Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-TM-92-03

1992-11-01

Swarm Language Reference Manual

Jerome Y. Plun, C. Donald Wilcox, and Kenneth C. Cox

This document contains a description of the grammar and syntax rules of the Swarm
programming language. This language, which is an implementation of the program specification
language used with the Swarm computational model, is used both to specify programs and their
visualizations, for the use of the Pavane program visualization system.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Plun, Jerome Y.; Wilcox, C. Donald; and Cox, Kenneth C., "Swarm Language Reference Manual" Report
Number: WUCS-TM-92-03 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/617

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/617?utm_source=openscholarship.wustl.edu%2Fcse_research%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

L %] o
Washington
WASHINGTON « UNIVERSITY +IN »ST+-LOUIS

School of Engineering & Applied Science

Swarm Language Reference Manual

Jerome Y. Plun
C. Don Wilcox
Kenneth C, Cox

WUCS-TM-92-03

November 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899, USA

Abstract

This document contains a description of the grammar and syntax rules of the Swarm programming language.
This language, which is an implementation of the program specification langnage used with the Swarm computa-
tional model, is used both to specify programs and their visualizations, for use with the Pavane program visualization

system,

Correspondence: All communications regarding this report should be addressed to:

Dr. Gruoia-Catalin Roman office: (314) 9356190
Department of Computer Science secretary: (314) 935 6160
Washington Universty fax: (314) 935 7302
Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899, USA roman@swarm, WUSTL.edu

2.1
2.2
23
24
2.5
2.6
2.9

Table of Content

..

COMMENLS.crerrereererercersrarens
Identifiers ..vvccevesens

KEYWOIAS ..ovinrerermrererrenereencnrsness s sesasssansesrmsrs ot tssveseseneem e s enesss
COMSIANES 1. ve e cerensvsrisren s srararasasassa s ssssssssasansesst st seses e renssnsarsssemeans

Multiglyph FOIMIIS. co.ovcisisrsnnsirnsrnssraraseseessessessniasimssssssssssssssensmmsasesessasnns

3 Program Structure...............

4 Data Types

4.1
42
4.3

44

~J O th

7.1

7.2

7.3

Functions
Definitions
Expressions

4.3.1 Assignment Compatibilityco.ecersnen.
4.3.2 Ordering of Data Types.

..

...

...

...

Formal Definition of the TYPES SECHOM vuurmivrererierecss e rereseeseeresesessenseensessssesemssessessesesesreemssosssessasa.

7.1.1 Numeric EXPIESSIONS w.vovirvrerrerecserarresssssnsesssasssessssiomerersescene

712 Set EXpressions...........

7.13 LiSt EXPIESSIONS ..cvermmrrrrirersersessesssrssenssssssssssssionsmsnenensenseses
714 ATTAY EXPIESSIONS. ... currmreucererientsresssssrastssssssssberamssssssasssessensessssssssssesesmsesesessseasssessssessasens
715 STUCHE EXPICSSIONS..cereerrerrireisssrireseveersssessessesessssss sesesereses
7.1.6 Relational EXPIESSIONS. ...overerrreraneecrersesesisesiimsmrrneseseresesasnes
7.1.7 Logical EXDPIESSIONS . mmeesrsesorsesesssssssssssoreesereresssmsnne
Dataspace EXPIESSIONS cuurerrercenereenreresss s sssssssesensaesseosessesss s

7.21 Tuple Queries......ooeeeevcrrmineenes

722 Synchrony QUELES.....cccccimummmromssmnismsesssssssessismmessnores
723 Tuple Deletion.........coocucennene.

Constructors ...

7.3.1 Anthmel:lc Consr.ructors ..

...

7.32 Count Constructor........

733 Set Constructors
734 AmTay CONSIUCIOS cevreursuerresearsssesssssssrerensessessscsssreessseseesassnes

7.3.5 Logical CONSIUCIOIS .uuumumrererrrernsresrsssssesssesenssessssseasmesesesees
8 Tuples and Transactions Declarations
9 Transaction Definitions

10 Swarm Initialization............

11 Visnalization Spaces
12 Windows
13 Visualization Rules
14 Graphical objects and functions for the animation space
15 Visualization Initialization
Graphical objects and theil AtDUIESvvcreerirrsieeecverresr oo e se e se s e e se s e e
Time functions for graphical OBJECIS ... rrerieeeeeeeeceseseneerss s
WiINAOW AMHDUIES oo iesisre st e sse e sessesesseseeeeeressnsssanan

Appendix A:
Appendix B:
Appendix C:
Appendix D:

Appendix E:
Appendix F:

Appendix G:
Appendix H:

External functions for the sample programs .. v s e e r e v e e o
Producing executable Swarm programs and vxsuahzauons

..

..

...

...

...

...

...

..

..

..

...

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Figure 1:
Figure 2:
Figure 3;
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 17:
Figure 16:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figore 22;

List of Tables and Figures

RESEIVEA KEYWOITS c.covvverer e sttt en s e seese et s ssss s e st ses s s aresssas s st ses ottt ebareneras 2
ESCAPE SEQUETICES. ..u.evuvmersirirssississnscnsessenetsessscsessassssssssssssstasassseessesssssssssassssnsenerssssssesessassossssasenssnsas 3
SWAITN OPEIALOTS .cvu.cursurssrisssorsssssssrssrsseserarassasssessssssssssssssssasssssvnsssnsasmnetssssssemstessssseasssesesesmssemssessrnsossses 3
Swarm PunCtugtion SYIMBOIS ... crcccvnroriesrrmnsmssnisssesssessssse s st ssreeeeererasessessssssssmsssessssasansasas 4
MUlEZIyDh fOIMS. it s ettt s s s seass sttt st seneres e e e eesemns 4
Sections of a Swarm program and VISUALZAHOM v..veeeeereecaeivenereeseresseseeeesesesse s eses s e esenessessesssesens 4
BNF definition of the Program SHUCIIISccueveeecurrireeresesrrsesserseessssssssessrecseesssssssssssseseessssessssssssses 5
AgETegate DA TYPCS e e srsessssnssrrsesesiassserersesessmsssessatssssssmsmsmneseseesssessemsasssresenesssssesasesesssessssss 6
BNF definition of the Types Section... . .. 8
BNF definition of the Function Deciarauon Secuon YOS PUUTTOTPOTUUI .
BNF definition of the Definilions SECHOMocvevireirviremsirsesnesessisessisssestsssenesesesssssssessessesseessesssssss 9
BNF definition of @ SWaIm €XPIESSION c..cuivereeerereesseressresrsresmssessasessesensesssssssssssssessesssssssssssesssssenes 10
BNF definition of a Swarm expression (CONURUEAY.....uueimreviirirereessessrssesssesesesssesesssesssssssenssss 11
Value of a NUMETIC EXPIESSIONccvercuererrerrsrnerareressssssnis s sssssssssssenesessseseseessessssssrssesssossessssssesns 12
Truth Value Of Set EXPIESSIONSvrverererreeeenrsessssessastsisssess oensesomsesessmsescmssssesstsssesessresssesesossssssss 12
Value OF LiSt EXPIESSIONS ...uvvueeresssiesiesirnrersssessssssssssssasssesssesosasmssesssessssessessesasesssssssssssesemeemesssen 13
Value of Array Expressions ... R .13
Truth Value of Logical Expresszons ettt as e ae e r s sssna bt et e enenssrerenseresons 1
Zero Values of Arithmetic Constructor Opcrators .. 15
BNF definition of a Tuples or Transactions Declarations SeCONS ..vvvvvvvevireseeesssssessesesnen, 17
BNF definition of the Swarm Initialization section... .17
BNF definition of the Transaction Definitions SECLOM v..uuuerve e e es s e eeereee oo 18
BNF (definition of the SPACe SECHOM wvimrrierirsecaesiiessiresrssssesssenssrsesessesesessssssssssssessssesesssesessssnee 18
BNF definition of the Windows section.. .19
BNF definition of the Visnalization Ruies sectxon .. 19
BNF definition of the ANIMation BIBIMENIS «...ccv.cuivversiueresressemseeraenesesesesestossessssssesssssssssssssssses sssses. 20
BNF definition of the Visualization Initialization SECHOM ..vvvvviecrreevevrereseeeseerereesseesesseeeoe oo 20

1 Infroduction

This document contains a description of the grammar and syntax rules of the Swarm programming language. This
language, which is an implementation of the program specification language used with the Swarm computational
model, is used both to specify programs and their visualizations, for use with the Pavane program visualization sys-
tem.

2 Lexical Conventions

The following section describes the basic elements, or tokens, of the Swarm programming language. A program is a
sequence of tokens which satisfy the syntactic definition of the langunage as described in the later sections.

2.1 Comments

There are two comment delimiters in Swarm. The characters / * introduce a comment that terminates with the char-
acters * /. They do not indicate a comment when occurring within a string literal. Comments can be nested. Once
the / * introducing a comment is seen, all other characters are ignored until the matching * / is encountered.

Single-line comments are indicated by a double slash / /. Everything on the program line to the right of the delim-
iter is treated as a comment and ignored by the compiler.

A comment is treated as a single whitespace character,

2.2 Identifiers

An identifier is a sequence of Ietiers, digits, and underscores (_), possibly followed by one or more prime characters
{*). The first character cannot be a digit. Uppercase and lowercase letters are distinct. Legal letters include both
the standard roman and greck letters. Identifier length is limited to 32 characters,

23 Keywords

Because of the rich visualization language supported by the compiler, a large number of identifiers are reserved and
cannot be used for any other purpose in a Swarm program. In an effort to reduce the number of conflicts caused by
the large keyword set, reserved identifiers which are used as visualization and window attributes have a preceding
underscore. To avoid possible conflicts in the future, progrmmers hsould avoid defining identifiers which begin
with an underscore. The list of reserved keywords is shown in Figure 1, “Reserved keywords,” on page 2.

24 Constants
The seven types of constants are integer, real, siring, set, list, array, and struct.

An integer constant consists of a sequence of digits. A unary operator, such as “=7, preceding the constant is not
considered part of the constant.

A real, or floating point, constant consists of an integer part, a decimal point, and a fraction part. The integer and
fraction parts are each a sequence of digits. Either the integer part or the fraction part (but not both) may be missing.
As for an integer constant, a preceding unary operator is not considered part of a real constant.

A string constant is a sequence of characters surrounded by double quotes, asin "...". A double-quote character
(")} inside a string constant must be preceded by a backslash (\). In addition, several escape sequences are used to
Tepresent some special characters, as specified in Table 2, “Escape Sequences,” on page3. These are the same
escape sequences accepted by ANSI-compliant C compilers.

A set constant is a (possibly empty) sequence of expressions, all having the same data type, separated by commas ,
and surrounded by braces { }.

AND
animation
ARRAY
array
_arrowfrom
_arrowsize
_arrowte
boolean
_box
_center
_chop
_ecircle
_colox
constant
_corner
_crect
definitions
_direction
double

end

enum
_facefill
_facefillcolor
false
_f£ill
_fillcolor
float
_from
functions
head
include
inf
initialization
integer
_label
_length
_lifetime
_line

list

max

min

mod
multiset
NAND

NOR
_octahedron
of

cld

OR
_origin
_Ppoint
_polygon
_position
program
_radius
_ramp
real
_rectangle
rules

SET

set
_shapecylinder
skip
space
_sphere
_sdguare
state
static
_step
string
struct

tail

_text

then

_to
transaction
TRUE

true

tuple

types
variable
_vector
_vertices
visualization
_width
_WinAzimuth

_WinAzimuthChange

_WinAzimuthSpin

_WinAzimuthSpinChange

_WinBorder

_WinCenterChange

_WinCenterExp

_WinCenterScrollExp

_WinCenterX
_WinCentexz¥

Table 1: Reserved keywords

_WinCentersz
_WinColorBlue
_WinColorChange
_WinColorGreen
_WinCoclorRed
_WinDepth
_WinbhepthChange
_WinDepthExp
_WinDepthMax
_WinDepthMin
_Winbhistance
_WinDistanceChange
_WinDistanceExp
_WinDistanceMax
_WinDistanceMin
_WinIncidence
_WinIncidenceChange
_WinIncidenceSpin
_WinIncidenceSpinChange
_WinPositionChange
_WinPositionX
_WinPositionXMax
_WinPositionXMin
_WinPositionY
_WinPositionYMax
_WinPosition¥YMin
_WinRoll
_WinRollChange
_WinRollSpin
_WinRollSpinChange
_WinSizeChange
_WinSizeX
_WinSizeXMax
_WinSizeXMin
_WinSizeY
_WinSize¥YMax
_WinSize¥YMin
_window

windows

_xrad

_*rot

_Xsize

_yrad

_yrot

_ysize

_zrot

_zsize

Character Name Escape Sequence

new line \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \E
backslash A\
single quote \?
double quote v
question mark \?

Table 2: Escape Sequences

A list or an array constant is similar 10 a set except that the sequence of expressions is surrounded by brackets [] .

A struct constant is a sequence of two or more expressions of possibly different data types, separated by commas
(;), and surrounded by backets [1. The data type of an expression in square brackets is determined by its usage.

The elements of a set, list, array, or struct constant ¢an be any constant type, including other sets, lists, arrays, or
structs. For example, the following constant is perfectly valid.

[
[{1, 21, 1} {311,
{ {1}, { "a String", "another String® },
{ L (4.0}, (5.0} 1, 11,
100,

"that's it!t"
1

2.5 Operators

An operator specifies an operation to be performed, The operators [J,{ }, (), |,and? : mustoccurin
pairs, possibly separated by expressions.

L1 £y ¢yt 1 .=t
=+ -% fmodunNneecCcaocoox AV

H

Table 3: Swarm operators

Particular operations are discussed in Section 7, “Expressions.”

2.6 Punctuation Symbols

Punctuation symbols are tokens which have semantic significance without specifying an operation to be performed.
The symbols (}and () must occurs in pairs. Some operators are also punctuation symbols as determined by con-
text.

pEo LN ()
Table 4: Swarm punctuation symbols

2.7 Multiglyph Forms

Several of the punctuation symbols and operators are not available in the 128-character ASCII characier set. Table
2.7 describes the alternate, or multiglyph, form for these symbols. Note that it is not possible to use cither the greek
character set or the prime character in identifiers without using the 256 element Swarm character set. For the full
Swarm character set, refer to appendix A A program is available for converting programs to and from the Swarm
character set..

Swarm Glyph Multiglyph Swarm Glyph Multglyph Swarm Glyph Multiglyph
< <= = => 3 \+
b, >= - -> II N\ *
<> { << v \A
A /\) >> 3 \E
v \N/ o < i |
- ! o <= = o~
@ head € .7 = ==
R tail b {} @
Table 5: Multiglyph forms
3 Program Structure

Swarm and visualization programs are composed of a program header, a sequence of sections specifying various
components of the program, and the keyword end. The different sections allowed in a Swarm program and a visu-
alization program are shown in Figure 1, “Seciions of a Swarm program and visualization,” on page 4. Sections can
occur multiple times, and the order is irrelevant, as long as any identifier is declared before it is used.

Swarm: Visualization
Data Types Data Types
External Functions External Functions
Definition Definition

Tuples Declaration Spaces
Transactions Declaration Windows
Transactions Definition Rule Definition
Initialization Initialization

Figure 1: Sections of a Swarm program and visualization

The program header specifies the name of the program and a (possibly empty) set of parameters provided to the
computation. Each parameter is described by its name and its type (cf Section 4 for Data Types). The parameters
are separated by commas. The formal definition of the Program Structure is shown in Figure 2, “BNF definition of
the Program Structure,” on page 5.

A Swarm program has a header starting with the keyword program while a visualization program starts with the

AProgram ::= program ProgramHeader Sections end
| viswalization ProgramHeader PipeDefinition Sections end

ProgramHleader := <Identifier> (ProgParmList)

ProgParmList ::= AType <Identifiex> | ProgParmlist , AType <Identifier> 1A
PipeDefinition ::'= state = SpaceConnection animation ;

SpaceConnection ::= | <Identifiexr> = SpaceConnection

Sections = SectionsList | A

SectionsList ::= ASection | SectionList ASection

AScction 1= TypeSection (See “Data Types”™ on page 5)
' FunctionDeclaration (See “Functions” on page 7)
| DefinitionSection (See “Definitions” on page 9)
I SwarmTuples (See “Tuples and Transactions Declarations” on page 16)
b SwarmTransactions (See “Tuples and Transactions Declarations” on page 16)
| TransationSection (See “Transaction Definitions” on page 16)
| InitializationSection (See “Swarm Initialization” on page 17 or
“Visualization Initialization” on page 20)
| ASpaceDeclaration (See “Visualization Spaces” on page 17)
| WindowsSection (See “Windows™ on page 18)
! RuleDeclaration (See “Visnalization Rules” on page 19)

Figure 2: BNF definition of the Program Structure

keywordvisualization. state representstheinputdataspace being visnalized, animat i on the rendering
space, and, in the rule for SpaceConnection, each <Identifiexr> token is an intermediary space used to map
state into animation [1].

The other sections are described in the rest of this document. The section number of each program section is indi-
cated in the BNF definition of ASection. We first cover the 3 common sections (data types, external functions, and
definitions), then complete the specification of a Swarm program (tuples and transactions declarations, fransactions
definitions, and initialization), and finally describe the remainder of a visualization (spaces, windows, rules, initial-
ization).

Appendices B, C, and D contain an example of a Swarm program, a visualization for it, and the definition of the
external functions used in this program and its visnalization.

4 Data Types

The Swarm language supports four fundamental types of objects: boolean, integer, real, and string. More complex
types are referred to as aggregate types.

4.1 Fundamental Types

The types float and double are synonyms for the real data type. Integer corresponds to a long in the C programming
language, and real to a double.

Typical Iimits for an 32 bits long are -2,147,483,648 and 2,147,483,647. Typical limits for a 64 bit double are
-1.7980E+308 and 1.7980E+308, with a precision of up to 2.225E-308.

The boolean data type has only the two values t rue and false.

4.2 Derived Types

Swarm provides 4 aggregate data types which can be used to construct a conceptually infinite class of derived data
types. The aggregate data types are shown in Figure 3, “Aggregate Data Types,” on page 6.

. set An unbounded and unordered group of elements of one specific type. A set of elements of
type aType is specified as
set of aType
for example
set of integer

o list An ordered set. A list of elements of type aType is specified as
list of aType
for example
list of boolean

* array Afixed size list. An array of n elements of type aType is specified as
array of n aType
where n can be either an integer constant or a program parameter; for example
array of 10 string
array of ProgParml real

+ swruct A fixed-sized, ordered group of elements. Each element of the struct has a name and a specific
type A structis specified by st ruct of followed by a listing of the name and type of each
of its components, with elements separated by a comma (,), as in:

struct of type; name,, type, name,, .., typey namey
for cxample
struct of integer red, integer green, integer blue

Figure 3: Aggregate Data Types

As with constants, data types can be arbitrarily complex. For example, the constant introduced in Section 2.4 could
be described by the following datatype:

struct of

array of 3 set of integer intSetArray,

set of set of string stringSetSet,
set of list of set of f£float floatSetListSet,
integer intComponent,
string stringComponent;

Rather than replicating a lengthy type definition, one can give it a name in the types section, and use that name
instead. This operation is called “renaming” of the defined type. Thus, if one defines

array3SetInt = array of 3 set of integer;

array3SetInt isarenamingofaxray of 3 set of integer,andthedatatypedescribing the constant
from Section 2.4, can be described as;

struct of
array3SetInt intSetArray,
(rest of the definition unchanged);

4.3 Compatible Types

4.3.1 Assignment Compatibility
‘Two expressions are assignment compatible if one of the following is true:
1) they have the same type,
2) the type of either or both is a remaning of a common type,
3) one expression is of type float (or a renaming of it) and the other is of type integer (or a renaming of it).

Additionally, aggregate constant expressions are considered assignment compatible with other expressions if the ele-
ments of the constant expression are assignment compatible with the corresponding elements of the other expres-
sion. For example, given the following type definition:

struct of
array of 3 integera,
integer b;

the following constant expressions are assignment compatible with expressions of this data type:
L Lo, 6, 01, 61
[[0, 0, 0.0], 6]
[I 6, 0, €], 6.0 }
while the following expressions are not:
[o, o, 0, 61
[{6, 0, 0 3}, 6]
[Lo, 01, 61
4.3.2 Ordering of Data Types.

In order for two expressions to be compered, it is necessary that they be of assignment compatible data types. Com-
parison of expressions which are sets, lists, or arrays is done element by element. Structures are compared field by
field. Strings are compared character by character with the ordering based on the ASCI characler set. For bool-
eans, t rue is considered greater than false.

4.4 Formal Definition of the Types Section

The formal definition of a Data Types section is given in Figure 4, “BNF definition of the Types Section,” on
page 8. Thetoken<userDe finedTypeName>referstosomepreviouslydefinedtype(< Tdent i fier>token
in the rule for ATypeDef).

5 Functions

To allow programs written in Swarm to interface with the outside world, and o simplify some operations which
would be awkward in Swarm, support is provided for declaring and calling external functions from a Swarm pro-
gram. These functions are declared in the functions section, and are invoked by placing a call to the function within
an expression (see section 7 for additional details on calling functions). External functions must return a value (void
functions are not permitted) which can be of any allowable data type. Parameters to the functions can also be of any

TypeSection ::= types TypeDefList
TypeDefList ::= ATypeDef | TypeDefList ATypeDef
ATypeDef :=<Identifiex> = AType ;

AType = booleanlintegerlreallfloatidoublel<userDefinedTypeName>
| 1list of AType

| set of AType

| struct of TypelList

! array of <Number> AType

i

array of <Identifier> AType

TypeList;= AType <Identifier>
| Typelist , AType <Identifier>

Figure 4: BNF definition of the Types Section

legal Swarm data type, and functions which accept no parameters are permitted. For example, a function sum,
which takes a list of float values and returns a float, is declared as:

float sum(list of float v);
A function CurrSet, which takes no parameters and returns a set of integers, would be declared as
set of integer CurrSet():

These external functions are coded using the C programming language and combined with the compiled Swarm
program at link time (see Appendix D for more details on producing an executable Swarm program). Parameters
having simple types (integer, float, and boolean) are passed by value, parameters of complex types are passed by ref-
erence, withaVAR__PTR to the actual variable being used in the invokation. String parameters are passedaschar
* . The first example above has the following prototype when invoked:

double sum (VAR_PTR v)

When a complex value is refurned from an external function, the function is actually called with an additional
parameter which is a VAR_PTR to receive the result, and no value is returned by the function. Thus, the second
example has the following prototype when invoked:

void CurrSet (VAR _PTR result)

The formal definition of the Function Declaration section is given in Figure 5, “BNF definition of the Function Dec-
laration Section,” on page 8. The rule for AType is defined in Section 4.

FunctionDeclaration ::= functions FunctionDefList
FunctionDefList ::= AFunctionDef | FunctionDefList AFunctionDef

AFunctionDef ::=AType <Identifier> (TypedFormallist) ;
| AType <Identifier> () ;

TypedFormalList ::= ATypedFormal | TypedFormallList , ATypedFormal

ATypedFormal ::= AType <Identifier>

Figure 5: BNF definition of the Function Declaration Section

6 Definitions

The Definition Section provides a means for naming expressions and using those names in place of the correspond-
ing expressions in the remainder of the program for clarity purpose. A macro can include a set of parameters that
will be bound to appropriate values upon invoking the macro. A macro is specified as follows:

<macroName> (<param;>, <paramy,>, .., <paramy>) = <expression>;

where <expression> is any legal expression (See “Expressions” on page 9) containing only any of the formal
parameters of the macro (<param;>), constants, and any previously defined items (program argument, function,
macro, tuples, ...}. If the macro does not have any parameters, the parenthesis are omitted. The scope of a macro
extends from the definition of the macro until the end of the program.

A macro is invoked by typing its name followed by a list of values which bind the formal parameters of the macro.
The macro is then "replaced” by its corresponding expression where each instance of a formal parameter has been
replaced by its value from the invokation.

The formal description of the Definition section is shown inFigure 6, “BNF definition of the Definitions Section,”
on page 9.

DefinitionSection ::= definitions Definitionlist

DefinitionList := DefinitionList ADefinition | ADefinition

ADefinition ::= <Identi fiexr> DefinitionFormals = OrExpression ;

DefinitionFormals ;.= (DefinitionFormalList) |\

DefinitionFormallist ::= DefinitionFormalList , <Identifier> |<Identifier>

Figure 6: BNF definition of the Definitions Section

7 Expressions

The Swarm language supports a rich variety of expression forms. This section provides first an overview of the var-
ious classes of expressions, followed by a more detailed description of the syntax and semantics of each class.

Expressions fall into three broad classes: arithmetic expressions, dataspace expressions, and constructors (or genera-
tors). The class of arithmetic expressions includes the common mathematical expressions, boolean expressions
(arithmetic comparison, logical and and or), and a variety of expressions for manipulating the aggrate data iypes.
Dataspace expressions include the class of expressions which query the dataspace and bind variables. Constructors
are used to perform a single operation over an arbitrary number of operands using the Swarm three part notation,
‘The complete grammar for expressions is given in Figure 7, “BNF definition of a Swarm expression,” on page 10
and Figure 8, “BNF definition of a Swarm expression (Continued),” on page 11. The remainder of this section gives
a detailed discussion of the various expressions.

7.1 Arithmetic Expressions

7.1.1 Numeric Expressions

The Swarm language supports all basic integer and floating point operators, namely + (binary), - (unary and
binary),* , /,andmod. Figure 9, “Value of a Numeric Expression,” on page 12, describes the effect of each opera-
tor. If any operand of a binary operator is a floating point number, both operands are promoted to floating point and
the resulting value is a floating point.

Query ;= OrExpression] Query , OrExpression
OrExpression ::= AndExpression | OrExpression v AndExpression
AndExpression ::= TildeExpression | AndExpression TildeExpression

TildeExpression = RelationalExpression
| TildeExpression ~ RelationalExpression
| TildeExpression =~ RelationalExpression

RelationalExpression = UnionExpression
| RelationalExpression RelOp UnionExpression
| RelationalExpression € UnionExpression
| RelationalExpression € UnionExpression
I RelationalExpression ¢ UnionExpression
| RelationalExpression — UnionExpression
I RelationalExpression > UnionExpression
| RelationalExpression o UnionExpression
| RelationalExpression @ UnionExpression

RelOp==1xI<1g] 21>

UnionExpression = AdditiveExpression
I UnionExpression L AdditiveExpression
| UnionExpression r AdditiveExpression

AdditiveExpression :=MultiplicativeExpression
| AdditiveExpression + MultiplicativeExpression
V AdditiveExpression - MultiplicativeExpression

MultiplicativeExpression ::= UnaryExpression
| MudtiplicativeExpression * UnaryExpression
| MultiplicativeExpression /| UnaryExpression
| MultiplicativeExpression mod UnaryExpression

UnaryExpression := PostfixExpression
| — UnaryExpression
| -~ UnaryExpression
| head (UnaryExpression) | tail (UnaryExpression)
| old . UnaryExpression
t | UnaryExpression |
| min (OrExpression , OrExpression) |max (OrExpression , OrExpression)

Figure 7: BNF definition of a Swarm expression

Swarm also has the binary operators min and max which operands can be of any type as long as they are compara-
ble (see Section 4.3). The cardinality operator [| can be applied to numeric expressions to compute the absolute
value.

7.1.2 Set Expressions

The Swarm language supports the standard set operators, namely membership (€ }, non-membership (g), subset
(<), proper subset (c), superset (2), proper superset () and not subset (¢z). Each of these operators returns a bool-
ean value. Figure 10, “Truth Value of Set Expressions,” on page 12, describes the types of the operands and the corn-
dition upon which a set expression returns true. Swarm supports also a cardinality operator (| |) which returns the

10

PostfixExpression ;= Factor
| PostfixExpression [ExpressionList]
| PostfixExpression [ArrayReplacementList |
| PostfixExpression { OptionalExpressionList)
| PostfixExpression . <Identifier>
t PostfixExpression t

Factor:i= <Identifier>|<Number>|<Boolean>|<String>
ool _I 2 1O
| [OptionalExpressionList 1 | { OptionalExpressionList }
| {Constructor)
I { OrExpression)

ArrayReplacementList ::= ArrayReplacement | ArrayReplacemeniList ; ArrayReplacement
ArrayReplacement ::= ExpressionList \ OrExpression

Constructor ::= 3, IdentifierList : Query : : OrExpression
I Il HentifierList : Query : : OrExpression
| min IdentifierList : Query : : OrExpression
| max IdentifierList : Query : : OrExpression
I 4§ IdensifierList : : Query
| SET IdentifierList : Query : : OrExpression
| ARRAY IdentifierList : Query : : OrExpression
|V IdentifierList : ExpressionList : 1 Query
| 3 IdentifierList : ExpressionList : : Query

OptionalExpressionList ::= ExpressionList | A

ExpressionList ::= OrExpression | Expressionlist , OrExpression
ActualParameters ::= OrExpression | ActualParameters , OrExpression
IdentifierList ::= IdentifierDeclaration | IdentifierList ; IdentifierDeclaration
IdentifierDeclaration := AType IDList

IDList i=<Identifiexr> | IDList , <Identifier>

Figure 8: BNF definition of a Swarm expression (Continued)

number of elements in the set it is applied to.

List Expressions

The list operators in Swarm allows one to build a list or to access the content of a list. Figure 11, “Value of List

Expressions,” on page 13, describes the different operators.

Array Expressions

Swarm provides operators for examining and modifying the contents of array data. The index operator { {]) is
used to refrieve the value stored at a position within an array, and the replacement operator ([\]) allows for items
within an array to be modified. Note that the = operator is not used to change the value stored at a position within
an array. This happens because arrays are always either completely bound or completely unbound; thus an expres-
sion of the form a = OrExpression, where a is an array will either bind a to the result of evaluatin g OrExpression (if

11

Expression
- op

op; + opz
op; ~ 0P
op; * op;

op; / op;

opymod op;

min (op; , opy)
max {op; , 0P7)

| op |

Value

the negative of op

the sum of op; and op,

the subtraction of op, from op;
the product of op; and op,

the division of op; by op,. op, must not be equal to 0. Integer division results in the
Integer quotient whose magnitude is less than or equal to that of the true quotient, and
with the same sign.

Thus9/4=2while9.0/4=9/40=90/40=225.

the remainder of the division of op; by op,. op, must not be equal to 0. The
remainder has the same sign as the op1, so that the expression

(op; / opy) * opz + opy mod op,
corresponds to op;.
the minimum of op; and op,

the maximum of op; and op,

the absolute value of op

Figure 9: Value of a Numeric Expression

Expression op; opy Returns True when

op; € op; <alype> set of <aType> op; is an element of op,

op; & op, <alype> set of <aType> op; is not an ¢lement of op,

op;<op, setof <aType> set of <aType> every element of op; belongs to op,, and op; can be

equivalent to op,

op;cop; setof<aType> set of <aType> every element of op; belongs to op,, but at least one
element of op, does not belong to op;

op;20p; setof <aType> setof <aType> every element of op, belongs to op;, and op, can be
equivalent to op,;

op;>op; setof <aType> setof <aType> every element of op, belongs to op;, but at least one

element of op; does not belong to op,

op; @ opy setof <alType> set of <aType> at least one element of op; does not belong (o op;

Figure 10: Truth Value of Set Expressions

a is unbound) or compare a to the result o evaluating OrExpression (if a is already bound).

Indexing into multidimensional can be done either in the style used in C, or by providing a list of expressions for the
index value. For example, ifa hasthetypearray of 10 array of 10 integer, then the expressions
a[3,6] anda[3] [6] bothextract the 7th element of the 4th array (as this example shows, arrays are based at 0).
No checking of array bounds is done at compile time, all such checking is done at run-time. The compiler simply

12

Expression op; op3 Retuins
List creation:
op; + 0p <aType> list of <aType> list op, prepended with element op;
op) +opy list of <aType> <aType> list op, appended with element op;
op; + 6P list of <aType> listof <aType> list op; concatenated with list op,
List access:
opy [opz] list of <aType> number element op, of listop;
head(op;) list of <aType> first element of list op;
tailop;) list of <aType> list opy, without its first clement
lop,| list of <aType> number of elements in the list

Figure 11: Value of List Expressions

requires that index values be integral.

The replacement expression allows for (possibly multiple) value(s) to be inserted into an array which has already
been bound by some other expression. Each replacement expression consists of 2 parts, an index (see the previous
paragraph), and a new value. Multiple assignments can be done with a single replacement expression by listing
multiple index/value pairs within the brackets, separated by semicolons. The replacement expression evalutates to
an array with the new values installed.

Thus,ifA isavariablehavingthetypearray of 10 array of 15 set of integer,thenthe following
expression always evaluates to true, (and is occasionally substituted for true by the compiler).

7 € A[4,8 \ { 7 }1[4]1[8]

Figure 12, “Value of Array Expressions,” on page 13, summarizes the array expressions.

Expression op; opy opz Returns
Array access:
op; [ops] list of <aType> list of number element op, of arrayop;

Array replacement;
opy Lopz \ ops] listof <aType> list of number <aType> array op; with value ops in element P2

Figure 12: Value of Array Expressions

7.1.5 Structure Expressions

The only operation valid on structures is ficld extraction using the dot (.) operator. The right-hand side of the
expression must be the name of some field within the structure type, and the result is an expression containing that
value,

13

7.1.6 Relational Expressions

Swarm provides the standard relational operators, ie., equality (=), inequality (), less than or equal (), strictly less
than (<), greater than or equal (=), and strictly greater than (>). Only elements of comparable types can be used as
operands for these operators (See “Compatible Types” on page 7). The result of all these operators is a boolean
indicating whether the relational expression holds or not.

The = operator has a more complex behavior than the other relational operators, If both operands are bound, the
equality test checks that the values of the operand are equivaluent. If one of the two operands is not bound when the
equality test is performed, the test always succeeds and, as a side effect of the test, the value of the unbound operand
is set to the value of the bound operand. Both operands cannot be unbound,

7.1.7 Logical Expressions

Swarm provides 3 logical operators: unary negation (—), binary and (), and binary or (v). The operands of these
operators must be of type Boolean (or a renaming of it). The result is of type Boolean, Figure 13, “Truth Value of
Logical Expressions,” on page 14, describes the truth value of a logical expression.

Expression Returns true when

—op op = false

op; A ops opy = true and op; = true
op; v 0Py opj = lrue or op, = e

Figure 13: Truth Value of Logical Expressions

Currently, the compiler does not correctly handle logical expressions which consist of a disjunct of conjuncts, Le.
a v (bacad) ve. However, such an expression can be re-written by distributing the operators (which is most
likely the way the compiler would ultimately do it anyways), so this is not necessarily a big problem.

7.2 Dataspace Expressions

The class of dataspace expressions includes queries which check for the presence of items within the dataspace (both
tuples and synchrony elements), and an operator which allows deletions to be specified in the query, as allowed in
the original specification of the Swarm notation.

7.21 Tuple Queries

A tuple query expression is a boolean expression which has the value t xue if there is 2 binding of the actual param-
eters to the tuple that can be satisfied by matching some item in the dataspace. The general form of a wple query is
tuple_name {(actual_ parameters).Thetuple namemustmatchsometupleortransactioniypename,
and each actual parameter can be any expression that is assignment compatible with the data types of the corre-
sponding formal parameter. If any of the actual parameters are unbound variables, these variables will be bound if
the query succeeds.

7.2.2 Synchrony Queries

Synchrony queries are the mechanism whereby the contents of the synchrony relation are queried. As with tuple
queries, the result is a boolean expression indicating whether a synchrony eniry satisfying the query was present.
Synchrony queries can be used to bind variables.

14

7.23 Tuple Deletion

As a shorteut for specifying the deletion of a dataspace element found during a query, a dagger can be placed after
any dataspace expression. The dagger does not affect the truth value of the query, and the deletion is only per-
formed if the entire query succeeds. Daggers are not currently permitied in the query portions of constructors. That
is, to find and delete all tuples of type T (integexr i), the following idiom should be used:

(integer i : T(i) :: T(i)?t)
7.3 Constructors

A constructor expression uses the three-part notation to perform a single operation over a collection of objects that
satisfies some predicate. The three-part notation op quantified variables : range :: OrExpression) used through-
out the text is defined as follows: The variables from quantified_variables take on all possible values permitted by
range. Each such instantiation of the variables is substituted in OrExpression producing a multiset of values 10
which op is applied, yielding the value of the three-part expression. If no instantiation of the variables satisfies
range, the value of the three-part expression is the identity element for op, e.g., t rue when op is V.

7.3.1 Arithmetic Construcfors

Swarm provides four arithmetic constructor operators, sum (%), product (I[), minimum (min), and maximum
{max). The OrExpression part of the constructor must have a numeric data type. Figure 14, “Zero Values of Arith-
metic Constructor Operators,” on page 15, Iists the zero value of each of the operators.

Operator Zero Value
z 0

I 1

min +oo

max —oo

Figure 14: Zero Values of Arithmetic Constructor Operators

7.3.2 Count Constructor

The count constructor (#) is a bizarre creature. It's a three part notation with only two parts. The OrExpression
which normally accompanies a constructor is implicitely 1 and therefore not needed. But because a colon looks stu-
pid, a double colon is used to separate the variables from the query. The zero value of the count operator is 0,
While the query of a count operator typically consists of a single dataspace expression, this is not required. How-
ever, if several expressions occur in the query, the count constructor evaluates o the number of ways the entire
query can be bound. For example,

{ # integer i :: T(i), X(i))

does not evaluate to the sum of the number of T and X tuples in the dataspace, but rather to the number of elements
with a common parameter. So, with a dataspace containing

T(), T(2), T(3), T(4), X(2), X(4), X(6), X(8)

the value of the expression is 2, not 8.

15

7.3.3 Set Constructors

The set constructor (SET) is used to build a set based on the content of the dataspace. The zero value of this opera-
tor is the empty set. Using the dataspace from Section 7.3.2., the expression

(SET integer i : T(i), X{i):: i)
evaluates o

{2, 41}
7.34 Array Constructors

The array constructor (ARRAY) is used to specify the content of an array at run-time. Unlike the other constructors,
only range expressions are allowed in the query; and the range must evaluate to the indexes of the array. Only a sin-
gle range can be specified in an array constructor. Thus, to fill a multi-dimensional array, you must use nested array
constructor. For example, given the following declaration for tuple type T

T(array of 10 array of 15 integer a)
the following constructor can be used to create a tuple T with an array filled with integers from 1 to 150

T({ ARRAY integer i : 1 <
{ ARRAY integer j 1<
)

A i

10::
15:: (i-1)#*154+5))

i
3

7.3.5 Logical Constructors

The logical constructor operators (V and 3) are actually boolean operators in disguise. Thus, t rue is the zero cle-
ment for V, and £alse for3J. Referring again to the dataspace from Section 7.3.2., the following constructors evat-
uate to true and false, respectively

(V integer i,3j : T(i), X{(j) :: § = 2 * i)
(3 integer i,3 : T(i), X(J) :: § = 2 * i)
8 Tuples and Transactions Declarations

Tuples and transactions declarations to specify the types of tuples and transactions that can be inserted in the
dataspace. This is performed by specifying the range of possible values for each of the formal parameters.

The formal definition of a Tuples or Transactions Declarations Section is given in Figure 15, “BNF definition of a
Tuples or Transactions Declarations Sections,” on page 17. The rule for TypedFormalList is defined in Section 5,
and for ExpressionList in Section 7.

9 Transaction Definitions

For each transaction declared in a Transaction Declaration Section, one needs to provide the corresponding compu-
tation in a Transaction Definitions Section. Each definition starts with the transaction name and its formal parame-
ters, as listed in a Transaction Declaration Section, followed by a sequence of subtransactions. A subtransaction is
composed of a query and an action. For more details on the Swarm model and the semantic associated with transac-
tions, see [3]. Although the model places no requirement on the ordering of conjuncts within a guery, the program-
ming language requires that variables be bound (either by a dataspace query or by the = operator) prior to their use
in any arithmetic expression,

The formal description of a Transaction Definitions Section is given in Figure 16, “BNF definition of the Transac-

16

SwarmTuples ;= tuples types TupleDeclarations
SwarmTransactions := t ransactions types TupleDeclaration
TupleDeclarations ::= ATupleDeclaration | TupleDeclarations ATupleDeclaration

ATupleDeclaration == <Identifier> ;
| <Identifier> (TypedFormalList) ;
V' {IdentifierList : ExpressionList : : TupleList) ;
I (IdentifierList ; : TupleList) ;

TupleList ::= ATuple | TupleList , ATuple
ATuple »=<Identifier>|<Identifiex> (FormalParameters)

FormalParameters :=<Identifier> | FormalParameters , <Identifier>

Figure 15: BNF definition of a Tuples or Transactions Declarations Sections

tion Definitions section,” on page 18. “Uhe rule for ActualParameter is defined in Section 7.

10 Swarm Initialization

The Swarm Initialization section lists the tuples, transactions, and synchrony relation entries present in the dataspace
at the start of the execution of the program.

The formal definition of a Swarm Initialization Section is shown in Figure 17, “BNE definition of the Swarm Initial-
ization section,” on page 17. The rule for ActualParameters is given in Section 7.

InitializationSection == initialization InitList

Initlist ::= Anlnit | InitList Anlnit

Anlnit 2= Inidtem ; | {IdentifierList : ExpressionList : : InitltemList) ;
InitltemList ::= Initltem | InitltemList , Initltem

Initftem := InitActionltem | InitActionItem ~ InitActionltem

InitActionltem::= <Identifier> |<Identifier> (ActualParameters)

Figure 17: BNF definition of the Swarm Initialization section

11 Visualization Spaces

For all the spaces specified in the header part of a visualization (see Section 3) except the animation space, one must
define the tuple types that make each space. In the case of the input space, this corresponds to the tuple and rransac-
tion types defined in the Swarm program being visualized.

As shown in Figure 18, “BNF definition of the Space section,” on page 18, a space section is composed of a space
identifier followed by a set of tuple declarations, as described in Section 8. Multiple space definitions for the same
space identifier are combined.

17

TransactionSection :=transactions definitions TransactionList
TransactionList »= ATransaction | TransactionList ATransaction

ATransaction := <Identifier> (TransactionFormals) = Subtranslist ;
| <Identifier> = Subtranslist ;

TransactionFormals:=<Identifiexr> | TransactionFormals , <Identifier>
SubtransList := ASubTransaction | ASubTransaction MoreSubtransactions

ASubTransactions 1= IdentifierList 1 Query — TransactionActions
| Query B TransactionActions
| IdentifierList : SpecialPredicate , Query — TransactionActions
V' IdentifierList : SpecialPredicate — TransactionActions
| SpecialPredicate , Query — TransactionActions
| SpecialPredicate — TransactionActions
| SubtransGenerator

MoreSubtransactions := | | SubtranList
| SubtransGenerator
I SubtransGenerator MoreSubtransactions

SubtransGenerator ::={ | | IdentifierList : ExpressionList : : SubtransList)
TransactionActions = skip | TransActionList

TransActionList ::= ATransAction | TransActionList , ATransAction
| TransActionGenerator | TransActionList , TransActionGenerator

TransActionltem

ATransAction 1=
I ATransAction t
I
I

TransActionltem ~ TransActionltem
{ ATransAction)

TransActionGenerator ::= (IdentifierList : ExpressionList : : TransActionList)
TransActionltem ::=<Identifier> |<Identifier> { ActualParameters)

SpeciatPredicate::= AND | OR | NAND | NOR | TRUE

Figure 16: BNF definition of the Transaction Definitions section

ASpaceDeclaration ::= <SpaceName> space TupleDeclarations

Figore 18: BNF definition of the Space section

12

The rendering of the animation space can take place in several independent windows. Each window has its own ref-
erential, coloring, viewing controls, etc.., (see [2]). The Windows section allows the user to specify a set of render-
ing windows. The formal definition of the Window section is shown in Figure 19, “BNF definition of the Windows
section,” on page 19. The rule for OrExpression is defined in Section 7. <Windowattz> is one of the window

Windows

attributes listed in Appendix C: “Window Attributes”.

18

WindowSection ::= windows WindowDeclarations

WindowDeclarations ::= AWindowDeclaration | WindowDeclaration ; AWindowDeclaration
AWindowDeclaration ::=<Tdentifier> { WindowAttributeList) | A
WindowAttributeList ::= AWindowAttribute | WindowAttributeList , AWindowAttribute

AWindowAttribute = <WindowAttzr> := OrExpression

Figure 19; BNF definition of the Windows section

13 Visualization Rules

A visualization rule specifies a logical relationship between two collections of tuples called the input and output
spaces for the rule. The rule consists of a query and an action. The query is an arbitrary predicate which can include
tests for the presence or absence of tuples in the rule's input space(s) and in the previous instances of its input and
output spaces. The action consists of a list of tuples in the output space. The semantics of such a rule, given current
and previous input spaces and previous output space are as follows: For every instantiation of variables such that
the query is true, the corresponding tuples must be in the current output space. A mapping from an input space to an
output space consists of one or more rules which map from the input to the output space. The output space for a
mapping is defined as the union of the output spaces produced by each of the rules in the mapping,.

The original model specifies a pipeline structure for the mappings. This has the effect of restricting rules 10 only a
single input space, which must be the space immediately preceding the output space in the pipeline. By defauli, the
compiler enforces this requirement. More relaxed semantics can be invoked by using the n option when running the
compiler. Under this option, a rule can query any space before its output space in the pipeline. Use of this option
can eliminate the need for copying tuples unchanged from space to space, although it reduces the compiler’s ability
to detect mistakes in the visualization program.

The formal definition of the Visualization Rules section is given in Figure 20, “BNF definition of the Visualization
Rules section,” on page 19. The rule for ActualParameters is defined in Section 7 and for AnimationProducts in

Section 14.

RuleDeclaration == rules Rules
Rules ::= ARule | Rules ARule

ARule = <Identifier> = IdentifierList 1 Query = Actions ;
| <Identifier> = Query = Actions ;

Actions = VisActions | AnimationProducts
VisActions 1= AVisAction | VisAction , AVisAction
AVisAction :=<Identifier>|<Identifier> (ActualParameters)

Figure 20: BNF definition of the Visualization Rules section

i4 Graphical objects and functions for the animation space

The final visualization space is the animation space which contains a set of graphical objects to render in the win-
dows. Each object is defined in terms of a collection of attributes such as color or position. An animation object is
created as the result of some visnalization rule but, as opposed to other spaces’ objects, an animation objecl's attrrib-

19

utes have to be named, can be omitted (each has a default value), and can be specified in any order. The list of ani-
mation objects with their respective attributes is shown in Appendix A: “Graphical objects and their attributes”.

In addition, as opposed to other spaces where objects have a binary existence, animation objects have a “lifetime”
along which any of their attributes can be modified according to a user-specified transformation. Appendix B:
“Time functions for graphical objects” describes the different functions that can be applied.

The formal definition of the Animation Elemenis is given in Figure 21, “BNF definition of the Animation Ele-
ments,” onpage 20. <Window>isawindowidentiferasdescribedinSection12,<Animat ionProduct>isone
of the graphical objects and<AnimationAtt ribute> one of the object's attributes as shown in Appendix A:
“Graphical objects and their attributes”,

AnimationProducts ::= AnAnimationProduct | AnimationProduct , AnAnimationProduct

AnAnimationProduct = <AnimationProduct>
| <AnimationProductd> (AnimationAuributes)

AnimationAttributes 1= AnAnimationAttribute | AnimationAttribute , AnAnimationAttribute

AnAnimationAttribute = <AnimationAttribute> := OrExpression
| <AnimationAttribute> := AnimationFunction
| <Window> := <Identifier>
| <Window> <Numbex>

AnimationFunction = _step (OrExpression , OrExpression , OrExpression)

AnimationFunctionTail
| _ramp (OrExpression , OrExpression , OrExpression , OrExpression)
AnimationFunctionTail

| _constan¥{OrExpression , OrExpression , OrExpression)
AnimationFunctionTail

| _square (OrExpression , OrExpression , OrExpression ,
OrExpression , OrExpression , OrExpression)
AnimationFunctionTail

AnimationFunctionTail = then AnimationFunction1 A

Figure 21: BNF definition of the Animation Elements

15 Visualization Initialization

The Visualization Initialization section is almost identical to the Swarm Initialization section with the addition that
animation objects can be included. Thus, in the formal definition given in Section 10, the rule for Initftem if
replaced by the one shown in Figure 21, “BNF definition of the Animation Elements,” on page 20. The rule for
AnAnimationProduct is defined in Section 14.

= [nitActionftem
| InitActionltem ~ InitActionltem
I AnAnimationProduct

Initltem

Figure 22: BNF definition of the Visualization Initialization section

20

Appendix A: Graphical objects and their attributes

The following graphical objects are provided by the interpreter. All objects have a lifetime attribute, which is of
typelist of 2 numbers. Thetypecoordisanaliasfor array of 3 float andspecifiesthe X/Y/Z
coordinates of the point. Thetypecoloris array of 3 integer andspecifies the red/green/blue color val-

ues, each in the range O to 255. The default color is white, or [255, 255, 255].

Object Type Attribute Type Default Object Type Attribute Type Defanlt
_box _color color white _octahedron _center coord [0,0,0]
_corner coord [0,0,01 _color color white
_fill boolean false _1adius number 1
_fillcolor color _color _point _color color white
_width number 1 _position coord [0,0,0]
_Xrot number 0 _polygon _color color white
_xsize number 1 _fill boolean false
_yrot number O _fillcolor color _color
_ysize number 1 _vertices list of [[0,0,0])
_zrot number 0 coord
_2size nuomber 1 _width number 1
~circle _center coord [0,0,0] | [rectangle _color color white
_color color white _corner coord [0,0,0]
_fili boolean false _fill boolean false
_fillcolor color _color _fillcolor color _color
_radius number 1 _width number 1
_width nomber 1 _Xrot number 0
_Xrot number 0 _Xsize nomber 1
_yrot number @ _yrot number 0
_Zrot number 0 _Yysize number 1
_crect _center coord {0,0,0] || _ziot number 0
_color color white | _shapecylinder _color color white
_fill boolean false _facefill hoolean true
_fillcolor color _color _facefillcolor color _color
_width number 1 _fill boolean troe
_xrad number 1 _fillcolor color _color
_xrot number O _origin coord i0,0,0]
_yrad number 1 _width number 1
_yrot number 0 _xrot number 0
_ZI0t number 0 _yrot number 0
_label _color color white _zrot number 0
_position coord [0,0,0] _zsize number 1
_text sting ™" —sphere _center coord {0, 0, 0]
~line _arrowfrom boolean false _color color white
_arrowsize number 1 - _radius number 1
_arrowic boolean false _vector _color color white
_chop number 0 _direction triple [0,0,0
_color color white length number 0
_from coord i0,0,01 _Origin coord [6,0,01
_lo coord [0,0,00 _width number 1
_width number 1

21

Appendix B: Time functions for graphical objects

Function Start End Value Value During Value
Time Time Before After
Siﬂp(t,VG,VI) L t Vg N/A V]
ramp(tp,vo,t1,vy) to t vg linear interpolation from v
Voattotovl at [1
constant(t,v.ty) ty 4y v v v
square(tg,t1,Pon-Potf:Vons Vort) Iy t Voff Squar¢ wave! Voff
Von fOT P, ticks,
Vogr fOT Pog ticks

The square function takes value v, at time ty, then alternates between v, and v for the rest of the during period.
All v, periods last a complete time p,; if the interval remaining in the during period is insufficient for a complete
Von, the value will be held at v g until the expiration of the during period. The diagram below gives some examples
of this for clarification. Both graphs show a square wave with p, = 3 and Por = 2. In the left graph the last vg,
period ends at tick 11; if another period were started, it would begin at time 13 and end at time 16, after the expira-
tion of the during. In the right graph there is sufficient time for an addition v, peried to be included.

A

14 ¢—0 —O ! 41~ @O0 @—0O 8—O
3 ; 4 3 — ! 1
2 — ' : 2 — : "
14—0 @O0 @— 1—0 @O O o—
0 Iflllilllllillilllll>O [llliiifllilll[”lli>
0 5 10 15 20 0 5 10 15 20
square(3,15, 3,2, 4,1) square(3,16, 3,2, 4,1)

22

Appendix C: Window Attributes

Attribute Name Ii'ype Defanit Meaning
Paosition of the window N
_WinPositionX integer 0 Horiz coord of the upper left corner
_WinPositionXMin integer 0 Minimum horizontal position
_WinPositionXMax integer 1280 Maximum horizontal position
_WinPositiony integer 0 Vertical coordinate of the upper left cor-
ner of the window
_WinPositionYMin integer 0 Minimal vertical position
_WinPositionYMax integer 1024 Maximum vertical position
_WinPositionChange winEnum? _WinAllChange Can the window be moved?
Size of the window -
_WinSizeX integer 640 Width of the window
_WinSizeXMin integer 0 Minimum width
_WinSizeXMax inleger 1280 Maximum width
_WinSizeY integer 480 Height of the window
_WinSize¥Min integer 0 Minimum height
_WinSizeYMax integer 1024 Maximum height
_WinSizeChange winEnum! _WinAllChange How can the window be resized?
Style of the window
_WinbisplayControl boolean true Should the control window be shown?
_WinbDisplayIconic boolean false Should the display start in iconic form?
_WinDisplayLighting boolean true Should lighting be used in rendering?
Background of the window T
_WinColozxRed 0...255 0 Red component of background
_WinColorGreen 0...255 0 Green component of background
_WinColorBlue 0...255 0 Blue component of background
_WinHSVColorModel boolean false Use Hue-Samration-Value model in-
stead of RGB. A color value becomes:
[Hue, Saturation, Value]
_WinColorChange winEnum? _WinAllChange Can background be changed?
Viewing position -
_WinCenterX integer 0 X coordinate of the center of vision
_WinCenter¥Y integer 0 Y coordinate of the center of vision
_WinCenterZ integer 0 Z coordinate of the center of vision
_WinCenterExp integer 0 logy of coordinate factor®
_WinCenterScrollExp integer 0 logyo of scrolling factor®
_WinCenterChange winEnum' _WinAllChange Can the center be moved?
Azimuth of viewer’s eye
_WinAzimuth 0...360 0 Azimuth value
_WinAzimuthChange winEnum? _WinAllChange Can the azimuth be changed?
_WinAzimuthSpin integer 0 Cyclic increment or decrement
_WinAzimuthSpinChange winEnum! _WinAllChange Can the azimuth spin be changed?

23

Attribute Name i’ype Default Meaning
Depth of vision -
_WinDepth integer 20 Depth of rendered area
_WinDepthMin integer 1 Minimun depth
_WinbepthMax integer 100 Maximum depth
HinDepthExp integer 0 logyg of depth factor¥
_WinbepthChange winEnum? _WinAllChange Can the depth be changed?
Distance of viewer’s eye
_WinDistance integer 10 Distance of viewer's eye
_WinDistanceMin integer 1 Minimum distance
_WinDistanceMax integer 50 Maximum distance
_WinbDistanceExp integer 0 logy of distance factorf

_WinDistanceChange

winEnum® _WinAllChange Can the distance be changed?

MMMM%M’%__*_

fncidence of viewer's eye
_WinIncidence
_WinIncidenceChange
_WinIncidenceSpin
_WinIncidenceSpinChange

-90...270 0 Incidence value
winEnum? _WinAllChange Can the incidence be changed?
integer 0 Cyclic increment or decrement

winEnym? _WinAliChange Can the incidence spin be changed?

Incidence of viewer's eye
_WinRoll
_WinRollChange
_WinRollSpin
_WinRollSpinChange

0...360 0 Roll value
winEnum! _WinAllChange Can the roll be changed?
integer 0 Cyclic increment or decrement

winEnam® -WinAllChange Can the roll spin be changed?

t This data type contains the following values:
_WinaAllChange Any medification is allowed

_WinNoChange No medification is allowed

_WinXChange Only horizontalmodificationsareallowed(WinPositionChangeand
_WinSizeChange only)

_Win¥YChange Only vertical modifications are allowed (WinPositionChange and

_WinSizeChange only)
_WinKeepAspect MaintainX/Y ratio of the window dimensions (WinSizeChange only)
When an exponent is used in conjunction with some base value, the actual value is base* 105

Appendix D: Swarm Character Set

Glyph

%) Y iz |Ciphbjoic|oidgl|wm [}
. T e I B B B R N e U T
1Y Sladjojo|e|s|og|lao}. jH|5|dgim|lole
M|z |=legl{s]o]lajolu]o|lolals]s|x|minle]ola]. alataladalalalalalalalalalala
olo o |lcic jojoio (o (Ccioloilaolo |o
k=
Of=jd|mBleloln|lo|uwle|a|s|s|[Zixim|n|—]|_|—-|1 < (%> U o (U — [B|x|w
ol A R g e el S e R e ol L e R Nl Pl PR el e R P R P R Y P o e P P P Y
1111111111111111111111111111111111111
L
5
&)
=
D
Mla[alojz[winixlals|zlolalaleo|e]s s 1z sl te ool I|- 1o |lalo|og|le|w|lola |-
=
O = O [T [(M |2 (ZZ O [p [[e [(D (B I | [| | =< |] (el |ole ol |esla |
o vy
#@7ﬂﬁﬁﬂ?%ﬁﬁﬁ%&&%&%%ﬁ%w%m%%%%%W%%mmmmmm
Lo T I B I B B B I I)
=
5
@]
@
210
o 18
Ks:.“#S%&\()*.T..“ ~le|lrm N[in]|jw|c~]o o VI Aol |lm O N
518
= |& o
Dla'|l—|= [l W |8 . [<]~|% 1+] -], ~ o= ja|mn st [vi v |~ |oo [civiin Al ® (< m|oIn
e | v o (e los o o [~ e vy o
#33333333444QA.JM”A.4@%@mﬁﬁqﬁuﬁﬁ%ﬂ%.ﬂ@ﬂ&$&ﬁ”mm@

25

| Char | Keys |Glyph # | Char | Keys |Glyph # | Char | Keys |Glyph
143 op /e 181 | @ jop m 219 | | Op @

144 | ' Op i/e 182 | 8 Op d 220 | = |op # =>
145 Op u/e 183 | o op w 221 { —» |fop &

146 | L op e/i 184 [11 fop P 222 [¢ Jop % {}
147 Op “/1i 185 | «© op p 23 | ¢ op "

148 | » op i/i 186 | B Cp b 224 | ¢ op &

149 | L Op u/i 187 | ¢ Op 9 \ < 225 | ¢ op (.<=
150 | v Op n/n 188 | o op 0 \> 226 | o Op)

151 | | op e/o 189 | ¢ Op z 227 @ lopw

152 | @ |op ‘/o | head 190 | ¢ op ' @ 228 | P Op R

153 | Op i/o 191 | o Cp © 220 | M Op M

154 | & Op u/o 192 | ¢ Op ? 230 op i/E

155 | © Op n/o 193 | —~ Op 1 f 231 | ¥ Op Y

156 | | Op e/u 194 | A op 1 232 Op u/E

157 | ™ Op “/u| tail 195 | < op v 233 Cp /B

158 Op i/u 196 | ¢ op £ 234 | £ Op S

159 | v Op u/u 197 | & op x 235 | A Op D

160 | = op t 198 | 1 op 3 236 | @ op F

161 | I Op * * 199 | n cp \ 237 Op * /I

162 | ¥V Op 4 \A 200 | U Ccp | 238 | H Cp H

i63 | 3 Cp 3 \E 201 op ! 239 | I op J

64 | A Op 6 /\ 202 240 | K op K

165 | oo Op 8 inf 203 op " /A 241 | A op L

166 | v op 7 AV 204 Op n/A 242 | « Op

167 | & Cp s 205 Op n/oO 243 op i/U

168 | p Op ¢ 206 | © op Q 244 op /U

169 | v Op g 207 | © op g 245 | B Op B

170 | i Op 2 11 208 | - Jop - -> 246 | & (op I

171 | E Op E 2090 | = op == 247 | N Op N

172 1 Y Op U 210 | op [248 | ¢ Op < <<
173 | # op = <> 211 | 7 op | 249 |) op > >>
174 | » op " 212 | - op 1 250 | n Oop h

175 | O Op 0O 213 | — Jop } 251 | x Op k

176 | x Op 5 214 | e op / .7 252 | Z Oop Z

177 | X Op + \+ 215 op V 253 | T op G

178 | = op , <= 216 Op u/vy 254 | E op X

179 | 2 Op . > 217 | Op u/Y 255 | T op T

180 | w Op v 218 | = Op ! ~ o

26

Appendix E: Sample Swarm program

The following is an implementation of the Floyd-Warshall all-pairs shortest path problem. Given an undirected
graph with a weight w(i,j) associated with each edge, the algorithm produces the length of the shortest path between
each pair of nodes. We assume that w(z,;) = 0 for all nodes i, and w(i,j} is infinity for any nodes i and J that are not
connected by an edge. The graph instance (including the weight function) is supplied through external functions
which use the program’s argument (Graphld) to select among various instances.

The algorithm operates on a two-dimensional array dist, here represented by a Swarm tuple of type dist having three
components (the two array indices and the value). The core of the algorithm is the "scanning" of a node % which
results in the updating of all dist tuples in parallel. This operation is performed by the subtransaction generator in
the Scan(k) ransaction. This transaction scans each node k in numeric order, starting with node 0.

program AllPairs{integer Graphld);

types
distance = real;

functions
integer nnodes (integer graph);
distance w(integer graph, integer i, integer j):

definitions
range(x) = 1 £ x < nnodes (GraphId);

tuple types
{ integexr i, Jj; distance v
range (L), range({j) ::
dist (i, 3.V});

transaction types
{ integer k : range(k) :: Scan(k));

transaction definitions
Scan{k} =
k < nnodes (GraphId)
—
Scan (k+1)
I
(Il integer i,j : range(i), range (j)
distance dij, dik, dkj
dist(i,j,dij), dist{i,k,dik),
dist{k,J,dkj}, dik + dkj < dij
_)
dist(i,3,dij)t, dist(i,],dik+dk])
):
initialization
(integer i, j: range(i), range(j) :: dist(i,Jj,w(i,3)) ¥

Scan (0} ;

end

27

Appendix F: Sample visualization program

The following is a visualization of the program in Appendix B. This rather trivial visualization maps each non-infi-
nite distance into a box whose X-Y position is proportional to the distance and whose color and Z-size are both
functions of the distance. The color is produced by the external function viocolor, but all the position and size trans-
forms are produced using macro definitions. This visualization uses two mappings with an intermediate space,
named the "rutabaga® space (for no particular reason other than to emphasize that these names are totally arbi-
trary).
vigualization AllPairs{integer GraphId)
state => rutabaga => animation;

types
distance = real;

functions
array of 3 integer vtocolor(distance v);
integer nnodes (integer graph);
distance infinity{):

definitions
range(x) = 1 £ x < nnodes (Graphld);
XYSIZE = 0.9;
XPOS(I) = ((I)-(N/2.0));
YPOS(I) = ((N/2.0)-(I));
ZSIZE(I) = (I);
windows
defaultwindow (WinIncidence := 90);

state space
{ integer i, j; distance w
range (i), range{3j)
dist (i, 3,v) ¥

rutabaga space
finitebox (£loat zp, float yp, float zs,
array of 3 integer the boxes colox);

rules

get_the_boxes =
integer i,3; distance v :
dist(i,j,v), v < infinity ()
—1
finitebox (XPOS (1) ,YPOS (j),2P0S (V) ,vtocoler(v))

draw_the boxes =
float x,v,z; array of 3 integer c:
finitebox(x,y,z,c)

=
_rectangle (_window := defaultwindow,
_fill := true, corner := [x,v,zl,
_¥size := SIZE, _ysize := SIZE, color := g);

end

29

Appendix G: External functions for the sample programs

Our sample Swarm program and visualization make use of the following four external functions:
distance infinity{():
integer nnodes {integer graph);
distance w{integer graph, integer i, integer Jj);:
array of 3 integer vtocolor({double v);

These functions must be written by the user in C (or C++) and included with the Swarm or visual code when it is
compiled (see Appendix E). The code would have the following general structure.

// SKernel.h contains the definitions needed for variables

// (objects of type VAR and VAR PTR), which vtocolor uses

#include "SKernel.h"

// limits.h contains the hardware limits of the machine; we

// uwse it to get our "infinity". Since the Swarm code may add
// two infinities, we divide the maximum possible double by 2.
#include <limits.h>

fdefine INFINITY (DBLWMAX/Z.O)

// Our first function is declared as "real infinity()"

// ("distance" is a type-name for "real"). Since this function
// returns a Pavane simple type (i.e., integer, real, or boolean)
// its C declaration parallels its Pavane declaration, with the
// necessary type conversions. Pavane's “real"™ is C's "double".

double infinity(void) { return INFINITY; }

// "integer nnodes {integer graph)™®
// Again, a simple type, so the C declaration parallels the
// Pavane. ‘“integex" is a C "long".

long nnodes{long graph) |
// Some code here which determines the number of
// nodes in the graph and returns it. For example,
// the graphs might be stored in files indexed by the
// graph id:; in this case the appropriate file would
// be opened and read.

}

/* “real w(integer graph, integer i, integer j)"
* As in the previcus functions, the C parallels the Pavane.
*/

double w(long graph, long i, long j) {
// Once again we somehow access the appropriate graph and
// find the edge weight from i to j. If i == j, we return
// 0.0; if there is no edge from i to j, we must return
// INFINITY.

30

// “array of 3 integer vtococlor(real v)"

// Here we have a return value which is a complex type. In these
// cases, a pointer to the variable (VAR_PTR) is passed as the

// first argument to the C function and we have to return the

// value through it. In other words, if the return value is a

// complex type, the C function has type "void" and gets an

// extra “VAR PTR" argument as its first argument.

void vtocolor (VAR PTR out array, double v) {

long red, green, blue;

VAR PTIR elements;
// The code to calculate values for red, green, and blue
// (each an integer between 0 and 255) is omitted. Once
// the values are calculated, we make out array into a
// three-element array whose elements are red, green, and
// blue in that order.

// When an array is created, we must Ffirst allocate the
// storage for the elements. ArrayAllocate does this:
elements = ArrayAllocate(3);

// Next we bind the three elements to the previously-
// calculated red, green, and blue values. VarBindLong
// takes a variable (actually a pointer to the variable)
// and makes it inte a Pavane integer with value as

// given by the second argument.

VarBindLong (&elements[0], red):

VarBindlLong {&elements[1l], green);

VarBindLong (&elements (2], blue):

// Finally, the VarBindArray call is used to put all the

// pieces together. The three arguments are the variable
// that is to be bound to the array, the size of the array,
// and the elements that we just allocated and bound.
VarBindArray(out_array, 3L, elements);

31

Appendix H: Producing executable Swarm programs and visualizations
This process is performed in three steps:

1)The swarm program or the visualization are compiled, generating a C file

2)The C file is compiled, generating some object file

3)The object file is combined with other object files, defining the external routines, and the appropriate run-time
libraries.

More details are available on the machines on which Pavane is instalied.
Bibliography

[1] Cox, K. C,, “SwarmView Animation Vocabulary and Interpretation,” Washington University, Department
of Computer Science, Technical Report 91-10, 1991,

[2] Plun, J. Y., “Pavane User's Manual,” Washington University, Dept of Computer Science, Technical Memo
WUCS-TM-92-01, 1992,

[3] Roman, G.-C., and Cunningham, H. C., “Mixed Programming Metaphors in a Shared Dataspace Model of
Concurrency,” IEEE Transactions on Software Engineering, vol. 16, no. 12, pp. 1361-1373, 1990

32

	Swarm Language Reference Manual
	Recommended Citation

	tmp.1454425567.pdf.LRhMa

