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Abstract 

First-principles investigation of doping and alloying of β-Ga2O3 

By 

Benjamin Ryan Tattersfield 

Master of Science in Materials Science and Engineering 

Washington University in St. Louis, 2020 

Research Advisor: Professor Rohan Mishra 

 

β-Ga2O3 is an emergent semiconductor for power electronics applications. It has a 

wide band gap of 4.8 eV and is transparent on the whole spectrum of visible light up to 

deep ultraviolet. It has a high Baliga figure of merit (BFOM) — a weighted numerical 

combination of the dielectric constant, charge carrier mobility, and critical breakdown 

field —, which is commonly used for a quantitative comparison of semiconductors for 

high-current operation and power switching applications. β-Ga2O3 can be grown as thin 

films or as large single crystals by melt growth-techniques, which is important for 

scalable manufacturing. However, β-Ga2O3 suffers from a lack of p-type dopants and a 

low thermal conductivity. Presently, all applications are based on n-type β-Ga2O3; the 

introduction of p-type β-Ga2O3 would enable bipolar power devices. Additionally, high-

power switching results in elevated temperatures where heat retention can impede 

electronic performance. 

The objective of this thesis is to investigate, using first-principles density-

functional-theory calculations: (1) the efficiency of doping with Bi to raise the valence 

band of β-Ga2O3 to a level at which p-type doping is achievable, and (2) the possibility of 



v 

improving the thermal properties of β-Ga2O3 by alloying with the lightest Group-13 

cation, B. 

We find that doping with Bi creates mid-gap states derived from the Bi 6s 

electrons at similar energy level to candidate acceptors through an anti-bonding 

hybridization of the Bi lone pair with the O 2p states. The associated states are more 

dispersed than the pristine valence band, as they derive from the delocalized s-states of Bi 

rather than the p-states of highly electronegative O, which dominate the valence band. 

Our calculations indicate that these intermediate states are natively filled, and at an 

appropriate energy level to use a co-dopant like Mg, N, or even native Ga vacancies as p-

type dopants.  

We explored several pathways to include B as an alloy in β-Ga2O3, including the 

high-entropy alloy (HEA) approach and a variety of ordered binary and ternary alloys. 

Despite these efforts, we do not find a stable alloy, since the small B atoms reject the 

octahedral and tetrahedral coordination of the cations in β-Ga2O3 in favor of a flat 

triangular coordination, as observed in B2O3. We conclude that B is likely insoluble in β-

Ga2O3 at concentrations high enough to substantively improve its thermal conductivity. 
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Chapter 1: Introduction  

Semiconductors are among the most important materials in the modern era, as 

they are the operative materials in electronics. These materials enable logic electronics 

like p-n junctions and transistors, which drive the computing era. Behaviorally, what 

makes these materials work this way is the existence of a band gap between electron 

valence energy levels and the conduction energy levels, which the material’s electrons 

can only occupy under excitations. In contrast to metals, which have continuous 

electronic energy levels that allow for ready conduction of electrons, this band gap must 

be overcome with an adequate input of energy bias in order for the valence electrons to 

make the leap to the conduction bands. This phenomenon has been exploited to world-

changing effect, enabling the modern computing era. 

Si is the most prevalent semiconductor and is used to make a wide variety of 

devices on an ever-shrinking length scale. As Si-based devices approach the lowest limits 

of resolution, research has shifted focus to more diverse materials with different property 

combinations. Among these alternate materials are wide-gap semiconductors, which are 

characterized by a band gap wider than 2 eV (bulk Si has a band gap of around 1.1eV 

[1]). Wide-gap semiconductors are used for high-power and high-frequency electronics, 

among other applications. This type of material offers a wider range of desirable 

properties for devices than Si alone. In our work, we focus on β-Ga2O3. This material had 

been considered as a candidate material for Transparent Conducting Oxide (TCO) 

applications — materials which combine conductive properties with transparency to 

visual light, a combination which is not possible with opaque Si or with non-conducting 

amorphous glasses. However, focus has since shifted to using β-Ga2O3 for high-power 
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electronics, where it shows great promise. This thesis reports our use of computational 

materials science techniques to try to predict mechanisms by which to expand on the 

present set of demonstrated properties of β-Ga2O3. 

Chapter 2 of this thesis gives an overview of the computational materials science 

methods which we use to obtain our results. This begins with the first-principles atomistic 

modeling method known as Density Functional Theory (DFT), which is derived from 

fundamental quantum mechanical equations. I briefly discuss the derivation of the theory 

and list its specific advantages and shortcomings. The other principle method used in this 

thesis is Special Quasirandom Structures (SQS), which are a random dispersion of atoms 

that simulates the local disorder of a real alloy. These are used to randomly disperse the 

atoms in our models, so that we can expediently form structures that give representative 

results for the actual randomness of a real material. 

One of the limits to usage of β-Ga2O3 arises from the deep level of valence bands 

comprised of the highly electronegative O-atoms, which has confounded efforts to dope 

β-Ga2O3 p-type. Conclusive demonstration of p-type doping would allow β-Ga2O3 

homostructural p-n junctions, enabling use of the material for the same types of logic 

electronics that are the foundation of the computer era. On a more general note, the deep 

level of O bands has hindered the development of p-type doping strategies for other wide-

gap oxide semiconductors beyond β-Ga2O3. Any successful strategy, properly 

understood, could provide avenues to p-type doping for other important functional 

oxides. Chapter 3 reports our study of enabling p-type doping through elevation of the 

valence band by doping with Bi. 
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The other chief obstacle for the widespread use of β-Ga2O3 is its poor thermal 

conductivity. Heat retention has negative implications for device functionality, 

particularly in high-power or high-frequency operation. In semiconductors, the chief 

conductors of heat are structural lattice phonons; the retention of heat is associated with a 

large number of phonon branches, and the low symmetry of β-Ga2O3 correlates to a large 

number of phonon branches. A possible way to address this issue is to lower the mean 

atomic mass of the elements in the compound, which reduces the average inertial 

resistance of the atoms in the crystal to lattice vibrations. Chapter 4 presents our study of 

alloying with lighter Group-13 cations to improve the thermal properties of β-Ga2O3. 

Chapter 5 compiles our findings and discusses the opportunities associated with 

them. It includes some speculation on what steps could be taken in future to improve on 

the work reported in the previous two chapters. 
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Chapter 2: Methods 

Density-Functional Theory Calculations 

All of the results in this thesis are based on Density-Functional Theory (DFT) 

[2,3] calculations performed using the Vienna Ab-Initio Simulation Package (VASP) 

[4,5]. This section provides a brief description of the underlying physics of DFT and the 

basics of its implementation. We begin with the mathematical description of an electron, 

then discuss the derivation of DFT principles from that first-principles description. The 

implementation of DFT is given some background, with particular focus on the 

simplifying assumptions made in order to elucidate the subtleties of the method. This 

section is meant as a conceptual review, rather than a restatement of DFT proofs. As 

such, most of the underlying mathematical expressions are excluded, as they are not of 

particular importance to understanding our results. Special attention is paid to explaining 

the methods for which reporting of the calculation details is necessary for reproduction of 

the results. 

Quantum Mechanical Equations 

An electron exhibits properties of both a wave and a particle. It can be diffracted 

like electromagnetic radiation [6-8], but it also has measurable mass (corpuscular 

property) [9]. These two behaviors were unreconcilable until early in the 20th century, 

when the wave-particle duality was proposed by Louis de Broglie [10]. Erwin 

Schrödinger captured the wave-like nature of non-relativistic electrons in his now-famous 

partial differential equation: 

𝑖ℏ
d

d𝑡
Ψ(𝒓, 𝑡) = 𝐻̂Ψ(𝒓, 𝑡). (1) 
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here, i and ℏ are the imaginary constant and reduced Planck constant respectively, 𝐻̂ is a 

differential operator corresponding to energy known as a Hamiltonian, and Ψ is the 

wavefunction that accounts for the wave-like nature of the electron [11]. The time-

independent version of this equation is an eigenvalue problem expressed as: 

𝐻̂𝜓(𝒓) = 𝐸𝜓(𝒓) (2) 

where 𝜓 and E are an eigenvector-and-eigenvalue solution, respectively, representing a 

stationary state and its energy. The significance of this time-independent version is that 

any wavefunction can be decomposed into these wave-like stationary states, thus 

enabling even a “frozen” electron to mathematically retain its wave-like nature.  

The wavefunction approach is not limited to electrons, and can be applied to any 

system of non-relativistic particles. The key to applying the Schrödinger equation to a 

system is finding the classical energy of a system as a function of component positions 

and momenta, 𝐻(𝒓, 𝒑), and making the following replacements to the classical 

momentum equation to get the Hamiltonian operator, 𝐻̂: 

𝒓 → 𝒓, 𝒑 → 𝑖ℏ𝛁 (3) 

As an example, the transformation from classical-momentum form to quantum-

Hamiltonian form is made for a simple harmonic oscillator to a free electron below:  

1

2𝑚
𝒑2 → −

ℏ2

2𝑚
𝛁2 (4) 

A more complete description of the particle momentum would be given like so: 

1

2𝑚
𝒑2 +

1

2
𝑚𝜔2𝒓2 → −

ℏ2

2𝑚
𝛁2 +

1

2
𝑚𝜔2𝒓2 (5) 
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Although somewhat more complicated, this tranformation can be performed to 

describe a real system of atoms by treating electrons and nuclei seperately and 

superimposing the contribution of all system bodies: 

[
−ℏ2

2𝑚
∑ ∇𝑖

2

𝑁

𝑖=1

+ ∑ 𝑉(𝒓𝒊)

𝑁

𝑖=1

+ ∑ ∑ 𝑈(𝒓𝒊, 𝒓𝒋)

𝑁

𝑗<𝑖

𝑁

𝑖=1

] 𝜓(𝒓) = 𝐸𝜓(𝒓) (6) 

where the terms of the Hamiltonian are the kinetic energy of each electron, the interaction 

energy between each electron and all of the atomic nuclei, and the interaction energy 

between all of the electrons in the system with each other, respectively [12]. The sums 

are over all 𝑁 electrons, with the double sum modified to avoid double counting. While 

the indexed variable 𝒓𝒊  and 𝒓𝒋 refer to positions of individual electrons, 𝒓 is a 3𝑁-

dimensional vector containing the position of every electron; therefore, 𝜓(𝒓) is a many-

electron wavefunction, which describes all the electons simulteneously. What rapidly 

becomes apparent is that the dimensionality of the problem and the coupling between 

every electron render the equation is analytically unsolvable.  

Incidentally, the wavefunction cannot be directly observed. What is measurable 

through repeated experiment, however, is the probability distribution function (PDF) of a 

particle’s position. Mathematically, this is described by a complex conjugate (expressed 

as 𝜓∗(𝒓)) multiplication with the wavefunction. Another interpretation of this PDF is as 

an electron density function representing the spatially smeared “electron cloud”:  

𝑛(𝒓) = 𝜓∗(𝒓)𝜓(𝒓) (7) 

In the context of a many-body electron wavefunction, the electron density is 

calculated by fixing one electron and integrating the many-body PDF over the positions 

of the other 𝑁 − 1 electrons and multiplying by 𝑁: 
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𝑛(𝒓) = 𝑁∫ d𝒓2 … ∫ d𝒓𝑁𝜓∗(𝒓, 𝒓2, … , 𝒓𝑁)𝜓(𝒓, 𝒓2, … , 𝒓𝑁) (8) 

Note that this density describes the measurable electronic features of an atomic system 

and is dependent on only on a single 3-component position vector, rather than the 3N 

dimensional wavefunction 𝜓(𝒓) [12]. It is through this electron density that DFT relates 

to the first-principles description of quantum mechanics. 

Hohenberg-Kohn Theorems 

The utility of using electron density to describe an atomic system was established 

via two theorems by Kohn and Hohenberg, and the methodology for determining said 

electron density was postulated by Kohn and Sham. Both theorems are important for 

understanding why DFT can be used predictively. 

Theorem 1: The ground-state energy of an electronic system is a unique 

functional of the ground-state electron density [2]. 

Here, a functional is a function that maps a function to a real number. Kohn and 

Hohenberg showed that the ground-state electron density determines external potential up 

to an additive constant, the second term in Equation 6. Since this is the only system-

dependent term in the Hamiltonian and the Hamiltonian determines the properties of the 

system, the theorem follows. The implication of this theorem is that the ground-state 

wave function, which determines the properties of the system, maps directly onto the 

ground state electron density. 

Theorem 2: The electron density that minimizes the energy of the functional is the 

true electron density corresponding to the full solution of the Schrodinger equation [2]. 
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This theorem means that if the lowest-energy configuration can be identified, that 

electron density is exactly the ground-state electron configuration. This means that 

variational calculus can be used to minimize the functional.  

With these two theorems, we can begin to develop a methodology for determining 

the ground-state electron density. The energy functional has the following form, 

𝐸[𝑛] = 𝑇[𝑛] + 𝑈[𝑛] + ∫ 𝑉(𝒓)𝑛(𝒓)d𝒓 (9) 

where T and U are universal functionals corresponding to kinetic energy and electron-

electron interactions and V is the system dependent potential from the nuclei. 

Kohn-Sham Formulation 

These theorems mean that it is possible to get a first-principles description of a 

material system. However, in order to solve for those terms which can be solved 

analytically, it is necessary to first have expressions for the universal functionals. This 

raises the question, “How does one express kinetic energy in terms of electron density?” 

In order to circumvent this problem, we construct a Kohn-Sham system of N non-

interacting electrons with a modified potential such that the ground-state electron density 

is the same as our real system. These non-interacting electrons occupy Kohn-Sham 

orbitals, 𝜑𝑖(𝒓). The electron density can then be written as the following: 

𝑛(𝒓) = ∑|𝜑𝑖(𝒓)|2

𝑁

𝑖

 (10) 

The energy functional is now written as a functional of Kohn-Sham orbitals: 

𝐸[{𝜓𝑖}] = −
ℏ2

2𝑚
∑ ∫ 𝜓𝑖

∗ ∇2𝜓𝑖d𝒓 + ∫ 𝑉(𝒓)𝑛(𝒓) d𝒓

𝑖

+
𝑒2

2
∬

𝑛(𝒓)𝑛(𝒓′)

|𝒓 − 𝒓′|
d𝒓 d𝒓′ + 𝐸XC[{𝜓𝑖}]. 

(11) 
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where the first term is the kinetic energy of all electrons in the system, the second is the 

attractive effect of charge between the electrons and nuclei, the third is the repulsive 

effect of charge between pairs of electrons, and the last term contains any additional 

effects not covered by the first four [12]. The first three terms are are single-particle or 

pair contributions and can expressed analytically. The last term embodies any quantum 

mechanical effects from exchange and corelation not captured in the other terms. 

As mentioned previously, the second Hohenberg-Kohn theorem allows us to use 

variational methods to minimize this functional. This yields the Schrödinger-like Kohn-

Sham equations: 

[−
ℏ2

2𝑚
𝛁2 + 𝑉𝑠(𝒓)] 𝜑𝑖(𝒓) = 𝜀𝑖𝜑𝑖(𝒓) (12) 

where the effective potential, 𝑉𝑠, is given by: 

𝑉𝑠(𝒓) = 𝑉(𝒓) + ∫
𝑒2𝑛(𝒓′)

|𝒓 − 𝒓′|
d𝒓′ + 𝑉XC[𝑛(𝒓)].  (13) 

This does, at first glance, seemed circular because the Hamiltonian depends on the 

orbitals, but if we start with a good guess for what the electron system is actually like, we 

can perform a self-consistent loop of solving the eigenvalue problem and reevaluating the 

Hamiltonian to minimize the system energy in conformance with the second of the 

Hohenberg-Kohn theorems. Briefly, this means that by first defining a trial electron 

density, the “known” terms in that equation become solvable. By setting a convergence 

criterion based on the change in energy between two iterations, we can determine 

whether the system is in its ground state energy. By solving the Kohn-Sham equations, 

we iterate towards the minimum energy configuration [3].  
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The Exchange-Correlation Functional 

The last loose end for DFT to address is then the non-pair term, the exchange-

correlation functional. This sweeps up the rest of the quantum mechanical effects on the 

electron system undescribed in the other terms. The term comes from the “Exchange” 

effect of the many particles’ wavefunctions altering to accommodate the Pauli Exclusion 

principle, and “Correlation” comes from the addition of that effect to the fictitious many-

body statistical model we use with DFT. Much work has been spent developing an 

analytical form for this functional, though its exact form is unknown for almost all real 

systems. Research has focused on describing a generalizable exchange-correlation 

functional that accurately reproduces experimentally observed system properties across a 

wide array of systems.  

The first of these general forms was based on a case for which the exchange-

correlation functional can be solved precisely: a uniform electron gas. This is a 

theoretical space in which the electron density is perfectly uniform. In that case, the 

exchange correlation is analytically solvable for any chosen electron density. Applying 

this, the exchange-correlation functional for a real system at a given location is then 

assumed to be equal to that of a uniform electron gas with the same electron density as 

that locality. This method of choosing the exchange-correlation functional is called the 

local density approximation (LDA). Though it is a significant approximation, and does 

not perfectly reproduce observed properties, it does allow DFT equations to be applied 

[3]. 

Other efforts to produce a more realistic picture of the exchange-correlation 

functional, based on models with greater physical information, have also been developed. 
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One such, the generalized gradient approximation (GGA), not only includes the local 

density, but also the local gradient in density; it models both the local density and its rate 

of change.  This is intended to apply a more realistic physical description to the 

exchange-correlation functional.  

Many exchange-correlation functionals have been developed, including several 

different GGA functionals and other types based on different electronic models, though 

none can precisely recreate all physical properties observed in experiment. In this thesis, 

the exchange-correlation functional which is used for all calculations is the one 

developed by Perdew, Burke, and Ernzerhof (PBE) [13], one of the more common in use. 

Born-Oppenheimer Approximation for Core Relaxations 

The Born-Oppenheimer approximation is used by DFT codes to perform 

quantum-mechanically-based dynamic relaxation simulations. One of the most important 

assumptions made in QM theory is that electrons, being far less massive than the nucleus, 

more rapidly respond to force and energy gradients than do the nuclei. This 

approximation is exploited in DFT calculations to simplify the many-body subatomic 

interactions. The ground-state density of a set of electrons can be calculated for fixed 

nuclei locations, and then the locations of the nuclei updated based on the force felt by 

each ion based on local gradients of the total energy. This allows DFT to perform 

optimization algorithms that minimize the total energy of the system and yield ground-

state crystal structures [12]. 

Unit- and Super-cells with Periodic Boundary Conditions 

Now, these DFT equations are still massively complex to solve for any system 

with a realistic number of constitutive atoms. To bring them down to manageable scale, 
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other methods to simplify our models need to be taken. One such method would be to 

decrease the number of atoms in the model. For crystalline materials, this makes good 

sense, since their defining feature is long-range order in its constitutive atomic 

arrangement. This order can be fully described by a small set of atoms, known as a unit 

cell. A unit cell is defined by three lattice vectors — a1, a2, and a3 — which describe the 

shape and size of region which encloses that representative small set of atoms. Periodic 

repetitions of that unit cell can be iterated into a complete 1-to-1 model of the bulk 

crystal, though some naturally occurring errors like interstitial atoms and lattice vacancies 

intrinsic a real material would be omitted in such a description. One of the most 

important implications of this arises from the fact that electron density for an isolated 

atom decays to zero quite rapidly with distance: electron density is tightly local for an 

atom. 

In the aggregate case of a pristine crystalline solid, local electron densities in 

structurally identical areas can therefore also be modeled as identical; the periodic 

repetition of structural motifs inherent in crystallinity ensures that a structurally identical 

area will be found within a few bond lengths. This means that we can describe the 

electron density as a spatially periodic function for crystalline solids, allowing us to 

construct a faithful quantum-mechanical model of a bulk crystal with just a few tens of 

atoms. We then apply periodic images of our model to make the function of electron 

density continuous and consistent with a bulk material at the model boundary (rather than 

decaying as would occur at a crystal surface): the form of this periodic electron density is 

discussed in further on. 
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For non-pristine models, such as one with a local defect like an impurity or 

vacancy, we use a model comprised of a few iterations of the unit cell: a supercell. This 

allows the short-range effects of the defect to be incorporated into the model without 

losing the long-range order of the electron density at the model boundaries. In the 

parlance of the lattice vectors mentioned previously, these supercells are integer multiples 

of the unit cell along one or more of the lattice directions — the supercell can be 

described as La1, Ma2, Na3 — where L, M, and N are positive integers, and a are the 

lattice vectors of the unit cell in real space. 

Projector-Augmented Wave Potentials 

Another way to reduce the number of unique entities considered in our 

calculations is to treat valence and “core” electrons around each atom differently. The 

valence electrons of each atom in a structure are typically the only electrons that are 

involved in chemically interesting behavior: the core electrons do not participate in much 

physically interesting phenomena. Incidentally, the core electrons of each atom are also 

the most computationally burdensome. This is a side-effect of the smaller space that they 

occupy, as the enforcement of wavefunction orthogonality means that the wavefunction 

of each electron has much more variance, a shorter wavelength, within the smaller space 

than does the wavefunction of a valence electron. Fully solving this would necessitate a 

very spatially high-resolution calculation, but it turns out that solving for a system that 

freezes the core electrons still gives good results, while also being significantly more 

computationally efficient. The frozen core technique that is used in our study is called 

projector augmented-wave (PAW) potentials, which models the core electrons as a frozen 

cloud of local charge with a modified ionic potential that accounts for these core 
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electrons. The projector augmented-waves themselves are the basis which accommodates 

the potentials used to make this simplification [4,12].  

Reciprocal Space and k-points 

Because of the periodic nature of the crystals we wish to study, implementing 

DFT is significantly easier in reciprocal space. With a periodic crystal lattice, an 

expedient way to express the electron density wavefunction is with a periodic 

wavefunction, described by Bloch waves of the form: 

 𝜓(𝒓) = ei𝒌⋅𝐫𝑢(𝐫) (14) 

where u is a function that periodic function which matches to the periodicity of the 

crystal system. The exponential term here enables a periodic expression of the 

wavefunction with its period length circumscribed by the unit cell. 

There are some important ramifications for using reciprocal space that are worth 

being aware of, though the specific construction of reciprocal space is not particularly 

important to our results. Much as how the crystal structure can be described by a unit cell 

in real space, the corresponding reciprocal lattice is defined by a reciprocal space unit 

cell. These reciprocal lattice vectors can be described as function of the real space lattice 

vectors, like so: 

𝒃1 = 2𝜋
𝒂2 × 𝒂3

𝒂1 ∙ (𝐚2 × 𝒂3)
,     𝒃2 = 2𝜋

𝒂3 × 𝒂1

𝒂𝟐 ∙ (𝐚3 × 𝒂1)
,     𝒃3 = 2𝜋

𝒂1 × 𝒂2

𝒂𝟑 ∙ (𝐚1 × 𝒂2)
 (15) 

The direction of this reciprocal space lattice vector is described by the cross product of 

two of the real space lattice vectors and its magnitude by the inverse length of the other 

real space lattice vector. The most important point is that longer real space lattice 

directions correspond with shorter reciprocal space lattice vectors in the same way that 

longer wavelengths correspond to shorter wavevectors [12].  
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Recall from the Hohenberg-Kohn theorems that an important part of DFT 

calculations is solving integrals which, for the most part, do not have analytical solutions. 

In computational physics, numerical solutions to such integrals are common and mostly 

involve rendering the integral as discrete sections rather than a continuous function to 

approximate a solution. One such rendering would be the trapezoid method. For these 

numerical methods, the greater the number of discrete sections used in the description, 

the more accurate the computed result. In DFT, the number of discrete sections used in 

solving the electron density functional is defined by the user through the number of 

referenced points in reciprocal space along each reciprocal lattice direction, called k-

points. As with real space integrals, the convergence of the calculation to an accurate 

value increases with the number of k-points used; increasing the number of k-points is 

referred to as using a finer k-point mesh. Once of the idiosyncrasies of reciprocal space, 

however, is that the longer the lattice vector is in real space, the fewer k-points are needed 

to get a converged computation of an integral along that direction. This is because of the 

inverse relationship between the length of the reciprocal space vector and the real space 

vector.  

In prior times, even earlier this decade, when DFT calculations were performed 

singularly and computational resources were scarce enough that minimizing k-points 

while ensuring convergence was a serious consideration, convergence as a function of k-

point density would be published with results. Nowadays, computational resources are 

less scare and computers powerful enough to calculate high density k-point meshes for 

most models. Our standard practice is to use a simple rule of thumb for deciding on the k-

point mesh: we divide 25 by the lattice vector length (measured in Å) in a given 
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direction, and use the nearest integer as the number of k-points in that direction for 

relaxation calculations. For static calculations, which are our final optimizations, we use 

a finer mesh which uses thrice as many k-points in each direction. 

Special Quasi-Random Structures 

Another principal method used in this thesis which deserves some explanation is 

the generation of Special Quasi-Random Structures (SQS), introduced by A. Zunger and 

associates [14]. This method was proposed in the 1990’s as an expedient means for 

simulating a randomly dispersed alloy in a periodically iterated small supercell 

comprising mere tens of atoms. Selecting a best guess for a random alloy to study is 

valuable because an alloy’s properties are a function of its configuration, and relatively 

simple systems have a rapidly divergent number of possible configurations. The example 

Zunger uses in his paper to illustrate this is a binary compound with N equivalent sites: 

the number of possible configurations is 2N [14]. Many crystalline unit cells contain tens 

of atoms, ballooning to thousands of possible configurations for study.  Prior to this 

method, most alloy calculations had relied on either a single randomly assigned supercell 

or a small set of randomly assigned supercells. The improvement offered by SQS is that a 

single cell can model a random alloy based on matching the correlation functions of the 

atoms in the cell to the correlation function of a long-range random alloy.  

The correlation function measures the ensemble average of some physical 

property over all of the configuration interaction parameters in the cell. In the supercell, 

each site is given a variable which associates to its species. Then a set of sublattices — 

known as clusters — is defined within the cell, each containing some number M of atoms 
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within a user-selected distance of one another. The correlation function is given as the 

product of the species variables within the sublattice, shown here:  

Π̅𝑎(𝝈) =
1

𝑁𝜎𝑚𝛼
Σ𝛽≡𝛼Π𝑖∈𝛽𝜎𝑖    (16) 

where Π𝛼 is the correlation matrix, 𝝈 is a distinct configuration, 𝑁𝜎 is the number of 

configurations of that type, 𝛼 is a symetrically distinct cluster, 𝑚𝛼 is the multiplicity of 

cluster 𝛼, and 𝛽 is the set of clusters equivalent to 𝛼. Any function of the alloy 

configuration — properties included — can be written as a weighted sum of multi-site 

cluster functions. 

For a perfectly random cell approaching infinite size, the ensemble average of the 

correlation functions vanishes to zero. The purpose of the SQS method then is to assign 

positions in a small N atom supercell for which the collection of distinct correlation 

functions (of each individual cluster) best matches the ensemble average of the perfectly 

random alloy. Usually, the clusters are defined as only doublets and triplets, which 

include nearest neighbors and second-nearest neighbors, since this is the length limit of 

the interactions which govern most material properties. Implementation of the method is 

a standard Monte Carlo simulation which updates system to converge the distinct 

correlation functions of the sublattices to the ensemble-averaged ones. 

With increasing atom count, the SQS method shows far more rapid convergence 

of the distinct correlation functions to the ensemble-averaged correlation functions than 

does a statistically valid set of true random cells. In effect, this shows that SQS are more 

representative of random alloys than other methods, especially for calculating properties 

dominated by short-range interactions. The implementation package that we use to create 

our SQS is the Alloy Theoretic Automated Toolkit (ATAT) [15].  
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Chapter 3: Bi Doping of β-Ga2O3 for Changing the Valence Character and Enabling 

P-Type Conductivity 

Introduction 

β-Ga2O3 is a wide gap (experimentally observed to be 4.9 eV [16]) semiconductor 

that has garnered much interest as a candidate for next generation power electronic 

devices. In its bulk form, it is optically transparent on the whole visible spectrum up to 

260 nm UV [17] and has a high theoretical breakdown field of 8 MV/cm [18]. Combined, 

these properties make β-Ga2O3 a promising material for functional transparent and high-

power electronic devices. With the capacity to be grown in large single crystals by melt-

growth techniques, β-Ga2O3 is expected to be an economical material for device 

fabrication [19]. At smaller scales, a wide variety of nanostructures involving β-Ga2O3 

have been synthesized, indicating that it could be used in any number of novel 

applications [20, 21]. Functionality at these two length scales make β-Ga2O3 promising 

candidates for a wide range of devices. While native n-type conductivity in β-Ga2O3 

allows it to be used in gas sensors [22] and in normally-on or depletion-mode electronic 

devices, demonstration of p-type conductivity would greatly expand the range of possible 

applications [23]. p-type doping in Ga2O3 would allow the fabrication of p-n 

homostructural junctions, enabling fabrication of bipolar junction transistors. Thus far, 

conclusive and replicable demonstrations of p-type doping in Ga2O3 remained unrealized. 

Many theoretical studies have been devoted to explaining the elusiveness of p-

type doping in β-Ga2O3; one of the reasons p-type doping has been difficult is the 

presence of strong n-type behavior caused by unintentional dopants [24, 25]. Other 

theoretical studies have indicated that the low energy of the valence band maximum 



Page 19 of 47 

 

(VBM) relative to the vacuum level is an obstacle to p-type conductivity; candidate 

dopants expected to introduce acceptors tend to form deep-level states that trap charge 

carriers, rather than shallow-level states that readily exchange carriers with the VBM 

[26]. Additionally, the large electronegativity of the oxygen atoms — the 2p orbitals of 

which comprise the valence band edge in β-Ga2O3 and other wide gap oxide 

semiconductors — effectively trap holes as localized polarons, limiting their mobility 

[27, 28]. In order to combat this, Cu has been proposed as a dopant to increase the 

dispersion of the valence band, reducing the effective mass of the holes, through 

hybridization of the Cu 3d orbitals and O 2p orbitals [29]. Our approach is similar in that 

we seek to alter the valence character, but we propose doing so by doping with Bi: the Bi 

6s electrons are similar in energy to the O 2p electrons and benefit from less localization 

than the d-orbital states proposed with Cu. 

Recently, Sabino et al. have shown using DFT calculations that doping with Bi 

indeed creates mid-gap electron states in the band gap of bixbyite-structure In2O3, a close 

cousin to Ga2O3 in terms of valence character [30]. That group has also shown that 

doping Ga2O3 with Bi leads to similar defect states located in the band gap of pristine 

Ga2O3 [31]. These electron states in the intermediate band are natively occupied by the Bi 

6s electrons, becoming a new valence band. They note that, by itself, this is insufficient 

to achieve p-type conductivity; intermediate states need to be shallower and empty to 

enable p-type conduction. Via Density Functional Theory (DFT) calculations, we 

determine that Bi can likely be introduced at dopant concentrations by comparing 

energetics with respect to the end members Ga2O3 and Bi2O3 that form the convex hull. 

We confirm that introduction of Bi, even at dopant levels, in Ga2O3 causes the formation 
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of an intermediate band in the band gap of pristine Ga2O3, which is comprised of the Bi 

6s electrons. In our work, we explore the charge transitions and traps of the Bi dopant as 

they compare to those of the native defects and confirm the need for additional dopants to 

achieve p-type conduction. Identification of the trap states of Bi defects verifies that the 

Bi intermediate bands are occupied. The associated charge transitions for the intermediate 

states are found to occur at a high energy cost compared with native defects, indicating a 

robust change in the valence character. The intermediate bands introduced by Bi change 

the level and orbital character of the valence band edge, potentially transforming 

otherwise deep, co-dopant acceptors into shallow ones through the elevated level and 

increasing the mobility of charge carriers through the delocalized s-orbital character.  

Methods 

All results are based on DFT calculations performed with the Vienna Ab-initio 

Simulation Package (VASP) [4], using the projector augmented-wave (PAW) potentials 

[5] with the Perdew, Burke, and Ernzerhof (PBE) [13] exchange-correlation functional. 

We include the 3d electrons as valence electrons for Ga. It has been shown that exclusion 

of the 3d electrons in DFT simulation incorrectly favors the α-Ga2O3 corundum phase to 

be the ground state, rather than the experimentally verified β-Ga2O3 monoclinic phase 

[32]. Similarly, we include the 5d electrons in the valence for Bi. Geometric relaxations 

were performed with a Γ-centered k-points mesh such that the mesh size multiplied by 

cell size roughly equated to 25 in each direction for relaxations, and 75 for spin-orbit 

coupled static calculations. Convergence criteria was set at 1E-6 eV for self-consistent 

electronic optimization, and 5E-3 eV/Å for ionic relaxations. Unrelaxed, undoped 

structures were taken from the Materials Project database [33]. The alloy-concentration 
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structures were generated using the special quasi-random structures (SQS) method [14] 

as implemented by the Alloy Theoretic Automated Toolkit (ATAT) software package 

[15], taking care to constrain species distributions to the thermodynamically favored 

lattice sites by explicitly noting which atomic species could occupy each site in the 

ATAT settings. The visualizations were created using the VESTA (Visualization for 

Electronic and Structural Analysis) software [34]. To correct for the unphysical, short-

range electrostatic interactions between charged atoms and their periodic images, we 

employ the screening method introduced by Freysoldt et. al [35]. 

Results and Discussion 

We first consider energetics of Bi atom incorporation into the β-Ga2O3 lattice. β-

Ga2O3 has a monoclinic structure, space group C2/m, with five unique lattice sites: two 

Ga sites and three O sites. The structure is shown in Figure 3.1(a) With a diverse set of 

lattice locations, it is important to establish whether one site is preferred for a foreign 

dopant, Bi in this case, in an alloy or doped material. This allows simulated replacements 

to be informed by thermodynamic likelihood rather than random selection. The two types 

of Ga sites are tetrahedrally coordinated Ga1 and octahedrally coordinated Ga2. These 

sites are shown in Figure 3.1(a) in light green and dark green, respectively. There are 

two O sites that are 3-coordinate (O1 and O2) and one tetrahedral coordinate (O3). The 3-

coordinate O sites are identified by their adjacent Ga polyhedrons: O1 is bound to two 

Ga2 sites and one Ga1 site, while O2 is bound to one Ga2 site and two Ga1 sites. For 

each of these five unique sites, the enthalpy of a Bi substitution was calculated to 

determine site favorability. In the case of the Ga sites, a simple replacement was used. 

For the O sites, we used an anti-site pair (ASP) to maintain charge neutrality. In practice, 
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this meant that when an O site was selected to be occupied by Bi, an adjacent Ga atom 

was replaced with an O atom. During geometric optimization, the Bi and O atoms 

corresponding to the ASP returned to their preferred cation and anion sites, respectively, 

indicating that the ASP configuration was not a local energy minimum. Of the two Ga 

sites, the octahedral site proved more favorable for Bi occupancy by 52 meV/cation. 

Other works have used 79 meV/cation energetic favorability to justify preferential site 

occupancy up to 50% alloy concentration [36]. Our work uses a maximum of 33 % Bi 

alloy concentration; we believe this lower site bias justifies preferential site occupancy 

for the lower concentration. Characterization of the electronic structure of the doped 

compound was therefore undertaken with Bi occupying the Ga2 site, shown in the darker 

green in Figure 3.1(a). This addressed the question of where in the unit cell of β-Ga2O3 a 

Bi dopant might localize.  
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Figure 3.1: (a) The unit cell of β-Ga2O3, emphasizing the unique Ga sites with light 

green for the tetrahedral coordination with oxygen (red) and dark green for the 

octahedral. (b) The Pbam-structure Ga4Bi2O9 unit cell, with the same emphasis on 

different Ga sites. The Ga atoms take the same two coordinations as in the β-Ga2O3 

structure, with small distortions on the octahedral sites. Bi atoms are in purple. (c) The 

Gibbs free energy of the two structures relative to the endmembers at 298K, matched to 
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the box colors of (a) and (b). The lines connecting calculated energies are to guide the 

eye. 

The feasibility of alloying Bi into β-Ga2O3 is determined by the miscibility of the 

mixture. Crucially, we needed to confirm that an alloy with Bi would not stabilize an 

alternative structural phase over the monoclinic structure of β-Ga2O3. For a competing 

phase, we found that there was one ordered compound on the convex hull of Ga and Bi 

oxides at the Materials Project database, with stoichiometry Ga4Bi2O9 [33]. The structure 

of this material is in the orthorhombic Pbam space group; its unit cell is pictured in 

Figure 3.1(b). The β-Ga2O3 monoclinic structural phase is referred to hereafter as the β-

structure, to contrast with the Pbam space group designation of the Ga4Bi2O9 compound. 

Using lattice site replacements, we explored the range of (total) cation concentrations 

between 0% and 33% Bi—the Ga/Bi cation ratio in Ga4Bi2O9—on both the β- and Pbam-

structures. For the β-structure, we used the SQS method to replace Ga atoms with Bi on 

the favored Ga2 octahedral site; for the Pbam-structure, we used the SQS method to 

replace Bi atoms with Ga on the 5-coordinate Bi sites. Subsequent DFT calculations 

allowed the lattice parameters and atomic coordinates to relax, consistent with the 

alleviation of internal stresses of alloy concentrations of the introduced species. Inclusion 

of a temperature-dependent structural entropy term for these disordered alloys allowed 

quantification of the free energy of the structure and direct comparison of their energies; 

by scaling the entropic contribution with temperature, we hoped that we could identify a 

compositional region of stability. The contribution of this term is ultimately negligible 

compared to the formation enthalpy at the relatively large Bi concentrations that we 

studied, but it can stabilize low-concentration mixtures. For Bi concentrations of less than 
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about 15%, we observe that the Gibb’s free energy of the alloy at room temperature is 

lower in the β-structure than in the Pbam-structure. A plot of these results is shown in 

Figure 3.1(c). We conclude that the β-structure is therefore likely to be the dominant 

crystal configuration at low Bi concentrations. However, because there is no 

concentration of Bi for which the free energy is below zero relative to the end members, 

any solid solution of Bi in β-Ga2O3 will be at best metastable. We note that metastability 

is not necessarily such a bad thing for a material; glasses, which are ubiquitous materials 

in the modern world, are metastable materials. No alloy composition was found to be 

stabilized with the structural entropy contribution for any temperature less than the 

melting temperature of pristine β-Ga2O3. To encourage formation of a metastable solid 

solution, we focus on including low concentrations of Bi rather than alloying at high 

concentration with both Bi and Ga as principle elements. 

The electronic behavior of the uncharged, Bi-doped structure was explored using 

DFT with the PBE exchange-correlation functional with spin-orbit coupling (SOC). In 

contrast with the method used above to establish miscibility, these calculations fixed the 

lattice parameters: simulating the local stress imparted by a diffuse dopant in a bulk 

material. We found that at low concentrations of Bi, occupied intermediate states were 

introduced in the intrinsic band gap of β-Ga2O3, reflected by the density of states in 

Figure 3.2(a). By projecting the density of states onto an atomic orbital basis, we 

determined that the intermediate states are dominated by the Bi 6s states as shown in 

Figure 3.2(b). This indicates that the 6s electrons are of an appropriate energy level to be 

used for altering the valence bands. The remainder of the intermediate bands were 

dispersed across all of the O atoms in the supercell, rather than being localized to the O 
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near to the defect. This is shown in a plot of the partial charge density shown in Figure 

3.2(c). These calculations assumed uncharged defects; the available charge states of the 

intermediate band were also explored to determine if they are low-energy trap states. 

 

Figure 3.2: (a) The total density of states for a 1/48 cation concentration Bi dopant. 

The fermi level is taken to be the edge of the intermediate band. The intermediate states 
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(in blue) are blown up for emphasis. This calculated DOS includes SOC, which we 

observe results a broadening of the intermediate band. (b) the projected density of 

states for each atomic species onto the atomic orbital basis. Note that these partial 

densities are normalized to a per-atom contribution. The primary contribution to the 

mid-gap states derives from the Bi s-orbitals, with an additional contribution from the 

O p-orbitals. (c) Visualization of the partial charge density (light blue) of a 120-atom 

supercell for the energy range of −1 to 0 that covers the only the intermediate states. 

All Ga atoms are in light green to reduce the number of colors in the figure and draw 

attention to the light blue charge density isosurfaces. 

The formation energy of a charged defect as a function of the Fermi level was 

calculated using the formulation of Freysoldt et al [35], which includes corrections for the 

Fermi level, long- and short- range potential effects, and an alignment term to reference 

to the bulk. Changing the charge of defect states can be done by explicitly adding or 

removing electrons from the system.  By plotting the formation energies of these charged 

defects as a function of Fermi level, we can determine the energy levels of trap states 

based on intersections corresponding to charge transitions. In some cases, this method did 

not show a clear extreme of the local potential between the point charge in the supercell 

and its periodic image. In these cases, we assumed that the charge was delocalized, and 

did not apply a correction. Shallow trap states, the types that we hope to observe, are 

states close to the band edges (valence or conduction band) from where charge carriers 

can be excited between the bands and traps by thermal vibrations. In aggregate, these 

carriers can exchange with the valence band, which is the essence of p-type conduction. 
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We applied this method to the Bi dopant and to vacancies on each native site. 

Native defects are unavoidable artifacts of synthesis; as a result, the natural vacancies and 

dopant defects will present competing traps for any free charge carriers. Concentration of 

these native vacancies can be controlled by changing the synthesis atmosphere but cannot 

be wholly eliminated. For the Bi-rich chemical potential condition, we find that the 

formation energy of a positively charged O vacancy is between 2.87 and 3.45 eV 

(depending on the O site) lower than the formation energy for a positively charged Bi 

point defect, as show in Figure 3.3(a). This is in good agreement with the both the 

energy level of the O vacancy traps and the formation energies of the defect states 

calculated by Zacherle et. al [25]. These positively charged O vacancies transition 

between 2+ and neutral: it has been previously shown that the VO 1+ charge state is 

unstable for all sites in β-Ga2O3 [37]. Notably, it has been shown that native charged 

vacancies are unlikely to occur in high concentrations in most materials [38]. We find 

that the (0/+) transition levels of the Bi charge defects are contained within the 

intermediate band, shown in Figure 3.3(b); this indicates that the 6s orbitals are 

electronically active. Critically, the (0/−) charge transitions of the Bi dopant occur deep 

in the conduction band, confirming that the intermediate states are fully occupied and not 

applicable as acceptor trap states. 
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Figure 3.3: (a) Fermi energy of the charge state transitions for native oxygen vacancies 

and the Bi dopant calculated for an O-poor condition. (b) Fermi energy of the charge 

state transitions of the native Ga vacancies calculated for an O-rich (Ga-poor) 

condition. (c) legend for panels (a) and (b). (d) charge transitions, normalized to the 

intrinsic VBM, of the native vacancies and the Bi dopant. The large numbers indicate 

the charge transition, and the small numbers report the EFermi level of the trap state. 
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Note that these calculations exclude SOC, which results in a narrower intermediate 

gap. 

The lower ΔE associated with charge transitions of the native O vacancy would 

inhibit charge transitions in the Bi defect states, compensating for any free holes. The 

reason for this is that the comparatively low energy barrier to the 2+ charge state would 

encourage localization of holes to those trap states, rather than to the Bi 6s states, where 

the formation enthalpy is higher. The low level of the negative charge states of the Ga 

vacancies are a good sign for introduction of free holes in the intermediate band, as the 

preferred charge state of those defects would encourage the transfer of electrons from the 

Bi impurity to the Ga vacancy trap state, emptying the Bi-derived intermediate bands. 

The charge transitions that we are most interested in are a carrier exchange between the 

0/−1 and −1/−2 VGa and the BiGa2 states. Encouraging the formation of these native 

defects would necessitate extreme care in fabrication, relying on high oxygen chemical 

potential. This would have the added effect of lowering the concentration of oxygen 

vacancies, which would take positively charged carriers from the intermediate band. 

Other possible doping strategies can be considered with the heightened valence band: 

computational studies have previously reported that Mg and N form deep self-trapped 

holes rather than free hole carriers [27, 39], but the higher valence band may enable 

effective codoping with those elements. 

Conclusion 

To summarize, we compared the Gibb’s free energy of a low-concentration Bi-

doped β-Ga2O3 crystal and determined that it was unlikely to relax into a convex hull 

structure. Low Bi dopant concentrations seem to be the only available occupancy in the 
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β-Ga2O3 structural phase, due to the high free energy of all computed mixture 

concentrations. The Bi dopant introduces intermediate defect states in the band gap. 

These states are filled, and the high formation energy of the (0/+) charge transitions 

indicates that these represent a substantive alteration of the valence character rather than 

an introduction of deep-level trap states. The intermediate band, higher in energy than the 

native valence band edge and more dispersive, could be used to facilitate p-type doping, 

but the Bi dopant, by itself, is unlikely to result in free acceptor states. The higher level of 

the VBM would allow codopants to form shallow level states rather than the deep level 

states that acceptor-type dopants had been relegated to previously.  
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Chapter 4: Pursuit of Improved Thermal Conduction in β-Ga2O3 by Alloying with B 

Introduction 

β-Ga2O3 is a wide gap semiconductor which shows promise for high-power and 

high-frequency electronic applications due to its high breakdown field [40]. The 

breakdown field has been experimentally measured as 4 MV/cm and theorized to be as 

high as 8 MV/cm [18]. It is readily dopable n-type, with a tunable carrier concentration 

from the order of 1016 to over 1020 e−/cm−3 [41]. However, the development of devices 

has been hindered by the poor thermal properties of β-Ga2O3, which cause heat retention 

that negatively impacts device functionality. The thermal conductivity is highly 

anisotropic with crystallographic direction, measured to be between 11.0 and 26.8 [42] or 

calculated to be between 16.1 and 21.5 W/m K [43]. Improving the thermal properties 

without sacrificing the wide band gap could enable highly durable high-power and high-

frequency electronic devices based on β-Ga2O3. 

In semiconductors, the principal carrier of thermal energy is lattice phonons, 

contrasting with metals, where electrons carry more of the heat energy. As a 

consequence, the crystal lattice structure of a semiconductor plays a significant role in the 

thermal properties. Coupled with this is the fact that lattice phonons can scatter electronic 

charge carriers, reducing the electrical conductivity of the semiconductor. Increasing the 

thermal conductivity of β-Ga2O3 to mitigate some of the electron scattering in high power 

operation would increase the quality of β-Ga2O3 high-power devices. Some improvement 

in the thermal properties of β-Ga2O3 could be possible with a β-Ga2O3 phase GaAlO3 

alloy: in a recent paper, Mu et. al reported using first-principles calculations an 

improvement of 70-100% (to ~25 W/m K) [44] in the thermal conductivity of GaAlO3 
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alloy over the unalloyed β-Ga2O3 (~15 W/m K) [42]. This is a substantial step, though the 

thermal conductivity is still lower than that of other modern wide band gap 

semiconductors such as GaN (110 W/m K) and SiC (700 W/m K) [45]. Further increases 

in the thermal conductivity would provide a means to operate β-Ga2O3 devices at high 

power and frequency—the applications for which it shows the most promise—without 

sacrificing the carrier conduction.  

The four basic rules which describe the potential for high thermal conductivity in 

a material, described by G. A. Slack, are 1) low atomic mass, 2) strong interatomic 

bonding, 3) simple crystal structure, and 4) low anharmonicity [46]. In preserving the 

other properties and structure of β-Ga2O3, we opt to focus on the first two rules as our 

guiding principles for designing the material. Introduction of the lighter cation Al was the 

mechanism for improving the thermal conduction in the paper previously referenced. We 

are interested in alloying with the even lighter Group-13 element, Boron, in an attempt to 

capitalize on this improvement. B has substantially smaller Shannon ionic radius (0.11 Å 

in 4-coordinate or 0.27 Å in 6-coordinate) than Ga (0.47Å in 4-cordinate  and 0.62Å in 6-

coordinate) [47] and prefers 3-cooridnate to the native 4- and 6-coordinations of the 

cations in β-Ga2O3. To counteract these effects, we have also explored the possibility of 

co-alloying with other Group-13 elements Al and In to try to stabilize the B-containing 

alloy. Our approach in alloying these elements explores the possibility of high-entropy 

alloy (HEA) stabilization and a variety of ordered structures to ascertain the stability of 

B-containing alloys with β-Ga2O3. We find that the energy barrier to B alloying in β-

Ga2O3 is very high and unlikely to be feasible experimentally.  
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Methods 

We use density functional theory calculations [2,3] to explore the energetics and 

likely formations of the Group-13-oxide alloys. Calculations were performed using the 

Vienna Ab-initio Simulation Package (VASP) [4], applying the projector-augmented 

wave (PAW) potentials method [5] and the exchange-correlation functional of Perdew, 

Burke, and Ernzerhof [13]. The inclusion of the outer d-orbital electrons in the valence 

shell of Group-13 atoms has been previously shown to be of critical importance in 

reporting the experimental ground state of their oxides [32], so we take care to select the 

appropriate pseudopotential that these electrons are included in the valence of In and Ga 

for all of our simulations. We use a Γ-centered k-points mesh such that mesh size 

multiplied by cell size roughly equated to 25 in each direction for relaxations, and 75 for 

static calculations to get a finer simulation mesh for calculation of ground state energies. 

Our convergence criteria were set at 1E-6eV for electronic optimizations and 5E-3 eV/Å 

for ionic relaxations. The unrelaxed bulk phases were taken from the Materials Project 

database [33], and information on probable phases based on the convex hulls of Group-13 

oxides reported there. Random alloys were simulated using the special quasi-random 

structures method [14] as implemented by the Alloy Theoretic Automated Toolkit 

(ATAT) package [15]. Visualizations of the unit- and super-cells were created using the 

Visualization for Electronic and Structural Analysis (VESTA) software [34].  

Results and Discussion 

To help identify the lowest-energy alloy configurations for our alloys, we first 

relaxed a small supercell with a single cation replacement for B, Al, and In on the two 

unique cation sites in β-Ga2O3. This allowed us to establish site favorability through 
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comparing the formation enthalpy of the two replacements; these energies are depicted in 

Figure 4.1(a). We used a 40-atom supercell to calculate the site replacement enthalpies 

and fixed the lattice parameters to be those of pristine β-Ga2O3 in order to simulate the 

local stresses induced by a diffuse dopant. The formation enthalpies of these site 

replacements were calculated simply using this formula: 

Δℎ𝑎𝑙𝑙𝑜𝑦 = E𝑎𝑙𝑙𝑜𝑦 −
1

16
E𝑀2O3

−
15

16
EGa2O3

 (17) 

where each energy is the VASP-reported total energy of the structure, the fractions 

represent the cation concentrations, and the M-containing oxide energy is the energy of 

the other species’ native oxide: B2O3, Al2O3, or In2O3 (shown in Figure 4.1(b), (c), and 

(d), respectively). We find that both Al and In prefer the octahedral cation site, while B 

prefers the tetrahedral cation site. Al has the lowest barrier to occupation on either site: 

we take this to mean that Al will natively occupy octahedral sites; but can occupy 

tetrahedral sites at a relatively low energetic cost if there are no octahedral sites available. 

In prefers the octahedral site by such a large margin that we assume all In diffused into β-

Ga2O3 will take an octahedral replacement site. B shows a significant energy barrier to 

either site, at 57.5meV/cation on the tetrahedral site and nearly twice that on the 

octahedral site. 
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Figure 4.1: (a) Formation enthalpies of site replacements of the Group-13 cations on 

the non-equivalent cation sites in β-Ga2O3. (b) B2O3 used as a reference state for the 

calculation of formation enthalpy. B atoms are in orange, O atoms are in red. (c) Al2O3 

used as a reference state for the calculation of formation enthalpy. Al atoms are in blue. 

(d) In2O3 used as a reference state for the calculation of formation enthalpy. In atoms 

are in purple. 

The best-case scenario for an alloy would be one which incorporates a large 

atomic % of B, to significantly lower the mean atomic mass, and which balances B with 

In to retain the band gap of pristine β-Ga2O3. To explore the possibilities of a high-

concentration alloy, we calculated the formation enthalpies of random, shown in Figure 

(a) 

(b) (d) (c) 
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4.2(a), and site-preferred equimolar ternary alloys and of ordered binary alloys, shown in 

Figure 4.2(b). The equimolar alloys calculated were 60 atom cells formed using the 

ATAT package to create SQS, with the formation enthalpy reference states once again 

being the cations’ native oxides. In the equimolar alloys, the structure formation enthalpy 

is dramatically reduced by enforcing site preference in the generation of the SQS, shown 

by the thinner bars for select alloys in Figure 4.2(a).  We find that relatively low 

formation enthalpies can be achieved in the ternary alloy with Ga, Al, and In in equal 

concentrations, and that the lowest-energy B-containing alloy is the (B1/3Ga1/3In1/3)2O3 

compound. Figure 4.2(b) depicts the calculated formation enthalpies, once again 

referenced to the native oxides depicted in Figure 4.1(b)-(d), of equimolar binary 

ordered alloys for each element with total occupation of the tetrahedral cation sites (thin 

bar) and octahedral cation sites (thick bar). The octahedral occupied alloys were found to 

be stable (negative formation enthalpy) for both GaAlO3 and GaInO3. The B ordered 

alloys were found to have high formation enthalpy, indicating a low chance of formation.  

 

Figure 4.2: Formation enthalpies of quaternary and ternary Group-13-cation alloys 

with (a) cation disorder and (b) cation ordering. 

So why do the B-containing alloys seem to be so unlikely to form? The 
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coordination with oxygen in its own oxide structure, depicted in Figure 4.1(b). This 

contrasts with the polyhedral coordinations of the Ga atoms in β-Ga2O3, and with the 

octahedral coordinations of the Al and In oxides. We observed that our ab-initio 

relaxations favored a flattening of the B bonding arrangement into a similar triangular 

coordination, shown in the Figure 4.3(b). An important barrier to the formation of these 

ordered alloys was the presence of an equal-cation compound just 4 meV above the 

convex hull of the Ga and B oxides [33]; a GaBO3 compound with a R3̅C space group, 

depicted in Figure 4.3(c). This compound, a low-energy structure with the same 

equimolar ratio as our site-ordered alloys, offers a decomposition target for the high-

energy ordered site alloys. We conclude that an alloy with equimolar cation concentration 

is likely to relax to that phase A key feature of this GaBO3 structure is that there too, B 

takes a flat triangular coordination. We can glean from the B2O3 and GaBO3 structures, 

and the flattening of the coordination in the DFT relaxations, that B rejects polyhedral 

coordinations with oxygen, rendering it unlikely that it can be included in a β-Ga2O3 

alloy. 
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Figure 4.3: (a) DFT-optimized structure of ordered GaBO3 starting from the β-Ga2O3 

structure with B atoms substituting the octahedral Ga sites. The Ga atoms (light green) 

are tetrahedrally coordinated with O. (b) GaBO3, a compound found just above the 

convex hull of B2O3 and Ga2O3, as reported on Materials Project [33]. The octahedrally 

coordinated Ga atoms are colored in dark green to differentiate coordination from the 

tetrahedrally coordinated Ga atoms.  

Conclusion 

We find that the natural planar triangle coordination preference of B greatly 

impedes the solubility of B in β-Ga2O3.The enthalpic cost of including any concentration 

of B atoms in the alloy was found to be greater than is likely to be overcome with 

entropy. Creative orderings were found to lower the formation enthalpy, but not 

sufficiently to stabilize the alloy. Additionally, the presence of a GaBO3 structure on the 

convex hull of the B and Ga oxides inhibits an equimolar alloy with B from retaining the 

β-phase. As a result, high alloy concentrations of B, which would have the best chance of 
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increasing thermal conductivity of β-Ga2O3, would instead decompose into the alternate 

phase. The thermal conductivity of GaBO3 remain to be explored. 
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Chapter 5: Conclusions and Outlook 

In the preceding chapters, we discussed some of the weaknesses of β-Ga2O3 and 

how they might be addressed. Our exploration focused on the two biggest obstacles 

which face of β-Ga2O3, its lack of p-type dopants and its poor thermal properties. Each of 

these has implications for of β-Ga2O3 devices: p-type doping would enable bipolar power 

devices and better thermal properties would enable better performance in high-power 

devices.  

On the issue of p-type doping, we used first-principles DFT calculations to 

explore the changing valence character of β-Ga2O3 through inclusion of Bi at low 

concentrations. Our calculations indicate that the Bi 6s electrons form an intermediate 

band above the valence band of the pristine material, which could enable otherwise deep 

acceptors to act as p-type dopants. The next step will be for experimentalists to establish 

concrete solubility limits for Bi — the number of atoms required to perform DFT 

calculations on lower concentrations of Bi is too large for current computing resources to 

handle. If a stabilized alloy concentration can be identified, then the next step will be to 

prototype devices to verify whether p-type conduction can occur. This is non-trivial, as 

testing carrier type requires Hall Effect measurements.  

Further first-principles calculations in this space could help identify useful 

codopants against the intermediate band. Many of the electron-deficient species 

(compared to the native Ga or O) had previously been written off as p-type dopants, since 

their trap levels were calculated to be too deep. This elevated intermediate band could 

enable effective charge transfer to those deep level dopants. Additionally, hybrid 

functionals could be employed to accurately compute the band gap, and then locate the 
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energy levels of the trap states in the band gap. This would allow accurate computation of 

the trap state levels with respect to the intermediate band and give a better picture of 

which codopants would be most promising. In a side project, we anecdotally observed 

that Sb, with the same group as Bi, also introduced an intermediate band. An exploration 

of the solubility of Sb in β-Ga2O3 was not conducted, but that alloy could prove more 

easily stabilized than the Bi alloy we studied. Further calculations with more devoted 

interest would also allow comparison between these two intermediate bands, and 

potentially offer a second intermediate level that could be explored against useful trap 

states. 

In Chapter 4, our calculations indicated that B was unlikely to form a miscible 

alloy with Ga2O3, and that sufficient improvement in the thermal properties of β-Ga2O3 

through alloying Group-13 elements is unlikely outside of Al. Other methods, beyond 

those we explored in our study, might be explored to improve the thermal properties of 

the material. Our study was confined to the Group-13 elements, and much of the intuition 

we gained in forming our conclusions was coupled with on the preferred coordination of 

the cations in their native compounds. Based on that, we could expand the design space 

include other light metals which more readily accept the tetrahedral and octahedral 

arrangements of the cations in the β-Ga2O3 structure. 

Calculations on other compounds with similar structures to β-Ga2O3 also offer 

some clue as to an effective strategy for improving thermal conductivity. Most of the 

materials with similar structures reported on the Materials Project database were oxides, 

but there were also some fluorides, which could have a different response to the alloying 

techniques we used. The GaBO3 structure on the convex hull is also intriguing as a more 
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thermally conductive compound, as its structure has a) lower mean atomic mass than β-

Ga2O3 and b) a more symmetrical unit cell. 
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