Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-TM-92-04

1992-08-01

CtoVis: An Interface between C Programs and Pavane
Visualizations

Kenneth C. Cox

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Cox, Kenneth C., "CtoVis: An Interface between C Programs and Pavane Visualizations" Report Number:
WUCS-TM-92-04 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/618

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/618?utm_source=openscholarship.wustl.edu%2Fcse_research%2F618&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

5 Washington

WASHINGTON « UNIVERSITY +IN+ST+LOUIS

School of Engineering & Applied Science

CtoVis: An Interface between C Programs
and Pavane Visualizations

Kenneth C. Cox

WUCS-TM-92-04

August 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Printed 4/12/93

1. Intreduction

Visualizations in Pavane consist of three concurrent components. The underlying computation is a
program whose behavior is to be visualized; we assume that the computation can be characterized by a state which
undergoes a series of atomic transformations, The visualization computation examines the state of the underlying
computaticn and, through applicatior of a collection of rules, produces a set of tuples called the animation space.
The rendering computation transforms the animation space into visual form.

This paper describes the use of CtoVis, a package of functions which allows a C (or C++) program to act
as the underlying computation of a Pavane visualization. Through the use of CtoVis, the animator (the constructor
of the visualization) initiates the visualization and rendering computations, selects which portions of the C program
state are to be examined, and identifies those points in the code where the state information is to be transmitted to
the visualization computation.

The remainder of this paper is divided into five parts. The first three cover respectively the specification of
the part of the state that is monitored, the initialization of the visualization and rendering computations, and the
transmission of state information. The fourth section describes how to compile programs that use the CtoVis
package. The final section containg several complete sample uses of the package.

2. Selection of monitored data

Monitoring refers to the selection of cne or more C variables whose contents are to be examined and
transmitted to the visualization computation. The main operation involved in monitoring is the conversion of C
data types into Pavane data types, We will first discuss the various data types, then return to the routine that handles
monitoring of the variables.

CtoVis permits monitoring of the following C data types:

» Numeric data types {char, short, int, long, £loat, and double)

= Swrings (null-terminated arrays of characters) represented either by pointers to character arrays
(char *)or as arrays of characters (char [1)

* Arrays ([1) of any monitorable type; the dimension of the array must be fixed.

+ Stuctures (st ruct) whose components are any monitorable type.

This is, of course, a recursive definition, so it is possible to monitor a variable which is an array of structures, each
containing a short, adouble, anda char *; examples of such conversions are provided below. Pointer data
types (other than char * as a string} are not supported at this time. Each C variable that is monitored must be
transformed into one of the following Pavane data types:

= Integer (a fixed-point number with range equivalent to that of a C long).
= Real (a floating-point number with range equivalent to a C double).

* Boolean {either true or faise),

= Strings (sequences of up to 100 characters).

= Asrays of any Pavane data type.

« Stuctures of any Pavane data type.

The conversion between these types must be indicated. The following conversions are permitted:

* Any C numeric type may be converted to a Pavane integer, real, or boolean data type, with
conversion rules the same as in C. Thus, converting a C double to a Pavane integer is
equivalent to assigning a double to a long, with the associated problems of loss of
precision, while assigning any type to a Pavane boolean uses the C "zero is false, non-zero is
true” test.

» Cstrings (char * and charx []) may be converted into a Pavane string; of course, the
latter type can also be considered as an array of character and converted into a Pavane array of

Printed 4/52/93

integer, real, or boolean. During the conversion to a Pavane string, Pavane's 100-character
limit is silently enforced by the truncation of the input strings.

» Carrays may be converted into Pavane arrays.

» Csiractures may be converted into Pavane structures

This is again recursive, the conversiens for the elements of arrays and components of structures must also be given,

Each separate monitored variable is transformed into a single Pavane tuple with a type-name selected by the
user. The C data is also transformed into Pavane's internal representation. Thus, four things must be specified when
a variable is selected for monitoring: the Pavane type name, the location of the variable, the Pavane data type, and
the C data type. These form the arguments of the VisualMonitor function, a variadic function declared as:

VisualMonitor{char *typename, void *data, ...);

The first argument, t ypename, is the name of the Pavane tuple type. data is the address of the C data that is 1o
be monitored. The remaining, variadic arguments, all of type long, specify the type-conversions between the
output (Pavane) data types and the corresponding input (C) data types. The following predefined constants are to be
used in this section:

VISMONITOR PAVANE INTEGER — The output data type is to be a Pavane integer. This
constant must be followed by a C numeric type, specified by one of the following constants:
VISMONITOR C_CHAR, VISMONITOR_C_SHORT,VISMONITOR_C_INT,
VISMONITOR C_LONG, VISMONITOR C FLOAT, or VISMONITOR C DOUBLE.

VISMONITOR PAVANE REAL — The output data type is to be a Pavane real, This constant
must be followed by a C numeric type, using the constants listed above,

VISMONITOR PAVANE BOOLEAN — The output data type is to be a Pavane boolean. This
constant must be followed by a C numeric type, using the constants listed above.

VISMONITOR_PAVANE STRING — The output data type is to be a Pavane siring. This must
be followed by a C siring type, using the constant VI SMONT TOR_C_CHAR PTR (fora
char * datatype) or VISMONITOR C_CHAR ARRAY (N) (forachar [N) datatype). In
the latter case, N must be fixed and between 1 and 16384.

VISMONITOR PAVANE ARRAY -— The output data type is to be a Pavane array. This constant
must be followed by the size of the array, cast as a 1ong, which in turn must be followed by
the type-conversion of the elements of the array. For example, an array of 10 C long's that
is to be represented by a Pavane array of 10 integers would be specified by the conversion

VISMONITOR_PAVANE_ARRAY, (long)10,

VISMONITOR PAVANE INTEGER, VISMONITOR C_ LONG.
Note the recursion, with the type-conversion of the array elements specified in the same
manner as the type-conversion for a single variable of that type.

VISMONITOR_PAVANE STRUCT — The output data type is to be a Pavane structure, This
constant must be followed by the number of components in the structure, cast as a long,
which in turn must be followed by the type-conversions of the components in the order that
they appear in the C structure. For example, a C structure containing a long, a long, and a
two-dimensional array of 10 by 10 of doubkle's that is to be converted into a similar Pavane
structure using integers for Long's and reals for double's would be specified by the
conversion

VISMONITOR _PAVANE STRUCT, (long)3,
VISMONITQR_PAVANE INTEGER, VISMONITOR C_LONG,
VISMONITOR_PAVANE INTEGER, VISMONITOR C_LONG,
VISMONITOR PAVANE ARRAY, (long)l0,

VISMONITOR PAVANE ARRAY, (long)l0,
VISMONITOR_PAVANE REAL, VISMONITOR C_DOUBLE

Printed 4/12/93

Again note the recursion, with a separate type-conversion for each of the three components of
the structure.

Three rles apply to the use of the VisualMonitor function. First, all monitored variables must be
selected and initialized before the visualization is started using VisualOpen. Next, all type names must be
distinct and are limited to 63 characters. Finally, the data must exist from the time VisualMonitor is called
until the visualization process is halted (using VisualClose). This means that some care must be used when
monitoring variables that are declared in a subroutine; since such variables are normally allocated on the C runtime
stack, they cease to exist when the subroutine exits. Such variables must be moved outside the subroutine into C's
"file scope”.

2, Initiating and terminating a visualization

Once all monitored variables have been identified and initialized, the function VisualOpen is used to start
the visualization and rendering programs. The visualization program must be the result of compiling a collection of
visualization rales (the rendering program is fixed). VisualOpen has the declaration

VisualOpen (char *program, ...):

The first argument is the name of the visualization program that is to be started, The remaining arguments, all of
type chax *, are a NULL-terminated list of the arguments to be given to the visualization, in the same order as in
the visualization's declaration, For example, a visualization which was declared as

visualization AllPairs(integer N, boolean flag)

would require two argument strings and then the NULL. A corresponding use of VisualOpen, assuming that the
visualization code had been compiled into the file Al1lPairsvis, would be

VisualCpen ("AllPairsvis™, "8", "true", (char *)NULL);

Note that the arguments must be strings; some conversion may be required. If, for example, the value corresponding
to N was known only at run-time, a sequence something like the following might be used:

char buf[l6]:

sprintf (buf, "%d", number_ of nodes) ;
VisualQOpen(*A1l1PairsvVis"™, buf, "“true", (char *)NULL):

VisualOpen starts the visualization program and sends the initial state of the computation (the values of
all the monitored variables). For this reason, these variables should be initialized before VisualOpen is called.

To terminate a visualization, use VisualClose. When VisualClose is called, the visnalization and
rendering computations are halted and the CtoVis monitoring package is re-initialized. Another visualization may
then be set up and started with calls io VisualMonitor and VisualOpen.

3. Transmitting state information

Once a visualization is started with VisualOpen, three routines may be used to send state information
(the values of all the monitored variables) to the visualization. The first of these is VisualUpdate, which
simply sends all the state information when it is called,

A second method is provided by the functions VisualBeginAtomic and VisualEndAtomic, Asthe
names imply, this pair of functions is used to delineate the boundaries of logical "atomic transitions” in the C code,
i.e., blocks of code that are considered to represent a single state change. Whenever an atomic transition is complete
(defined as an equal number of calls to VisualBeginAtomic and VisualEndAtomic) the state is transmitted
to the visualization. Internally, these routines modify the value of a counter; VisualBeginAtomic increments
the counter, while VisualEndAtomic decrements it and, if the value is zero after decrementing, sends the state

Printed 4/12/93

information. The purpose here is a matter of encapsulation. A sorter, for example, could be written using the two
calls to transmit its state information and, if run "stand-alone”, would transmit its state at appropriate points, The
same code could be used as a subroutine in a larger program with the call enclosed in a VisualBeginaAtomic/
VisualEndAtomic pair; as a result, the state would be transmitted only after the sort was complete, with all the
intermediate VisualEndAtomic calls inside the sorter code having no effect.

VisualUpdate may be used with VisualBeginaAtomic and VisualEndAtomic. Calls to
VisualUpdate have no effect on the counter used by the other two routines.

4. Compilation
A program that is 10 use the CioVis package must contain the line
#include "/usr/people/pavane/C INTERFACE/CtoVis.h"
This file contains declarations for the CtoVis functions and definitions of various constants,

When compiling, either the C or C++ CtoVis library must be loaded, depending on which compiler you
use, These Libraries are located in the /usr/people/pavane/C_INTERFACE directory, named Ctovis_c.a
and CtoVis.a respectively. A typical C++ compilation line would be

CC -o AllPairs AllPairs.c /usr/people/pavane/C_INTERFACE/CtoVis.a
5. Example programs

We provide the skeletons of two C programs using the CtoVis package. The first is an all-pairs shortest
path algorithm (the Floyd-Warshall algorithm), The second is from an elevator-control simulation and uses
somewhat complex data structures.

5.1. All-pairs algorithm
The all-pairs visualization contains the following code segments:
visualization AllPairs(integer NNodes)
input space
<< array of NNcdes array of NNodes real D :: 4{(D) »>>;
<< integer K :: scan counter(K) >>;
This indicates that the visualization program (which is compiled into the file “AllPairsVis") must have one
argument, an integer NNodes. It is also expecting tuples of two types. The type d must contain an NNodes by
NNodes array of real numbers, while the type scan_counter must contain an integer, These conversions are specified

in the following C code.

#include <stdio.h>
#include "CtoVis.h™

/* RARRAYSIZE corresponds to NNodes in the visualization code */
#define ARRAYSIZE 8

static void initgraph(double dist[] [ARRAYSIZE]) {
/* code, of no interest to this presentation, which initializes
* the given graph
*/

Printed 4/12/93

main ()

{

long i,j,k:
char abuf[8];

double d;
double dist [ARRAYSIZE] [ARRAYSIZE],
distprime [ARRAYSIZE] [ARRAYSIZE] ;

/* Two variables are of interest here: dist and k. We must

* indicate that these wvariables are to be monitored and

* how they are to be converted from C to Pavane. Note that,

* although these variables are on the C stack, they will not

* leave scope until the visualization is completed; we can

* therefore safely monitor them.

*/

/* dist will become the tuple "d" (see above). It is an array

* of ARRAYSIZE arrays of ARRAYSIZE doubles, to be converted
* into the equivalent two-dimensional Pavane array using
* Pavane reals. We pass (void *)dist because dist is already
* the address of the array.
*/
VisualMonitor{"d", (void *)dist,
VISMONITOR PAVANE ARRAY, ARRAYSIZE,
VISMONITOR PAVANE_ ARRAY, ARRAYSIZE,
VISMONITOR PAVANE REAL, VISMONITOR C DOUBLE) ;

/* k will become the tuple “scan_counter". It is a long, to
* be represented by a Pavane integer. We have to take the
* address of the varlable k and cast it to void *.

*/
VisualMonitor ("scan_counter", (void *) (&k),
VISMONITOR PAVANE INTEGER, VISMONITOR C LONG) ;

/* Initialize the monitored variables before VisualOpen is

* called (since that routine will transmit the values of the
* variables to the visualization)
*/

initgraph{dist};

k= 0;

/* Start the wisualization; this alsc sends the current state
* of the monitored variables.
*/

sprintf (abuf, "%d", ARRAYSIZE) ;

VisualOpen ("AllPairsVis"™, abuf, (char *)NULL);

/* We now execute the algorithm. The portion between the
* VisualBeginAtomic and VisualEndAtomic calls form a single
* "atomic transition" for this algorithm, in which all the
* array entries are updated at once. The state is sent when
* VisualEndAtomic is called.
*/
while (k < ARRAYSIZE) {
VisualBeginAtomic() ;
for (i = 0; 1 < ARRAYSIZE; i++} {
for (j = 0; j < ARRAYSIZE; J++) |

Printed 4/12/93

d = dist[i]{k] + dist([k][3]:
if (d < dist[i1[31)
distprime[il [j]

d:
else

distprime[i] [] dist[i]l[]];

}
for (i = 0; i < ARRAYSIZE; i++)
for (j = 0; j < ARRAYSIZE; J++)
dist[i][J] = distprime{i]l[3]:
k++;
VisualEndAtomic () :
1

/* To exit cleanly, we call VisualClose. Simply returning
* from main{) or calling exit () would alsc terminate the
* yisualization, but not as cleanly.
*/
VisualClose({);
}

5.2. Elevator control simulation
The elevator visnalization contains the foliowing code segments:

visualization ElevatorVis(integer NElevators, integer NFloors)
types
elevator type ==
struct of integer floor,
integer dir,
integer wvel,
boolean open,
array of NFloors boolean buttons;
button_type ==
struct of boolean up,
boolean down;

input space
<< array of NElevators elevator_type E :: elevators(E) >>;
<< array of NFloors button _type B :: buttons{B) >>;

The C code (as seen below) has corresponding structures. The main area of interest in this example is the
specification of the conversion between the types.

#include <stdio.h>
#include "CtoVis.h™®

#define NELEVATORS 2
#define NFLOORS 6

static struct elevator {

long floor;
long direction;
long velocity;
short open;

short buttons [NFLOORS] ;
} elevators [NELEVATORS] ;

Printed 4/12/93

static struct {
short up;
short down;

} call buttons[NFLOORS];

static void InitializeElevators(veid) {
/* some code of no particular interest which initializes
* the elevators and call buttons data structures
*/

}

static void InitiateMonitoring(void) {
char ebuf{l6], fbuf[ls];

/* elevators is an array of NELEVATORS structures, so its

* type-conversion is "VISMONITOR PAVANE ARRAY, NELEVATORS"

* followed by the type-conversion for the structure. The

* structure has five components (floor, directions, velocity,
* open, and buttons), so its type-conversion is

* "VISMONITOR_PAVANE_STRUCT, 5" followed by the

* type-conversions of the components in the same order that
* they appear in the structure,

*/

VisualMonitor ("elevators"™, (void *)elevators,
VISMONITOR PAVANE ARRAY, NELEVATORS,
VISMONITOR PAVANE STRUCT, 5,
VISMONITOR;PAVANE_INTEGER, VISMONITOR C LONG,
VISMONITOR PAVANE INTEGER, VISMONITOR C LONG,
VISMONITOR PAVANE INTEGER, VISMONITOR C LONG,
VISMONITOR PAVANE BOOLEAN, VISMONITOR C_SHORT,
VISMONITOR PAVANE ARRAY, NFLOORS,
VISMONITOR_PAVANE_BOOLEAN, VISMONITORWQHSHORT

)

/* Similarly, call buttons is an array of NFLOORS structures,
* each having two elements,
*/
VisualMonitor ("buttons™, (void *)call_buttons,
VISMONITOR PAVANE ARRAY, NFLOORS,
VISMONITOR“PAVANE_STRUCT, 2,
VISMONITOR _PAVANE BOOLEAN, VISMONITOR C SHORT,
VISMONITOR PAVANE BOOLEAN, VISMONITOR C_SHORT
)y

sprintf (ebuf, "$4d", NELEVATORS) ;

sprintf {fbuf, "%d", NFLOORS) ;

VisualOpen ("ElevatorvVis", ebuf, fbuf, (char *)NULL);
}

static void ChangeElevators(void) |
/* more code of no particular interest which simulates the
* pressing of buttons and the movement of the elevators

*/

main{) {

Printed 4/12/93

/* initialize the state variables (elevators, buttons) */
InitializeRElevators():

/* monitor the two variables and start the visualization */
InitiateMonitoring();

/* this simulation runs forever, with one update after each
* modification of the state. We could get the same effect
* by placing ChangeElevators within a VisualBeginlAtomic /
* VisualEndAtomic pair.

*/

for (::) {
ChangeElevators{);
VisualUpdate () ;

Printed 4/12/93

	CtoVis: An Interface between C Programs and Pavane Visualizations
	Recommended Citation

	tmp.1454425567.pdf.OTzJ8

