Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-48

1992-12-01

Efficient Accommodation of May-Alias Information in SSA Form

Ron Cytron and Reid Gershbein

We present an algorithm for incrementally including may-alias information into Static Single
Assignment form by computing a sequence of increasingly precise (and correspondingly larger)
partial SSA forms. Our experiments show significant speedup of our method over exhaustive
use of may-alias information, as optimization problems converge well before most may-aliases
are needed.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Cytron, Ron and Gershbein, Reid, "Efficient Accommodation of May-Alias Information in SSA Form" Report
Number: WUCS-92-48 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/610

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/610?utm_source=openscholarship.wustl.edu%2Fcse_research%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Efficient Accommodation of May-Alias Information
in SSA Form

Ron Cytron and Reid Gershbein

WUCS-92-48

December 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

To appear in 1993 SIGPLAN PLDI

Efficient Accommodation of May-Alias Information in SSA Form

Ron Cytron*
Washington University
St. Louis, Missouri 63130

Abstract

We present an algorithm for incrementally including
may-alias information into Static Single Assignment
form by computing a sequence of increasingly precise
(and correspondingly larger) partial SSA forms. Our
experiments show significant speedup of our method
over exhaustive use of may-alias information, as op-
timizattion problems converge well before most may-
aliases are needed.

1 Introduction

Consider the source program and its Static Single Assign-
ment form {SSA) representation [CFR191] shown in Fig-
ure 1. The storage referenced by a program P is logically
partitioned into disjoint storage names, which correspond
approximately to the variable names in P. The “store” and
“load” instructions of P are statically labeled as distinct def
and use sites, respectively. For example, step | 2| contributes
one use (of the pointer p) and one def {of location p).

In SSA form, the storage names for P are angmented so
that the same storage name never appears twice among the
def sites. For example, the defs of u at step [1] and [3] are
renamed to u; at step [Ef and us at , which are regarded as
distinct storage names. A ¢-function represents the merge
of distinct names, and the value returned by the ¢-function
is itself retained as a distinct name. For example, step [9]
combines the aforementioned renames of u. As = result, each
use can be associated (renamed to correspond) with a unique
def. The u of step E_[is renamed to uz at .

Moreover, any potential modification of a storage name
v is represented explicitly in SSA form. Where uncertainty
exists concerning a dereferenced pointer p’s effect on v at
step 5, we write

Py

and say that +p may aliasv at 5. Generally, we define the set
MayAlias(p, 5} to contain those names potentially aliased
with *p at 5. For example, if the pointer p contains the
addzess of v at step [2], then the value of v is changed as
of that step; otherwise the value of v is unchanged. The
IsAlias() function is inserted into a program P to represent
this duality. The predicate at step determines if the alias
holds, and steps and cause the appropriate value to
be returned.

If storing through a peinter cerfainly modifies v at §,
then we write

5
*pRIY

*Currently on leave from IBM T.J. Watson Research Labs;
e-mail: cytron@cs.wustl.edu.

{This work was supported by the National Science Foundation,
Grant CDA-9123643; e-mail: gershbei@cs.oberlin.edu

© 1983 ACM. To appear in 1993 SIGPLAN PLDI

Reid Gershbeinf
Oberlin College
Oberlin, Ohic 44074

Full SSA Representation

Source Program

ve—3 vg +— 3
if (b} then if (b) then
U —v 4: UL — Vo -¢
else else
*p —6 <= [2] *p—6 « (6]
vy — IsAlias(p,&vg) <=
°— v <= uz +— vy <:
fi f
ug — Pluy, us) 4=@

«<[10]
<= [11]

vz — ¢{vo,v1)
c vz +uz

c—vuvtu 42

Function I'sdlias(w,) : value
#f (w = z) then =
ans) +- *uw -«
else
ansy — %z 4
fi

ansy — ¢lans;, ansy)
return (ans3}

end

Figure 1. Example.

and say that xp must aliasv at 5. Correspondingly, we define
the set MustAlias(p, 5) to contain those names certainly
aliased with *p at S. If v € MustAlias(p,[6]), then step
should be replaced by the assignment “v « xp”. H v is
unaffected by ste, then no assignment to v would be
necessary at step [7]

Transformation of source programs into Static Single
Assignment (SSA) form [CFR'91] results in more efficient
and effective program optimization [WZ91, AWZ88]. With-
out SSA form, each program optimization would require
special-case treatment of consiructs that yield implicit stor-
age references. The results of applying constant propagation
based on SSA form [WZ91] to our example are dependent
on the program’s SSA form, which is in turn dependent on
the alias information associated with storage assignments.
With 1 representing “non-constant”, the following table
illustrates the effects of alias information at step [6] on
subsequent uses of v:

Alias Info at [6] [Use of v at Use of v at
*p oy L 1
*p ALY & 4
Otherwise 3 3

While SSA offers a unified treatment of all storage
references, the introduction of IsAlias() assignments can
expand the program representation size by a factor of |V},
where worst-case may-aliasing conditions prevail on a set
of variables ¥'. The use of languages whose alias behavior

is sufficiently restricted [Bod90] can lessen the impact of
explicit alias representation, as can recent advances in
obtaining high-quality may-alias information [Lan92, LR92,
CBC93]). However, the number of aliased expressions per
node can grow quite large: the make.c program serves as a
worst-case in [Lan92], with 675 may-alias relations per node
on average, and one node containing some 2000 relations.
Research is underway to determine how relations translate
into effects on storage names [Lan93], but currently the
impact of so many alias relations on SSA form cannot be
quantified.

Our experiments show that the amount of alias in-
formation represenmted in SSA form can far exceed the
amount of such information necessary for solving a given
optimization problem: our algorithm typically stops well
short of computing full SSA form, without compromising
the effeciiveness of program optimization while dramatically
improving its efficiency. An earlier method for accom-
modating alias information in SSA form [CWZ90] gains
efficiency by directly propagating information to affected
program sites. Our approach is complementary, since we
avoid incorporating the bulk of may-alias information; an
actual optimization problem motivates and terminates the
search for alias information.

In the following sections we outline our approach
(Section 2), present our algorithm (Section 3) and correci-
ness proofs (Section 4), and describe the results of our
experiments (Section 5).

2 Approach

Essentially, our method constructs a sequence of approxi-
mating, partial 8SA forms of increasingly sharper precision
and correspondingly larger size:

5540,554A;,...,8540,8540,,... 854,

The limit of this sequence, 554, 1s full SSA form. Suppose
an optimization based on SSA form were applied io each
element of this sequence. We define the corresponding
solution sequence as

Solng, Solny, ..., Solng, Solngys, ... Solng

Since the explicit representation of may-alias informa-
tion is primarily responsible for size excesses in SSA form, we
carefully titrate may-alias information into our sequence of
SSA forms. However, must-alias information is introduced
initially (into SSAg) for the following reasons:

¢ Although they supply very strong information, must-
aliases of pointer dereferences are all too rare in pro-
grams. We expect relatively little growth in program
size for representing such information.

e As discussed in Section 3.1, incremential update of the
optimization solution between partial S5A forms is eas-
ily accomplished if the optimization solution in §5A44,
cannot be “better” (in the sense of the data flow lattice)
than the solution for S54;. This requirement precludes
arbitrary injection of must-alias information into our
sequence.

Partial form 5540 therefore contains all must-alias informa-
tion, but no information due to may alizses, while SSA
contains all such information. We define 554n as the
eatliest element of the partial SSA form sequence whose
precision suffices for solving the optimization problem:

£ = min (Soln; = Solng)

We say that, with respect to a given data flow solution
obtaired using SSA form, convergenceis reached at approx-
imation SSAq. A diagram of our approach is shown in
Figure 2. Because we expect S54q to be much smealler than

A;
S8 Constant More S8Aq

S840 — @ Propagation May-Aliases

S84

Figure 2. Diagram of our approach.

S84, we expect a corresponding reduction in the time
taken for program optimization. The above diagram raises
the following questions, which we answer in the ensuing
sections of this paper:

1. Must the solution for constant propagation be com-
puted “from scratch”, as we move from S5A4: to

S5A; 417

2. Must S54:4; be generated “from scratch”?

3. When is 55 An achieved?

4. Which may-alias information should be included in
moving from 554; to §5A4:4,7

5. How efficient is our incremental approach compared to
solving the optimization problem using SS5Ac?

We assume that a program P is represented by the
following structures:

Flow graph: The nodes of this directed graph represent ex-
ecutable fext and the edges represent potential transfer
of control between the nodes. Operations within a node
are assumed to be totally ordered, particularly those
that reference storage.

Storage names: Storage for P is partitioned into a set
of static storage names. Where the structure of
dynamically allocated objects cannot be analyzed at
greater precision [LH88, CWZ90, HN90}, a single name
(such as “heap”) suffices to represent all such objects.

References: BEach reference (ref) r represents a store (def)
or load (use) instruction of P. To simplify the
discussion, we assume that all references to storage are
through a primary or dereferenced identifier (such as »
or «p); temporary names can be inserted into the source
program to support this assumption.

We extend our earlier notation for aliases by allowing
MoayAlias(r) and MustAlias(r) to represent the sets of
symbols may- and must-aliased for reference r, respectively.
The following notation is alsc useful:

DefSites is the sef of all def sites in P.

Symbol(r) represents the textual “siring” associated
with reference r. As discussed above, such strings
are limited to primary and dereferenced identifiers.

Rdef(u) is the unique def of Symbol(u) for use u in
S5SA form, where Symbol(z) is a primary (non-
dereferenced) identifier; for a use u of a derefer-
enced identifier, Symbol(x} = L. In moving from
one partial SSA form to another, Rdef(u) may
change for any given use u.

Ldef(u) is the def appearing as the target of an
assignment statement involving u. Essentially, the

def Ldef(u) is dependent on the value of u.

I{u) is the number i of the SSA form in which u is
introduced, 0 <z < {1

Node(r) is the flow graph node containing r.

FirstDef(X) is the first def site in node X. Our
algorithm assumes that each node begins with a
def site; if node X otherwise lacks an initial def
site, then an “empty” def site d (Symbol(d) = 1)
can be inserted at the beginning of node X with
empty may- and must-alias sets.

LastDef(X) is the last def site in node X,

DomDef(r) is the def site that immediately dominates
reference r. Note that » may be a def site or
use site, and Symbol(r) may be a different symbol
than Symbol(DemDef(r)).
Within a node, DoemDef(r) is simply the def site
that occurs just prior to reference r among the
refexences in Node(r). Where none exists within
Node(r), then node idom(Node(r)) is consulted,
where idom(X) is the node immediately dominat-
ing X in the flow graph [LT79]. Since each node is
assumed to have at least one def site, DomDef(r)
is well-defined.

Aliases: As discussed above, two lists of storage names
are associated with each reference r, representing
MayAlias(r) and MusiAlivs(r). Because we ex-
pect MustAlias{(r) to be a rather small set, these
symbols can be elaborated directly at the reference
without compromising the asymptotic behavior of our
approach. On the other hand, worst-case assumptions
for MayAlias(r) result in relatively large (O(]V])) sets,
which if stored directly at each reference, would cause
the program representation to suffer the O(|V]) growth
that we seek to avoid. Since we don’t expect the
MayAlias() sets to change drastically from reference
to reference, we construct a global set of may-alias re-
lations, where each relation is a subset of the program’s
storage names. We then encode MayAlias(r) as the the
name (i.e., index) of the appropriate subset of storage
names.

¢-functions: SSA form introduces a ¢-function for variable
v at node Z if multiple definitions of v reach 7. If Z
has k predecessors, ¥1,%Ys,...,Y, then the ¢-function
is of the form

vz = ¢(vy, vyg. .-, U,

where vy; represents the name for v transmitted by
node Y;. The above ¢-function introduces one def and
k uses of v into the program representation.

In the traditional SSA representation [CFR*91], each
use of v in the ¢-function is associated with node Z,
where the ¢-function textually appears. In a departure
convenient for our algorithm, we instead associate each
use vy; with node ¥;. While the ¢-function appears
at node 7, its uses (arguments) are actually associated
with the predecessors of Z. For example, in Figure 1,
the uses vy and v, appearing in the ¢-function at
statement are actually associated with (the end of)
statements [5] and , respectively.

Throughout this paper, we assume that programs are com-
prised of a single procedure, and we concentrate primarily on
the effects of may-alias information on the quality and speed
of program optimization. The effects of procedure calls on
storage names, while outside the scope of this paper, ¢an be
treated analogously.

Qur algorithm as presented does not attempt to dis-
cover constants for any use u for which Symbol(z) = L;in
our setting, such uses correspond to the storage associated
with a dereferenced pointer (but not the pointer itself).
Although our approach is easily generalized o handle such
cases, we concentrate instead on the impact of may-alias
information on constant propagation for readily identified
uses—those for which constant propagation has {raditionally
been successful.

3 Algorithm

In this section, we describe how to incrementalize an
S5A-based optimization problem to accommeodate IsAlias()
functions missing from 554; but present in §54;4:. We
then describe how to compute §S5A;q; from 554; by
including relevant may-alias information.

The algorithm is shown in Figure 3. The main
procedure contains the interaction of constant propagation
with the computed sequence of partial S5A forms. The in-
crementalized constant propagator (described in Section 3.1)
is invoked on:

Form, which represents the current partial SSA form, and

D List, which represents those definition sites that have
changed since the previous invocation of IneCProp().

and returns:

Soln, which contains the constant value attributed to each
definition site {where | represents non-constant), and

U List, which contains a list of suspicious uses: incorpora-
tion of additional may-alias information could adversely
affect their solution.

The following properties, formally proven in Section 4, are
essential to our algorithm’s performance:

1. For each use v € U List, Update() discovers the defini-
tion d that would reach w in 5S5A if such information
is necessary for convergence of constant propagation.

2. When IncCProp() returns an empty I Dist, constant
propagation convergence has been achieved.

3.1 Incrementalizing the Optimization

A generally incremental constant propagation algorithm
must address arbitrary modifications of a program, including
those that substantially alter program flow or the contents
of the associated flow graph's nodes. We shall see that the
changes introduced by step are of three restrictive forms:

Algorithm([1] Constant Propagation
foreach (d € DefSites) do
Vistted(d) « 0
od
VisitStamp «— 0

Function Update(Form, SuspiciousUses) : [Form, DList]
DList — L

% € Suapiciouslses

do
| Ldef(u)# Lor I{u)=10 =[x

foreach

Form e 55Aq(Prog) if (3) Symbol(u) € MayAlias(d)) then <= [21
DList « DefSites = () @)
[Soln, UList] « IncCProp(Form,DList) <« Snoop (DomDef(u),

VisitStamyp « VisitStamp + 1 NewDef Rd ! <« [22]

[Form, DList] « Update(Form, U List) <« | ef()

IneCProp (Form .
. ' if (NewDef # 1) then
[Soln, U List] « DList <« (Rdef(u) — N)ewDef =
) fi
a fi

o
end en cf d
Function Snoop(StartDef, StopDef, Rdef) : Def In the following, + represents any super-

d — StartDef scripted reference.

Whﬂe‘ (_d # StopDe:f)‘ do «[24 CreatelsAlias(d, Rdef): inserts the

Visited(d) «— VisitStamp «[25] statement

if (Symbol(d) = Symbol(Rdef)) then

DList « DListU{d} = d' = IsAlias(u*,u°)
i d
P @) after def d, with
if (Symbol(Rdef) € MayAlias(d)) then « Symbol(d') = Symbol(Rdef)
NewDef «— CreatelsAlias(d, Rdef) <+ [28] Symbol(wl) = Swmbol(d
DList « DListt){ NewDef} = ymbol(u') = Symlol(d)
return {NewDef) Symbol(‘u.z) = Symbol(Rdef)
i ((node(d))) th Rdef(u*) = d
if (d = FirsiRef(node(d))) then z
Rdef(u®) = Rdef
IDef « 1
foreach (m € Preds(node(d))) do = DomDef(r) d, v # i
if (Visited(LastRef(m)) # VisitStamp) then = DomDef(x®) = DomDef(d)
Node(r) Node(d)
Snoop (LastRef(m),
IDef LastRef(idom(node{d))), - CreatePhi(d, Rdef,m, I Def): inserts
Rdef the statement
) 4 = ¢(ut,. .., u")
f" at the beginning of node Node(d)
if (IDef # L) then with indegree k, setting
NewDef « CreatePhi(d, Rdef,m,IDef) =
DEList «— DListU{ NewDef} «= DomDef(d) = d'
return (NewDef) Symbol(r) = Symbol(Rdef)
od fi Node(d') = Node(d)

fi Node(u') = Pred i of Node(d)

d — DomDef(d) . .
od DomDef(u") = LastDef(Node(u'))
return (1) . .

end rasi) ={ Bt 127

Figure 3. Algorithm.

1. When v € MayAlias(d) is accommodated at step [27],
a statement of the form

v = IsAlias(Symbol{d), v)
is inserted into Node(d) by step [28].

2. Insertion of & definition for v at node X may introduce
a ¢-function for v at node Z, where X dominates some
predecessor Yo, of Z, but X doesn’t sirictly dominate
Z. If Z has k predecessors, then a statement of the

form
v =¢('u1,'u2,...,'uk)

is inserted at the beginning of node Z by step [33]. !
As discussed earlier, each use v* is actually associated
with predecessor Y; of Z.

3. The S55A name associated with a use u, maintained as
Rde f(u), changes at step because of a def inserted
by either of the above modifications.

The azbove modifications occur in response to accommoda-
tion of may-alias information. We prove in Section 4 that
such modifications cannot “betier” the data flow solution
for any variable at any node. Thus, an incremental con-
stant propagator can assimilate the definitions provided by
step without restarting any of its computations.

In summary, an $5A-based constant propagator [WZ91]
is incrementalized by:

Exposing its definition worklist: Step provides the
initial set of definitions, and a new list is developed each
time step executes;

Flagging its suspicious uses: Any use u can be returned
to Update() as suspicious, in which case Update()
will invoke Snoop() to incorporate relevant may-alias
information.

The correctness and termination conditions for our al-
gorithm place the following demands on the incrementalized
constant propagator:

1. Any use u whose constant propagation solution is non-
4 must be marked suspicions during some round of
constant propagation. Our algorithm then investigates
may-aliases if u is an “original” use (f(u) = 0) or if =
participates in an JsAlizs() or ¢ function whose target
is non-1.

2. A use u is flagged suspicious at most once. By
maintaining a single bit with each use, the constant
propagator can “remember” whether it has ever flagged
a given use as snspicious, and avoid repeatedly placing
the same use on I List.

3.2 Update and Snoop

The Update() procedure shown in Figure 3 considers each
suspicious use % at step [20], and finds (through Snoop())
the definition of Symbol{u) associated with v in §54..
However, the predicate at eliminates pursuit of may-
alias information for uses at I'sAlias() or ¢ functions, where
the target of the function has already been determined to
be 1. For other uses where a suitable definition is found,
step appropriately modifies Rdef(u).

*We use superscripts to represent the i-th argument of the
¢-function, as subscripts might connote a name for the i-th

argument.

Though absent from our initial implementation, we
soon discovered the value of step , which determines
if eny may-aliases are associated with Symbel(u). This
step precludes from consideration those uses whose reaching
definition in S5 A4, was correctly determined in $54s. The
formidable predicate at step is easily established by
maintaining a single bit with each storage name, indicating
whether the symbol is mentioned in any of the program’s
may-alias relations.

In any partial 3SA form, Rdef(u) contains the defini-
tion of Symbol(u) whose “name” is currently associated with
u, and Node(Rdef(u)) necessarily dominates mode(w). *
Any change in Rdef(u) must occur because some definition
of Symbol(u) intercedes between 2 and Rdef(u)} as addi-
tional may-alias information is accommodated. In Figure 3,
such a definition might be introduced by Snoop() as the
target of an TsAlias() function (at step[29]), or as the target
of a related ¢-function (introduced by step [34]).

Definition I Consider two definitions d and D, of poten-
tially differing storage names, such that D dominates d. We
define DomSireich(d, D) as the list of dominating definition
sites from d to D, excluding D:

(d, DomDef(d), DomDef(DomDef{d)),..., A)

where DomDef(A)=D.

Thus, Snoop() is invoked at step [22] to process defs in
DomStretch(DomDef(u), Rdef(u)).

The function Snoop() proceeds up the dominator tree
in search of alias information that directly (via IsAlias())
or indirectly (via a ¢-function) induces a definition of
Symbol(Rdef) symbol between StartDef and StopDef
(excluding StopDef). Although the function is invoked
recursively, each invocation returns the appropriate def in
DomSiretch (or L if none exists). The Visited() attribute
makes certain that no def is visited twice per suspicious use.

As step iterates over each def site

d € DomStretch(StartDef, StopDef)
one of the following conditions concludes the search:

1. A def of Symbol(Rdef) is encountered in the cur-
rent SSA form. Because the search excludes Rdef,
d dominates the suspicious use u, and 4 is strictly
dominated by RHdef; the next partial SSA form must
reflect that Rdef(u) = d. Smoop() therefore adds d
to the constant propagator worklist (because its set of
reached uses changes), and returns d; step then
updates Rdef(u).

2. A def is encountered whose may-aliases included
Symbol{ Rdef). Step inserts the appropriate defini-
tion of Symbol{ Rdef) through an IsAlias() function,
step adds the new def to the constant propagator
worklist, and Snoep() returns this new def.

3. A recursive invocation of Snoop() from siep has
established a def that requires insertion of a ¢-function.
Step creates the appropriate ¢-function, step
adds the new def to the worklist, and Sneop() returns
the new def.

2In traditional SSA form, this property would be true only for
ordinary uses. Because we push ¢-uses into predecessors of the
¢-function, this property is true for all uses in our representation.

5540 S84
vy — 3 = vp — 3 =
*r — 3 7 — 3
if (b) then if () then
*q +— 3 *g — 3 =
else else
=T *t =T
*p B *p B
*3 — 3 &= *8 — 3
v +— IsAlias(s, &wvo) =
fi fi
v2 e (w0, v1) «=[42]
Null — = Null
€ — vp = ¢ — g
554, §554; =554,
v — 3 &= g & 3
*r — 3 = *7 — 3
if (3) then vp +— JTsAlias(r, &vo) <=
*g — 3 if (b) then
vy +— IsAlias(q, &vo) & kg — 3
else vz « TsAlias(q, &vs)
T = else
*p — 6 *t — T
vy« IsAlias(p, &wo) = *p — 6
8 3 vy — IsAles(p, &vo)
v — TsAlies(s, &v,) = *8 +— 3
fi vy + TsAlias(s, &vy)
vz = ¢(vs, v1) «[49] fi
Null vz — (w3, v1)
c + vz <~ Null —
c— vz

Figure 4. Example.

3.3 Example

We illustrate the workings of our algerithm using the
example shown in Figure 4. The SS5Ap program is a slight
variant of our early example in Figure 1. Each dereferenced
pointer serves as a may-alias for » only,

In the initial round of constant propagation, the use
of wy at is found to be 3, since its reaching definition
at has that value. As a result, the use of v at
is flagged as suspicious by the constant propagator and
placed on [V List. Recalling that a def site is inserted at the
beginning of nodes that otherwise lack an initial def site,
Snoop() is called on DomStretch((37],[35]). Because
is the first def in its node, step [30] explores predecessors
of [37]. Accordingly, Snoop() is called recursively for
DomStretch([36],) Statement is then discovered as
a may-alias for v, adding the [sdiias() at and, upon
return from recursion, the ¢ at [42] The suspicious use of v
at is renamed vp—its reaching definition in §54..

The next round of constant propagation will accom-

modate the new defs v; and vz, but each is found to be
the constant 3. However, three suspicious uses are added
to [List for the next partial SSA form: the two uses of v
at (actually associated with predecessors and [40])
and the use at [41].

1. Processing the use at (not shown~—associated with
the ¢ at) invokes Snoop() on DomStretch((41],[41])

and so no work is done.

2. Processing the use at {not shown—associated with
the ¢ at) invokes Snoop() on DomStretch([40],[33]),
and the TsAlias() at is added, with the use of »

changed at [49].

3. Processing the use at introduces the JsAdlias()
at [47], which changes the use of v at [48]

When constant propagation is again execuied, the definition
at becomes |, which makes the definition at become
1, which makes the definition at become L., which makes
the use of v at 1.

Because the result of the IsAlias() at is 1, the
argument vp need not be marked suspicious, even though its
value is non-l. Step precludes incorporation of may-
alias information that could affect [46].

Accommedation (ie., explicit representation) of the
may-alias for v at is actually unnecessary with respect
io constant propagation for the program’s executable uses;
we return to this issune in Section 6. However, our algorithm
as given would continue, creating S54; by finding the use
at [45] to be reached by the IsAlas() inserted at [51]. In
a subsequent round, the use of v at is ratified, and so
5543 is our SSAn. Constant propagation then returns an
empty list of suspicious uses, so the solution has converged.

We emphasize that the sbove example is intended to
illustrate our algorithm’s execution rather than its perfor-
mance. While the example required elaboration of all may-
aliases for v, our experiments indicate that convergence
occurs much faster in practice.

4 Analysis

In this section we offer proof of our algorithm’s correctness,
and we analyze its worsi-case performance. We extend the
notation of Section 2 by subscripting a structure to reflect
its value at a particular partial SSA form. For example,
Rdefi{u} refers to the def that reaches use u in S5A4;.

Although the details of data flow analysis [Mar80] are
beyond the scope of this paper, we require some notation to
describe the nature of incrementally obtained solutions. We
write Solni(r) to denote the solution obtained by constant
propagation for a given ref » for 554;. In comparing two
solutions e and b, we write a < b if the solution & can be
“no better” than the solution 5. The meet of two solutions
a and b is written a A b.

For describing the construction of partial SSA forms,
we borrow the following notation [CFR*91]:

X2Y for X dominates ¥

A >»Y for X strictly dominates ¥
idom(Z) for the immediate dominator of Z

DF(X} for the dominance frontier of X

DF+(X) for the iterated dominance frontier of X

4.1 Correctness

QOur proofs are divided into three groups, each concluding
with a theorem that we summarize here:

Theoremn 1: Constant propagation need not be restarted
between SSA forms.

Theorem 2: In processing a suspicious use u to cre-
ate S5SA:, our algorithm determines Rdefi{u) =

Rdefoo(u).

Theorem 3: QOur algorithm terminates with the correct
solution.

Lemama 1 If Rdefi(u) # Rdefi_1(u) then defd = Rdefi(u)
first appears in SSA; | 2 > 0, such that the text associated
with d is one of the following forms:

1. Symbol(d) = IsAlias(ptr, Symbol(d))
2. Symbol(d) = ¢(Symbol(d),. .., Symbol(d))

Proof: Follows from the descriptions of CreatelsAlizs() and
Create PRi() in Figure 3 and the observation that defs are
introduced only by those procedures. {1

Lemma 2
Rdef:(u) # Rdefii(u) = Seln;{u) < Solni_: (u)

Proof: By Lemma 1, any change to Rdef(u) must occur by
introduction of an associated IsAlias() or ¢ function. In
either case, the data flow solution is obtained by a meet that
includes at least Soln;_;(Rdefi 1{u)). The proof follows
from

aXb=z>aAbaAb=b

0

Lemma 3 For any defd
Soln;(d) % Solni_,(d)

Proof: Follows from Liemma 2 and the observation that
Soln(d) depends only on the solutions of uses that contribute
to the computation of 4. D

Theorem 1 Constant propsgation need not restart be-

tween SSA:—1 and SSA;.
Proof: Follows from Lemmas 1, 2, and 3. O

Lemma 4 For any use » and any partial SSA form $5A4;
Rdefi(u) € DomStretch(DomDef(u), FirstDe f(Eniry))

Proof (by contradiction): Suppose Rde fi{u) exists on a path
from Entry to Node(u) but does not dominate Node(w).
Then

3 X € DomStretch{DomDef(u), FirstDef{ Eniry))
| X € DFY(Node(Rdefi(u))

But this implies a ¢-function at X for Symbol(u). By
inspection, our algorithm would have placed such a ¢-
function at step and Rdef;(u) would have been set to
the target of this ¢-function by step [28] The lemma holds
even for uses of a ¢-function, since we associate such uses
with the corresponding predecessors of the ¢-node. O

Lemma 5 SSA; contains a ¢-function for v at node Y if
and only if

Node(d) = X

. Y DF(X

3 d € DefSites; | Symbol(d) : ; (X)
idom(Y) » X

Proof: Follows from inspection of our algorithm.

Corollary 1 S5S5A; contains a ¢-function only if 554
would contain a ¢-function.

Proof: See [CFR*91].
Lemma 6 If Rdefi{u) # Rdefoa{u) then
Rde fi(u) » Rdefoo(u)

and Rdefo,(u) is the target of an IsAlias() or ¢ function,
Proof: Follows from Lemmas 4 and 1. O

Theorem 2 As invoked on use u at step [22], Snoop() finds
Rde foo(u).

Proof: Given S5A;, Snoop() traverses

A = DomStretch(DomDefi(u), Rdef;(u))
in the loop at [24] By Lemma 4, Rdefoo(u) occurs in A.
By Lemma 6, Rdef..(u) occurs earlier in A than Rdefi{u).

Since Snoop() checks for may-aliases and $-functions along
A, the def returned to [22]is Rdefoo(u). O

Lermama 7 Consider the set of uses that participate in the
computation of some def d:

Relllses = {u | Ldef(u)=4d}
Solne(d) can be determined in S§A4; for def d if either:

3 u € RelUses|
Y u € RelUses

Solni(u) =1
Solni(u) = Solne(n)

Lemma 8 Solne(u) can be determined in SSA; for use
if
Rdef;(u) = Rdefoo(u)

and

Solni(Rdefi(u)) = Solne{Rde fo(u))

Theorem 3 SSA; = S5Aq when the following conditions
hold:

1. Any use u such that I{u) = 0 and Solni(u) £ L has
Rde fi(x) = Rde fo(x)

2. Any use u such that I(u) > 0 has either Rdefi(u) =
Rdefoo(u) or else Soln(Ldef(u)) = L.

3. For each def d, Soin;i(d) = Soln..(d).

Proof: For (1}, observe that if Soln;(u) = 1, then by
Lemma 2, future partial SSA forms cannot improve upon
the sclution. For (2), observe that any use v in a Js Alizs()
or ¢ function whose solution is L yields Soln(Ldef(u)) = L.
For (3), there is no partial SSA form past SSAe. The proof
then follows from Lemmas 7 and 8. O

Corollary 2 When U List becomes empty, S54; = §554q

4.2 Completeness

Each element in our segquence of partial SSA forms is partial
in two senses:

1. Each may lack the full IsAlias() information present in
SS5A. Correspondingly, certain ¢-functions may also
be absent.

2. Each may contain a use u such that Rdefi(u) is out-
of-date. In response to inserting mew definitions, our
algorithm does not update every affected use.

The first point should be expected, since we wish to avoid
the space (and associated time) expense of computing full
S55A form. The second point is necessary for our time
bounds, in that we desire performance related to the amount
of “change” necessary to accommodate freshly-incorporated
may-alias information. If our algorithms spent time de-
termining the reaching definition of every use affected by
Snoop(), then the resulting partial SSA form would be more
complete, but we could not guarantee the usefulness of such
work. We therefore wait until a use appears on the suspicious
U List before we determine its reaching definition.

4.3 Performance

Our algorithm’s worst-case performance is easily analyzed,
though the result is not enlightening in an incremental
setting. Let I/ be the number of suspicious uses identified
during the optimization problem (including all iterations of
loop [17]). In the worst-case, every edge in the flow graph (at
step [20]) must be considered. Qur algorithm's performance
is thus O(U E), where E is the number of edges in the flow
graph. The term U is a function of the number of uses in
the original 554p text, as well as the number of TsAlias()
and ¢ functions inserted by our algorithm.

As should be noted from the example presented in
Figure 4, further investigation of suspicious uses cccurs
only when incorporation of may-alias information does not
sufficiently degrade the optimization solution. It’s very
unlikely that may-aliases of a mame are all assigned the
same constant value. We hypothesize that programs coniam
either:

o a great deal of may-aliases, in which case the opti-
mization problem converges guickly to L around such
aliases; or,

¢ scant may-alias information, which can be included
with a small number of iterations of our algorithm (the

loop at step [17]).

While our experience with the algorithm indicates
very good performance in practice (Section 5), the asymp-
totic performance can be improved by introducing path-
compression[Tar75] into Snoop(). As an associated expense,
space would have o be allocated to maintain such informa-
tion per-variable, or the U7 List would have to be sorted by
symbol name.

5 Experiment

We performed the following experiment on 139 Fortran
programs taken from the Perfect [BCK*88] (Ocean, Spice,
QCD) benchmark suite and from the Eispack [SBD*76)
and Linpack [DBMS78] subroutine library. Since Fortran
{77) has no pointer dereferencing capability, we randomly
associated may-alias information with each program using
the following two parameters:

AliasRatio R: the probability that a given definition site
is may-aliased with any symbols.

Alias'Width W: the probability that a given symbol is
included in a definition site’s may-aliases.

The pair (R, W)} can then model a wide vatiety of alias
behavior:

{0,0) no definition site has any may-alases. With this
setfing, the exhanstive algorithm should outperform
our incremental algorithm.

{1,1) each definition site is may-aliased with every symbol.
With this sefting, our incremental algorithm should
outperform the exhaustive algorithm.

(.25,.5) on average, one out of four definition sites has
may-aliases; when this occurs, half of the symbols are
involved, on average.

12—
*
* *
10— + *
*# ** * *
8_ *#‘ £
x Fra
e i
oy
w4
* % *
4 i K o *
* %
* * *
9
*
0—

| | I [
0 100 200 300 400 500

| I | | I [
600 700 800 900 1000 1100

Figure 5. Plot of speedup vs. program size for (R, W) = (.25, .5).

The {following table shows the median speedup of cur
method over the exhaustive method:

Alas Ratio Alias Width
25% | 50% | 100%
0% 1.0

%% || 26 | 4.3 8.1
50% || 3.4 | 6.0 | 11.6
100% || 5.2 | 6.9 | 20.7

Figure 5 plots the speedups we obtained when, on
average, one-fourth of a procedure’s definition sites alias one-
half of the variable names. Program size is measured by the
number of nodes in the associated flow graph. Qur method
shows significant speedup, especially on the larger programs.

¢ In the no-aliasing situation, the exhaustive algorithm
did outperform the incremental, though the median
was 1.0. The only significant cases were two programs
of 20 or fewer statements, where our speedup was 0.7,
but these programs took scant time anyway. For one
program of 132 statements, our speedup was 0.86. For
all others, we were close to 1.0.

¢ In the completely-aliased situation, the space require-
ments for exhaustive SSA exceeded the 156M virtual
storage capacity of the host machine for 12 programs. *
In our best showing, we obtained a speedup of 60 for
three programs of 128 to 263 flow graph nodes (none of
these aborted).

6 Conclusions and open questions

This paper specifically addresses incorporation of may-alias
information for constant propagation in SSA form. However,
the mechanism by which the optimization was coupled to our
algorithm involves the definition and use sites of a partial
SSA form. Any optimization based on SSA form (value
numbering, code motion, etc.) must be concerned with the
interaction between definitions and uses. The introduction
of monotonic information into a subsequent partial S3A form

3Timings for these 12 runs were taken at the abort point.

does nat require “restarting” a data flow problem based on
that information. Thus, data flow optimizations based on
SSA form should be easily incrementalized in the style by
which we incrementalized constant propagation.

In developing optimization algorithms for programs
with pointers, one must either special-case the behavior of
pointers, or else fully and accurately model the effects of
pointer dereferencing. While the latter approach allows for
a cleaner optimization algorithms—including the results of
sophisticated (may-)alias analysis—representing all effects
of all stores through pointers can significantly increase
the size of a program’s representation. Processing that
representation will necessarily incur greater expense during
each phase of optimization.

Qur experimenis show that accommodating may-
alias information incrementally can significantly improve
optimization-time performance while still allowing optimiza-
tions to be formulated without special-cases for pointers.
Even where may-aliases are rare, our incremental algorithm
does not perform poorly when compared with its exhaustive
counterpart.

We suggest the following approaches to further research
on this problem:

¢ In Section 3, we required the constani propagator to
place any use u on U List if Soln(u) # L and u was
not previously placed on U List. If the JsAlias() and ¢
functions serve only to transport data flow information
to the program’s original defs and uses, then these
functions can be eliminated prior to code genera-
tion [CFR*91). In such cases, constant propagation
need not be suspicious about uses in an IsAlias() or ¢
function unless such uses are required to validate the
data flow scluiion at an ordinary program use. Thus,
the conditions under which the conmstant propagator
must flag a suspicious use can be restricted beyond
those given in Section 3.

e Our work to date addresses only “flat” name spaces, so
we hope to extend the work to accommodate informa-
tion developed for structure references [LH88, CWZ90,
HN99].

¢ Qaur algorithm may be suitable for including informa-
tion similar to may-aliases incrementally into sparse
data flow evaluation graphs [CCF91].

¢ Our experiments are based on simulated {probabilistic)
may-alias patierns. We would like to try our algorithm
in a system that actually analyzes ¢ programs for may-
aliases.

Acknowledgements

We are grateful to Barbara Ryder and Bill Landi for inspiring
this work through their ambitious alias analysis, and we
thank them for many enlightening conversations during
our work on this problem. We thank the PTRAN and
RISC compiler groups at IBM Research for their help and
comments at the early stages of this work, particulazly Fran
Allen, Jonathan Brezin, Paul Carini, Jong Choi, Marty
Hopkins, Dan Prener, and Edith Schonberg. We thank
Ron Loui, administrator of the SURA NSF-funded program
at Washington University, for sponsoring Reid Gershbein’s
work on this topic. We thank Wil Gillett, Vivek Sarkar,
and Mark Wegman for their careful reading of this paper
and for their helpful comments. The final formulation of
this paper was guided by suggestions from the program
committee members, and we are grateful for their direction.

References

[AWZ88) B. Alpern, M. N. Wegman, and F. K. Zadeck.
Detecting equality of values in programs. (onf.
Rec. Pifteenth ACM Symp. on Principles of Pro-
gramming Languages, pages 1-11, January 1988.
[BCK*88] M. Berry, D. Chen, P. Koss, D. Kuck, §. Lo,
Y. Pang, R. Roloff, A. Sameh, E. Clementi,
S. Chin, D. Schneider, G. Fox, P. Messina,
D. Walker, C. Hsiung, J. Schwarzmeier, K, Lue,
5. Orszag, F. Seidl, Q. Johnson, G. Swanson,
R. Goodrum, and J. Martin. The perfect club
benchmarks: Effective performance evaluation
of supercomputers the performance evaluation
club (perfect). Technical report, U. of ll~Center
for Supercomputing Research and Development,
November 1988,
F. Bodin. Preliminary report - Data structure
analysis in C programs. Indiana University,
Bloomington, March 1990.
Jong-Deck Choi, Michael Burke, and Paul
Carini. Efficlent flow-sensitive interprocedural
computation of pointer-induced aliases and side
effects. Conference Record of the Twentieth An-
nual ACM SIGACT-SIGPLAN Sympostum on
Principles of Programming Languages, January
1993.
J. Choi, R. Cytron, and J. Ferranie. Auto-
matic construction of sparse data flow evaluation
graphs. Conf. Rec. Eighteenth ACM Symp. on
Principles of Programming Languages, pages 55—
66, January 1991,
Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment
form and the control dependence graph. ACM
Transactions on Programming Languages and
Systems, October 1991.
D. R. Chase, M. Wegman, and F. K. Zadeck.
Analysis of pointers and structures. Proc.
SIGPLAN’30 Symp. on Compiler Construction,

[Bodg0]

[CBC93)

[CCF91]

[CFR*91]

[CWZ90]

[DBMS79]

[HN90]

[Lan92]

[Lan93]

[LHSS]

[LR92]

[LT79]

[Maz89]

[SBD*76]

[Tar75)

[WZ91]

pages 296-310, June 1990. Published as SIG-
PLAN Notices Vol. 25, No. 6.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and
G. W. Stewart, Linpack Users’ Guide. SIAM
Press, 19790.

L. J. Hendren and A. Nicolau. Parallelizing
programs with recursive data structures. IEEE
Trans. on Parallel and Distributed Systems,
1(1):35-47, 1990.

William A. Landi. Interprocedural Aliasing in
the Presence of Pointers. PhD thesis, Rutgers,
The State University of New Jersey, 1992.
William A. Landi. personal communication,
1993,

J. R. Larus and P. N. Hilfinger. Deteci-
ing conflicts between structure accesses. Proc.
SIGPLAN'88 Symp. on Compiler Construction,
pages 21-34, July 1988. Published as SIGPLAN
Notices Vol. 23, No. 7.

Willlam Landi and Barbara G. Ryder. A safe ap-
proximate algorithm for interprocedural pointer
aliasing. Proceedings of the ACM SIGPLAN 98
Conference on Programming Language Design
and Implementation, pages 235-248, June 1992.
T. Lengauer and Robert Tarjan. A fast al-
gorithm for finding dominators in a flowgraph.
TOPLAS, July 1979.

Thomas J. Marlowe. Data Flow Analysis and
Incremental Iteration. PhD thesis, Rutgers Uni-
versity, October 1589.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S.
Garbow, Y. Ikebe, V. C. Klema, and C. B. Mcler.
Mairiz Eigensystem Rouiines — Bispack Guide.
Springer-Verlag, 1976.

Robert Tarjan. Efficiency of a good but not
linear set union algorithm. JACM, 22:215-225,
1975.

M. N. Wegman and F. K. Zadeck. Constant
propagation with conditional branches. ACM
Trans. on Programming Languages and Systems,
13(2):181-210, April 1991.

	Efficient Accommodation of May-Alias Information in SSA Form
	Recommended Citation

	tmp.1454425567.pdf.buRMW

