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ABSTRACT OF THE DISSERTATION

DYNAMIC PION STUDIES IN NUCLEAR MATTER

by

Jonathan Morris

Doctor of Philosophy in Physics

Washington University in Saint Louis, December 2011

Professor Willem H. Dickhoff, Chairperson

A framework is developed which allows the extension of current realistic Nucleon-

Nucleon interactions to include pionic degrees of freedom. A prescription for trans-

forming any static pion model to one containing explicit energy dependence is pro-

vided. We show that adding energy dependence to the pionic component of the

Nucleon-Nucleon interaction reduces the component of D-state wave function in the

deuteron while adding a non-negligible chance of finding the deuteron in an NNπ

state. Retrofitting the static pion Reid soft-core potential with dynamic pions en-

tailed a necessary refit of the parameters in the central and tensor parts of the poten-

tial to phase shifts and deuteron data. Dynamic pions offer a natural and physical

way to handle inelasticities in phase shifts above pion-production threshold. Other

observables, such as the (p, 2p) analyzing power Ay, which indicate explicit energy

dependence, have resisted many attempts at modeling using static pion models, but

dynamic pion models show some promise at explaining these data. Finally, the effects

of dynamic pions in nuclear matter are explored, and it is shown that even below pion-

production threshold, allowing pions to propagate leads to a decrease in saturation

density without significant change to the overall binding energy per nucleon.
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Chapter 1

Introduction

1.1 Motivation

The role of the pion in nuclear physics continues to be a challenging topic even though

the relevance of the pion-exchange mechanism for understanding the nucleon-nucleon

(NN) interaction remains unchallenged. Indeed, the nonvanishing of the deuteron

quadrupole moment represents clear evidence for the presence of a substantial tensor

component in the NN interaction which is inevitable for a one-pion exchange mech-

anism. Modern interactions based on chiral perturbation theory also contain the

pion-exchange mechanism explicitly [26, 27], although the complete interaction only

contains static contributions. While the importance of pion terms for NN physics is

clear, it has nevertheless been very difficult to establish experimental signatures that

point to their presence in nuclei [8].

A promising avenue at one time appeared to be the study of response functions

with pion quantum numbers which are expected to be enhanced at intermediate

momentum transfer on the basis of infinite matter considerations. Indeed, it was

suggested that the pion interacts so strongly with the nuclear-matter medium by cou-

pling to particle-hole and ∆-isobar-hole excitations that states with pionic quantum

numbers become unstable and an ordered ground state of nuclear matter might be

created [44]. The proximity of this pion-condensation transition suggested the study

of corresponding response functions but no unambiguous experimental signature was

obtained [15, 62, 68].
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A direct way to probe the interaction of pions with the nuclear medium is to

use real pions and perform scattering experiments. The interpretation of these ex-

periments confirms the strong coupling of such real pions with the medium and the

importance of the ∆-isobar excitations [50].

The juxtaposition of these two limits involving the strong coupling of real pions

with the medium and the essential contribution of pion-exchange to the NN inter-

action in which the pion in maximally virtual in the Born term suggests that it may

be useful to consider a dynamic treatment of the pion starting at the two-body level.

Most NN interactions do not incorporate such dynamic pion-exchange contributions

but some versions of the Bonn potential have included this process [25, 41]. Recent

work of the Mainz group [58] also includes some of these features, although the em-

phasis was on NN scattering above pion-production threshold, which also requires the

explicit treatment of the ∆-isobar. Since at this time we do not propose to treat NN

scattering above the pion-production threshold, we will not include the nucleon-pion

self-energy term but use experimental masses for nucleons and pions. We note that

the inclusion of pion propagation in the medium is best handled in a Green’s function

method [24, 29]. Previous treatments of pion-propagation in the calculation of the

effective interaction in the medium (G-matrix calculations) have employed the sim-

pler “standard choice” for the single-particle spectrum [39], while our treatment will

use the computationally more intensive “continuous choice” advocated by Jeukenne

et al. [36].

Since a dynamic pion-exchange interaction leads to an energy-dependent NN

interaction, the calculation of the deuteron properties are modified as compared to a

static calculation. One consequence being the presence of an NNπ component that

reduces the NN D-state probability. We note that the exchange of bosonic degrees

of freedom plays a prominent role in electron systems, in particular the electron-

electron interaction is dominated by the exchange of plasmon excitations and the

electron self-energy is reasonably approximated by including the screened (dynamic)

Coulomb interaction, often referred to as the GW -approximation [43]. A correspond-

ing treatment of pion-exchange is therefore also a possible future application.

Experimental results [65] indicate that short-range correlations (SRC) have the

dominant effect on the central density of 208Pb. It is therefore clear that they should

2



be included when trying to relate nuclear-matter saturation properties to the those

of finite nuclei. In light of this dominance of SRC to nuclear saturation density it has

been suggested that the inclusion of long-range pion exchange terms in nuclear matter

may be responsible for the difficulties that have plagued a satisfactory resolution of the

nuclear-matter saturation problem [21]. Indeed, the suggestion was made some time

ago that pion-exchange in infinite matter allows for nontrivial contributions to binding

from long-range correlations that will not occur in finite nuclei where momentum is

no longer a good quantum number for particle states [22]. In particular, in nuclear-

matter calculations, third-order pionic ring diagrams introduce substantial additional

binding. This tends to draw the saturation point away from the empirical region.

It will therefore be interesting to see if allowing in-medium propagation of pions can

ameliorate this difficulty. In order to probe this suggestion it is necessary to construct

a dynamic pion-exchange interaction and make a comparison between pion-exchange

contributions in finite and infinite systems.

While there is uncertainty about the precise nature of the short-range part of the

NN interaction, there is now evidence from recent lattice QCD calculations that the

features of a strong repulsive short-range core emerge from first principles, particularly

when the pion mass is reduced towards more realistic values [35]. The presence

of short-range correlations is thus corroborated by QCD simulations and strongly

suggests that fully microscopic nuclear many-body calculations should continue to

address their consequences in detail. Recently developed realistic NN interactions,

like CDBonn [40, 42] or the chiral interactions [26, 27] have in general softer cores

than older potentials [30, 45, 55]. Even modern local potentials, such as Argonne v18

(AV18) [70], have a softer core compared to more traditional interactions.

We have decided to modify the older Reid soft-core interaction [54] because

it has been widely used in many-body applications involving the Brueckner-Bethe-

Goldstone hole-line expansion [18, 59]. In order to assess the difference between the

static and dynamic version of the Reid potential it is therefore necessary to fit to the

same data that Reid had available. We will demonstrate that a fit to the Nijmegen

partial wave analysis (PWA) [60] within this dynamic Reid framework is also pos-

sible, confirming the applicability of this approach to all modern NN interactions.

Another reason for continuing to employ NN interactions with a stronger core is their

3



capability to provide a depletion of the nuclear Fermi sea that is consistent with ex-

perimental observations. Softer interactions like CDBonn [42, 40] and AV18 [70] yield

depletions of 11% and 13%, respectively, for the occupation of the zero-momentum

state at normal nuclear-matter density [30, 45, 55]. The Reid potential generates a

15% depletion [23] which is closest to the experimental results obtained for deeply

bound protons in 208Pb [65].

Another motivation to explore the possibilities of including dynamic pion-exchange

is provided by considerations related to inelastic processes. The (e, e′p) reaction has

been unrivaled as a tool to extract detailed spectroscopic information for bound pro-

tons, including absolute spectroscopic factors [38, 51]. Unfortunately, only stable

targets can be employed in this reaction and no comparable information for neutrons

can be accessed. It is therefore of considerable interest to explore the alternative

hadronic (p, 2p) reaction that can also be used in inverse kinematics to explore the

properties of protons in exotic nuclei [37]. In order for such a probe to be successful,

it is imperative that experiments on stable targets yield sensible and consistent re-

sults in comparison with the (e, e′p) reaction. While progress is made in this regard

with respect to spectroscopic factors [48], a clear puzzle has emerged related to the

observed deviation of the polarization observable Ay for the removal of s1/2-protons

from nuclei [34]. While the use of the impulse approximation appears justified for

the beam energies in these (p, 2p) experiments, it is important to realize that these

experiments involve large amounts of energy transfer, typically above 100 MeV. For

such inelastic processes it appears essential to allow a picture in which pions can

carry such energies while they mediate the interaction. It was also with such future

application in mind that the current project was initiated.

1.2 Outline

In Chapter 2 we present the Green’s function formalism for describing our dynamic

one-pion-exchange. We also present the details of the Reid soft-core potential and

how we modify it. The details of our refit to experimental data are presented therein,

with the explicit fit parameters placed in appendix A. Already at the level of the free

T -matrix there are consequences to dynamic pion-exchange. For instance, we find

4



that the D-state probability of the deuteron is significantly reduced. We also note

large changes in the off-shell T -matrix elements. In addition, this chapter illustrates

that our approach offers a viable method for introducing dynamic pions into any

interaction containing static pions. We illustrate the possibility of a refit of the

original Reid to the PWA of the Nijmegen group [60] in the T = 1 channels. Such a

potential refit to modern data could be of use in the future as we explore the usefulness

of using pions which carry energy to model inelastic scattering experiments where the

pions manifestly carry energy, as in Ch. 3.

In Chapter 3 we discuss a fairly recent set of measurements of the polarization

variable Ay [49]. These experiments demonstrate that in a series of inelastic (p, 2p)

knockout experiments the value of Ay decreases with increasing separation energy.

The failure to explain these data with free NN T -matrices has inspired us to develop

a framework for describing inelastic scattering experiments based on a dynamically

generated T -matrix. Although we do not totally solve this two-body Ay problem, the

approach developed in chapter 3 is a more natural way to describe inelastic two-body

scattering.

In Chapter 4, we turn to a discussion of the nuclear-matter saturation problem.

A brief historical overview of the problem is offered, followed by a discussion of the

formalism for treatment of this problem using the Brueckner-Hartree-Fock approxi-

mation. We explore the effect of dynamic pion propagation on the on-shell self-energy

and the consequences for nuclear-matter saturation. We demonstrate that at the level

of Brueckner-Hartree-Fock, dynamic pion propagation leads to a smaller saturation

density without appreciably changing the binding energy per nucleon. This shift

moves the calculation toward the empirical region, and shows promise for later inclu-

sion in more sophisticated treatments.

Finally, in Chapter 5 we discuss the most likely avenues for adaptation of our

framework to other realistic NN interactions. We also suggest ways that our dynamic

potential could be included in more sophisticated many-body calculations to improve

the agreement between nuclear-matter calculations and the saturation properties of

finite nuclei.
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Chapter 2

Dynamic Reid Formalism and Fit

2.1 Green’s function description of dynamic one-

pion-exchange

The basic process that we plan to incorporate is the possibility of a pion propagating

in its true sense from one nucleon to another. At the same time, we intend to limit

ourselves to this process only, i.e. having only one pion present at any time. It is the

treatment of this dynamic feature over the standard static mechanism that we plan

to investigate with regard to its relevance for in-medium considerations and inelastic

processes. We will therefore continue to represent dynamic two-pion-exchange and

other mechanisms by phenomenology. If the dynamic pion-exchange provides useful

new insights, subsequent implementation in other realistic interactions is straightfor-

ward. A reconsideration of this effect in the context of chiral interactions may then

also be necessary.

The relevant Green’s functions for consideration are the noninteracting free nu-

cleon, treated nonrelativistically,

G(0)(k;E) =
1

E − ε(k) + iη
, (2.1)

6



where spin and isospin indices have been suppressed and (with h̄ = c = 1 throughout)

the energy

ε(k) =
k2

2m
(2.2)

only includes kinetic energy in free space. For the pion we write

Dπ(q;ω) =
1

ω2 −m2
π − q2 + iη

=
1

2
√
m2
π + q2

×
{

1

ω −
√
m2
π + q2 + iη

− 1

ω +
√
m2
π + q2 − iη

}
, (2.3)

decomposing the boson propagator into a forward- and backward-going term and

identifying the free pion energy

επ(q) =
√
m2
π + q2. (2.4)

The dynamic one-pion-exchange contribution to the NN interaction can be generated

by considering the following integration procedure based on the diagram shown in

Fig. 2.1. The appropriate propagator to consider is

Iπ(k,k′; Ω) =

∫
dω

2πi

∫
dω′

2πi
G(0)(k; Ω/2 + ω)G(0)(−k; Ω/2− ω)

×Dπ(k′ − k;ω′ − ω)G(0)(k′; Ω/2 + ω′)G(0)(−k′; Ω/2− ω′). (2.5)

We anticipated working in the center-of-mass of the NN system implying equal

and opposite momenta of the nucleons in the initial and final state. Using the decom-

position of Eq. (2.3), the two energy integrations can be performed straightforwardly

employing contour integration with the result
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Ω/2 + ω, k

ω′ − ω

k′ − k

Ω/2 + ω′, k′

Ω/2 − ω, −k

Ω/2 − ω′, −k′

Figure 2.1: Feynman diagram representing the one-pion exchange contribution.

Iπ(k,k′; Ω) =
1

2επ(|k′ − k|)
1

Ω− ε(k)− ε(−k) + iη

× 1

Ω− ε(k)− ε(−k′)− επ(|k′ − k|) + iη

1

Ω− ε(k′)− ε(−k′) + iη

+
1

2επ(|k′ − k)|
1

Ω− ε(k)− ε(−k) + iη

× 1

Ω− ε(k′)− ε(−k)− επ(|k′ − k|) + iη

1

Ω− ε(k′)− ε(−k′) + iη
. (2.6)

The resulting two time-ordered contributions are shown in Fig. 2.2. Apart from the

prefactor both terms represent two-nucleon propagators for the initial and final state

with an intermediate propagator representing two nucleons and a pion. In free space

the two time-ordered terms are identical and the propagator of Eq. (2.5) reads

Iπ(k,k′; Ω) =
1

επ(|k′ − k|)G
(0)
NN(k; Ω)G

(0)
NNπ(k,k′; Ω)G

(0)
NN(k′; Ω), (2.7)

where

G
(0)
NN(k; Ω) =

1

Ω− 2ε(k) + iη
(2.8)
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is the free two-nucleon propagator and

G
(0)
NNπ(k,k′; Ω) =

1

Ω− ε(k)− ε(k′)− επ(|k′ − k|) + iη
(2.9)

represents the free propagation of two nucleons and a pion. The latter term still

depends on the angle between k and k′ in the free pion energy which also appears as

a factor in Eq. (2.7). This angular dependence is projected out when the partial-wave

basis is employed to describe the NN scattering process.

Alternatively, it is possible to identify the effective energy ω̃ for the pion propa-

gator

Dπ(|k′ − k|; ω̃) =
1

ω̃2 −m2
π − (k′ − k)2 + iη

(2.10)

with

ω̃2 =

(
Ω− k2 + k′2

2m

)√
m2
π + (k − k′)2. (2.11)

In the Born approximation, the propagation energy is equal to the relative energy

and ω̃ vanishes, yielding the conventional static one-pion-exchange contribution. The

dynamic contribution will therefore contribute in second and higher order in the

construction of the NN T -matrix. By isolating the term with one pion in flight,

as in Eq. (2.7), we avoid terms that would generate more than one pion in flight

contributions when we determine the NN T -matrix.

For future applications not involving elastic processes, it is useful to develop the

construction of the T -matrix from the propagator formulation. Since initial and final

state must correspond to two nucleons, it is indeed sufficient to consider the two-time

version of the NN propagator which therefore leads to a single energy variable upon

Fourier transformation [24]. Summing all terms in which at most one pion is in flight

at any time is accomplished as follows

GNN(k,k′; Ω) = G
(0)
NN(k,k′; Ω)

+
1

2

∫
d3q

(2π)3
G

(0)
NN(k; Ω)〈k|(Vπ(Ω) + ∆V )|q〉GNN(q,k′; Ω) (2.12)
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Figure 2.2: Time-ordered contribution to dynamic one-pion-exchange.

shown diagrammatically in Fig. 2.3 with individual terms identified in Fig 2.4. Note

that spin and isospin degrees of freedom have been suppressed to simplify the notation

in Eq. (2.12). The first term on the right side of Eq. (2.12) contains both direct and

exchange contributions with corresponding delta-functions in the associated relative

momenta, whereas the second noninteracting propagator corresponds to Eq. (2.8).

The interaction matrix element denoted by Vπ also contains the spin and isospin

coupling of the pion to the nucleons in addition to the propagator of Eq. (2.10), as

well as the relevant coupling constant. The diagonal dashed line in Figs. 2.3 and 2.4

represents dynamic pion exchange and Eq. (2.12) should be interpreted to iterate any

number of times the process represented in lowest order by Eq. (2.7). To reiterate once

more, the sequence of terms generated by Eq. (2.12) always starts with two nucleons,

then can propagate as an NNπ state but always returns to an NN state before

possibly returning to an NNπ state, while always ending up with two nucleons in the

final state. To emphasize that only the one-pion-exchange part of the NN interaction

is dynamic we have included an explicit ∆V contribution to represent the static part

in Eq. (2.12).

The construction of the corresponding T -matrix from the NN propagator follows

by clipping the initial and final noninteracting NN propagators from the first- and

higher-order terms in Fig. 2.4. The corresponding summation can be rearranged
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GNN (Ω) = + 1
2

GNN (Ω)

V (Ω)

Figure 2.3: Diagrammatic summation of dynamic one-pion-exchange terms relevant
for NN scattering. The dashed diagonal line represents both the dynamic one-pion-
exchange term and additional static contributions.

according to

〈k|T (Ω)|k′〉 = 〈k|(Vπ(Ω) + ∆V )|k′〉

+
1

2

∫
d3q

(2π)3
〈k|(Vπ(Ω) + ∆V )|q〉 G(0)

NN(q; Ω)〈q|T (Ω)|k′〉. (2.13)

We represent this result diagrammatically in Fig. 2.5 and clarify the inverse relation

with GNN in the second equality. The latter result can also be verified diagrammati-

cally [24].

The homogeneous eigenvalue equation for the deuteron bound state is also mod-

ified due to the presence of the energy dependence. The proper derivation of this

result proceeds from Eq. (2.12) and assumes a Lehmann representation of the full

propagator which contains possible bound states. Since the noninteracting propaga-

tor does not contain negative energy poles, a homogeneous eigenvalue problem arises

when one considers energies in the vicinity of the possible bound states. The corre-

sponding eigenvalue equation in momentum space appropriate for the deuteron then
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GNN = + 1
2+

1
2

1
2

+ +...

Figure 2.4: Individual terms summed by Eq. (2.12).

T (Ω) = + 1
2

T (Ω)

= + 1
4 GNN

Figure 2.5: Summation for T -matrix contributions also clarifying the relation with
the NN propagator in the second equality.

becomes [24]

h̄2k2

m
ψn(k(`S)JT ) +

∑
`′

∫
dq q2

2(2π)3
〈k`|V JST (En)|q`′〉 (2.14)

× ψn(q(`′S)JT ) = En ψn(k(`S)JT ).

Note that the projected NN interaction containing the dynamic pion-exchange con-

tribution must be calculated at the deuteron energy which is a general property of

eigenvalue equations derived from energy-dependent potentials [24]. The presence of
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such an energy dependence also changes the normalization of the wave function am-

plitudes [24]. Indeed due to the dynamic pion-exchange term the normalization of the

S- and D-state components of the NN part of the deuteron wave-function changes

on account of the small presence of the not explicitly calculated NNπ contribution.

The corresponding probability for this NNπ contribution is then given by

P (NNπ) =
∑
``′

∫
dq q2

2(2π)3

∫
dq′ q′2

2(2π)3
ψ∗n(q(`S)JT )

× ∂〈q`|V JST (E)|q′`′〉
∂E

∣∣∣∣
En

ψn(q′(`′S)JT ) (2.15)

and obviously leads to a reduction of the traditional D-state probability.

The present treatment of dynamic pion-exchange contains features that are simi-

lar to the treatment presented in Ref. [25], where all meson exchanges are considered

using time-ordered perturbation theory. However, they do not take into account the

probability of an NNπ state [Eq. (2.15)] when they normalize. We do not however

include the pion self-energy contribution and can therefore employ the physical mass

of the nucleon but our result cannot immediately be extended above pion-production

threshold without such terms explicitly considered. Since the current emphasis on

chiral models of the NN interaction [26, 27] suggests a focus on pion-exchange terms,

it is useful to limit the dynamic treatment of the exchange mechanism to its simplest

manifestation as in the present formulation. We further advocate the study of this

effect for the Reid soft-core (RSC) interaction as it has been one of the most employed

realistic interactions in the context of many-body calculations based on diagrammatic

approaches. In addition, it appears that (e, e′p) data favor a depletion of the proton

Fermi sea in 208Pb [65] more in line with those obtained for harder interactions [55]

like the RSC.

2.2 Modification of the Reid soft-core potential

A multitude of nuclear scattering data exist, and although they do not uniquely

specify the form of the forces between nucleons, they do require that the potential
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has certain components. Scattering data clearly require the presence of the one-pion-

exchange contribution, while the quadrupole moment of the deuteron provides further

evidence for the presence of a corresponding pion-exchange tensor force. The short

range of the nuclear interaction (relative to electromagnetic forces) was first suggested

by Yukawa [71] in 1935 proposing the exchange of a massive particle between nucleons.

The corresponding radial dependence is given by

VY (r) = V0
e−µr

µr
. (2.16)

We can interpret this as representing the exchange of a particle of mass µ. In order

to discuss the changes involved with an energy dependent (dynamic) Yukawa interac-

tion, a few features of the energy independent (static) version should be mentioned.

The decomposition of the static Yukawa interaction into partial waves relies on the

expansion of the static propagator

Dπ(k,k′) = − 1

m2
π + (k − k′)2

(2.17)

= − 1

2kk′
1(m2

π+k2+k′2

2kk′
)
− cos θkk′

= − 1

2kk′

∞∑
`=0

(2`+ 1)Q`(z) P`(cos θkk′),

where θkk′ is the angle between k̂ and k̂′,

z =
m2
π + k2 + k′2

2kk′
, (2.18)

and Q` is a Legendre function of the second kind. We can therefore expand the

propagator according to

Dπ(k,k′) =
∞∑
`=0

Dπ
` (k, k′) P`(cos θkk′), (2.19)
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with

Dπ
` (k, k′) =

2`+ 1

2

∫ 1

−1

d cos θkk′P`(cos θkk′) D
π(k,k′) = −2`+ 1

2kk′
Q`(z). (2.20)

The projection of this propagator in a partial-wave basis then yields for the Yukawa

interaction of Eq. (2.16)

〈kLM |VY |k′L′M ′〉 = δLL′δMM ′
(4π)2V0

mπ2kk′
QL(z). (2.21)

As discussed above, we have chosen to study the effects of dynamic pion-exchange by

modifying the Reid soft-core (RSC) interaction [54], but in principle the procedure

can be adapted to the one-pion-exchange term of any realistic interaction.

2.2.1 One-pion-exchange potential

Before discussing the Reid potential, it will be useful to provide more details of the

one-pion-exchange potential (OPEP). In momentum space, this potential has three

parts, which we label A1, A2, and A3 respectively. Defining q ≡ k− k′, we can write

the OPEP as follows:

Vπ = − f 2
π

m2
π

[
1

3

S12(q̂)q2τ1 · τ2
m2
π + q2

+
1

3
σ1 · σ2τ1 · τ2 −

1

3

m2
πσ1 · σ2τ1 · τ2
m2
π + q2

]
. (2.22)

Here, the term S12(q̂) is the tensor operator given by

S12(q) = 3σ1 · (q)σ2 · (q)− q2σ1 · σ2, (2.23)

which possibly connects states of different orbital angular momentum for total spin

S = 1 states, if allowed by parity conservation. For reference,
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A1 = −1

3

S12(q̂)q2τ1 · τ2
m2
π + q2

(2.24)

A2 = −1

3
σ1 · σ2τ1 · τ2 (2.25)

A3 =
1

3

m2
πσ1 · σ2τ1 · τ2
m2
π + q2

, (2.26)

The second term, A2, is a constant, and in position space represents only a delta

function contact force, which was never included in the original RSC. Let us then

consider the central term, A3 which is diagonal in angular momentum. The ba-

sic numerical approach may be easily generalized to the coupled-channel tensor force.

Recall the expansion of the energy independent propagator in terms of Legendre Func-

tions and Legendre Polynomials (Eq. 2.19). If we want to select a particular value of

angular momentum L, we can easily project it by multiplying by PL(cos(θkk′)) and

integrating. Because of the orthogonality of the Legendre polynomials [2], only the

l = L term will survive the integration as in Eq. (2.20) for the static case . We see

that we can derive the expression for a particular partial wave by projection. This

result can also be derived by performing a Fourier-Bessel transform on the position

space representation of the Yukawa potential [12]. Our numerical scheme is to per-

form the same projection on the energy-dependent Yukawa potentials and express

the partial waves in terms of energy dependent Extended Legendre Functions (ELFs)

Q̃L(k, k′; Ω) rather than the Legendre functions QL(k, k′). This treatment of the ELFs

is presented in section 2.2.3.

2.2.2 Reid soft-core

Although we could in principle apply this formalism to any Yukawa type potential,

we chose the Reid soft-core (RSC) as a model Yukawa type interaction because of

its soft (but not too soft) core, and its phenomenological treatment of higher meson

mass and multiple-pion exchange. The RSC was a popular potential in the late six-

ties, which was fit directly to phase shift analyses [5]. This potential was constructed
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with separate parameters for each partial wave. For illustration purposes, we provide

below two examples of the type of fit used by Reid (in position space). We retain the

notation of Reid, who uses e.g. V (1S0) to indicate the 1S0 channel of the potential in

position space with the explicit x dependence understood. The full RSC is printed

for reference in Appendix A.1.

V (1S0) = −he
−x

x
− 1650.6

e−4x

x
+ 6484.2

e−7x

x
(2.27)

where h = 10.463 MeV. In the RSC, x = µr where µ is the average pion mass

in appropriate units mπc
2/h̄c = 0.70fm−1. Thus, for each partial wave the RSC

uses only phenomenological Yukawa terms with multiples of the pion mass. Other,

heavier meson masses do not appear explicitly in the potential, but rather are handled

phenomenologically with simulated multiple-pion exchange.

For the coupled channels (stemming from the presence of the tensor force) Reid

has the following:

V (3S1 − 3D1) = VC + VTS12 + VLSL · S (2.28)

where

VC = h
e−x

x
+ 105.468

e−2x

x
− 3187.8

e−4x

x
+ 9924.3

e−6x

x
(2.29)

VT = −h
[(

1 +
3

x
+

3

x2

)
e−x

x
−
(

12

x
+

3

x2

)
e−4x

x

]
+351.77

e−4x

x
− 1673.5

e−6x

x
(2.30)

VLS = 708.91
e−4x

x
− 2713.1

e−6x

x
. (2.31)

The complicated structure of the tensor force is due in part to the presence of the

tensor operator, and in part to the need to regulate the potential for small x. In

momentum space, the Yukawa terms are replaced by Legendre functions as indicated
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above [see Eq. (2.21)]. In our dynamic model, we add energy dependence only to

the pion terms (all those attached to the coupling constant h), while keeping all of

the phenomenological higher mass terms static. After explaining the formalism of

the dynamic pion, we will see that we were easily able to refit the dynamic potential

often only changing two of the fit parameters in Reid’s original potential.

2.2.3 Dynamic one-pion-exchange potential

We will now provide some additional details for the implementation of the dynamic

one-pion-exchange interaction in a partial-wave basis. In momentum space, this non-

relativistic contribution can be decomposed according to

Vπ(k,k′; Ω) =
1

3

f 2
π

m2
π

[
S12(q)τ1 · τ2

ω̃2 −m2
π − q2 + iη

− m2
πσ1 · σ2τ1 · τ2

ω̃2 −m2
π − q2 + iη

]
, (2.32)

where ω̃ is given by Eq. (2.11) and q = k′ − k. For the static version, the energy ω̃

is zero, allowing no transfer of energy by the pion. This potential corresponds to the

addition of an energy transfer to A1 and A3 from Eq. (2.26). The term which leads to

a δ-function in coordinate space (A2) has been left out, since it is not considered in

the original RSC either. The main difference between the dynamic and static version

of the tensor and Yukawa term lies of course in the denominator representing the

pion propagator. The projection onto angular momentum states therefore requires

the consideration of the angular dependence of the pion propagator

Dπ(k,k′; Ω) =
1

ω̃2 −m2
π − q2 + iη

=
1

2kk′
1

β
√
z − cos θkk′ − (z − cos θkk′) + iη

, (2.33)

where ω̃ was defined in Eq. (2.11), z in Eq. (2.18), and the energy dependence is

completely contained in β ≡ (Ω− (k2 + k′2)/2m)) /
√

2kk′. It is therefore possible to

project this propagator in complete analogy to Eq. (2.19). The required integration

therefore involves
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Dπ
` (k, k′; Ω) =

2`+ 1

2

∫ 1

−1

d cos θkk′P`(cos θkk′) D
π(k,k′; Ω)

≡ −2`+ 1

2kk′
Q̃`(z; Ω), (2.34)

defining Q̃`, the energy-dependent generalization of the Legendre function Q`. With

the introduction of Q̃`(z; Ω) the problem of generating matrix elements of the Yukawa

and tensor terms of the dynamic pion-exchange reduces to the same exercise as for

the static version with Q̃` replacing Q`. To generate the energy-dependent matrix

elements we can employ a numerical treatment of Eq. (2.34). This integral can also be

performed analytically, although the usefulness of this analytical treatment is reduced

by the presence of divergent terms.

The following are the steps that generate an analytical expression for the partial-

wave projected dynamic one-pion-exchange contribution. We start with the propa-

gator given in the form of Eq. (2.33) which exhibits the relevant angular dependence.

Before exploring how this modified propagator changes the partial-wave expansion,

we point out a few features. First, the energy dependence is entirely contained in β,

which is zero for on-shell values of the energy Ω. We see therefore that in the on-shell

limit (β → 0) the propagator reduces to the static one. The effects of adding dynamic

pions will therefore strictly be an off-shell effect. Second, we see that the dependence

on cos θkk′ appears inside a square root. This will change the structure of the integral

for the projection with Legendre polynomials.

The integral in Eq. (2.34) can most easily be performed by making the substitu-

tion q =
√
z − cos θ yielding

Dπ
` (k, k′; Ω) = −2`+ 1

2kk′

∫ √z+1

√
z−1

P`(z − q2)dq

q − β − iη . (2.35)

We can see from this form that the numerator will be a polynomial in powers of

q2, so we will need to perform for each value of angular momentum ` integrals of the

form
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∫ b

a

qn

q − β − iη = ℘

∫ b

a

qn

q − β +

∫ b

a

iπδ(q − β)qn (2.36)

=
n∑
j=1

(
n

j

)
qj

j
βn−j

∣∣∣∣b−β
a−β

+ βn ln

(∣∣∣∣ b− βa− β

∣∣∣∣)+ iπβn.

The imaginary part only occurs if we integrate across a pole (a < β < b). The pole

occurs whenever the energy is greater than the pion-production threshold, so in a

natural way becomes complex allowing for pion production and complex phase shifts.

We can now expand the Legendre polynomials in powers of q and integrate. Using

the expansion of P` given in Ref. [2], we find

P`(z − q2) =

[
`
2

]∑
k=0

(−1)k(2`− 2k)!

2`(`− k)!(`− 2k)!
(z − q2)`−2k, (2.37)

where
[
`
2

]
= `

2
if ` is even, and

[
`
2

]
= `−1

2
if ` is odd. Using these results, we obtain

Dπ
` (k, k′; Ω) = −2`+ 1

2kk′

[
`
2

]∑
n=0

(−1)n(2`− 2n)!

2`(`− n)!(`− 2n)!

`−2n∑
j=0

(
`− 2n

j

)
zj(−1)`−2n−j

(
(1− δ2`−4n−2j,0)

×
2`−4n−2j∑

i=1

(
(q − β)iβ2`−4n−2j

(
2`−4n−2j

i

)
i

)

+β2`−4n−2j ln |q − β|+ iπβ2`−4n−2j

)∣∣∣∣∣
q=
√
z+1

q=
√
z−1

, (2.38)

where it is understood that the imaginary part only exists for energies above pion-

production threshold. A few features of these functions should be noted.
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1. Taking the limit β → 0, which corresponds to turning off the energy dependence,

or considering on-shell values, generates the familiar Legendre functions Q`(z)

up to a factor.

2. The individual powers of z and β have small k, k′ behavior like 1
kk′ . These terms

are each divergent for small k, k′ but the sum of all terms is well behaved. The

divergences become worse for larger `, with the worst one generally being of the

form ( 1
kk′ )

2`+1. This is a feature also encountered for the Q`(z).

3. As ` increases, the number of terms grows rapidly. Because each of these terms

is divergent for small k or k′, and the number of terms becomes large, the

cancellation of terms becomes numerically difficult to control. This makes the

analytical expression cumbersome to work with numerically for large `, so for

large ` it is convenient to solve Eq. (2.34) through numerical integration.

The analytical solution is useful for exploring the features of this interaction, and

provides a useful comparison with our numerical approach. For low ` the analytical

expression is sufficiently stable to use for fitting phase shift data. Figure 2.6 provides

a 3-d plot that illustrates the dependence on k, k′ of Q̃`(k, k
′,Ω) for ` = 0 above

pion-production threshold.

Due to the increasing instability of our analytical projection for increasing `, we

find it expedient to perform the integral in Eq. (2.34) numerically. Using only twelve

points for energies below pion-production threshold, and a Gaussian quadrature, we

find results that agree with the analytic expression (in regimes where that expression

is stable) to high precision. The numerical projection is perfectly stable for small k

and k′. However, for energies above pion-production threshold, integration across the

pion pole leads to some difficulty. From the analytic expression plotted in Fig. 2.6

we observe a sharp cusp-like structure occurring in locations that vary with energy

in a roughly parabolic shape in the k − k′ plane. We smoothed the sharpness of this

structure by including a 5 MeV width ∆ with the prescription β → β+i∆ for energies

above pion-production threshold. We also found it necessary to increase the number

of Gaussian quadrature points to as many as 96 for these energies to assure stability

of the projection above pion-production threshold.
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2.3 Fit to data

To assess the effects of adding energy dependence, we fit the parameters of our po-

tential to the original np phase shift analysis of Arndt and MacGregor [5]. We could

easily fit to more modern data sets, but then it would be difficult to assess whether

the effects come from fitting to better data, or the energy dependence itself. We

illustrate later in Fig. 2.10 that such a fit to more modern data is possible, although

such a refit is beyond the scope of the present work.

2.3.1 Phase shift details

For uncoupled channels, we use the Lippmann-Schwinger Equation [24]:

〈k`|T JST (k0)|k′`′〉 = 〈k`|V JST |k′`′〉 (2.39)

+
m

2h̄2

∑
`′′

∫
dq q2

(2π)3
〈k`|V JST |q`′′〉 1

k2
0 − q2 + iη

〈q`′′|T JSTpp (k0)|k′`′〉.

The on-shell value of T is related to the phase shifts as follows:

〈k0`|SJST (k0)|k0`〉 =

[
1− 2πi

(
mk0

2h̄2

)
〈k0`|T JST (k0)|k0`〉

]
≡ e2iδJST` , (2.40)

and in practice we use

tan δJST` =
Im 〈k0`|T JST (k0)|k0`〉
Re 〈k0`|T JST (k0)|k0`〉

. (2.41)

For the coupled-channel Lippmann-Schwinger problem, we have non-diagonal S-

matrix elements given by:

〈k0`|SJST (k0)|k0`
′〉 =

[
δ`,`′ − 2πi

(
mk0

2h̄2

)
〈k0`|T JST (k0)|k0`

′〉
]
, (2.42)
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where we can diagonalize the S-matrix using the real matrix A with:

〈k0`|SJST (k0)|k0`
′〉 =

∑
α=1,2

〈`|AJ(k0)|α〉e2iδJSTα 〈α|AJ(k0)|`′〉. (2.43)

A is related to the mixing angle εJ as by

〈`|AJ(k0)|α〉 =

(
cos εJ sin εJ

− sin εJ cos εJ

)
. (2.44)

This mixing angle represents the amount that the L1 = J − 1 and L2 = J + 1 states

mix in the wave functions of the scattered state. The terms δJSTα are referred to

as eigen phases, and in practice these must be related to the more experimentally

accessible bar phases. The relationships between these two quantities is given by [12]

δ̄L1 + δ̄L2 = δL1 + δL2 (2.45)

sin(δ̄L1 − δ̄L2) =
tan 2ε̄J
tan 2εJ

(2.46)

sin(δL1 − δL2) =
sin 2ε̄j
sin 2εJ

. (2.47)

Since analyses of experimental data are usually framed in terms of bar phases, we

transformed our eigen phases into bar phase to compare with the (bar) phase shift

analysis of Arndt and MacGregor, to which Reid originally fit his soft-core potential.

2.4 Results

Table 2.1 compares the χ2/datum of our dynamic refit Dynamic Reid 1 (DR1 found

in Appendix. A.2) to the partial-wave analysis of Arndt and MacGregor [5] and the

original RSC potentials.

We were able to get χ2/datum similar and generally better than the RSC po-

tential itself. We performed the fitting using a gradient search method, taking as

our parameters the coefficients of the higher mass Yukawa terms in the RSC. Each

single-channel partial wave was fitted separately, while for the coupled channels the

J + 1 and J − 1 partial waves and mixing angle εJ were fit simultaneously. Plots
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Table 2.1: χ2/datum for the RSC and DR1. The first set of six partial waves are the
uncoupled channels which are fit independently. The two sets of partial waves at the
bottom are coupled channels, and include the mixing angles εJ . Each set of coupled
channels must be fit simultaneously, while with the 3S1 -3D1 channel there is the
additional constraint that one must find the proper binding energy for the deuteron.

Partial
Wave RSC DR1

1S0 2.31 0.94
1P1 0.94 0.75
1D2 0.76 0.72
3P0 2.47 1.59
3P1 1.83 0.90
3D2 1.04 0.77

3S1 0.50 1.00
3D1 1.31 0.68
ε1 0.45 0.062

3P2 2.90 0.70
3F2 1.09 0.92
ε2 0.40 0.073

comparing our fit to Reid’s and the original data are seen in Fig. 2.7 as well as in

App. A.3.

In particular, for the deuteron channel (3S1 − 3D1) we had the additional re-

quirement that we fit the deuteron binding energy. For this partial wave, after min-

imizing the χ2 we found that our potential, when evaluated at the correct binding

energy, yielded a slightly smaller binding energy. By making the potential slightly

more attractive, it was easy to tune the potential to the correct binding energy

Eb = −2.2246MeV while producing a negligible change to the χ2. In other words,

fitting the phase shift in a natural way leads to the correct binding energy, as it should

since the presence of the bound state is reflected in the phase shift. We should also

point out that in the case of the deuteron, we varied only four (three central and

one tensor) of the possible seven parameters to get our fit. No doubt we could have
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varied more parameters to improve the fit, but we judged our χ2 already sufficiently

low and of similar quality to the RSC potential. When we fit this potential to modern

data with smaller error bars there are more parameters available to vary to ensure

a high quality fit. We do notice that our model, although fitting the same data,

yields a significantly smaller D-state probability. In Fig. 2.8, we can see this reflected

in the reduced amplitude of the wave functions, relative to those produced by the

RSC. Deuteron data are tabulated below in Table 2.2. We can see how dynamical

effects influence the long-range behavior of the pion by considering how the higher

mass (static) terms of our potential must be modified to maintain a good fit to the

scattering data. If we split the potential into a pion piece plus other terms (O.T.) as

follows: V = Vpi + VO.T., we can look at how VO.T. behaves in both the RSC and the

DR1. In Fig. 2.9, we have plotted the VO.T. for both the DR1 and the RSC, as well

as the respective difference for the 3S1 partial wave. In this plot, we see that for the

RSC, the VO.T. is attractive at short range (not plotted) but becomes repulsive at long

range, while for the DR1 it remains attractive at both long and short range. This

indicates that in the RSC, the higher-mass terms serve to moderate the strength of

the pion at long-range, while for the DR1 the dynamical effects provide this modera-

tion in strength themselves. A similar trend is observed for the 1S0 channel, and we

observe that fitting the potential to more modern data does not significantly affect

the plot.

As we will demonstrate, our method is fairly successful at fitting more modern

analyses such as the Partial Wave Analysis (PWA) of the Nijmegen group [60], so that

Table 2.2: Deuteron data for the RSC and DR1. A clear D-state probability reduction
is observed, with minimal change to the S-state probability. The reduction in D-state
probability almost perfectly corresponds to the probability of finding an NNπ state.

Observable RSC DR1
D-state Probability 6.47% 4.92%
S-state Probability 93.53% 93.40%
NNπ Probability 0% 1.68%
Binding Energy -2.2232 -2.2246
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if the dynamic pion model can be shown to aid in understanding inelastic scattering

and in medium effects, we could improve this model by including electromagnetic

terms and fitting to proton-proton (pp) data as well. For illustrative purposes only,

we also provide below (Fig. 2.10) plots of the Dynamic Reid 2 (DR2) refit to the PWA

for the isovector np data. Larger plots are available for comparison in App. A.4. No

error bars are provided with these PWA numbers, so we cannot quote a χ2 but we

can qualitatively show that a reasonable fit is attainable. This fit to more modern

data should allow us in the future to assess how much of the success of our dynamic

model with inelastic scattering data is due to the addition of energy dependence, and

how much is due to the quality of data to which the potential has been fit.

2.4.1 Off-shell T -matrix

Also noteworthy to point out are the effects of the inclusion of energy dependence on

the off-shell T -matrix elements. As we can see in Fig. 2.11, The energy dependence

slightly suppresses both the real and imaginary parts of the T -matrix at low energy.

As the energy increases, the discrepancy between the imaginary parts of both static

and dynamic potentials is minimal, but the real part suffers drastic changes and

gains a double cusp-like structure at higher energies, as seen in Fig. 2.12. This

structure corresponds to the double cusp-like structure in the potential, which has

been smoothed out by the inclusion of a 5 MeV pion width. This altered T -matrix will

be shown in Chapter 3 to have some consequences, however slight, in understanding

inelastic pp scattering experiments.

2.5 Conclusions and discussion

We see that modifying the RSC to include dynamic pions is not only possible but

can be done with a minimal changing of the original parameters. We have offered

a prescription that would allow the modification of any modern static interaction to

allow dynamic propagation of pions. One of the consequences of replacing static pions

with their dynamic counterparts is a reduced D-state probability for the deuteron,
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accompanied by a small but non-negligible NNπ component. We also see a signifi-

cant difference between the static and dynamic T -matrices off-shell, which begs an

examination of scenarios where off-shell elements might be influential. Our potential

DR1 will allow us in the chapters to come to assess the importance and consequences

of dynamic pion propagation in a variety of contexts, beginning with inelastic (p, 2p)

scattering from light nuclei (Ch. 3), and concluding with Brueckner-Hartree-Fock

nuclear-matter calculations (Ch. 4).
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Figure 2.6: Plot of Q̃`=0(k, k′, 300MeV ). The cusp like structures enclose a parabolic
region that moves away from the origin with increasing energy. This structure is very
sharp and difficult to integrate across numerically. Note that the jaggedness of edges
is an artifact of the plotting software.
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Figure 2.8: k-space wave-functions multiplied by k for the deuteron. Solid blue curves
are RSC wave functions, while dash-dash-dotted red curves are those of the DR1. The
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2 2.5 3

r/0.7 (fm)
-2

-1.5

-1

-0.5

0

0.5

V
 (M

eV
)

RSC  O.T.
DReid O.T.
DReid O.T.  -  RSC  O.T.

Figure 2.9: Plot of central part of VO.T for the 3S1 channel. Solid (red) curve is for
RSC. Dashed (green) is for DR1, and dotted (blue) is of the difference (VO.T.−DR1)-
(VO.T.−RSC).

30



0 100 200 300
-20

0

20

40

60

δ 
(d

eg
re

es
)

0 100 200 300
0

2

4

6

8

10

12

0 100 200 300
-20

-10

0

10

20

0 100 200 300
-40

-30

-20

-10

0

δ 
(d

eg
re

es
)

0 100 200 300
0

5

10

15

20

0 100 200 300
0

0.5

1

1.5

2

0 100 200 300
-3

-2.5

-2

-1.5

-1

-0.5

0

δ 
(d

eg
re

es
)

0 100 200 300
0

0.5

1

0 100 200 300
0

0.5

1

1
S

0

1
D

2

3
P

0

3
F

2

3
P

2

3
P

1

ε2

Figure 2.10: Plot of DR2 fit to partial-wave analysis isovector phase shifts and mixing
angle. Solid black lines are the PWA. DR2 is represented by red dashed lines, while
the other curves for comparison are Nijm 1 (orange dots), Nijm 2 (green dashes),
Reid 93 (blue long dashes), and Nijm 93 (yellow dash-dots).

31



0 1 2 3 4 5
krel (fm

-1)
200

150

100

50

0

T(
k r,k

r) (
 M

eV
 fm

3 )
Im{T-Reid}
Im{T-Dreid}
Re{T-DReid}
Re{T-Reid}

Figure 2.11: T -matrix elements for RSC and DR1 calculated at an energy of 1 MeV
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MeV (Lab).

32



Chapter 3

Inelastic Scattering

3.1 Two-body Ay puzzle

The dynamic potential detailed in Ch. 2 necessarily agrees on-shell with the RSC

and any other phase-shift equivalent potentials. Therefore any consequences of using

the dynamic interaction must be seen in experimental arrangements that are sensi-

tive to off-shell T -matrix elements. Probably the simplest such experimental set-up is

inelastic (pp) scattering. One such project [49] involves a series of direct (p, 2p) exper-

iments in which the polarization variable Ay has been measured for proton-induced

proton knock-out for a wide range of light nuclei. Due to the binding energies of

the removed protons, these experiments are necessarily inelastic and should therefore

probe off-shell aspects of the T -matrix . Interestingly, a puzzle has arisen for this

set of experiments. Compared to free pp scattering it seems that Ay is reduced by

increasing amounts as the size of the target nucleus increases. So far, attempts at

explaining this reduction using experimental (on-shell) NN T -matrix elements have

been unsatisfactory. In this chapter we will first give an overview of this new two-

body Ay puzzle, and why we think that a dynamic NN interaction might be better

suited for understanding these experiments.

Ay is the difference between y-direction spin up and spin down differential cross

section measurements normalized by total differential cross section. It is defined by
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Ay =
σy(↑)− σy(↓)
σy(↑) + σy(↓)

. (3.1)

In a series of direct 1s1/2 (where the principle quantum number starts with 1) proton

knockout measurements at the Research Center for Nuclear Physics (RCNP) of Osaka

University, Ay was measured for a variety of nuclei with fixed proton beam energy of

Elab = 392 MeV. Incoming spin was polarized, and outgoing protons were detected

using two spectrometers. The Grand Raiden (GR) spectrometer was held at a fixed

angle of 25.5 degrees, while the Large Acceptance Spectrometer (LAS) was placed at

angles which were varied to control the kinematics. By controlling the angle of the

LAS, the collisions were chosen such that the remaining nucleus did not recoil. These

measurements showed a reduction of Ay relative to free proton-proton scattering.

For many nuclei, this reduction in Ay seemed (Fig. 3.1) to correlate to effective mean

density. However, 3He and 4He did not fit this trend. In the second panel of Fig. 3.1 we

see Ay plotted versus 1s1/2 removal energy Es, and see a much clearer trend. Attempts

have been made to explain and model this reduction in Ay using both the plane-

wave impulse approximation (PWIA) and the distorted-wave impulse approximation

(DWIA), but both of these methods utilize experimental (on-shell) NN T -matrix

elements. However, the kinematics are such that there is explicit energy transfer,

and so we maintain that it is more appropriate to use a dynamic interaction like that

detailed in Ch. 2 to describe these data. An example of the magnitude of energy

that can be transferred in these experiments can be seen in Table 3.1. In the case

of 12C there is an energy transfer of 124 MeV (direct) or 304 MeV (exchange) in

the lab frame. Because these amounts are non-negligible, it is appropriate to explore

the construction of an inelastic T -matrix using the dynamic potential DR1 in the

PWIA so that this energy transfer can be explicitly built in from the beginning.

Distorted-wave effects will not be considered in the present work.
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FIG. 2. Experimental analyzing powers for (p, 2p) reactions
from various nuclei plotted as a function of the ratio of the effective
mean density, defined in Ref. [5], to the saturation density ρ̄/ρ0 (left
panel) and also plotted as a function of the separation energy ES
(right panel). The numbers next to data points indicate target mass
numbers. For the right plot, the values of separation energies for the
targets heavier than 4He were taken from Ref. [1]; these are consistent
with the integrated regions of ES listed in Table I.

In a previous paper, the Ay data were plotted as a function
of the effective mean density [5] and it was shown that the
suppression of Ay relative to the value for p-p scattering in-
creases monotonically as the effective mean density increases.
For comparative purposes, we display our data in a similar
fashion in the left panel of Fig. 2. It is seen that our data follow
a similar trend to that reported in Ref. [5] for most target
nuclei but data for 3He and 4He nuclei significantly deviate
from others. This plot suggests that the concept of effective
mean density is not applicable for the lightest nuclei such as
3He and 4He, or alternatively it may suggest that the effective
mean density is not the proper key parameter that characterizes
the Ay suppression for these light targets.

The right panel in Fig. 2 displays the Ay data as a function
of the separation energies ES of the knocked-out protons. It is
clearly seen that the data are much better correlated with ES

than with the effective mean density. This naively implies that
the Q value of the reaction, namely the difference between
the incident and final two-body energies, could be the key
parameter that characterizes the suppression of Ay .

As already mentioned, it is known that relativistic effects
cause a significant suppression of Ay for p-p scattering in
the nuclear medium. We now examine the role of relativistic
corrections for describing the Ay suppression for 1s1/2 proton
knockout from the targets of interest. For this purpose, we com-
pare the experimental data with several kinds of calculations,
namely (a) the nonrelativistic plane-wave (NRPWIA) and
distorted-wave (NRDWIA) model calculations, (b) NRDWIA
calculations with relativistic corrections associated with the
introduction of two different types of effective nucleon
masses, and (c) full relativistic plane-wave (RPWIA) and
distorted-wave (RDWIA) calculations based on the impulse
approximation. In all of these calculations, the bound-state
wave functions of the protons to be knocked out were based
on the relativistic Hartree approximation using the computer
code TIMORA [18]. The optical potentials were obtained in

the relativistic impulse approximation using the code FOLDER,
whereby scalar and vector densities, obtained with TIMORA,
are folded with the Horowitz-Love-Franey representation of
the NN amplitudes [18]. Even though this approximation may
not be reliable for low-energy protons in the final channels,
calculated Ay values for (p, 2p) reactions are insensitive to
the potential parameters [10,19]. For the nonrelativistic bound-
state wave functions, we employed the upper component of
the four-component relativistic bound-state wave function.
For calculating the nonrelativistic scattering wave functions,
we used Schrödinger equivalent optical potentials deduced
from the relativistic scalar and vector optical potentials. The
NRPWIA and NRDWIA predictions were based on the code
THREEDEE [20], and some descriptions of the relativistic cal-
culations are found in Refs. [10,21]. All of these calculations
were performed with the zero-range approximation for the NN
interaction.

In Fig. 3 we compare various model predictions with
the analyzing power data. The thick solid line and the
dashed line in the figure are the results of NRPWIA and
NRDWIA predictions, respectively. The NRPWIA calculation
is extended to ES = 0, which corresponds to the p-p scattering
value given by a phase shift analysis of free p-p scattering [22].
All DWIA calculations were performed for nuclei ranging
from 4He to 19F. Because of shifts of the two-body kinematics
caused by finite Q values of the reactions, these calculations
display some dependence of Ay on ES , but the experimental
Ay values are much smaller than these theoretical predictions.

Since there is a good correlation between the Ay data and the
separation energy, or equivalently the Q value of the reaction,
one may speculate that the inclusion of the energy off-shell
effect of the NN interaction could possibly explain the Ay
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FIG. 3. Comparison of the experimental analyzing power Ay data
to various model predictions plotted as functions of the separation
energies. The thick solid (dashed) line represents a nonrelativistic
PWIA (DWIA) prediction. The dotted line and the dotted-dashed
line are Schödinger equivalent DWIA calculations made using radial-
dependent and radial-independent effective-mass-type corrections
to the NN interaction, respectively. The thin solid line and the
dashed line indicate the results of full relativistic PWIA and DWIA
predictions, respectively. The short horizontal lines in the right side
correspond to calculations for a 40Ca target (see the text).

041602-3

Figure 3.1: Ay for a series of direct 1s1/2 removal (p,2p) reactions versus effective
mean density(left) and separation energy (right). Numbers indicate nucleon number
A. Figure taken from [49].

3.2 Computation of Ay

In this section we first provide the details of the standard treatment for computing Ay

using a partial-wave basis. Our approach differs from the standard one in that we use

T -matrix elements generated from our dynamic potential, rather than experimentally

determined (on-shell) T -matrix elements. Additionally, because we generate the full

T -matrix, we can use the appropriate off-shell element based on experimental kine-

matics. Using as our basis states |p1s1ms1τ1mτ1 ;p2s2ms2τ2mτ2〉 with all spins in the

z-direction, we define e.g. σy(↑) as given by Eq. (3.1) as follows.

σy(↑) =∑
ms2m

′
s1

m′s2

1
2

∣∣〈p1
1
2
↑y τ1mτ1 ;p2

1
2
ms2τ2mτ2 ; |T |p′1 1

2
m′s1τ

′
1m
′
τ1

;p′2
1
2
m′s2τ

′
2m
′
τ2
〉
∣∣2 (3.2)
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Table 3.1: Kinematics for direct recoilless 1s1/2 removal in 12C (p, 2p) where Ep
denotes beam energy and Ep′ , Ep′′ , and Eα denote respectively the two outgoing
proton energies, and the energy of the excited hole-state.

Lab
Energy

Quantity (MeV)
Ep 392
Ep′ 268
Ep′′ 88
Eα -36

where in the preceding the spin projections m′s1 , ms2 , and m′s2 are eigenstates of the

z-direction spin operator sz and

| ↑y〉 =
1√
2

(| ↑z〉+ i| ↓z〉), (3.3)

with a similar epression for σy(↓). The task then becomes to compute T -matrix

elements of the form (suppressing the proton spins s1 and s2 and isospins τ1 and τ2) :

∣∣〈p1ms1mτ1 ;p2ms2mτ2|T |p′1m′s1m′τ1 ;p′2m′s2m′τ2〉
∣∣2 . (3.4)

We can us the following expansion [24]

|p1ms1mτ1 ;p2ms2mτ2〉 =

1√
2

∑
SMSTMT
LMLJMJ

(1
2
ms1

1
2
ms2|SMS)(1

2
mτ1

1
2
mτ2|TMT )Y ∗LML

(k̂)

(LMLSMS|JMJ)(1− (−1)L+S+T )|Pp(LS)JMJTMT ) (3.5)

to express the T -matrix in the partial-wave basis. We can further simplify by noting

that for each partial wave, the T -matrix is proportional to δJ,J ′δMJ ,M
′
J
δS,S′ . In ad-

dition, we recall that in the present chapter we are interested only in proton-proton

scattering and so consider only T = 1 channels. All of the isospin Clebsch-Gordon

36



coefficients are therefore equal to unity, and we may suppress them with no loss of

generality. Taking p̂ = ẑ where p = 1
2
(p1 − p2) is the relative momentum, we can

also simplify the spherical harmonics that will appear in our final expression for each

partial wave. The T -matrix contribution is given by

Tz(ms1) = 1
2

∑
ms2m

′
s1

m′s2

∑
L J
L′S

∑
MSMS′
MLML′

(1
2
ms1

1
2
ms2|SMS)(1

2
m′s1

1
2
m′s2|SM ′

S)

(LMLSMS|JMJ)(L′0SM ′
S|JMJ)Y ∗L′0(ẑ)YLML

(θ, φ)

TL,J ,S(1− (−1)L+S+T )(1− (−1)L
′+S+T )i(L−L

′). (3.6)

In the preceding formula, the phase i(L−L
′) comes from a convention for our definition

of T . This expression for Tz(ms1) can be further simplified using the properties

of the Clebsch-Gordon coefficients. The third and fourth such coefficients indicate

ML = M ′
S − MS. In addition, since the tensor force can only change the angular

momentum L by 2, the antisymmetry factors (1− (−1)L+S+T )(1− (−1)L
′+S+T ) both

contain either odd or even exponents for a given channel and we can reduce their

number by squaring one of them and removing the other, yielding

Tz(ms1) = 1
2

∑
ms2m

′
s1

m′s2

∑
L J
L′S

∑
MSMS′
ML′

(1
2
ms1

1
2
ms2|SMS)(1

2
m′s1

1
2
ms′2|SM

′
S)

(L(M ′
S −MS)SMS|JMJ)(L′0SM ′

S|JMJ)Y ∗L′0(ẑ)

YL(M ′S−MS)(θ, φ)TL,J ,S(1− (−1)L+S+T )2i(L−L
′). (3.7)

Now that we have an expression for differential cross section in the z-direction, we

can easily obtain an expression for σy using the following expressions that result from

37



Eq. (3.3) and inserting them into Eq. (3.2)

Ty(↑) =
1√
2

(Tz(↑) + iTz(↑)) (3.8)

Ty(↑) =
1√
2

(Tz(↑)− iTz(↑)). (3.9)

Traditionally [49] this strategy is employed using the on-shell values of the T -

matrix generated by solving the Lippman-Schwinger equation for free proton-proton

scattering [Eqs. (2.41) and (2.42)], or using the on-shell T -matrix elements gener-

ated by phase-shift analyses of experimental elastic proton-proton scattering data.

However, these on-shell elements are not entirely appropriate since some energy is ex-

plicitly transferred to the nucleus in these experiments. Furthermore, this T -matrix is

generated by summing ladder diagrams that are more appropriate for elastic proton-

proton scattering that for an inelastic (p, 2p) process. A more appropriate strategy

for modeling this type of experiment is discussed in subsection 3.3.

3.3 Inelastic T -matrix

We construct an inelastic scattering T -matrix for a single incoming particle and an

outgoing two-particle one-shole (2p1h) state as seen in Fig. 3.2. This diagrammatic

equation involves two different T -matrices. The T -matrix on the left (yellow box) is

the inelastic T -matrix which represents the full ladder summation for a (p, 2p) process

Figure 3.2: Full inelastic T -matrix diagram for inelastic (p, 2p) process.
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where a free nucleon enters a nucleus and two nucleons emerge. We will see during

this discussion that there is an explicit dependence upon separation energy Es = −Eα
where Eα is the energy of the excited hole. It is this dependence that could shed some

light on the Es dependence observed in Ay for these inelastic knockout experiments.

The T -matrix in the second term on the right (green box) is the full elastic T -matrix

generated as described in chapter 2, but with a reduction in energy at which it is

evaluated by an amount equal to the separation energy, as we shall see when we

evaluate the integration over external and loop energies. Evaluation of the integral

equation for the inelastic T -matrix involves evaluating both terms on the right hand

side of the diagram separately. We wish to get a sense of how the pion behaves when it

is allowed to transfer energy in an inelastic (p, 2p) process, so will begin by evaluating

the lowest order term.

3.3.1 Lowest-order inelastic (p, 2p)

This lowest-order process is depicted in Fig. 3.3 including the relevant energies and

momenta. The relevant propagator for this process is given by

Ĩπ(p,p′,p′′, α;E) =

∫
dE ′

2πi

∫
dE ′′

2πi
G(0)(p;E) (3.10)

× Dπ(p− p′;E − E ′)G(0)(p′;E ′)G(0)(p′′;E ′′)G(0)(α;E ′ + E ′′ − E),

where

G(0)(α;E) =
θ(F − α)

E − Eα − iη
(3.11)

represents the propagation of a hole, signified by the step function, in the single-

particle (sp) state α. For simplicity we assume that the energies of the projectile and

detected protons are sufficiently high that nonorthogonality with the sp state α is

irrelevant. The energy integrations in Eq. (3.10) can be performed as for Eq. (2.5)
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Figure 3.3: Lowest-order pion-exchange contribution to the proton induced proton
knockout process (p, 2p).

with result

Ĩπ(p,p′,p′′, α;E) = (3.12)

G
(0)
f (p′,p′′, α;E)

1

2επ(|p− p′|)
1

E − ε(p′)− επ(|p− p′|) + iη
G

(0)
i (p;E)

+G
(0)
f (p′,p′′, α;E)

1

2επ(|p− p′|)
1

Eα − ε(p′′)− επ(|p− p′|) + iη
G

(0)
i (p;E),

where

G
(0)
f (p′,p′′, α;E) =

1

E − ε(p′)− ε(p′′) + Eα + iη
(3.13)

represents the final state propagator and

G
(0)
i (p;E) =

1

E − ε(p) + iη
(3.14)

the propagator for the initial projectile. The two resulting terms are depicted graph-

ically as time-ordered contributions in Fig. 3.4. For future convenience, we define
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these two time-ordered terms as the (p, 2p) pion propagator

G
(0)
π (p,2p)(p,p

′, α;E) ≡ 1

2επ(|p− p′|) (3.15)

×
(

1

E − ε(p′)− επ(|p− p′|) + iη
+

1

Eα − ε(p′′)− επ(|p− p′|) + iη

)
and we can rewrite Eq. (3.12) as

Ĩπ(p,p′,p′′, α;E) = G
(0)
f (p′,p′′, α;E) G

(0)
π (p,2p)(p,p

′, α;E) G
(0)
i (p;E). (3.16)

We now recognize that a very different situation occurs compared to elastic NN

scattering when the experimental conditions of the (p, 2p) reaction of Refs. [48, 34]

are considered. In particular, in the first term of Eq. (3.12) the pion can now transfer

a particularly large amount of energy, while there is an explicit removal energy depen-

dence (expressed by Eα) in the second term where the pion is completely virtual. This

simple analysis therefore clarifies that the use of the free NN T -matrix for quasi-free

(p, 2p) reactions is not appropriate and the energy dependence of the interaction rep-

resented by pion-exchange should be explicitly considered. This observation provided

an important motivation for the construction of a dynamic pion-exchange interaction

that can properly treat the energy dependence of inelastic processes. The example

discussed here also clarifies that an explicit removal energy dependence of the knock-

out process can be expected. As discussed previously, such a dependence appears to

be observed in the polarization observable Ay for the removal of s1/2 protons [48].

3.3.2 Higher-order inelastic (p, 2p)

Now we can turn our attention to the second diagram on the RHS of Fig. 3.2. We

include this diagram with the relevant momenta and energy in Fig. 3.5. This contri-

bution to the full inelastic T -matrix can be computed by integrating over external
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Figure 3.4: Lowest-order pion-exchange contribution to the proton induced proton
knockout process as time-ordered terms representing Eq. (3.12).

and loop energies (suppressing spin and isospin)

Ĩπ(p,p′,p′′,k, α;E) =

∫
dΩ

2πi

∫
dE ′

2πi

∫
dE ′′

2πi
G(0)(p;E)Dπ(p− k;E − Ω)

×G(0)(k; Ω)G(0)(p− k;E ′ + E ′′ − Ω)〈k − p/2|T (E ′ + E ′′)|1
2
(p′ − p′′)〉

× G(0)(p′;E ′)G(0)(p′′;E ′′)G(0)(α;E ′ + E ′′ − E). (3.17)

This integral can be evaluated by first performing the dE ′′ integral and closing in the

lower half plane, then closing the dE ′ integral in the upper half plane, leaving only

the dΩ integral in the following form:

Ĩπ(p,p′,p′′,k, α;E) =

G(0)(p;E)G(0)(k − p′;E + Eα)〈k − p/2|T (E + Eα)|1
2
(p′ − p′′)〉

×
∫

dΩ

2πi
G(0)(p− k; Ω− E − Eα)G(0)(k; Ω)

1

2επ(|p− k|)

×
(

1

Ω− E + επ(|p− k|)− iη −
1

Ω− E − επ(|p− k|) + iη

)
(3.18)
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Figure 3.5: Higher-order contribution to inelastic T -matrix diagram for (p, 2p)

Now, closing the contour for the first term in the lower half plane, and the second

term in the upper half plane, we have finally,

Ĩπ(p,p′,p′′,k, α;E) = (3.19)

G
(0)
i (p;E)〈k − p/2|T (E + Eα)|1

2
(p′ − p′′)〉G(0)

f (p,p′;E + Eα)

× 1

E + Eα − ε(|p− k|)− ε(k) + iη
G

(0)
π (p,2p)(p,k, α;E).

Here we see that this propagator is a function of beam energy E and both incoming

nucleon momentum and outgoing momenta. The T -matrix

〈k − p/2|T (E + Eα)|1
2
(p′ − p′′)〉

is precisely the elastic (dynamic + static terms) T -matrix that we discussed in Ch. 2,

with its energy shifted by minus the separation energy (−Es = Eα) since E ′ + E ′′ =

E + Eα by energy conservation. The internal momentum variable k must still be

integrated over in order to fully evaluate the diagram, but this integration cannot be

done analytically due to the numerical construction of the T -matrix.

Before further clarifying this momentum integral, it is important to stress that

although these diagrams seem pictorially to include only dynamic pion-exchange in
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the dashed lines, these terms must be understood to represent an interaction that con-

tains a dynamic pion plus additional phenomenological higher-mass meson-exchange

terms which are purely static in character. The elastic T -matrix which appears in

Fig. 3.5 has also been constructed with both dynamic pion terms and static higher-

mass terms.

For the evaluation of this integral in the partial-wave basis, we find it more

convenient at this stage to reparametrize the loop momenta in such a way that angles

which occur in the pion propagator are the same angles we have previously introduced.

This allows us to use a strategy similar to the one used for elastic scattering (sec. 2.2.3)

to express our states in a partial-wave expansion. This reparametrization can bee seen

in Fig. 3.6.

By reparametrizing in this way, we make sure that the angle which occurs in the

inelastic tree-level structure between p0/2 and k is also the angle between relative

momentum of the beam (k1) and the intermediate two particle propagator (k2) where

k1 =
p0

2
k2 = k. (3.20)

This complication comes from the fact that it is generally convenient to compute

the T -matrix in terms of relative momenta, but we wish to easily be able to connect

with the external variables which are provided by the relativistic kinematics of the

experiment in question. The integral over k now reads:

1

2

∫
d3k

(2π)3
〈p′,p′′|Telastic(E + Eα)|p0

2
+ k,

p0
2
− k〉

× 1

E + Eα − ε(p0

2
+ k)− ε(p0

2
− k)

×〈p0
2
− k, p0

2
+ k|Ṽπ(E,Eα) + ∆V |p0, α〉 (3.21)

44



Figure 3.6: Higher-order inelastic T -matrix diagram with momenta reparametrized
and energy Ω already integrated out. Both the elastic T -matrix and the (p, 2p)
interaction should be understood to include both static and dynamic terms.

where

〈p0
2
− k, p0

2
+ k|Ṽπ(E,Eα)|p0, α〉 =

1

2επ(|p0

2
+ k|) × (3.22)(

V O.P.
π

E − ε(p0

2
+ k)− επ(|p0

2
− k|) + iη

+
V O.P.
π

Eα − ε(p0

2
− k)− επ(|p0

2
− k|) + iη

)
with V∆ representing the static higher-mass part of the potential, and the superscript

“O.P.” recalling that the operator structure is included. The final inelastic T -matrix

equation written in terms of relative momenta k1 and k2 is

〈k1|Tinelastic(E + Eα)|k2〉 = 〈k1|(Ṽπ(E,Eα) + ∆V )|k2〉 (3.23)

+
1

2

∫
d3q

(2π)3
〈k1|(Ṽπ(E,Eα) + ∆V )|q〉G(0)

NN(q;E + Eα)

×〈q|Telastic(E + Eα)|k2〉.

A few observations about this integral must now be made.
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1. This integral generates the full behavior of the inelastic T -matrix . In our nu-

merical scheme, it forms a matrix in momentum space which can be interpolated

to any set of momenta. In practice, this matrix is used to interpolate a single

value (or three in the case of coupled channels) in accordance with the relevant

external momenta for the computation of scattering observables such as Ay. In

the case of inelastic scattering, this samples off-shell elements of the T -matrix

where we have shown our interaction can differ substantially (see e.g. Fig. 2.12)

from T -matrices generated using static interactions.

2. Although the nucleon propagators are nonrelativistic, external variables are

chosen in accordance with relativistic kinematics.

3. The angles appearing in all denominators are the same angles between relative

momenta that we used in section 2.2.3 to perform our numerical projection onto

angular momentum states in the case of elastic scattering, and an analogous

(although not identical) projection is possible here as well. In this fashion, the

integral equation is reduced to matrix multiplication.

4. In the case of elastic scattering, this matrix multiplication ultimately reduces to

the Lippmann-Schwinger equation. The Lippman-Schwinger equation is typi-

cally solved [33] using a matrix inversion, and the elastic case allowed us to test

the stability of our matrix multiplication. We found no appreciable reduction

in accuracy for the matrix multiplication versus matrix inversion methods of

solving the integral equation.

3.4 Results for Ay

We observed that non-negligible shifts occur in the potential when computed with the

inclusion of dynamic pions. These differences in potential are illustrated in Figs. (3.7-

3.12). In all channels there is a substantial difference between the inelastic DR1

and both the elastic version of DR1 and the static potential (RSC). These plots

each represent the diagonal in momentum space of the potential in that uncoupled

channel (or, in the case of the coupled channels, one orbital angular momentum block
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of that channel) as a function of relative momentum. Displayed in black are the

RSC values of the potential, while for comparison we provide the real parts of both

the elastic (red) and inelastic (blue) versions of the DR1. The latter two potentials

are computed with a 15MeV pion width for ease of presentation, but the change in

width from the 5 MeV width used when fitting the DR1 has negligible affect on the

computed value of Ay. We note that these plots are all generated for the kinematic

conditions of the 12C Ay data, with beam energy of 392 MeV and separation energy

Es = 36 MeV. For these conditions, we sample a slightly off-shell T -matrix element

with relative momenta kr = 2.39 fm−1 and k′r = 1.97 fm−1. We also remind the

reader that although there is a complex part of the potential for energies above the

pion production threshold, we do not use it in the construction of our T -matrix. In

any account, the value of the imaginary part of V is orders of magnitude smaller than

the real part in the range of relative momenta (near 2 fm−1) relevant to calculation of

Ay. The major discrepancy between potentials can be seen for low relative momenta.

However, in the vicinity of the half off-shell values of relative momenta needed for

calculation of Ay the majority of the channels agree substantially. Upon integration

in the Lippmann-Schwinger equation these low kr differences lead to changes in the

T -matrix elements, although in the case of the RSC and elastic DR1 there must still

be some congruence between them in order to fit the same phase shifts. We expected

these differences to lead to a substantial difference in the calculated value of Ay.

Using the T -matrix generated as discussed in section 3.3 we were able to compute Ay

for a 392 MeV beam as a function of increasing separation energy Es = −Eα. We can

see in Fig. 3.13 that at this energy the inclusion of our full inelastic T -matrix (blue)

creates a modest reduction in Ay compared to the partial-wave analysis (green), RSC

(black) and the on-shell elements from the elastic T -matrix (red). The latter three

graphs of Ay are displayed to show the relative effect on Ay of the quality of the

fit to data of the potential. We observe that using the full inelastic T -matrix leads

to an overall reduction of the magnitude of nearly 10% for small separation energy.

However, as separation energy increases the amount of reduction in Ay becomes not

much greater than the reduction already expected using the static RSC or simply

using on-shell elastic T -matrix elements generated from the PWA. Our task now is
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Figure 3.7: Diagonal in momentum space of the 1S0 potential for beam energy of
392 MeV with a 36MeV separation energy. Black is the RSC, red is the elastic DR1
and blue is the inelastic DR1. For these kinematic conditions, the appropriate half
on-shell element has kr = 2.39 fm−1 and k′r = 1.97 fm−1.

to understand why the differences in the T -matrices do not translate into a more

significant difference in Ay.

Before continuing, we should note that the limit Eα → 0 does not lead to the

free scattering case. One can see this by considering Eq. (3.16). If one sets Eα = 0

in this equation one is not left with simply the static pion propagator. The first

term is unaffected by the limit, and does not reduce to the corresponding term for

the elastic pion propagator found by setting ω = 0 in Eq. (2.3). The second term

likewise does not reduce to the like term in Eq. (2.3) in the limit ω → 0 due to the

presence of the ε(p′′) term, which cannot be zero in the kinematic conditions presently

under study. In other words, the pair of diagrams displayed in Fig. 3.4 do not reduce

to the diagrams of Fig. 2.2 in the limit Eα → 0. The former represents a nucleon
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Figure 3.8: 1D2 potential. Details are as in Fig. 3.7

scattering off a nucleus, exciting a particle-hole state, while the second corresponds to

scattering of one nucleon off another (free) nucleon. Therefore, we should not expect

our inelastic T -matrix to yield an Ay which agrees with the elastic treatment of Ay

in the limit of zero separation energy.

We also point out that most of the reduction in Ay as separation energy increases

is already observed for the static treatment. The majority of this reduction observed

in Ay comes from two factors. The largest factor is the shift in C.M. angle that comes

with increasing separation energy and the kinematics necessary to keep the collisions

recoilless. We can see in Fig. 3.14 that for a given energy Ay is roughly sinusoidal

when viewed as a function of center-of-mass scattering angle. For free pp scattering

Ay is a constant for fixed center-of-mass scattering angle. However, for this quasi-free

scattering with fixed lab angle, the kinematics necessary to ensure recoilless collision

results in increasing center-of-mass scattering angles as separation energy increases,

leading to a sampling of the Ay curve at different angles and a subsequent (for the lab
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Figure 3.9: 3P0 potential. Details are as in Fig. 3.7

angle and energies considered in the current work) reduction in Ay. This reduction

is an artifact of the fixed laboratory angle of the experimental set-up, and could just

as easily become an enhancement of Ay for some other experimental set-up (e.g. if

we were sampling values of Ay for angles before the peak of the Ay curve. This part

of the reduction of Ay as a function of separation energy was also pointed out in

Ref. [49], and accounts for perhaps one fifth of the experimentally observed reduction

in Ay. This angular shift is the major factor in the reduction in Ay that we are seeing

in Fig. 3.13. The second major factor is the shifted energy in the T -matrix itself. Ay

increases with energy. Since for increasing separation energy we are using T -matrices

at decreasing energies we see a corresponding reduction due simply to the fact that we

are computing Ay for successively smaller energies as the separation energy increases.

To understand why our inelastic calculation does not have a greater effect on

Ay we must consider exactly how the various terms in the potential contribute to

Ay. Recall that Ay is a measure of asymmetry in cross section measurements for
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Figure 3.10: 3P1 potential. Details are as in Fig. 3.7

projectiles with opposite spin projection in the y-direction. This asymmetry comes

about because of the presence of the two-body spin-orbit coupling in the potential.

More precisely, this asymmetry is only possible in an observable if an odd power of

S appears within the observable. Since the central and tensor components have even

powers of spin, they cannot contribute to any difference between the results of spin-up

and spin-down measurements. The L · S coupling is linear in spin, but on its own

could not contribute to a non-zero Ay because it appears in an amplitude squared in

the differential cross section (Eq. 3.2). Only when even and odd powers (e.g. from

central or tensor and spin-orbit terms) of S are included together can the amplitude

squared contain cross terms with odd powers of spin.

Our model does not touch the spin-orbit coupling directly, other than to rescale

the coupling constant in our refit to data after the addition of the dynamic pion. This

rescaling ensures a good fit to the data in the elastic limit, but does not introduce

any true dynamic corrections to the spin orbit terms. We expected that by including
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Figure 3.11: 3P2 block (L = 1, L′ = 1) of the potential for the J=2 coupled channel.
Details are as in Fig. 3.7

energy dependence in the pion alone, its contribution to Ay through the odd-powered

spin cross terms in the differential cross section could make a significant change to

the overall value of Ay, but this is a second-order effect. It may be that we need to

extend the dynamic aspects to the higher-mass (and shorter range) L ·S terms in the

interaction in order to observe a larger energy dependent effect on Ay. This would

involve a complete refitting to the data and is possible in future work.

One other interesting factor which might be relevant is the fact that our inter-

action is charge independent, while Ay is highly sensitive to charge, especially for

small angles. This can be observed in Fig. 3.15 which is taken from [20]. The solid

curve shows the effect of including the Coulomb interaction to the nuclear interac-

tion (dashed curve) when computing Ay for free proton-proton scattering. Although

this effect is mostly observed for small angles, it is still apparent for larger angles

in the region we are considering. We note only that this Coulomb effect could only
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Figure 3.12: 3F2 block (L = 3, L′ = 3) of the potential for the J=2 coupled channel.
Details are as in Fig. 3.7

become stronger with increasing Z (and therefore increasing Eα), so that it might

conspire with the other features we have mentioned to further alter Ay from the case

of free scattering. A good strategy for exploring these ideas further would be to

update a more modern charge dependent potential such as CDBonn [42], extending

the dynamic meson-exchange to higher masses while also including the effects of the

Coulomb interaction.
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Figure 3.13: Ay computed for a 392 MeV beam as a function of separation energy
using the RSC (black), DR1 (red), and PWA (green). Blue curve is generated using
the full inelastic T -matrix with the DR1 potential.
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Figure 3.14: Ay for 392 MeV (lab) beam energy. Top arrow indicates the value of Ay
for the kinematics of free scattering in the RCNP experimental set-up. Bottom arrow
indicates the location of the angle that would be sampled for the same experimental
set-up with a separation energy of 40 MeV. The increase in C.M. angle is due to the
relativistic kinematics, and results in a corresponding reduction in Ay as separation
energy increases. Plot was made using the T=1 polarization numbers generated
from the “Current Solution” phase-shift analysis of the Center for Nuclear Studies
website [1].
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FIG. 4. Proton analyzing power for pp scattering at 100-MeV
proton lab energy as a function of the c.m. scattering angle. Exact
results, given by the solid curve, are indistinguishable from the results
of our Coulomb treatment with screening radius R ! 10 fm; the
dashed curve corresponds to no Coulomb results, and the dotted
curve to the Coulomb externally corrected approximation.

Figure 4 shows the proton analyzing power results for
pp scattering at 100-MeV proton lab energy. The results are
converged with respect to screening and the exact results are
compared with two approximations, labeled no-Coulomb and
Coulomb externally corrected: In the no-Coulomb approxi-
mation, the Coulomb interaction is omitted completely; in the
Coulomb externally corrected approximation, the Coulomb
scattering amplitude is added to the no-Coulomb one, the
latter being modified for the external Coulomb distortion by
multiplication with the Coulomb phase factors eiσL(p) in the
initial and final states [10]. In fact, the Coulomb externally
corrected approximation coincides with a calculation with a
screened Coulomb interaction, whose screening radius is taken
to be zero for the short-range part of the transition amplitude.
Whereas the results converged with respect to screening and
the exact results are indistinguishable in Fig. 4, the no-
Coulomb and Coulomb externally corrected approximations
are pretty poor even at 100 MeV. Note that for the observable
of Fig. 3 the results for both approximations lie beyond the
scale of that plot.

The results presented in Figs. 3 and 4 are characteristic
for all observables studied. We conclude that the method
employed for the inclusion of the Coulomb interaction in
pp scattering works satisfactorily. We see convergence with
increasing screening radius R at moderate values. The con-
vergence in R is more rapid for higher scattering energies;
R = 10 fm is sufficient for proton lab energies above 25 MeV,
whereas the screening radius is to be increased beyond 20 fm
for energies below 5 MeV. We also note that the convergence
in R is considerably slower for Yukawa screening and is of
oscillatory behavior for a sharp cutoff. The exact Coulomb
results are correctly approached by the method employed with
satisfactory accuracy, unlike the no-Coulomb or the Coulomb
externally corrected approximations. The method we use,
based on the ideas of Refs. [11,12], encourages us to carry
it over to elastic pd scattering as Refs. [1,2] did and to e.m.
reactions involving the pd system.

B. Elastic proton-deuteron scattering

This section carries over the treatment of the Coulomb
interaction, given in Sec. II A for pp scattering, to elastic pd
scattering. It establishes a theoretical procedure leading to a
calculational scheme.

Each pair of nucleons (βγ ) interacts through the strong
coupled-channel potential vα and the Coulomb potential wα .
We assume that wα acts formally between all pairs (βγ ) of
particles, but it is nonzero only for states with two-charged
baryons (i.e., pp and p%+ states). We introduce the full
resolvent G(R)(Z) for the auxiliary situation in which the
Coulomb potential wα is screened with a screening radius
R, with wα being replaced by wαR:

G(R)(Z) =
(

Z − H0 −
∑

σ

vσ −
∑

σ

wσR

)−1

, (12)

where H0 is the three-particle kinetic energy operator. The
full resolvent yields the full pd scattering state when acting
on the channel state |φα(q)να〉 of relative pd momentum q,
energy Eα(q), and additional discrete quantum numbers να

and taking the appropriate limit Z = Eα(q) + i0. The full
resolvent therefore also yields the desired S matrix. The full
resolvent G(R)(Z) depends on the screening radius R for
the Coulomb interaction and that dependence is notationally
indicated; the same will be done for operators related to
G(R)(Z). The full resolvent G(R)(Z), following standard AGS
notation [15] of three-particle scattering, may be decomposed
into channel resolvents:

G(R)
α (Z) = (Z − H0 − vα − wαR)−1, (13)

where, in pd channels α, wαR = 0, and into the full multichan-
nel three-particle transition matrix U

(R)
βα (Z) according to

G(R)(Z) = δβαG(R)
α (Z) + G

(R)
β (Z)U (R)

βα (Z)G(R)
α (Z). (14)

The full multichannel transition matrix satisfies the AGS
equation [15]

U
(R)
βα (Z) = δ̄βαG−1

0 (Z) +
∑

σ

δ̄βσT (R)
σ (Z)G0(Z)U (R)

σα (Z),

(15a)

where the two-particle transition matrix is derived from the
full channel interaction vα + wαR , that is,

T (R)
α (Z) = (vα + wαR) + (vα + wαR)G0(Z)T (R)

α (Z), (15b)

where G0(Z) = (Z − H0)−1 is the free resolvent and δ̄βα =
1 − δβα . Of course, the full multichannel transition matrix
U

(R)
βα (Z) must contain the pure Coulomb transition matrix

T c.m.
αR (Z) derived from the screened Coulomb potential W c.m.

αR

between the spectator proton and the center of mass (c.m.) of
the remaining neutron-proton (np) pair in channel α, that is,

T c.m.
αR (Z) = W c.m.

αR + W c.m.
αR G(R)

α (Z)T c.m.
αR (Z), (16)

with the pd channel being one of those channels α. The same
screening function is used for both Coulomb potentials wαR

and W c.m.
αR .

As we have done in Sec. II A, an alternative decomposition
of the full resolvent, which appears conceptually neater for the

054005-5

Figure 3.15: Figure taken from Ref. [20]. Proton analyzing power for pp scattering at
100-MeV proton lab energy as a function of the c.m. scattering angle. Exact results,
given by the solid curve, are similar to the authors’ Coulomb externally corrected
approximation (dotted). The dashed curve corresponds to np results which do not
include the Coulomb force.
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Chapter 4

Nuclear Matter Saturation

Problem

4.1 Background

The nuclear saturation problem has been studied in great detail and we provide a

short review here. For a more detailed review, see [6, 21, 24]. The presence of the

strong short-range repulsion in any realistic NN interaction makes a study of the

properties of nuclear matter through perturbation theory impossible. The problem

therefore requires a sophisticated treatment if one is to expect nuclear matter to

become self-bound at realistic densities.

The binding energy per nucleon at saturation density of 16 MeV is given by the

volume term of the Bethe-Weizsäcker [9, 66] formula, since for symmetric nuclear

matter we can ignore any surface, electric charge, or isospin asymmetry effects. The

experimentally well determined central charge density of 208Pb (0.16 nucleons/fm−3

with kF = 1.33fm−1) provides the preferred density of nuclear matter [31].

Galitskii [32] showed that in the low-density limit the most important terms to

consider are multiple scattering events (ladder diagrams) between pairs of particles

in the medium. The Hartree-Fock approximation generally fails to find a bound

nucleus [47, 46], so it is necessary to consider medium effects which moderate this

repulsion. Brueckner and Levinson [14] demonstrated the technique for summing
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these ladder diagrams in what has become known as Brueckner G-matrix. This

leads, upon calculation of the ground-state energy, to the so-called Brueckner-Hartree-

Fock approximation. This approximation involves summing all ladder diagrams for

two particles propagating outside of the Fermi sea (in other words with momenta

above kF ). The G-matrix (with notation introduced by Bethe [10]) differs from the

free-space T -matrix by including the Pauli exclusion principle and including a self-

consistently determined single particle spectrum U(k). The calculation of G involves

the solution of the so-called Bethe-Goldstone equation

〈kmαmα′ |G(K, E)|k′mβmβ′〉 = 〈kmαmα′|V |k′mβmβ′〉

+
1

2

∑
mγmγ′

∫
d3q

(2π)3
〈kmαmα′|V |qmγmγ′〉

×θ(|q +K/2)| − kF )θ(|K/2− q| − kF )

E − ε(q +K/2)− ε(K/2− q) + iη
〈qmγmγ′ |G(K, E)|k′mβmβ′〉, (4.1)

where e.g. the mα represent the discrete quantum numbers (spin, isospin), and K

is the total momentum, and k,k′ and q refer to relative momenta. In Eq. (4.1), it

must be noted that the energies found in the two-particle propagator, ε(q+K/2) and

ε(K/2−q), require calculation of the BHF self-energy ΣBHF , which in turn depends

on the G-matrix and is calculated according to

ΣBHF (k,E) =

∫
d3k

(2π)3

1

4

∑
mαmα′

θ(kF − k′)

×〈1
2
(k − k′)mαmα′ |G(k + k′, E + ε(k′))|1

2
(k − k′)mαmα′〉. (4.2)

The single-particle energy ε(k) is related to the self-energy by

εBHF (k) =
h̄2k2

2m
+ U(k) (4.3)

where the auxiliary potential U(k) is related to the self-energy. Since one needs to

know U(k) in order to compute the G-matrix, and the self-energy depends on G,

we must solve the problem self-consistently. This non-linearity requires an iterative
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approach such that with a reasonable ansatz for the single-particle spectrum, a self-

consistent set G and ΣBHF can be found. When performing this iterative procedure,

a choice must be made regarding the relationship between the self-energy and the

spectrum that is used. The most convenient from a computational point of view is

to choose a spectrum with auxiliary potential Us(k) known as “standard choice” or

sometimes “gap choice” such that:

Us(k) = ΣBHF (k, εBHF (k))θ(kF − k). (4.4)

In other words, the spectrum is equal to the on-shell self-energy for all values of

k < kF , and Us(k) = 0 for momenta higher than kF . This is a practical strategy

since one only needs to know the spectrum below the Fermi momentum in order to

compute the binding energy per nucleon

E

A
=

2

ρ

∫
d3k

(2π)3

(
h̄2k2

2m
+ εBHF

)
θ(k − kF ). (4.5)

Once the spectrum is chosen we can evaluate the expression in the following form:

E

A
=

4

ρ

∫
d3k

(2π)3

h̄2k2

2m
+

1

2ρ

∫
d3k

(2π)3

∫
d3k′

(2π)3

∑
mαmα′

θ(k − kF )θ(kF − k′)

〈 1
2
(k − k′) mαmα′ |G(k + k′; εBHF (k) + εBHF (k′)| 1

2
(k − k′) mαmα′〉.

(4.6)

The gap choice has the advantage that if one restricts the calculation to include

only particle-particle propagation (as in BHF), then G must only be computed once

for the desired energies below 2εF = h̄2k2
F/m and then only the spectrum must be

computed iteratively. Because the particles propagate above the Fermi momentum,

where the potential U(k) is zero, there is no need to iteratively compute G since for

these momenta the spectrum is fixed.

An often employed alternative choice advocated by Jeukenne et al. [36], and

adopted in the present work, is the “continuous choice”, given by

Uc(k) = Re{ΣBHF (k, εBHF (k))} (4.7)
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so that the spectrum is defined as the real part of the on-shell self-energy for all k.

This approach has the advantage that it allows for a more natural link to the optical

potential [36]. This is the strategy employed in the present work for reasons discussed

in more detail below.

Historically the BHF approach has been employed for a large variety of realistic

NN interactions always with the result that the strong short-range Hartree-Fock

term has been compensated by the higher-order terms and the system is found to be

bound. So far, BHF calculations fail to simultaneously predict the proper binding and

saturation density, but Coester et al. [17] found that the calculated minima of E/A as

a function of density are always found along a band (now referred to as the Coester

band) as illustrated in Fig 4.1. In this figure, a band can clearly be seen described

by the BHF saturation points (circles). The figure also clarifies that as the D-state

probability of the deuteron increases the saturation point moves up and to the left

along the so called Coester band. This suggests that the strength of the tensor force

plays a crucial role in determining overall binding and saturation density. The three

points (stars) which include three-hole-line contributions in the standard choice show

that their inclusion greatly increases binding while moving the saturation point only

to slightly higher density.

Higher-order approximations tend to be performed by grouping terms by the

number of hole lines included in the summation. The BHF calculations sum all terms

at the level of two-hole lines. To include three-hole lines, one must solve the Bethe-

Faddeev equations [28, 52]. Day and Wiringa [19] found that variational calculations

agreed well with calculations at the three-hole-line level. This was later confirmed by

Song et al. [59] who also showed that BHF performed under the continuous choice at

the two-hole-line level yielded results roughly equivalent to standard choice calcula-

tions including three-hole-line contributions for a variety of potentials. Furthermore,

three-hole-line calculations in the continuous choice do not change the binding energy

much, indicating that for the continuous choice two-hole-line calculations are already

nearly converged. In addition, it has been shown that two-hole-line continuous choice

calculations have strong agreement with the (also nearly converged) three-hole-line

calculations under the gap choice. This indicates that higher-order correlations are

largely included under the continuous choice already at the two-hole-line level. In
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Figure 4.1: Plot of binding energy per nucleon as a function of Fermi momentum
for various realistic NN interactions. The open circles represent the minimum of
the saturation curves when computed in the BHF approximation using the standard
choice for potential Us(k). The rectangle is the empirical region. The stars are
the minima for interactions that have three-hole-line terms included in the standard
choice. The dashed line is a sample saturation curve for the AV14 [69] potential. Also
displayed for some potentials is the D-state probability. Figure taken from [24] and
adapted from [6].
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general, continuous-choice calculations at the two-hole-line level produce more bind-

ing compared to gap-choice calculations, particularly in the S-waves, similar to the

amount of extra binding found by including contributions from three-hole-line di-

agrams, and so for our purposes the two approaches are more or less equivalent.

Accordingly we use the continuous choice at the two-hole-line level in the present

work.

Some progress on the saturation problem was made by Carlson et al. [16] with

the inclusion of three-body forces. These phenomenological forces were fit to binding

energies of light nuclei and adjusted to yield a satisfactory saturation density of nu-

clear matter. Extra repulsion was also added ad hoc in order to tune to the correct

binding energy and saturation density, but the approach does not provide much in-

sight into the mechanism of saturation, apart from pointing to the possible relevance

of three-body forces.

Another approach that has been somewhat successful is the relativistic Dirac-

BHF. The approach seems to yield good saturation properties, but has not been fully

explored by calculating the three-hole-line contribution. A detailed discussion of this

approach is beyond the scope of the present work, but the interested reader can find

more details in Refs. [63, 11, 3].

Finally, there are some reasons to believe that a truer correspondence between

nuclear matter and finite nuclei might be achieved if long-range correlations are deem-

phasized in nuclear-matter calculations. Recent experimental results in 208Pb [65] dis-

played in Fig 4.2 indicate that in nuclei the role of long-range correlations is confined

to levels slightly below the Fermi energy, as shown by the curvature of the occupation

numbers of proton shells near the Fermi energy. The relative flatness for more deeply

bound protons points to the dominance of short-range correlations in depleting the

Fermi sea. This (e, e′p) experiment for the first time covers a large range of miss-

ing momenta and energy and shows that the density behavior of the deeply bound

s-waves is dominated by short-range physics. The saturation density extracted from

the central charge density of 208Pb comes entirely from s-waves. Since only s-waves

can be present in the central density, it has been argued [24, 21] that short-range

correlations are dominant in determining nuclear matter saturation properties. Ad-

ditionally, third-order pionic ring diagrams calculated in nuclear matter and included
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Figure 4.2: Plot of occupation numbers for all sp orbitals in 208Pb. Flatness over
a large energy scale indicates the importance of short-range correlations in reducing
occupation numbers, and in general for determining properties of nuclear matter. The
lower energy long-range correlations result in the greater reduction in occupation near
the Fermi energy. Figure taken from [24] and adapted from [65].

at the three-hole-line level exhibit considerable attraction, which increases at higher

density [22]. Accordingly, they tend to shift the minimum of the saturation curve to

the right. Although collective pionic modes must be important in true nuclear matter,

they may not be as relevant in finite nuclei (indeed such collective behavior has not

been observed) and perhaps ought not to be considered when trying to find agree-

ment between nuclear-matter properties and finite nuclei. The authors of [21] report

that by using the Self-Consistent Green’s Functions (SCGFs) approach including only

short-range correlations self-consistently but including full off-shell propagation their

results move off the Coester band to the left toward the empirical region (see Fig 4.3).

These calculations are more sophisticated than the continuous choice BHF in that
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they include both particle-particle pp and hole-hole hh propagation self-consistently.

They use more realistic spectral functions generated through the SCGF method to

represent nucleon propagation [24].

Our goal in this work is not to settle this long-standing unsolved problem, but

rather to assess whether or not including a dynamic interaction has anything to say

about it. Toward that end, we adopt a BHF calculation under the continuous choice.

By making a comparison between static and dynamic calculations at this already

fairly well-converged level we can assess whether it is worthwhile to pursue more

technically involved procedures in the pursuit of a solution to the nuclear-matter

saturation problem.

4.2 Calculational details

We have chosen to use the BHF G-matrix as the testing ground of the importance

of energy-dependent interactions on the properties of nuclear matter. We sum ladder

diagrams to properly control the strong short-range repulsion of our bare interaction,

including pp propagation but neglecting hh propagation. It has been shown that

hh propagation will tend to introduce some repulsion, so that our results will be

overbound relative to a treatment which includes hh propagation on equal footing

with pp, but it must be recalled that our main goal is much more modest than

trying to achieve the correct binding energy and saturation density of nuclear matter.

Rather we try only to assess what effect, if any, using dynamic NN interactions has

on nuclear-matter calculations.

In this section, we present first the details of the standard BHF calculation in the

continuous choice, and then the modifications to the procedure which must be made

to perform this calculation using a dynamic interaction. Many of the details can be

found in Ref. [53], although that author includes hh propagation as well and uses a

simpler bare interaction. In the following, we suppress spin and isospin indices, and

rewrite the Bethe Goldstone equation in terms of the Pauli operator Qpp(K, q) given

by

Qpp(K, q) = θ(|q +K/2)| − kF )θ(|K/2− q| − kF ). (4.8)
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Figure 4.3: Plot of binding energy per nucleon as a function of Fermi momentum for
various realistic NN interactions. Open points indicate continuous choice BHF sat-
uration points for various potentials. Filled points represent calculations with fully
self-consistent treatment of short-range correlations using a discrete pole approxi-
mation for the spectral functions, except for the two Reid68 points with error bars.
Those two points are fully self-consistent calculations in the continuous version of the
spectral functions which are not fully converged (uncertainty in convergence repre-
sented by the error bars). Rectangle is the empirical saturation region as in Fig. 4.1.
Figure taken from [21].
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We can then rewrite Eq. (4.1) as follows

〈kr|G(K, E)|k′r〉 = 〈kr|V |k′r〉+
1

2

∫
d3q

(2π)3
〈kr|V |q〉 (4.9)

× Qpp(K, q)

E − ε(|K/2 + q|)− ε(|K/2− q|) + iη
〈q|G(K, E)|k′r〉.

Our interaction is expressed in the partial-wave basis, but the presence of the angle

between K and q in the Pauli operator and the energy denominator makes a partial-

wave expansion problematic.

4.2.1 Treatment of the Pauli operator

Since our potential is already expressed in a partial-wave basis, it would be incon-

venient to allow the channels to remix through the angles contained in the Pauli

operator. The traditional approach [13] for dealing with this is to perform an an-

gle averaging on the Pauli operator before initiating the partial-wave expansion, and

using instead the so called “angle-averaged Pauli operator” Q̄(K, q) defined by

Q̄pp(K, q) =
1

2

∫ 1

−1

Qpp(K, q) d cos θ. (4.10)

Although this is a choice of convenience and has been the standard treatment for

decades, it has recently been under some scrutiny and it has been shown [61, 56, 57]

that the effect of the angle-averaging approximation is minimal, resulting in slightly

smaller binding globally while leaving the saturation density unchanged, as shown in

Fig. 4.4. For a more up-to-date discussion of the errors induced by angle-averaging

the Pauli operator, see [4]. Since the error due to this approximation appears small,

and we are not concerned with our overall binding we will use the angle-averaging

procedure without further discussion of its merits or faults beyond the pragmatic.

To evaluate Eq. (4.10) we note that Qpp(K, q) is equal to unity if both particles

are outside the Fermi sea, and zero otherwise. This means that it essentially restricts

the angles of integration depending on the relative magnitudes of K, q, and kF . The
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It is clear from Eq. (22) that the single-particle potential
u(kλ) is determined by the G matrix in the K system and
the F coefficient which is a function of the angle θK + θλµ

between and .

In the angle-average approximation the G matrix in the K
system is independent of the quantum number M . Using the
following closure relation of the coefficient F

M

F (kλkλµK(l1J1)(l2J2)STM)δJ1J2

=
2J1 + 1

4π
δJ1J2δl1l2 , (26)

the single-particle potential u(kλ) with the angle-averaged Q
operator becomes

u(kλ) =
lJST

(2T + 1)(2J + 1)

4

×
kF

0

k2
µdkµ

1

−1

dcosθµ

×〈kλµ(lS)JT |G0(ω, K)|kλµ(lS)JT 〉. (27)

This expression of u(kλ) agrees with the usual formula in the
angle-average approximation for the operator Q.2)

Numerical calculation

In order to examine the effect of the exact treatment of the
Pauli exclusion operator we performed a numerical calcu-
lation of the ground-state properties of nuclear matter by
adopting the Bonn B and C NN potentials.5)

We solved self-consistently the coupled Eq. (15) for the G
matrix in the K system where the c.m. momentum points
in the z direction. In the calculation we took into consid-
eration rigorously the contributions of the partial waves of
J ≤ 6. Other higher partial waves were taken up to J = 18
in the Born approximation. We checked the stability of the
calculated result with respect to the number of mesh points
in numerical integration. Furthermore we confirmed that the
same result was obtained within numerical errors by using
two computer codes made independently.

The calculated results of the binding energies per nucleon are
shown in Figs. 1 and 2. It is seen, from Figs. 1 and 2, as a
common characteristic of the results for two NN potentials,
that the exact treatment of the operator Q brings about at-
tractive contributions to the binding energy per nucleon at
any nuclear densities, compared with the result in the stan-
dard angle-average approximation. The saturation densities
hardly change in the exact treatment of the operator Q.

Next, we show in Table 1 the single-particle potentials in the
exact and angle-average treatments of the operator Q and
their differences for the values of kλ of the mesh points in the
Gaussian integration.

The differences of the single-particle-potential energies in
the exact treatment from those in the angle-average approxi-
mation are found to be rather small for all the kλ values. It is

1.2 1.4 1.6 1.8

–14
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–10

E/A [MeV]

kF [fm–1]

average
exact

Fig. 1. Calculated binding energies per nucleon as a function of the Fermi
momentum kF for the Bonn B potential.

1.2 1.4 1.6 1.8

–14
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–10
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exact

Fig. 2. Calculated binding energies per nucleon as a function of the Fermi
momentum kF for the Bonn C potential.

Table 1. Single-particle potential energies for various kλ values at
kF = 1.40 [fm−1] in the exact and angle-average treatments of the op-
erator Q for the Bonn B NN potential.5)

u(kλ)[MeV]

kλ[fm−1] exact average difference

0.047 −87.96 −88.54 0.58

0.237 −87.33 −87.84 0.51

0.533 −84.69 −84.90 0.21

0.867 −79.33 −79.12 −0.21

1.163 −72.69 −72.22 −0.47

1.353 −67.71 −67.22 −0.49

remarkable to see that the angle-average approximation leads
to overestimation of the single-particle-potential energy for
smaller values of kλ and does to underestimation for larger
values of kλ. This feature is observed at any nuclear matter
densities both for the Bonn B and C potentials. We show
in Table 1 the kλ dependence of the differences between two
u(kλ)’s in the exact and angle-average treatments of the oper-
ator Q at three nuclear matter densities. As shown in Table 1
the differences change the sign at about kλ = kF /2. This fact

80

Figure 4.4: Plot of saturation curves for Bonn B potential using angle-averaged Pauli
operator (dashed) and exact Pauli operator including partial waves up to J = 6. This
and a similar plot with the same trend may be found in Ref. [61].

integral then becomes

Q̄pp(K, q) =
1

2

∫ cos θ2

cos θ1

Qpp(K, q) d cos θ. (4.11)

To evaluate the limits, we consider the diagrams in Figs. 4.5 and 4.6. Figure 4.5 shows

the two theta functions that compose the Pauli operator in the case whereK/2 > kF .

We can see that the angles betweenK/2 and ±q are complimentary. The upper limit

θ2 will be dictated by Fig. 4.5a, while the lower limit θ1 will be dictated by Fig. 4.5b.

If either q < K/2− kF or q > K/2 + kF then there is no restriction on angle because

both particles are guaranteed to lie outside of the Fermi sea. Consequently in these

cases, Q̄pp(K, q) = 1. Otherwise, because of the complimentarity of these two angles
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(θ1 = π − θ2) we have finally from Eq (4.11)

Q̄pp(K, q) = cos θ2. (4.12)

where cos θ2 is given by

cos θ2 =
q2 + K2

4
− k2

F

Kq
(4.13)

On the other hand, if K/2 < kF , we must consider Fig. 4.6. In these diagrams

q has been displayed in the position that grants it its minimum value such that

both q and −q barely lie outside the Fermi sphere. If q were any smaller, then

orientations which leave it outside the Fermi sphere must leave −q inside, and vice

versa. Consequently Q̄pp(K, q) = 0 for all values of q such that q <
√
k2
F − K2

4
. On

the other hand, if q > K/2 + kF then the angular integration is unrestricted and

Q̄pp(K, q) = 1. Otherwise cos θ2 =
q2+

K2

4
−k2F

Kq
. Finally, we can summarize this as

follows:

Q̄(K, q) =


0 if 0 ≤ q <

√
k2
F − K2

4
,

q2+
K2

4
−k2F

Kq
if
√
k2
F − K2

4
≤ q < kF + K

2
,

1 if kF + K
2
≤ q.

(4.14)

if K/2 < kF and

Q̄(K, q) =


1 if 0 ≤ q < K

2
− kF ,

q2+
K2

4
−k2F

Kq
if K

2
− kF < q ≤ kF + K

2
,

1 if kF + K
2
< q,

(4.15)

if K/2 ≥ kF .

We can handle the angular dependence of the energy denominator with a similar

averaging. Because of the dual energies in the denominator of the form f(|K/2− q|)
and f(|K/2 + q|) the lowest order of angular dependence generated from their sum
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Figure 4.5: In these diagrams we have the case where K/2 > kF . Diagram a)
illustrates θ(|q +K/2)| − kF ) while diagram b) illustrates θ(|K/2− q| − kF ).

will be from quadratic terms of the form (K · q)2. We can replace these terms by

their angle-average <K · q >2 as follows

<K · q >2=< K2q2 cos2 θ >= K2q2 < cos2 θ >Kq (4.16)

where

< cos2 θ >Kq=
1

2

∫ 1

−1

cos2 θQpp(K, q) d cos θ. (4.17)

In this expression, the Pauli operator ensures that the same limits occur on the angles,

so in effect

< cos2 θ >Kq=
cos θ2

3

3
=

1

3
Q̄3(K, q). (4.18)
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Figure 4.6: In these diagrams we have the case where K/2 < kF . Diagram a)
illustrates θ(|q +K/2)| − kF ) while diagram b) illustrates θ(|K/2− q| − kF ).

Using these results, we can now express the arguments of the single-particle energies

ε(|K/2 + q|) and ε(|K/2− q|) with angle-averaged arguments

|K/2± q| = 1

4
K2 + q2 ± 1√

3
KqQ̄

3
2 (K, q). (4.19)

Although the angle-averaged Pauli operator will greatly simplify our calculation

when we move to a partial-wave basis by “removing” any additional angular depen-

dence, the discontinuities in its derivatives will pose some numerical challenges. Since

the Pauli operator appears in the sp energies, and we will later need to take derivatives

of the sp energies, we provide here analytical expressions for ∂Q̄(K,q)
∂q

∂Q̄(K, q)

∂q
=


0 if 0 ≤ q <

√
k2
F − K2

4
,

q2+k2F−
K2

4
Kq2

if
√
k2
F − K2

4
≤ q < kF + K

2
,

0 if kF + K
2
≤ q.

(4.20)
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if K/2 < kF and

∂Q̄(K, q)

∂q
=


0 if 0 ≤ q < K

2
− kF ,

q2+k2F−
K2

4
Kq2

if K
2
− kF < q ≤ kF + K

2
,

0 if kF + K
2
< q.

(4.21)

if K/2 ≥ kF . We can see the features of Q̄(K, q) and ∂Q̄(K,q)
∂q

plotted in Figs. 4.7

and 4.8. Note the discontinuities in the derivatives. We will have to take care that

when we discretize any integrals involving ∂Q̄(K,q)
∂q

our mesh creation is sensitive to

the locations of these discontinuities. A discussion of the mesh creation is given in

Ref. [53].

4.2.2 Calculation of the G-matrix

We now return to the Bethe-Goldstone equation Eq. (4.1) and express it in a partial-

wave basis as in Ref. [53]. In this section we treat the uncoupled channels only, leaving

the more elaborate but fundamentally similar coupled channels for Appendix B. Using

the angle-averaging approximation for a given total angular momentum J , total spin

S, and total isospin T , we can write

GL(kr, k
′
r, K,E) = VL(kr, k

′
r) +

∫ ∞
0

q2 dqVL(kr, q)

× Q̄pp(K, q)

E − ε(|K/2 + q|)− ε(|K/2− q|) + iη
GL(q, k′r, K,E). (4.22)

It is clear that whenever the energy E equals the two-particle energy the integral

encounters a pole. A standard way of dealing with this numerically [33] is with the

creation of the real reaction matrix RL given schematically in operator form by

RL = VL + VLP
Q̄pp

E − εRL (4.23)

where the P indicates performing a principle parts integral if there is a pole, and the

energy ε represents the energy of two particles propagating outside of the Fermi sea.
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Figure 4.7: Plot of Q̄(K, q) (blue) and kF × ∂Q̄(K,q)
∂q

(red) for the case K/2 < kF . In
this plot, we have taken K = kF . This figure has been adapted from a similar figure
presented for the full (pp +hh) Pauli operator in Ref. [53].

RL can be constructed using a matrix inversion [33] as follows:

RL − VLP
Q̄pp

E − εRL = VL (4.24)

{I− VLP
Q̄pp

E − ε}RL = VL (4.25)

RL = {I− VLP
Q̄pp

E − ε}
−1VL. (4.26)

We can also write Eq. (4.22) for the G-matrix in operator form as well by
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Figure 4.8: Plot of Q̄(K, q) (blue) and kF × ∂Q̄(K,q)
∂q

(red) for the case K/2 > kF . In
this plot, we have taken K = 3kF . This figure has been adapted from a similar figure
presented for the full (pp +hh) Pauli operator in Ref. [53].

GL = VL + VL
Q̄pp

E − ε+ iη
GL. (4.27)

Then the connection between R and G is

GL = RL − iπRLQ̄ppδ(E − ε)GL. (4.28)

From this we can see that for energies below twice the Fermi energy, where the

integration encounters no pole, GL is real and equal to RL. We can write this equation
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explicitly in terms of momentum and energy variables as follows:

GL(kr, k
′
r, K,E) = RL(kr, k

′
r, K,E)− iπ

∫ ∞
0

q2 dqRL(kr, q,K,E)

×Q̄pp(K, q)δ(E − ε(|K/2 + q|)− ε(|K/2− q|)GL(q, k′r, K,E) (4.29)

The integral can be evaluated explicitly due to the δ-function, by noting

δ(f(x)) =
∣∣∣ df(x)

dx

∣∣∣−1

x=x0
× δ(x− x0) (4.30)

with f(x0) = 0,

so that Eq. (4.29) becomes

GL(kr, k
′
r, K,E) = RL(kr, k

′
r, K,E)− i πk2

p∣∣ dE
dq

∣∣
q=kp

RL(kr, kp, K,E)

×Q̄pp(K, kp)GL(kp, k
′
r, K,E), (4.31)

where kp is the value of the momentum at the pole. We note that the G-matrices

appearing on right and left have different arguments, but by taking kr = kp we can

solve algebraically for GL(kp, k
′
r, K,E). We can also simplify our expression by letting

A(kp) =
πk2

pQ̄pp(K, kp)∣∣ dE
dq

∣∣
q=kp

. (4.32)

Having done this, we can reinsert the expression for GL(kp, k
′
r, K,E) into Eq. (4.31)

with the resulting final expression

GL(kr, k
′
r, K,E) = RL(kr, k

′
r, K,E) (4.33)

−A2(kp)
RL(kr, kp, K,E)RL(kp, k

′
r, K,E)RL(kp, kp, K,E)

1 + A2(kp)R2
L(kp, kp, K,E)

−iRL(kr, kp, K,E)RL(kp, k
′
r, K,E)

1 + A2(kp)R2
L(kp, kp, K,E)

. (4.34)

Since the R-matrix is real, we can see explicitly that the real part of the G-matrix is

given by the first two terms on the RHS, while the third term is the imaginary part.

74



The procedure for handling the coupled channels is essentially the same, but has the

additional complication that there is a sum over angular momentum states within the

coupled channel. The details are given in Appendix B.

Computation of the G-matrix through the real reaction matrix has been found to

be quite numerically stable [33] once the proper momentum and energy meshes have

been chosen, but because of the discontinuities in the Pauli operator the construction

of the proper mesh requires considerable thought. Particular details can be found in

Ref. [53].

4.3 Self-energy and binding

Once we have computed the G-matrix with a suitable ansatz for the sp spectrum we

can generate the real part of the self-energy according to the real part of Eq. (4.2).

From the partial-wave basis, we can recover the full G-matrix with

Re G(kr, k
′
r, K,E) =∑

LST

(1− (−1)L+S+T )(2J + 1)(2T + 1)Re GL(kr, k
′
r, K,E) (4.35)

so that, defining P = K/2, we have

Re ΣBHF (k,E) =

∫
P 2 dP d(cos θ)

×Re G(kr, 2P,E + ε(k′))θ(kF − k′) (4.36)

where

kr =
∣∣∣k − k′

2

∣∣∣ = |k − P | =
√
k2 + P 2 − 2kP cos θ (4.37)

and

k′ =
∣∣∣2P − k∣∣∣ =

√
k2 + 4P 2 − 4kP cos θ. (4.38)
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The only subtlety involved in evaluating this integral lies in evaluating the theta-

function. As we can see in Figs. 4.9a and 4.9b, the Fermi sphere imposes minimum

and maximum restrictions on P for the dP integral. From Fig. 4.9a, we see that

when k < kF that in order for 2P − k to remain inside the Fermi sphere, 2P must

be less than or equal to than kF + k. If, on the other hand, k > kF , then Fig. 4.9b

illustrates the additional condition that if 2P < (k − kF ) then 2P − k can never be

inside the Fermi sphere. The upper limit on P remains the same in this case. These

features can be summarized as follows:

0 < 2P < k + kF k < kF

k − kF < 2P < k + kF k > kF .

So, for a given k, this condition creates limits on the dP integral, allowing us to create

a momentum mesh Pi for the evaluation of this integral. Then, for each Pi, limits

for the d cos θ integral must be computed. Here again the Fermi sphere can impose

limitations on the possible values of cos θ, as seen in Fig. 4.10. Keeping in mind that

the angle in the integral is the angle between P and k, we can see from both Fig. 4.10a

and Fig. 4.10b that theta can always begin at 0◦, as long as the conditions on P have

been satisfied. Then, as the angle increases, it is possible depending the relative sizes

of P , k, and kF that the vector 2P − k could extend beyond the Fermi sphere. If k

and P are sufficiently small, it is possible that 2P − k will remain within the Fermi

sphere for all angles θ. This occurs whenever 0 < 2P < kF −k. Otherwise, the angles

can increase until the points illustrated in Fig. 4.10, where cos θ =
k2+4P 2−k2F

4kP
. These

limits can best be summarized as follows:

(cos θ)min =

−1 if 0 < 2P ≤ kF − k,
k2+4P 2−k2F

4kP
if |kF − k| < 2P ≤ kF + k,

(cos θ)max = 1 for all values of P . (4.39)

Once these limits for the integrals are chosen for a particular value of k, we found

that with a mesh using Gaussian quadrature, sixteen points for the integral over P ,

and ten points for the integral over cos θ were sufficiently stable numerically.
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Figure 4.9: Fermi spheres of θ(kF − |2P − k|) in two separate cases. In sub-diagram
a), k < kF . in digram b), k > kF .

Once the on-shell self-energy is properly calculated, we can compute the binding

energy per nucleon E/A using Eq. (4.5). Reducing this integral to one dimension,

and using for the density ρ =
2k3F
3π2 we have (h̄ = 1)

E

A
=

2

ρ

∫ kF

0

4πk2 dk

(2π)3

( k2

2m
+ ε(k)

)
= TF +

3

2k3
F

∫ kF

0

k2 dkUc(k) (4.40)

where in the preceding, TF ≡ 3k2F
10m

is the kinetic energy of the system of free nucleons.

4.4 Results

In order to verify the soundness of our numerical procedure, we first computed the

binding energy per nucleon for the RSC in the continuous choice. We used the

full continuous choice BHF procedure for partial waves with J ≤ 2, and included

higher partial waves (up to J = 7) at the level of HF. Since the RSC was not fit to
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Figure 4.10: Fermi spheres of θ(kF −|2P −k|) in two separate cases. In sub-diagram
a), 2P > kF . in digram b), 2P < kF .

such high partial waves, we used the extension of the RSC created by Ben Day [18]

for J ≥ 3. Table 4.1 compares the continuous-choice contributions to the binding

energy at kF = 1.36fm−1 for each partial wave, to the gap-choice results of Haftel

and Tabakin [33]. Both calculations use the RSC, but in the case of the gap choice

calculation the authors used only pion exchange for partial waves higher than J = 2.

Therefore we should expect some discrepancy for those partial waves even though

both techniques use only the HF contribution.

Also displayed in the table are similar results for the AV14 potential [69] in both

gap and continuous choice from [7]. In that work, Baldo et al. found that continuous

choice calculations yield similar binding energies in all channels but the S-waves,

and that in those channels (particularly the triplet S) continuous choice calculations

yield considerably more binding. Our results exhibit the same feature, and also agree
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reasonably well with the continuous choice results of the AV14 for all channels but

the 1P1. An examination of modern fits to scattering data [60] quickly shows that the

data available at the time of Reid’s initial fitting in that channel were of poor quality,

so it is not surprising to find a discrepancy in this channel when the RSC is compared

with a more modern potential fit to more modern data. Even so, we observe that

in the 1P1 channel we see an increase in binding between gap choice and continuous

choice of comparable size to the change found for the AV14.

It should be noted, however, that our binding energy is about 3 MeV greater at

saturation than that cited by [21], who also use continuous choice with the RSC. In

that calculation, the authors computed the G-matrix up to J = 3 (as opposed to

J = 2 in our calculation), and only included partial waves up to J = 5 at the level of

HF (whereas we included partial waves up to J = 7). It is not clear if these differences

fully account for the discrepancy between these calculations, so this discrepancy still

needs to be better understood. Nevertheless, there seems to be sufficient agreement

with the AV14 results to proceed with a comparison between our dynamic potential

and the static RSC at this level of approximation.

We now turn to the sp potentials generated at various densities. The rate of

convergence can be seen in Fig. 4.11, where the input spectrum is depicted as a

magenta dashed line, and successive iterations are plotted. For the input spectrum

in this plot we used the self-consistent spectrum from a different density. After the

fourth iteration the curves are visually indistinguishable on this scale, but in general

as many as 12 iterations were necessary to achieve the desired precision in the binding

energy.

Figure 4.12 compares the real parts of the on-shell static (black) and dynamic

(red) self-energies for different densities. There are several important features to note

here.

1. The general trend for all densities is that the dynamic self-energy is more at-

tractive at low k, but becomes less attractive at higher k.

2. For lower densities (first three panels) the point where the two curves intersect

lies above kF , while for higher densities (last three panels) it lies below.

79



Table 4.1: The first column indicates the partial wave, while the remaining columns
report the contribution to the binding energy from that partial wave, measured in
MeV. The second and third columns report the results of the gap choice calculation
of [33] and our own continuous choice calculation, both using the RSC. The last two
columns reproduce the results of gap and continuous choice calculations of [7] for
AV14.

RSC Gap RSC Cont. AV14 Gap AV14 Cont.
1S0 -15.57 -15.88 -16.31 -16.51
1P1 2.39 1.99 4.13 3.94
1D2 -2.55 -2.58 -2.84 -2.82
3P0 -3.32 -3.31 -3.83 -3.83
3P1 9.93 9.27 11.06 10.56
3D2 -4.32 -4.43 -4.16 -4.18
1F3 0.84 0.82 0.91 0.89
3F3 1.56 1.55 1.72 1.70
1G4 -0.47 -0.47 -0.48 -0.47
3G4 -0.72 -0.72 -0.77 -0.77
1H5 0.21 0.21
3H5 0.33 0.34
1I6 -0.11 -0.11
3I6 -0.16 -0.14
1J7 0.05 0.050
3J7 0.08 0.074

3S1 + 3D1 -13.71 -20.36 -15.54 -19.09
3P2 + 3F2 -7.60 -8.19 -7.60 -7.90
3D3 + 3G3 0.53 -0.04
3F4 + 3H4 -0.30 -0.29
3G5 + 3I5 0.13 0.13
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Table 4.2: Contributions to E/A at various densities for all partial waves with total
angular momentum J ≤ 2. This information is also broken down in terms of total
spin and isospin combinations in Table 4.3 and displayed in Fig. 4.14.

kF = 1.00fm−1 DR1 RSC kF = 1.36fm−1 DR1 RSC
1S0 -8.21 -8.97 1S0 -14.14 -15.88
1P1 -0.17 0.48 1P1 -0.1 1.99
1D2 -0.42 -0.66 1D2 -1.6 -2.58
3P0 -0.6 -1.36 3P0 -0.86 -3.31
3P1 1.55 2.85 3P1 4.45 9.27
3D2 -0.85 -1.21 3D2 -2.81 -4.43

3S1 + 3D1 -15.27 -14.77 3S1 + 3D1 -22.01 -20.36
3P2 + 3F2 -2 -2.25 3P2 + 3F2 -7.17 -8.19

kF = 1.46fm−1 DR1 RSC kF = 1.56fm−1 DR1 RSC
1S0 -15.91 -18.03 1S0 -17.66 -20.18
1P1 0.16 2.82 1P1 0.62 3.92
1D2 -2.19 -3.5 1D2 -2.93 -4.62
3P0 -0.78 -3.96 3P0 -0.61 -4.6
3P1 5.75 12.14 3P1 7.39 15.6
3D2 -3.63 -5.84 3D2 -4.6 -7.49

3S1 + 3D1 -23.4 -21.66 3S1 + 3D1 -24.36 -22.59
3P2 + 3F2 -9.48 -10.82 3P2 + 3F2 -12.23 -13.94

kF = 1.66fm−1 DR1 RSC kF = 1.76fm−1 DR1 RSC
1S0 -19.36 -22.2 1S0 -20.99 -24.15
1P1 1.36 5.39 1P1 2.44 7.23
1D2 -3.88 -5.97 1D2 -5.05 -7.59
3P0 -0.32 -5.32 3P0 8.81E-002 -5.88
3P1 9.44 19.9 3P1 12.02 24.76
3D2 -5.73 -9.47 3D2 -7.07 -11.69

3S1 + 3D1 -24.77 -23.78 3S1 + 3D1 -24.54 -23.7
3P2 + 3F2 -15.47 -17.69 3P2 + 3F2 -19.23 -21.93
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Table 4.3: Contributions to E/A at various densities, broken down in terms of spin
and isospin combinations. The differences between the contributions from the static
potential and the dynamic potential for each spin-isospin combination are highlighted
in red, indicating a systematic increase in the difference with increasing density. This
information is also displayed in Fig. 4.14.

kF = 1.00fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 0.48 -15.98 -9.63 -0.76
Dynamic (MeV) -0.17 -16.12 -8.63 -1.05
Difference (MeV) 0.65 0.14 -1 0.29

kF = 1.36fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 1.96 -24.79 -18.46 -2.23
Dynamic (MeV) -0.08 -24.7 -15.77 -3.56
Difference (MeV) 2.04 -0.09 -2.69 1.33

kF = 1.46fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 2.81 -27.63 -21.55 -2.65
Dynamic (MeV) 0.16 -27.03 -18.1 -4.51
Difference (MeV) 2.65 -0.6 -3.45 1.86

kF = 1.56fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 3.92 -30.07 -24.80 -2.94
Dynamic (MeV) 0.62 -28.96 -20.59 -5.45
Difference (MeV) 3.3 -1.11 -4.21 2.51

kF = 1.66fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 5.39 -33.25 -28.17 -3.11
Dynamic (MeV) 1.36 -30.50 -28.17 -6.36
Difference (MeV) 4.03 -2.75 -4.94 3.25

kF = 1.76fm−1 T=0,S=0 T=0,S=1 T=1,S=0 T=1,S=1
Static (MeV) 7.23 -35.39 -31.74 -3.05
Dynamic (MeV) 2.45 -31.62 -26.04 -7.13
Difference (MeV) 4.78 -3.77 -5.7 4.08
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Figure 4.11: Real part of the on-shell self-energies for successive iterations in the case
kF = 1.36fm−1. Input spectrum is dashed (magenta). Iterations 4-8 are visually
indistinguishable on this scale.
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Figure 4.12: Real part of the on-shell self-energies for increasing kF . Red is the
spectrum formed using the DR1 potential, while black was obtained using the RSC.
It can be seen that in general the dynamic self-energy is more attractive at low k,
and less attractive at higher k.
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3. E/A is only sensitive to the real part of the on-shell self-energy for values of

k < kF . This means that for densities for which the dynamic potential is more

attractive than the static up to k = kF the dynamic potential must lead to

greater binding than the static.

4. E/A is most sensitive to the value of the self-energy near kF due to the k2

weight in the integral in Eq. (4.40).

5. As density increases, the phase space wherein the dynamic self-energy is less

attractive than the static also increases. Consequently it must be the case that

at some density the dynamic potential energy contribution to the binding must

be smaller than for the static interaction.

These factors ultimately lead to a shift to the left of the saturation curve, as illustrated

in Fig. 4.13. The shift of the saturation curve toward the empirical region by roughly

0.05fm−1 is substantial and quite relevant to the discussion of the nuclear saturation

problem in general. Because saturation density is proportional to k3
F , a 0.05fm−1

reduction in Fermi momentum corresponds to roughly a 10% decrease in saturation

density. Machleidt et al. also found a reduction of saturation density with their

dynamic version of the Bonn potential, but with a concurrent reduction in binding

energy that kept their saturation point on the Coester band [39]. Their method

differed from ours in that they employ the standard choice for their sp spectrum,

while we use the continuous choice.

Our result suggests that at a given level of approximation, replacement of a

static NN interaction with a phase shift equivalent dynamic interaction within the

continuous choice can move the saturation point off the Coester band toward the

left, without a significant change in overall binding energy. Before drawing further

conclusions, we will probe more deeply into the ingredients of this calculation to see

if we can derive further insight into this change in the saturation mechanism.

We begin with an examination of the contributions to overall binding energy

from each partial wave. In Tables 4.2 and 4.3 we have tabulated the total potential

energy contribution for partial waves with J ≤ 2 to the binding energy for each value

of kF . In the former, the information is broken down to display the contribution

from each partial wave. It is very interesting to note that the drastic changes in
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Figure 4.13: Saturation curves for DR1 (red) and RSC (black). Red stars are calcu-
lated binding energies for DR1. Black pluses are calculated binding energies for RSC.
Curves are cubic spline interpolation.
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the static and the dynamic cases.
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the contributions to binding are not limited to the S-waves. There are substantial

changes to the binding energy contributions seen also in both the L = 1 and L = 2

channels, yet the overall binding is only slightly changed. How this transpires can be

seen by examining Table 4.3 and Fig. 4.14 where the contributions are broken down

in terms of the various combinations of total spin and isospin. In the Table 4.3 we

highlight (in red) the difference between the static and dynamic contributions at each

density.

Several trends are clear from these tables. Table 4.2 in particular makes clear

in particular that for both the strong tensor force in the 3S1 − 3D1 channel and

the attractive 1S0 channel, the contributions from the dynamic interaction becomes

considerably less attractive than the static contributions as density increases. This

will reduce the density range over which pairing occurs in these channels, as well as

reducing the gaps necessary for dealing with them.

Additionally, a general trend for the differences between the contributions from

the RSC and the DR1, illustrated in Fig. 4.14 and quantified in Table 4.3, is that for

odd-L channels (T = 0, S = 0 and T = 1, S = 1) the difference is positive and grows

with increasing density, while for even-L channels (T = 0, S = 1 and T = 1, S = 0)

the difference is negative but grows in magnitude at roughly the same rate. For

three of the channels, the trend is strongly linear for the five highest Fermi momenta,

while for the fourth (T = 0, S = 1) it is not quite linear. The alternating sign of the

difference corresponds to the signs of the σ1 ·σ2τ1 ·τ2 term in the OPEP (Eq. (2.22)).

Explicitly,

σ1 · σ2τ1 · τ2 = 9 if T = 0, S = 0

σ1 · σ2τ1 · τ2 = −3 if T = 0, S = 1

σ1 · σ2τ1 · τ2 = −3 if T = 1, S = 0

σ1 · σ2τ1 · τ2 = 1 if T = 1, S = 1,

further clarifying and confirming the systematic nature of the replacement of a static

treatment of the OPEP with a dynamic one.

It is the near equality in the magnitudes of the slopes (but opposite signs) in

Fig. 4.14 of the odd-L and even-L cases that is responsible for the (near) lack of
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change to the overall binding energy at the corresponding saturation density despite

the fact that the individual contributions differ greatly at higher density. It is the

downturn in the difference for the (T = 0, S = 1) partial waves that leads to a change

in the total difference, and consequently is responsible for the shift to the left of the

saturation curve.

The fact that the T = 0, S = 1 partial waves do not quite fit this linear trend

is not so surprising since this is where the strong 3S1 − 3D1 tensor force occurs.

In the density range we consider there is likely a pairing solution in the 3S1 − 3D1

channel [67]. It is also expected that there is a pairing solution in the 1S0 channel

(T = 1, S = 0) for the lowest density point, but not for the higher densities. Because

of the different attraction of the dynamic self-energy in these channels we expect that

handling these pairing solutions will require a larger gap for the 3S1 − 3D1 channel

and a smaller gap for the 1S0 channel.

It is clear that at the BHF level of approximation, including dynamic propaga-

tion of pions in the continuous choice has a significant influence on the saturation

properties of nuclear matter. It provides a needed shift away from the Coester band

and toward the empirical region for a Reid-like dynamic interaction. Potential future

exploration of this effect will be discussed in more detail in Chapter 5.
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Chapter 5

Conclusion and Outlook

To date, all of the realistic NN interactions that are widely used contain static pion

exchange. For most applications this has been sufficient. The reasons for the appeal

of the static pion are manifold. From a computational point of view, the static pion

contains no pole above the pion-production threshold and is therefore easy to control

numerically. Static pions and dynamic pions agree on-shell, and only on-shell T -

matrix elements are needed to fit the potential to phase shifts. With a static pion

one need not worry about evaluating two-pion in flight diagrams. However, with

all of these virtues, we have demonstrated that it is possible to overcome the same

difficulties, albeit with more effort, with dynamic pions. Furthermore, there are some

applications where the off-shell behavior of the relevant scattering matrix becomes

important. We have demonstrated that there is reason to believe that a dynamic pion

might be better suited toward a description of the data in those applications.

We have developed a potential for testing the consequences of allowing pions to

carry energy. This potential is no toy model, and because of its harder core compared

to more modern potentials might have the same continuing usefulness as the Reid

potential does in many-body calculations. We have also demonstrated that it should

be possible to obtain a fit to more modern data, but to do this with the same quality

as currently used potentials is a large-scale project beyond the scope of this work. It

is our hope that this better fit occur in the future; an update akin to the Reid93 and

one which can act as a foil to the modern potentials as our own model has done for

the Reid. We have offered a prescription for replacing static pions with dynamic ones,
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both above and below pion-production threshold, which could easily be inserted into

any of these modern potentials.

We have also argued that inelastic scattering data, such as the polarization ob-

servable Ay, might be better analyzed with dynamic potentials. Although our model

was not able to explain the Ay puzzle presented by Noro [49], we did clarify some

aspects of it. We note that Ay is very sensitive to the Coulomb force, and some of

the decrease in Ay with increasing separation energy could be related to the increas-

ing nuclear charge which our model cannot address. We propose that future efforts

with dynamic pions should be fit to modern pp data as well as np data, and the

Coulomb force taken into account. It might also be necessary to make higher-mass

terms dynamic, since these are primarily responsible for the two-body spin-orbit in-

teraction. Toward both of these ends a suitable candidate potential for the inclusion

of dynamic meson exchange is the CDBonn interaction, which contains both explicit

meson exchange and the Coulomb force. We are forced to admit, however, that it is

possible that the resolution to this puzzle lies elsewhere. Nevertheless, from a formal

standpoint a dynamic interaction seems more suitable to this class of experiments

and should be explored further. It is also very important that the NN interaction be

clarified and any remaining puzzles solved, so that we have a cleaner analysis of the

important (p, 2p) experiments that are only recently possible in inverse kinematics

with unstable beams.

We have also made an interesting discovery toward the clarification of the nuclear-

matter saturation problem. The difficulty in simultaneously predicting the proper

binding energy per nucleon and saturation density of nuclear matter has over the

last several decades assumed almost mythic proportions. Although much work has

been done in the area, and there are several approaches which are able to come close

to the mark, a full understanding of the underlying saturation mechanism has not

yet been achieved. We offer only a modest contribution to this understanding, but

hope that our work combined with the gargantuan efforts that have gone before can

bring us closer to that deep understanding. Our results suggest that the presence

of propagating pions in the medium, at the level studied here, effects a global shift

in the density dependence of the binding energy. It reduces the Fermi momentum

of the saturation point by about 0.05fm−1 toward the empirical saturation point,
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resulting in a 10% decrease in saturation density, without significantly altering the

binding energy per nucleon. As Dewulf et al. have recently argued [21], the manner

of treatment of pions in many-body calculations seems central to the nuclear-matter

saturation problem. The authors achieve reasonable binding with Fermi momentum

at saturation density a little (roughly 0.1fm−1) too high (see Fig 4.3) by excluding

collective pionic modes, while including short-range correlations self-consistently. It

will be very interesting to see how those results are altered with the inclusion of

dynamic pions.

Additionally, it is interesting to note that in the T = 1 channels, our dynamic

interaction becomes more attractive (on the order of 1-2 MeV/nucleon) as a func-

tion of density than the static Reid. This indicates that in pure neutron matter

the dynamic propagation of pions most likely leads a somewhat softer equation of

state and therefore an altered density dependence of the symmetry energy. If this is

borne out by further calculations in asymmetric nuclear matter it would also indicate

that dynamic pion propagation moves the neutron drip line away from the valley of

stability.

We have demonstrated that a systematic treatment of dynamic pion propagation

is not only possibly, but of potential interest in the future study of inelastic scattering

as well as nuclear-matter properties. Pions do carry energy in certain applications,

and it is reasonable to include these dynamic effects from the beginning during the

construction of NN potentials. We have provided a prescription for their inclusion

in any NN interaction which already includes static pions, as well as an analysis of

when such inclusion might exhibit interesting results. We hope that this work can be

of use to others in future studies.
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Appendix A

Potential Parameters

A.1 Reid soft-core potential

For reference we reproduce here the functional form of the RSC [54]. The T=1

channels for J ≤ 2 are given below.

V (1S0) = −he
−x

x
− 1650.6

e−4x

x
+ 6484.2

e−7x

x
(A.1)

V (1D2) = −he
−x

x
− 12.322

e−2x

x
− 1112.6

e−4x

x
+ 6484.2

e−7x

x
(A.2)

V (3P0) = −h
[(

1 +
4

x
+

4

x2

)
e−x

x
−
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16

x
+

4

x2

)
e−4x

x

]
+27.133

e−2x

x
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e−4x

x
+ 20662

e−7x
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(A.3)

V (3P1) = h

[(
1 +

2

x
+

2

x2

)
e−x

x
−
(

8

x
+

2

x2

)
e−4x

x

]
−135.25

e−2x

x
+ 472.81

e−3x

x
(A.4)

V (3P2 − 3F2) = VC + VTS12 + VLSL · S (A.5)
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where

VC =
h

3

e−x

x
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e−4x

x
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e−6x

x
(A.6)
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(A.7)

VLS = −2074.1
e−6x

x
. (A.8)

The T=0 channels for J ≤ 2 are given below.

V (1P1) = 3h
e−x

x
− 634.39

e−2x

x
+ 2163.4

e−3x

x
(A.9)

V (3D2) = −3h
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+
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+
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V (3S1 − 3D1) = VC + VTS12 + VLSL · S (A.11)

where

VC = h
e−x

x
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e−2x

x
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e−4x

x
+ 9924.3

e−6x
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(A.12)

VT = −h
[(
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x
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3
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]
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x
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e−6x

x
(A.13)

VLS = 708.91
e−4x

x
− 2713.1

e−6x

x
. (A.14)

A.2 Dynamic Reid 1(DR1) refit parameters

Our potential is given with the pion piece provided by our Extended Legendre Func-

tion in momentum space. Here the Ṽπ indicates schematically the position space

version of our dynamic pion potential. It is the static higher-mass Yukawa terms that
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are of importance here. We can compare the parameters in this refit to the parame-

ters in the phenomenological multiple-pion exchange terms in the RSC, to gauge the

effect in position space of the dynamic pion on the potential.

The T=1 channels for J ≤ 2 are given below.

Ṽ (1S0) = Ṽπ − 1666.0
e−4x

x
+ 6494.2

e−7x

x
(A.15)

Ṽ (1D2) = Ṽπ − 12.322
e−2x

x
− 1112.6

e−4x

x
+ 6484.2

e−7x

x
(A.16)

Ṽ (3P0) = Ṽπ + 128.04
e−2x

x
− 3225.9

e−4x

x
+ 43994

e−7x

x
(A.17)

Ṽ (3P1) = Ṽπ − 130.27
e−2x

x
+ 391.09

e−3x

x
(A.18)

Ṽ (3P2 − 3F2) = ṼC + ṼTS12 + ṼLSL · S (A.19)

where

ṼC = Ṽπ − 949.64
e−4x

x
+ 4133.1

e−6x

x
(A.20)

ṼT = Ṽπ − 36.458
e−3x

x
(A.21)

ṼLS = −2074.1
e−6x

x
. (A.22)

The T=0 channels for J ≤ 2 are given below.

Ṽ (1P1) = Ṽπ − 665.71
e−2x

x
+ 2157.9

e−3x

x
(A.23)

Ṽ (3D2) = Ṽπ − 387.89
e−2x

x
+ 1286

e−3x

x
(A.24)

Ṽ (3S1 − 3D1) = ṼC + ṼTS12 + ṼLSL · S (A.25)
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where

ṼC = Ṽπ − 13.298
e−2x

x
− 2700.1

e−4x

x
+ 9957.8

e−6x

x
(A.26)

ṼT = Ṽπ + 351.77
e−4x

x
− 1551.7

e−6x

x
(A.27)

ṼLS = 708.91
e−4x

x
− 2713.1

e−6x

x
. (A.28)

A.3 Dynamic Reid 1 plots

These plots were presented in Ch. 2 in a single 12-panel, and are here presented in

larger form for closer inspection.
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Figure A.1: Plot of RSC and DR1 1S0 phase shifts. Black error bars are from the
original analysis of Arndt and MacGregor. Dashed (blue) curve is Reid’s fit. Red
dash-dotted line is the DR1 refit.
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Figure A.2: Plot of RSC and DR1 1D2 phase shifts. Lines are as in Fig. A.1.
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Figure A.3: Plot of RSC and DR1 3P0 phase shifts. Lines are as in Fig. A.1.
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Figure A.4: Plot of RSC and DR1 3P1 phase shifts. Lines are as in Fig. A.1.
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Figure A.5: Plot of RSC and DR1 3P2 phase shifts. Lines are as in Fig. A.1.
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Figure A.6: Plot of RSC and DR1 3F2 phase shifts. Lines are as in Fig. A.1.
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Figure A.7: Plot of RSC and DR1 ε2 mixing angles. Lines are as in Fig. A.1.
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Figure A.8: Plot of RSC and DR1 1P1 phase shifts. Lines are as in Fig. A.1.
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Figure A.9: Plot of RSC and DR1 3D2 phase shifts. Lines are as in Fig. A.1.
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Figure A.10: Plot of RSC and DR1 3S1 phase shifts. Lines are as in Fig. A.1.
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Figure A.11: Plot of RSC and DR1 3D1 phase shifts. Lines are as in Fig. A.1.
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Figure A.12: Plot of RSC and DR1 ε1 mixing angles. Lines are as in Fig. A.1.
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A.4 Dynamic Reid 2 (DR2) plots

The following plots represent our best qualitative fit to the Nijmegen Partial Wave

analysis [60]. This partial-wave analysis did not contain error bars in the isovector

channel, so we present these only as a qualitative illustration of the possibility of

obtaining a fit to the data of similar quality to the PWA and the various potentials of

the Nijmegen group. These plots should demonstrate the plausibility of constructing

a high quality realistic dynamic potential by including electromagnetic terms and

fitting directly to modern data. Although these plots were presented in Ch. 2 in

a single 7-panel plot, they are here reproduced in larger form for closer inspection.
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Figure A.13: Plot of DR2 fit to partial-wave analysis 1S0 phase shifts. Solid black
line is the PWA. DR2 is solid red line, while the other curves for comparison are Nijm
1 (green dots), Nijm 2 (blue dashes), Reid 93 (purple dash-dot-dots), and Nijm 93
(tan dash-dots).
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Figure A.14: Plot of DR2 fit to partial-wave analysis 1D2 phase shifts. Curves as
labeled in Fig A.13.
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Figure A.15: Plot of DR2 fit to partial-wave analysis 3P0 phase shifts. Curves as
labeled in Fig A.13.
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Figure A.16: Plot of DR2 fit to partial-wave analysis 3P1 phase shifts. Curves as
labeled in Fig A.13.
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Figure A.17: Plot of DR2 fit to partial-wave analysis 3P2 phase shifts. Curves as
labeled in Fig A.13.
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Figure A.18: Plot of DR2 fit to partial-wave analysis 3F2 phase shifts. Curves as
labeled in Fig A.13.
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Figure A.19: Plot of DR2 fit to partial-wave analysis ε2 mixing angles. Curves as
labeled in Fig A.13.
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Appendix B

G-Matrix Coupled Channels

Here we present the details for full (on- and off-shell) calculation of both the real

and imaginary parts of the coupled-channel Bruekner G-matrix. These details can

also be found in more concise but equivalent form in Ref. [64]. We provide this

alternative which has the advantage of separating G into real and imaginary parts.

The coupled channels differ from the single channels mainly in that for a given set of

quantum numbers (kr, k
′
r, K,E), there is an additional sum over angular momentum

states L = {J − 1, J + 1}. We begin by writing the equation for the coupled channel

R-matrix, in analogy with Eq. (4.23).

RLL′ = VLL′ +
∑
L′′

VLL′′P
Q̄pp

E − εRL′′L. (B.1)

The only thing here that is different from Eq. (4.23) is the sum over L′′, which creates

a 2x2 matrix equation for each set of (kr, k
′
r, K,E).

In order to explore the (2x2) matrix nature of the coupled channel R and G-

matrix equations, we simplify the notation as much as possible. Consequently, we

write terms such as e.g. RJ+1,J−1(kr, k
′
r, K,E) with the simplified notation R12

+−. This

allows us to write the 2x2 (in angular momentum space) R-matrix more succinctly,

as follows.[
R12
−− R12

−+

R12
+− R12

++

]
≡
[
RJ−1,J−1(kr, k

′
r, K,E) RJ−1,J+1(kr, k

′
r, K,E)

RJ+1,J−1(kr, k
′
r, K,E) RJ+1,J+1(kr, k

′
r, K,E)

]
(B.2)
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In this definition, a lower index of (+) indicates an angular momentum state L = J+1,

while a (-) indicates the L = J − 1 state. Upper indices of (1) and (2) indicate

momentum states (kr) and (k′r) respectively. Since the ensuing 2x2 matrix equation

must be solved for each (K,E) independently, we suppress those variables. Finally,

for the on-shell or half on-shell R-matrix elements, where one or both respectively

of the kr, k
′
r are replaced by the value of relative momentum at the pole kp, we

will use an upper index of (p) where a “p” in the first slot indicates that kr = kp

and a “p” in the second slot indicates that k′r = kp. This means that for example,

RJ+1,J−1(kr, kp, K,E) will be written as R1p
+−, while RJ+1,J−1(kp, k

′
r, K,E) would be

written as Rp2
+− etc. All of these notational introductions are necessary so that we can

express the rather lengthy matrix equations to follow in a minimum of space. Similar

notational changes will apply to elements of the coupled channel G-matrix also.

With these notational changes in mind, we begin by writing the 2x2 matrix

equation for the coupled channel R-matrix,

[
R12
−− R12

−+

R12
+− R12

++

]
=

[
V 12
−− V 12

−+

V 12
+− V 12

++

]
+ P Q̄pp

E − ε

[
V 1p
−− V 1p

−+

V 1p
+− V 1p

++

][
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
(B.3)

which can be solved by matrix inversion in a manner analagous to the single channel

case seen in Eqs. (4.24-4.26). Once we have solved for the full R-matrix, taking care

to solve also for the pole values, we can proceed to the more subtle solution of the

G-matrix equation[
G12
−− G12

−+

G12
+− G12

++

]
=

[
R12
−− R12

−+

R12
+− R12

++

]
+ iA(kp)

[
R1p
−− R1p

−+

R1p
+− R1p

++

][
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
(B.4)

where A(kp) is as given in Eq. (4.32). As in the single channel case, we note that

the arguments of G on the LHS and RHS differ, so we first solve for the half on-shell[
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
by letting 1 → p, equivalent to letting kr = kp. Then Eq. (B.4) leads
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to [
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
=

[
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
+ iA(kp)

[
Rpp
−− Rpp

−+

Rpp
+− Rpp

++

][
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
. (B.5)

Then, bringing the second term on the RHS to the left we have

−iA(kp)

[
Rpp
−− Rpp

−+

Rpp
+− Rpp

++

][
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
+

[
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
=

[
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
. (B.6)

Now we can combine terms on the left by factoring out the G-matrix to the right,

yielding[
1− iA(kp)R

pp
−− −iA(kp)R

pp
−+

−iA(kp)R
pp
+− 1− iA(kp)R

pp
++

][
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
=

[
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
. (B.7)

Finally, by multiplying both side by the inverse of the first matrix on the LHS, we

can solve for the half on-shell G-matrix .[
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
=

[
1− iA(kp)R

pp
−− −iA(kp)R

pp
−+

−iA(kp)R
pp
+− 1− iA(kp)R

pp
++

]−1 [
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
. (B.8)

We can use Cramer’s Rule to solve for the inverse as follows:[
1− iA(kp)R

pp
−− −iA(kp)R

pp
−+

−iA(kp)R
pp
+− 1− iA(kp)R

pp
++

]−1

=
1

∆

[
1− iA(kp)R

pp
++ −iA(kp)R

pp
−+

−iA(kp)R
pp
+− 1− iA(kp)R

pp
−−

]
(B.9)

where ∆ is the determinant of the matrix we are inverting and

∆ = (1− iA(kp)R
pp
−−)(1− iA(kp)R

pp
++) + A2(kp)R

pp
+−R

pp
−+. (B.10)
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Using this result, we can solve for the half on-shell G.[
Gp2
−− Gp2

−+

Gp2
+− Gp2

++

]
=

1

∆

[
1− iA(kp)R

pp
++ −iA(kp)R

pp
−+

−iA(kp)R
pp
+− 1− iA(kp)R

pp
−−

][
Rp2
−− Rp2

−+

Rp2
+− Rp2

++

]
. (B.11)

Inserting this result into Eq. (B.4) yields, after some algebra,

G12
−− = R12

−− −
iA(kp)

∆

×
[
R1p
−−

(
Rp2
−− + iA(kp)R

pp
++R

p2
−− − iA(kp)R

pp
−+R

p2
+−

)
R1p
−+

(
Rp2

+− + iA(kp)R
pp
−−R

p2
+− − iA(kp)R

pp
+−R

p2
−−

)]
(B.12)

G12
−+ = R12

−+ −
iA(kp)

∆

×
[
R1p
−−

(
Rp2
−+ + iA(kp)R

pp
++R

p2
−+ − iA(kp)R

pp
−+R

p2
++

)
R1p
−+

(
Rp2

++ + iA(kp)R
pp
−−R

p2
++ − iA(kp)R

pp
+−R

p2
−+

)]
(B.13)

G12
+− = R12

+− −
iA(kp)

∆

×
[
R1p

+−

(
Rp2
−− + iA(kp)R

pp
++R

p2
−− − iA(kp)R

pp
−+R

p2
+−

)
R1p

++

(
Rp2

+− + iA(kp)R
pp
−−R

p2
+− − iA(kp)R

pp
+−R

p2
−−

)]
(B.14)

G12
++ = R12

++ −
iA(kp)

∆

×
[
R1p

+−

(
Rp2
−+ + iA(kp)R

pp
++R

p2
−+ − iA(kp)R

pp
−+R

p2
++

)
R1p

++

(
Rp2

++ + iA(kp)R
pp
−−R

p2
++ − iA(kp)R

pp
+−R

p2
−+

)]
. (B.15)

Finally, for completeness we can separate these G-matrix elements into real and

imaginary parts. We note that only the determinant ∆ and the explicit factors of i

are complex, so we can multiply Eqs. (B.12-B.15) by ∆∗
∆∗ to get a real denominator.
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Then,

∆∆∗ = (1− A(kp)(R
pp
++R

pp
−− −Rpp

+−R
pp
−+))2 + A2(kp)(R

pp
++ +Rpp

−−)2 (B.16)

and with some algebra in the numerators we can get both the real parts

Re G12
−− = R12

−− −
A(kp)

∆∆∗

×
[
A(kp)(R

pp
++ +Rpp

−−)(R1p
−−R

p2
−− +R1p

−+R
p2
+−)

−A(kp)
(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

×
(
R1p
−−R

pp
++R

p2
−− −R1p

−−R
pp
−+R

p2
+− +R1p

−+R
pp
−−R

p2
+− −R1p

−+R
pp
+−R

p2
−−

)]
(B.17)

Re G12
−+ = R12

−+ −
A(kp)

∆∆∗

×
[
A(kp)(R

pp
++ +Rpp

−−)(R1p
−−R

p2
−+ +R1p

−+R
p2
++)

−A(kp)
(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

×
(
R1p
−−R

pp
++R

p2
−+ −R1p

−−R
pp
−+R

p2
++ +R1p

−+R
pp
−−R

p2
++ −R1p

−+R
pp
+−R

p2
−+

)]
(B.18)

Re G12
+− = R12

+− −
A(kp)

∆∆∗

×
[
A(kp)(R

pp
++ +Rpp

−−)(R1p
+−R

p2
−− +R1p

++R
p2
+−)

−A(kp)
(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

×
(
R1p

+−R
pp
++R

p2
−− −R1p

+−R
pp
−+R

p2
+− +R1p

++R
pp
−−R

p2
+− −R1p

++R
pp
+−R

p2
−−

)]
(B.19)
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Re G12
++ = R12

++ −
A(kp)

∆∆∗

×
[
A(kp)(R

pp
++ +Rpp

−−)(R1p
+−R

p2
−+ +R1p

++R
p2
++)

−A(kp)
(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

×
(
R1p

+−R
pp
++R

p2
−+ −R1p

+−R
pp
−+R

p2
++ +R1p

++R
pp
−−R

p2
++ −R1p

++R
pp
+−R

p2
−+

)]
(B.20)

and the imaginary parts

Im G12
−− = −A(kp)

∆∆∗
(B.21)

×
[(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

(R1p
−−R

p2
−− +R1p

−+R
p2
+−)

+A2(kp)(R
pp
++ +Rpp

−−)

×
(
R1p
−−R

pp
++R

p2
−− −R1p

−−R
pp
−+R

p2
+− +R1p

−+R
pp
−−R

p2
+− −R1p

−+R
pp
+−R

p2
−−

)]

Im G12
−+ = −A(kp)

∆∆∗
(B.22)

×
[(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

(R1p
−−R

p2
−+ +R1p

−+R
p2
++)

+A2(kp)(R
pp
++ +Rpp

−−)

×
(
R1p
−−R

pp
++R

p2
−+ −R1p

−−R
pp
−+R

p2
++ +R1p

−+R
pp
−−R

p2
++ −R1p

−+R
pp
+−R

p2
−+

)]

Im G12
+− = −A(kp)

∆∆∗
(B.23)

×
[(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

(R1p
+−R

p2
−− +R1p

++R
p2
+−)1cm

+A2(kp)(R
pp
++ +Rpp

−−)

×
(
R1p

+−R
pp
++R

p2
−− −R1p

+−R
pp
−+R

p2
+− +R1p

++R
pp
−−R

p2
+− −R1p

++R
pp
+−R

p2
−−

)]
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Im G12
++ = −A(kp)

∆∆∗
(B.24)

×
[(

1− A2(kp)(R
pp
++R

pp
−− −Rpp

−+R
pp
+−)
)

(R1p
+−R

p2
−+ +R1p

++R
p2
++)

+A2(kp)(R
pp
++ +Rpp

−−)

×
(
R1p

+−R
pp
++R

p2
−+ −R1p

+−R
pp
−+R

p2
++ +R1p

++R
pp
−−R

p2
++ −R1p

++R
pp
+−R

p2
−+

)]
.

In practice, we only need G12
++ and G12

−− for the present application and so do not

compute the full off-shell G-matrix, although all of the technology is in place should

we need it in the future.
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[66] C.F. von Weizsäcker. Z. Phys., 96:431, 1935.

[67] B. E. Vonderfecht, C. C. Gearhart, W. H. Dickhoff, A. Polls, and A. Ramos.

Phys. Lett. B, 253, 1991.

[68] T. Wakasa et al. Phys. Rev. C, 59:3177, 1999.

118



[69] R. B. Wiringa, R. A. Smith, and T. L. Ainsworth. Phys.Rev. C, 29:1207, 1984.

[70] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla. Phys.Rev. C, 51:38, 1995.

[71] H. Yukawa. Proc. Phys. Math. Soc. Jpn, 17:48, 1935.

119


	Dynamic Pion Studies in Nuclear Matter
	Recommended Citation

	tmp.1333720445.pdf.gljcv

