF  driving subsequent rounds of IKK-mediated  degradation.  

Two representative  plots are shown in Fig. 4D, E (un-normalized photon flux data 

and additional TNF  and mock wash-out plots are shown in Fig. S3).  The removal of 

TNF  at any time before  re-synthesis had peaked (i.e., up to 120 min), resulted in 

broadly shaped  re-synthesis profiles (Fig. 4D, S3), rather than the narrower peaks 

seen under continuous TNF  (Fig. 2, 3) or mock TNF  wash-out stimulation (Fig. S3).  

TNF  wash-outs performed at 120 min (Fig. S3) and 180 min (Fig. 4E) exhibited the 
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expected primary  re-synthesis peak observed at 120 min under continuous TNF , 

followed by a second  peak (occurring at approximately 240 min and 300 min, 

respectively), more similar to the peaks observed for earlier TNF  wash-out times (Fig. 

4D, S3).  When high concentrations of TNF  (170-570 pm) were washed out, cells 

exhibited significantly higher levels of  re-synthesis compared to continuous TNF  

stimulation (Fig. 4F).  Furthermore, TNF  wash-out resulted in  re-synthesis 

peaking later than continuously stimulated cells and nearly abolished the pattern of faster 

 re-synthesis observed in response to increasing TNF  concentration (Fig. 4G).  

Additionally,  re-synthesis roll-over was still observed when TNF  was washed out 

(Fig. 4F). 

To further address the role of secondary (i.e., later time point) TNF -induced 

 degradation in governing -FLuc re-synthesis phase dynamics, we utilized a 

modified bioluminescent reporter, (S32,36A)-FLuc [35].  The serine-to-

alanine substitutions render  unresponsive to IKK-directed phosphorylation and 

subsequent proteasomal degradation; however, the reporter is still responsive to the 

NF  transcriptional activity elicited once endogenous  is degraded and NF-  

translocates into the nucleus.  If re-initiation of  degradation is critical in governing 

the timing, magnitude and overall shape of  re-synthesis, or the re-synthesis roll-

over effect, then we would not expect to observe these phenomena with the 

(S32,36A)-FLuc reporter under continuous TNF  stimulation. As anticipated, 

TNF  stimulation did not cause any  degradation (Fig. 4H), but did exhibit 

subsequent NF- -directed re-synthesis of the reporter.  Strikingly, these  profiles 
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strongly resembled the TNF  wash-out experiments (Fig. 4D, E, S3): the  re-

synthesis phases were broad (regardless of TNF  concentration), the peak magnitude 

increased (Fig. 4F), and the re-synthesis kinetics were more synchronized and delayed 

(Fig. 4G) compared to wild type reporter, indicating that these patterns were indeed 

affected by secondary IKK-driven degradation of wild-type .  Similarly, continuous 

TNF  stimulation in single HepG2 cells transfected with the (S32,36A)-FLuc 

mutant reporter also exhibited broad I  re-synthesis peaks with synchronized and 

delayed kinetics compared to wild-type reporter (Fig 3D, G), further highlighting the cell-

autonomous nature of these trends in I  dynamics. 

 

Characterization of TNF -Induced Regulation of the :NF-  Negative 

Feedback Loop In Vivo.  

Having discovered complex and synchronous patterns of  dynamics in 

response to modulating TNF  pulse duration and concentration in single cells and in cell 

populations in culture, we then utilized the -FLuc reporter to investigate 

whether the :NF  negative feedback loop exhibits similar patterns in response to 

varying TNF  doses in vivo. Somatic gene transfer by hydrodynamic transfection was 

employed to express the -FLuc plasmid in murine livers [36].  Three to 

twelve weeks post plasmid injection, sufficient time for hepatocellular recovery and 

stable integration of reporter plasmids into a subpopulation of hepatocytes, animals were 

administered vehicle (PBS) or TNF  (1, 10, or 30 ng/mouse) by bolus tail vein injection 

and imaged at 5 min intervals for 3 hr to capture full -FLuc dynamic profiles (Fig. 
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5A, B). Strikingly, the general dynamics of the in vivo  profiles were highly 

synchronous and strongly resembled the profiles observed in cellulo in response to TNF  

pulses (Fig. 2,3).  Of the three TNF  doses used, the lowest (1 ng/mouse) appeared to 

induce little or no -FLuc reporter degradation, whereas the two higher doses showed 

increasing amounts of degradation (Fig. 5C; 10 ng/mouse: 30% ± 7%; 30 ng/mouse: 59% 

± 7%).  Interestingly, the time of maximal degradation appeared to occur slightly earlier 

in vivo (no later than 20 min, Fig. 5D) than was seen in cellulo (no earlier than 25 min for 

the highest TNF  concentrations, Fig. 2D).  Increasing the TNF  dose resulted in higher 

levels of maximal re-synthesis (Fig. 5E) that peaked at nearly 20-fold over vehicle treated 

animals. The re-synthesis phase was broad in shape (similar to the in cellulo  

profiles in response to TNF  pulses), and peaked and leveled off at approximately 100 

min for both the 10 and 30 ng/mouse doses (Fig. 5F).  This is in contrast to the highest 

TNF  concentrations used in cellulo that did not achieve maximal re-synthesis until ~150 

min (Fig. 2). Thus, even though TNF  was administered at varying doses in vivo, the 

resultant  dynamic profiles exhibited kinetics that were highly synchronous, 

suggesting uniform cellular responses within the liver. These in vivo patterns of  

dynamics closely resembled the patterns observed upon modulating TNF  pulse duration 

in cellulo (Fig. 2, 4), and suggested that circulating TNF  is perceived by hepatocytes in 

vivo as a pulse. 
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3.3 DISCUSSION 
Cells have evolved complex molecular networks to sense signals from the 

environment and translate them into a wide variety of biological responses.  The NF-   

pathway is responsive to a variety of stimuli and to the mode of stimulation, which is of 

critical importance during responses to inflammatory cytokines, such as TNF , which are 

likely perceived as transient pulses/waves occurring over a wide range of concentrations 

[5, 7-10, 28].  Of particular interest is understanding how these diverse TNF  stimulation 

modes impact the NF- :  negative feedback loop in single cells and within 

populations of cells in vivo, providing insight into a key cellular regulatory loop that 

directs NF  nuclear localization dynamics and transcriptional responses.  

To this end, we have developed, characterized, and utilized a dynamic 

bioluminescent reporter ( -FLuc) for quantitative interrogation of NF-

:  negative feedback loop regulation in single cells, cell populations, and in vivo.   

These non-destructive assays are based on luciferase reporters and as such, do not rely on 

antibodies, have high temporal resolution, are amenable to high-throughput platforms, are 

readily translatable to in vivo systems, and have potential for low-light microscopic 

analysis of single cell and sub-cellular compartments [30, 37-40].  We have employed the 

unique capabilities of our NF- :  negative feedback loop reporter, coupled with in 

silico modeling, to systematically interrogate the impact of modulating TNF  pulse 

duration and concentration.  We demonstrated that cells are sensitive to pulses of TNF  

stimulation as short as 5 sec (Fig. 2A, B), highlighting that the NF-  network is 

remarkably sensitive and tuned to elicit responses to very short bursts of ligand [7].  

Increasing TNF  pulse duration did not strongly impact the kinetics or shape of  re-
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synthesis or generate re-synthesis roll-over, but did exhibit  re-synthesis levels that 

tended to be higher and broader in shape than seen for continuous TNF  stimulation (Fig. 

2).  At the single cell level, continuous and 30 sec TNF  pulses (Fig 3B, C) yielded 

-FLuc dynamic profiles that remarkably resembled the shape of the cell population 

data (Fig. 2).  Thus, the broad peaks observed in cell populations upon stimulation with 

pulsatile TNF  are not a result of heterogeneous responses from individual cells 

generating a broad average, but are an intrinsic property of single cell responses.  

Additionally, most of the cells exhibited synchronous responses, as evidenced by the tight 

95% confidence intervals (Fig. 3G) on the kinetics of peak re-synthesis.  In the future, it 

will be interesting to determine the impact of a wide range of TNF  pulses on the 

heterogeneity of single cell responses, especially since our data indicate that the kinetics 

of  degradation and re-synthesis do not significantly change as pulse duration 

increases (Fig. 2).  A similar trend in invariant temporal NF-  nuclear localization was 

observed by Werner et al. [7] in response to TNF  pulses; however, they did not observe 

changes in the amplitude of NF-  activity (as measured by EMSA and computational 

prediction), while our reporter measured definitive pulse-dependent changes in the 

amplitude of  re-synthesis, a process that is dependent upon NF-  transcriptional 

activity.   

Additionally, real-time measurements indicated that the :NF-  negative 

feedback loop is responsive to a wide range of TNF  concentrations, even as low as 0.57 

pM (0.01 ng/mL), affirming what has been observed previously by NF-  EMSA [28] 

and single cell microscopy [9, 10].  Both of these TNF  stimulation paradigms (pulsing 

cells or varying concentration) elicited increasing levels of  degradation that 



74 

eventually saturated at ~70% degradation.  However, only changes in TNF  

concentration exhibited robust alteration of the temporal dynamics of degradation, with 

degradation rates increasing as TNF  concentration increased (Fig. 2I).  Interestingly, 

this same trend held true at the single cell level, indicating that it is an inherent property 

of TNF  responses in single cells (Fig. 3H).  Whereas Paszek et al. [29] looked at the 

time to degradation following TNF  stimulation using RelA-dsRedxp and -

EGFP fusion reporters and observed very degradation heterogeneous start times at 1.7 

pM (0.03 ng/mL) TNF  (sometimes 100+ minutes post-TNF ), we observed that most 

cells exhibited degradation of the -FLuc reporter within 0-60 min and showed 

re-synthesis peaks between 120-18 min TNF  (Fig. 3H, I).  And while both Tay et al. 

[10] and Paszek et al. [29] noted that the time to peak nuclear NF-  in individual cells 

tended to increase and became more variable at lower TNF  concentrations, we observed 

very little change in the average peak re-synthesis time of the -FLuc reporter 

(a functional read-out of nuclear NF-  activity), but it did exhibit greater heterogeneity 

at the lowest concentrations tested (Fig. 3I). 

Having observed novel and complex patterns in  dynamics in response to 

modulation of TNF  pulse duration and concentration in single cells and cell populations, 

we next sought to investigate potential mechanisms behind these highly-reproducible 

behaviors.  We discovered that these complex  re-synthesis patterns (with the 

exception of re-synthesis roll-over) resulted from the continuous presence of TNF  

initiating re-activation of IKK and driving secondary rounds of  degradation (Fig. 

3D, 4).  Previously, we and others discovered a TNF -induced transient refractory period 

during which TNF -preconditioned cells are unable to fully respond (i.e., degrade ) 



75 

upon a second TNF  challenge until 60-120 min post preconditioning [5, 8, 41].  This 

refractory period is likely governed by the rate of :NF  nuclear export that 

repopulates the cytoplasm with IKK-degradable complexes [5, 40, 42, 43].  Thus, we 

suggest that the observed patterns in  re-synthesis dynamics are a manifestation of 

this transient refractory period, whereby continuous TNF  is unable to induce a 

subsequent round(s) of  degradation until the passage of this refractory period. 

Interestingly, the single cell imaging experiments also revealed that 18% of cells 

continuously stimulated with TNF  exhibited -FLuc oscillatory behavior, with an 

approximate period of 130 min (Fig. 3B, E).  This may correlate to the NF- B 

nuclear:cytoplasmic oscillations observed by others with a period of ~100 min [8-10, 24-

27], and may be slightly longer due to the time required to transcribe and translate new 

-FLuc.  This oscillation phenomenon was never observed in cells given a 30 sec 

TNF  (Fig. 3C) or cells expressing the (S32,36A)-FLuc mutant reporter (Fig 3D), 

highlighting the critical role that secondary  degradation plays in the oscillation 

phenotype. 

After rigorous characterization of the TNF -induced response patterns of the 

-FLuc reporter in single cells and cell populations in culture, we took 

advantage of the amenability of luciferase reporter imaging in vivo to interrogate TNF -

induced activation of the :NF-  negative feedback loop within mouse livers.  Our 

data indicated that circulating TNF , administered at varying doses, produced  

dynamic behaviors in vivo (Fig. 5) with synchronized kinetics and very high levels of 

 re-synthesis, patterns that were consistent with in cellulo experiments in which 

TNF  pulse duration was varied (Figs. 2, 3, 4).  This strongly suggested that circulating 
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TNF  is perceived by liver cells as a pulse, also plausible given the dual re-circulation 

physiology of the liver (hepatic arterial and portal venous) as well as hemodilution 

effects.  This finding underscores the importance of studying cytokine signaling pathways 

under conditions of pulsatile exposure (rather than just continuously bathing cells in 

ligand) that may better reproduce physiologic cytokine stimulation paradigms.  

Furthermore, while several in silico and in vitro studies have demonstrated highly 

heterogeneous and/or asynchronous NF-  responses to TNF  at the single cell level that 

are largely masked when individual cells are averaged together into populations [8-10, 

24, 26, 29], our single cell, cell population, and in vivo data indicated that  

degradation and re-synthesis is surprisingly robust and synchronous.  These data, coupled 

with the low frequency at which we observed -FLuc oscillatory behavior, place 

reservations on the physiologic relevance of the highly heterogeneous and oscillatory NF-

 behaviors observed during continuous TNF  stimulation of single cells.  On the other 

hand, our data do support the relevancy of the synchronous NF-  oscillatory behaviors 

that are observed upon sequential TNF  pulsing and that drive frequency-encoded 

transcriptional programs [8, 10]. 

Thus, our work revealed that the NF- :  negative feedback loop exhibits 

differential and reproducible dynamic patterns in response to modulating TNF  

concentration or pulse duration, and that responses to TNF  exhibited a remarkable 

degree of synchronicity at the level of single cells, cell populations, and in vivo.  

Interestingly, administration of TNF  at varying doses in vivo resulted in hepatocyte 

responses that were most consistent with perception of TNF  as a single concentration 

administered with increasing pulse duration. 



77 

3.4 METHODS 

Plasmids. The -FLuc plasmid was produced by cloning an EcoRI – HpaI 

(blunt) fragment from CMV -FLuc [31] into the EcoRI and EcoRV (blunt) sites of 

FLuc [5]. The (S32,36A)-FLuc mutant plasmid was prepared by 

Quikchange mutagenesis (Stratagene, San Diego, CA, USA) following the protocol 

provided by the manufacturer [35]. The FUW-FLG plasmid encoding a fusion of FLuc 

and EGFP proteins driven by the human ubiquitin C promoter within an established 

lentiviral backbone has been previously described [34].  All plasmids were propagated in 

TOP10 electrocompetent E. Coli (Invitrogen, Carlsbad, CA) and purified using Hi-Speed 

Plasmid Maxi kits (Qiagen, Valencia, CA).  

 

Cell culture and transfection. HepG2 human hepatoma cells were from the American 

Type Culture Collection (ATCC, Manassas, VA). Cells were cultured in DMEM 

supplemented with heat-inactivated FBS (10%) and L-glutamine (2 mM). Cell cultures 

were grown at 37oC in a humidified 5% CO2 atmosphere. HepG2 cells (3 X 105) were 

transiently transfected (Fugene 6, Roche, Indianapolis, IN) with -FLuc (100 

to 200 ng/well) and plated in black-coated 24-well plates (In Vitro Systems GmbH, 

Gottingen, Germany). Cells were then allowed to recover for 48 hr prior to imaging. 

 

Dynamic bioluminescence imaging measurements in live-cell. Prior to analysis by 

bioluminescence imaging, HepG2 cells transiently expressing -FLuc were 

washed with pre-warmed phosphate-buffered saline (PBS, pH 7.4) and incubated in 900 

L of assay buffer (colorless sodium bicarbonate-buffered DMEM supplemented with 



78 

heat-inactivated FBS (10%), L-glutamine (2 mM), and D-luciferin (150 g/mL)). Cells 

were allowed to equilibrate for 30 min (at 37°C in a 5% CO2 atmosphere) before 

stimulation with 100 L of pre-warmed assay buffer with or without TNF  (#210-TA-

050, R & D Systems, Minneapolis, MN). Bioluminescence measurements were acquired  

in IVIS 100 imaging system (Caliper Life Sciences, Hopkinton, MA) at 37°C under 5% 

CO2 flow. Typical acquisition parameters were as follows: acquisition time, 30-60 sec; 

binning, 8 or 16; FOV, 10 or 23 cm; f/stop, 1; filter, open; image-image interval, 5 min; 

total number of acquisitions, 73. Where indicated, cells were transiently exposed to TNF  

for the specified durations and concentrations, washed with pre-warmed PBS, returned to 

pre-warmed assay buffer (with or without TNF ) and imaged as above. Bioluminescence 

photon flux (photons/sec) data were analyzed by region of interest (ROI) measurements 

in Living Image 3.2 (Caliper Life Sciences); this raw data was imported into Excel 

(Microsoft Corp., Redmond, WA) or Sigma Plot 8.0 (Systat Software Inc., San Jose, CA) 

and averaged, normalized to initial (t = 0) values (fold-initial), and normalized to vehicle-

treated controls (fold-vehicle) to generate  dynamic plots (for an example of un-

normalized photon flux data, refer to Fig. S4A).  Quantification of the amplitude and 

timing of  degradation and re-synthesis was carried out in Excel; in the few 

instances of noisy  data, a moving-average smoothing function was applied to ease 

determination of true maximum  amplitudes and kinetics.  

 

Single-cell bioluminescence imaging measurements. Cells were transfected as 

described above with either the -FLuc plasmid or the FUW-FLG construct, 

but at 36 hr post-transfection were trypsinized, counted, diluted, and plated at 60 
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cells/well onto pre-plated, untransfected HepG2 cells (3 X 105 cells/well plated at the 

same time as initial transfection) in a black 24 well plate.  Proof of principle 

bioluminescence and fluorescence measurements were acquired 12 hr later in gridded 

black 24 well plates.  Bioluminescence was imaged on an IVIS50 with the following 

acquisition settings: acquisition time, 5 min; binning, 8; FOV, 4 cm; f/stop, 1; filter, 

open; instrument, IVIS50.  GFP expression was then analyzed on the InCell Analyzer 

1000 using a 10X objective and by collecting 300 fluorescent and brightfield images with 

a 10% overlap to allow image stitching.  This large format image of the entire well, 

coupled with the visible grid on both the fluorescent and bioluminescent image overlays 

(Figure 3A), allowed easy correlation of bioluminescent foci with fluorescent cells.  

Additional image processing and overlays were performed in ImageJ. 

 Full single-cell bioluminescence imaging sequences were acquired by stimulating 

the cells exactly as described previously for cell populations with the following changes 

to image acquisition settings on the IVIS100: acquisition time, 5 min; binning, 8; FOV, 

10 cm; f/stop, 1; filter, open; image-image interval, 0 min; total number of acquisitions, 

73.  Bioluminescence photon flux (photons/sec) data were analyzed by region of interest 

ROI measurements in ImageJ by drawing circular ROIs around each distinct glowing foci 

visible at t = 0 min.  This raw photon flux data was then imported into MatLab and fitted 

with a fifth-degree polynomial to find the time of the first re-synthesis peak.  Cells falling 

within the 95% CI of the signal of vehicle stimulated cells were labeled non-responders 

and excluded from time of min and max determinations.    
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Western blot analysis. HepG2 cells were cultured in 35 mm dishes and stimulated with 

TNF  (at the indicated concentrations) either continuously or as a 30 sec pulse. At the 

indicated time points, cells were harvested and lysed in RIPA buffer (150 mM NaCl, 50 

mM Tris, 5 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, pH 7.4), 

supplemented with protease inhibitor cocktail (Roche, Basel, Switzerland), sodium 

orthovanadate (1 mM), and PMSF (1 mM). Whole-cell lysates were normalized for 

protein content by BCA assay (Pierce, Rockford, IL). Proteins were resolved by SDS-

PAGE (7.5% Biorad Precast Tris HCl or 4%-15%, Biorad Criterion Tris-HCl, Hercules, 

CA), transferred to a PVDF membrane and probed with  antibody (#9242, Cell 

Signaling Technology, Inc., Danvers, MA), GAPDH antibody(#G9545, Sigma, St. Louis, 

MO), and -Tubulin antibody (#sc-17787, Santa Cruz Biotechnology, Inc., Santa Cruz, 

CA). Secondary horseradish peroxidase-IgG antibodies were from GE Healthcare 

Biosciences (Piscataway, NJ), and blots were exposed on the IVIS 100 imaging system. 

Densitometric analysis was performed with Living Image 3.2 (Caliper Life Sciences) and 

Excel software.  

 

Hydrodynamic injections and in vivo imaging. In vivo transfection of mouse 

hepatocytes was performed using the hydrodynamic somatic gene transfer method as 

described [44, 45]. Briefly, -FLuc (3 g) was diluted in PBS (pH 7.4) in a 

volume of 1 ml per 10 g of body weight and rapidly injected into tail veins of mice 

(FVB/N, 6-week-old males) [45].  Imaging for luciferase activity was performed 3-12 

weeks after somatic gene transfer; mice used more than once were allowed to recover for 

8 weeks before use in another round of imaging. Cohorts of 4 mice were injected with D-
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luciferin (150 g/g of body weight, i.p.), anesthetized under 2.5% isofluorane, and 

imaged 10 min later in the IVIS 100 (acquisition, 4 min; binning, 8; FOV, 23 cm; f/stop, 

1; filter, open) to obtain a pre-TNF  stimulation image. Following this, the mice were 

then quickly administered 100 L of vehicle (sterile PBS) or TNF  (at the indicated 

concentrations) by tail vein i.v., placed back in the IVIS, and imaged every 5 min for 3 hr 

under anesthesia. Uniform ROI�’s were drawn around the liver, and total photon flux was 

measured and normalized to the pre-TNF  stimulation levels (fold-initial) and to a 

vehicle-treated animal (fold-vehicle). 

 

Computational Concentration-Response Analysis. A well established computational 

model generated by Hoffman et al. [16] and modified by Werner et al. [6] was used to 

simulate  dynamics in response to varying IKK activity profiles.  

A physiologic IKK activity profile in HepG2 cells was generated by kinase assay 

following continuous TNF  (20 ng/µL) treatment and then interpolated and extrapolated 

in 5 min intervals to a total time of 360 min by Moss, et al. [5]. To allow manipulation, 

this experimentally obtained profile was reduced to three components of IKK activity: 

activation phase duration (a), peak activity magnitude (p), and deactivation phase 

duration (d) (Fig. 4A). The following values were used for each parameter: a = [5, 10, 20, 

40, 80] min, p = [0.5, 1, 3, 6, 10] fold initial, d = [20, 30, 50, 100] min. A simple 

algorithm was then developed to generate 80 unique parameter combinations (with the 

constraint that the sum of (a) and (d) does not exceed 120 min), each defined by four 

points that were then interpolated using MatLab function pchip, a shape preserving 

interpolant (Fig. S1). These 80 IKK activity profiles were used as inputs into the 
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computational model and the differential equations were solved numerically using 

MatLab R2010b (Mathworks, Natick, MA) with subroutine Ode15. From these IKK 

inputs, the model predicted the dynamics of six different free and bound  

subpopulations (free cyt, :IKKcyt, :NF cyt, :IKK:NF cyt, free 

nuc, and :NF nuc). Because live cell bioluminescence imaging of B5- -

FLuc could not distinguish between these distinct  subpopulations, we summed the 

concentrations of the six predicted subpopulations and plotted the 80 predicted total  

profiles as a function of time (Fig. S2). 

 

Statistical Analysis. Statistical significance was evaluated using Students t test for -

FLuc re-synthesis patterns (Fig. 4F,G). 
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3.5 FIGURES 

 

Figure 3.1: -FLuc Bioluminescent Reporter System. (A) The -
FLuc bioluminescent reporter utilizes an  gene fused by a flexible linker to a firefly 
luciferase (FLuc) gene under the control of a synthetic NF  promoter ( 5), thus 
recapitulating the endogenous negative feedback loop. (B) HepG2 cells were transiently 
transfected with -FLuc and stimulated continuously with TNF  (170 pM; 3 
ng/mL). Lysates were collected at the indicated time points, resolved on a 7.5% SDS-
PAGE gel, and blotted for  and GAPDH (loading control). 
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Figure 3.2:  Dynamics as a Function of TNF  Pulse Duration & Concentration. 
(A) HepG2 cells transiently expressing -FLuc were pulsed with a saturating 
concentration of TNF  (1.2 nM; 20 ng/mL) or vehicle for the indicated durations with 
data acquisition over a period of 360 min.  Data were normalized as fold-initial and fold-
vehicle (relative to cells pulsed with vehicle for the same duration), and represent the 
mean of three independent TNF  exposure experiments, each performed in duplicate and 
averaged.  (B) HepG2 cells were stimulated with a 5 sec pulse of TNF  (1.2 nM; 20 
ng/mL) and lysates were collected to capture  degradation and re-synthesis.  Lysates 
were resolved together on a 4-15% gradient gel and blotted for endogenous  and -
Tubulin (loading control). (C,D) Plots representing the extent of maximal  
degradation (C), and the time at which maximal  degradation occurred (D), as 
functions of TNF  pulse duration.  (E, F) Plots representing the extent of maximal  
re-synthesis (expressed as a percentage of the maximum level of re-synthesis achieved in 
a given experiment) (E), and the time at which maximal  re-synthesis occurred (F), 
as functions of TNF  pulse duration.  Note that the x-axis is plotted on a log scale (min) 
in (C-F).  (G) HepG2 cells expressing -FLuc were continuously treated with 
TNF  or vehicle at the indicated concentrations and bioluminescent data were acquired 
for 360 min.  Data were normalized as before and represent three independent 
experiments, performed in triplicate and averaged.  (H, I) Plots representing the extent of 
maximal  degradation (H), and the time at which maximal  degradation 
occurred (I), as functions of TNF  concentration.  (J, K) Plots representing the extent of 
maximal  re-synthesis (J), and the time at which maximal  re-synthesis 
occurred (K), as functions of TNF  concentration.  The x-axis is plotted on a log scale 
([TNF ] pM) in panels H-K.  
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Figure 3.3: Characterization of  Dynamics in Single Cells. (A) Image of a single 
well of a 24 well plate with bioluminescent foci representing sparsely plated HepG2 cells 
transiently expressing the FUW-FLG luciferase-EGFP fusion reporter.  Insets represent 
10X fluorescent micrographs of the indicated bioluminescent foci, demonstrating that 
most foci represent a single transfected cell, and occasionally a small group of 2-3 cells.  
(B-E)  Single HepG2 cells transiently expressing -FLuc (B,C) or 

(S32,36A)-Fluc (D)  were given continuous (B, D) or a 30 sec pulse (C) of 
TNF  (1.2 nM; 20 ng/mL).  Data were normalized as fold-initial, and data from two 
independent experiments are plotted together.  Black lines represent the mean and red 
dashed lines represent the 95% confidence interval of the vehicle-treated controls.  (E) 
Select examples of -Fluc oscillations observed in some of the cells from (B).  (F) 
Single HepG2 cells transiently expressing -FLuc were continuously treated 
with TNF  or vehicle at the indicated concentrations.  (G-I)  Scatter plots representing 
the time of maximum re-synthesis (G) calculated from data in (B-D), and the time of 
minimum degradation (H) and re-synthesis (I) from data in (F). 
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Figure 3.4:  Experimental Investigation of Complex  Re-Synthesis Patterns.  
(A) A physiologic IKK time-activity plot obtained by Moss & Gross et al. shown in red 
was reduced to four points capturing three components of IKK activity: activation rate 
(activation time parameter a), peak magnitude (parameter p), and deactivation rate 
(deactivation time parameter d).  Each of the three IKK activity parameters described in 
(A) were modified to generate a total of 80 IKK input profiles (inset).  (B) Effect of IKK 
deactivation (d) on  dynamics when a and p were held constant at 10 min and 1X 
fold-initial, respectively. (C) Effect of IKK peak magnitude (p) on  dynamics when 
a and d were held constant at 10 min and 30 min, respectively.  (D, E) HepG2 cells 
expressing -FLuc were treated with the indicated TNF  concentrations or 
vehicle at t = 0 min. At 60 or 180 min, the cells were washed and replenished with fresh, 
TNF -free media (wash-out conditions) or media containing TNF  at the initial 
concentration (a mock wash-out). Data were acquired every 5 min for 360 min and 
normalized as before to represent the mean of three or four independent TNF  exposure 
experiments, each performed in triplicate and averaged.  (F)  Plot representing the effect 
of washout time and TNF  concentration (5.7 pM or higher) on maximum  re-
synthesis magnitude. All 180 min data represent parameters calculated from the second 

 re-synthesis peak.  Data are mean ± SEM. * indicates p < 0.05 for TNF  (170 or 
570 pM) wash-out or mutant (S32,36A)-FLuc versus continuous TNF  wild-type 

-FLuc. The 30 min and 60 min data were n = 2 and thus were excluded from 
statistical analysis.  (G) Plot representing the effect of wash-out time and TNF  
concentration on the timing of maximum  re-synthesis. # indicates p < 0.05 for 
lowest vs. highest TNF  concentration within a given TNF  treatment.  (H) HepG2 cells 
expressing (S32,36A)-FLuc were treated continuously with TNF  at the 
indicated concentrations or with vehicle and imaged every 5 min for 360 min; data were 
normalized as described previously and represent three independent experiments, each 
performed in triplicate and averaged. 
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Figure 3.5:  Dynamics as a Function of TNF  Dose In Vivo. (A) In 
vivo transfection of mouse hepatocytes was performed using the hydrodynamic somatic 
gene transfer method. Mice were imaged in an IVIS 100 to obtain a pre-stimulation 
reading, followed by tail vein injection of 100 µL of vehicle (sterile PBS) or TNF  (at the 
indicated doses), and then imaged at 5 min intervals for 3 hr. (B) Data from five 
independent experiments are plotted normalized to the pre-TNF  stimulation levels (fold-
initial) and to a vehicle-treated animal (fold-untreated); error bars represent mean ± SEM. 
(C-F) Quantitative analysis of in vivo measurements from that represent the extent of 
maximal  degradation (C) and re-synthesis (E), and the time of maximal  
degradation (D) and re-synthesis (F), as functions of TNF  dose. All data are presented 
as mean ± SEM; the x-axis is plotted on a linear scale. The 1 ng/mouse data point in (D) 
represents n = 3 because two animals showed no degradation at that dose and thus no 
degradation time could be calculated. 
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3.6 SUPPLEMENTARY FIGURES 

 

 

 

Supplemental Figure 3.1: Modified IKK Input Profiles. (A) The duration of the IKK 
deactivation phase and the IKK peak magnitude were held constant while the duration of 
the IKK activation phase was modulated. (B) The duration of the IKK activation phase 
and the IKK peak magnitude were held constant while the duration of the IKK 
deactivation phase was modulated. (C) The durations of the IKK activation and 
deactivation phases were held constant, while the IKK peak magnitude was modulated. 
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Supplemental Figure 3.2: Predicted  Dynamic Profiles in Response to 
Modulating IKK Activation, Deactivation, and Peak Magnitude. (A) The duration of 
the IKK deactivation phase and the IKK peak magnitude were held constant while the 
duration of the IKK activation phase was modulated. (B) The duration of the IKK 
activation phase and the IKK peak magnitude were held constant while the duration of 
the IKK deactivation phase was modulated. For a more detailed view, see Fig. 4B. (C) 
The durations of the IKK activation and deactivation phases were held constant, while the 
IKK peak magnitude was modulated. For a more detailed view, see Fig. 4C.  
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Supplemental Figure 3.3: Representative Raw Data and Normalized Plots from 
Mock and TNF  Wash-Out Experiments. (A-H) HepG2 cells expressing -
FLuc were treated with the indicated TNF  concentrations or vehicle at t = 0 min. At the 
indicated time point, the cells were washed and replenished with fresh, TNF -free media 
(wash-out conditions) or with media containing TNF  at the initial concentration (a mock 
wash-out). Images were taken every 5 min for 360 min; data were normalized as fold-
initial and fold-vehicle, and the mean of three or four independent TNF  exposure 
experiments, each performed in triplicate and averaged, was plotted against time; the data 
in the mock wash-out plots represent a single experiment performed in triplicate. (I) The 
raw photon flux (photons/sec) from three wells each treated with the indicated 
concentration of TNF  were measured, averaged, and plotted as a function of time. A 
slight perturbation in signal is noted at 60 min when the cells were washed with PBS and 
placed back into TNF - or vehicle-containing media; the perturbation also occurred in 
the vehicle-treated control (gray circles), and is thus accounted for when the data is 
normalized as fold-initial and fold-vehicle (Fig. S3F). 
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CHAPTER FOUR  
 

High-Throughput Phosphatase RNA Interference Screen 
Identifies Novel Regulators of TNF -Induced IKK:I B :NF-

B Negative Feedback Loop Dynamics 

 

4.1 INTRODUCTION 
It is currently believed that activation/de-activation of IKK (and other members of 

the NF- B signaling cascade) is regulated by the opposing effects of 

kinases/phosphatases [1], and although a large body of literature exists on the 

mechanisms by which kinases act during NF- B signaling, much less is known about the 

role of phosphatases in regulating members of the NF- B signal cascade.  A number of 

phosphatases have been implicated in negative regulation of IKK activity and in 

regulation of NF- B activity (including PP2C , PP2A, PP1, PPM1A, PPM1B and 

WIP1), and they often operate to counteract the activity of a kinase.  Study of these 

phosphatases has revealed differential activity dependent on stimulus and cell specificity, 

redundant or compensatory pathways, and positive and negative regulatory roles 

(occasionally based on conflicting evidence; for example, PP2A has been posited by 

some to be a positive regulator of IKK and others claim it to be a negative regulator) [2-

11].  Furthermore, an RNAi phosphatase library was recently utilized to identify 

unknown phosphatase regulators of NF- B transcriptional activity in mouse astrocytes 

[9].  The authors identified 19 phosphatases that activate or suppress NF- B activity 6-8 

hours post-TNF  stimulation; their work indicated that the PP2A catalytic subunit 
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interacts with and inactivates IKK , however, this function was not conserved in the 

context of  human cell lines [8].  Given that our B5 I B -FLuc reporter had enabled us 

to study the IKK-I B -NF- B negative feedback loop with high temporal resolution 

[12], and given that temporal control of this and other negative feedback loops has 

emerged as a critical regulatory component of the intensity and specificity of the NF- B 

transcriptional program [13-16], we sought to perform an RNAi screen to identify novel 

regulators of IKK-I B -NF- B negative feedback loop dynamics. 

 

4.2 RESULTS 
Optimization of siRNA and B5  I B -FLuc co-transfection in 96 well plate 

format.  

We initially intended to perform the high-throughput RNAi screen by transfecting 

siRNAs into HepG2 cells stably transfected with a bi-directional pBI Tet vector to 

simultaneously express B5 I B -CBR and a constitutive SV40 CBG (which could 

be used to normalize for cell number and non-specific effects induced by siRNA 

knockdown and/or other experimental conditions).  The two-color imaging capabilities 

on the IVIS 100 bioluminescence imager, coupled with spectral un-mixing software, can 

allow deconvolution of the signals from each of these reporters [17].  Additionally, the 

Tet-inducible pBI plasmid system would have given us the ability to �“dial-in�” an optimal 

level of reporter expression (i.e., allow expression optimization for high signal-to-noise 

and effective dynamic range).  Pilot transient transfection experiments with the pBI- 

B5 I B -CBR/SV40 CBG reporter revealed leaky expression of both reporters and 
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doxycycline-induction actually dampened the dynamic range (amount of I B -CBR 

degradation and re-synthesis) of the B5 I B -CBR reporter.  Attempts at making 

stable HepG2 Tet-ON cells with the pBI- B5 I B -CBR/SV40 CBG reporter were 

unsuccessful.  Efforts were then focused towards employing HepG2 cells transiently 

expressing the pBI- B5 I B -CBR/SV40 CBG reporter construct and making use of 

the fact that leaky expression gave reasonable dynamic range and TNF  dose 

responsiveness.  After scaling down to 96 well plate format and testing a panel of 

plasmid/siRNA co-transfection reagents, X-TremeGENE (Roche) was chosen and co-

transfections of siRNA and plasmid reporter were optimized.  This was accomplished by 

using control siRNAs designed against either I B  or CBR; when these siRNAs are 

efficiently transfected they will knock-down bioluminescent signal from the B5 I B -

CBR portion of the reporter, a phenotype that is easily quantified by imaging cellular 

bioluminescence.  It was found that optimal knock-down of luciferase signal was 

achieved using 50 ng/well reporter, 88 ng/well siRNA, and 0.8 µL/well X-TremeGENE 

with a 48 hr transfection. 

Using the optimized co-transfection protocol, we stimulated HepG2 cells with 

TNF  (20 ng/mL) and measured the effect of siRNA expression upon I B  dynamics.  It 

became apparent that HepG2 cell expression levels of SV40 CBG in 96 well plate 

format were too low to reliably use for normalization purposes, and for that reason, 

taking a series of red, green, and open filtered images for each time point was adding 

unnecessary complexity.  Therefore, the decision was made to abandon the pBI vector, 

and go back to our original B5 I B -FLuc construct. Several unsuccessful attempts 

were made to develop HepG2 cells stably expressing the B5 I B -FLuc, so we 
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subsequently began optimizing transient co-transfections of this plasmid reporter and 

siRNA. We were able to achieve robust knock-down using X-tremeGENE and to 

successfully perform real-time imaging of I B -FLuc dynamics with high-temporal 

resolution, allowing us to investigate not only changes in the amplitude of I B -FLuc 

degradation and re-synthesis (as typically measured in high-throughput screens), but also 

the effect of siRNAs on the kinetic aspects of the negative feedback loop (i.e., times of 

maximal degradation and re-synthesis, rate of re-synthesis, and re-synthesis lag time). 

 

Optimization of a novel method by which high-throughput robotic screening 

strategies can be used to assay for alterations in the dynamics (both amplitude and 

kinetics) of the IKK:I B :NF- B negative feedback loop.   

Once the optimal conditions for bioluminescent reporter and siRNA co-

transfection were determined, we sought to develop, optimize, and determine the 

robustness of a novel method for robotic high-throughput RNAi screening that would 

allow us to assay for phosphatases involved in regulating I B  dynamics.  The 

Washington University High-Throughput Screening Robotics Core (HTC) has purchased 

an siRNA phosphatase library (consisting of 444 duplexes against 222 phosphatases and 

phosphatase-associated genes in the human genome; Qiagen, Inc.) as well as a Beckman-

Coulter Biomek FX dual bridge liquid handler, bar-code printer and independent reader, a 

lid station capable of removing and replacing lids, a tip-lift, an ambient temperature 

carousel, a heated, humidified CO2 incubator and a MultiDrop dispensing station. These 

instruments are controlled by the Sagian SAMI software and accessed by a Sagian ORCA 

robot.   
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A script was written to program the robot and liquid handler to perform triplicate 

co-transfections of B5 I B -FLuc reporter and siRNA from a library plate onto three 

96 well plates pre-plated with HepG2 cells (see a detailed description of this protocol in 

the Methods Section).  Each library plate contained 80 experimental siRNAs (two 

different duplexes/well towards the same target) arrayed in Columns 2-11, two negative 

control siRNAs (a scrambled negative control sequence and a sequence targeting GFP) in 

the last two wells of Column 12, and the remaining wells in Columns 1 and 12 were 

empty to allow addition of screen-relevant positive, negative, and transfection controls.  

The additional controls we added were: (1) siTNFR1 as a positive control for non-

response to TNF  treatment, (2) siFLuc as a control of transfection efficiency, (3) Qiagen 

AllStars siNeg as a negative control, (4) siPPP2CA as a biological positive control given 

its known role as a regulator of IKK, and (5) no siRNA as a control for transfection 

toxicity (Figure 4.1). 

Of critical importance to our screen was acquiring data with high temporal 

resolution that would enable evaluation of kinetic parameters of the IKK-I B -NF- B 

negative feedback loop.  Due to the fast rate of photon flux change at certain times post 

TNF  stimulation, bioluminescence images must be taken at least every 5 min, with all 

wells of a 96 well plate being imaged simultaneously.  The only instrument available to 

us with this capability is the aforementioned IVIS 100 bioluminescence imager (Caliper 

Life Sciences, Inc.), which also allows controlled temperature and CO2 conditions. 

A test transfection was carried using a test library plate and three plates of pre-

plated HepG2 cells.  Forty-eight hours post-transfection, cells were stimulated with TNF  

and bioluminescence imaging was carried out for 6 hr on the IVIS to capture a set of full 
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dynamic I B  profiles.  The knock-down efficiency, as measured by a decrease in 

luciferase signal in wells transfected with siFLuc, was 87.1 ± 0.3 % (mean ± SD), 

indicating efficient siRNA transfection.  Bioluminescent photon flux values (normalized 

as fold-initial) from each control well were graphed as a time course (Figure 4.2).  The 

data showed good correlation of controls within plates during the I B -FLuc degradation 

phase (with Plate 2 demonstrating more intra-plate variability).  TNFR1 knock-down 

completely abolished responsiveness to TNF  stimulation while PPP2CA knock-down 

showed little effect on the degree of degradation when compared to no siRNA or siNeg 

controls.  A higher degree of intra- and inter-plate variability was noticed during the 

I B -FLuc re-synthesis phase, but siTNFR showed no evidence of re-synthesis, and 

siPPP2CA treatment resulted in slowed re-synthesis rate and decreased amplitude 

compared to negative controls.  This gave us confidence that novel phosphatase siRNAs 

that impact I B -FLuc dynamics could be readily discerned from negative control 

siRNAs during the subsequent screen.   

 

Execution of phosphatase RNAi screen to identify novel regulators of I B  

dynamics in the presence of TNF -induced stimulation. 

The screen was performed by co-transfecting the phosphatase siRNA library with 

the B5 I B -FLuc reporter in HepG2 cells in 96 well plate format (Figure 4.3).  The 

co-transfected cells were then stimulated with TNF  and imaged for luciferase 

bioluminescence under (for more details, see Methods section).  This regimen provided a 

dynamic read-out with high-temporal resolution, allowing us to investigate not only 
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changes in the amplitude of degradation and re-synthesis (as typical high-throughput 

screens monitor), but also the effect of siRNAs on the kinetic aspects of the negative 

feedback loop (i.e., times of maximal I B -FLuc degradation and re-synthesis, rates of 

re-synthesis, and re-synthesis lag times). Though other RNAi screens have been 

published looking for novel regulators (including phosphatases) of the NF- B pathway 

([7, 9, 18]), most have examined down-stream NF- B transcriptional activity many 

hours-to-days following pathway stimulation and none have honed in specifically on the 

IKK-I B -NF- B negative feedback loop or on the kinetic aspects of NF- B signaling. 

The raw bioluminescence time course data was normalized as fold initial and then 

graphed as a first-pass examination of quality control (see example plate in Fig. 4.4).  We 

noted that within a triplicate, the replicates were tight correlated in regard to I B -FLuc 

degradation and re-synthesis rate, though more variability was observed in magnitude of 

peak re-synthesis.  Of particular note was the variety of I B -FLuc dynamic profiles 

observed, many with vastly different shapes than seen under control siRNA treatment. 

For example (Fig. 4.4) some wells exhibited very sharply defined re-synthesis peaks (row 

5, column 6) and others had much broader peaks (row 7, column 5); some wells showed 

higher levels of re-synthesis (row 3, column 4) and others less re-synthesis (row 7, 

column).  Surprisingly, when focusing on the I B -FLuc degradation phase (Fig. 4.4) we 

observed that the experimental siRNAs did not greatly affect shape, degree, or kinetics of 

I B -FLuc.  The few exceptions were siRNAs that seemed to prolong the duration of the 

degradation phase (for example row 6, column 2).  

While the controls within a given plate triplicate were very tightly correlated, we 

observed a minor degree of inter-plate (across the three siRNA library plates) control 
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well variability during screen run #1 and a larger degree during run #2.  This variability 

may have stemmed from the fact that the screen inherently monitors a common stress-

activated pathway with highly sensitive temporal and dynamic readouts.  Thus, we chose 

to analyze the phosphatase screen data on a plate-by-plate basis rather than screen-wide.  

While this method makes it difficult to rank hits found on one plate against hits found on 

another, it does somewhat overcome the non-random alphabetic placement of siRNAs 

within library plates, an issue that can result in over-representation of hits from one plate.  

Additionally, hits from each plate can be ranked against each other during secondary 

screening analysis. 

 

Rigorous statistical analysis of phosphatase screen data and identification of high-

confidence hits.  

The raw bioluminescent photon flux data was normalized as fold-initial as a 

means of intra-well normalization. The phosphatase screen was analyzed plate-by-plate 

due to high variability observed within internal controls between plates.  Three different 

approaches were undertaken to analyze the screen data and determine hits.  The first 

approach was a quartile-based method that is robust to outliers, true hits, and non-

symmetrical data [21, 22] and that has been successfully used in previous high-

throughput screens [19].  The second approach was to apply unbiased K-means clustering 

and Principal Component Analysis (PCA) for exploratory data analysis and to group 

siRNA treatments based on similarity of corresponding I B -FLuc bioluminescent 

profiles.  The third approach, cumulative log-likelihood analysis, was based on a 
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Gaussian probability density function and allowed us to rank the deviation of an 

experimental siRNA treatment from the negative controls screen wide (personal 

communication with Dr. Joshua Swamidass and Mr. Reece Goiffon). 

In quartile-based analysis, both raw photon flux data and fold-initial normalized 

data from each run of the screen were analyzed plate-by-plate.  A total of seven 

parameters were chosen for evaluation (Figure 4.5): 

(1) Initial Photon Flux Level (the raw photon flux signal at t = 0 min) 

(2) Degradation Level (i.e. the minimum flux or fold-initial signal detected during 
I B -FLuc degradation) 

(3) Degradation Time (the time at which minimum occurred) 

(4) Re-Synthesis Level (the maximum flux or fold-initial signal achieved during 
I B -FLuc re-synthesis) 

(5) Re-Synthesis Time (the time at which maximal re-synthesis occurred) 

(6) Re-Synthesis Rate (the slope of re-synthesis between the minimum and 
maximum) 

(7) Re-Synthesis Lag Time (the value of the x-intercept of the linear regression of the 
I B -FLuc re-synthesis rate) 

 

The first five parameters were determined by descriptive statistics methods and the last 

two parameters were defined and analyzed by linear regression of the I B -FLuc re-

synthesis phase.  Hits were identified for each parameter using a quartile-based method 

that is robust to outliers, true hits, and non-symmetrical data [19, 20]; statistical analysis 

was completed using both low stringency (targeted error rate  = 0.05) and high 

stringency (targeted error rate  = 0.0027) cut-offs.  The collections of hits from each 

independently-run screen were then compared and the common strong and weak hits for 

each parameter are listed in Supplemental Table 4.1; a summary of strong hits for fold-
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initial analysis are presented in Table 4.1.  The known IKK regulators PPP1CB, 

PPP2CA, and PPP2C (the catalytic subunits of protein phosphatase 1 and protein 

phosphatase 2) showed up as weak hits in re-synthesis rate and maximum, confirming the 

ability of this screening technique to identify known regulators of NF- B signaling [2, 3, 

5, 6, 8-10]. 

 However, this analytical technique was not ideal for our time course data for a 

number of reasons: (1) many of the I B -FLuc profiles had shapes that made regression 

analysis and determination of peak re-synthesis parameters difficult or impossible, (2) 

rather than relying on single points on the curve (minimums, maximums, etc), we sought 

a method that would allow simultaneous analysis of many or all data points along the 

I B -FLuc profile, and (3) we sought a means of quantifying differences/similarities in 

I B -FLuc profiles that are qualitatively obvious.  We attempted to address some of 

these issues by the use of data clustering approaches, specifically by using unbiased K-

means clustering and Principal Component Analysis (PCA) for exploratory data analysis 

and to group siRNA treatments based on similarity of corresponding I B -FLuc 

bioluminescent profiles.  Unfortunately, we found that overall these techniques did not 

contribute greatly to our data analysis, mainly because the minor degree of control well 

inter-plate variability proved to be a more significant issue during clustering, and the 

resultant multi-dimensional clusters were often difficult to interpret and did not 

significantly contribute information that could not easily be validated qualitatively. 

The third analytical method, cumulative log-likelihood, was undertaken to 

compensate for inter-plate variability and for the non-random array of siRNAs.  This 

technique quantifies the degree of deviation for a given siRNA treatment from the 
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negative controls (Fig. 4.6).  This method adjusts for confounding variance that otherwise 

prevents direct comparisons between plates.  More specifically, we first made a Gaussian 

probability density function at each time point based on the mean and variance of the 

plate negative controls.  We then input each siRNA measurement into this function to 

quantify the normalized deviation from the set of negative controls.  To combine 

replicates, and to later make a cumulative sequence, we prevented computational 

rounding error by taking the negative logarithm of the likelihood (log-likelihood) and 

summing (log A + log B = log AB).  In general, the greater the difference from the 

negative controls the greater the log-likelihood value for a given siRNA.  The siRNA 

were then ranked and visualized in a bar graph in which each division of the bar height 

represents the contribution of an individual time point to the cumulative log-likelihood 

value (Sup. Fig. 4.1). This rank-based method allows for approximate comparison 

between plates and precise comparison within each plate.  In addition, the bars were 

colored-coded based on Directional Replicate Agreement, wherein a value of ±3 means 

all plates within the triplicate agreed and were either above or below the negative 

controls, and a value of ±1 means imperfect agreement, with one of the replicates 

deviating from the others because it registered differentially above or below the negative 

controls.   

Table 4.2 lists the top 10 hits from each plate separated into degradation phase, re-

synthesis phase, and cumulatively for both degradation and re-synthesis considered 

together.  The degradation phase analysis (Sup. Fig. 4.1) had low log-likelihood values 

(indicating they were not strongly different than controls) and many of the siRNAs 

exhibited directional replicate disagreement (denoted by green and yellow shading). 
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While the known IKK regulators PPP1CB, PPP2CA and PPP2CB (the catalytic subunits 

of protein phosphatase 1 and protein phosphatase 2) were identified as weak hits (i.e. 

falling towards the center of rank graphs), the recently identified PPM1A frequently 

showed up as a medium strength hit (i.e., towards the left end of the rank graphs) when 

considering both degradation and re-synthesis, confirming the ability of this screening 

technique and analytical method to identify true regulators of NF- B signaling [2-11].  

This confirmed that the log-likelihood means of analysis could be successfully applied to 

dynamic time course data from a high-throughput RNAi screen, and may represent a new 

paradigm for analysis of this type of data. 

 

Execution of a focused secondary RNAi screen in the presence of TNF  or IL-1 .  

Next, a focused secondary screen was executed.  Preparation for the secondary 

screen was initiated prior to the development of the log-likelihood analytical method; 

therefore, hits for the secondary screen (Figure 4.7) were chosen based on the strongest 

stringency hits from each parameter analyzed by the quartile-based method (the results of 

both resazurin normalized and un-normalized data analysis were included).  This screen 

was performed with the purposes of (1) ranking the top hits from both runs across all 

plates, and (2) comparing TNF - and IL-1 -induced I B -FLuc dynamics to determine 

whether any of the top hits from the primary screen exhibited a TNF -specific phenotype 

(understanding of which could potentially expedite mechanism-of-action investigations 

for the top hits).  The 39 top hits from quartile-based analysis, 5 siRNAs that did not 

show up as strong or weak hits, and scrambled negative control siRNAs were re-arrayed 
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into a 96 well master plate (Fig. 4.8).  The secondary screen was carried out using the 

procedures described for the primary screen (see Methods), however one half each plate 

was stimulated with 20 ng/mL TNF  and the other half with 10 ng/mL IL-1 .  The raw 

bioluminescence time course data was normalized as fold-initial and then graphed (see 

example plate in Fig. 4.9).  The I B -FLuc re-synthesis phase of control siRNA wells 

under IL-1  stimulation mostly resembled TNF -treated controls, except that at �“peak�” 

re-synthesis the signal kept gradually drifting up rather than reaching plateau.  Visual 

comparison of the TNF -stimulated wells versus the identical IL-1 -stimulated wells 

revealed no obvious strong differences between the two different ligands, indicating that 

these top hits are likely general regulators of the NF- B pathway rather than regulators of 

ligand-specific induction of the pathway. 

Data were analyzed using the log-likelihood method described above given the 

limitations of quartile-based analysis mentioned previously, especially on a small data 

set.  As was noted previously for the primary screen, the degradation phase analysis (Sup. 

Fig. 4.2) had low log-likelihood values (indicating they were not strongly different than 

controls) and many of the siRNAs exhibited directional replicate disagreement (denoted 

by green and yellow shading).  Furthermore, a number of the non-hit and negative siRNA 

controls (denoted in bold) ranked high, giving further indication that the degradation 

phase did not significantly differ from negative controls.  Log-likelihood analysis of the 

re-synthesis phase revealed a number of strong hits with large log-likelihood values and 

consistent directional replicate agreement (Sup. Fig. 4.2).  Upon knock-down, CDNK3, 

PPFIA3, ENPP3, SKIP and PPP1R3D exhibit I B -FLuc re-synthesis profiles with a 

faster rate of re-synthesis and higher or more pronounced peak re-synthesis (i.e., negative 
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regulators).  Additionally, PTPN3, PTPRJ, and PTPRN were identified as possible 

positive regulators (i.e., knock-down produced I B -FLuc re-synthesis profiles with 

slower rate of re-synthesis and lower or delayed peak re-synthesis).  The top 15 log-

likelihood hits for degradation, re-synthesis, and degradation combined with re-synthesis 

are listed in Table 4.3 

 

Validation of PTPRJ as a Novel Regulator of IKK:I B :NF- B Negative Feedback 

Loop Dynamics.  

 PTPRJ was chosen for validation as an interesting candidate positive regulator of 

IKK:I B :NF- B negative feedback loop dynamics given that, (1) it had a very strong 

phenotype in the screen, (2) it is a receptor-type tyrosine phosphatases with no known 

function in NF- B signaling, and (3) because researchers at Washington University in St. 

Louis had recently identified a novel mutation of PTPRJ through a DNA deep-

sequencing screen of genome remodeling in basal-like breast cancer [21].   

 First, four siRNA sequences targeting PTPRJ were transiently co-transfected 

along with the B5 I B -FLuc reporter plasmid into HepG2 cells.  Cells were 

stimulated with TNF  and imaged for 6 hr in the IVIS100 to capture full I B -FLuc 

bioluminescent profiles.  Interestingly, only one sequence showed a similar phenotype as 

observed in the primary and secondary screens (sequence #5; Fig. 4.10): prolonged I B -

FLuc degradation phase, decreased rate of I B -FLuc re-synthesis, and lower I B -FLuc 

re-synthesis peak that is not sharp peak but instead yields a gradually-rising plateau.  This 

same siRNA was confirmed to knock-down endogenous PTPRJ expression (by 50%) in 

HepG2 cells (Fig. 4.10, inset).   



116

Given that only one siPTPRJ sequence resulted in a phenotype similar to that seen 

in the screens, we next sought to use shRNA to more stably and thoroughly knock-down 

PTPRJ expression in HepG2 cells.  Four different PTPRJ hairpin shRNAs (and a shGFP 

negative control) were packaged into lentivirus and used to infect HepG2 cells.  

Following selection, HepG2 cells expressing the shRNAs were transiently transfected 

with the B5 I B -FLuc reporter as previously described, stimulated with TNF , and 

imaged.  The strongest knock-down (as quantified by Western blot; Fig. 4.11, inset) was 

achieved with hairpins 21 and 22; the strongest I B -FLuc phenotype was noted for 

hairpin 21.  Even though several siRNA sequences and shRNA hairpins did not 

reproduce the PTPRJ phenotype observed in the screen, we felt that we had sufficient 

compelling evidence to proceed with further investigation of the potential role of PTPRJ 

in the NF- B pathway. 

We next tested the hypothesis that over-expression of PTPRJ should enhance 

TNF -induced I B -FLuc re-synthesis.  Compared to empty vector control, PTPRJ over-

expression yielded greater levels of I B -FLuc degradation and greater re-synthesis (Fig. 

4.12).  A phosphatase-dead mutant form of PTPRJ (C1239S; [22]) was also tested and we 

found that it similarly enhanced I B -FLuc degradation, but not re-synthesis.  These 

same constructs were also tested in HepG2 cells against a simple NF- B transcriptional 

activity reporter ( B5 FLuc) to assess the effect of PTPRJ over-expression on basal NF-

B activity and TNF -induced transcriptional activity.  We found that PTPRJ over-

expression tended to give lower basal levels of bioluminescence from the B5 FLuc 

reporter when compared to either empty vector or the C1239S mutant (Fig. 4.13).  
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Furthermore, upon stimulation with TNF , cells over-expressing wild-type PTPRJ 

showed enhanced activation compared to either control.  

Additional follow-up on hits from the phosphatase screen is ongoing.  Of 

particular interest will be CDKN3 which strongly impacted I B -FLuc re-synthesis 

levels, and PTPRN which phenocopies PTPRJ.  Initial knock-down experiments have 

proven difficult, so future validation studies will utilize protein over-expression 

methodologies. 

 
 

4.3 DISCUSSION 
It is currently believed that activation/de-activation of IKK (and other members of 

the NF- B signaling cascade) is regulated by the opposing effects of 

kinases/phosphatases [1], and while much effort has been directed towards understanding 

the mechanisms by which kinases act during NF- B signaling, much less is known about 

the role of phosphatases in regulating members of the NF- B signal cascade.  One of the 

critical regulatory nodes known to be regulated by kinases and phosphatases is the IKK-

I B -NF- B negative feedback loop [2-11].  Furthermore, this negative feedback loop 

plays a major role in regulating the strength and duration of NF- B transcriptional 

activity [13-16].   Therefore, we performed a high-throughput phosphatase RNAi screen 

to identify novel regulators of the dynamics of the IKK-I B -NF- B negative feedback 

loop utilizing our B5 I B -FLuc reporter.   

Our unique screen was carried out with high temporal resolution (taking images 

every 5 min for 6 hr) in order to fully capture both degradation and re-synthesis of the 
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B5 I B -FLuc reporter upon stimulation with TNF , with the hope of identifying 

siRNA targets that might strongly impact kinetic aspects of feedback loop regulation.  

We observed many different B5 I B -FLuc profiles in the screen, some with vastly 

different shapes than seen under control siRNA treatment (Fig. 4.4).  Surprisingly, when 

focusing on the I B -FLuc degradation phase, we did not observe siRNAs that exhibited 

strong effects on I B -FLuc shape, degree, or kinetic.  It is possible that strong 

degradation phase hits were not observed because the degradation phase has a small 

dynamic range and is dependent on signal decrease, or because the screen was run using a 

saturating concentration of TNF  (20 ng/mL) that could have masked the effects of some 

weaker degradation regulators.  In the future, it could prove useful to run similar screens 

under a range of TNF  concentrations to assess whether hits with weaker effects can be 

identified. 

Because our phosphatase screen dataset contained I B -FLuc dynamic profiles of 

a variety of shapes and sizes, we sought an analytical method that would allow us to 

quantify how different the overall profile (or select sections of the profile) was from 

negative controls.  This led to the application and optimization of log-likelihood analysis, 

a method that was able to identify known pathway regulators (PPP1CB, PPP2CA, 

PPP2CB, and PPM1A; Sup. Fig. 4.1).  This confirmed that the log-likelihood means of 

analysis could be successfully applied to dynamic time course data from a high-

throughput RNAi screen, and may represent a new paradigm for analysis of this type of 

data.  We then successfully applied this method to our secondary screen data and 

identified a number of novel hits (Sup. Fig. 4.2), including CDNK3, PPFIA3, ENPP3, 
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SKIP, PPP1R3D PTPN3, PTPRJ, and PTPRN (Table 4.3).  Many of these hits are part of 

ongoing validation studies in our lab, including PTPRJ. 

The human receptor-type protein tyrosine phosphatase type J (PTPRJ, also known 

as DEP-1 and CD148) is a trans-membrane receptor that is involved in signal 

transduction in leukocytes, contributing to cellular differentiation processes, and is found 

on the surface of several epithelial cell types [23].  Additionally, as its name might imply, 

it was found in fibroblasts cell lines to become upregulated 10-fold in cultures grown at 

high-density [24], suggesting another role in sensing cell-contacts and in density-

dependent growth inhibition.  Additionally PTPRJ has emerged as a tumor suppressor 

capable of negatively regulating cell proliferation and motility [25, 26].  PTPRJ tends to 

negatively interfere with surface receptor signaling at several levels, including at the level 

of receptor tyrosine kinases (such as PDGFR, VEGFR2, and MET) and downstream 

mediators of cell signaling pathways (including PKB/Akt, SRC, p120 catenin, and 

ERK1/2) [22, 27-29].  Recently, a PTPRJ mutation was found to be highly enriched in 

both metastasis and xenograft in a DNA sequencing screen of genome remodeling in 

basal-like breast cancer [21], and missense polymorphisms of PTPRJ were found to 

influence susceptibility to a wide spectrum of cancers [30].   

In our screen, PTPRJ emerged as a positive regulator of TNF -induced I B -

FLuc dynamic profiles: knock-down of PTPRJ resulted in a prolonged I B  degradation 

phase and a dampened re-synthesis phase (Fig. 4.9).  This phenotype was confirmed 

using siRNA and shRNA knock-down strategies (Fig. 4.10, 4.11).  When we over-

expressed PTPRJ in HepG2 cells, we found increased TNF -induced I B  degradation 

and re-synthesis, as well as enhanced NF- B transcriptional activity (Fid. 4.12, 4.13).  
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This data would suggest that PTPRJ can act to enhance TNF -induced activation of NF-

B signaling (a pro-proliferative signal), and that loss of PTPRJ would result in delayed 

or decreased NF- B activation (a more anti-proliferative effect).  Thus, in the context of 

NF- B signaling, and in contrast to its previously known roles, PTPRJ seems to be acting 

to positively regulate TNF -induced activation of NF- B signaling.  Further validation 

and investigation of the mechanism by which PTPRJ impinges upon the NF- B pathway 

will hopefully confirm this novel new role for PTPRJ and lead to investigation of the 

physiological and/or pathophysiological relevance of PTPRJ in NF- B signaling. 
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4.4 METHODS 
High-throughput primary siRNA screen.  siRNA screening was performed in black, 

clear-bottomed, 96-well culture plates (Corning 3904) using a Beckman-Coulter Core 

robotics system, including an FX liquid handler, controlled by the Sagian graphical 

method development tool (SAMI scheduling software).  A day prior to transfection, we 

manually seeded 10,000 cells in complete medium (DMEM supplemented with 10% 

heat-inactivated fetal bovine serum ( FBS) and 1% glutamine) at 150 µl/well into three 

plates.  Plates were maintained in an environmentally controlled incubator until needed 

for operations, thereby optimizing health and uniform treatment of all plates.  Prior to 

transfection, siRNA library plates were thawed from -80C and centrifuged to pool the 

siRNA in the bottom of the well.  Experimental siRNA oligos were pre-arrayed in 

columns 2-11 of each plate and individual controls comprising mock-transfected wells, 

non-targeting AllStars Negative Control sequence (siNeg, Qiagen Inc.), Firefly 

luciferase-targeting PGL3 siRNA (Integrated DNA Technologies, Inc.), TNFR1 targeting 

sequences (siTNFR1, Integrated DNA Technologies, Inc.), and a PPP2CA siRNA 

(siPP2Ca, Integrated DNA Technologies, Inc.) were placed manually in columns 1 and 

12 (Figure 4.1).   

 Forward co-transfection of siRNA and plasmid reporter was performed in 

triplicate.  First, B5 I B -FLuc reporter plasmid was diluted into serum-free media 

and transferred onto one siRNA library plate (containing enough siRNA to transfect three 

identical cell plates) with a 96 multichannel head on the FX liquid handler and allowed to 

incubate for 5 min at room temperature. Next, 50 uL of X-TremeGENE (Roche, Inc.) 

transfection reagent, diluted in serum-free media, was added to the plasmid/siRNA 
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mixture with a 96 multichannel head on the FX liquid handler, mixed, and allowed to 

incubate for 15 min at room temperature. Subsequently, 30 uL/well of this mixture was 

transferred to the three previously seeded cell plates to a final concentration of 50 ng/well 

reporter plasmid, 0.8 uL/well X-TremeGENE reagent, and 88 ng siRNA/well in a final 

volume of 180 uL.  Plates were maintained in an incubator for 24 hrs, and then aspirated 

and 150 uL/well of fresh colorless full media was added using the FX liquid handler. 

 At 48 hours post-transfection, D-luciferin (Biosynth) was added using the FX 

liquid handler to a final concentration of 150 µg/mL bringing the final volume up to 180 

uL/well.  Cells were allowed to equilibrate in this media for 30-60 min before the 

addition 20 uL/well of TNF  (20 ng/mL final concentration; #210-TA-050, R&D 

Systems, Minneapolis, MN) or vehicle (D-luc imaging media).  Bioluminescence 

measurements were acquired in an IVIS 100 imaging system (Caliper Life Sciences, 

Hopkinton, MA) at 37°C under 5% CO2 flow for 6 hr. Typical acquisition parameters 

were as follows: acquisition time, 15-30 sec; binning, 4-8; FOV, 25 cm; f/stop, 1; filter, 

open; image-image interval, 5 min; total number of acquisitions, 73. Immediately post-

IVIS imaging, phase contrast photographs were acquired on the InCell 1000 (three 10X 

fields of view per well).  Cell viability was then determined with resazurin dye (Sigma 

R7017) (final conc., 44 µM after a 2 hr incubation at 37ºC as monitored on a FLUOstar 

OPTIMA fluorescence reader (BMG Labtech); excitation, 544 nm, emission, 590 nm).  

This procedure was repeated twice for all three plates of the Qiagen Human Phosphatase 

siRNA Library 2.0. 
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Focused secondary siRNA screen.  The top hits from the primary screen were re-

arrayed onto a single master plate by the FX liquid handler using a cherry-picking script 

written by Jayne Marasa.  The master plate (Fig. 4.8) was arrayed such that columns 1 

and 12 were duplicates of control siRNAs: 3 Qiagen AllStars negative control sequences, 

4 non-hit phosphatases selected at random from the library (PPP2R5C, ENpp1, and 

PTPN13), and 1 siFLuc transfection control.  Columns 2-6 and 7-11 were duplicates of 

the 39 strong stringency hits from the primary screen plus 1 scrambled negative control 

from the phosphatase library plate.  All subsequent transfections, incubations, media 

changes, and measurements were performed as previously described with the exception 

that one half of the plate was stimulated with TNF  (20 ng/mL final concentration) and 

the other half with IL-1  (10 ng/mL final concentration). 

 

Statistical analysis and �“high confidence hit�” selection. Data were analyzed using 

Living Image 3.2 for data acquisition and raw data capture, and PASW Statistics 18 and 

MatLab 2011a for data analysis, statistics, and graphing.  Circular regions of interest 

(ROIs) were drawn around each well and the photon flux at every time point was 

measured using Living Image 3.2.  This raw data was then imported into PASW and the 

data were normalized to the signal at the first timepoint (with or without normalization to 

resazurin viability measurements).   

Quartile-based analysis method. Descriptive statistics were used to calculate five 

parameters describing properties of the amplitude and kinetics of the I B -FLuc dynamic 

profile (Figure 4.5):  
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(1) Initial Photon Flux Level (the raw photon flux signal at t = 0 min) 

(2) Degradation Level (i.e. the minimum flux or fold-initial signal reached during 
I B -FLuc degradation) 

(3) Degradation Time (the time at which minimum occurred) 

(4) Re-Synthesis Level (the maximum flux or fold-initial signal achieved during 
I B -FLuc re-synthesis) 

(5) Re-Synthesis Time (the time at which maximal re-synthesis occurred) 

Two additional parameters were defined and analyzed by linear regression of the I B -

FLuc re-synthesis phase by considering all 3 replicates at once, but the center point 

(between time-of-min and time-of-max) is found for each individual curve.  

(6) Re-Synthesis Rate (the slope of re-synthesis between the minimum and 
maximum) 

(7) Re-Synthesis Lag Time (the value of the x-intercept of the linear regression of the 

I B -FLuc re-synthesis rate) 

For each parameter, the median (Q2), first (Q1) and third (Q3) quartile values were 

calculated for all fold-initialized values and subjected to plate-by-plate analysis. Upper 

and lower boundaries were calculated as Q3 + 2c(Q3 �–Q2) and Q1 �– 2c(Q2-Q1), 

respectively, for c = 1.7239 corresponding to a high stringency targeted error rate (  = 

0.0027) and c = 0.9826 corresponding to a lower stringency targeted error rate ( =0.046) 

[19, 20, 31].  For each run of the screen, data were analyzed plate-by-plate.  The 

collections of hits from each independently-run screen were then compared and the 

common strong (based on the high stringency error rates) for each parameter are listed in 

Table 4.1. 
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Log-likelihood analysis method.  The cumulative log-likelihood approach quantifies the 

deviation of an experimental siRNA treatment from the negative controls (scrambled 

negative controls and siGFP). This was done by generating a Gaussian probability 

density function at each time point based on the mean and variance of the negative 

controls on within a given plate.  We then input each siRNA measurement to this 

function to quantify the deviation from the set of negative controls. To combine 

replicates, and to later make a cumulative sequence, we prevented computational 

rounding error by taking the negative logarithm of the likelihood (log-likelihood) and 

summing (log A + log B = log AB). The log-likelihood values were determined 

separately for the degradation phase (which was defined as from t = 0 min to the median 

time point of the minimum value of the negative controls) and the re-synthesis phase 

(defined between the end of the degradation phase to the median time of greatest 

downward inflection in the kinetic profile of the negative controls), or cumulatively for 

both degradation and re-synthesis.  The individual siRNAs from a given plate triplicate 

were then ranked according to their negative log-likelihood value and presented as a bar 

graph in which each division of the bar height represents the contribution of an individual 

time point to the cumulative log-likelihood value (Figure 4.6).  In addition, the bars were 

colored-coded based on directional replicate agreement, wherein a value of ±3 means all 

plates within the triplicate agreed and were either above or below the negative controls, 

and a value of ±1 means imperfect agreement with one of the replicates deviating from 

the others because it registered differentially above or below the negative controls.  This 

rank-based method allows for approximate comparison between plates and precise 

comparison within each plate.  
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siRNA Transfection for Validation of Screen Hits 

HepG2 cells were plated (8,000 or 10,000 cells/well) the day before transfection.  

Forward co-transfection of siRNA (Qiagen, Inc) and plasmid reporter was achieved using 

X-TremeGENE (Roche, Inc.) transfection reagent as per manufacturer recommendations. 

Subsequently, 30 uL/well of this mixture was transferred to the cell plates to a final 

concentration of 50 ng/well reporter plasmid, 0.8 uL/well X-TremeGENE reagent, and 88 

ng siRNA/well in a final volume of 180 uL.  Plates were maintained in an incubator for 

24 hrs, and then aspirated and 150 uL/well of fresh colorless full media was added. At 48 

hours post-transfection, D-luciferin (Biosynth) was added to a final concentration of 150 

µg/mL bringing the final volume up to 180 uL/well.  Cells were allowed to equilibrate in 

this media for 30-60 min before the addition 20 uL/well of TNF  (20 ng/mL final 

concentration) or vehicle (D-luc imaging media).  Bioluminescence measurements were 

acquired in an IVIS 100 imaging system (Caliper Life Sciences, Hopkinton, MA) at 37°C 

under 5% CO2 flow for 6 hr. Typical acquisition parameters were as follows: acquisition 

time, 15-30 sec; binning, 4-8; FOV, 25 cm; f/stop, 1; filter, open; image-image interval, 5 

min; total number of acquisitions, 73. Data were analyzed using Living Image 3.2 for 

data acquisition and raw data capture, and Excel 2007 for analysis and graphing. 
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shRNA Infection for Validation of Screen Hits 

 Lentivirus expressing constructs (pLKO.1 puro) were obtained pre-synthesized 

from the Genome Sequencing Center at Washington University. The targeting sequences 

for the 4 shPTPRJ constructs and shGFP are as follows:  

 Sequence target 

shGFP GCCACAACATCGAGGACGGCA  

19 CCACACAAGCACGTATGACAA exon 8 (2101-2121) 

20 GCCATAGAGTTCAGGACAAAT spans exon 6 & 7 (1430-1450) 

21 CCGATACAATGCCACCGTTTA exon 6 (1372-1392) 

22 CCTACTGTGTCTTGGAATCTA exon 26 (4778-4798) specific to isoform 1

 

To generate lentivirus containing hairpins, 500,000 293T cells were pre-plated in 60 mm 

dishes and co-transfected the following day with 1 µg of hairpin construct, 900 ng 

packaging plasmid pCMV- R8.2, and 100 ng of envelope plasmid pVSVG using Fugene 

6.  Two days after transfection, virus containing supernatant was collected from 293T 

cells and filtered through a 0.45 m filter, mixed with 5ug/mL protamine sulfate, and 

added to HepG2 cells at 50% confluency in a 10cm2 dish.  Media was replenished 12 hrs 

post-transduction cells were subsequently maintained in media supplemented with 750 

ng/mL puromycin hydrochloride to retain expression of the hairpins.  Two days post-

transduction, shPTPRJ or shGFP cells were plated in parallel for protein knockdown 
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confirmation (MAB1934) and transient transfection and subsequent imaging 

measurements with the B5 I B -FLuc reporter as previously described. 

 

PTPRJ Over-Expression Studies 

PTPRJ expression constructs were obtained from Dr. Len Maggi who had 

previously cloned wild-type PTPRJ cDNA (Open Biosystems) into the pDEST26 vector 

backbone to generate pDEST26-His-PTPRJ.  The C1239S phosphatase-dead mutant of 

PTPRJ was made by site-directed mutagenesis.   

HepG2 cells were plated (7,000 cells/well) in black 96 well plates the day before 

transfection.  Co-transfection of PTPRJ or backbone control plasmid (75 ng/well), 

B5 I B -FLuc (50 ng/well) or B5 I B -FLuc (25 ng/well), and TK RLuc 

transfection control plasmid (5 ng/well) was achieved using Fugene 6 (Roche, Inc.) 

transfection reagent as per manufacturer recommendations. Media was replenished 24 

hours post-transfection and imaging was carried out 48 hours post-transfection as 

described above for siRNA experiments. 
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4.5 FIGURES 

Figure 4.1: Schematic of the siRNA Phosphatase Master Plate with Added Controls 

96 well plate grid denoting the location of each manually plated control siRNA duplex 
(white boxes), the phosphatase library controls (labeled gray boxes), and the 
experimental siRNAs (unlabeled gray boxes).  The red symbols mark the two controls 
wells that were treated with vehicle in the screen.
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Figure 4.2: Schematic Efficient siRNA Transfection and Knock-Down of Luciferase Signal 

A test transfection was carried using a test phosphatase siRNA library plate and three plates of pre-plated HepG2 cells.  48 
hours post-transfection the cells were stimulated with TNF  or vehicle and bioluminescence imaging was carried out for 6 hr 
on the IVIS to capture a set of full dynamic I B .  The photon flux from each control well was plotted as fold-initial versus 
time.



131

 

Figure 4.3: Timeline of High-Throughput Phosphatase siRNA Screening Procedure 

By staggering transfections, the entire phosphatase siRNA library could be screened in 6 
days.  
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Figure 4.4: Normalized photon flux data from the Qiagen Human Phosphatase 
Library 2.0 Plate 1 triplicate. 

The raw photon fluxes for each well were normalized as fold-initial and then plotted 
against time.  The first graph represents the full 6 hr profile; the second graph represents 
the degradation phase.  The different colored symbols differentiate the data from each 
plate triplicate. 
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Figure 4.5: Definition of I B -FLuc dynamic parameters that were evaluated for 
modulation by siRNA treatment. 

Example I B -FLuc dynamic profile with corresponding visual representations of the 
seven parameters evaluated following the high-throughput siRNA screen. 

(1) Initial Photon Flux Level (the raw photon flux signal at t = 0 min) 
(2) Degradation Level (i.e. the minimum flux signal reached during I B -FLuc 

degradation) 
(3) Degradation Time (the time at which minimum occurred) 
(4) Re-Synthesis Level (the maximum flux signal achieved during I B -FLuc re-

synthesis) 
(5) Re-Synthesis Time (the time at which maximal re-synthesis occurred) 
(6) Re-Synthesis Rate (the slope of re-synthesis between the minimum and 

maximum) 
(7) Re-Synthesis Lag Time (the value of the x-intercept of the linear regression of the 

I B -FLuc re-synthesis rate) 
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Figure 4.6: Cumulative Log-Likelihood Normalization Procedure 

The cumulative log-likelihood approach quantifies the deviation of an experimental 
siRNA treatment from the negative controls (scrambled negative controls and siGFP) by 
generating a Gaussian probability density function at each time point based on the mean 
and variance of the negative controls on a given plate.  We then input each siRNA 
measurement to this function to quantify the deviation from the set of negative controls at 
each time point. To combine replicates, and to later make a cumulative sequence, we 
prevented computational rounding error by taking the negative logarithm of the 
likelihood (log-likelihood) and summing (log A + log B = log AB). The individual 
siRNAs from a given plate triplicate were then ranked according to their cumulative log-
likelihood value and presented as a bar graph in which each division of the bar height 
represents the contribution of an individual time point to the cumulative log-likelihood 
value. (modified from figure provided by Brandon Kocher) 
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Figure 4.7: Primary Phosphatase Screen Hits Chosen for Secondary Screening 

The highest stringency hits from each parameter analyzed in the quartile-based analysis 
of the primary phosphatase screen (with or without the inclusion of viability 
normalization) were combined to generate a master-list of common hits.  This collection 
of hits was used as the basis for performing a secondary siRNA screen.

w/ viability w/out viabiltiy common hits
1 ACPT 1 ACPT 1 ACPT
2 ALPL 2 ALPL 2 ALPL
3 CDC25B 3 CDC25B 3 CDC25B
4 CDKN3 4 CDKN3 4 CDKN3
5 DOLPP1 5 DOLPP1 5 DOLPP1
6 DUSP16 6 DUSP16 6 DUSP16
7 DUSP19 7 ENPP3 7 G6PC3
8 G6PC3 8 G6PC3 8 PHPT1
9 PHPT1 9 MTMR4 9 PIB5PA

10 PIB5PA 10 PHOSPHO1 10 PLIP
11 PLIP 11 PHPT1 11 PME-1
12 PME-1 12 PIB5PA 12 PPFIA3
13 PPFIA3 13 PLIP 13 PPP1CB
14 PPP1CB 14 PME-1 14 PPP1R12C
15PPP1R12C 15 PPFIA3 15 PPP1R1B
16PPP1R13B 16 PPP1CB 16 PPP1R2
17 PPP1R1B 17 PPP1R12C 17 PPP1R3C
18 PPP1R2 18 PPP1R1B 18 PPP2CA
19 PPP1R3C 19 PPP1R2 19 PPP2CB
20 PPP1R3D 20 PPP1R3C 20 PPP2R1A
21 PPP2CA 21 PPP2CA 21 PPP2R2C
22 PPP2CB 22 PPP2CB 22 PPP3CA
23 PPP2R1A 23 PPP2R1A 23 PR48
24 PPP2R2C 24 PPP2R2C 24 PSTPIP2
25 PPP3CA 25 PPP3CA 25 PTPN3
26 PR48 26 PR48 26 PTPRJ
27 PSTPIP2 27 PSTPIP2 27 PTPRN
28 PTPN3 28 PTP4A2 28 PTPRS
29 PTPRJ 29 PTPN3 29 SPAP1
30 PTPRN 30 PTPNS1 30 DUSP19
31 PTPRS 31 PTPRJ 31 PPP1R13B
32 SBF1 32 PTPRN 32 PPP1R3D
33 SPAP1 33 PTPRS 33 SBF1

34 SKIP 34 ENPP3
35 SPAP1 35 MTMR4

36 PHOSPHO1
37 PTP4A2
38 PTPNS1
39 SKIP
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Figure 4.8: Re-Arraying Hits from the Phosphatase Library for Focused Secondary 
Screening 

Top hits from the primary screen were re-arrayed from the primary phosphatase library 
onto a single master plate by the FX liquid handler using a cherry-picking script written 
by Jayne Marasa.  It was arrayed such that columns 1 and 12 were duplicates of control 
siRNAs and Columns 2-6 and 7-11 were duplicates of the 39 strong stringency hits from 
the primary screen plus 1 scrambled negative control from the phosphatase library plate. 
This master plate was used to transfect 3 identical plates of HepG2 cells. One half of each 
cell plate was stimulated with TNF  (dark green) and the other half was stimulated with 
IL-1  (light green). 
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Figure 4.9: Normalized Photon Flux Data From the Secondary Phosphatase Screen. 

The raw photon fluxes for each well were normalized as fold-initial and then plotted 
against time.  The first graph represents the full 6 hr profile; the second graph represents 
the degradation phase.  The different colored symbols differentiate the data from each 
plate triplicate.  Orange dashed boxes high-light top hits from the screen analysis. 
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Figure 4.10: Validation of siPTPRJ Phenotype and Knock-Down 

HepG2 cells were co-transfected with B5 I B -FLuc and siRNA targeting PTPRJ.  
Cells were then stimulated with TNF  and imaged for bioluminescence.  The photon flux 
from each control well was plotted as fold-initial versus time.  The inset confirms 50% 
knock-down of PTPRJ compared to negative control siRNAs.
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Figure 4.11: Validation of PTPRJ as a Regulator of I B -FLuc Dynamics by 
shRNA-Mediated Knock-Down 

HepG2 cells infected with shPTPRJ or control hairpins were transfected with B5 I B -
FLuc.  Cells were then stimulated with TNF  and imaged for bioluminescence.  The 
photon flux from each control well was plotted as fold-initial versus time.  While sh21 
strongly reproduces the knock-down phenotype observed previously, the other hairpins 
only impact I B -FLuc dynamics weakly if at all.  The inset confirms nearly complete 
knock-down of PTPRJ with hairpin 21 and 22 and partial knock-down for sh19 and sh20, 
compared to negative control shGFP.
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Figure 4.12: Over-Expression of PTPRJ Enhances I B -FLuc Dynamics  

HepG2 cells were co-transfected with B5 I B -FLuc and wild-type or phosphatase 
dead PTPRJ constructs (or vector control).  Cells were then stimulated with TNF  and 
imaged for bioluminescence.  The photon flux from each control well was plotted as fold-
initial versus time.  WT PTPRJ enhanced both I B -FLuc degradation and re-synthesis, 
while the PTPRJC1239S mutant affected only degradation.  Error bars represent 
propagated standard deviation.

  



146

 

 

 

Figure 4.13: Over-Expression of PTPRJ Decreases Basal NF- B Transcriptional 
Activity, but sensitizes TNF -Induced NF- B Activity  

HepG2 cells were co-transfected with B5 FLuc reporter, TK RLuc transfection 
control reporter, and wild-type or phosphatase dead PTPRJ constructs (or vector control).  
Cells were then stimulated with TNF  and imaged for bioluminescence.  The basal 
photon flux level was calculated as a ratio of FLuc signal over RLuc signal for a given 
treatment population.  Error bars represent propagated standard deviation.
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4.6 SUPLEMENTAL FIGURES 
 

Supplemental Figure 4.1: Primary Phosphatase Screen Cumulative Log-Likelihood 
Plate-By-Plate Ranking  

Each plate triplicate was analyzed separately for each run of the phosphatase screen.  The 
cumulative log-likelihood value for each siRNA within that plate triplicate was then 
presented as a bar graph in which each division of the bar height represents the 
contribution of an individual time point to the cumulative log-likelihood value.  This was 
done separately for each run of the screen, with each plate being denoted as 1.n or 2.n to 
represent the first and second screen runs.  (A-C) Log-likelihood rank graphs from for 
plates 1.1, 1.2, and 1.3 considering just the degradation phase (A), just the re-synthesis 
phase (B), and both phases together (C).  (D-F) Log-likelihood rank graphs from for 
plates 2.1, 2.2, and 2.3 considering just the degradation phase (D), just the re-synthesis 
phase (E), and both phases together (F). 
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Supplemental Figure 4.2: Secondary Screen Cumulative Log-Likelihood Ranking 

The cumulative log-likelihood value for each siRNA within the TNF -stimulated plate 
triplicate is presented as a bar graph in which each division of the bar height represents 
the contribution of an individual time point to the cumulative log-likelihood value.  
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4.7 TABLES 
 

 

 

Table 4.1: Reproducible High Stringency Hits from the Phosphatase Screen 

The strong hits (targeted error rate  = 0.0027) calculated for each I B -FLuc dynamic 
profile parameter using quartile-based analysis.  The color indicates where the hit fell in 
relation to negative control siRNA treatment.  The order of hits within each parameter 
does not indicate rank order, though rank order will be determined during secondary 
screening. 
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Table 4.2: Reproducible High Stringency Hits from the Phosphatase Screen 

The strong hits (targeted error rate  = 0.0027) calculated for each I B -FLuc dynamic 
profile parameter using quartile-based analysis.  The color indicates where the hit fell in 
relation to negative control siRNA treatment.  The order of hits within each parameter 
does not indicate rank order, though rank order will be determined during secondary 
screening. 
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 Degradation 

Plate 1.1 Plate 1.2 Plate 2.1 Plate 2.2 Plate 3.1 Plate 3.2 
1 PTPN3 PTPN3 PTPRN SBF1 ACPT TA-PP2C 
2 DUSP3 PPP2CA PTPRH PTPRN PPP1R1B PTPDC1 
3 PPP2R1A PPP1R3D SBF1 PNKP PTPN5 PPP1R1B 
4 PPP1R2 PPM1A PPP1R14D PTP4A3 PPP1R9B PPP1R14C 
5 PTPN4 ALPI PTPRJ PTPRD PLIP PTPN5 
6 DUT PPP2R1A PNKP ACP6 PPP1R14C PPP1R9B 
7 PTPN1 PPP2R2C PTPRC TENC1 DUSP19 LOC391025 
8 PPP2CB MTM1 PTPRR CTDP1 PHOSPHO1 PLIP 
9 ALPI CDC25C PSTPIP2 PTP4A2 LOC391025 DUSP15 
10 PPM1A DUT CTDSPL MTMR4 LOC474338 LOC474338 

Re-Synthesis 
Plate 1.1 Plate 1.2 Plate 2.1 Plate 2.2 Plate 3.1 Plate 3.2 

1 CDKN3 CDKN3 PIB5PA PIB5PA LOC391025 LOC391025 
2 PTPN3 ALPL PTPRJ PPFIA3 DOLPP1 LPPR2 
3 ALPL PPP1R3D PPP1R12C PTPRJ PLIP PLIP 
4 ACP1 PTPN3 PTPRN PTPRN G6PC3 G6PC3 
5 PPP2R1A ALPPL2 PPFIA3 PPP1R12C DUSP16 PPP1R3F 
6 PPP2R2C PPP1R2 PPP1R13B PPM1E TA-PP2C PPP1R1B 
7 PPP1R2 PPP1R3C PPM1E PPP1R13B LHPP TA-PP2C 
8 PTEN PTPN7 TNEC1 SKIP LPPR2 DOLPP1 
9 PTPN12 CDC25B PNKP PPP1R14D PPP1R3F LHPP 
10 PTPN7 PPM1A DUSP14 PNKP PPP1R1C DUSP16 

Degradation + Re-Synthesis 
Plate 1.1 Plate 1.2 Plate 2.1 Plate 2.2 Plate 3.1 Plate 3.2 

1 CDKN3 CDKN3 PIB5PA PIB5PA LOC391025 LOC391025 
2 PTPN3 ALPPL2 PPP1R12C SKIP PLIP PLIP 
3 ENPP3 ALPL PPFIA3 PPFIA3 DOLPP1 PPP1R3F 
4 ALPL PTPN3 PTPRJ PPM1E DUSP19 PTPLB 
5 PPP1R2 ENPP3 PPM1E PPP1R14D TA-PP2C DOLPP1 
6 PPP2R1A PPP1R12 PPP1R13B PPP1R12C G6PC2 TA-PP2C 
7 ACP1 PPP1R3D TENC1 TENC1 PPP1R1C LPPR2 
8 PPP1R3C CDC25B DUSP11 PNKP PPP1R3F DUSP19 
9 PPP2R2C PPP2R2C PNKP PTPRJ LHPP G6PC2 
10 PPP3CA PPP1R3C PSTPIP2 PPFIA4 PPP2R2D LOC474338 
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Table 4.3: Secondary Phosphatase Screen Top Hits 

The top 15 hits from log-likelihood analysis of the secondary phosphatase screen; data 
were analyzed for hits within the I B -FLuc reporter degradation phase alone, the re-
synthesis phase alone, or both phases combined.  PTPRJ is highlighted.

 

 Degradation 
Re-

Synthesis 
Degradation + 
Re-Synthesis

TNF TNF TNF 
1 PPP1CB CDKN3 CDKN3

2 PPP1R2 PPFIA3 ENPP3

3 PTPN3 ENPP3 PPFIA3

4 PPP2CA PPP1R3D PPP3CA

5 SBF1 PTPN3 PPP1R3D

6 CDKN3 SKIP PTPN3

7 PPP1R13B PTPRN PLIP

8 DOLPP1 PTPRJ ALPL

9 DUSP16 ALPL CDC25B

10 PPP2R1A PPP1R3C SKIP

11 PPP3CA PPP2CB PPP2CB

12 ACPT PLIP PSTPIP2

13 PTPRN PPP1R13B PPP1R3C

14 PPP1R3D PPP3CA PTPRJ

15 PPFIA3 PIB5PA DOLPP1
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4.8 SUPLEMENTAL TABLES 
 

 

Supplemental Table 4.1: Reproducible Strong & Weak Stringency Hits From the 
Phosphatase Screen 

Black lettering indicates strong hits (targeted error rate  = 0.0027), while white lettering 
denotes weaker hits (targeted error rate  = 0.05) using quartile-based analysis. Black 
boxes indicate phosphatases that, for a given parameter, registered as hits in both raw 
photon flux data and fold-initial normalized data. The kinetic parameters are listed in 
bold, underlined text. The order of hits within each parameter does not indicate rank 
order, though rank order will be determined during secondary screening (see above text). 
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CHAPTER FIVE  
 

High-Throughput Kinase RNA Interference Screen Identifies 
Novel Regulators of TNF -Induced IKK:I B :NF- B Negative 
Feedback Loop Dynamics 

 

5.1 INTRODUCTION 

In resting cells, NF- B dimers are sequestered in the cytoplasm through binding 

to isoforms of the I B family. Canonical activation of NF- B  relies on ligand-dependent 

stimulation of IKK, a large heterotrimeric kinase complex containing two catalytic 

subunits (IKK  and IKK ) and a regulatory subunit (IKK , NEMO) [1, 2].  Many 

different surface receptors signal to IKK through multi-protein complexes containing 

TRAFs (TNF receptor associated factors which seem to serve as adaptors and may 

mediate K63-linked regulatory ubiquitination events) and a multitude of other adaptor 

proteins (with specific receptors interacting with specific subsets of TRAFs and other 

adaptors) that recruit and activate the IKK complex [1, 3].    Activation of IKK requires 

phosphorylation of T loop serines, however, the precise mechanism by which this occurs 

(trans-autophosphorylation or through phosphorylation by an upstream kinase) remains a 

major unanswered question, and adaptor protein mediated multimerization also seems to 

significantly contribute to IKK activation [3].  Upon activation, IKK phosphorylates 

I  (on Ser 32/36), thus rendering I B  a substrate for poly-ubiquitination and 

proteasomal degradation. This series of events releases NF- B to freely translocate to the 

nucleus where it can modulate expression of its target genes, including I B , thus 
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forming a transcriptionally-coupled negative feedback loop [4].  This newly synthesized 

I B  enters the nucleus and binds to NF- B which dissociates from the DNA and the 

complex translocates back to the cytoplasm [4-6], and, along with the activity of I B , 

drive NF- B nuclear:cytoplasmic oscillations [4, 7, 8].  Thus, this negative feedback loop 

plays a major role in regulating the strength and duration of NF- B transcriptional 

activity [9-12].  With respect to negative feedback, other transcriptionally-independent 

processes, aimed at auto-inhibition of NF- B activity, do exist.  Such mechanisms down-

regulate NF- B signaling on a much shorter timeframe (sec-min).  These include 

homologous receptor desensitization [13, 14], asymmetric heterologous receptor 

desensitization [14, 15], autocatalytic C-terminal IKK hyperphosphorylation [16] and 

protein phosphatase 2  (PP2 )-dependent dephosphorylation of IKK [17]. 

Given that our B5 I B -FLuc reporter has enabled us to study the IKK-I B -

NF- B negative feedback loop with high temporal resolution [18], and given that 

temporal control of this and other negative feedback loops has emerged as a critical 

regulatory component of the intensity and specificity of the NF- B transcriptional 

program [9-12], we sought to perform an RNAi screen to identify novel kinase regulators 

of IKK-I B -NF- B negative feedback loop dynamics.  This information, coupled with 

the data acquired in our phosphatase RNAi screen, could add to our understanding of the 

opposing effects that kinases/phosphatases might play in activation/de-activation of IKK 

(and other members of the NF- B signaling cascade) [1].   
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5.2 RESULTS 
Execution of kinase RNAi screen to identify novel regulators of I B  dynamics in 

the presence of TNF -induced stimulation. 

The screen was performed by co-transfecting the Qiagen Human Kinase 

siRNA Library 2.0 (which consists of nine 96 well plates with columns 1 & 12 empty for 

user-specified controls) with the B5 I B -FLuc reporter in HepG2 cells in 96 well 

plate format. A staggered schedule of transfection and imaging was rigorously followed 

as the IVIS 100 chamber can only accommodate three 96 well plates per session.  The co-

transfected cells were stimulated with TNF  and imaged for luciferase bioluminescence 

under the conditions described above (for more details, see Methods section).  This 

regimen provided a dynamic read-out with high-temporal resolution, allowing us to 

investigate not only changes in the amplitude of degradation and re-synthesis (as typical 

high-throughput screens monitor), but also the effect of siRNAs on the kinetic aspects of 

the negative feedback loop (i.e. times of maximal degradation and re-synthesis, rate of re-

synthesis, and re-synthesis lag time).  Though other RNAi screens have been published 

looking for novel regulators of the NF- B pathway ([19-21]), most have examined down-

stream NF- B transcriptional activity many hours-to-days following pathway stimulation 

and none have honed in specifically on the IKK-I B -NF- B negative feedback loop or 

on the kinetic aspects of NF- B signaling. 

The kinase library was screened once in triplicate with negative and positive 

controls on each plate: Qiagen negative control siRNA and siGFP served as negative 

controls, siTNFR1 and siPPP2CB were used as biological positive controls as they have 
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been previously shown to positively and negatively regulate canonical NF- B, 

respectively.  

 

Rigorous statistical analysis of kinase screen data and identification of high-

confidence hits.  

Raw photon flux data were normalized as fold initial and subsequently subjected 

to various types of statistical analysis in an attempt to utilize the entirety of the complex 

dataset.  In one method, we characterized the dynamics of B5 I B -FLuc responses 

under each siRNA treatment and used linear regression to determine maximum reporter 

re-synthesis and degradation rates between signal minima and maxima.  We then used 

quartile-based analysis to find outliers in these parameters.  However, these parameters 

proved to be problematic as the assumptions behind the regression were not consistently 

met by the data.  Additionally, quartile analysis was problematic for this experimental set 

up: the Qiagen siRNA library is arrayed by function and gene symbol, which results in 

clustering related kinases such as members of the MAPK family.  Thus, quartile analysis 

led to false negative and positive hits based on which groups of kinases were on each 

plate. 

The cumulative log-likelihood method was undertaken to compensate for inter-

plate variability and the non-random array of siRNAs.  This approach quantifies the 

deviation of a siRNA treatment from the negative controls and adjusts for confounding 

variance that otherwise prevents direct comparisons between plates.  More specifically, 

we first made a Gaussian probability density function at each time point based on the 
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mean and variance of the plate negative controls.  We then input each siRNA 

measurement into this function to quantify the normalized deviation from the set of 

negative controls.  To combine replicates, and to later make a cumulative sequence, we 

prevented computational rounding error by taking the logarithm of the likelihood (log-

likelihood) and summing (log A + log B = log AB).  In general, the greater the difference 

from the negative controls the greater the log-likelihood value for that siRNA. This value 

correlates with the deviation from negative controls and allowed us more direct 

comparison between siRNA plates.  The siRNA were then ranked and visualized in a bar 

graph in which each division of the bar height represents the contribution of an individual 

time point to the cumulative log-likelihood value (Fig. 5.1).  Each plate was analyzed for 

hits in the degradation phase (Sup. Fig. 5.1), the re-synthesis phase (Sup. Fig. 5.2), and 

cumulatively for both degradation and re-synthesis considered together (Sup. Fig. 5.3).  

This rank-based method allows for approximate comparison between plates and precise 

comparison within each plate.  In addition, the bars were colored-coded based on 

Directional Replicate Agreement, wherein a value of ±3 means all plates within the 

triplicate agreed and were either above or below the negative controls, and a value of ±1 

means imperfect agreement with one of the replicates deviating from the others because it 

registered differentially above or below the negative controls.  Internal analysis showed 

that the top hits according to log-likelihood (highest log likelihood or lowest likelihood) 

analysis displayed no plate nor well position preference within plates.   

Several known proteins involved in NF- B signaling were identified as top hits 

when considering degradation and re-synthesis together, including: NIK, JAK2, NLK, 

SPHK1, KSR2, ROCK2 and MK2 (Figure 5.2).  This further confirmed that the log-
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likelihood means of analysis could be successfully applied to dynamic time course data 

from a high-throughput RNAi screen, and may represent a new paradigm for analysis of 

this type of data.  In contrast to the phosphatase siRNA screen, a number of strong hits 

impacting the I B -FLuc degradation phase were identified (Sup. Fig. 5.1), including 

PRKACB and LIMK1 as positive regulators (i.e. upon knock-down less I B -FLuc 

degradation is seen in comparison to controls, suggesting a role in positively regulating 

IKK activity), and GALK1, FER, and GAK as negative regulators (i.e. upon knock-down 

greater I B -FLuc degradation is seen in comparison to controls, suggesting a role in 

negatively regulating IKK activity).  PRKACB is especially interesting since it was also 

identified as positive regulator of I B -FLuc re-synthesis (Sup. Fig. 5.2).  Most of the 

strong hits identified for the re-synthesis phase were negative regulators, including JAK2, 

JAK3, and DAPK3. 

 

Validation of DAPK3 as a novel regulator of TNF -Induced NF- B Signaling.  

Death associated protein kinase 3 (DAPK3/ ZIPK) was identified as a strong 

candidate regulator in the primary screen (Figure 5.2), acting as a negative regulator.  

Secondary validation experiments were carried out to confirm that stable knock-down of 

DAPK3 by lentivirus shRNA in HepG2 cells reproduced the same phenotype as that 

identified in the screen.  We confirmed that two independent shRNA constructs targeting 

different sequences of the DAPK3 coding sequence showed robust knockdown (>90%) 

which correlated with increased B5 I B -FLuc re-synthesis levels compared to 
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negative controls (~3.3 fold shGFP) upon TNF  treatment (Fig. 5.3), consistent with 

DAPK3 as a negative regulator of the NF- B pathway. 

 

5.3 DISCUSSION 

The transcription factor NF- B is a pivotal regulator of innate immunity and 

inflammation, and is active in both immune cells and non-immune tissues [22, 23].  In 

this capacity, the NF- B pathway must rapidly decode signals and integrate intracellular 

information to control individual cell fate decisions (proliferation, apoptosis, 

differentiation, etc.) and regulate the production and secretion of cytokines that can 

amplify and propagate the inflammatory response [24, 25].  NF  dimers are typically 

sequestered and held inactive in the cytoplasm through binding to isoforms of the 

family, with  representing the prototypical member and major regulator of 

canonical NF- B activity. TNF -induced stimulation of NF- B relies on activation of 

kinase complex (IKK), which phosphorylates , marking it for subsequent 

ubiquitination and proteasomal degradation [2].  This series of events liberates NF- B, 

allowing it to undergo nuclear translocation and activation of target gene expression, 

including the  gene itself [26], thus establishing a critical transcriptionally-coupled 

negative feedback loop [4].  Furthermore, this negative feedback loop plays a major role 

in regulating the strength and duration of NF- B transcriptional activity [9-12].   Given 

that temporal control of this negative feedback loops has emerged as a critical regulatory 

component of the intensity and specificity of the NF- B transcriptional program and that 

our B5 I B -FLuc reporter has previously enabled us to study the IKK-I B -NF- B 
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negative feedback loop with high temporal resolution [18] and to run a phosphatase 

RNAi screen for novel regulators the feedback loop, we sought to perform an additional 

RNAi screen to identify novel kinase regulators of IKK-I B -NF- B negative feedback 

loop dynamics.   

Recently, NF- B has emerged as a mechanistic link between inflammation and 

cancer [27, 28]. This has been extensively studied in the liver where hepatocellular 

carcinoma (HCC) slowly unfolds on a background of chronic inflammation (often 

triggered by exposure to infectious agents or toxic compounds) [29].   TNF -induced 

activation of NF  signaling plays a pivotal role in liver homeostasis and 

pathophysiology due to its capacity to induce both hepatocyte cell death and proliferation 

[30, 31].  In the liver, NF  signaling can have both tumor promoting and tumor 

suppressing effects that are dependent upon the type of cells (i.e., liver resident 

macrophages vs. hepatocytes), the stimuli, and cell context [29, 32, 33].  Thus, a more in-

depth understanding of the complexities and intricacies of NF  signaling in the liver is 

required to appropriately translate the use of NF -targeted therapeutics to liver 

pathologies.  

Death associated protein kinase 3 (DAPK3/ ZIPK) was identified as a strong 

candidate regulator in the primary screen (Figure 5.2; Fig. 5.1), acting as a negative 

regulator of I B -FLuc dynamics (i.e. showing higher I B  degradation and higher re-

synthesis upon knock-down; Sup. Fig. 5.3).  DAPK3 was validated as a true hit in work 

carried out by Brandon Kocher in our lab (Fig. 5.3).  DAPK3 is a member of the death-

associated protein (DAPK) serine/threonine kinase family which consists of several 
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kinases originally identified in the context of apoptosis [34].  DAPK3 shares 83% amino 

acid conservation in its kinase domain with that of DAPK, and is unique among the 

DAPK family as it contains a leucine zipper domain and several putative nuclear 

localization signals.  Orthologues of DAPK3 have been identified in several lower 

eukaryotes such as D. rerio and X. laevis.  

Unlike DAPK, there is limited evidence to support a pro-apoptotic role for 

DAPK3. Over expression of DAPK3 causes morphological characteristics of autophagy-

like apoptosis (membrane blebbing, nuclear condensation) that are lost upon mutation of 

DAPK phosphorylation sites [35].  DAPK3 is phosphorylated on over 12 serines and 

threonines by several kinases most notably DAPK at T299.  T299D DAPK3 mutants 

display cytoplasmic localization and increased cell death, whereas T299A mutants 

display  nuclear localization and no significant effects on cell death compared to WT [35, 

36].  This suggests that DAPK antagonizes nuclear DAPK3 functions by maintaining it in 

the cytoplasm.  A larger body of literature suggests that DAPK3 participates in the 

positive and negative regulation of gene expression at various levels.  In the cytoplasm, 

the DAPK-DAPK3 cascade negatively regulates IFN-  induced inflammatory selective 

mRNA translation through activation of an inhibitory RNA binding protein complex [37].  

DAPK3 also facilitates STAT3 and AR transcriptional activation through direct or 

indirect interactions [38, 39].  DAPK3 localizes to promyelocytic leukemia protein 

(PML) nuclear bodies, chromatin, centrosomes, mitotic centrosomes and the contractile 

ring during cytokinesis [34].  It is unclear as to how DAPK3 may be regulating NF- B as 

it was identified as a negative regulator of NF- B, which contrasts with its previously 

established role as a transcriptional co-activator. Overall, our preliminary data suggests 
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that DAPK3 may play a repressive role in the context of NF- B transcription/translation 

and/or that its transcriptional role is more complex than originally appreciated. 

   Intriguingly, DAPK is overwhelming down-regulated in many primary tumor 

tissues as reported by many groups (hepatocellular, non-small cell lung carcinomas, 

renal, leukemia, head and neck, colon, gastric, ovarian cancers and brain metastases) 

which correlates with disease reoccurrence and unfavorable prognosis [40-47].  Loss of 

DAPK therefore seems to facilitate tumorigenesis, and in part may be explained by a loss 

of cytoplasmic-apoptotic DAPK3 and a gain in DAPK3 nuclear activities. This would be 

advantageous to a cancer cell as DAPK3 facilitates activation of several HCC oncogenic 

transcriptional programs (STAT3 and AR) and DAPK exerts its tumor suppressive 

function by presumably preventing DAPK3-mediated activation of these pathways.  

Indeed, activation of the IL-6/JAK/STAT3 pathway is hepatoprotective, promotes 

compensatory proliferation of hepatocytes and is tumor promoting in carcinogen-induced 

mouse models of HCC [48].   Hepatocyte deletion of AR delays the development of 

carcinogen-induced HCC indicating that active AR is HCC promoting [49].  In the 

context of the screen conditions, TNF  induces NF- B activation which is associated 

with cytostatic effects in HepG2 cells [50].  Given that DAPK3 inhibits TNF -mediated 

NF- B activation; this suggests that DAPK3 antagonizes these cytostatic effects thereby 

maintaining a proliferative signaling environment in conjunction with STAT3 and AR 

pathways.  Thus, a better mechanistic understanding of the role of DAPK3 in the NF- B, 

STAT3 and AR pathways is needed as they may represent novel therapeutic targets for a 

variety of human cancers.  Brandon Kocher, a graduate student in our lab is currently 

pursuing further study of DAPK3 and its role in NF- B pathway regulation.  
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Additionally, we are continuing to validate other hits from the kinase screen.  Of 

particular interest for further study are PRKACB and LIMK1; knock-down of either 

results in decreased levels of I B -FLuc degradation, a rarely observed phenotype in 

either the phosphatase or kinase screens.  These proteins may a play a role in positively 

regulating IKK activity, and thus directly impact the degree of I B  degradation upon 

ligand stimulation.  Furthermore, it will be interesting to merge the data from the 

phosphatase and kinase screens into a single dataset for analysis in an effort to identify 

potentially novel pairs of phosphatases/kinases that similarly regulate the dynamics of the 

IKK-I B -NF- B negative feedback loop. 
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5.4 METHODS 
High-throughput primary siRNA screen.  siRNA screening was performed in black, 

clear-bottomed, 96-well culture plates (Corning 3904) using a Beckman-Coulter Core 

robotics system, including an FX liquid handler, controlled by the Sagian graphical 

method development tool (SAMI scheduling software).  A day prior to transfection, we 

manually seeded 10,000 cells in complete medium (DMEM supplemented with 10% 

heat-inactivated fetal bovine serum ( FBS) and 1% glutamine) at 150 µl/well into three 

plates.  Plates were maintained in an environmentally controlled incubator until needed 

for operations, thereby optimizing health and uniform treatment of all plates.  Prior to 

transfection, siRNA library plates were thawed from -80C and centrifuged to collect all 

liquid into the bottom of the well.  Experimental siRNA oligos were pre-arrayed in 

columns 2-11 of each plate and individual controls comprising mock-transfected wells, 

non-targeting AllStars Negative Control sequence (siNeg, Qiagen Inc.), Firefly 

luciferase-targeting PGL3 siRNA (Integrated DNA Technologies, Inc.), TNFR1 targeting 

sequences (siTNFR1, Integrated DNA Technologies, Inc.), and a PPP2CA siRNA 

(siPP2CA, Integrated DNA Technologies, Inc.) were placed manually in columns 1 and 

12.   

 Forward co-transfection of siRNA and plasmid reporter was performed in 

triplicate.  First, B5 I B -FLuc reporter plasmid was diluted into serum-free media 

and transferred onto one siRNA library plate (containing enough siRNA to transfect three 

identical cell plates) with a 96 multichannel head on the FX liquid handler and allowed to 

incubate for 5 min at room temperature. Next, 50 uL of X-TremeGENE (Roche, Inc.) 

transfection reagent, diluted in serum-free media, was added to the plasmid/siRNA 
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mixture with a 96 multichannel head on the FX liquid handler, mixed, and allowed to 

incubate for 15 min at room temperature. Subsequently, 30 uL/well of this mixture was 

transferred to the three previously seeded cell plates to a final concentration of 50 ng/well 

reporter plasmid, 0.8 uL/well X-TremeGENE reagent, and 88 ng siRNA/well in a final 

volume of 180 uL.  Plates were maintained in an incubator for 24 hrs, and then aspirated 

and 150 uL/well of fresh colorless full media was added using the FX liquid handler. 

 At 48 hours post-transfection, D-luciferin (Biosynth) was added using the FX 

liquid handler to a final concentration of 150 µg/mL bringing the final volume up to 180 

uL/well.  Cells were allowed to equilibrate in this media for 30-60 min before the 

addition 20 uL/well of TNF  (20 ng/mL final concentration) or vehicle (D-luc imaging 

media).  Bioluminescence measurements were acquired in an IVIS 100 imaging system 

(Caliper Life Sciences, Hopkinton, MA) at 37°C under 5% CO2 flow for 6 hr. Typical 

acquisition parameters were as follows: acquisition time, 15-30 sec; binning, 4-8; FOV, 

25 cm; f/stop, 1; filter, open; image-image interval, 5 min; total number of acquisitions, 

73. Immediately post-IVIS imaging, phase contrast photographs were acquired on the 

InCell 1000 (three 10X fields of view per well).  Cell viability was then determined with 

resazurin dye (Sigma R7017) (final conc., 44 µM after a 2 hr incubation at 37ºC as 

monitored on a FLUOstar OPTIMA fluorescence reader (BMG Labtech); excitation, 544 

nm, emission, 590 nm).  This procedure was repeated once for all nine plates of the 

Qiagen Human Kinase siRNA Library 2.0. 
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Statistical analysis and �“high confidence hit�” selection. Data were analyzed using 

Living Image 3.2 for data acquisition and raw data capture, and PASW Statistics 18 and 

MatLab 2011a for data analysis, statistics, and graphing.  Circular regions of interest 

(ROIs) were drawn around each well and the photon flux at every time point was 

measured using Living Image 3.2.  This raw data was then imported into PASW and the 

data were normalized to the signal at the first timepoint (without normalization to 

resazurin viability measurements).  

Log-likelihood analysis method.  The cumulative log-likelihood approach quantifies the 

deviation of an experimental siRNA treatment from the negative controls (scrambled 

negative controls and siGFP). This was done by generating a Gaussian probability 

density function at each time point based on the mean and variance of the negative 

controls on within a given plate.  We then input each siRNA measurement to this 

function to quantify the deviation from the set of negative controls. To combine 

replicates, and to later make a cumulative sequence, we prevented computational 

rounding error by taking the negative logarithm of the likelihood (log-likelihood) and 

summing (log A + log B = log AB). The log-likelihood values were determined 

separately for the degradation phase (which was defined as from t = 0 min to the median 

time point of the minimum value of the negative controls) and the re-synthesis phase 

(defined between the end of the degradation phase to the median time of greatest 

downward inflection in the kinetic profile of the negative controls), or cumulatively for 

both degradation and re-synthesis.  The individual siRNAs from a given plate triplicate 

were then ranked according to their negative log-likelihood value and presented as a bar 

graph in which each division of the bar height represents the contribution of an individual 
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time point to the cumulative log-likelihood value (Figure 4.6).  In addition, the bars were 

colored-coded based on directional replicate agreement, wherein a value of ±3 means all 

plates within the triplicate agreed and were either above or below the negative controls, 

and a value of ±1 means imperfect agreement with one of the replicates deviating from 

the others because it registered differentially above or below the negative controls.  This 

rank-based method allows for approximate comparison between plates and precise 

comparison within each plate. 

 

DAPK3 Validation Studies 

 Lentivirus expressing constructs (pLKO.1 puro) were obtained pre-synthesized 

from the Genome Sequencing Center at Washington University. The targeting sequences 

for the 4 shDAPK3 constructs and shGFP are as follows:  

#1 - 5�’ CGTTCACTACCTGCACTCTAA 

#3 - 5�’ CATCGCACACTTTGACCTGAA 

#5 - 5�’GAAGGAGTACACCATCAAGTC  

#7 - 5�’CGTTCACTACCTGCACTCTAA 

shGFP - 5�’ CGGGATCACTCTCGGCATGGA 

To generate lentivirus containing hairpins, 500,000 293T cells were pre-plated in 60 mm 

dishes and co-transfected the following day with 1 µg of hairpin construct, 900 ng 

packaging plasmid pCMV- R8.2, and 100 ng of envelope plasmid pVSVG using Fugene 

6.  Two days after transfection, virus containing supernatant was collected from 293T 

cells and filtered through a 0.45 m filter, mixed with 5ug/mL protamine sulfate, and 

added to HepG2 cells at 50% confluency in a 10cm2 dish.  Media was replenished 12 hrs 
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post-transduction cells were subsequently maintained in media supplemented with 

750ng/mL puromycin hydrochloride to retain expression of the hairpins.  Two days post-

transduction, shDAPK3 or shGFP cells were plated in parallel for protein knockdown 

confirmation (Abcam, #ab2057) and transient transfection and subsequent imaging 

measurements with the B5 I B -FLuc reporter as previously described.  
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5.5 FIGURES 

 
Figure 5.1: Cumulative Log-Likelihood Normalization Procedure 

A) Representative image of rank based bar graph with cumulative-log likelihood values 
for all kinase siRNAs. Hits are arranged in descending cumulative log-likelihood values 
from left to right. B) Enlarged plot for top 25 rank based hits, including DAPK3*. 
Legend indicates a simple representation of time directionality and time point 
contribution to cumulative log-likelihood. Note the y-axis is truncated to allow 
visualization of high hit values. 
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Figure 5.2: Top Kinase Hits from Cumulative Log-Likelihood Analysis of I B -
FLuc Degradation and Re-Synthesis 

A) List of top ranked hits and a description of the known mechanisms by which they 
influence the NF- B pathway.  DAPK3 (*) was chosen for secondary validation and 
further investigation. (B) siDAPK3 I B -FLuc dynamic profile from the primary kinase 
screen compared to Qiagen negative control siRNA. 
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Figure 5.3: Validation of DAPK3 as a Negative Regulator of TNF -Induced I B  
Dynamics 

A) Western blot of shRNA knockdown (%GFP = shRNA/COXIV/ shGFP/COXIV) of 
DAPK3 in HepG2 cells 3 days post transduction. COXIV protein levels were used for a 
loading control. B) Bioluminescence imaging  sequence of lentivirus mediated DAPK3 
knockdown in HepG2 cells transiently transfected with B5- I B -FLuc at 2 days post 
transduction. 24 hours post transfection cells were pre-incubated with 150ug/mL D-
luciferin and subsequently treated with 10ng/mL of TNF  and imaged using the IVIS 50 
system at 37ºC under 5%CO2 and atmospheric oxygen. Data provided by Brandon 
Kocher. 
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5.6 SUPPLEMENTAL FIGURES 
 

Supplemental Figure 5.1 Cumulative Log-Likelihood Ranking of Degradation Phase 
Hits from the Kinase Screen  

Screen-wide analysis of the top hits identified for the I B -FLuc degradation phase. The 
cumulative log-likelihood value for each siRNA is presented as a bar graph in which each 
division of the bar height represents the contribution of an individual time point to the 
cumulative log-likelihood value.  Data shown represent the hits that differed the most 
from negative controls (i.e. have the largest log-likelihood values).  Yellow highlighting 
denotes two hits discussed in the text, PRKACB and DAPK3. 
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Supplemental Figure 5.2 Cumulative Log-Likelihood Ranking of Re-Synthesis 
Phase Hits from the Kinase Screen 

Screen-wide analysis of the top hits identified for the I B -FLuc re-synthesis phase. The 
cumulative log-likelihood value for each siRNA is presented as a bar graph in which each 
division of the bar height represents the contribution of an individual time point to the 
cumulative log-likelihood value.  Data shown represent the hits that differed the most 
from negative controls (i.e. have the largest log-likelihood values).  Yellow highlighting 
denotes two hits discussed in the text, PRKACB and DAPK3. 
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Supplemental Figure 5.3 Cumulative Log-Likelihood Ranking of Combined 
Degradation and Re-Synthesis Phase Hits from the Kinase Screen  

Screen-wide analysis of the top hits identified for the I B -FLuc degradation and re-
synthesis phases combined. The cumulative log-likelihood value for each siRNA is 
presented as a bar graph in which each division of the bar height represents the 
contribution of an individual time point to the cumulative log-likelihood value.  Data 
shown represent the hits that differed the most from negative controls (i.e. have the 
largest log-likelihood values).  Yellow highlighting denotes two hits discussed in the text, 
PRKACB and DAPK3. 
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CHAPTER SIX 

 

Conclusions and Future Directions 
 

The transcription factor NF- B is a pivotal regulator of mammalian cell function, 

modulating genes implicated in cellular stress responses, proliferation, differentiation, 

cell survival and apoptosis, as well as immune and inflammatory responses [1].  Improper 

regulation of NF- B signaling has been implicated in a myriad of human pathological 

disorders, including cardiovascular and neurodegenerative diseases, chronic 

inflammation, and various cancers [2, 3]. A key regulatory node within canonical NF-

signaling is the IKK:NF- :  negative feedback loop that plays a major role in 

regulating the strength and duration of NF- transcriptional activity [29-32].  In recent 

years, bioluminescence imaging has proven an invaluable tool to probe the complex 

dynamics of NF- B signaling both in cellulo and in vivo.  Our work utilizing the unique 

-FLuc bioluminescent reporter has focused on understanding how diverse 

stimuli (i.e., ligand type, duration, concentration, sequential stimulation, etc.) impact the 

IKK:NF- :  negative feedback loop in cellulo and in vivo, providing insights into a 

key cellular regulatory loop that controls NF-  nuclear localization dynamics and 

transcriptional responses.   
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6.1 Identification of a Ligand-Induced Transient Refractory Period in 
Nuclear Factor- B Signaling 

Adequate resolution of an inflammatory reaction is as equally important as 

initiation. Persistent or fulminant responses can cause detrimental consequences both 

locally and systemically [4], and resolution of inflammation is important for both 

termination of an acute response as well as for prevention of destructive chronic 

responses.  In this regard, recent studies have shown that nuclear factor- B (NF- B) 

signaling plays a critical role in both initiation and resolution of inflammation [5, 6].  The 

transcription factor NF- B is a key regulator of innate and adaptive immune responses, as 

well as a mediator of cell survival and proliferation [7].  Improper regulation of NF- B 

contributes to induction and progression of a wide range of human disorders, including a 

variety of pathological inflammatory conditions, neurodegenerative diseases, and many 

ypes of cancer [3, 8]. Considering the complex nature of the inflammatory milieu, one 

would expect that stationary tissue-residing cells are exposed to a myriad of temporally-

distinct NF- B-stimulating cues.  Central to any signaling desensitization mechanism is a 

refractory period during which cells cannot fully respond to a second insult (autologous 

or heterologous desensitization).  Therefore, consideration of the dynamic pattern of 

stimulus exposure described above begs the immediate question of whether cells can 

instantly initiate an NF- B response to a second activating stimulus, and if not, when will 

such cells be able to remount a full response again? Specifically, are ligand-

preconditioned cells capable of eliciting NF- B activation to the same extent as naïve 

cells? 
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To study in real time the temporal regulation of NF- B and its major regulator, 

inhibitor of NF- B  (I B ), we developed, characterized, and utilized a novel 

transcriptionally-coupled I B -firefly luciferase fusion reporter ( -FLuc) that 

recapitulated the activity of the endogenous IKK:NF- :  negative feedback loop.  

We then utilized this reporter to characterize the dynamics and responsiveness of I B  

processing upon a short 30 sec pulse of tumor necrosis factor  (TNF ) or a continuous 

challenge of TNF  following a 30 sec preconditioning pulse.  Strikingly, a 30 sec pulse 

of TNF  robustly activated inhibitor of NF- B kinase (IKK), leading to I B  

degradation, NF- B nuclear translocation, and strong transcriptional up-regulation of 

I B .  Furthermore, we identified a transient refractory period (lasting up to 120 min) 

following preconditioning, during which the cells were not able to fully degrade I B  

upon a second TNF  challenge. Kinase assays of IKK activity revealed that regulation of 

IKK activity correlated in part with this transient refractory period. In contrast, 

experiments involving sequential exposure to TNF  and interleukin-1  (IL-1 ) indicated 

that receptor dynamics could not explain this phenomenon. Utilizing a well-accepted 

computational model of NF- B dynamics, we further identified an additional layer of 

regulation, downstream of IKK, that may govern the temporal capacity of cells to 

respond to a second pro-inflammatory insult. Overall, the data suggested that nuclear 

export of NF- B:I B complexes represented another rate-limiting step that may impact 

this refractory period, thereby providing an additional regulatory mechanism.  Since 

completion of this work [9], the existence of this transient TNF -induced refractory 

period has been confirmed by others [10, 11].  
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Our study highlights the multifaceted regulation of NF- B signaling and sheds light 

on the refractory nature of I B  processing as a route to transiently desensitize NF- B 

activity upon subsequent rounds of stimulation. Rapid and transient deactivation of IKK 

activity as well as temporal reduction in its capacity to respond to a subsequent challenge 

(IKK responsiveness) seems to play a crucial role in this process. Previous studies 

indicated that both the amplitude and the timing of IKK activation affect not only the 

intensity of NF- B-dependent transcription, but also the specificity of the transcriptional 

response [12, 13]. This indicated that besides resolution of the inflammatory response and 

induction of a refractory period (temporally preventing subsequent rounds of I B  

degradation upon re-stimulation), rapid down-regulation of IKK activity [14] plays a 

pivotal role in determining the type of elicited transcriptional program. In the present and 

previous studies [15], we demonstrated that dynamic bioluminescence imaging of I B -

FLuc reporters in live cells provides robust and accurate readouts of ligand-induced I B  

dynamics. In effect, real time bioluminescence imaging was equivalent to performing 

continuous on-line Western blots of I B  at five minute intervals. 

 

6.2 Synchronicity of the I B :NF- B Negative Feedback Loop In 
Cellulo and In Vivo 

Cells have evolved complex signaling networks that sense cues from the 

environment and transduce this information to elicit appropriate biological responses 

[16]. These networks equip cells with sensitive, reversible, regulated, and robust 

responses to a variety of signaling activators; in particular, these networks can confer on 

cells the ability to distinguish weak signals from background noise with high precision 
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and selectivity [17, 18]. The NF-  signaling pathway and its downstream transcriptional 

targets are  responsive to a large number of different stimuli [7], and recent work has 

focused on NF-  pathway responsiveness to the mode of stimulation (i.e., stimulus 

concentration, pulse duration, or pulse interval).  Particularly relevant during cellular 

responses are inflammatory cytokines, such as TNF , which are likely perceived as 

transient pulses or waves of TNF  occurring over a wide range of concentrations [9, 10, 

12, 19-21].  Recent studies have shown that continuous stimulation or sequential pulsing 

of TNF  can induce oscillations in NF-  nuclear translocation that are dependent upon 

cycles of degradation and re-synthesis of I B proteins (i.e., negative feedback loops), and 

that the frequency of these NF  oscillations encode distinct gene expression profiles 

[10, 22-25].  Additionally, the amplitude of NF-  activity, but not the temporal profile, 

is particularly sensitive to changes in TNF  concentration and is crucially dependent on 

the transient nature of IKK activity [14].  Single cell imaging of NF-  nuclear 

localization (as monitored by nuclear:cytoplasmic shuttling of NF-  proteins fused to 

fluorescent protein reporters) and computational modeling have suggested that single 

cells exhibit stochastic, heterogeneous, and paracrine NF  responses, especially in 

response to low concentrations of TNF  [20, 21, 26, 27].  A key unresolved issue in the 

field relates to how biological robustness is achieved within cell populations displaying 

heterogeneous and dynamic single-cell behavior [26-28], and the physiologic relevancy 

of these single-cell phenomena to tissue- and organ-level biological responses in vivo.  

We exploited the unique characteristics of the -FLuc negative 

feedback loop reporter to rigorously characterize dynamic  responses in single cells, 

populations of cell, and in vivo upon stimulation with a range of TNF  concentrations 
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and pulses.  Remarkably, modulation of either TNF  pulse duration or concentration 

produced highly complex and reproducible patterns in -FLuc dynamics that did not 

change significantly when measured in single cells versus cell populations.  Single cell 

responses were highly synchronous upon stimulation with TNF  pulses or medium-to-

high range TNF  concentrations.  Individual cells exhibited synchronized -FLuc 

degradation and re-synthesis kinetics, even though the amplitudes of degradation and re-

synthesis varied greatly.  Of particular note was the observation in cell populations that 

pulses of TNF  tended to elicit very broadly shaped -FLuc re-synthesis peaks, 

whereas continuous TNF  stimulation elicited a more defined peak that occurred earlier.  

These same trends were observed for single cell -FLuc dynamic profiles, indicating 

that broad re-synthesis peaks and complex kinetics are inherent properties of single cells 

rather than the sum of heterogeneous single cell behaviors.  Furthermore, we discovered 

that these complex  re-synthesis patterns resulted from the continuous presence of 

TNF  initiating re-activation of IKK and driving secondary rounds of  degradation. 

After rigorous characterization of the TNF -induced response patterns of the 

-FLuc reporter in single cells and cell populations in culture, we took 

advantage of the amenability of luciferase reporter imaging in vivo to interrogate TNF -

induced activation of the :NF-  negative feedback loop within mouse livers.  Our 

data indicated that circulating TNF , administered at varying doses, produced  

dynamic behaviors in vivo with synchronized kinetics and very high levels of  re-

synthesis and broad re-synthesis peaks, patterns that were consistent with in cellulo 

experiments in which TNF  pulse duration was varied.  Thus, even though TNF  was 
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administered at varying doses in vivo, this data strongly suggested that circulating TNF  

is perceived by hepatocytes in vivo as a pulse. 

Thus, while several in silico and in vitro studies have demonstrated highly 

heterogeneous and/or asynchronous NF-  responses to TNF  at the single cell level that 

are largely masked when individual cells are averaged together into populations [10, 20-

22, 24, 27], our single cell, cell population, and in vivo data indicated that  

degradation and re-synthesis is surprisingly robust and synchronous.  These data, coupled 

with the low frequency at which we observed -FLuc oscillatory behavior, place 

reservations on the physiologic relevance of the highly heterogeneous and oscillatory NF-

 behaviors observed during continuous TNF  stimulation of single cells.  On the other 

hand, our data do support the relevancy of the synchronous NF-  oscillatory behaviors 

that are observed upon sequential TNF  pulsing and that drive frequency-encoded 

transcriptional programs [10, 21]. 

Thus, our work revealed that the NF- :  negative feedback loop exhibits 

differential and reproducible dynamic patterns in response to modulating TNF  

concentration or pulse duration, and that responses to TNF  exhibited a remarkable 

degree of synchronicity at the level of single cells, cell populations, and in vivo.   

 

6.3 High-Throughput Phosphatase and Kinase RNA Interference 
Screens Identify Novel Regulators of TNF -Induced IKK:I B :NF- B 
Negative Feedback Loop Dynamics 

It is currently believed that activation/de-activation of IKK (and other members of 

the NF- B signaling cascade) is regulated by the opposing effects of 
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kinases/phosphatases [29], and although more is known about the mechanisms by which 

kinases act during NF- B signaling, much less is known about the role of phosphatases in 

regulating members of the NF- B signal cascade.  A number of phosphatases have been 

implicated in negative regulation of IKK activity and in regulation of NF- B activity 

(including PP2C , PP2A, PP1, PPM1A, PPM1B and WIP1), and they often operate to 

counteract the activity of a kinase.  Study of these phosphatases has revealed differential 

activity dependent on stimulus and cell specificity, redundant or compensatory pathways, 

and positive and negative regulatory roles (occasionally based on conflicting evidence; 

for example, PP2A has been posited by some to be a positive regulator of IKK and others 

claim it to be a negative regulator) [30-39].  Furthermore, an RNAi phosphatase library 

was recently utilized to identify unknown phosphatase regulators of NF- B 

transcriptional activity in mouse astrocytes [37].  The authors identified 19 phosphatases 

that activate or suppress NF- B activity 6-8 hours post-TNF  stimulation; their work 

indicated that the PP2A catalytic subunit interacts with and inactivates IKK , however, 

this function was not conserved in the context of  human cell lines [36].   

Given that our B5 I B -FLuc reporter has enabled us to study the IKK-I B -

NF- B negative feedback loop with high temporal resolution [9], and given that temporal 

control of this and other negative feedback loops has emerged as a critical regulatory 

component of the intensity and specificity of the NF- B transcriptional program [10, 12, 

19, 40], we sought to perform ambitious phosphatase and kinase RNAi screens to identify 

novel regulators of IKK-I B -NF- B negative feedback loop dynamics, and possibly 

new pairs of phosphatases/kinases that act in concert [29].  In addition to developing a 

novel method by which high-throughput robotic RNAi screening strategies can be used to 
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assay for alterations in the dynamics (both amplitude and kinetics) of the IKK:I B :NF-

B negative feedback loop, we concurrently developed an analytical method, cumulative 

log-likelihood analysis, capable of simultaneously analyzing many or all data points 

along the I B -FLuc profiles and that afforded us the ability to rigorously evaluate and 

identify hits within these complex datasets. 

We observed many different B5 I B -FLuc profiles in the screens, some with 

vastly different shapes than seen under control siRNA treatment (Fig. 4.4), highlighting 

the large number and diverse activities of kinases and phosphatases regulating the NF- B 

pathway.  Separate analysis of the phosphatase and kinase siRNA screens identified a 

number of novel regulators whose knock-down either attenuated (phosphatases PTPN3, 

PTPRJ, and PTPRN; kinases PRKACB and LIMK1) or enhanced (phosphatases CDNK3, 

PPFIA3, ENPP3, SKIP and PPP1R3D; kinases GALK1, FER, GAK, JAK2, JAK3, and 

DAPK3) TNF -induced activation of the IKK-I B -NF- B negative feedback loop.  

Both PTPRJ and DAPK3 have been validated and are the subjects of current 

investigations to understand the physiological and/or pathophysiological relevance in NF-

B, especially in the context of TNF  signaling during cancer and inflammation in the 

liver. 

Additionally, we are continuing to validate other hits from the screens.  Of 

particular interest for further study are the kinases PRKACB and LIMK1; knock-down of 

either resulted in decreased levels of I B -FLuc degradation, a rarely observed 

phenotype in either the phosphatase or kinase screens.  These proteins may play a role in 

positively regulating IKK activity, and thus directly impact the degree of I B  

degradation upon ligand stimulation.  Furthermore, it will be interesting to merge the data 
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from the phosphatase and kinase screens into a single dataset in an effort to identify 

potentially novel pairs of phosphatases/kinases that similarly regulate the dynamics of the 

IKK-I B -NF- B negative feedback loop. 

In conclusion, our studies using dynamic, real-time bioluminescence imaging 

have demonstrated the utility of employing bioluminescent reporters alongside traditional 

biochemical assays, in silico modeling, and cell/molecular biology techniques to 

rigorously interrogate how diverse stimuli (i.e., ligand type, duration, concentration, 

sequential stimulation, etc.) impact the IKK:NF- :  negative feedback loop in 

single cells, cell populations, and at the organ- and tissue-level in vivo. 
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