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function that describes it, such that the set of solutions that minimize the function is equal to the set of
truth assignments that satisfy the WFF. We also show that in the same sense every quadratic energy
function describes some satisfiable WFF. Algorithms are given to transform any propositional WFF into an
energy function that describes it and vice versa. High-order models that use Sigma-Pi units are shown to
be equivalent to the standard quadratic models with additional hidden units. An algorithm to convert high-
order networks to low-order ones is used to implement a satisfiability problem-solver on a connectionist
network. The results give better understanding of the role of hidden units and of the limitations and
capabilities of symmetric connectionist models. The techniques developed for the satisfiability problem
may be applied to a wide range of other problems, such as: associative memories, finding maximal
consistent subsets, automatic deduction and even non-monotonic reasoning.
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Abstract

Connectionist networks with symmetric weights (like Hopfield networks and Boltzman Machines) use
gradient descent to find a minimum for quadratic energy functions. We show an equivalence between
the problem of satisfiability in propositional calculus and the problem of minimizing those energy
functions. The equivalence is in the sense that for any satisfiable Well Formed Formula (WFF)
we can find a quadratic function that describes it, such that the set of solutions that minimize the
function is equal to the set of truth assignments that satisfy the WFF. We also show that in the
same sense every quadratic energy function describes some satisfiable WEFF. Algorithms are given
to transform any propositional WFF into an energy function that describes it and vice versa.
High-order models that use Sigma-Pi units are shown to be equivalent to the standard quadratic
meodels with additional hidden units. An algorithm to convert high-order networks to low-order ones
is used to implement a satisfiability problem-solver on a connectionist network.

The results give better understanding of the role of hidden units and of the limitations and capa-
bilities of symmetric connectionist models. The techniques developed for the satisfiability problem
may be applied to a wide range of other problems, such as: associative memories, finding maximal
consistent subsets, automatic deduction and even non-monotonic reasoning,

*To appear in “Neural Computation™ vol 3-2.
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1. Introduction

The problem of satisfiability is deciding whether a truth assignment for the variables of a given propo-
sitional WFF exists, so that the formula is evaluated to be true. In many cases the assighment needs
aiso to be found. Tt is well-known that any of the problems in AP can be reduced to the satisfiability
problem and that satisfiability is AP complete.

Apart from theoretical importance, satisfiability has direct applications. A satisflability-problem-
solver may be used for example in an inference engine and for solving other hard problems that were
reduced to satisfiability during the years.

In this paper we show an equivalence between the satisfiability search problem and the problem of
connectionist energy minimization. For every WFF we can find a quadratic energy function such that
the values of the variables of the function at the minimum can be translated into a truth assignment
that satisfies the original WFF and vice versa. Also, any quadratic energy minimization problem may
be described as a satisfiable WFF that is satisfied for the same assignments that minimize the function.
More details and formal proofs can be found in [Pinkas90].

Finding minima for quadratic functions is the essence of symmetric connectionist models [Hopfield82]
{Ilinton,Sejnowski86] [Hinton89]. They are characterized by a recurrent network architecture, a sym-
metric weight matrix (with zero diagonal) and a quadratic energy function that should be minimized.
Each unit asynchronously computes the gradient of the function and adjusts its activation value, so
that energy decreases monotonically. The network eventually reaches equilibrium, settling on ei-
ther a local or a global minimum. [Hopfield,Tank85] demonstrated that certain complex optimiza-
tion problems can be approximated by these kind of networks and some of the work doue in con-
nectionist reasoning and knowledge representation has used energy-minimization models ([Ballard86],
[Touretzky,Hinton88],[Derthickss]...).

There is a direct mapping between these models and quadratic energy functions, and most of the
time we will not distinguish between the function and the network that minimizes it. Thus, the equiv-
alence between energy minimization and satisfiability means that everything that can be stated as
satisfiability of some WFF and nothing else can also be expressed in symmetric models. The techniques
described are used (in this paper) for the direct implementation of a satisfiability problem-solver on con-
nectionist networks; however they may also be applied to automatic deduction, abduction, construction
of arbitrary associative memories and more.

2. Satisfiability and models of propositional formulas

A WET is an expression that combines atomic propositions (variables) and connectives (v, A, -, —,(, ).
A model (truth assignment) is a vector of binary values that assigns 1 (“true®) or 0 (“false”) to each of
the variables. A WFF ¢ is satisfied by a model & if its characteristic function Hyp evaluates to “one”
given the vector 7.

The characteristic function is defined to be H, : 2° — {0, 1} such that:

eHo{z1, ..., zp) = 25

OH(_,@)(zl, ey :Cn) =1- H(p(wl, S ,In)

aH({plvgpz)(a:l, cesZn) = Hyy (21, ..., 20) + Hepg(xt, oy 20) = Hopy (21, ., 20) X Hpy(21,.. ., 20)
sHio a1y -1 2a) = Hp (21,0, 20) X Hpp(21,...,%,)

*Hip1~00) (81,1 8) = Himppyvipg) (1,5, Z0)

The satisfiability search problem for a WFF ¢ is to find an ¥ (if one exists) such that H, oy = 1-
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3. Equivalence between WFFs

We call the atomic propositions that are of interest for a certain application “visible variables” {denated
by F). We can add additional atomic propositions called “hidden variables” (denoted by {) without
changing the set of relevant models that satisfy the WEFF. The set of models that satisly ¢ projected
onto the visible variables is then called “the visible satisfying models” ({Z | () H(Z,1) = 1}).

Two WFFs are equivalent if the set of visible satisfying models of one is equal to the set of visible
satisfying models of the other.

A WFF o is in Conjunction of Triples Form (CTF) if ¢ = AlL, ; and every ¢; is a sub-formula of
at most three variables.!
Every WFF can be converted into an equivalent WFF in CTTF by adding hidden variables. Intu-

itively, we generate a new hidden variable for every binary connective (eg: V,—) except for the top
most one, and we “name” the binary logical operation with a new hidden variable using the connective

(=).

ExaMPLE 3.1 Converting ¢ = ((-({-A) A B)) — ((=C) — D)) into CTF:

From (~{(—4) A B)) we generate: ((—~((—=A) A B))«T)) by adding a new hidden variable Ty,
from ((—~C) — D) we generate: (((-C)} — D)«—T3) by adding a new hidden variable 7%,

for the top most connective (—) we generate: (71 — T3).

The conjunction of these sub-formulas is :

((=~((—A) A BY)=T1) A (((—-C) — D)=T) A(Ty — T3). It is in CTF and is equivalent to .

4. Energy functions

A k-order energy function is a function E : {0,1}" — R that can be expressed in a sum of products
form with product terms of up to & variables: E*(zy,...,2,) =

1

_S_ Wiy, ik %y - By + E Wiy, Biy Ly, + oo+ E wik; + w
1<E <iz < <ip€n 1< < <ig 1 €0 1<i<n

Quadratic energy functions are special cases:

Z wijLiL; + Zw,-a:,.r -+ w.

i<i<j<n i<n

We can arbitrarily divide the variables of an energy function into two sets: visible variables and hidden
variables.

‘We call the set of minimizing vectors projected onto the visible variables, *The visible solutions™ of
the minimization problem. ((E) = {Z| (3D E(Z,1) = min@E{E(g}‘, .

We can always translate back and forth [Hopfield82] between a quadratic energy function and a
network with symmetric weights that minimize it (see fig 1). Further, we can use high-order networks
[Sejnowski86] to minimize high-order energy functions {see figure 2). In the extended model each node
is assigned a Sigma-Pi unit that updates its activation value using:

YCTF differs from the familiar Conjunctive Normal Form (CNF). The ;s are WFFs of up to 3 vaviables that may
include any logical connective and are not necessarily a disjunction of literals as in CNF. To put a bidircctional CT1®
clause into 2 CNF we would have to generate two clauses, thus (A—B) becomes (A v B)A(AV~B).
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Figure 1: A symmetric network that represents the function £ = —2NT — 25T — oWT + 5T + NS+
BN — WN + W, describing the WFF; (NAS S WYA(R— (-N)A(NV (=W)). T'is a hidden unit,

a; = F( E =Wy et H 3:',-)

oo LSSk i

Like in the quadratic case, there is a translation back and forth between k-order energy functions and
symmetric high-order models with k-order Sigma-Pi units (see figure 2).

5. The equivalence between high-order models and low-order models

We call two energy functions equivalent, if they have the same set of visible solutions.

Any high-order energy function can be converted into an equivalent low-order one with additional
hidden variables. In addition, any energy function with hidden variables can be converted into a
(possibly) higher one by eliminating some or all of the hidden variables. These algorithmns allow us to
trade the computational power of Sigma-Pi units for additional simple units and vice versa.

¢ Any k-order term (wH;f’==1 z;), with NEGATIVE coefficient w, can be replaced by the quadratic
terms: }:le 2wX;T — (2k — 1)wT generating an equivalent energy function with one additional
hidden variable T.
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Figure 2: A cubic network that represents £ = —~NSW + NS+ RN - WN + W using Sigma-Pi units
and a cubic hyper-arc. (Its is equivalent to the network of Figure 1 without hidden units)

e Any k-order term (w Hf=1 z¢), with POSITIVE coeflicient w, can be replaced by the terms:
w Hf;ll z; — (Zf__ff 2wX;T) + 2wX T + (2k — 3)wT, generating an equivalent energy function of
order & — 1 with one additional hidden variable 7".?

ExaMPLE 5.1 The cubic function £ = —NSW4 NS+ RN —WN +W is equivalent to —2NT — 257 —
2WT+ 5T+ NS+ RN —WN + W, (introducing T). The corresponding high-order network appears
in figure 2 while the equivalent quadratic one in figure 1.

The symmetric transformation, from low-order into high-order functions by eliminating any sub-
set of the variables, is also possible (of course we are interesting in eliminating only hidden vari-
ables). To eliminate T, bring the energy function to the form: £ = E + oldterm, where oldierm =

k 1
(2521 wi T4y X5.)T-

Consider all assignments S for the variables ( X = z;, - -+ 2;,) in oldierm (not including T'), such that

k i;

Bs =3 ima wi TLL, =5 < 0.

Each negative s represents an energy state of the variables in X that pushes T to become “one” and
decreases the total energy by | s |. States with positive fs cause T to become zero, do not reduce the
total energy, and therefore can be ignored. Therefore, the only states that matter are those that reduce
the energy; i.e B¢ is negative.

Let Lf; = { Ky if S(X;;) =1

{1 Xy HS(X)=0 it is the expression “X;” or “(1 — X;)” ® depending whether
T M il =

2 A symmetric (but less efficient) transformation for the positive case aiso exists.
3L'_79 is like a macro and is replaced by either “X;” or “1 — X;" once it is used in newterm,
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the variable is assigned 1 or 0 in 5.
The expression H;m L% therefore determines the state S, and the expression

!
newterm = E Bs H A

S such that 8y <0 JF=1

represents the disjur}ction of all the states that cause a reduct‘;ion in the total energy.
The new function £ <+ newterm, is therefore equivalent to E + oldterm and does not include T'.

With this technique, we can convert any network with hidden units intc an equivalent network
without any such units.

6. - Describing WFFs using penalty functions

An energy function E describes a WFT ¢ if the set of visible satisfying models of ¢ is equal to the set
of visible solutions of the minimization of E.%

The penalty function E, of a WFF ¢ is a function E, : {0,1}" — A/, that penalizes sub-formulas
of the WFF that are not satisfied. It computes the characteristic of the negation of every sub-formula
; in the upper level of the WFF’s conjunctive structure.

If ¢ = AL, ©; then,

m m
Ep=Y (Hup) = (1—Hp,)
g1 i=1
If all the sub-formulas are satisfied, Eyp gets the value zero; otherwise, the function computes how many
are unsatisfied.

It is easy to see that ¢ is satisfied by £ iff £, is minimized by Z (the global minima have a value of
zero). Therefore, every satisfiable WFF ¢ has a function Ep such that Eyp describes .
ExaMPLE 6.1
E((NAS)——PW}A(R—b('!N))A(NV('lW)) - -:((NAS)—»W) + H—l(R-—i(ﬂN)) + Hﬁ(NV(ﬁW})
= Hypasa(-w) + Hran + Hnyaw

= (NS(1— W) + (RN) + ({1 - N)W)
= -NSW+ NS+ RN -WN+ W

The corresponding network appears in figure 2.

The following algorithm transforms a WFF into a quadratic energy function that describes it,
generating O(length(y)) hidden variables:

e Convert into CTF (section 3).
e Convert CTT into a cubic energy function and simplify it to a sum of products form (section 6).

e Convert cubic terms into quadratic terms. Each of the triples generates only one new variable.
(section 5).

The algorithm generates a network whose size is linear in the number of binary connectives of the
original WFF. The fan-out of the hidden units is bounded by a constant.

4Note, that it is only the minima (and not the details of the function's surface) that cause E to describe .
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7. Every energy function describes some satisfiable WFF.

In section 5 we saw that we can convert any energy function to contain no hidden variables. We show
now that for any such function E with no hidden variables there exist a satisfiable WFT ¢ such that £
describes .

The procedure is first to find the set p{F) of minimum energy states (the vectors that minimize £).
For each such state create an n-way conjunctive formula of the variables or their negations depending
whether the variable is assigned 1 or 0 in that state. FEach such conjunction Al_; LY where L} =

“X;: if S(X,') =1
{ ‘(X ES(Xi)=0
taking the disjunction of all the conjunctions: = Vg, .m( Aizq LE). The satisfying truth assignments
of ¢ correspond directly to the energy states of the net.

represents a minimum energy state. Finally the WIF is constructed by

8. Conclusions

We have shown an equivalence between the search problem of satisfiability and the problem of mini-
mizing connectionist energy functions. Only those problems that can be stated as satisfiability search
problems (and every such problem) can be stated in symmetric neural networks.

Any satisfiable WFF can be described by an n-order energy function with no hidden variables, or
by a quadratic function with O(length(W F'F)) hidden variables. Using the algorithms described we
can efficiently determine the topology and the weighis of a connectionist network that represents and
approximates® a given satisfiability problem.

Several other applications may benefit from the techniques developed here. Two are: associative
memory, and finding maximal consistent subset.

Given a set of binary vectors we wish to store in an associative memory, we can construct a WEJ
© that is satisfied for all and only these vectors. ( ¢ is the boolean implementation of the function
that outputs “one” for all memory vectors and “zero” otherwise). By implementing the network that
describes ¢, we get an associative memory which performs completion when only a portion of the input
is supplied.

As a second application consider a set of possibly conftrary beliefs. We can construct a network that
will search for 2 maximal consistent subset (adding degree of belief or certainty as in [Derthick88), is a
simple extension of the penalty function). Subsets of beliefs compete among themselves and some are
defeated in favor of others [Pinkas91]. The network searches for a maximal consistent subset of beliefs

such that the total penalty is minimized.
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%The networks are not always capable of escaping from local minima.
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