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ABSTRACT OF THE THESIS

Data Processing Electronics for an Ultra-Fast Single-Photon Counting Camera
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Research Advisor: Dr. Matthew D. Lew

Localizing photon arrivals with high spatial (megapixel) and temporal (sub-nanosecond)

resolution would be transformative for a number of applications, including single-molecule

super-resolution fluorescence microscopy. Here, the Data Processing Field Programmable

Gate Array (FPGA) is developed as an ultra-fast computational platform built on an FPGA

for a microchannel plate (MCP)-photomultiplier tube (PMT) based single-photon counting

camera. Each photon is converted by the MCP-PMT into an electron cloud that generates

current pulses across a 50 × 50 cross-strip anode. The Data Processing FPGA executes

a massively parallel center-of-gravity coordinate determination algorithm on the digitized

current pulses to determine a 2D position and time of arrival for each charge cloud. The

coordinates are relayed to a computer via a Gigabit Ethernet link. The system achieves a

local photon throughput of 1.04 MHz. If photons arrive continuously with an average spacing

of 1.5 µs across a 10 × 10 portion of the cross-strip anode, the system accurately localizes

photons in both space and time and achieves a spatial precision of 4.1 µm (62 times smaller

than the anode pitch) and a temporal precision of 55 ps (at 500 MHz digitization).
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Chapter 1

Background

Imaging single molecules reveals fundamentally important information about the evolution

of processes inside cells and in chemical reactions. Single-molecule imaging [1, 2, 3] has

been used to study, for example, the replication of DNA [4], DNA mismatch repair [5], the

generation of high-density lipoproteins that prevent atherosclerosis [6], and the aggregation

of amyloid structures which are signature indicators of Alzheimer’s [7, 8]. Chemical reactions

generating fluorescence have also been the subject of investigations utilizing single-molecule

imaging [9, 10]. The underlying biological and chemical processes in all these works are

driven by the interactions of individual molecules 1-10 nanometers in size, motivating the

design of imaging systems with nanometer spatial resolution. Many applications, detailed in

section 1.1, not only require nanometer spatial resolution but also sub-nanosecond temporal

resolution – or the ability to timestamp the arrival of photons to the hundreds or even tens

of picoseconds.

To address these needs, which may be roughly described as nanoscale spatiotemporal resolution

at a high frame rate, a micro-channel plate photomultiplier tube (MCP-PMT) based imaging

system is being developed in a joint effort by the Lew and Buckley labs at Washington

University in St. Louis. It will feature megapixel spatial resolution, sub-nanosecond temporal

resolution, a local photon count rate exceeding 1 MHz, and the ability to capture simultaneous,
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spatially separated photon arrivals. This thesis describes the development and testing of

a massively parallel digital computational platform on an FPGA which interfaces with the

MCP-PMT. This platform is a necessity because the massively parallel array of high-speed

data streams coming from the detector cannot be efficiently handled by traditional networking

solutions like switches or routers. Further, the raw data generated would be difficult to

handle in post-processing even if there was a networking solution that could aggregate it into

a single storage device. To address these dual concerns, the FPGA design presented here

processes the massively parallel data from the MCP-PMT system, computes the position and

time-of-arrival of photons with nanoscale spatiotemporal resolution, and transmits results via

a Gigabit Ethernet link to a downstream computer.

The remainder of this chapter explains some of the key issues surrounding the work of this

thesis. In Section 1.1, I introduce imaging applications which necessitate high-performance

systems. In Section 1.2, I describe the novel MCP-PMT camera of which this design is a

part. In Section 1.3, I motivate the necessity and communicate the difficulty of this project.

Section 1.4 provides an overview of the FPGA design and the remainder of the thesis.

1.1 Imaging Applications

Imaging applications that require high temporal and spatial resolution across a wide field of

view pose a challenge to traditional photon counting detectors. Researchers analyzing the

dynamics of micro-scale cellular processes look at movies generated by stitching together

multiple images generated by the imaging system. In order to get a deep understanding of

the single-molecule mechanisms that drive these processes, each frame needs to resolve the

position of the individual molecules involved. The field of view of each high-resolution frame
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must be wide enough for the researchers to see the full extent of the process evolving within

the cell. Finally, the required frame rate is dictated by the speed of the interactions being

studied: if the cellular dynamics are fast enough, the researchers may face a trade-off between

highly resolved, wide field images and the speed at which they can be generated.

Imaging conditions that necessitate high performance systems are not limited to biological

applications. For example, the development of imaging systems that can “see around

corners” depends in part on resolving the time delay of reflected photon arrivals to gauge

distance [11, 12]. By computing the delay in photon arrivals to approximately 100 ps, the

photon travel distance can be resolved to 3 cm. This requires the use of sensors with extremely

high temporal resolution. However, the usefulness of the image is dependent on the field of

view and spatial resolution. These competing concerns drive up the price of the imaging

system and motivate the creation of complicated reconstruction algorithms in software to

mitigate cost, as in [11] and [12].

Fluorescence-lifetime imaging microscopy (FLIM) is a biological imaging technique which

similarly requires precise timing of single photons across a wide field of view. FLIM measures

the delay between absorption and emission of photons by fluorescent molecules, or fluorophores,

in a biological sample. This delay, or lifetime, ranges from 1 to 10 ns and varies with cellular

factors like pH levels, ion concentrations, glucose levels, oxygen concentrations, and more [13].

Thus, visualizing the distribution of lifetimes in a biological sample can convey key information

to researchers about cellular dynamics and aid the investigation of disease evolution.

In FLIM, fluorescence lifetime differences in the sub-nanosecond regime correlate to differences

in the biological factors listed above. To create a useful image, then, requires spatially resolving

fluorophores to the order of one to ten nanometers and temporally resolving their fluorescence

to the order of tens or hundreds of picoseconds. This must be done over a wide field of

3



view at a frame rate fast enough to track the evolution of the underlying process. Many

approaches to this problem involve scanning either a single excitation spot or, as in [14], a

holographically generated array of excitation spots. These systems are limited in their ability

to image high speed cellular processes by the time it takes to scan the entire image. Other

approaches involve an MCP-PMT system similar to the one being developed, either with a

delay-line [15] or cross-strip [16] anode. The general advantage of the MCP-PMT system

being developed by the Lew and Buckley Labs over these similar approaches is its higher

photon efficiency than [15] and [16] and significantly higher spatial resolution than [15] due

to lower dead-time per output event and less readout noise, respectively.

1.2 The MCP-PMT Imaging System
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Figure 1.1: The MCP-PMT Imaging System. The wide-field fluorescence from the object
plane is focused into the MCP-PMT’s photocathode, eventually generating measurable current
pulses on the strips (Section 1.2.1). The FADC Crate features 10 FADC Boards that digitize
the generated current pulses on strips of the anode. Each of the 10 Channels on a given
FADC Board drives an LVDS link. The Data Processing FPGAs interface with each channel’s
LVDS link and send computed coordinates to the computer via a Gigabit Ethernet link.
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The novel imaging system being designed for this project, depicted in Figure 1.1, features a

micro-channel plate photo-multiplier tube (MCP-PMT) digitized by a crate of Flash Analog-

to-Digital Converter (FADC) boards. The FADC boards send samples via Low-Voltage

Differential Signaling (LVDS) interface to the Data Processing FPGA, which is the subject

of this thesis. The Data Processing FPGA detects incident photons and computes their

position and time of arrival. Figure 1.2 describes the way each module receives and outputs

information. This approach is motivated by the shortcomings of other imaging techniques for

wide-field FLIM. Red-shifted single photon avalanche detectors (ReSPADs) are too expensive

to use beyond arrays of 12x12, which limits them to imaging a small field of view, while charge-

coupled device (CCD) and complimentary metal-oxide semiconductor (CMOS) cameras are

too slow to measure fluorescence lifetime on their own [17].

(ො𝑥, ො𝑦, ෝ𝑡𝑥, ෝ𝑡𝑦)

Photon
(𝑥, 𝑦, 𝑡𝑝)

Electron

Photo-
cathode MCP

Electron 
cloud

Cross Strip Anode

FADC 
Crate

Current 
Pulses

Data Processing 
FPGA

Digitized 
Pulses + 

Timestamp

GigE

Computer

Subject of this thesis

Data Processing 
FPGA

GigE

Figure 1.2: Data Flow of the MCP-PMT Imaging System. A single photon emitted from
the biological sample collides with the photocathode at position (x, y) and time tp and is
converted into an electron. The electron is accelerated into an MCP, producing an electron
cloud that collides with the cross-strip anode. Each impacted strip generates a current pulse
(proportional to the collected charge) that is digitized and timestamped by the FADC crate.
The FADC crate transmits the samples and timestamp to the Data Processing FPGAs which
compute the coordinate (x̂, ŷ, t̂x, t̂y). (x̂, ŷ) is an estimate of the cloud’s center position,
or centroid, on the cross strip anode. t̂x and t̂y are each dimension’s estimate of the time
of digitization of the center of the cloud’s induced current pulses. These coordinates are
transmitted to the computer via a Gigabit Ethernet link.
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1.2.1 The MCP-PMT

Fluorescence emitted by a biological sample is focused onto a photo-cathode that converts

each photon into an electron with a quantum efficiency that varies with frequency [18, 19].

The resultant electron is accelerated across a high-voltage potential difference and enters a

micro-channel plate [20, 21, 22] featuring a gain of approximately 106, multiplying it into an

electron cloud. This electron cloud is accelerated across another high-voltage potential and

collides with the backplane of the MCP-PMT system, the cross-strip anode. The cross-strip

anode is comprised of two layers of fifty copper strips, with one set oriented in the along

the x- and one in along the y dimension. It has an active area of approximately 75% and

a pitch of approximately 250 µm. Because copper is a conductor, electrons colliding with

the strip are captured and, en masse, generate a measurable flow of charge. To accurately

measure the arrivals of individual photons, the generated electrons and electron clouds must

be undisturbed as they are accelerated towards the backplane. To accomplish this, the entire

system described thus far is housed in an extremely low pressure vacuum chamber.

Although the signal generated by a single electron cloud’s collision is measurable, it is very

small. The magnitude of a single strip’s current pulse is a good indicator of the signal

strength, so I will compute a rough estimate of the peak current of the pulse on a strip.

For the sake of brevity, a uniform spatial distribution of charge on the cross-strip anode is

assumed here. Later, as in Chapters 2 and 4, a model of each cloud’s charge deposition as a

3-D normal distribution will be presented. Equation 1.1 shows how the gain of the MCP, G,

active area ratio of the anode, A, and number of strips involved in the collision, S, relate to

the charge deposition on a single strip, Cstrip. All parameters of Equation 1.1 are unitless.

Cstrip = 1.6× 10−19 C
G · A
S

(1.1)
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Figure 1.3: The MCP-PMT. A single fluorescence photon from the biological sample is
converted to an electron cloud via a microchannel plate. The cloud collides with a portion of
the cross-strip anode, creating measurable current pulses on each strip. The anode features
50 strips in each dimension.

Under the assumption of a 106 gain from [22], a 75% active area of the cross-strip anode, and

10 strips involved in a collision, the total charge deposited on a single strip is computed in

Equation 1.2.

Cstrip = 1.6× 10−19 C
106 · 3/4

10
= 1.2× 10−14 C (1.2)

Assuming this total charge is deposited over time in a normal distribution with a FWHM of

1 ns [23], the peak value of the distribution represents the maximum instantaneous current,

which is the parameter of interest. The standard deviation is related to the FWHM by

Equation 1.3 [24]. The peak value is then the scaling factor, 1.2× 10−14 C, divided by the

standard normalizing factor of the normal distribution,
√

2πσ as shown in Equation 1.4.

σ =
1 ns

2
√

2 ln 2
= 424.66 ps (1.3)
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Ipeak =
Cstrip√

2πσ
=

1.2× 10−14 C√
2π424.66 ps

= 11.27 µA (1.4)

Thus, the peak current on a strip under the assumptions above is 11.27 µA. The inaccuracy

in this back-of-the-envelope calculation is in the assumption that charge clouds emitted from

the MCP will be uniformly distributed across the portion of the cross-strip anode they collide

with. The more complicated model of the following sections assumes the instantaneous charge

deposition of each cloud will follow a 2-D normal distribution. Nevertheless, this number is

an approximate value that communicates how small the current pulse on each strip will be.

The low signal power and highly-parallel nature of the pulses motivates the inclusion of the

high-powered amplifier system presented in the following section.

1.2.2 The FADC Readout Electronics

The current pulses generated on each strip by a given cloud are, as shown above, very small.

They are also very fast, with a width of approximately 1 nanosecond. A single cloud might

collide with 10 strips, producing 10 current pulses. The rate of cloud incidences across the

entire anode depends on experimental conditions including the average power of the pulsed

laser and the number of fluorophores in the field of view, but even a conservative estimate

of 100,000 photons/second puts the total pulse rate on all 100 strips at 1 MHz. As one of

the primary goals of this system over other approaches is increased photon efficiency, a high

powered digitization system is necessary to capture the wealth of spatiotemporal information

deposited on the cross-strip anode.

The FADC system is well equipped for this task. Originally developed in the lab of Jim

Buckley by Paul Downkontt for the the VERITAS-4 atmospheric Čerenkov telescope (ACT)
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Amplifier
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PMT

LVDS Serial Link
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500 MHz ADC Channel FPGA LVDS Serial Link

Amplifier
Pulse Shaping

500 MHz ADC Channel FPGA LVDS Serial Link

Channel 0

Channel 1

Channel 9

… … …

FADC Board

Figure 1.4: The FADC Board. An analog stage amplifies and shapes the current pulses from
the MCP-PMT system. 500 MSps, 8-bit ADC’s continuously digitize the amplified signal.
Each channel’s FPGA initiates a message on the LVDS serial link if the digitized signal
crosses above a programmable threshold. An FADC Crate is stuffed with 10 identical FADC
boards.

array [25], the system implements an array of highly synchronized 500 MSps ADC’s. In

the VERITAS array, high-speed (∼5 ns) pulses generated by radiation from gamma rays

across up to 1000 channels were continuously digitized and stored into buffers that store

multiple microseconds of data. An elaborate triggering network and a VMEbus acquisition

computer processed and displayed the data from a programmable window. While these

features were essential for the original VERITAS application, for the MCP-PMT a reduced

feature set is used. In this application, the FADC system will be housed in a single 10-board

crate. A single board, described visually in Figure 1.4, features 10 channels, allowing a single

FADC crate to interface to each of the 100 channels. The boards have length-controlled

traces for synchronous distribution of clocking and control signals, which is essential for the

sub-nanosecond precision requirement of the MCP-PMT system.

Every strip is continuously digitized by a 500 MSps, 8-bit ADC. The data is made available

to the Channel FPGA four samples at a time with an eight nanosecond clock. The Channel

FPGA compares each of the four samples to a programmable threshold. If any of the samples

cross the threshold, it packages a programmable window of samples before and after the
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crossing, along with a two byte timestamp, into a message. The timestamp corresponds to

the time of the first sample in the message. The Channel FPGA sends this message out via

an LVDS serial link to the Data Processing FPGA.

1.3 Motivation

The MCP-PMT project as a whole is an endeavor to provide a combination of spatiotemporal

resolution, photon efficiency, near-megapixel image size, and design flexibility that is not

available in any other imaging system available today. The frontiers of single-molecule imaging

mentioned in the introduction are being explored with the latest and greatest imaging systems

manufactured by highly competitive companies. This novel design will enable researchers

to study cellular processes with truly astonishing levels of detail. My contribution is the

bridge between the MCP-PMT vacuum chamber/digitization electronics and the computer

used by the scientist. It therefore sits in the very challenging space that requires an intimate

knowledge of the detector physics, the digitization equipment, massively parallel FPGA design,

digital computation, and high-speed networking. This design is the result of a combination

of scientific research, engineering work, and programming that was necessary to “cross the

bridge” between experiment and experimenter.

The problem statement that was presented to me by Dr. Matthew Lew and Dr. Jim Buckley

was essentially a black box that receives digitized current pulses from 100 FADC channels and

generates a stream of (x̂, ŷ, t̂) coordinates – the estimates of the center position and time of

each cloud generated inside the MCP-PMT. Everything from the choice of FPGA board and

the interface with the FADC crate, down to the algorithm used to generate the coordinates

was undecided. Handling the sheer bandwidth generated by the FADC crate – 12.5 Gbps
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(assuming 125 Mbps links from each channel) was a serious task and required implementing a

massively parallel front-end receiver interface. Mapping an algorithm into hardware requires

multiple cycles of software development and evaluation followed by hardware implementation

and optimization. Developing an algorithm that could be run at high clock speeds on the

FPGA fabric posed a significant challenge to my basic understanding of fixed-point digital

computation. Finally, figuring out how to get my computed results to a computer as quickly

– and with as least overhead – as possible required learning about a variety of networking

solutions and handling the bottom two layers of the OSI model.

1.4 Overview

I developed a Data Processing FPGA implemented on the ML605, a high-performance

development board featuring the Xilinx® Virtex-6 FPGA. The Virtex-6 FPGA on board

the ML605 has ample resources for both routing and storage as well as computation. The

Data Processing FPGA depicted in Figure 1.5 is a massively parallel computational platform

that exploits the inherent parallelism of FPGAs to process the data generated by the FADC

crate into a stream of position and time coordinate pairs, one for each photon. A single Data

Processing FPGA is responsible for one dimension of the cross-strip anode, or 50 strips. Two

Data Processing FPGAs are therefore used in parallel.

I designed a low-overhead serial protocol implemented over LVDS that allows each FADC

Channel FPGA to transmit data at 125 Mbps. On the front end of the Data Processing FPGA

is an array of Channel Receiver modules that utilize the hardened SERDES deserialization

logic embedded in the Virtex-6 to deserialize the transmitted messages. Each Receiver also

implements a math block that computes preliminary coordinates on the received samples.
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Figure 1.5: Data Processing FPGA Hierarchy. The Data Processing FPGA is responsible for
one dimension (50 FADC Channels). An array of 50 Channel Receivers interfaces one-to-one
with the 50 FADC Channel FPGAs in a single dimension. Each Channel Receiver (Section 3.3)
consists of control logic (not shown) and a hardened Xilinx ISERDES (for deserialization)
block feeding samples to the Channel Computation module via an Asynchronous FIFO. The
Channel Computation modules (Section 3.3.2 & 3.3.3) drive their results onto a large bus
which enters the Centroiding Arbiter (Section 3.5). Inside the Arbiter, Event Detection and
Control logic watches the bus and assigns the computation of a single cloud’s centroid to
one of a number of Centroiding Computation (Section 3.5.2) modules. These modules first
read the required Channel Computation results by indexing the massively parallel switching
matrix and then use the results to compute the cloud’s centroid. A Coordinate Aggregator
(Section 3.6) groups the centroids into “packets” and sends them to the Ethernet Medium
Access Control (EMAC) Controller for packaging into an Ethernet frame. The Xilinx Gigabit
EMAC (Section 3.7) transmits the frame to a downstream computer.
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A Centroiding Arbiter groups hits on adjacent strips into “clouds” and dispatches the

computation of the final position and time coordinates to an array of math blocks. The

stream of coordinates generated by the math blocks is packaged into a Gigabit Ethernet

stream by a combination of custom logic, the Xilinx Ethernet MAC IP Core, and the ML605’s

onboard PHY. A downstream computer will then save and interpolate the coordinate streams

generated by each dimension’s Data Processing FPGA to create a list of (x̂, ŷ, t̂) coordinates

corresponding to photon arrivals in the MCP-PMT system.

In Chapter 2 of this thesis, I will present the centroiding algorithm. Chapters 3 and 4 present

how I implemented this coordinate-estimating computation on an FPGA and how I tested

my implementation, respectively. Chapter 5 presents the state of the entire project and an

outlook on remaining work on my FPGA design and other components in the system.
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Chapter 2

The Centroiding Algorithm

The fundamental operation of each of the two Data Processing FPGA’s is to compute a

position and time corresponding to the arrival time of the center position of each incident

electron cloud, a process hereafter referred to as “centroiding.” Section 2.1 presents an

overview of the model of an electron cloud. Sections 2.2-2.4 give an overview and component-

level view of the Centroiding Algorithm.

2.1 Cloud Model

The theoretical model is built around the assumption that as charge clouds collide with the

cross-strip anode, their charge distribution is normally distributed in both space and time.

That is, the instantaneous charge deposition on the cross-strip anode at position (x, y) and

time t – denoted C(x, y, t) – is a circularly symmetric 2-D Gaussian distribution in position

and a 1-D Gaussian distribution in time:

C(x, y, t) =
1

wtw2
xy

exp

(
−(x− µx)2 + (y − µy)2

2w2
xy

)
exp

(
−(t− µt)2

2w2
t

)
(2.1)
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Table 2.1 gives the meaning of each parameter of the charge cloud.

Table 2.1: Charge Cloud Parameters.

Parameter Meaning
A Scaling constant

(µx, µy) Center Position
w2
xy Spatial Variance (Width)

µt Center Time
w2
t Temporal Variance (Width)

Of interest is not the charge deposition, but the instantaneous current on a strip that is

sampled by the ADCs. To compute this value accurately, a 10× 10 version of the cross-strip

anode is modeled. Figure 2.1 gives a schematic of this “test version” of the cross strip anode.

Using the model of the anode in Figure 2.1, it becomes clear that the current induced at time

t on a strip is simply the integral of I over the exposed area of the strip. The ith X strip’s

current is therefore simple to express:

IX,i(t) =

∫ xi+Wx

xi

∫ y0+L

y0

C(x, y, t) dy dx (2.2)

Because Y strips are essentially piecemeal integrals in the X dimension, they are more

complicated to express. The jth Y strip’s current is a sum of 9 exposed regions:

IY,j(t) =

∫ yj+Wy

yj

8∑
i=0

∫ xi+1

xi+Wx

C(x, y, t) dx dy (2.3)

Because C(x, y, t) is separable in each dimension, the X and Y integrals in both sets of strips

can be computed independently. The result in either dimension is therefore a constant times

the temporal component of C. This means that all strips share a common pulse envelope,

exp (−(t− µt)2/2w2
t ), scaled by a strip-dependent scaling factor. Although the strip’s current
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Figure 2.1: Model of Cross-Strip Anode. This schematic of a 10 × 10 cross-strip anode is
taken from the actual design of the cross-strip anode in the Buckley lab but is cropped to
1/5 × 1/5 = 1/25th of the area of the full-size version. Note that both dimensions have
identical pitch; it is merely the strip widths Wx and Wy that differ. Wy is wider to account
for the vertical X strips covering the horizontal Y strips. The length of an X strip is given as
L. The left edge positions of each X strip are denoted by xi, while the bottom edge positions
of each Y strip are denoted by yi.
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may reasonably be modeled as a smooth Gaussian pulse, the ADC’s samples will be noisy

estimations of the induced voltage in an analog amplifier. Additionally, the FADC’s pulse

shaping electronics spread the current pulse over approximately 5-15 nanoseconds to ensure

multiple samples are taken. Because the system is not operational, the characteristics of the

introduced noise are unknown. For this reason, zero-mean Gaussian noise is applied to the

current pulses to produce the measured discrete voltages:

VX,i,t = A · IX,i(t) + Zi,t (2.4)

VY,j,t = A · IY,i(t) + Zj,t (2.5)

The noise on the ith strip at time t has zero mean and variance σ2
z :

Zj,t ∼ N (0, σ2
z) (2.6)

The scaling constant A maps the small fractional value of the currents IX,i(t) and IY,j(t)

into the range (0, 255). It is chosen so that the highest voltages measured in VX,i,t and VY,j,t

(Equations 2.4 & 2.5) are approximately the upper-middle portion of that range: (128− 200).

This is because, in the actual MCP-PMT system, the charge content in a cloud will vary

considerably. The MCP gain will be tuned so that the average cloud generates peak voltages

in the middle of the ADC’s (0, 255) range, avoiding signal saturation. A may therefore be

thought of as a gain on a current amplifier in the FADC electronics that transforms the small

current pulses (Section 1.2.1) into voltages in the operating range of the ADCs.
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2.2 Overview of the Centroiding Algorithm

The Centroiding Algorithm computes an estimate of the cloud’s position and time centroid

from a single dimension’s perspective, for example the X, (x̂, t̂x). x̂ is the algorithm’s estimate

of the cloud’s center position and t̂x is the estimate of the center of the cloud’s arrival

time. The algorithm is shown as an abstract component of the larger MCP-PMT system in

Figure 2.2.

When a cloud collides with the cross-strip anode, it simultaneously generates current pulses

on strips in both the X and Y dimensions. Information about the X position of the cloud’s

arrival is therefore isolated from information about the Y position, and they can be estimated

independently of each other. The time of arrival is, on the other hand, encoded into pulses in

both dimensions. As shown in Figure 2.2, this means that both the X and the Y instance of

the centroiding algorithm will generate independent estimates of the cloud’s time centroid

which are interpolated later (on the host computer of Figure 1.2). This interpolation could

be used to resolve simultaneous cloud arrivals, however it is not in the scope of this thesis

and is discussed as a subject of future work in Chapter 5.

Investigations into the optimal centroiding algorithm for an MCP and cross-strip anode system

have found success using an “interpolated convolution” approach [26]. The interpolated

convolution method features a spatially-differentiated Gaussian kernel that is determined

analytically and then loaded onto the FPGA. The kernel is convolved across the spatial

dimension’s pulse heights. For each incident cloud, the kernel must be selected to fit the width

of the cloud. The resultant discrete convolution’s zero-crossing is interpolated and taken to

be the cloud’s center position. This method proved successful in reducing fixed-position error,

where the error in the computed centroid varies with the cloud’s position relative to strip
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Centroiding Algo(𝑥, 𝑦, 𝑡)
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MCP-PMT FADC Digitzation Data Processing FPGA Host Computer

X Dimension Pulses
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Figure 2.2: System-level View of the Centroiding Algorithm. The algorithm receives as its
input the FADC-sampled current pulses generated by a single dimension of the MCP-PMT’s
cross-strip anode, for example the Y dimension, and computes an estimate of the position
centroid and time centroid of the cloud’s arrival, (ŷ, t̂y). The process is simultaneously carried
out in the X dimension, producing its own estimate of the cloud’s arrival, (x̂, t̂x). A temporal
interpolator running on the host computer combines the independently generated coordinates
into a final result, (x̂, ŷ, t̂).

pitch. The method for determining time of arrival is loosely described as an “FIR filter...

similar to a digital constant fraction discriminator” which was capable of achieving sub-clock

cycle resolution, but no additional implementation details are given [26].

As mentioned in [26], a weighted-average center of gravity approach [27] is simpler to

implement on an FPGA and can be used for determining both the position and time centroid

of the cloud. The simplicity does not come at a measurable cost to accuracy or precision as

shown in Chapter 4. Computing preliminary coordinates on each received pulse in parallel as

they arrive minimizes the complexity of the “brain” of the system which computes the final

position and time centroids. This allows faster system clock speeds that ultimately reduce

local deadtime and increase system throughput (Chapter 3). Further, as the vacuum chamber
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assembly is still under development and has not been characterized, choosing a more generic

approach avoids wasted front-end development and allows for optimizing the algorithm once

the system is operational. Finally, several crucial computational blocks are reused multiple

times throughout the algorithm, meaning extended hardware development time could be

focused on creating a set of plug-and-play arithmetic components that interface seamlessly.

Channel 
Computation 1

Channel 
Computation 2

Channel 
Computation C

…

( ො𝑣1, Ƹ𝑡1)

Ƹ𝑡𝑥

ො𝑥

( ො𝑣3, Ƹ𝑡𝑐)

( ො𝑣2, Ƹ𝑡2)
Across-Channels

Computation

FADC 
CH_1

FADC 
CH_2

FADC 
CH_C

12 samples 
& timestamp

12 samples 
& timestamp

12 samples 
& timestamp

Figure 2.3: Structure of the Centroiding Algorithm. The centroiding algorithm is divided
into two stages. The first is an array of C identical single channel computations, where C
is the number of strips in the X-dimension of the cross-strip anode that received a current
pulse from the incident cloud. Each channel computation generates preliminary coordinates v̂
(average pulse height) and t̂ (time centroid of pulse). The second stage is an across-channels
computation that uses each of the preliminary coordinates to generate an estimate of the
position and time centroids of the cloud, (x̂, t̂x).

The aforementioned split between the preliminary coordinates calculated independently for

each channel and the final estimate is described visually in Figure 2.3. Section 2.3 describes

how the single channel computations produce an estimate of each pulse’s average magnitude

and time centroid. Section 2.4 explains how Figure 2.3’s “Across-Channels Computation”

uses the channel computation results to create a final estimate of the cloud’s position and

time centroids.
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2.3 Single Channel Computation

Channel Computation 𝑖
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D
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N

D
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ො𝑣𝑖
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𝑣𝑖 = [𝑣𝑖,0, … , 𝑣𝑖,11]

Timestamp of 𝑣𝑖0

+

𝑡𝑖,0

Figure 2.4: The Channel Computation. The ith instance of the channel computation algorithm
in the X dimension generates an estimate of the pulse’s time centroid, t̂i, and an estimate of
the received pulse’s average height, v̂i. The average pulse height is computed by a simple sum
and division. Due to the 500 MSps ADC’s, the twelve input samples correspond to twelve
sample times ranging from 0 to 22 ns. A center-of-gravity centroiding operation is performed
on the sample times using the samples as weights. This entails dividing the inner product of
the coordinate vector and the weight vector by the sum of the elements of the weight vector.
The result is an offset from the system time of the first sample, ti,0.

The single channel computation takes as input the vector vi = [vi,0, vi,1, . . . , vi,11] which holds

the 12 samples received from the ith channel. It also uses ti,0, the timestamp of vi,0 in

nanoseconds. It computes preliminary coordinates as shown in Figure 2.4 and described

below.

v̂i, the average height of pulse i, is simply the sum of the samples in the vector vi divided by

12.

v̂i =

∑11
j=0 vi,j

12
(2.7)

t̂i estimates the center time of the pulse. The computation used is a center-of-gravity operation

(a weighted average) which takes the sample magnitudes as weights on the corresponding

sample times. The sample times range from 0 to 22 ns due to the 500 MSps rate of the ADC’s.
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The result is added to the system-time of the first sample, ti,0.

t̂i = ti,0 +

∑11
j=0 2jvi,j∑11
j=0 vi,j

(2.8)

2.4 Across-Channels Computation

Across-Channels Computation
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Figure 2.5: The Across-Channels Computation. The across-channels computation computes
the centroid (x̂, t̂x) of the cloud. It receives the c preliminary coordinate pairs (v̂i, t̂i)
in vector form. Three centroids consisting of an inner product and a division take the vector
of v̂i’s as weights. The coordinate vectors are the pulse time centroids t̂i, positions of the
strips xi, and squared strip positions x2i . These coordinates generate estimates t̂x, x̂, and

x̂2 respectively. The cloud’s estimated spatial variance, ŵ2
x = x̂2 − (x̂)2, is compared to the

standard range for the variance of a single-cloud collision in Variance Check. If the variance
is inside of this range, the cloud’s X dimension centroid (x̂, t̂x) is returneed. If not, the results
are dropped.
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The across-channels computation uses the preliminary coordinates (v̂i, t̂i) generated by the

single-channel computations to estimate the cloud’s position centroid, x̂, and time centroid,

t̂x, described in Section 2.4.1 and Section 2.4.2 respectively. Computation of the cloud’s

spatial variance is used for detecting overlapping clouds and is detailed in Section 2.4.3.

Figure 2.5 presents this part of the algorithm in block-diagram form.

2.4.1 Position Centroid Computation

Under the assumption that the cloud’s charge deposition on the cross-strip anode follows a

2-D normal distribution, strips closer to the center of the cloud receive larger current pulses.

The average pulse heights v̂i are therefore a robust indicator of a strip’s proximity to the

center of the cloud. They are taken as weights on the corresponding strip’s position xi in the

center of gravity computation that generates x̂.

x̂ =

∑c
i=0 v̂ixi∑c
i=0 v̂i

(2.9)

2.4.2 Time Centroid Computation

Each t̂i estimates the time centroid of the pulse received by that channel. Under the twin

assumptions of synchronized digitization on all channels and signal path uniformity on all

channels, the time centroid of the pulse may be interpreted as the time centroid of the cloud.

However, as depicted in Figure 2.2, a channel whose strip was on the edge of the cloud will

receive a current pulse that is both lower in magnitude, decreasing SNR in a noisy system, and

shorter in duration, reducing the number of useful samples for the time centroid algorithm to

use. These have the combined effect of reducing the SNR and precision of measurements from
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these channels. Thus, the across-channels computation performs another center of gravity

operation on t̂i using the average pulse heights v̂i as weights (Equation 2.10). Especially

in the presence of noise, this method generates an impressive theoretical improvement in

accuracy over a simple unweighted average of the time centroids as shown in Chapter 4.

t̂x =

∑c
i=0 v̂it̂i∑c
i=0 v̂i

(2.10)

2.4.3 Variance Computation

A practical problem motivates the variance computation here: the MCP-PMT system will

occasionally capture near-simultaneous photon arrivals. Should these photons be in close

spatial proximity to each other, they will generate electron clouds that overlap in time

and space. The across-channels computation relies on a cloud detection stage (described

in Section 3.5.1) to group hits on multiple adjacent strips into “clouds” and present their

preliminary coordinates as a set. Multiple clouds that are separated by at least a strip in

both dimensions on the cross-strip anode pose no problem to this scheme, but simultaneous

clouds that overlap in either dimension present as a single “cloud” in the dimension(s) of

overlap. The cloud detection logic will then present all the preliminary coordinates from both

clouds to the across-channels computation as a single set. Thus, a single spatial and temporal

centroid will be generated for their overlap pattern. This has the effect of blending spatially

proximate, simultaneous emissions from separate photons into a single (x, y, t) coordinate –

clearly erroneous behavior that should be avoided.

As shown in Chapter 4, temporally separated but spatially similar cloud arrivals can cause

the FADC electronics to transmit pulses from different clouds at the same time – tricking
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the cloud detection logic into thinking they belong to the same cloud – or alternatively drop

one or two of the edge pulses from a single cloud. These situations, like the simultaneous

arrival problem just described, result in the FADC crate transmitting a set of pulses that the

Centroiding Arbiter’s cloud detection logic cannot distinguish from a standard cloud. This

leads to erroneous (x̂, t̂x) results.

To solve this problem, the across-channels computation drops clouds which are wider or

narrower than the standard range for a single-cloud collision. This is implemented practically

by estimating the spatial variance ŵ2
x of the cloud, where wx is the cloud’s spatial standard

deviation, or width, in the X dimension. The centroids (x̂, t̂x) are only returned if ŵ2
x falls

within a standard, parameterized range. The spatial variance is an ideal characteristic for

this task as opposed to the standard deviation because of its simple implementation in

hardware (it doesn’t involve a square root – Section 3.5.2) and because it is more sensitive to

small perturbations in cloud width, allowing the fine tuning of standard range parameters.

The thresholds which define an acceptable value for the spatial variance will be determined

experimentally once the vacuum chamber assembly has been completed. The standard

“shorthand” formula for computing variance is used:

ŵ2
x = x̂2 − x̂2 =

∑c
i=0 v̂ix

2
i∑c

i=0 v̂i
−
(∑c

i=0 v̂ixi∑c
i=0 v̂i

)2

(2.11)

2.5 Characterizing Estimator Accuracy and Precision

The Centroiding Algorithm ultimately generates, for each incident electron cloud, three

estimates: x̂, t̂x, and ŵ2
x. To quantify their performance, it is first useful to define the relevant

properties of an estimator [28]. Each property is given for x̂ and is applicable to the other
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two estimates as well. For an input cloud composed of S pulses Vx,i,t, i ∈ [0, S − 1], C is the

matrix created by the S pulses. If the cloud has center position µx, the error of x̂ is:

e(x̂)C = x̂(C)− µx (2.12)

Over N noisy observations of clouds with the same center position µx, where each cloud’s

pulse matrix is Ck, k ∈ [0, N − 1], the bias B of the estimator x̂ is defined as:

B(x̂) =
1

N

N−1∑
k=0

(x̂(Ck)− µx) =
1

N

N−1∑
k=0

e(x̂)Ck
(2.13)

The bias B is clearly the simple average of the errors e(x̂)Ck
. It is therefore a measure of the

accuracy of the estimator – how close the estimates are, on average, to the true parameter. It

is therefore useful for determining systematic error in the system, as shown in Section 4.3. It

does not account for the spread of the estimates around their average value, a characteristic

here called precision.

The sample variance s2 of the estimator x̂ over the same set of observations is

s2(x̂) =
1

N − 1

∑
k

(
x̂(Ck)−

1

N

∑
l

x̂(Cl)

)2

(2.14)

=
1

N − 1

∑
k

x̂(Ck)
2 − 2

N
x̂(Ck)

∑
l

x̂(Cl) +

(
1

N

∑
l

x̂(Cl)

)2
 (2.15)

=
1

N − 1

∑
k

x̂(Ck)
2 − 2

N(N − 1)

(∑
k

x̂(Ck)

)2

+
N

N − 1

(
1

N

∑
l

x̂(Cl)

)2

(2.16)

=
1

N − 1

∑
k

x̂(Ck)
2 − 1

N

(∑
k

x̂(Ck)

)2
 (2.17)
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Here we have arrived at the familiar shorthand for the variance computation. It is clear that

this value does not depend on the cloud’s position µx, but is a measure of precision – the

degree to which the estimator’s results agree with each other.

The standard deviation s is the square root of the unbiased sample variance s2:

s =
√
s2 =

√√√√√ 1

N − 1

∑
k

x̂(Ck)2 −
1

N

(∑
l

x̂(Cl)

)2
 (2.18)

The advantage of computing the standard deviation is that it “tells the same story” as the

variance – meaning it conveys the precision of the estimator – but in the same physical unit

as the estimator. The downside is that it is a biased estimate of the population standard

deviation, although the use of the unbiased sample variance (dividing by N − 1 above) lessens

the degree to which s is biased. It is therefore more appropriate to call it the corrected sample

standard deviation.
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Chapter 3

Implementation

The Data Processing FPGA is a massively parallel computational platform implemented

inside the Xilinx Virtex-6 FPGA featured on the Xilinx ML605 evaluation board. This design

implements the centroiding algorithm described in Chapter 2 to measure the incident cloud’s

centroid in one dimension, (x̂, t̂x). A view of the data-path and module hierarchy of the Data

Processing FPGA is given in Figure 1.5. A massively parallel front end interface (Sections 3.2

& 3.3) to the 50 relevant channels of the FADC crate computes preliminary coordinates on the

digitized current pulses. A Centroiding Arbiter (Sections 3.4 & 3.5) performs the dual tasks

of recognizing cloud arrivals and computing their centroids. An Ethernet Medium Access

Control (EMAC) provided by Xilinx and some associated control logic (Sections 3.6&3.7)

packages the centroids into Ethernet frames and sends them to a computer via a Gigabit

Ethernet stream. Figure 3.1 names the interfaces used between each stage of the design and

also depicts clock-domain crossings.

After an introductory section describing the boards and physical components used (Sec-

tion 3.1.1) and the fixed-point notation (Section 3.1.2), the remainder of this chapter walks

through each interface and component, starting from the custom serial interface connected

to each FADC Channel FPGA and terminating at the Gigabit Ethernet connection on the

ML605.
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Figure 3.1: Data Processing FPGA Interfaces. An LVDS interface (Section 3.2.1) carrying a
custom protocol (Section 3.2.2) is used to transmit data from the FADC Channel FPGAs to
the pins of a Xilinx XM105 FPGA Mezzanine Card (FMC) [29]. The XM105 is mounted on an
ML605 Evaluation Board [30] which provides a parallel interface to the Data Processing FPGA.
Inside each Channel Receiver (Section 3.3), an Asynchronous FIFO provides a clock domain
crossing (CDC) from the 125 MHz domain provided by the FADC clock(s) to the 200 MHz
ML605 system clock domain. In this domain, the Centroiding Arbiter (Section 3.5) accesses
the preliminary computations of the Channel Receivers via a 50×8-bit data bus (Section 3.4).
The resultant centroids (x̂, t̂x) are presented to the Coordinate Aggregator (Section 3.6) via
a fully parallel interface. The Coordinate Aggregator contains an asynchronous FIFO that
crosses out of the 200 MHz ML605 domain and into the 125 MHz GMII (Gigabit Media
Independent Interface) domain. As part of the Ethernet interface (Section 3.7), the EMAC
Controller packages the data into Ethernet frames and sends them via an 8-bit AXI4-S [31]
interface to the EMAC where they are finally encapsulated into the Ethernet protocol. The
PHY [32] receives the Ethernet stream via GMII and produces the physically accessible
Gigabit Ethernet link.

29



3.1 Introduction

3.1.1 Boards and Components

The work of this thesis is built around the Xilinx ML605 Evaluation Board [30]. It features

a wide array of external interfaces and programming options as well as a sizable FPGA –

the Virtex-6 XC6VLX240T-1FFG1156 [33] featuring 301,440 flip-flops, 768 DSP blocks for

arithmetic operations, and 14,976 Kb of RAM. These ample programming resources make it

ideal in the early stages of this project when design feasibility was still an open question. An

additional benefit was the Buckley Lab’s possession of two ML605 cards courtesy of Xilinx

for student research purposes.

The ML605’s FPGA Mezzanine Card (FMC) slot is essential for supporting the massive

50 channel interface to the FADC crate. The Xilinx XM105 “debug” card [29] is intended

for use as a break-out for monitoring and testing signals inside the FPGA. However, it

provides easy access to 152 general-purpose IO pins of the Virtex-6 when seated in the High

Pin-Count (HPC) slot of the ML605. As discussed in Section 3.2, data transmitted from

the 50 FADC Channel FPGAs is encoded as a differential signal on unshielded-twisted-pair

(UTP) cables. Each Channel FPGA’s data pair connects to two pins of the Data Processing

FPGA, requiring 100 pins for the data signals alone. Additional pairs transmit a clock signal

for the data – each FADC Board (10 channels) has a single clock, yielding 5 clocks total. The

combined IO requirement of the data and clock signals is thus 110 pins. The XM105 card

can accommodate all these signals with pins to spare for debugging purposes.
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The Gigabit Ethernet link is accessed via the ML605’s RJ-45 connector. A Marvell Alaska

88E1111 PHY [32] encodes the data from the EMAC’s GMII (Gigabit Media Independent

Interface) into the physical specification necessary to implement Gigabit Ethernet.

The FPGA is programmed via two methods, depending on the use case. A JTAG (Joint

Test Action Group) connection directly to the FPGA’s configuration logic enables fast

programming for debugging and testing purposes. However, the downloaded bitstream is

stored in volatile memory that is lost when the FPGA configuration sequence is ended. If

power is lost, the device will boot into an undefined state that has no functionality. For long

term deployment, the ML605 offers multiple non-volatile flash memories including a 128 Mb

Platform Flash XL and a 32 MB Linear BPI Flash memory. A set of configuration switches

control which of the three boot options the FPGA uses.

3.1.2 Fixed Point Arithmetic

The fixed-point notation used in the rest of the thesis is introduced here. An unsigned

fixed point number U(a.b) has a integer bits and b fractional bits, where a and b are

integers. The range is thus 0 ≤ U(a.b) ≤ 2a − 2−b [34]. A signed 2’s complement fixed

point number A(a.b) has 1 sign bit, a integer bits, and b fractional bits. It has a range

−2a ≤ A(a.b) ≤ 2a − 2−b. A multiplication of two unsigned fixed point numbers U(a1.b1)

and (a2.b2) yields a result representable in U((a1 + a2).(b1 + b2)) bits. The multiplication of

two signed fixed point numbers similarly adds the number of bits to the left and right of the

radix point: A(a1.b1) · A(a2.b2) = A((a1 + a2 + 1).(b1 + b2)). The additional 1 integer bit is

a semantical result of the fact that a signed fixed point number A(x.y) as defined here has

x+ 1 bits to the left of the radix point [34].
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3.2 FADC Communication

A low-overhead, low-resource, massively parallel LVDS interface serves as the Data Processing

FPGA’s connection to the upstream imaging system and electronics, described in Section 3.2.1.

Section 3.2.2 presents a lightweight serial protocol with a minimal but robust set of features

that enables high throughput and flexibility for future feature additions.

3.2.1 LVDS Interface

The LVDS interface (Figure 3.2) is built around 55 twisted pairs carrying LVDS signals. Each

of the 5 FADC boards generates 10 FADC Channel FPGA data signals and a 125 MHz clock

signal. Both the data and the clock signals are driven by standards-compliant drivers onto

100 Ω UTP ribbon cable. Each differential signal connects to a pair of pins on the XM105

card. Ordinarily, a termination resistor would have to be shunted across each pair of pins.

This is avoided by utilizing the Virtex-6’s 100 Ω internal termination. The differential signals

are made accessible to the internal FPGA fabric via the Virtex-6’s built-in differential input

buffers.

Each data signal is synchronous to its board’s clock signal, but clocks between boards are

mesochronous, i.e., they have the same frequency but unknown phases. Additional work

described in Chapter 5 may be able to accomplish synchronization between all five boards,

but for now the presence of 5 mesochronous clocks implies 5 separate clock domains inside

the Virtex-6. The fabric of the Virtex-6 is subdivided into a set of “clock regions,” areas of

logic that, generally speaking, are associated with a single IO bank and can only be clocked

by clock pins inside that IO bank. The user has the choice of connecting their input clocks
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Figure 3.2: LVDS Interface. 10 LVDS data signals (corresponding to 10 strips of the cross-
strip anode) and an LVDS clock are driven by each FADC board. The signals travel across
100 Ω unshielded twisted pair (UTP) cables that connect to the pins of the XM105 card.
The signals reach the pins of the Virtex 6 and are terminated across internal 100 Ω resistors.
Differential input buffers (grey triangles) present the clock signals to regional clock buffers
and the data signals to the Channel Receiver modules. Each clock signal must, in general,
reside inside the clock region of the corresponding data signals (for a detailed explanation see
Section 3.2.1).

to global clock pins that can drive every clock region, single-region clocking pins (SRCC’s)

that drive a single region, or multi-region clocking pins (MRCC’s) that can drive a single

region and the two “adjacent” regions. The ML605 only exposes MRCC or SRCC pins to

the FMC card, so global clocking is not an option. The clock signal and 10 data signals from

each board must therefore be connected to either the same IO bank (if using an SRCC) or

adjacent IO banks (if using the MRCC). Using a combination of MRCC and SRCC pins, the

XM105 provides sufficient pin exposure to clock the 10 data signals from an FADC board
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with their synchronous clock. Figure 3.2 presents an idealized version of this arrangement

where each FADC board’s signals are assigned a unique region.

3.2.2 Serial Protocol

The FADC Channel FPGA sends messages containing 12 8-bit samples and a 16-bit timestamp

to the Channel Receiver inside the Data Processing FPGA according to the serial protocol

described in Figure 3.3. The protocol uses 8-bit words sent most significant bit (MSB) first

on a 125 MHz clock. The idle state of the transmission is a framing word, 8Ch. This word

was chosen because it has the characteristic that when shifted (with bit recovery), it never

equals itself. This means that the Channel Receiver can observe the deserialized version of

the received data and know exactly which bit is the most significant and which is the least.

Once the Receiver has aligned itself to the deserialized data, it waits for the Channel FPGA to

send the header word AAh. AAh (10101010b) has a Hamming distance of 3 from the framing

word 8Ch (10001100b) (it differs in three bit positions). A study using similar technology

operating at a lower clock rate found LVDS links had a bit error ratio (BER) of less than

10−12 [35]. Even under the drastic exaggeration of a BER of 10−6, the probability p3 that a

framing word suffers 3 induced errors is:

p3 =

(
8

3

)
(10−6)3(1− 10−6)5 ≈ 10−18 (3.1)

In other words, given the link speed’s operation at 125 Mbps (15.625 MBps), it would

take t3 = 1018 bytes/(15.625× 106 bytes/sec) ≈ 2000 years of framing word transmission on

average for one of them to suffer three errors. No consideration was made for which three bits
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will be in error. This effectively guarantees that noise will not “trick” the channel receiver

into deserializing a nonexistent message.

Framing 
Word

Hex 8C

Framing 
Word

Hex 8C

Header
Hex AA

Timestamp
[15:8]

Timestamp
[7:0]

Sample 0 Sample 1 … Sample 
11

Header or 
Framing

T=128 ns T=192 ns … T=1088 ns

Deserialized 
Data

Serial Data 
from FADC 

Channel 
FPGA

T=64 nsT=0 ns

1

64 ns

0 0 0 1 1 0 0 1 0 1 0 1 0 1 0

128 ns 192 ns

…

8C AA

Figure 3.3: Serial Protocol. The FADC Channel FPGA communicates with the Data
Processing FPGA by sending 8-bit words most significant bit (MSB) first. When not active,
the Channel FPGA must repeatedly send the framing word 8Ch. To initiate a message, the
header word AAh is sent followed by a 16-bit timestamp corresponding to the time of the
first sample, ti,0. The twelve samples are sent with the earliest sample first. At the end of a
message, the Channel FPGA can either end transmission by sending the framing word or
initiate a new message by sending the header word.

The local dead time of the MCP-PMT system is exactly the amount of time it takes to send

a message from the Channel FPGA to the Data Processing FPGA. That is, all of the steps

in the “pipeline” that follow this section take less time than the LVDS message transmission,

which is 15 bytes/(15.625× 106 bytes/sec) = 960 ns long. Thus it is important to trim as

many nanoseconds from the message transmission as possible. Two steps have been taken

with this goal: first, the design has been modified from what was initially a two-byte header

to the single word AAh that is currently in use. Second, the capability to “stream” was added,

i.e. continue transmission by sending a header and additional message after the last sample.

This avoids the 64 ns delay incurred from sending the framing word in between messages. The

requirement to send a header instead of allowing “true streaming” – a timestamp immediately

after the last sample – maintains the confidence that a message was initiated intentionally.
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3.3 Channel Receiver

The ith Channel Receiver (Figure 3.4) is responsible for processing the differential serial data

stream generated by the ith FADC Channel FPGA into the two preliminary coordinates of

Section 2.3: the average pulse height v̂i and the pulse time centroid t̂i. A Xilinx ISERDES

block (Section 3.3.1) deserializes the serial data into parallel words which are written into

an asynchronous FIFO by the control logic. On the read side of the FIFO, a Channel

Computation (Section 3.3.2 and Section 3.3.3) computes the preliminary coordinates and

presents them to the Centroiding Arbiter.

Channel Receiver

ISERDES
Control Logic

bitslip

parallel_data

data_in_p

data_in_n

From 
FADC 

Channel
(a-b)

8-bit 
pedestal

a

b

8

8

en

Async FIFO

wr_en
wr_data8

rd_en
rd_data

Channel 
Computation

prog_empty

rd_en
rd_data
prog_empty8

CDC
125 MHz FADC Clock 200 MHz ML605 Clock

data_out
done

accept
clear

8

To 
Centroiding 

Arbiter

Figure 3.4: Channel Receiver. The serial data obeying the protocol from Section 3.2.2
enters the ISERDES differential data in p and data in n ports. Inside, it is shifted into a
register with bit ordering set by the control logic using the bitslip signal. It emerges as an
8-bit deserialized version, parallel data. If parallel data is a sample, the control logic
subtracts the 8-bit pedestal value associated with the FADC electronics so that a 0 volt signal
corresponds to a digital value of 0. If parallel data is one of the two timestamp bytes, it
does not subtract the pedestal. It writes the 2-byte timestamp and 12 8-bit samples into an
asynchronous FIFO. On the other side, in the 200 MHz ML605 clock domain, the Channel
Computation (Section 3.3.2 and Section 3.3.3) performs the single channel computation on
the received data.
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3.3.1 Deserialization Logic

The Xilinx ISERDES block is the point-of-contact between the LVDS interface and the FPGA

fabric. It is a “hardened” block that resides very close to the physical pin of the FPGA [36].

Differential input buffers (IBUFDS) at each pair of pins convert the differential data signals to

single ended versions which can be used by the internal registers of the ISERDES block. The

clock signal, also differential at the pins, drives a differential clock input buffer (IBUFGDS)

that generates a single-ended version. An IO clock buffer (BUFIO) is necessary for this

single ended clock to reach the “IO column,” the region of the device where the ISERDES

resides [37]. The ISERDES uses the BUFIO-driven 125 MHz clock to save the input data on

each positive edge.

The fabric-facing side of the ISERDES block features an 8-bit parallel data output and

a bitslip input. Use of these signals requires the designer to present the ISERDES with

an additional divided clock. This additional clock must have a frequency equal to the input

clock’s frequency divided by the width of each word – in this case 125 MHz/8 = 15.625 MHz.

To generate this clock, a regional clock buffer (BUFR) is connected to the original IBUFGDS-

buffered single-ended 125 MHz clock and parameterized to divide the input frequency by

8 [37]. The BUFR-driven 15.625 MHz clock is used by the control logic and ISERDES of

the 10 Channel Receivers whose data is synchronous to the original clock as described in

Section 3.2.1.

The operation of the control logic is shown in Figure 3.5. The 8-bit parallel data is updated

by the ISERDES on each positive edge of the divided clock. During the framing portion of

the serial protocol (Section 3.2.2) the control logic observes this output and, if it doesn’t

match the framing word 8Ch, asserts the bitslip signal for one divided clock cycle. The
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If parallel_data==AA
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each of the 12 

samples and write 
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Figure 3.5: Channel Receiver Control Logic. The Channel Receiver (Section 3.3.1, Figure 3.4)
features control logic that is responsible for moving the deserialized message from the ISERDES
into an asynchronous FIFO. In the Framing state, the bitslip signal is asserted until the
ISERDES parallel data matches the framing word, 8Ch. If parallel data matches the
header AAh, the control logic transitions to Timestamp. The two bytes of the timestamp are
written sequentially into the FIFO. The logic then transitions to Data. For 12 cycles, the
control logic subtracts the digital pedestal value associated with a 0 volt signal (11h) from
parallel data and writes the result into the FIFO. The control logic then reenters Framing
until a new header arrives.

ISERDES then shifts the order of the bits of parallel data by one to the left and updates

the parallel data output with this new order. Once the bits are properly aligned, the

control logic waits for the header word AAh to appear on parallel data.

When the header word appears, the control logic enters two states designed to efficiently

move the message’s contents into the asynchronous FIFO. The first two bytes of the message

are the timestamp of the first sample, ti,0, and are written (with one register stage to improve

timing) directly into the FIFO. The next 12 bytes are the samples of the current pulse and
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have to be modified slightly before entering the FIFO. In the FADC electronics, a 0 volt

signal is mapped to a digital “pedestal” value – 11h, or decimal 17 – to allow representation

of slightly negative signals. Retaining this pedestal value introduces systematic error in the

centroiding computation because it essentially gives a nonzero weight to a 0 volt sample. The

control logic thus subtracts the digital pedestal from each of the 12 samples before writing

them into the FIFO.

3.3.2 Channel Computation: Sum and Inner Product

The Channel Computation module implements the single-channel computation described in

Figure 2.4. A state machine (Figure 3.6) controls the interface with the asynchronous FIFO

and the computation of the results v̂i and t̂i. This section describes the portion of the logic

responsible for computing sum(v) and v · t. The following section describes the divisions.

The FIFO’s prog empty signal is high whenever the number of words in the FIFO is less

than a parameterized threshold. By setting the threshold just below the number of words

in a single FADC message (14), the flag will deassert (i.e. become 0) after a complete

message has been written in. This action kicks the Channel Computation logic out of the

Idle state and into Timestamp in which the two bytes of the ti,0 timestamp are read out of

the FIFO sequentially and saved into a flip-flop. The logic then transitions to Samples, which

implements the computation of sum(v) and v · t.

Each sample leaving the asynchronous FIFO is stored in a pipeline register to improve timing,

as the path from FIFO to computational logic was sometimes close to 5 ns. The sample leaves

the pipeline stage and enters the FPGA implementation of the sum and inner product blocks,

shown in Figure 3.7. The sum is simply an adder that adds the latest sample to a register
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Figure 3.6: Channel Computation Logic. When the number of words in the Asynchronous
FIFO reaches a complete message, prog empty deasserts. This causes the logic to transition
into Timestamp, where the two bytes of the timestamp of the first sample (ti,0) are loaded
into a flip-flop. The logic then enters Samples, where the 12 samples are read out of the
FIFO. They enter an accumulator (yielding sum(v)) and a multiply-accumulator (MAC) with
the time offsets of each sample (yielding v · t). See Figure 3.7 for implementation. The logic
then initiates the two divisions of Figure 2.4 which, with the addition of ti,0 to v · t/sum(v),
generate the results v̂i and t̂i. See Section 3.3.3 for implementation. In Load, the results are
loaded into a shift register and the done signal is asserted.
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Figure 3.7: Sum and Inner Product Implementation. A sum over 12 elements, for example
v = [v0, v1, ..., v11] is implemented as an accumulator which adds its present value (initially
zero) to the current element for 12 clk cycles. An inner product of those same 12 elements
with a weight vector t = [0, 2, ..., 22] (represented by left shifting i by 1, represented by the
operator <<) is implemented as a 3-stage multiply and accumulator (MAC). A multiplier
produces the product of the current weight and the current element which is saved in a
register on clk. At the next clk edge, the product enters a second pipeline stage to improve
timing and a newly computed product enters the first pipeline stage. On the third cycle, the
original product will be “accumulated” into the signal v · t and the second product will be
stored in the second pipeline stage. The MAC process thus takes 14 cycles because of the
2-cycle latency between input and accumulation.

holding the sum of the previous samples. This repeated process of add-store-add is referred

to below as an accumulator. The inner product is similar to an accumulator, except there is

a 2-cycle multiplier stage before the adder – creating a multiply-accumulator, or MAC. Each

8-bit sample is multiplied by a 5-bit time index in the range [0, 2, ..., 22] with the result saved

in a register.

In the Xilinx tools, as in every major FPGA vendor’s toolchain, the multiplier stage can

be inferred into DSP blocks simply by writing ∗ in Verilog. The tool detects the 2 pipeline

stages after the multiplication and leverages the implied extra 2 clocks (10 ns) to optimally
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place and route the DSP blocks. Because the operands of this multiplication are so small

(8-bit sample and 5-bit time index) and the Virtex-6 fabric is very robust at 200 MHz, the

tool sometimes chose to bypass the DSP block and use a LUT-based implementation.

Because the sum(v) and v · t results are generated by repeated additions/multiplications, the

integer bit length of the output register has to be manually assigned. The maximum value

of sum(v) is
∑11

i=0 255 = 3060 which takes 12 integer bits to represent, so the sum(v) result

register is 12 bits. The maximum value of v · t is
∑11

i=0 2i · 255 = 33660 which takes 16 integer

bits to represent, so the v · t result register is 16 bits.

3.3.3 Channel Computation: Division

The Divider module (Figure 3.8) implements iterative non-restoring integer division [38] and

features fully parameterized word width for both the divisor and dividend, as well as the

option to internally add fractional bits to the dividend before computation. This enables

the use of the same Verilog module with different parameters to compute every quotient

necessary for the design. As shown in Figure 2.4, the Channel Computation module must

compute two divisions: the sample sum sum(v) by 12 and the inner product v · t by sum(v).

These divisions generate, respectively, v̂i (the average pulse height) and the offset to ti,0 used

for t̂i (the pulse time centroid).

To more precisely determine each desired quantity, the Divider module introduces fractional

bits to the numerator, creating a fixed point value. The implementation of a fixed-point

division is a non-trivial operation in any digital system, but especially so in an FPGA [38].
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Unlike the multiplication operator ∗, simply writing a “/” in Verilog will generate a vendor-

specific, massive, and (at the 200 MHz ML605 clock speed) unroutable implementation of a

division algorithm in combinational logic.

While the overview in [38] considers the feasibility of a pipelined implementation that could

compute a quotient each clock cycle, the 960 ns LVDS message length means that the channel

computation can take up to 960/5 = 192 clocks, of which the sum and pipelined inner

product use 13. This leaves 179 clocks for the division, far more than necessary for the

iterative approach presented below. An iterative solution consumes less resources and is

thus preferable over a pipelined or fully-parallel approach – the division module needs to be

instantiated twice per channel for each of the 50 channels. Thus any simplification of the

Divider module (and the Channel Receiver in general) will have a multiplied improvement on

device utilization and timing performance.

The non-restoring division algorithm was chosen because of the simplicity of implementation

in a hardware description language like Verilog. Each cycle contains a single comparison

which decides the next quotient digit Q[i] and the arithmetic operation to perform on the

partial remainder and divisor (either addition or subtraction). This is an improvement on

the number of comparisons and per-cycle results that have to be computed in the standard

long division, also called restoring division – so named because it “restores” the value of the

partial remainder instead of allowing it to go negative. This simplification approximately

halves the amount of logic necessary [38], important because of the parallel instantiation of

100 Dividers.

The primary practical drawback of this approach compared to restoring division is that

the digits of the generated quotient Q are either −1 or +1. Because Q[i] ∈ {−1, 1}, a

conversion process is necessary to perform the map Q[i] ∈ {−1, 1} → Quotient[i] ∈ {0, 1},
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Figure 3.8: Division Implementation. The Divider module computes Dividend/Divisor where
Dividend is N bits and Divisor is D bits. A parameter inserts F additional fractional bits
(can be 0). The internal register size is 2L = 2(N + F ) bits. The result register Q is L bits.
On the first cycle, Dividend is shifted by F bits and loaded into the partial remainder register
and Divisor is shifted by L bits and loaded into a register. The cycle index i is initialized to
(L− 1). Each cycle, the comparison checks the sign of the partial remainder. If nonnegative,
the ith bit of Q is set to 1 and the chosen operation is subtraction. Otherwise, the ith bit of
Q is set to −1 (represented by 0) and the chosen operation is addition. The chosen operation
is then performed on the partial remainder shifted left 1 bit (represented by the operator
<<) and the shifted Divisor. i is decremented each cycle and the process ends when i = 0. A
final conversion maps Q[i] ∈ {−1, 1} → Quotient[i] ∈ {0, 1}.
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where Quotient is Q in 2’s complement representation. Because the −1’s in Q are represented

by a binary 0, Quotient can be expressed as

Quotient = Q− Q̄ (3.2)

where Q̄ indicates the bitwise inversion, or one’s complement. As in [38], the definition of

2’s complement inversion −A = Ā+ 1 allows for a simplification, where << is the left shift

operator:

Quotient = Q+ ¯̄Q+ 1 = 2Q+ 1 = (Q<<1) + 1 (3.3)

Because Q[0] ∈ {−1, 1}, Q is always odd. After converting to standard 2’s complement

representation, the final remainder should be used to fill in the even results, a process not

mentioned in [38]. In the restoring division, which has nonnegative remainders, the remainder

can be discarded after the last iteration because true integer division will always round

down the remainder. In nonrestoring division, the remainder can be negative throughout the

computation and may be negative after the last iteration, implying that the true result is

something less than Q. The final quotient must therefore be conditionally “rounded down”

by subtracting 1 from the 2’s complement Quotient in the event of a negative remainder. This

can be easily incorporated into the map above by noting that if the remainder is negative, its

sign bit Rs is 1 (in 2’s complement representation):

Quotient = (Q<<1) + R̄s (3.4)

where the addition of R̄s means 1 will only be added if Rs is a 0, implying the final remainder

was positive.

45



Because the Divider module performs integer division on fixed point inputs with understood

fractional bits, the output quotient will have understood fractional bits, the number of which

must be determined. The division of two fixed point numbers X (U(a1.b1)) by Y (U(a2.b2))

will produce a fixed point quotient Q (U(a3.b3)). We wish to find a3, the number of integer

bits, and b3, the number of fractional bits.

In this implementation of non-restoring division, Q has the same number of bits as X (once

the parameterized shift of Figure 3.8 is included), so one of the two independent equations

necessary is a3 + b3 = a1 + b1. The other relation necessary to determine a3 and b3 is derived

from expressing X/Y in terms of the raw integer magnitudes of their bits, |X| and |Y |:

X

Y
=
|X| · 2−b1
|Y | · 2−b2

=
|X|
|Y |
· 2b2−b1 =

|X|
|Y |
· 2−(b1−b2) (3.5)

The result thus has b3 = (b1 − b2) fractional bits – an intuitive consequence when division is

viewed as a kind of inverse operation to multiplication’s b3 = (b1 + b2) fractional bits. By

plugging b3’s new expression into the equivalence a3 + b3 = a1 + b1, we find a3 = a1 + b2.

The fact that the quotient has b2 more integer bits than the dividend is also intuitive: if the

divisor is less than 1, the division essentially becomes a multiplication. The product’s upper

bound is proportional to how close the divisor can get to zero and thus how many fractional

bits the divisor has.

As mentioned above, the arguments of the two Divider modules in each Channel Computation

block are all integers: v̂i is the result of dividing a U(12.0) sum(v) by the 4-bit integer 12,

and the quotient used for t̂i is the result of the U(16.0) inner product v · t divided by U(12.0)

sum(v). While this implies the quotients would have 12 and 16 integer bits respectively,

knowing the physical meaning of the results allows for restrictions beyond those implied by
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the math. The average pulse height has the range of a sample: v̂i ∈ [0, (255− pedestal)], so

it can be represented by 8 integer bits. The pulse time centroid is a value in nanoseconds,

t̂i ∈ [0, 22], so it only needs 5 integer bits.

Each quotient will also, by the relation b3 = (b1 − b2) = 0 − 0, have zero fractional bits if

the dividends aren’t shifted left. Both Dividers are thus parameterized to add 8 digits of

fractional precision (F in Figure 3.8). Shifting each dividend left by F = 8 bits allow a

temporal binning ∆t of:

∆t =
1000 ps

28bins
= 3.906 ps/bin (3.6)

The precision improvement in v̂i is also important because this value will be used as a weight

in each of the three computations in the Centroiding Arbiter. A less-precise weight will give

channels either more or less of a say in the final result than they actually deserve. Adding 8

fractional bits to each dividend does have the drawback of increasing the number of cycles in

the division algorithm and thus adding latency. However, it only increases the number of

clocks required to 20 and 24 – well below the 179 clock dead-time limit!

To compute the t̂i pulse time centroid, the U(5.8) quotient (v · t)/sum(v) relative pulse time

centroid must be added to the first sample’s U(16.0) system timestamp, ti,0, as shown in

Figure 2.4. Although relatively innocuous, the format of this simple addition has major

implications. If ti,0 is in the last 22 nanoseconds of the representable range [0, 65535], the

addition could overflow and require 17 integer bits. Allowing a carry bit causes major

problems for the across-channels computation (described in Section 3.5.2), so the carry bit is

dropped and an overflow is simply wrapped back around to the bottom side of the range

[0, 65535].
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When the two Divider modules have finished their computation, they raise a divider done

signal. Because the v̂i quotient takes four fewer clocks than the (v · t)/sum(v) quotient, the

divider done signals from each Divider are AND-ed together to create dividers done. As

shown in Figure 3.6, when dividers done goes high, both quotients are ready and the logic

enters the Load state where the two results t̂i (U(16.8)) and v̂i (U(8.8)) are loaded into a

40-bit shift register. The logic indicates completion by raising the done signal on the interface

with the Centroiding Arbiter, described in Section 3.4. The logic then enters the Idle state

and waits for a new message signaled by the deassertion of the FIFO’s prog empty.

3.4 Channel-Arbiter Interface

The interface between the Channel Receivers and the Centroiding Arbiter is a 50-lane data

bus. Each lane connects a single Channel Receiver with the Centroiding Arbiter, so there is

therefore no bus sharing. Rather, data transmission on each lane is facilitated via an 8-bit

data signal (data) and three control signals: done, clear, and enable. This arrangement is

given in Figure 3.9.

A channel’s assertion of done indicates to the Centroiding Arbiter that it has completed the

computation of the 40-bit preliminary result (t̂i, v̂i). After the Centroiding Arbiter decides

whether or not the channel’s pulse was part of a cloud (Section 3.5.1), it asserts clear to

cause the channel to deassert done and avoid double counting. If the pulse was part of a

cloud, the enable signal is used to shift the 40-bit result across the 8-bit data signal. The

enable signal must therefore be asserted for 4 clocks to shift out the remaining 32 bits in the

shift register.
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Figure 3.9: Channel-Arbiter Interface. Each of the 50 Channel Receivers communicates with
the Centroiding Arbiter via its own dedicated lane. Each lane contains an 8-bit data signal
and three control signals: done, clear, and enable. The Channel Receivers assert done

when they finish computing the preliminary coordinates as described in Section 3.3.3. The
control logic in the Centroiding Arbiter groups channels with high done signals into clouds
for processing. It then asserts clear on those channels which causes their done signals to
deassert, preventing double counting. When the Centroiding Computation block (not shown)
is ready to process a channel’s data, it uses the switching matrix to assert the channel’s
enable and shift the result one byte at a time out of the channel’s shift register.

The decision to use an 8-bit datapath was motivated by design feasibility concerns. First,

it is desirable to pick a bit width that is an integer factor of the 40-bit result length. This

allows the result to be shifted out with no wasted bandwidth in an integer number of clocks.

However, if the entire result was presented in parallel, or even if a 20-bit path was used, the

tools have an enormous difficulty placing and routing the design in a way that meets timing.

This is primarily because each of the (potentially) multiple Centroiding Computation blocks

of Figure 3.10 must be able to read from each of the 50 data signals.
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To route each channel to each Centroiding Computation block, a very congested set of

multiplexers and decoders is instantiated that determine which channel the Centroiding

Computations are currently interfacing with – the switching matrix of Figure 3.9. Widening

each channel’s data bus by 1 bit therefore increases the number of bits that the switching

matrix must successfully route to each Centroiding Computation block by 50. The 8-bit

width was therefore chosen as a conservative and tool-friendly alternative to a fully-parallel

option. Its bandwidth, at 1.6 Gbps per lane, is still very fast and enables the Centroiding

Computation blocks to quickly read the 5-byte (t̂i, v̂i) result from each of the relevant channels.

3.5 Centroiding Arbiter

The Centroiding Arbiter is responsible for identifying cloud arrival events (arbitration) and

computing their centroid (x̂, t̂x) (centroiding). This requires a well-designed mix of three

distinct varieties of digital design: decision-tree style control logic for cloud recognition

(Section 3.5.1), a computational block to implement the across-channels computation (Sec-

tion 3.5.2), and a structural, routing intensive solution to pass data to the computational

blocks (Section 3.5.3). It is therefore the largest and most complicated component inside the

Data Processing FPGA. Figure 3.10 depicts the interconnections between the submodules.

The fundamental parameter of the Centroiding Arbiter is the number of Centroiding Computa-

tion blocks to instantiate. In Figure 3.10 and throughout the rest of this chapter, the number

is assumed to be 2 for both visual and verbal ease of explanation. However, instantiating

more Centroiding Computation blocks in parallel would enable the processing of multiple

spatially and temporally separated-but-proximate clouds, increasing photon efficiency. If the

number is too low, multiple clouds separated by at least a single strip and around 100 ns
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each would potentially be dropped due to the inability of a single Centroiding Computation

block to keep up with the rate of input clouds. However, instantiating just a single additional

Centroiding Computation block has massive implications on design feasibility due to the

increased routing and resource consumption. An optimal number will therefore be determined

later, when the MCP-PMT system has been completed and characterized.

3.5.1 Arbiter Control Logic

The Arbiter control logic detects a cloud’s arrival and assigns the computation of its centroid

to one of the Centroiding Computation blocks. Figure 3.11 depicts the underlying state

machine. As described in Section 3.4, the assertion of any of the bits in channel done

indicates that a Channel Receiver has finished processing a pulse and has the preliminary

coordinates (t̂i, v̂i) ready. In Verilog, the reduction OR operator on a vector signal, denoted

|signal, returns a 1 if any of the bits in signal are 1 and a 0 otherwise, and is therefore

used to test channel done. If |channel done goes high, the logic knows at least one Channel

Receiver has finished computing a pulse’s preliminary coordinates.

Fundamentally, a cloud generates pulses on a contiguous set of strips, causing multiple

consecutive bits in channel done to assert at approximately the same time. As shown in

Figure 2.2, pulses that receive less of the charge cloud may not begin to rise until significantly

later, delaying their transmission and causing a staggered completion of (t̂i, v̂i) coordinates

for the pulses within a single cloud. Therefore, once |channel done asserts, the logic waits a

parameterizable number of clocks (ACCUM in Figure 3.11) to “accumulate” finished results

into channel done. It then saves channel done.
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Figure 3.10: Centroiding Arbiter. The interconnections between submodules of the Centroid-
ing Arbiter (Section 3.5) are given. The 50-bit channel done and channel clear vectors
provide a means of 2-way communication between the cloud-identifying control logic and the
50 Channel Receivers. When the control logic has identified a cloud, it assigns its centroid
computation to the first Centroiding Computation block which is not active by asserting the
corresponding enable and loading the cloud edge channels (determined by Algorithm 1) onto
the corresponding low channel and high channel signals. The Centroiding Computation
block reads the preliminary results from each channel iteratively by loading current channel

and asserting its channel enable signal. The switching matrix aggregates the desired read-
ing behavior from all of the Centroiding Computation blocks (2 depicted) into the 50-bit
channel enable vector. Any channel which is enabled streams its 8-bit data onto the 400-bit
channel data vector. The switching matrix again uses current channel to connect each
Centroiding Computation block with its desired stream. When the Centroiding Computation
block has finished a result, it asserts centroid done and presents the 40-bit result on the
centroid data out signal.
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Figure 3.11: Centroiding Arbiter Logic. Explained extensively in Section 3.5.1, the Arbiter
control logic consists of 4 states. In Idle, the logic waits for any Channel Receiver to finish
processing a pulse, indicated by the reduction OR of channel done: |channel done. In
Accumulate, the logic pauses for ACCUM clocks to gather all the temporally staggered pulses
of a cloud. In Scan, the logic iterates across the saved channel done vector looking for
clouds. It executes the Scan algorithm, Algorithm 1, every cycle to check the next bit of
channel done and “build” clouds by saving a low channel and high channel for each cloud.
When the end of a cloud is reached, the logic transitions to the Got Cloud state to assign the
centroid computation to the first available Centroiding Computation block. It then returns
to Scan and repeats the process until the last channel in channel done is reached, at which
point it returns to Idle and waits for new clouds to arrive.
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Algorithm 1 Scan

1: got cloud← 0
2: channel done← channel done >> 1

3: scan counter← scan counter + 1
4: if channel done[0] = 1 then . current channel is done
5: hit← 1
6: clear mask[scan counter]← 1 . clear the done flag
7: if last hit = 0 then . low edge of new cloud
8: low channel← scan counter

9: end if
10: else
11: hit← 0
12: if last hit = 1 then . just finished a cloud
13: if scan counter− low channel ≥ MIN then . It was acceptable size
14: got cloud← 1
15: high channel← scan counter− 1
16: end if
17: end if
18: end if
19: last hit← hit

20: return got cloud

The Arbiter control logic then determines the edges (low channel and high channel in

Figure 3.10) of the (possibly multiple) cloud(s) that have been saved in channel done.

To do this, it scans across the saved channel done vector one bit at a time. This is

accomplished by right shifting by one bit each clock, channel done>>1, and analyzing the

LSB, channel done[0]. The process performed each time a new bit of channel done is

analyzed is described in Scan, Algorithm 1. If the current LSB of channel done is a 1, the

hit signal of Scan is set to 1. To determine if this is a cloud’s lower edge, the previous value

of hit, last hit, is checked. If last hit is a 0, this channel corresponds to the cloud’s lower

edge. The value of scan counter (which increments each time channel done is shifted) is

then saved into low channel.
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After the lower edge of a cloud, and as the interior channels (if any) are scanned, hit stays high.

When the logic reaches the upper edge of a cloud (indicated by hit = 0 and last hit = 1 in

Scan) the cloud has been fully traversed. However, it is not appropriate to accept the cloud

unconditionally because, as shown in Chapter 4, erroneous transmission of only a small subset

of a cloud’s channels can occur. The width of the cloud, (scan counter− low channel), is

therefore tested against a parameterized hard minimum, MIN. If the width of the cloud is

greater than or equal to MIN, a valid cloud has been scanned. The high channel of the cloud

is assigned scan counter− 1, and the logic transitions to the Got Cloud state.

As the logic transitions to the Got Cloud state, the clear mask of Scan is used. As the

logic scans across a cloud, it loads clear mask[scan counter] with a 1 for each channel in

the cloud. At the end of the cloud, channel clear is assigned the clear mask, which causes

the clear signals of each channel involved in the cloud to assert. This causes each channel’s

done signal to deassert, as described in Section 3.4. When the logic eventually returns to

Idle, the done signals of all of the “old” results will therefore be deasserted and any done

signals that remain high correspond to new results – meaning they were finished while the

logic was scanning the “old” results.

The Got Cloud state is responsible for assigning the centroid computation of the cloud

defined by low channel and high channel to the first available Centroiding Computation

block. It does this by iterating across actives – the vector composed of the active sig-

nal from each Centroiding Computation block – using a counter, computation counter.

If actives[computation counter] = 0, the control logic asserts the corresponding enable

enables[computation counter]. It also loads the 6-bit low channel and high channel val-

ues into the appropriate element of the arrays low channels and high channels, respectively.

The appropriate element is the, like in the enables vector, given by computation counter.
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These values define the range over which the Centroiding Computation block should perform

its computation.

The logic then returns to the Scan state and repeats the process until it has scanned each of

the 50 channels. It transitions back to Idle and waits for the reduction OR of channel done

to assert once more.

3.5.2 Centroiding Computation

The Centroiding Computation block implements the across-channels computation of Sec-

tion 2.4 to compute the cloud’s centroid (x̂, t̂x) and transmit it only if the cloud’s estimated

spatial variance ŵ2
x falls within a standard range. The logic controlling this process is described

in Figure 3.12. The overall functional flow of this block is remarkably similar to the Channel

Computation block (Sections 3.3.2 & 3.3.3) – iteratively load the input data set, performing

an accumulation and MAC as they arrive, then compute the desired results with a set of

Divider blocks. The additional complexities of this block are: the more complicated process

required to load each channel’s preliminary results, the requirement to handle time-wrapping,

the existence of three parallel MAC and Divider blocks, and the additional state to compute

the spatial variance ŵ2
x and compare it to the acceptable range. These complexities are

explained below.

Load Result

The switching matrix’s difficult task of routing each channel’s data to the input of each Cen-

troiding Computation block (Section 3.5.3) results in a delay between when the Centroiding
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Figure 3.12: Centroiding Computation Logic. The Centroiding Computation logic is respon-
sible for computing a cloud’s centroid (x̂, t̂x) and transmitting it only if the cloud’s spatial

variance ŵ2
x falls within an acceptable range. The process is initiated by the Centroiding

Arbiter’s assertion of enable and loading of the cloud edge channels into low channel

and high channel. In the Enable state, the logic asserts channel enable which kicks off
a read process through the switching matrix to fetch the (t̂i, v̂i) result from the channel
specified by channel counter. In the Load state, the logic shifts in the 5-byte result and
loads t̂, v̂, x, and x2. It corrects t̂ to account for time-wrapping by executing Unwrap,
Algorithm 2. The four mathematical operations in the MAC state are then performed. The
Enable-Load-MAC cycle is repeated until the final channel specified by high channel has

been completed. The results t̂x, x̂, x̂2 are then computed by dividing the corresponding MAC
result by the sum of the weights, sum(v). The cloud’s centroid (t̂x, x̂) is returned if the

estimated spatial variance ŵ2
x = x̂2 − x̂2 is inside the standard range for a single cloud.
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Computation block asks for a channel’s result and when it arrives. When the Centroid-

ing Arbiter control logic asserts enable and loads the cloud edge channels low channel

and high channel, the Centroiding Computation immediately asserts channel enable and

loads low channel into current channel (signals shown in Figure 3.10). The asserted

channel enable propagates through the switching matrix and to the channel specified

by current channel, causing a shift in the shift register and a new byte of the result

(t̂current channel, v̂current channel) propagating back through the switching matrix and into the

Centroiding Arbiter’s channel data port.

However, the time delay associated with this long path and complicated switching far exceed

a single 5 ns clock cycle. The process must be broken up into stages by adding pipeline

registers for the channel enable on the way out and channel data on the return path.

The number of registers required varies with the design width – for the 10 X channel, 10

Y channel test design (Chapter 4), the design passed timing with a 7-cycle delay from the

assertion of channel enable to the arrival of the next byte of channel data. The parameter

DATA DELAY in Figure 3.12 is thus set to 7 cycles for the test setup. For the first 4 of those

cycles, channel enable needs to be asserted to shift out the 4 remaining bytes of the shift

register. The total delay from channel enable is first asserted to when the last byte of the

channel’s result arrives on channel data is thus 7 + 4 = 11 cycles.

Unwrap Times

It is at this point that (t̂current channel, v̂current channel) will have been shifted in and the logic

can perform the math in the MAC state; however an additional step is required to account

for the troublesome wrapping of the pulse time centroid t̂current channel. To understand the

conditions that motivate this process, consider Table 3.1 which shows a set of 16-bit FADC
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timestamps ti,0, relative pulse time centroids (vi ·t)/sum(vi), and pulse time centroid estimates

t̂i = ti,0 + (vi · t)/sum(vi) for a hypothetical 3-channel cloud. Recall that t̂i is in U(16.8)

format and can therefore only represent t̂i ∈ [0.0, 65535.996].

Table 3.1: Time-Wrapping Pulses.

Channel Number i ti,0 vi · t/sum(vi) t̂i
0 (low channel) 65526 9.5 65535.5

1 65524 12.0 0.0
2 (high channel) 65528 7 65535

The three pulses in Table 3.1 all had center times that were proximate to the last representable

time. Because the Centroiding Computation essentially uses a weighted average of the t̂i

results to compute t̂x, this situation – if left uncorrected – will result in a tremendously

inaccurate result: (weights set to 1 for simplicity):

t̂x =
65535.5 + 0.0 + 65535

3
= 43690.17 (3.7)

Intuitively, the correct result can be obtained by replacing 0.0 with 65536.0 in the average:

t̂x =
65535.5 + 65536.0 + 65535

3
= 65535.5 (3.8)

While the correction above is obvious when viewing the entire set of t̂i results, the requirement

to iteratively MAC these values – with no knowledge of the next channel’s t̂i result – motivates

the process described by Unwrap, Algorithm 2. The algorithm is motivated by the fact

that problematic time-wrapping cases occur when t̂i values exist in both the first and fourth

“quadrants” of the allowed range – [0, 16384) and [49152, 65536). Checking whether or not

the t̂i value is in either quadrant is simple in hardware – low quadrant times have 0’s for the

top two bits, and high quadrant times have 1’s. Because no two pulses generated by the
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same MCP-PMT system could actually have center times in the first and fourth quadrant –

implying they had a difference in center times exceeding 32 768 ns – the presence of t̂i values in

both the first and the fourth quadrants indicates that a wrapping event like that of Table 3.1

has occurred. The algorithm therefore maintains a notion of the previous quadrants and

iterates over the t̂i results of each of the c channels (i ∈ [0, c − 1]), making corrections as

necessary:

Algorithm 2 Unwrap

1: got low quadrant← 0
2: got high quadrant← 0
3: for i ∈ [0, c− 1] do
4: if t̂i < 16384 then . t̂i is in low quadrant
5: if got high quadrant = 0 then
6: got low quadrant← 1
7: else . previously had high quadrants
8: t̂i ← t̂i + 65536 . correct by wrapping up
9: end if
10: else if t̂i ≥ 49152 then . t̂i is in high quadrant
11: if got low quadrant = 0 then
12: got high quadrant← 1
13: else . previously had low quadrants
14: t̂i ← t̂i − 65536 . correct by wrapping down
15: end if
16: end if
17: end for

The implementation of Algorithm 2 in hardware is simple and only requires the use of two

single bit flags got low quadrant and got high quadrant. The subtraction or addition

of 65536 causes t̂i to lie outside of [0, 65536). This motivates the transition to a signed

representation for the result of the addition or subtraction. If only a single sign bit is added,

the result can represent [−65536, 65536). This means that the addition of 65536 would

overflow. For this reason, an additional magnitude bit is also added, resulting in a signed
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fixed point number in A(17.8) format. Recall that a number A(17.8) has an implied sign bit

and is therefore 26 bits, capable of representing [−131072, 131072).

Although a number in A(17.8) format is capable of representing times both larger than

and smaller than the original range of [0, 65536), for a given cloud it is only necessary to

extend the range in one direction. This is because if a low quadrant t̂i is scanned first, any

subsequent high quadrant time centroids will be mapped to negative values. On the other

hand, if a high quadrant t̂i is scanned first, any subsequent low quadrant time centroids will

be mapped to values greater than 65536. This implies that, with some clever manipulation,

only a single additional bit could be used. This would result in a very marginal reduction in

operand width (and thus less difficult routing) in the MAC and Division states. However, it

ultimately comes at the cost of added complexity and less comprehensibility in the decision-

tree logic of Unwrap. Therefore, the result of the addition or subtraction (or simply the t̂i

value itself, if no modifications are made) is saved in a signed fixed point A(17.8) register

time estimate extended.

MAC

With the time value corrected, the control logic of Figure 3.12 enters the MAC state. Here,

as in the MAC state of the Channel Computation module (Section 3.3.2), an accumulator

and (in this case) several MAC blocks are updated with the newest channel’s results. The

accumulator sum(v̂) maintains a running sum of the weights v̂i. The weight is used in the three

MAC’s on the “coordinates” which were saved in the Load state: time estimate extended

(signified by t̂ for brevity in Figure 3.12), x, and x2. The MAC’s are computed identically to

the block diagram of Figure 3.7 – a 2-stage multiplier and a single-stage accumulator. Unlike
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in the Channel Computation, the operands of the three MAC’s are wide and the Xilinx tools

therefore used a complicated, multi-stage DSP-based implementation for the multipliers.

The widths of the computed values sum(v̂), mac(t̂), mac(x), and mac(x2) are derived here.

Each width depends on the input widths: the corrected time value time estimate extended

is A(17.8). The channel number x requires, due to 50 channels, 6 bits to represent. The

squared channel number x2 requires 12 bits. The weights v̂i are U(8.8). Table 3.2 shows

the result format, computed using Section 3.1.2 and the fact that a cloud could, in theory,

have up to 50 channels. The corresponding upper-bound of 50 repeated additions in the

accumulator and MAC blocks leads to the addition of 6 integer bits to represent each result.

Table 3.2: Sum and MAC Result Format.

Function Output Format
sum(v̂) U(14.8)

mac(t̂) A(30.16)
mac(x) U(20.8)
mac(x2) U(26.8)

Division

When the final channel – specified by high channel – has been processed in the MAC state,

the logic transitions to the Division state. The three coordinate estimates (t̂x, x̂, x̂2) are

computed by dividing the underlying MAC of each coordinate by the sum of the weights,

exactly as in the Channel Computation block (Section 3.3.3). The Divider block (Figure 3.8

and Section 3.3.3) used for each division is parameterized with the widths of the dividend

N , divisor D, and the number of fractional bits F to be inserted into the dividend. In the

case of the t̂x division, no additional fractional bits are needed because the quotient will have

16−8 = 8 fractional bits. For x̂ and x̂2, however, the quotient would have 8−8 = 0 fractional

62



bits without the addition of extra fractional bits. For continuity with the temporal result, F

is set to 8 for these two Dividers, giving each spatial coordinate 8 bits of fractional precision.

The increased operand widths (47 bits for mac(t̂)) in the Divider modules and the congested

routing surrounding the Centroiding Computation block(s) meant that the Xilinx tools

occasionally struggled to place and route the Dividers. The t̂x Divider was especially difficult

due to the presence of a 47 · 2 = 94 bit addition/subtraction that has to be performed each

cycle (see Figure 3.8). However, it was discovered that the tool was conditionally performing

the addition or subtraction based on the sign of the partial remainder – meaning the partial

remainder’s sign bit had to tell an “add/subtract” block which operation to perform. By

forcing the tool to physically place both the addition and subtraction blocks and use the sign

bit to select the appropriate result of either the addition or the subtraction, timing success

was achieved on every subsequent build.

Variance

When all of the dividers have raised their divider done signal, the logic enters the Variance

state. As described in Section 2.4.3, the variance is computed by ŵ2
x = x̂2 − x̂2. This simply

requires a 2-stage multiplier of x̂ · x̂ and a subtraction. The logic therefore is structurally

identical to a MAC block, except it uses a subtraction instead of an addition. The fixed

point format of each operand must be considered to perform the subtraction correctly. x̂2

is derived from a weighted average of the squared channel number and thus has a range

of x̂2 ∈ [02, 492] = [0, 2401], representable in 12 integer bits. With the addition of the 8

fractional bits in the Divider, the bottom 20 bits of the quotient mac(x2)/sum(v̂) are needed

for x̂2. Following a similar line of reasoning, x̂ is simply a weighted average of the channel
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number and thus requires 6 integer bits to represent. With the addition of the 8 fractional

bits in the Divider, the bottom 14 bits of the quotient mac(x)/sum(v̂) are needed for x̂.

The variance is therefore a subtraction of two fixed point numbers x̂2 = U(12.8) and

x̂2 = U(6.8) · U(6.8) = U(12.16). Because the fractional part of x̂2 has an extra 8 bits,

it must be right-shifted by 8 to align it with x̂2. The variance ŵ2
x is thus a U(12.8)

number, and is compared to a set of thresholds, low variance and high variance, that

will be set experimentally once the MCP-PMT has been completed and characterized. If

low variance ≤ ŵ2
x ≤ high variance, the cloud is considered acceptable.

Output Format

The variance successfully passing the threshold check causes the logic to assert centroid done

and load the result (t̂x, x̂) into centroid data out. As the top two bits of t̂x (the sign bit

and additional magnitude bit added earlier) are only for mathematical bookkeeping, they

are dropped and a U(16.8) number is recovered. Due to the very helpful properties of 2’s

complement representation, if the quotient t̂x was slightly negative, it becomes a large U(16.8)

number. If it was slightly above 65536, it becomes a small U(16.8) number. This is, finally,

the desired wrapping behavior.

Although the position centroid x̂ only necessitates 6 integer bits, it is zero-extended to 8

integer bits. This yields a final result (t̂x, x̂) that is 40 bits long, or 5 bytes. This is ideal

because the Ethernet Interface is 1 byte wide, resulting in an even 5 data words per centroid

result. It is also helpful because it maintains the byte placement of the result such that

the bottom two bytes are the position centroid and the top three are the time centroid,

greatly simplifying the task of parsing the generated Ethernet stream on a computer. The
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combined width of t̂x and x̂ is therefore U(16.8) + U(8.8) = 40 bits. With the result loaded

and centroid done asserted, the logic transitions back into Idle and waits for the Centroiding

Arbiter control logic to enable a new round of computations.

3.5.3 Switching Matrix
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Figure 3.13: Switching Matrix. The switching matrix routes the read requests of each
Centroiding Computation block into a single 50-bit channel enable vector and simultaneously
routes the desired channel’s data to the appropriate Centroiding Computation block. An array
of 6-to-64 decoders map the Centroiding Computation’s 6-bit current channel index into a
one-hot vector. For example, if current channel 0 is the integer 17 and channel enable 0

is a 1, then the 17th bit of the top decoder will be a 1 and the rest will be zero. The
corresponding bits of each decoder are OR’ed together, resulting in a 50-bit channel enable

vector that has 1’s at each of the channels that the Centroiding Computation blocks are
reading from. As the 8-bit data from each channel streams back on the 400-bit channel data

vector, an array of 64-to-1 multiplexers (MUX’s) select the 8-bit data specified by each
current channel index.
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The switching matrix is responsible for the dual tasks of transforming the independent read

requests of each of the Centroiding Computation blocks into a single 50-bit channel enable

vector and routing the desired channel’s data back to the appropriate Centroiding Computation

block. The process is depicted visually in Figure 3.13. The switching matrix decodes the 6-bit

current channel index of each Centroiding Computation into a one-hot (meaning only one

bit is a 1) vector with a 1 in the bit specified by current channel. The decoded indices are

OR’ed together into a single, 50-bit channel enable vector. This enables multiple channels

to be read from at the same time by different Centroiding Computation blocks.

On the return path, the switching matrix essentially performs the inverse operation on the

400-bit channel data vector. It uses current channel from each Centroiding Computation

to multiplex a single channel’s data onto the channel data i outputs. The Centroiding

Computation block must therefore maintain the same current channel from the beginning

of the enable process to the arrival of the last byte of data. To ease the strain on the tools

of routing this massively parallel matrix of signals, the outputs of the decoders, the OR

gates, and the MUX’s of Figure 3.13 each have at least one register stage, contributing to the

7-cycle delay mentioned in Section 3.5.2.

3.6 Coordinate Aggregator

The Coordinate Aggregator deserializes the centroid results from the Centroiding Computation

blocks and writes them into an asynchronous FIFO (Figure 3.14). The state machine which

controls the process is given in Figure 3.15. In Idle, it watches the vector of centroid done

signals and, if any of the bits go high, saves the current state of the vector – identical to the

process described in Section 3.5.1. The logic first writes a “length” byte into the FIFO in the

66



Centroiding 
Computation

centroid_data_out

centroid_done

centroid_clear

Centroiding 
Computation

40

40
centroid_data_out

centroid_done

centroid_clear

Coordinate Aggregator

Control Logic
centroid_data_0

centroid_data_1

centroid_done_0

centroid_done_1

centroid_clear_0

centroid_clear_1

fifo_wr_en

fifo_wr_data

Async FIFO

wr_en

wr_data

rd_en

rd_data

prog_
empty

CDC

125 MHz GMII Clock200 MHz ML605 Clock

8 8 Ethernet
Interface

Figure 3.14: Coordinate Aggregator. The Coordinate Aggregator interfaces with each of the
Centroiding Computation blocks to multiplex their results onto a single 8-bit fifo wr data

signal. When a Centroiding Computation block finishes processing a cloud’s data, it asserts
centroid done. The fully-parallel 40-bit centroid data out signal transfers the (t̂x, x̂)
centroid result in a single cycle. When the control logic (Figure 3.15) has saved the result
from a Centroiding Computation block, it asserts centroid clear, causing centroid done

to deassert and preventing reprocessing the same result. The logic then shifts the message
out to the asynchronous FIFO. The read side of the FIFO is in the 125 MHz GMII clock
domain and is handled by the Ethernet Interface (Section 3.7).

Header state, specifying the number of Centroid results that are about to be written. This

functions, practically, as a sub-header within the Ethernet packet that makes parsing the

packet’s contents on the computer side simple and robust.

The logic then scans, reads, and shifts out the 40-bit (t̂x, x̂) result from each finished

Centroiding Computation block in Load. It also asserts centroid clear on each processed

Centroiding Computation block, acknowledging the result and causing the corresponding
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Hit
length =

sum(centroid_done),
done_saved =
centroid_done

Reset
If (|centroid_done == 1)

Idle

Header
fifo_wr_data = length,

fifo_wr_en = 1

Scan
increment scan_counter

Load
increment load_counter,
fifo_wr_data = top byte 

of result,
fifo_wr_en = 1,

result = result << 8

If(done_saved[scan_counter] == 1):
result = centroid_data[scan_counter],
centroid_clear[scan_counter] = 1

If (scan_counter > 
NUM_COMPUTATIONS)

If (load_counter > 5)

Figure 3.15: Coordinate Aggregator Logic. The Coordinate Aggregator streams the centroid
results (t̂x, x̂) of each processed cloud into an asynchronous FIFO that is read by the Ethernet
Interface. It watches the vector of centroid done signals for any asserted bits, represented
by checking the reduction OR: |centroid done. If any bit is a 1, the reduction OR returns
a 1 and the logic transitions to the Hit state. In Hit, the value of the centroid done vector
is saved as done saved to prevent double counting. The length is the number of completed
centroid results, found by summing the bits in centroid done. This value has a maximum of
the number of Centroiding Computation blocks instantiated in the current design. In Header,
the length field is written as a byte into the FIFO. In Scan, the logic iterates across the vector
of centroid done signals. When the current centroid done is a 1, the logic transitions
to the Load state, saves the corresponding centroid data, and asserts the corresponding
centroid clear bit to deassert the centroid done flag and avoid double-counting. In Load,
the logic left-shifts the result signal out into the FIFO 5 times, once for each byte. It then
returns to the Scan state, and the cycle repeats. Once the last Centroid Computation block
has been scanned, the logic returns to Idle.
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centroid done bit to be deasserted. The process of reading a result is much simpler than in

previous components of this thesis due to the decision to implement a fully-parallel datapath

for each Centroiding Computation block. A single clock cycle moves the entire 40-bit value

into a register result. result is then shifted out 8 bits at a time, starting with the most

significant integer bits of t̂x and finishing with the fractional bits of x̂.

3.7 Ethernet Interface
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Figure 3.16: Ethernet Interface. The EMAC Controller reads the serialized centroid results
out of the asynchronous FIFO and packages them into an Ethernet frame. Each frame is
provided to the Xilinx EMAC Wrapper via the AXI4-S interface (data, valid, last, user,
ready) [31]. The EMAC Wrapper is a verified, Xilinx-provided Ethernet MAC that interfaces
with the external Ethernet PHY via the GMII interface [39]. It is responsible for driving each
provided Ethernet frame according to the Ethernet specification (adding preamble, CRC,
obeying the interframe gap requirement, etc). The standards-compliant Ethernet data is
sent across the GMII interface and driven by the PHY according to the Ethernet standard’s
electrical specifications [32]. The ML605 board features an RJ45 connector which provides
access to the generated Gigabit Ethernet signals.
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The Ethernet Interface (Figure 3.16) consists of all the logic required to package the stream

of centroid results into an Ethernet frame and transmit the frame to the Marvell 88E1111

Ethernet PHY, an external chip that handles all of the physical specifications of Ethernet

(channel equalization, echo and crosstalk cancellation, etc) [32]. The primary component is

the Xilinx Ethernet Medium Access Control (EMAC) Wrapper [39], a core provided via the

Xilinx tools that makes use of the Virtex-6’s hardened EMAC [40]. The Wrapper provides an

industry-standard AXI4-Stream interface (AXI4-S) [31]. The only remaining piece of custom

logic is the EMAC Controller 3.7.1, which simply packages the already 8-bit wide data in the

asynchronous FIFO into an Ethernet frame under the AXI4-S specification.

3.7.1 EMAC Controller

The EMAC Controller (Figure 3.17) reads centroid result data from the asynchronous FIFO,

packages it into an Ethernet frame, and encodes it into the AXI4-S interface. Like in the

Channel Receiver (Section 3.3), the asynchronous FIFO’s prog empty flag is configured to

deassert when a “full message” has been written into the FIFO. In this case, the threshold

for deassertion is set at a high level that minimizes wasted bandwidth. When an Ethernet

packet is transmitted with a small payload, the ratio of data to “packaging” (destination and

source MAC addresses, CRC bits, etc) is low. This wastes precious bandwidth and should be

avoided. On the other hand, if the threshold for deassertion is set too high, the FIFO could

fill due to the faster 200 MHz write clock compared to the 125 MHz read clock. The balance

of these two considerations depends ultimately on the rate at which centroids are computed –

a parameter PROG EMPTY THRESH that will be tested experimentally when the MCP-PMT is

complete. For the test setup presented in the next chapter, it is set at 64 bytes.
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Header
valid = 1,

if (ready): increment
header_counter,

data = next byte of 
ETH_HEADER

Reset

If (prog_empty == 0)

Idle Length
valid = 1,

data = 
PROG_EMPTY_THRESH

Data
valid = 1,

rd_en = 1,
data = rd_data

If (data_counter == 
PROG_EMPTY_THRESH):

last = 1

If (header_counter == 12):

Figure 3.17: EMAC Controller Logic. The EMAC Controller logic reads PROG EMPTY THRESH

bytes out of the asynchronous FIFO, packages them into an Ethernet frame, and sends the
frame to the EMAC via the AXI4-S interface. The logic waits for the FIFO’s prog empty

signal to deassert before beginning transmission of an Ethernet frame. First valid is asserted
and the 12 bytes of ETH HEADER are shifted out on data in the Header state. ETH HEADER

consists of a 6-byte destination MAC address, the broadcast address FFFFFFFFFFFFh, and a
6-byte source MAC address of the Ethernet Interface, 002320212223h. If at any point, the
EMAC deasserts ready, the logic will pause here. This allows for flow-control pauses in the
EMAC. Next, the 2-byte Ethernet length field is filled with the PROG EMPTY THRESH constant,
the number of bytes known to be in the FIFO (because of the deassertion of prog empty).
In Data, the logic reads out PROG EMPTY THRESH bytes from the FIFO and writes them onto
the AXI4-S interface. On the last byte, the logic asserts last and transitions back to Idle.

3.8 Discussion

The Data Processing FPGA is a massively-parallel computational platform. At a most funda-

mental level, the design processes an impressive maximum input data rate of 50 channels×

125 Mbps/channel = 6.25 Gbps. This is possible due to efficient regional clock distribution,

extensive use of pipeline registers, and the strategic offloading of algorithmic complexity
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to each Channel Receiver. In every instance where decision-tree style multiplexing was

unavoidable, for example in the implementations of Algorithms 1 & 2, immense effort was

made to minimize the “depth” of the underlying combinational logic by simplifying logical

expressions and consolidating related signals to minimize resources. Because timing success

was difficult to attain and utilization of the FPGA’s resources was high, small improvements

(especially in logic instantiated 50 times) led to big gains in device performance.

The computational and throughput performance of the design is characterized at length

in Chapter 4. The impressive accuracy and precision of computing centroids validate the

decisions to choose a relatively simple center of gravity algorithm and use only 8 bits of

fixed point fractional precision throughout. While flashier algorithmic solutions exist, the

design’s throughput performance would have been incredibly difficult to achieve on such a

massively parallel scale had more complicated computational tasks been required. From the

non-restoring division implementation to the three-stage MAC block, every math component

was designed to precisely compute results without burdening the tools with difficult routing

tasks.

On a higher level, although the Data Processing FPGA presented here is a robust solution

to the centroiding problem for the MCP-PMT system, it will undoubtedly be revised and

improved once the system is operational. The fact that the upstream system is not yet

finished was certainly one of the most difficult factors I faced during the course of this project.

Numerous unknowns and untestable assumptions about the quality of the MCP-PMT’s signal

content discouraged investing hundreds of hours into a complex component that might be

rendered useless by the final design. Instead, I focused on modularity and simple, elegant

interfaces. If a component needs to be modified or completely replaced, the entire system
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won’t collapse – the engineer merely has to obey the interface’s specifications on data format

and control signals.

The most compelling example of this modularity is the Centroiding Computation block. A

parallel array of these blocks feature a simple set of control signals for reading the Channel

Receiver’s preliminary (v̂i, t̂i) results. On the back-end a fully parallel interface presents the

computed (x̂, t̂x) centroids to the Coordinate Aggregator. Nowhere is it specified when or

how each Centroiding Computation block generates the centroids. This flexibility opens the

door for future research on a heterogeneous computational platform, in which a range of

different computational blocks compute results with varying degrees of accuracy, precision,

and delay. One could imagine an intelligent Centroiding Arbiter switching between different

algorithmic complexities depending on the cloud input rate.

In terms of design methodology, I attempted to create a plug-and-play, modular design that

emphasizes code reuse and parameterizability throughout. It therefore shares much more in

common with the software engineering design ethos than the average hardware design project.

A project of this magnitude on this timescale was only feasible for a single person because of

the extensive use of parameters for almost every characteristic of the design – everything from

the number of samples in the FADC’s message to the number of Centroiding Computation

blocks to instantiate. Changing a single parameter in the top level module propagates down

through the design hierarchy automatically. Additionally, code was reused (either explicitly by

module instantiation or implicitly by structure) in the Channel Computation and Centroiding

Computation blocks. Both of these efforts were ultimately effective because they enabled

rapid prototyping – a cycle of small, incremental changes to an already functional design –

rather than long, risky development cycles.
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As Chapter 4 will show, the dual concerns of low-level logic optimization and high-level,

forward-looking design choices culminated in a high-performance computational platform

that delivers both excellent spatiotemporal resolution and system stability in the complex

scenario of thousands of stochastic photon arrivals distributed in space and time.
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Chapter 4

Testing

The Data Processing FPGA is a complicated system, so testing it thoroughly requires multiple

approaches. At a most fundamental level, the design estimates three quantities for each

cloud it receives from the FADC crate: the center position of the cloud x̂, the time of the

cloud’s arrival t̂x, and the cloud’s spatial variance (or width) ŵ2
x. These three quantities are

parameterizations of an underlying physical phenomenon, namely the charge cloud’s arrival

to the cross-strip anode (Section 1.2.1). The performance of each estimator is limited by

numerous factors including: the parameters of the charge cloud; the cloud’s proximity to other

clouds (both spatially and temporally); the noise introduced in the digitization electronics;

various parameters in both the FADC Channel FPGAs and the Data Processing FPGA; and

– most fundamentally – the mathematical implications of the finite-sample center-of-gravity

approach used to compute the estimates.

Because testing over all the possible combinations of each of the above factors is impossible,

a handful of test scenarios have been chosen to test the performance of the Data Processing

FPGA and to guide the integration of the earlier stages of the MCP-PMT into a functioning

imaging system. The experiments demonstrate that the Data Processing FPGA is a robust

estimator of the spatiotemporal coordinates of electron clouds (and by extension photons).
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The final, all-encompassing “stress test” shows that the design maintains this performance

even in the presence of thousands of stochastically generated clouds.

The following sections explain the underlying testing framework and then present the set

of test scenarios that have been developed. Section 4.1 presents the physical test setup

used. Section 4.2 shows how the assumptions of a cloud’s Gaussian spatiotemporal charge

distribution are implemented in Python to generate test data. Sections 4.3-4.4 each present a

test scenario and the Data Processing FPGA’s performance therein.

4.1 Test Setup

The test scenarios in Sections 4.3-4.4 are carried out in the system shown in Figure 4.1.

Although an analog test making use of the FADC boards was planned, COVID-19 related lab

closures meant that the FADC boards weren’t accessible for incorporation in the test loop. A

portable mock-up of their functionality was therefore designed and instantiated inside the

Virtex-6 FPGA on-board the ML605. Additionally, only a single ML605 board was available

for use. These two constraints led to the instantiation of both the X and Y dimension mock

FADC boards and Data Processing FPGA instances within the same Virtex-6 FPGA. The

test setup presented here is therefore a hybrid of the standard FPGA testing paradigm – a

simulation – and the originally planned analog test featuring physical pulses injected into the

FADC crate. Ironically, the result is a scheme that gets the best of both worlds: complete

control over the input test vectors (usually only possible in simulation) and a full verification

of the Data Processing FPGA’s physical interfaces.
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Figure 4.1: Test Setup. The Virtex-6 FPGA onboard the ML605 houses both the stimulus
(mock FADC crate) and the device-under-test (2-D Data Processing). Because only a single
ML605 board was available, both the X and the Y dimensions are instantiated inside the
same FPGA. This increased pin consumption on the ML605 limited the possible number
of channels in each dimension to 10. Each mock FADC board features 10 mock FADC
Channels that drive out their messages over 10 LVDS links according to the serial protocol
of Section 3.2.2. These links are connected with loopback cabling on the XM105 Debug
Card to pins that lead directly to the Channel Receivers. The Centroiding Arbiter in each
dimension performs the centroiding computation on the preliminary measurements of the
Channel Receivers and drives the data to a shared Coordinate Aggregator and Ethernet
Interface. The centroid estimates are streamed to a computer via a Gigabit Ethernet link
and captured using Wireshark.
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The cloud model of Section 2.1 is used to generate the pulse data from a sequence of cloud

arrivals that has the characteristics specified by the test. For example, Section 4.3’s test

involves scanning a cloud across the cross-strip anode. For each cloud, a time of arrival and a

set of pulses in each dimension are generated and saved into memory on the FPGA. The mock

FADC boards send the pulses for each cloud to the Data Processing FPGAs over an external

LVDS loopback when their internal timer reaches the time of arrival. The parameters of

each cloud can thus be used as a base “truth” against which the estimators can be tested.

At the same time, the integrity of the LVDS and Ethernet links and the overall stability of

the system are verified by ensuring that all of the clouds were successfully processed by the

FPGA and received by the computer.

4.1.1 Mock FADC Board

The Mock FADC board is responsible for transmitting the pulse data for each input cloud in

the test across the LVDS interface. As shown in Figure 4.2, it features two kinds of RAMs,

denoted Pulse and Time. Each Channel’s Pulse RAM holds a sequence of pulses, one for

each cloud in the test. The RAM width is 32 bits, and each pulse consists of 12 8-bit samples.

Each pulse is therefore represented in 3 contiguous addresses within the RAM. The samples

are loaded with the earliest placed at the lowest address. The Time RAM holds a list of start

times, one for each cloud, that tell the Controller when each cloud should “arrive” and be

sent across the LVDS loopback. The Controller simply waits for its internal timer to match

the time specified by the next address in the Time RAM, then asserts enable and reads the

next three 32-bit Pulse RAM words into the FADC Channel blocks. The Controller is very

simple and does not consider whether or not the Channels are capable of transmitting a new

cloud – it merely iterates through the Time RAM and loads the 12 samples belonging to each
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cloud into the FADC Channels each time a cloud “arrives.” It therefore approximates the

function of the ADC’s on the FADC board.

Time RAM

FADC Channel 0

pulse_data lvds_data

enable

Pulse RAM 0

dataaddr
32

FADC Channel 9

pulse_data

enable

Pulse RAM 9

dataaddr
32

…

Controller

enable

pulse_addr

addr data

Mock FADC Board

…

125 MHz Clock Gen

Data[0]

Data[9]
lvds_data

Clock

Figure 4.2: Mock FADC Board. The Mock FADC Board is built around Pulse RAMs that
hold the pulse content of each input cloud and a Time RAM that hold a list of start times,
one for each cloud. The Controller iterates through the Time RAM, asserting enable to begin
transmission of a cloud’s data when its internal timer matches the Time RAM’s data. In
this test setup, each pulse contains 12 8-bit samples. Each word in the pulse RAM is 32 bits,
or 4 samples. The Controller therefore increments pulse addr for three consecutive clocks
when it asserts enable to shift all 12 samples into the FADC Channel. The FADC Channel
then drives the 12 samples and a 16-bit timestamp onto the LVDS Interface (Section 3.2)
according to the protocol in Section 3.2.2.

The FADC Channel Blocks, as mentioned in Section 3.2.2, are constrained by the fact that

the transmission of a single pulse’s 120-bit message takes 960 ns. Once a message is initiated

by the Controller’s assertion of enable, the Channel Blocks save the 12 samples and the

timestamp of the first sample. In Section 4.4’s test, cloud arrival times are random. This

means the Controller will sometimes assert enable while the FADC Channel blocks are busy

sending a message. In this case, the new samples are ignored and the message is finished as

if a new cloud had never arrived. As explained in Section 4.4, this feature combined with the

self-triggering check described below create difficult partial-cloud or multi-cloud situations.
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Before the FADC Channel can begin transmission, it performs the self-thresholding check

described in Section 1.2.2. This verification is done out of a concern for test integrity. Even

though the mock FADC Channel knows that a cloud has “arrived” because enable was

asserted, in the actual FADC Boards there is no enable trigger. Each Channel has to decide

independently if there is a valid pulse in the stream of data from the ADC, a process called

self-triggering. For this test setup, the digital threshold is set at decimal 22, a value slightly

higher than the ADC’s zero-volt pedestal of 17 (Section 3.3.1). If any of the 12 samples in a

pulse are greater than or equal to 22, the FADC Channel begins sending the 8-bit header

AAh. It proceeds to send the rest of the message (timestamp and 12 samples) to the Channel

Receiver as specified in Section 3.2.2.

4.1.2 Data Processing FPGA Configuration

The baseline configuration of the Data Processing FPGA for these tests is presented here.

Tests described in the later sections modify the following scheme. The minimum number of

channels in a cloud to be considered “valid” by the Centroiding Arbiter’s control logic is

set to 3 (see MIN, Section 3.5.1), which ensures that any cloud in the following tests will be

accepted by the Arbiter. The number of Centroiding Computation blocks per-dimension was

set to 1. The reduced size of the anode means that the massive flux of adjacent clouds that

formed the basis of featuring multiple Centroiding Computation blocks is not relevant here.

The Centroiding Arbiter was modified to include the estimated spatial variance ŵ2
x in the

transmitted data so the performance of the estimator can be evaluated. Because ŵ2
x is U(8.8),

this simply adds two bytes to each dimension’s result, for a total of 7. Because the Coordinate

Aggregator is now streaming results from two separate dimensions, a modification is made to
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its “header” byte (Section 3.6). The most-significant 4 bits convey the number of subsequent

centroid results in the X dimension and the least-significant 4 bits convey the number of

subsequent Y dimension results. The results from the X dimension are loaded first. Because

each dimension only has one Centroiding Computation block (in most tests), the max value

either of these fields will take is 1. It is valuable nevertheless because there is occasionally a

staggering effect where the results from the X and Y dimensions will be completed at different

times. In this situation, the Coordinate Aggregator will load either an X or a Y result, with

the modified header byte conveying to which dimension the result belongs.

4.1.3 Computer Setup

The computer connected to the Ethernet link of Figure 4.1 runs a Wireshark packet capture

application, specifically the tshark command [41]. The application appends the bytes of

each packet into a text file. A Python application, parse ethernet bytes then scans over

the packets, trimming each packet’s header and concatenating the payloads into an array.

The result is a byte sequence conveying the entirety of the Data Processing FPGA’s data

from both dimensions. A second application iterates over the byte sequence and uses the

Coordinate Aggregator’s headers to delineate results. Because each x̂, t̂x, and ŵ2
x estimate

is in a fixed point format with 8 fractional bits, they are interpreted as integers and then

divided by 28 = 256, yielding a Python floating-point approximation of the underlying fixed

point number. The application reads the raw byte data comprising the 6 centroid estimates

(3 for each dimension) and writes each of the 6 floating point results into separate data files.

The files are then processed to compute and visualize the relevant statistics for each test

scenario.
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4.2 Python Implementation of Cloud Model

A Python implementation of the model of the charge cloud’s collision with the cross-strip

anode (Section 2.1) is used to create the data stored in the RAMs of Section 4.1.1. This

section provides a short commentary on the Python implementation of the model and the

means by which the data was loaded into the FADC Board Pulse RAMs and Time RAM.

A Python function, generate pulse arrays, generates the 20 pulses (one for each strip,

stored in the Pulse RAMs) and a start time (in nanoseconds, stored in the Time RAM)

using the above theoretical model. It is called by the test script for each cloud in the test

and takes as inputs the parameters of each cloud: (µx, µy, µt, w
2
xy, w

2
t , σ

2
z). Because the intent

of these tests is not to model the effect of gain variability, the scaling constant A was fixed at

3000, putting the peak voltages of each cloud in the middle of the ADC’s range as desired.

The cross-strip anode parameters (x0, ...x9, y0, ...y9,Wx,Wy, L) were also fixed constants.

When generate pulse arrays is called, it first determines start time, the time when the

Controller asserts enable and therefore the timestamp of the first sample in the pulse

(Section 3.3.1). Crucially, the Controller operates on a 125 MHz clock, meaning it can only

“start” in increments of 8 ns. Intuitively, the generate pulse arrays function should try to

put the pulse center time µt as close to the middle of the 12-sample, 22 nanosecond window

as possible – otherwise pulse content would be lost either before or after the window. It

therefore assigns start time using the modulus operator mod:

start time = µt − (µt mod 8)− 8 (4.1)
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This assigns start time to the multiple of 8 that is between 8 and 16 nanoseconds lower

than µt. This places µt as close to the middle of the window as possible. For example, if

µt = 27:

start time = 27− (27 mod 8)− 8 = 16 ns (4.2)

The pulse vectors VX,i,t & VY,j,t are computed every 2 nanoseconds beginning with start time.

These times are stored in a vector sample times:

sample times = [start time, start time + 2, ..., start time + 22] (4.3)

The generate pulse arrays function then creates the pulse envelope vector pulse vector by

evaluating exp (−(t− µt)2/2w2
t ) at each time in sample times. The function then computes

the strip scaling constants given by the integral of C over each strip’s area. As mentioned

above, separability makes this easier because the X and Y integrals can be computed

independently and their results multiplied together. Computing an integral explicitly in

Python’s Scipy package is needlessly difficult because the integral over a portion of a normal

distribution can be expressed in terms of the error function erf:

∫ b

a

1√
2π

exp

(
−(x− µx)2

2w2
x

)
dx =

1

2

(
1 + erf

(
b− µx√

2wx

))
− 1

2

(
1 + erf

(
a− µx√

2wx

))
(4.4)

=
1

2

(
erf

(
b− µx√

2wx

)
− erf

(
a− µx√

2wx

))
(4.5)

The math package in Python offers a numerical approximation of the error function. It is

used to compute the spatial integrals of Equations 2.2 & 2.3. The 1√
2π

normalizing factor in

the PDF of Equation 4.5 is not necessary in the strip voltage equations because the A scaling

factor is responsible for scaling the charge cloud’s gain to generate appropriately-sized pulses.
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The product of each strip’s X and Y integrals (Equations 2.2 & 2.3) and the voltage scaling

constant A is then applied as a strip-dependent scaling factor on the generic pulse time

envelope pulse vector. This product of strip-dependent and strip-independent components

yields a set of noiseless 12-sample pulse vectors – one for each strip. Finally, white Gaussian

noise Z ∼ N (0, σ2
z) is added to every sample, creating the final pulse vectors of Equations 2.4

& 2.5.

Each of the 12-sample pulse vectors are then rounded to integers and converted to hexadecimal

format. Each pulse vector is appended to a file holding a list of all the pulses on that strip

(20 files total). Similarly, the first sample time start time is loaded into a file holding each

cloud’s first sample time. These files are loaded into the Pulse RAMs and the Time RAM using

the Verilog readmemh command. The Verilog compiler parses their contents and wires up the

correct configuration of the Virtex-6’s onboard RAM. Because each test has thousands of

clouds, the number of bits in a Pulse RAM exceeds 1000 clouds× 12 samples× 8 bits = 96 Kb.

The Virtex-6 RAMs hold 36 Kb [33], so the tool automatically connects multiple individual

RAMs and handles addressing and control signals “beneath the hood.”

4.3 Position Scan Test

This test seeks to answer the question: how does the performance of the Data Processing

FPGA relate to the position of the charge cloud? Answering this question provides two

crucial results. First, if the Data Processing FPGA performs well across the full spectrum of

input positions, it validates both the Centroiding Algorithm in the abstract and the hardware

implementation of it on the FPGA. Second, the results should provide useful information

for the future of the MCP-PMT imaging system. This is because the test setup is a good
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approximation of the physical device, so any interesting trends discovered could inform the

MCP-PMT’s assembly and/or future research projects.

Section 4.3.1 explains the method by which the cloud’s position was varied and defines the

relevant parameters. Section 4.3.2 presents the results and a detailed discussion of the Data

Processing FPGA’s performance in this test.

4.3.1 Test Operation and Parameters

The center position of the charge cloud (µx, µy) was scanned across the X dimension of the

cross-strip anode at discrete positions from the center of the left-most X strip to the center

of the right-most X strip. Starting from the left-most strip, each subsequent µx position is a

fixed interval ∆x farther to the right. At each position, N = 25 clouds were sampled to allow

for computing the statistics described in Section 2.5. The cloud’s center in the y dimension

was fixed in the middle of the anode. The center time of each input cloud µt is ∆t = 1500 ns

after the previous cloud. This well exceeds the 960 ns dead-time incurred when an FADC

Channel sends a message and guarantees that every input cloud will be fully processed.

Table 4.1: Scan Test Parameters.

Parameter Value
A 3000

(µx, µy) (varies, 4.5)
w2
xy 1 strip2

µt varies
w2
t 3 ns2

σ2
z 1 count2

∆x 0.05 strips
N 25 clouds/position
∆t 1500 ns
C 4525 clouds
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All subsequent discussions and tests use a position unit equal to 1 strip pitch – for brevity, 1

“strip.” The bottom left corner of the 10× 10 anode is therefore position (0, 0), the middle

of the anode is position (4.5, 4.5), and the top right corner is position (9, 9). The position

interval ∆x is, in units of strip pitch, 0.05. This test therefore iterates across the range

of positions: [(0, 4.5), (0.05, 4.5), ..., (8.95, 4.5), (9, 4.5)]. Twenty five (N = 25) clouds are

sampled at each position, for a total number of clouds in the test C = (9/.05 + 1) · 25 = 4525

clouds.

4.3.2 Results and Discussion

Because the position of the input cloud is the variable in this test, the performances of the

position-based estimators x̂ and ŵ2
x are presented here. Figure 4.3 presents the bias and

standard deviation of the x̂ estimator as a function of the input cloud position. Figure 4.4

presents the bias and standard deviation of the ŵ2
x estimator as a function of the input cloud

position. See Section 2.5 for definitions of bias and standard deviation.

Edge Effects

Examining Figures 4.3 & 4.4, one immediately notices the large bias in both estimators when

the cloud moves to the edges of the anode, known as “edge effects.” Recall from Table 4.1

that the cloud’s spatial variance w2
xy = 1, and therefore its spatial standard deviation wxy is

also 1. Because the cloud is normally distributed, 95% of the cloud’s charge distribution lies

within ±2 strips from the center of the cloud. As the cloud moves farther to the left from

µx = 2 or farther to the right from µx = 7, more than 5%/2 = 2.5% of the charge content is

“lost” beyond the edges of the anode.
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Figure 4.3: Performance of x̂ estimator in Position Scan Test. The bias B(x̂) and standard
deviation s(x̂) are plotted as a function of µx, the cloud’s X-dimension center position. The
standard deviation is plotted as a shaded region ±s(x̂) above and below the bias. The position
µx is scanned from the left edge of the anode to the right edge with interval ∆x = .05, taking
N = 25 clouds at each position. Regions of large bias occur on the edges of the anode where
the cloud’s charge falls beyond the outermost strip. Regions of moderate bias and standard
deviation occur periodically in the middle of the anode due to any particular FADC Channel
crossing the threshold for self-triggering. Across the middle of the anode, 2 < µx < 7, the
average standard deviation is s̄(x̂) = 0.011 strips (2.8 µm). See Section 4.3.2 for an extended
discussion of these results.
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Figure 4.4: Performance of ŵ2
x estimator in Position Scan Test. The bias B(ŵ2

x) and standard

deviation s(ŵ2
x) are plotted as a function of µx, the cloud’s X dimension center position. The

standard deviation is plotted as a shaded region ±s(ŵ2
x) above and below the bias. The

position is scanned from the left edge of the anode to the right edge with interval ∆x = .05,
taking N = 25 clouds at each position. Each cloud’s spatial variance w2

xy = 1. Large
negative bias occurs on the edge of the anode as the cloud’s charge content is lost beyond

the outermost strip, causing ŵ2
x to underestimate the cloud’s width. Across the middle of

the anode, 2 < µx < 7, the average bias is B̄(ŵ2
x) = −0.016 strips2 and the average standard

deviation is s̄(ŵ2
x) = 0.026 strips2. The periodic oscillations in B(ŵ2

x) are a result of the
FADC Channel’s self-triggering behavior: see Section 4.3.2 for an extended discussion of
these results.
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As the cloud continues moving to the edges, more and more charge content is lost until, at the

edge, only 50% of the cloud remains on the anode’s active area. Each step beyond µx < 2 or

µx > 7 therefore creates more and more inward-trending imbalance in the anode’s perception

of the cloud. This edge effect causes x̂ to systematically underestimate the cloud’s distance

from the center of the anode. This presents as positive bias on the left edge and negative

bias on the right edge. The effect on ŵ2
x is negative on either side, as it is an estimate of w2

xy.

When the cloud moves to the edges, it appears narrower due to the loss of charge beyond the

edge strip.

Interior Performance

The performance of the estimators in the region where the charge cloud falls nearly entirely

on the anode, (2 < µx < 7), is excellent. In this range, the average bias in x̂, B̄(x̂) is −0.002

strips. The average standard deviation of x̂ is s̄(x̂) = 0.011 strips. Across the same range,

the average bias in ŵ2
x is B̄(ŵ2

x) = −0.016 strips2. The average standard deviation in ŵ2
x is

s̄(ŵ2
x) = 0.026 strips2. These values are presented in Table 4.2.

Table 4.2: Scan Test Results for (2 < µx < 7).

Estimator Average Bias B̄ Average Standard Dev s̄
x̂ −0.002 strips 0.011 strips

ŵ2
x −0.016 strips2 0.026 strips2

Image Resolution

To determine the image resolution implied by this test, assume that the full 50× 50 anode is

used and achieves similar results. We assume also that clouds with positions in the outer two

strips on both sides of both dimensions are discarded due to the edge effects – although in
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the future they could be corrected (Chapter 5). The average value of s(x̂) across the retained

interior region, (2 < µx < 47), is s̄(x̂) = 0.011 strips. Choosing a pixel width of 2s̄ = 0.022,

a single dimension of the image has p = 45 strips × 45 pixels/strip = 2025 pixels. The

image resolution is therefore p2 = 4.1 megapixels, achieving the desired megapixel resolution

mentioned in Chapter 1. Although the parameters of actual clouds in the MCP may differ

from those in Table 4.1, this is a conservative value (due to discarding the outer strips) that

should be within an order of magnitude of the performance achieved in real operation.

Bias Oscillation

The spatial variance estimate ŵ2
x also performs well, but because it is an estimate of a second

moment it is more sensitive and therefore has a more exaggerated bias oscillation. Examining

the oscillation in B(ŵ2
x) helps explain the less-obvious oscillation in B(x̂): put simply, they

are both consequences of the self-triggering functionality of the FADC Channels. If a Channel

has very little signal content in its pulse – specifically if it never reaches the threshold of

decimal 22 – it won’t self-trigger and the Data Processing FPGA will never see the Channel’s

pulse. This means pulses on the edge of the cloud aren’t included in the computation.

The pattern of oscillation can be understood by examining the effect of perturbations to

the left or the right of a charge cloud centered at µx = 4.5. The bias in both estimators is

very close to 0 at µx = 4.5 because the cloud is symmetrically positioned on the strips. By

examining the pulse data, Channels 2–7 are “on” – meaning their pulse exceeds the threshold

and they send a message – at this position. As the cloud moves to the right towards µx = 5,

Channel 2’s pulse height begins to drop, first to the level of, and then below, the threshold of

22. At µx = 5, Channel 2 never triggers and the “cloud” only consists of Channels 3–7. This
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loss of a strip causes a systematic negative bias in ŵ2
x at µx = 5 that exceeds the positive

bias at µx = 4.5.

The effect of the strip loss on B(x̂) is much less pronounced, and can be better understood

in terms of symmetry. At µx = 4.5, the cloud is symmetric with the strips and x̂ is unbiased.

Closely examining the region around µx = 4.5 in the inset of Figure 4.3, it is clear that a

slight move to the right causes the bias to move slightly negative – an underestimation of the

cloud’s distance from the center of the anode. Moving further to the right, Channel 2 begins

to turn off, erasing the leftward bias that is inherent to the algorithm and causing a larger

rightward asymmetry. This leads to a positive B(x̂). By µx = 5, however, the loss of Channel

2 is balanced by the fact that Channel 8 still hasn’t turned on, the cloud is symmetrically

positioned on the anode, and x̂ is unbiased. The region 4 < µx < 4.5 has exactly the opposite

trend, and the pattern of 4 < µx < 5 is repeated across the other 4 interior strips.

Finally, at any position where a Channel “turns on” or “turns off,” there’s a corresponding

increase in the standard deviation of both estimators. This is because when the pulse height

is equal to the threshold, 22, the additive readout noise with standard deviation σz = 1 is

solely responsible for whether the pulse will be included or excluded in the Data Processing

FPGA’s estimates. This creates a roughly bimodal distribution in the error which is not

perfectly represented in the plots (which show a ±s range around the mean).

In summary, this test demonstrates both the Data Processing FPGA’s excellent performance

in the central region of the anode – achieving an implied 4.1 megapixel resolution and

satisfactory performance in ŵ2
x – and the need for investigations into a correction for the high

bias induced by edge effects.
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4.4 Image Test

This test evaluates the system-level performance of the Data Processing FPGA by providing

a more heterogeneous stimulus than the previous test. This comes via an image of the

Washington University in St. Louis monogram, Figure 4.5. The position of each pixel in

the logo is used as the (µx, µy) center coordinate of a single input electron cloud. This

ensures that the recovered image will visually convey the performance of the design – an

unsatisfactory photon efficiency would lead to a sparse, unrecognizable version of the input

image.

Figure 4.5: Washington University in St. Louis Monogram. In this test, a downsampled
version (Figure 4.7) of this 1.2 megapixel monogram [42] is provided as stimulus to the Data
Processing FPGA.

The time of arrival for each pixel’s cloud is randomly assigned subdividing a total acquisition

window into N events. This creates a continuous stream of input clouds with widely varying

temporal spacing. In the previous test, care was taken to ensure that each input cloud was

processed so that an identical number of samples could be taken at each position. For this
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test, the goal is to challenge the system with a stochastic, complex stimulus that more closely

resembles the light generated by an actual biological sample (e.g., the spontaneous emission

of a collection of fluorophores).

Section 4.4.1 explains the method by which the cloud’s position was varied and defines the

relevant parameters. Section 4.4.2 presents the results and a detailed discussion of the Data

Processing FPGA’s performance in this test.

4.4.1 Test Operation and Parameters

The Image Test provides a version of the Washington University in St. Louis monogram

(Figure 4.5) as stimulus to the Data Processing FPGA. A Python application stores the

monogram into an array using Numpy’s asarray method [43]. It then downsamples the

monogram by taking every 8’th row and every 8’th column of the original array, reducing the

new array size to 138 × 138. This reduces the number of “black” pixels in the array, and

therefore clouds in the test, to C = 4198 – an amount that can be stored in the Virtex-6’s

onboard RAM. The original image size featured so many pixels that the combined size of the

Pulse RAMs and Time RAM far exceeded the Virtex-6’s capacity of 14,976 Kb [33].

Starting from the top-left corner of the image, each black pixel in the downsampled array is

translated into a (µx, µy) position for a single input cloud and stored in a list. This position is

assigned such that the pixels stay almost completely within the low-bias region in the middle

of the anode, 2 < µx < 7 and 2 < µy < 7. Because of whitespace on the edge of the monogram

image, the required scaling in each dimension of the image is s = 70% of the width of the

anode, so that the total area covered by the image is s2 = 49%. Scaling the 138×138 array to

70% of the anode in each dimension results in a pixel pitch of (9 ·0.7)/138 = 0.046 strips/pixel
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or 11.6 µm/pixel. The list of (µx, µy) positions is then shuffled to randomize the pattern of

cloud arrivals. This ensures that sequential clouds will arrive in diverse spatial arrangements:

practically on top of each other, separated but sharing significant overlap, and well separated.

Next, the application assigns a center time µt to each cloud. The fundamental parameter

used for this step is the desired average temporal spacing between clouds, ∆t = 1500 ns.

Recall that a cloud’s local deadtime during which each FADC Channel transmits the pulse

message is 960 ns. Recall also from Section 4.3.2 that each cloud with w2
xy = 1 and A = 3000

causes 5 or 6 FADC Channels in each dimension to trigger and send a message. Because

the test anode is only 10 strips wide, each cloud will cause the majority of the Channels

to trigger and, for the next ∼ 960 ns, any arriving clouds will be either entirely or partially

dropped. This motivates setting ∆t significantly above 960 ns to avoid loss of detection. Each

of the 4198 µt center times is therefore a sample of the uniform distribution U(0, N ·∆t) =

U(0, 4198 · 1500) = U(0, 6297000).

The list of µt center times is then sorted smallest-first and associated with the list of (µx, µy)

positions. The resultant list of (µx, µy, µt) cloud centers is passed to the Python function

generate pulse arrays of Section 4.2, which generates the pulse data and start time

for each cloud. A logistical check is then performed on the cloud data: any cloud with a

start time value which is within 24 ns of the previous cloud’s start time must be removed.

This is because it takes 3 clocks for the Controller of Figure 4.2 to check the output of the

Time RAM and conditionally enable the FADC Channels. Each clock is 8 ns, so this process

takes 24 ns. If a new cloud was scheduled to start during that time, it will be “missed” by

the Controller and the test will essentially hang – the Controller’s timer will have already

passed the next specified start time. This is merely a logistical correction and does not
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effect the test results, as the dropped cloud would have been rejected by the busy FADC

Channels even if it was included.

The completed lists of start times and pulse data are then written into files and, via the

Xilinx tools, loaded into the Virtex-6 RAMs as described in Section 4.2. The parameters

used above are summarized in Table 4.3.

Table 4.3: Image Test Parameters.

Parameter Value
A 3000

(µx, µy) (varies, varies)
w2
xy 1 strip2

µt varies
w2
t 3 ns2

σ2
z 1 count2

∆t 1500 ns
C 4198 clouds

4.4.2 Results and Discussion

The following discussion first examines the stability of the Data Processing FPGA in this

test by examining the temporal spacing, or time deltas, between the input and recovered

clouds. It then moves into a more holistic discussion of the performance by examining the

reconstructed image and presenting statistics of the estimators.

Time Deltas

The ability of the Data Processing FPGA to handle the ∆t = 1500 ns average input cloud

rate can be directly observed by plotting histograms of the time deltas between consecutive
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clouds in both the input and recovered data sets as in Figure 4.6. The histogram follows an

exponential distribution and is thus linear when plotted on a log scale.
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Figure 4.6: Time Deltas in Image Test. The center times µt for each input cloud are samples
from a uniform distribution. The histogram of the time deltas between individual clouds
follows an exponential distribution and is thus linear when plotted on a log scale. The Data
Processing FPGA recovers almost no clouds with a delta below 1000 ns. This is a result
of the 960 ns FADC Channel message duration – any clouds that arrive while a Channel is
sending a message are dropped. The rejection of each short delta cloud results in longer
deltas, hence the heightened bin heights on the far right side of the spectrum.

The most obvious feature of Figure 4.6 is that almost all input clouds with a ∆t less than

1000 ns from the previous cloud are not recovered by the Data Processing FPGA. This is due

to the FADC Channel’s 960 ns message length and is expected. The ∼ 10 remaining deltas

in the 500-1000 bin were therefore just over the 960 ns minimum.

The linearity of the recovered histogram beyond the minimum delta is another key feature,

as any significant variation from a linear trend indicates an artificial “dead space” that would
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almost certainly be the result of a flaw in the Data Processing FPGA’s logic. The absence of

any gaps in the recovered histogram is therefore validation that the various pieces of control

logic and the time-wrapping scheme chosen were capable of handling the stochastic stimulus

provided in this test.

The presence of taller bins in the recovered histogram beyond ∆t = 2000 and shorter bins in

the range 1000 < ∆t < 2000 is not an indication of system malfunction. Rather, they are a

natural consequence of the dropping of clouds with ∆t < 960 ns. For example, assume the

minimum ∆t is 3 for brevity. Any clouds with ∆t < 3 ns will be dropped. Then, Table 4.4

gives an example of a situation in which an acceptable delta would be “lost” and a longer

delta would be “created” by the rejection of unrecoverable short-delta clouds.

Table 4.4: Effect of cloud detection loss on measured time deltas for 5 example clouds

Input Cloud Times 1 4 5 6 10
Input Deltas 3 1 1 4

µ̂t 1 4 10
Recovered Deltas 3 6

The rejection of clouds at times 5 ns and 6 ns results in the lengthening of the final delta

from 4 ns to 6 ns. A histogram of this data would therefore be shifted to the right, adding

height to bins with higher ∆t – just as observed on a large scale in Figure 4.6. Although the

final input delta of 4 ns was above the minimum, it was absorbed into a longer delta – this

explains the slightly shorter bins in the range 1000 < ∆t < 2000.

Crucially, the sum of all deltas in both the input and recovered sets of Table 4.4 is the same:

9 ns. Observing the sums of the deltas of Figure 4.6: the input set sums to 6 293 081 ns, and

the recovered set sums to 6 292 811 ns. The difference of 270 ns is easily explained: the last

cloud in the test is 270 ns after the second-to-last and is therefore dropped. This verifies that
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the Data Processing FPGA continued functioning exactly as expected for the entire 6.29 ms

test, demonstrating complete system stability that is essential for extended imaging sessions.

Image Comparison

A side-by-side view of the input image and the recovered image is given in Figure 4.7. The

Data Processing FPGA recovers 2288 of the 4198 input clouds for a photon detection efficiency

of 54.5%. This is acceptable and even expected, as 46.5% of the input clouds have a time delta

less than the FADC’s message length of 960 ns. Practically, this has the effect of reducing the

definition of delicate features in the input image, thereby effectively decreasing the resolution

of the reconstructed image. For example, the recovered inset image of Figure 4.7 follows the

general trend of the input but appears much less defined.

This is expected when considering that almost half of the photons in the input image were

lost due to the dead time of the FADC Channels. This blurring is also visible by zooming

in on the intersection of the “T” and “L”. The white space between the serif of the T and

the middle section of the L is, due to the specific arrangement of errors in the position

determination, completely lost. There is only a single pixel of separation between these

two shapes, meaning that the grid size implied by the combination of downsampling and

scaling above (0.046 strips/pixel = 11.6 µm/pixel) was approximately the resolution limit of

the system!

The radius of each of the green circles on the recovered image is the localization precision of

the system across the recovered clouds; that is, the worse of the two standard deviations of

the errors in x̂ and ŷ. These two values and the other characteristics of the spatial estimators

are presented in Table 4.5. Table 4.5 uses slightly different terminology than the Position
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Figure 4.7: Input and Recovered Images. The input image (in red) is a downsampled version
of Figure 4.5. The pitch of the input pixels is 0.046 strips/pixel, or 11.6 µm/pixel. The exact
center of each pixel is provided as the center position (µx, µy) of a single input cloud. Each
input cloud has a spatial standard deviation wxy = 1 strip. The Data Processing FPGA
recovers 54.5% of the clouds in the input image. The insets show the adverse effect that this
cloud loss has on the recovery of fine details in the input. Each recovered position is plotted
as a circle with radius equal to s(ŷ) = .016 strips (4.1 µm). See Section 4.4.2 for a detailed
discussion of these results.

99



Scan Test’s Table 4.2. Here, the bias B is computed as the average of the error at each

recovered cloud location. The standard deviation of the error s(e) is simply the application

of Equation 2.18 to the errors at each recovered cloud location.

Table 4.5: Image Test Spatial Results.

Estimator Bias B Standard Deviation of Errors s(e)
x̂ −0.001 strips 0.014 strips

ŵ2
x −0.016 strips2 0.04 strips2

ŷ −0.003 strips 0.016 strips

ŵ2
y −0.006 strips2 0.042 strips2

The performance of the position estimates x̂ and ŷ was excellent, with the Y dimension’s

estimates faring only slightly worse than the X. The exposed area of the Y dimension of

the cross strip anode is slightly smaller than the X dimension’s, measurably decreasing SNR

and resulting in slightly worse performance. Figure 4.3 suggests that the bias in the middle

section of the anode is strip-periodic and averages to zero, and these results are a significant

2-dimensional confirmation that there are no cross-correlated biases in the position centroid

algorithm – both position estimators have essentially zero average bias.

The cloud spatial variance (or width) estimates ŵ2
x and ŵ2

y also performed well, with a

surprisingly low standard deviation of errors of 0.04 strips2. The bias across both dimensions

also closely matched the results in Table 4.2. These results must be given a caveat: they

were achieved by rejecting clouds with outlying variances in a post-processing Python

application. Recall that in the future, the Data Processing FPGA will drop clouds that have

a variance outside of a parameterized range. The primary rationale for this feature is to

reject simultaneous, adjacent cloud arrivals that appear (to the Data Processing FPGAs) to

be a single cloud.
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Although the test setup used here is not capable of providing two simultaneous clouds to

the FADC Channels, combinations of clouds and subsets of clouds are, in fact, presented to

the Data Processing FPGA in this test: recall that the FADC Channels repeatedly send an

8-bit framing word 8Ch when not transmitting a message, and can only begin transmitting a

message after completing an entire 8-bit framing word. Because the link speed is 125 Mbps,

each framing word takes 64 ns. Therefore, there is up to a 64 ns delay from from the time the

Controller asserts enable to when the FADC Channel actually begins transmission.

To see why this allows for combinations of clouds to be presented as a single cloud, consider

the following: assume that a cloud arrives and triggers Channels 1-5, but each Channel must

wait 64 ns before beginning a new message because they just began a new framing word. A

second cloud arrives 32 ns later and causes a trigger on Channels 4-8, but only Channels 6-8

are “empty” because of the previous cloud. Channels 6-8 therefore wait 32 ns and then begin

transmission. Thus, Channels 1-8 all begin transmission simultaneously and are processed

by the Data Processing FPGA as a single cloud!

An even more common situation occurs when only a subset of a cloud’s pulses are transmitted.

The arrangement of clouds that cause this can be seen by assuming that the start time

of the second cloud of the previous paragraph is now 800 ns later than the first. Channels

6-8 immediately send their recovered pulses, but Channels 4 & 5 are still busy with the

first message. Because 3 is the parameterized minimum number of channels in a cloud (MIN

of Section 3.5.1), the “cloud” consisting of Channels 6-8 is accepted and assigned to the

Centroiding Computation block.

The case of simultaneous transmissions of separate, overlapping clouds results in a width

far exceeding the normal range. A subset transmission, on the other hand, results in width

estimates that are far below the normal range. Because the second cloud could’ve arrived
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at any point during the transmission of the first, the subset situation is indeed much more

common, as shown in Figure 4.8.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
Width Estimate, (strips)2

100

101

102

Nu
m

be
r

w2
x

w2
y

Figure 4.8: Image Test Width Estimates. The presence of outliers in the recovered width
estimates in both dimensions motivates the rejection of clouds with a width estimate outside
of the range [0.9, 1.1]. These outliers are the result of the combinations of clouds or subsets
of clouds being presented to the Data Processing FPGA as a single cloud. Since the Data
Processing FPGA is currently not configured to reject clouds on the basis of variance, the
clouds corresponding to the outliers in this histogram were trimmed in post-processing.

The variance estimates on either extreme of Figure 4.8 are due to erroneous transmission of

either combinations of clouds or subsets of clouds, but in either case they result in massive

position errors. If these “clouds” were included, the recovered image of Figure 4.7 would have

speckled erroneous clouds scattered throughout its whitespace and the standard deviations of

x̂ and ŷ in Table 4.5 drastically increase. A software application therefore parses the list of

recovered estimates and removes clouds which have a width estimate outside of the range
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[0.9, 1.1] in either dimension. This application therefore accomplishes the future function of

the variance discrimination in state “Variance” of Figure 3.12.

Finally, the performance of the temporal estimators is presented in Table 4.6.

Table 4.6: Image Test Temporal Results.

Estimator Bias B Standard Deviation of Errors s(e)

t̂x −25.5 ps 59.4 ps

t̂y −26.4 ps 61.9 ps

t̂ = (t̂x + t̂y)/2 −25.9 ps 55.9 ps

The temporal estimates of each individual dimension have a lower precision than their

combined average. This combination achieves a precision of s = 55.9 ps. The ADC’s sampling

rate is 500 MHz, meaning that the temporal precision is 2 ns/55.9 ps = 35.8 times smaller

than the sampling rate! This result is impressive considering the somewhat artificial means

by which the test software and Mock FADC Crate approximated the function of the real

MCP-PMT system. For example, the software model of Section 4.2 attempted to place the

center of the pulse in the middle of the 22 ns “window”, but was constrained to moving the

window in chunks of 8 ns. In the real system, the FADC Channel FPGA can be far more

intelligent and place the detected peak time in the middle of the 6’th and 7’th samples. This

would drastically reduce asymmetry in the time sampling, lowering the bias and standard

deviation of the t̂ estimator.

The excellent performance of all three estimators in both dimensions, even under the chal-

lenging stochastic stimulus provided in this test, is a resounding validation of every step

of the Data Processing FPGA. Essential to the high performance of the estimators was

the proper handling of the complexities of math on an FPGA including: a diverse array of

fixed point numbers, very wide operands in both MAC blocks and Divider modules, 3-stage
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multipliers, etc. On the other hand, the high-level design choices – like adding a minimum

number of channels per cloud, adding result headers within the Ethernet packets, and using

the programmable empty flags on the Xilinx FIFOs – led to the stability of the design when

facing such a complex set of inputs.
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Chapter 5

Outlook

The Data Processing FPGA has now been fully validated as a functioning component within

a larger imaging system. By creating a test environment featuring a mix of software and

hardware components that imitates that unfinished MCP-PMT’s operation, a massive amount

of debugging and iterative improvements have already been accomplished. This leaves the

future open to perfecting the recipe of parameters, control logic, and software visualization

that will comprise the final product. On a most basic level, the performance of the Data

Processing FPGA (and the FADC Channel FPGAs) depends on a full characterization of the

MCP-PMT to determine parameters like the minimum number of channels in a cloud, the

acceptable spread of spatial variances, the pulse width, the noise levels, and the self-triggering

threshold.

With the physical system characterized, the FADC Channel FPGA design and the Data

Processing FPGA will have to be optimized to match the physical system. For example, if

the longest pulse from a cloud is no more than 15 ns, the serial protocol should be revised to

include only 7 or 8 samples, and the FADC Channel FPGA should place the pulse peak as

close to the center as possible. Further optimizations could include a variable-length message

– this would reduce the deadtime associated with a cloud’s edge channels and allow the system

to capture more spatially adjacent but temporally separated clouds. Additionally, the clock
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domains of each of the FADC Boards will need to be synchronized, if they aren’t already –

the exact phase relationship between the 125 MHz clock on each FADC board is suspected

to be synchronous due to trace-length matching, but this hasn’t been verified.

A minor error in the Centroiding Algorithm was discovered in the final week of the work

of this thesis involving the handling of the pedestal subtraction in the Channel Receiver,

Section 3.3. By subtracting the pedestal and taking the floor of each sample before the

accumulation/MAC, the zero-mean Gaussian noise on the pedestal was essentially translated

to a single-sided, positive mean distribution. Although the effects of this error have not been

characterized, it is feasible that the error may induce a bias in the Channel Computation

block’s estimate of the pulse center time that would, of course, propagate to the Centroiding

Computation block’s t̂x computation. To solve this problem, the 12 unmodified samples from

the FADC Channel should first be accumulated into sum(v) and MAC’d into v · t. Then,

the accumulation of the pedestal values, 12 ∗ 17 = 204, and the MAC of the pedestal values,

0 ∗ 17 + 2 ∗ 17 + ...+ 22 ∗ 17 = 2244, should be subtracted from sum(v) and v · t, respectively.

This fix allows the negative side of the noise distribution on the pedestal to be included in

the computation and will, ultimately, reduce the bias induced by the asymmetric sampling of

the pulse by the FADC Crate.

The bias induced by edge effects on the MCP-PMT’s cross-strip anode should be characterized

and loaded into memory on the final Data Processing FPGA. The Centroiding Computation

block can then make corrections for this bias as soon as the estimate x̂ is computed. Further-

more, if the operational form of the anode features a more exaggerated bias oscillation across

the middle strips, a full-field bias correction function should be stored into memory. Each x̂

result could therefore be used as an address into a RAM which stores the correction factor

for each of the 49 strips · 256 positions/strip = 12544 resolvable positions.
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Additional work is also needed to expand the physical interface of the Data Processing FPGA

to 50 channels. The ML605 board has sufficient I/O for 50 channels via the XM105 FMC

Cards, but the physical form factor of the board is not designed to function as part of a

backplane for an imaging system. It may be necessary to design a custom layout, in which

case a more modern Virtex-7 or Virtex-Ultrascale FPGA should be purchased to allow for

bigger designs and obtain access to the next generation Xilinx tool – Vivado – which is much

more user-friendly than its predecessor.

Finally, a full-stack software suite is needed for use by the researchers who will ultimately

carry out experiments with the MCP-PMT camera. Although the tshark command line

application used for these tests was reliable and intuitive, a more fully-featured network

application should be written to parse the Ethernet bytes on the wire into data as fast as

possible. Additionally, the visualization software that generated the figures used in this thesis

will need to be replaced by an expansive GUI with numerous industry-standard options for

viewing single-photon fluorescence images.

The new software network application should be paired with a more optimized EMAC

Controller on the FPGA which performs load-balancing to minimize the bandwidth-cost of

each Ethernet packet’s header. This updated EMAC Controller could also feature an “RX”

component which receives messages from the computer, allowing for real-time reconfiguration

of system parameters and queries for the status of various FIFOs or computational blocks in

the system.

The building blocks of hardware computation used in this project – pipelined multiply-and-

accumulators and signed, modular, non-restoring dividers – were designed with minimal

emphasis on pure performance. The focus was instead on modularity and simplicity, as

the most significant challenge of this thesis was architecting the system. The ”secret sauce”

107



of achieving greater performance on FPGA-based systems is pipelining the datapath – for

example, removing the finite state machine in the Centroiding Computation block and relying

strictly on parameterized delay lines to control the computation. This reduces routing

complexity, creating potential to clock the design at much higher frequencies. Unfortunately,

it also has the consequence of making it more difficult for anyone but the designer to modify

the code. As the underlying MCP-PMT system wasn’t completed by the end of the work of

this thesis and many questions regarding its characteristics remain unanswered, the exciting

task of fully optimizing the Data Processing FPGA is left to the engineers and scientists who

inherit the codebase.

Finally – and most excitingly to the author – the “plug-and-play” infrastructure of the

Centroiding Computation blocks opens the door for research into a heterogenous, smart-

compute system. Research is currently underway to develop an overparameterized gradient-

descent optimization algorithm that minimizes a loss function based on the forward model

of the MCP-PMT camera. This algorithm would be able to resolve multiple simultaneous

cloud collisions – something the current center-of-gravity algorithm is simply not capable

of. A smart compute platform could dynamically assign cloud data to a diverse array of

computational solutions. The potential for bidirectional communication with the computer

via the Gigabit Ethernet link means the parameters of these more complicated algorithms

could be tuned by the researcher in real time. Researchers could even implement their own

algorithms in Verilog and add them to the system – they simply have to obey the interface

specifications of the Centroiding Computation block.

In short – the potential for new research on the MCP-PMT system is still very large. The

results of the work of this thesis has only served to excite more curiosity about the performance

of the eventual system, and various types of expertise will be necessary to optimize the
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physical MCP-PMT, the electronics of the FADC Crate and Data Processing FPGAs, and

the network and software applications on the host computer.
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