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1.1 The generalized measurement geometry is depicted in Figure 1.1a. The lo-
cation of the scattering event is indicated by x. The directions θi, and θj
represent the direction of the source and detector relative to x, respectively.
Indexing the data by the scatter location, x, both the BRT(1.5) and CBT(1.4)
are linear shift-invariant. In Figure 1.1b we depict the forward operator as a
linear system. The system operates on an image, µ, and returns data gi,j. . . 2

2.1 Images with bounded support, C, do not guarantee data with bounded sup-
port for either the CBT or BRT. For the CBT the support of the data is
extended indefinitely in one direction, −θ, over the region C−θ as depicted in
Figure 2.1a. For the BRT the support of the data is extended in two direc-
tions. Depending on the shape of C, the resulting regions C−i and C−j may
intersect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Truncated CBT data and relevant regions for extending the data. To extend
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indicated by the dashed boxes. We first extend the data in the direction −t
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the combined data in the direction −y. The second extension synthesizes data
in the third and fourth quadrants (indicated by Q3 and Q4). The process is
detailed in Algorithm 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Filtered CBT data effecting periodic BRT data. CBT data associated with
the directions θs and θd are shown in Figures 2.3a and 2.3b, respectively.
Summing these results, we obtain the periodic BRT data shown in Figure
2.3c. The magenta rectangle indicates the support of the original image. In
Figure 2.3c, the rectangle also indicates cropping boundaries to obtain the
truncated BRT data of interest. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Reference image and associated BRT data. Figure 2.4a depicts the Shepp-
Logan phantom as a reference image. Figure 2.4b and 2.4c depict BRT data
with different scatter angles. The BRT data were determined analytically and
sampled at the scatter points associated with the pixel centers of Figure 2.4a. 35
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2.5 Image filtering effects BRT data with bounded support. Figure 2.5a depicts
a notional phantom defined by filtering the image of Figure 2.4a analytically
using the PSF (2.28). In this case ξi = π and ξj = π/11, where the subscripts
distinguish the directions θi = (cos ξi, sin ξi). The associated analytic BRT
data are shown in Figure 2.5b and indicate bounded support. To bound
support of SBRT data, filtering need only address the unique scatter directions
associated with the two BRT data sets. Figure 2.5c and Figure 2.5d show the
filtered image and filtered SBRT data, respectively. Here the scatter angles
for the BRT data composing the SBRT data are ξj ∈ {π/11,−π/5}. . . . . 36

2.6 Error extending and filtering sampled, truncated, BRT data. Figure 2.6a
depicts the error due to extending and filtering the data of Figure 2.4b. The
reference data are shown in Figure 2.5b. Similarly, Figure 2.6b depicts the
error due to extending and filtering the data of Figure 2.4b and Figure 2.4c.
In this case the reference data are shown in Figure 2.5d. . . . . . . . . . . . 37

2.7 Changes in |K| (2.54) with respect to regularization ε and angle ξj. The
first column of images corresponds to scatter direction ξj = π/20, the second
column to ξ = π/7, and the third column to ξ = π/4. For all images we
fix ξi = π. Each row of images uses a different ε; the first row uses 1e−6, the
second 1e−5, and the third 1e−4. For all images the zero-frequency content is
centered for both axes. Further, the same display scale is used as shown in
the colorbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Noise-free reconstruction from limited data. The reference image is shown in
Figure 2.8a, and we limit the available BRT data as shown in Figure 2.8b with
ξj = −π/4. FMS [1] reconstruction, using limited data, is shown in Figure
2.8c. The limited BRT data of Figure 2.8b can be extended using Algorithm
1 as shown in Figure 2.8d. Figure 2.8e depicts results applying the FMS
formula to the extended data of Figure 2.8d. Similarly, Figure 2.8f depicts
results applying Algorithm 2 to the extended data of Figure 2.8d. All images
use the same display scale shown in the colorbar. . . . . . . . . . . . . . . . 40

2.9 Reconstruction of noisy, truncated, BRT data using Algorithm 2. The first
column of images corresponds to scatter direction ξj = π/20, the second
column to ξj = π/7, and the third column to ξj = π/4. Each row of images
uses a different ε in (2.54) which appears in the reconstruction formula (2.55);
the first row uses 1e−6, the second 1e−5, and the third 1e−4. All images use the
same display scale shown in the colorbar. The same realization of Gaussian
noise was added to each data set. The standard deviation of the noise was
10−3 times the peak amplitude of the image. . . . . . . . . . . . . . . . . . 41

2.10 BRT data computed using different forward operator implementations on the
same unit-impulse image. Results computed using direct and Fourier imple-
mentations are shown in Figures 2.10a and 2.10b, respectively. Small nonzero
samples in 2.10b are due to a bandlimited interpretation of the sampled data. 46
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ABSTRACT OF THE DISSERTATION

Joint Estimation of Attenuation and Scatter for Tomographic Imaging with the Broken

Ray Transform

by

Michael R. Walker II

Doctor of Science in Electrical Engineering

Washington University in St. Louis, 2020

Professor Dr. Joseph A. O’Sullivan, Chair

The single-scatter approximation is fundamental for many tomographic imaging problems.

This class broadly includes x-ray scattering imaging and optical scatter imaging for certain

media. In all cases, noisy measurements are affected by both local events and nonlocal

attenuation. Related applications typically focus on reconstructing one of two images: scatter

density or total attenuation. However, both images are media specific. Both images are useful

for object identification. Knowledge of one image aides estimation of the other, especially

when estimating images from noisy data.

Joint image recovery has been demonstrated analytically in the context of the broken ray

transform (BRT) for attenuation and scatter-density images. The BRT summarizes the

nonlocal affects of attenuation in single-scatter measurement geometries. We find BRT

analysis particularly interesting as joint image recovery has been demonstrated analytically

using only two scatter angles. Limiting observations to two scatter angles is significant

because it supports joint reconstruction in two dimensions for anisotropic scatter modalities
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(e.g. Bragg, Compton). However, all analytic inversion strategies share two fundamental

assumptions limiting their utility: nonzero scatter everywhere, and a deterministic data

model.

There are two themes to our work. First, we consider the BRT in a purely deterministic

setting. We are the first to recognize the BRT as a linear shift-invariant operator. This

linear-systems perspective motivates frequency-domain analysis both of the data and opera-

tor. Frequency-domain representations provide new insights on the operator and a common

framework for contrasting recent inversion formulas. New algorithms are presented for reg-

ularized inversion of the BRT in addition to fast forward and adjoint operators. Second,

we incorporate the BRT in a stochastic data model. Approximating the detectors as pho-

ton counting processes, we model the data as Poisson distributed. Our iterative algorithm,

alternating scatter and attenuation image updates, guarantees monotonic reduction of the

regularized log-likelihood function of the data. We are the first to consider joint image es-

timation from noisy data. Our results demonstrate a significant improvement over analytic

methods for data sets with missing data (regions with zero scatter). In addition to joint

image estimation, our approach can be specialized for single image estimation. With known

attenuation, we can improve the quality of scatter image estimates. Similarly, with known

scatter, we can improve the quality of attenuation image estimates.

Through analysis and simulations, we highlight challenges for attenuation image estimation

from BRT data, and ambiguity in the joint image recovery problem. Performance will vary

with scaling of the problem. Total attenuation, detected counts, and scatter angle all affect

the quality of image estimates. We are the first to incorporate both scatter density and

attenuation in noisy data models. Our results demonstrate the benefits of accounting for

both images, and should inform design of future measurement systems.
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Chapter 1

Introduction

1.1 Background and Motivation

The broken ray transform (BRT) appears in the forward model of a number of imaging

modalities and measurement geometries. It was first considered in the context of optical

scatter imaging [2], later applied to x-ray scatter imaging [3], and appears whenever the

single-scatter approximation holds. Under the single-scatter approximation, the mean pho-

ton path between a source and detector includes a single scatter event. Geometrically this

path can be described by two rays sharing a common vertex. The integral along this path de-

scribes the nonlocal effects of the attenuation image. This path integral is referred to as the

BRT. The BRT has been considered for both translation-only measurement geometries [1–8]

and rotate-shift measurement geometries [7, 9, 10].

To our knowledge, all applications associated with the single-scatter BRT represent joint

reconstruction problems. Two spatially-varying images must be resolved. For example, it

may be necessary to recover attenuation despite nonuniform scatter density [3,4], or recover

two attenuation images at distinct energy levels [11]. Variations in the joint reconstruction

problem have motivated several novel contributions related to the BRT. These contributions

are not strictly academic. In application, the forward models must be tailored to the joint

reconstruction problem. For example, scatter-density images that are not strictly positive

will limit available or useful data. The joint reconstruction problem determines available

BRT inversion strategies.
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θi
Source Detector

θjx

Media

(a) Measurement gemoetry

BRT, θi, θj

CBT, θi

CBT, θj

Image Data

µ gi,j

(b) System model

Figure 1.1: The generalized measurement geometry is depicted in Figure 1.1a. The location
of the scattering event is indicated by x. The directions θi, and θj represent the direction of
the source and detector relative to x, respectively. Indexing the data by the scatter location,
x, both the BRT(1.5) and CBT(1.4) are linear shift-invariant. In Figure 1.1b we depict the
forward operator as a linear system. The system operates on an image, µ, and returns data
gi,j.

Before contrasting prior work, we first define a notional measurement geometry. We will use

the geometry to establish some notation and define a joint reconstruction problem involving

the BRT. We generalize the joint reconstruction problem to cover coherent-scatter x-ray

imaging. This modality has received renewed interest recently; however joint reconstruction

of scatter density and attenuation has not yet been addressed [12–14]. In coherent-scatter

x-ray imaging, scatter density is highly sensitive to scatter angle. For this reason, we focus

on BRT inversion using only two scatter angles.

As a simplification we assume a monochromatic x-ray pencil-beam incident upon some media

of interest. At point x ∈ R2 the beam interacts with the media and scatters coherently. We

use θi ∈ S1 to represent the direction of the source relative to the scatter location. The

direction of the scattered photon is θj ∈ S1. We assume the scatter direction is known

due to a collimated detector. The combination of a pencil-beam and collimated detector

determine the scatter location x, which we assume is known precisely. This measurement

geometry is depicted in Figure 1.1a.

The intensity signals measured at the detector largely depends on two media-specific at-

tributes: the attenuation image, and the scatter-density image. The incident path is a

straight line defined by θi, x. The loss in intensity along this path due to attenuation is
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governed by Beer’s law,
I

I0

= exp

(
−
∫ ∞

0

µ(x− tθi)dt
)
. (1.1)

We use I0 to represent the source intensity. Here I represents the incident beam intensity at

the scatter location x before scattering occurs. We use µ(x) : R2 → R+ as the attenuation

image representing both scatter and absorption. Intensity loss along the scatter path due

to attenuation has a similar form and combines multiplicatively. For incoherent-scatter

applications (e.g. fluorescence imaging) it may be necessary to distinguish the energy levels

of the attenuation image before and after the scatter event. This has been investigated

recently [11].

Even in homogeneous media, the intensity observed at the detector may vary with respect to

scatter angle (e.g. θi · θj) and energy level. For coherent-scatter imaging, the scatter density

does not depend on these terms independently, but rather through Bragg’s law [15]. This

relationship is summarized by the so-called momentum transfer q(s, E) : (−1, 1)× R+ → R+

q(s, E) = 2
E

hc

√
1− s

2
. (1.2)

Here h and c are the Planck’s constant and the speed of light, respectively. This definition is

unconventional as we have chosen to define it over the cosine of the scatter angle, s, rather

than the scatter angle directly. Our definition of momentum transfer is related to other

definitions in the literature as shown in Appendix A. Scatter intensity for inhomogeneous

media varies both spatially and with respect to momentum transfer. We use f(x, q) : R2 ×
R+ → R+ to represent the scatter-density image.

Combining the effects of attenuation and scatter density we arrive at the measurement

function

p(x, θi, θj, E) = f (x, q (−θi · θj, E)) exp

(
−
∫ ∞

0

µ(x+ tθi) + µ(x+ tθj)dt

)
. (1.3)

In this expression we have omitted a number of terms necessary for accurate models of

measured data. However, we assume the remaining terms are known multiplicative factors.

Measured data can then be scaled to achieve this generalized form.
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To simplify the notation we will make use of three common transforms. Borrowing the

notation of Natterer [16], we define the cone beam transform (CBT) B of µ as

(Bµ)(x, θ) :=

∫ ∞
0

µ(x+ tθ)dt. (1.4)

This transform appears in (1.3). In particular, the generalized model includes the linear

combination of two cone beam transforms sharing a common vertex. The combination is

commonly referred to as the broken ray transform

(Gµ)(x, θi, θj) := (Bµ)(x, θi) + (Bµ)(x, θj). (1.5)

Denoting the left side of (1.5) by data gi,j, Figure 1.1b represents (1.5) as a linear system

with component CBT operators (1.4).

In subsequent sections we will also make use of the 2D Radon transform

(Rµ)(v, θ) :=

∫ ∞
−∞

µ(vθ⊥ + tθ)dt. (1.6)

Here v ∈ R1, and θ ∈ S1 represent the shift and rotate coordinates of the transform. We

assume θ⊥ is uniquely defined by rotating θ counter-clockwise by π/2.

Using these transforms we can express the log of the measured data

ln p(x, θi, θj, E) = ln f (x, q (θi · θj, E))− (Bµ)(x, θi)− (Bµ)(x, θj) (1.7a)

= ln f (x, q (θi · θj, E))− (Gµ)(x, θi, θj). (1.7b)

The BRT is not directly available in (1.7b). However, the term f can be canceled with

differential measurements [4] even for inhomogenous media.

Given three scatter angles θi, θj, θk such that

θi · θk = θj · θk, (1.8)

we have

ln p(x, θi, θk, E)− ln p(x, θj, θk, E) = −(Bµ)(x, θi) + (Bµ)(x, θj). (1.9)
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The condition (1.8) is only required when the scatter density is a function of momentum

transfer. For some modalities, scatter density varies with respect to scatter angle according

to a known function (e.g. Klein–Nishina). In such cases the data can be corrected and

momentum transfer removed from (1.7b).

For clarification, we will refer to the right-hand side of (1.9) as the signed broken ray trans-

form (SBRT) due to the sign change between CBTs. The SBRT is equivalent to the signed

V-line transform [8]. Some authors have reserved their definition of the BRT for this later

expression [3]. While either definition of the BRT assumes a linear combination of two

CBTs sharing a common vertex, the distinction is important. Also, while positive images

yield positive BRT data, SBRT data may be negative.

For tomographic imaging applications it is common to index the data according to the source

and detector locations. In contrast our indexing is somewhat unconventional. In the context

of the BRT, Katsevich and Krylov were the first to demonstrate the benefits of indexing the

data by the scatter location [3]. Under this indexing schema, both the CBT and BRT are

linear and shift-invariant (LSI). Linear systems analysis is therefore applicable to the CBT

and BRT. Their relationship is depicted in Figure 1.1b. The linear-systems perspective is a

central theme of our contribution as we are the first to consider the two-dimensional Fourier

transform of the BRT. This perspective has benefits which we will demonstrate in subsequent

sections.

Our focus is limited to 2D single-scatter imaging problems where scatter events are observed

throughout the media of interest. This distinction is important because the terms broken ray

transform and V-line transform have been used to describe a number of related problems.

We distinguish BRT problems integrating over multiple reflections [17, 18] or integrating

over multiple vertices [19, 20]. Some constrain the vertex locations along the perimeter of

the measurement geometry [17, 18, 21]. This is generally motivated by the use of Compton

cameras. In three dimensions this results in the cone transform [22], which we distinguish

from the cone beam transform (1.4) [16] applicable to our measurement geometry.

The first analytic inversion formula for the BRT is due to Florescu et al. [1]. The global

inversion formula requires only two scatter angles to recover the attenuation image in the

presence of spatially varying scatter density. The inversion technique can be summarized as

a three-step process. First, obtain the one-dimensional Fourier transform of the data. For
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the second step, each frequency is considered independently. Solve the resulting complex,

one-dimensional, bounded differential equation. Third, obtain the inverse one-dimensional

Fourier transform across the solutions. Florescu’s global inversion formula yields an exact

reconstruction of images with bounded support. The coordinates used to index the data in

the original derivation were not linear-shift invariant. An inversion formula was later derived

using data indexed by the scatter location and generalized for higher dimensions [5].

The number of available scatter angles is a discriminating factor in selecting a BRT inver-

sion strategy. A local inversion formula was discovered by Katsevich and Krylov requir-

ing three unique scatter angles [3]. In contrast with prior results [1], their reconstructions

demonstrated a significant reduction in artifacts. The three scatter-angle approach was later

generalized for additional scatter angles and source locations [6]. While the attenuation

map can be recovered locally, the recovery of the scatter-density image still requires global

reconstruction of the attenuation image. Due to our interest in scatter image recovery, and

the requirement (1.8) for coherent-scatter imaging, we focus on global 2D BRT inversion

techniques using only two scatter angles.

The initial results by Florescu et al. contained significant artifacts even for trivial phantoms

[1]. These artifacts were broadly attributed to the nonlocal effects of integration. Artifacts in

initial results exhibited striations at three distinct angles. Two of these angles are associated

with the incident and scatter directions (θi and θj). However, the general explanation did not

directly address the third direction. This was later explored using micro-local analysis [7].

Sherson was the first to recognize θi+θj as the direction of integration required for inversion.

Most recently a new inversion technique was developed by Ambartsoumian and Jebelli [8].

They used linear shift-invariant indexing of the data but did not employ the Fourier trans-

form. They thoroughly and eloquently derived a new inversion technique by extending the

Fundamental Theorem of Calculus to higher dimensions under a linear change of variables.

They consider V-Line transformed (VLT) data defined by the linear combination of CBTs

along multiple directions {θi}. Integrating VLT data along the direction
∑

i θi yields the

integral of the image over the faceted cone defined by {θi} and the common vertex x. This

unbounded volume can be reduced to a parallelepiped by linearly combining samples of this

integral. Weighting the results, one obtains a reconstruction of the image averaged over this

volume. This approach leads to a wonderfully concise inversion formula. In two dimensions
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they replace differentiation along the directions θi and θj with sample differences. Image

recovery then requires integration along the direction θi + θj. The consequence is potential

blurring over the resulting parallelogram. The blurring can be arbitrarily small for noise-free

environments with high resolution data. For noisy data, the size of the parallelogram must

be larger, which effects blurring in the reconstruction. Additionally, artifacts appear along

the direction of integration (θi + θj) [8].

1.2 Main Contributions

Our contributions in Chapter 2 focus on the forward model in a purely deterministic setting.

This is a best-case scenario for image separation in the absence of noise. Analysis, in a

deterministic setting, is also useful for exposing numerical challenges due to conditioning

and sampling that are only exacerbated by noise. We are the first to recognize the BRT

as a LSI operator when the data are sampled by the scatter location. While Katsevich

and Krylov were the first to index the data by the scatter location [3], we are the first

to recognize the shift invariance of the operator. Perhaps for this reason previous authors

limited Fourier analysis to one of two dimensions [4, 5, 7, 9, 23]. We are the first to describe

this operator purely in the frequency domain. Our linear systems perspective leads to several

contributions.

• For positive images with bounded support, BRT data has unbounded support. We

clarify the extent of samples required to recover images with bounded support, and

present methods for extending sufficient BRT data indefinitely.

• Filtering can be used to bound support of the data for arbitrary bounded images.

Bounding the data is critical for obtaining frequency-domain representations of sampled

signals.

• The forward operator has a nontrivial nullspace due to zeros along a line in the Fourier

space. The existence of this nullspace complicates reconstruction. Mitigation strate-

gies include enforcing continuity in the frequency domain, or equivalently, enforcing

boundary conditions on the reconstruction.
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• A new BRT inversion formula is presented based on the two-dimensional Fourier rep-

resentation of the BRT.

• The frequency-domain representation of the BRT operator provides a common frame-

work for contrasting prior inversion formulas. Both the integral-differential inversion

formula of Sherson [7] and blurred reconstruction formula based on cumulative distri-

butions of Ambartsumian [8] can be described as specializations of our approach.

• Fast algorithms for the forward and adjoint BRT operators are presented. Our novel

filtering technique ensures periodicity in the data space. Periodicity enables discrete

Fourier representations of the data. The forward and adjoint transform can then be

implemented in the frequency domain. We demonstrate a significant reduction in

computation time over a direct (matrix product) implementation.

Analytic inversion strategies share two fundamental assumptions which limit their utility:

nonzero scatter everywhere, and a deterministic data model. In general, any missing samples

are assumed to be obscured by regions with high attenuation. Assuming high attenuation is

not a reasonable approach for data comprising large regions with zero scatter. Regions with

zero scatter are particularly problematic when their locations are not known a priori. While

analysis of the BRT suggests joint recovery is possible, prior algorithms are insufficient. The

contributions in Chapter 3 include the following.

• We are the first to propose an algorithm for joint attenuation and scatter image recovery

with missing data from a single-scatter measurement geometry. The algorithm is based

on a photon counting model for the data: measurements are Poisson distributed.

• Our iterative algorithm guarantees monotonic improvement of the regularized data log-

likelihood function while alternating updates to the scatter and attenuation images.

• Our generalized joint reconstruction algorithm can be specialized for single image re-

covery. Known attenuation can improve scatter-density image estimation, and known

scatter can improve attenuation image estimation.
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Chapter 2

Analysis of the Broken Ray Transform

2.1 Background and Motivation

In the following we take a fresh look at the BRT as a linear shift-invariant operator. A

linear systems perspective provides new insights on the transforms and tools for contrasting

prior inversion formulas. More specifically, we demonstrate images with bounded support

do not guarantee data with bounded support. We are the first to consider the minimum

data required for reconstruction and techniques for bounding support of the data. The

two-dimensional Fourier transform of the BRT operator highlights numerical challenges. It

exhibits zeros along direction of integration (θi + θj) [8]. The ensuing ambiguity can be

resolved analytically with boundary conditions on the reconstructed image (e.g. 0 after

subtracting the background level). However, boundary conditions do not address numerical

sensitivity near zeros in the frequency domain. The poles in the forward operator, along the

directions θi and θj, also present numerical challenges. We contrast recent work [8] against

prior inversion techniques [1,5,7] as different strategies for addressing the poles in the forward

operator. To mitigate numerical issues associated with the forward operator, we incorporate

regularization in our frequency-domain inversion formula. Due to rotational invariance of

the two-dimensional Fourier transform, our inversion formula supports arbitrary source and

scatter directions (θi, θj). In contrast, prior analytic inversion strategies require computation

of integrals and sample differences in the spatial domain that are only convenient when the

directions are aligned with sampling axes (e.g. [8]).

To exploit the benefits of linear system analysis, we first derive the two-dimensional Fourier

transform of the BRT data. Since the BRT is LSI, we expect the result to have a specific
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form. We can decompose the Fourier transform of the data into the product of two terms:

the Fourier transform of the image and the Fourier transform of the system function. From

the Fourier transform of the system function, several insights are directly available.

We consider an absolutely integrable image with bounded support. We define a closed,

bounded, convex set C ⊂ R2, which we use to window the image according to

µC(x) =

{
µ(x), for x ∈ C
0, otherwise.

(2.1)

We use µ̂C(w) to represent the two-dimensional Fourier transform of the image. Since the

BRT is simply a linear combination of CBTs, we first define the two-dimensional Fourier

transform of the CBT data

b̂θ(w) = F2 {(BµC)(x, θ)} (2.2a)

= µ̂C(w)

[
−1

i2πw · θ
+

1

2
δ(w · θ)

]
. (2.2b)

The details of this derivation are in Appendix C.1. The two-dimensional Fourier transform

of the BRT data is therefore

ĝi,j(w) = F2 {(GµC)(x, θi, θj)} (2.3a)

= F2 {(BµC)(x, θi) + (BµC)(x, θj)} (2.3b)

= µ̂C(w)

[
−w · (θi + θj)

i2π (w · θi) (w · θj)
+

1

2
δ (w · θi) +

1

2
δ (w · θj)

]
. (2.3c)

Indeed, this result can be decomposed into the product of two terms. The bracketed term

represents the two-dimensional Fourier transform of the BRT system function. For conve-

nience, we will frequently reference a portion of this term

ĥi,j(w) :=
−w · (θi + θj)

i2π (w · θi) (w · θj)
. (2.4)

We emphasize ĥi,j(w) is not the transform of the BRT forward operator as the delta functions

have been excluded.
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The expression (2.3c) highlights some challenges with BRT inversion. We observe singulari-

ties at w · θi = 0 and w · θj = 0. At these frequencies, finite µ̂C(w) does not guarantee finite

ĝi,j(w). As a consequence, the data may have unbounded support.

Additionally (2.3c) demonstrates zeros in the forward operator. We define the set Θi,j ⊂ R2

as

Θi,j := {w : w · (θi + θj) = 0, w · w > 0} . (2.5)

For all w ∈ Θi,j, we have ĝi,j(w) = 0 for all µ̂C(w). In this way the BRT has a nontrivial

nullspace. The zeros are limited to a line, and so the nullspace does not include images

with bounded support. This does not preclude exact analytic reconstruction of images with

bounded support. However, this is problematic for numeric reconstruction. We have arrived

at these observations from a linear systems perspective. Similar observations were previously

made applying microlocal analysis to the BRT [7].

A Fourier representation of the image is found by multiplying both sides of (2.3c) by the

inverse of (2.4)

µ̂C(w) = ĝi,j(w)
−i2π (w · θi) (w · θj)

w · (θi + θj)
, ∀w /∈ Θi,j. (2.6)

Justification for removing the delta functions is given in Appendix C.2. Using (2.6) alone,

we cannot recover µ̂C(w) for w ∈ Θi,j. According to (2.3c), ĝi,j(w) = 0, for all w ∈ Θi,j,

which leaves (2.6) indeterminate. Instead, µ̂C(w) for w ∈ Θi,j must be recovered by imposing

boundary conditions on µC(x) or, equivalently, continuity of ĝi,j(w) (i.e. applying L’Hôpital’s

rule).

In the parlance of linear systems analysis, this inversion formula comprises two lines of zeros

and one line of poles. The zeros are associated with directional derivatives, and the poles

are associated with integration. Inverting this process leads to the reconstruction formulas

µC(x) =
1

‖θi + θj‖
d

dθi

d

dθj

∫ ∞
0

gi,j

(
x+ s

(θi + θj)

‖θi + θj‖

)
ds (2.7a)

=
−1

‖θi + θj‖
d

dθi

d

dθj

∫ 0

−∞
gi,j

(
x+ s

(θi + θj)

‖θi + θj‖

)
ds. (2.7b)

A detailed derivation is given in Appendix C.2. This is a generalization of previous inversion

formulas derived by other means [1,5,7,8]. Sherson was the first to recognize the symmetry
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in the expressions (2.7a) and (2.7b) [7]. This redundancy is useful for numeric reconstruc-

tions from noisy data. For finite data the integrals are applied over different lengths and

different noise realizations. The two results can be combined to minimize variance in the

reconstruction.

The delta functions in (2.3c) present some obvious challenges. Delta functions imply images

with bounded support do not guarantee data with bounded support. Unbounded support

begs the question: what extent of data is necessary for reconstruction? We address this in

Section 2.2. Additionally, these delta functions present numerical challenges when computing

the Fourier transform from sampled data. We will address this in Section 2.3. Combining

these results we obtain Fourier-based inversion formulas in Section 2.4.

2.2 Complete Representation of Data with Infinite

Support

It is helpful to distinguish segments of the boundary of C with respect to the orthogonal

basis θ, θ⊥. For this we define the scalar values

v−θ := min
x∈C

x · θ⊥ (2.8)

v+
θ := max

x∈C
x · θ⊥ (2.9)

vθ := v+
θ − v

−
θ . (2.10)

Additionally we define the auxiliary functions u−θ , u
+
θ :
[
v−θ , v

+
θ

]
→ R

u−θ (v) := min t, s.t. tθ + vθ⊥ ∈ C (2.11)

u+
θ (v) := max t, s.t. tθ + vθ⊥ ∈ C. (2.12)
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C−θ

C
θ⊥ θ
v+
θ

v−θ

f−(v; θ)

f+(v; θ) C+
θ

V −θ
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θ

(a) CBT data regions

C

C−i

C−j

C−i ∩ C−j

(b) BRT data regions

Figure 2.1: Images with bounded support, C, do not guarantee data with bounded support
for either the CBT or BRT. For the CBT the support of the data is extended indefinitely in
one direction, −θ, over the region C−θ as depicted in Figure 2.1a. For the BRT the support
of the data is extended in two directions. Depending on the shape of C, the resulting regions
C−i and C−j may intersect.

We define non-overlapping line segments along the boundary of C as functions,

f−, f+ :
[
v−θ , v

+
θ

]
→ C

f−θ (v) := u−θ (v)θ + vθ⊥ (2.13)

f+
θ (v) := u+

θ (v)θ + vθ⊥. (2.14)

Using these functions, we define the mutually exclusive regions C−θ , C
+
θ , V

−
θ , V

+
θ ⊂ R2:

C−θ :=
{
x : x · θ < u−θ (x · θ⊥; θ), x · θ⊥ ∈

[
v−θ , v

+
θ

]}
(2.15)

C+
θ :=

{
x : x · θ > u+

θ (x · θ⊥; θ), x · θ⊥ ∈
[
v−θ , v

+
θ

]}
(2.16)

V −θ :=
{
x : x · θ⊥ < v−θ

}
(2.17)

V +
θ :=

{
x : x · θ⊥ > v+

θ

}
. (2.18)

These definitions are illustrated in Figure 2.1a.

With definitions in place, we make some observations regarding the support of the CBT

data. We state them as three theorems. First, we limit support of the data. The CBT data

are zero for all x outside the support of the image, C, and the shadow region C−θ .
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Theorem 2.1. (BµC)(x, θ) = 0 for all x ∈ C ∪ C−θ .

Proof. The set C ∪ C−θ can be partitioned into three regions C+
θ , V +

θ , and V −θ , where

C ∪ C−θ = C+
θ ∪ V

+
θ ∪ V

−
θ . (2.19)

Since C+
θ ∩ C = ∅, we have µC(x) = 0 for all x ∈ C+

θ . Additionally, if x ∈ C+
θ , then

according to the definition (2.16), x+ sθ ∈ C+
θ for all s ≥ 0. Therefore (BµC)(x, θ) = 0 for

all x ∈ C+
θ . The same is true for V −θ and V +

θ .

Next we observe the CBT, over the region C−θ , is constant along the direction θ. The values

are determined by the Radon transform at θ.

Theorem 2.2. (BµC)(x, θ) = (RµC)(x · θ⊥, θ) for all x ∈ C−θ .

Proof. For all x ∈ C−θ , we can extend the integral of the CBT

(BµC)(x, θ) =

∫ 0

−∞
µC(x+ tθ) +

∫ ∞
0

µC(x+ tθ)dt, (2.20)

where the first term is 0 due to the bounded support of µC . Combining these integrals and

expanding x along the orthogonal basis vectors θ and θ⊥, we have

(BµC)(x, θ) =

∫ ∞
−∞

µC
((
x · θ⊥

)
θ⊥ + tθ

)
dt (2.21a)

= (RµC)(x · θ⊥, θ). (2.21b)

Finally, the Radon transform, for fixed direction θ, is given by the CBT along the boundary

of C.

Theorem 2.3. (RµC)(v, θ) = (BµC)(f−θ (v), θ) for all v ∈
[
v−θ , v

+
θ

]
and (RµC)(v, θ) = 0 for

all v /∈
[
v−θ , v

+
θ

]
.
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Proof. For v ∈
[
v−θ , v

+
θ

]
, we can expand

(RµC)(v, θ) =

∫ u−(v)

−∞
µC(vθ⊥ + tθ)dt+

∫ ∞
u−(v)

µC(vθ⊥ + tθ)dt (2.22a)

=

∫ ∞
0

µC(vθ⊥ + u−θ (v)θ + tθ)dt (2.22b)

= (BµC)(f−θ (v), θ). (2.22c)

For v < v−, we have µC(vθ⊥ + tθ) = 0, since vθ⊥ + tθ ∈ V −θ for all t. Therefore (RµC)(v, θ) =

0 for v < v−θ . The same can be shown for v > v+
θ .

Corollary 2.1. (BµC)(x, θ) = (RµC)(x · θ⊥, θ) for all x ∈ V −θ ∪ C
−
θ ∪ V

+
θ .

Proof. Theorem 2.2 demonstrates equality for x ∈ C−θ . For x ∈ V −θ ∪ V
+
θ , we have

(BµC)(x, θ) = 0 according to Theorem 2.1. For x ∈ V −θ , we have x · θ⊥ < v−θ . Therefore,

(RµC)(x · θ, θ) = 0 according to Theorem 2.3. Similarly, (RµC)(x · θ, θ) = 0 for x ∈ V +
θ .

Theorem 2.2 demonstrates images with bounded support do not guarantee CBT data with

bounded support since C−θ is unbounded. Aperiodic unbounded support is problematic for

discrete Fourier analysis. However, data outside the support of the original image is redun-

dant. If (BµC)(x, θ) is known for all x ∈ C including its boundary, (RµC)(v, θ) is available.

Combining Theorem 2.1 and Theorem 2.2, the CBT is then known for all x ∈ R2. This

is significant as there may be problems for which data are not available outside the sup-

port of the original image. This demonstrates samples along the boundary, or alternatively

direct-path (ballistic) measurements, are sufficient. Once this minimum extent of data are

available, CBT data can be extended arbitrarily.

For our problems of interest CBT data are not available directly. The BRT is a linear

combination of two CBTs sharing a common vertex. Similar to CBT data, bounded support

of the image does not guarantee bounded support of the BRT data. The previous analysis

of CBT data informs the sampling requirements on BRT data. Using the definition of the

BRT (1.5), we distinguish two directions θi 6= θj. In addition to knowing (GµC)(x, θi, θj) for

all x ∈ C, we additionally require the Radon transform in two directions: (RµC)(v, θi), and

(RµC)(v, θj). The complication lies in the partitions of the BRT data. BRT data requires
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additional partitions which may overlap. Resolving the Radon transform, with respect to

two directions, from the BRT data is more challenging.

Following the previous work, our definitions for C and µC need not change. However, we

use i and j to distinguish the directions the subscripts of the definitions (2.8)-(2.18). These

indices are used only in subscripts to avoid confusion with the imaginary unit i :=
√
−1.

Depending on C, θi, and θj, the set C−i ∩ C−j may be nontrivial. The BRT data can be

partitioned as

(GµC)(x, θi, θj) =



(BµC)(x, θi) + (BµC)(x, θj) for x ∈ C

(RµC)(x · θ⊥i , θi) + (RµC)(x · θ⊥j , θj) for x ∈ C−i ∩ C−j
(RµC)(x · θ⊥i , θi) for x ∈ C−i \ C−j
(RµC)(x · θ⊥j , θj) for x ∈ C−j \ C−i
0 otherwise.

(2.23)

These regions are depicted in Figure 2.1b.

In contrast to the CBT, we must distinguish (RµC)(v, θi) from (RµC)(v, θj). Over C alone,

they may not be directly available. We consider two scenarios. First, for some regions C

and scatter angles θi, θj, the set C−i ∩C−j is empty. For example, this is true for rectangular

C, when θi is parallel to a boundary of C, and θi · θj ≤ 0. In such cases, (RµC)(v, θi)

from (RµC)(v, θj) can be distinguished along the boundary of C. As a second scenario,

forward scatter (ballistic) measurements at the two angles can be used to measure the Radon

transforms directly. Forward scatter measurements are distinct from the BRT measurements

we have considered. However, this may be useful for some modalities if measurements over

the boundary of C are not available.

The notation introduced in this section is also useful for simplifying the assumed support of

the image. Due to shift-invariance of the BRT, we can assume the image is centered about

the origin without loss of generality.

Definition 2.1. Let C represent a closed and bounded region in R2, and let θi and θj rep-

resent unique directions such that |θi · θj| < 1. We define v−i , v+
i , v−j , v+

j using (2.8) and

(2.9). Then, C is centered with respect to θi and θj when both v+
i = −v−i and v+

j = −v−j .
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Parallelograms are an important geometric shape in the context of the BRT. This was first

recognized by Ambartsoumian and Jebelli [8]. It is often convenient to extend C to the

circumscribed parallelogram.

Definition 2.2. Let C represent a closed and bounded region centered with respect to θi and

θj. The circumscribed parallelogram, with edges parallel to θi and θj, is given by

P :=
{
x : Πvi

(
x · θ⊥i

)
Πvj

(
x · θ⊥j

)
> 0
}
, (2.24)

where vi, vj are defined according to (2.8)-(2.10). Clearly, C ⊆ P ⊂ R2.

In (2.24), P is expressed in terms of the orthogonal distance between parallel sides. Alterna-

tively, we obtain the edge lengths αi and αj for the edges parallel to θi and θj, respectively

αi := vj/ |det (θi, θj)| (2.25)

αj := vi/ |det (θi, θj)| . (2.26)

We can equivalently express P in terms of the edge lengths

P = {siθi + sjθj; |si| ≤ αi/2, |sj| ≤ αj/2} . (2.27)

Related to P , we define a parallelogram indicator function in Appendix C.3 and derive its

two-dimensional Fourier transform. The results will be referenced frequently in subsequent

sections.

2.3 Filtering Unbounded Support of the Data

When the Fourier transform must be determined numerically, unbounded support of the

BRT is problematic. Simply truncating BRT data effects blurring in the frequency domain.

Windowing corrupts the spectral representation and invalidates the previous Fourier recon-

struction methods. Alternatively, we consider a filtered representation of the data comprising

shifted and negated copies. We define a generalized point-spread function (PSF) such that

the shifted copies of the data combine destructively outside a bounded region of support.
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We consider the PSF

mi,j(x; ai, aj) = δ
(
x+

ai
2
θi +

aj
2
θj

)
− δ

(
x− ai

2
θi +

aj
2
θj

)
− δ

(
x+

ai
2
θi −

aj
2
θj

)
+ δ

(
x− ai

2
θi −

aj
2
θj

)
. (2.28)

Here ai, aj > 0, determine the shift lengths. To illustrate the effects of this function, its

convolution with an image, µ(x), are demonstrated in Figure 2.5a. To be clear, however, we

are motivated by the benefits convolving mi,j(x; ai, aj) and the data gi,j(x) as demonstrated

in Figure 2.5b.

The expression (2.28) has the Fourier transform

m̂i,j(w; ai, aj) = −4 sin (πaiw · θi) sin (πajw · θj) . (2.29)

To reduce the number of variables defined we introduce new notation to distinguish signals,

which support expansion using the PSF function (2.28). We define

ĝmi,j(w; ai, aj) := ĝi,j(w)m̂θ(w; ai, aj) (2.30)

µ̂mi,j(w; ai, aj) := µ̂C(w)m̂θ(w; ai, aj). (2.31)

The same superscript m will be subsequently applied to continuous signals in the spatial

domain and to sampled signals. Plugging (2.3c) and (2.28) into (2.30) we have

ĝmi,j(w; ai, aj) = µ̂C(w)

[
−4 sin (πaiw · θi) sin (πajw · θj)

−w · (θi + θj)

i2π (w · θi) (w · θj)

− 4 sin (πaiw · θi) sin (πajw · θj)
1

2
δ (w · θi)

−4 sin (πaiw · θi) sin (πajw · θj)
1

2
δ (w · θj)

]
. (2.32)

The inverse two-dimensional Fourier transform of this expression involves integration over

w. Due to the sampling property of the delta function, and since sin(0) = 0, the final two

bracketed terms vanish under integration. By the uniqueness of the Fourier transform, we
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have

ĝmi,j(w; ai, aj) = µ̂C(w)m̂i,j(w; ai, aj)
−w · (θi + θj)

i2π (w · θi) (w · θj)
(2.33a)

= µ̂mi,j (w; ai, aj) ĥi,h(w). (2.33b)

In (2.33b) we make use of both (2.31), and (2.4). Since the BRT is LSI, this result is

expected. Filtering the input to an LSI system is equivalent to filtering the output. The

significance is that the delta functions vanish when we filter the data using (2.28).

We obtain another useful form by expanding (2.33a) using (2.29). We reappropriate the

denominator of ĥi,j(w) to find

ĝmi,j(w; ai, aj) = −i2πw · (θi + θj) µ̂C(w)aiaj sinc (aiw · θi) sinc (ajw · θj) . (2.34)

The product of sinc functions in (2.34) is associated with a parallelogram window function

as demonstrated in Appendix C.3. This motivates the definition

µ̂pi,j (w; ai, aj) :=
µ̂C(w)p̂i,j (w; ai, aj)

aiaj |det (θi, θj)|
, (2.35)

where p̂i,j (w; ai, aj) is defined according to (C.38). The scaling is motivated by (C.29). Using

(2.35) in (2.34), we have

ĝmi,j(w; ai, aj) = −i2πw · (θi + θj) aiajµ̂
p
i,j (w; ai, aj) . (2.36)

Taking the inverse two-dimensional Fourier transform of (2.36) we find

gmi,j(x; ai, aj) = − d

d (θi + θj)
aiajµ

p
i,j (x; ai, aj) . (2.37)

Here the first factor represents the directional derivative in the direction θi + θj. This is

clearly not a unit vector. In this form we observe gmi,j(x; ai, aj) has bounded support.

Theorem 2.4. For an absolutely integrable image with bounded support, filtering the BRT

data with the PSF (2.28) bounds support of the data for all ai, aj ∈ (0,∞). Additionally,

the data are finite everywhere.
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Proof. Without loss of generality, we assume the support of the image µC(x) is bounded

by the circumscribed parallelogram, P , according to Definition 2.2. We first observe

µpi,j (x; ai, aj) has bounded support. We define

f(x) := µpi,j (x; ai, aj) aiaj |det (θi, θj)| (2.38a)

= µC(x) ∗ pi,j (x; ai, aj) . (2.38b)

The indicator function pi,j (x; ai, aj), defined by (C.28), has bounded support over a paral-

lelogram similar to P in (2.24). Taking the convolution of two functions defined over similar

parallelograms, the support of the result is also bounded by a similar parallelogram. The

support of f(x) is therefore limited to a parallelogram with sides parallel to θi and θj with

perpendicular distances vi + bi and vj + bj, respectively. The variables bi and bj are related

to aj and ai according to (C.25) and (C.26), respectively.

Using (2.38b) in (2.37), we have

|gmi,j(x; ai, aj)| =
1

| det (θi, θj) |

∣∣∣∣ d

d (θi + θj)
f(x)

∣∣∣∣ (2.39)

Outside the the region of support of f(x), its directional derivative is also zero. Therefore

gmi,j(x; ai, aj) has bounded support.

To show gmi,j(x; ai, aj) is finite everywhere, we consider

∣∣gmi,j(x; ai, aj)
∣∣ = |gi,j(x) ∗mi,j(x; ai, aj)| (2.40a)

=
∣∣∣gi,j (x+

ai
2
θi +

aj
2
θj

)
− gi,j

(
x− ai

2
θi +

aj
2
θj

)
−gi,j

(
x+

ai
2
θi −

aj
2
θj

)
+ gi,j

(
x− ai

2
θi −

aj
2
θj

)∣∣∣ (2.40b)

≤ 4‖gi,j(x)‖∞. (2.40c)

This is finite due to the assumption µC(x) is integrable.
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2.4 Image Reconstruction from BRT Data with Bounded

Support

Bounded BRT data facilitates numeric inversion in the frequency domain. We consider

two inversion strategies. The size of the available spreading parameters ai and aj in (2.28)

plays an important role in selecting an inversion strategy. In both cases we reconstruct a

version of the desired image subject to convolution. However, the PSFs associated with the

reconstructed images are different.

Multiplying both sides of (2.33b) by the inverse of (2.4) we have the relationship

µ̂mi,j (w; ai, aj) = ĝmi,j(w; ai, aj)
−i2π (w · θi) (w · θj)

w · (θi + θj)
, ∀w /∈ Θi,j. (2.41)

This is similar to (2.6). However, the reconstruction is subject to multiplication with the

PSF (2.29). Analytically, we can recover µ̂mi,j (w; ai, aj) from ĝmi,j(w; ai, aj) using (2.41) and

continuity assumptions or, equivalently, boundary conditions on µmC (x).

We find a representation of the left-hand side of (2.41) in the spatial domain by taking the

inverse two-dimensional Fourier transform of (2.31)

µmi,j(x; ai, aj) = µC
(
x+ ai

2
θi +

aj
2
θj
)
− µC

(
x− ai

2
θi +

aj
2
θj
)

− µC
(
x+ ai

2
θi − aj

2
θj
)

+ µC
(
x− ai

2
θi − aj

2
θj
)
. (2.42)

For small ai and aj, the image copies will overlap. As ai and aj increase we can reconstruct

µC (x) from segments without overlap.

Theorem 2.5. An image with bounded support, µC(x), can be recovered from filtered BRT

data gmi,j(x; ai, aj) when ai > vj/ |2 det (θi, θj)| and aj > vi/ |2 det (θi, θj)| for vi, vj defined

according to (2.10).

Proof. A portion of the image µC(x), without overlap, is associated with each shifted copy

in (2.42). When the shifts are sufficiently large, the partial images can be combined to

reconstruct the original image. To demonstrate this it is useful to first extend C to the
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circumscribed parallelogram P in (2.27). The edge lengths of this geometric region bound

the minimum shift lengths for image recovery.

To emphasize P as the assumed region of support, we use µP (x). Since C ⊆ P ⊂ R2, we

have µP (x) = µC(x), for all x ∈ R2. For ai > αi/2 and aj > αj/2 we can recover µP (x) from

µmi,j(x) using

µP (siθi + sjθj) =



µmi,j
((
si − ai

2

)
θi +

(
sj − aj

2

)
θj
)
, si, sj ≤ 0

−µmi,j
((
si − ai

2

)
θi +

(
sj +

aj
2

)
θj
)
, si ≤ 0, sj ≥ 0

−µmi,j
((
si + ai

2

)
θi +

(
sj − aj

2

)
θj
)
, si ≥ 0, sj ≤ 0

µmi,j
((
si + ai

2

)
θi +

(
sj +

aj
2

)
θj
)
, si, sj ≥ 0.

(2.43)

Each case can be expanded as a series of four terms using (2.42). However, three of these

terms are zero due to the support of P in (2.27). Combining the four cases we recover µP (x),

and therefore µC(x), for all x ∈ R2. Expanding ai > αi/2 and aj > αj/2 using (2.25), (2.26)

we obtain the boundary in the stated form.

In general this approach requires large data sets to obtain ĝmi,j(w; ai, aj). For many cases we

can extend BRT data using the techniques in Section 2.2. However, when we are limited to

small ai and aj, another approach is necessary.

Alternatively, we can simply recover µ̂pi,j (w; ai, aj). From (2.36), we have

µ̂pi,j (w; ai, aj) =
−ĝmi,j(w; ai, aj)

i2πaiajw · (θi + θj)
, ∀w /∈ Θi,j. (2.44)

Taking the inverse two-dimensional Fourier transform of (2.44) we have

µpi,j (x; ai, aj) =
−1

αiαj‖θi + θj‖

∫ 0

−∞
gmi,j

(
x− t θi + θj

‖θi + θj‖

)
dt. (2.45)

This is equivalent to the inversion formula of Ambartsoumian and Jebelli [8]. For sampled

data this formula can be implemented easily whenever the direction of integration is aligned

with a sampling axis. For other cases, the frequency-domain representation (2.44) is useful.
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We emphasize µpi,j (x; ai, aj) 6= µC (x). Taking the inverse two-dimensional Fourier transform

of (2.35), we have

µpi,j (x; ai, aj) =
µ(x) ∗ pi,j(x; ai, aj)

aiaj |det (θi, θj)|
. (2.46)

This demonstrates the recovered image as a blurring of the original image with a parallelo-

gram window function. For high resolution, noise-free, data the size of this window can be

made arbitrarily small. The recovery (2.45) only approaches µC(x) in a limiting sense [8].

2.5 Numeric Algorithms

In application we must reconstruct images from sampled data. Our analysis of the BRT

from a linear systems perspective extends easily to sampled data. We demonstrate this with

two new algorithms. First we provide an algorithm for extending CBT data motivated by

the work in Section 2.2. For a broad class of problems this can be applied to BRT data

and therefore facilitates use of the filtering methods of Section 2.3. Numeric implementation

of the filtering methods have been included in Appendix E. Second, we present a numeric

inversion algorithm for bounded BRT data. Leveraging the rotational invariance of the two-

dimensional Fourier transform, the directions θi, θj are unconstrained in our algorithm. We

also include regularization to address poor conditioning of the forward operator.

2.5.1 Extending Truncated Data

We consider CBT data sampled uniformly over a rectangular region. For consistency with

previous definitions, we expand x along two scalar axes x = (t, y). For the two axes we use

subscripts to distinguish the number of samples Nt, Ny and the sample spacing ∆t, ∆y. We

collect the available data in the Ny ×Nx matrix B. The elements represent samples of the

CBT data

[B]n,m = (BµC) ((tB + (m− 1)∆t, yB + (n− 1)∆y), (cos ξ, sin ξ)) (2.47)

for n ∈ {1, . . . , Ny}, and m ∈ {1, . . . , Nt}. We expand in the direction θ = (cos ξ, sin ξ).

The spatial location associated with sample B1,1 is xB = (tB, yB). In this configuration

23



Q2

Q3 Q4

B

t

y

Figure 2.2: Truncated CBT data and relevant regions for extending the data. To extend
the sampled CBT data, B, we use only the first row and first column as indicated by the
dashed boxes. We first extend the data in the direction −t to synthesize data in the second
quadrant (indicated by Q2). We then extend the combined data in the direction −y. The
second extension synthesizes data in the third and fourth quadrants (indicated by Q3 and
Q4). The process is detailed in Algorithm 1.

the y coordinate increases with the row index n, and the t coordinate increases with the

column index m. It is not necessary to distinguish the terms ∆t, ∆y, and ξ for most of the

computations related to sampled CBT data. For convenience we define

λ :=
∆t

∆y

tan ξ, (2.48)

which is a sufficient input for algorithms on uniformly sampled data.

Extending CBT data in the direction θ is trivial. For this we need only consider x ∈
V −θ ∪C

+
θ ∪V

+
θ , where (BµC)(x, θ) = 0 according to Theorem 2.1. Zero padding is sufficient.

Extending the data in the direction −θ is nontrivial. For simplicity we first consider only

ξ ∈ (0, π/2). Figure 2.2 illustrates the problem of extending the data, B, into the quadrants

Q2, Q3, and Q4. The Radon transform serves as a proxy for extending the data according

to Corollary 2.1. We assume the first row and column comprise no samples interior to C

such that these data are samples of (RµC)(x · θ⊥, θ). We can then extend the data using

(BµC)(x, θ) = (RµC)(x · θ⊥, θ). A brute-force approach would be to resample the Radon

transform for each new data point. A computationally efficient approach is to extend the

CBT data by shifting samples along the boundaries. This process is detailed in Algorithm

1. For ξ /∈ (0, π/2), we can still use Algorithm 1 by suitably flipping the inputs and outputs.
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Algorithm 1 CbtExtend: Extend CBT data from a rectangular, uniformly sampled
region. We assume the direction of integration is positive. Interpreting the available data as
occupying the first quadrant, we extend the data into quadrants 2-4 as depicted in Figure 2.2.
The inputs by and bt represent the first column and row of the data matrix B, respectively.
Input λ is given by (2.48). The inputs Mt and My indicate the number of requested samples
in the direction −t and −y, respectively. The input p indicates desired padding when using
Algorithm 12 presented in E.5. We use vertcat and flipud to vertically concatenate and
vertically flip matrices, respectively.

Require: by ∈ RNy , bt ∈ RNt , λ ∈ R+, Mt,My, p ∈ Z+

Ensure: Q2 ∈ RNy×Mt , Q3 ∈ RMy×Mt , Q4 ∈ RMy×Nt

1: xR = by . Expand B in direction −t
2: xL = flipud(bt(2 : 1 + p))

3: s = λ
[
−Mt −Mt + 1 · · · −1

]T
4: pW = p+My

5: W = NonIntShift(xR, s, pW , xL) . Algorithm 12
6: Q2 = W (1 : Ny, :)
7: xR = vertcat(Q2(1, :)T ,bt) . Expand [Q2B] in direction −y
8: xL = flipud(Q2(2 : 1 + p, 1))

9: s = λ−1
[
−My −My + 1 · · · −1

]T
10: pW = p+ dλ−1Mye
11: W = NonIntShift(xR, s, pW , xL)
12: Q3 = W (1 : Mt, :)

T

13: Q4 = W (Mt + 1 : Nt +Mt, :)
T
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We can adapt this process to an important class of BRT problems. We consider the incident

direction aligned with the t-axis and θi · θj < 0. Specifically, we use θi = (−1, 0) and expand

along θj = (cos ξ, sin ξ). We construct the BRT data matrix G ∈ RNy×Nt with elements

[G]n,m = (GµC) ((tG + (m− 1)∆t, yG + (n− 1)∆y), (−1, 0), (cos ξ, sin ξ)). (2.49)

The previous definitions for ∆t, ∆y, and λ remain applicable.

Extending BRT data requires knowledge of both (RµC)(v, θi) and (RµC)(v, θj). We as-

sume BRT data are sampled beyond the support of the image, such that no boundary

samples of G correspond to points within C. For θi = (−1, 0), and |ξ| < π/2 this implies

[G]1,Nt = [G]Ny ,Nt = 0. In this case (RµC)(v, θi) can be recovered from the last column of

G. We can extend BRT data in the direction −θi simply by repeating the last column. For

ξ > 0, the last row (maximum y) of G is then zero. The function (RµC)(v, θj) can be re-

covered from the first column of G and the first row. The BRT data can be extended in the

direction −θj using Algorithm 1. Alternatively, for ξ < 0, (RµC)(v, θj) can be recovered from

the first column of G and the last row. The BRT data can still be extended in the direction

−θj using Algorithm 1. However, the inputs and outputs must be flipped accordingly.

Extending data does not address asymmetric boundaries precluding discrete Fourier repre-

sentations. Rather, extended data are useful for synthesizing filtered data without overlap

in the image space. Example algorithms for synthesizing filtered data are presented in Ap-

pendixes E.1 and E.2 for truncated CBT data and truncated BRT data, respectively. Note,

these implementations operate on truncated data directly, and the necessary data extensions

are performed internally.

2.5.2 Inversion of BRT Data with Regularization

Filtering ensures bounded support of gmi,j(x; ai, aj). However, recovery of µ̂mi,j(w; ai, aj) is still

ill-posed due to conditioning of ĥi,j(w). For this we use Tikhonov regularization which can

be applied sample-wise in the frequency domain.
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We restate (2.4) as an expression of scalar values by expanding w = (wt, wy),

θi = (cos ξi, sin ξi), and θj = (cos ξj, sin ξj), which leads to

ĥi,j((wt, wy)) =
−wt (cos ξi + cos ξj)− wy (sin ξi + sin ξj)

i2π (wt cos ξi + wy sin ξi) (wt cos ξj + wy sin ξj)
. (2.50)

Notice this expression is commutative with respect to ξi and ξj. We define the system matrix

Ĥ by sampling (2.50) uniformly

[Ĥ]n,m = ĥi,j

(
m

Nt∆t

,
n

Ny∆y

)
. (2.51)

The discrete analog of (2.33b) is then

Ĝm = Ψ̂m � Ĥ. (2.52)

Here we have used Ĝm to represent the two-dimensional discrete Fourier transform of Gm,

the filtered analog of (2.49). We use Ψ̂m to represent samples of µ̂mi,j(w). The symbol �
represents element-wise multiplication.

Zeros in the denominator of (2.50) are problematic for numeric analysis. We define the

auxiliary function

d(wt, wy) = (wt cos ξi + wy sin ξi) (wt cos ξj + wy sin ξj) . (2.53)

However, filtering ensures Ĝm and Ψ̂m are also zero when d(wt, wy) = 0.

Zeros in the numerator of (2.50) affect conditioning of the problem. In the frequency domain

representation of the data, the magnitued of samples near these zeros will be small. In

practice, these samples will be dominated by measurement noise and sampling errors. As

the reciprocal of the forward operator is large at these samples, direct inversion of the forward

operator will amplify these errors. Reducing the magnitude of the inverse at these frequencies

mitigates the effects of noise and sampling errors in reconstructed images. We use Tikhonov

regularization to approximate the inverse of Ĥ as

[K]n,m :=


[Ĥ∗]n,m
|[Ĥ]n,m|2+ε

d( m
Nt∆t

, n
Ny∆y

) 6= 0

0 otherwise.
(2.54)
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Here ∗ indicates complex conjugation, and ε is a small hyperparameter. For |[Ĥ]−1
n,m| � ε,

we have [K]n,m ≈ [Ĥ]−1
n,m. Conversely, for small ε = |Ĥn,m|, regularization forces [K]n,m ≈ 1,

such that |[K]n,m| � |[Ĥ]n,m|−1. This mitigates sensitivity to sampling and measurement

errors for samples where signal is attenuated by the forward operator.

The approximate inverse is applied element-wise to the Fourier transform of the data. The

inversion formula reads

Ψ̂m ≈ Ĝm �K. (2.55)

Applying the 2D inverse discrete Fourier transform to the result, we obtain a reconstruction

of the filtered attenuation image. This process is described in Algorithm 2. The smoothing

parameter ε, in (2.54), can be adjusted for measurement noise and numerical errors.

Algorithm 2 BrtInvertFiltered: Invert BRT data with bounded support. In this
algorithm ComputeK refers to the computation of K using equations (2.50), (2.51), (2.53),
and (2.54). Here we use DFT2 and DFT−2 to represent the 2D discrete Fourier transform
and its inverse, respectively.

Require: G ∈ RNy×Nt ; ∆t,∆y, ε ∈ R+; ξi, ξj ∈ R
Ensure: Ψ ∈ RNy×Nt

1: K ← ComputeK(Nt, Ny,∆t,∆y, ξi, ξj, ε)

2: Ĝ = DFT2 {G}
3: Ψ̂ = Ĝ�K
4: Ψ = DFT−2

{
Ψ̂
}

Tikhonov regularization is generic and does not impose boundary conditions. For arbitrary

angles ξi, and ξj, few samples of Ψ̂m lie in the nullspace of the forward operator and it

is sufficient to zero the results at these samples. Otherwise, it may be necessary to impose

boundary conditions. For example, to ensure Ψm is zero along the t = 0 and y = 0 boundary,

all columns and all rows of Ψ̂m must sum to 0.

2.5.3 Fast BRT Operators

As a linear operator, it is natural to look to frequency-domain representations of the BRT for

computationally efficient algorithms. BRT data represent numeric challenges, however, as the

data exhibit unbounded aperiodic support for most images. Previously it was demonstrated
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that unbounded support of BRT data can be canceled coherently through filtering [24]. By

bounding support of the data, we can leverage the computationally efficient discrete Fourier

transform (DFT).

The broken ray transform is the superposition of two improper line integrals sharing a

common origin. For an analytic treatment we interpret x ∈ R2, and µ(x) : R2 → R≥0.

We define the BRT of µ

(Bµ) (x,θ) :=
∑
θ∈θ

∫ ∞
0

µ(x+ tθ)dt. (2.56)

The summation is over elements of the ordered pair θ = (θs, θd) where we interpret the

elements as unit vectors: θs, θd ∈ S1. We define the two-dimensional Fourier transform of

the BRT

b̃θ(w) =

∫
R2

(Bµ) (x,θ) e−j2πw·xd2x (2.57a)

=

∫
R2

∑
θ∈θ

∫ ∞
0

µ(x+ tθ)dt e−j2πw·xd2x (2.57b)

=
∑
θ∈θ

∫ ∞
0

∫
R2

µ(y)e−j2πw·yd2y ej2πtw·θdt (2.57c)

= µ̃(w)
∑
θ∈θ

∫ ∞
0

ej2πtw·θdt (2.57d)

= µ̃(w)
∑
θ∈θ

[
−1

j2πw · θ
+

1

2
δ(w · θ)

]
(2.57e)

= µ̃(w)

[
jw · (θs + θd)

2π (w · θs) (w · θd)
+
∑
θ∈θ

1

2
δ(w · θ)

]
. (2.57f)

The delta function is associated with the unbounded support of the data and is problematic

numerically as it is only defined by its integral. To address this in the frequency domain, we

multiply b̃ with a function m̃(w) = 0 for all w · θ = 0, θ ∈ θ. Specifically, we choose

mθ(x; as, ad) = δ (x) + δ (x+ asθs + adθd)− δ (x+ adθd)− δ (x+ asθs) , (2.58)
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which adds three shifted copies. This has the Fourier transform

m̃θ(w; as, ad) = −4 sin (πasw · θs) sin (πadw · θd) exp (jπ (as (w · θs) + ad (w · θd))) . (2.59)

Since the BRT is a linear operator, µ̃ appears as a multiplicative term in b̃. It follows that

multiplying µ̃ by m̃ is equivalent to multiplying b̃ by m̃. Equivalently, adding shifted copies

of the data is equivalent to adding shifted copies of the image. We define the BRT of the

filtered image

b̃θ(w)m̃θ(w; as, ad) = −j2πasad
(
w · (θs + θd)

)
sinc (πasw · θs) sinc (πadw · θd)

× exp (jπ (as (w · θs) + ad (w · θd))) µ̃(w). (2.60)

In contrast to the right-hand side of (2.57f), the right-hand side of (2.60) is well defined for

all w. Taking the inverse Fourier transform of (2.60) we obtain the BRT of the filtered image.

The left-hand side of (2.60) represents the convolution of the desired data bθ(x) with (2.58).

This convolution can be described as the superposition of four shifted copies of the data of

interest. As long as one copy is retained without overlap, we can isolate the deisred data by

computing the inverse Fourier transform of (2.60) and truncating the result. Conditions for

avoiding overlap in the data copies are not obvious, however, due to the unbounded support

of the data.

Support of the BRT data extends in the directions −θs and −θd indefinitely from all points

in the support of the image [24]. The infinite regions of support in the data are analogous

to shadows. Overlap between the original image and the shadows of the shifted copies will

corrupt the forward transform. In application, this requires as, and ad to be sufficiently large.

The minimum distances will depend on θs, θd, and the assumed support of µ. A sufficient

condition is the requirement that the support of µ lies in a parallelogram with edges parallel

to θs, θd with lengths as, ad, respectively (see Theorem 5 in [24]).

Motivated by (2.60), we define the analytic forward operator

h̃θ (w) := −j2πasad
(
w · (θs + θd)

)
sinc (πasw · θs)× sinc (πadw · θd)

× exp (jπ (as (w · θs) + ad (w · θd))) . (2.61)
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In contrast to (2.57f), (2.61) is well defined for all w ∈ R2.

To discretize (2.61), we consider the matrix X ∈ RL2×L1 comprising samples of µ with

sample spacing ∆2,∆1. To avoid aliasing with filtering, the DFT must be computed with

zero-padding. For i ∈ {1, 2}, the padded lengths are given by

Ni = 2d0.5 (Li + (as [θs]i + ad [θd]i) /∆i)e. (2.62)

The ceiling operation is indicated using d·e, and the scale factors ensure Ni are even.

Since w appears as a multiplicative factor in (2.61), there are numerical benefits to consid-

ering signed w (as opposed to a naive nonnegative w). For this we define the column vectors

wi ∈ RNi

[wi]k :=


k − 1

∆iNi

, k ∈
{

1, 2, . . . ,
Ni

2

}
k − 1−Ni

∆iNi

, otherwise.

(2.63)

Using these vectors we define N2 ×N1 matrices

Ws := [θs]2w2 + [θs]1w
T
1 (2.64)

Wd := [θd]2w2 + [θd]1w
T
1 , (2.65)

which we used to sample (2.61). We store the results in the matrix

H̃θ := −j2πasad
(
Ws +Wd

)
sinc (πasWs) sinc (πadWd) exp (jπ (asWs + adWd)) . (2.66)

In summary, H̃θ is determined by L1, L2 ∈ Z>0, ∆1,∆2, as, ad ∈ R>0, and θ = (θs, θd) (where

θs, θd ∈ S1) using (2.62)-(2.66). The size of H̃θ ∈ CN2×N1 is determined automatically from

(2.62).

Given H̃θ, the forward BRT of X is implemented in the frequency domain using element-

wise multiplication. This process is described in Algorithm 3. Since the DFT and inverse

DFT can be scaled as a unitary operations, the adjoint BRT admits a convenient form. The

adjoint BRT can be computed supplying the complex conjugate, H̃∗, when calling Algorithm

3.
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Algorithm 3 FBRT: Fourier BRT for uniformly sampled images. Here X is the sampled
image, and H̃ is a frequency-domain representation of the forward operator (2.66). We use
DFT2 and DFT−2 to represent the 2D discrete Fourier transform and its inverse, respec-
tively. Additional arguments in DFT2 specify the size after zero padding. Element-wise
multiplication is indicated as �, and ∗ indicates complex conjugation.

Require: X ∈ RL2×L1 ; H̃ ∈ CN2×N1 ; L2 ≤ N2, L1 ≤ N1

Ensure: Y ∈ RL2×L1

1: X̃ = DFT2 (X,N2, N1) . Zero pad input
2: if ADJOINT then
3: Ỹ = X̃ � H̃∗ . backward BRT
4: else
5: Ỹ = X̃ � H̃ . forward BRT
6: end if
7: Y = DFT−2

(
Ỹ
)

8: Y = Y (1 : L2, 1 : L1) . Truncate result

Bounding support of the data is possible for arbitrary directions θs, θd. However, for small

scatter angles (e.g. ‖θs × θd‖ < 0.2), the operator (2.61) requires significant padding of

the DFT to cover support of the filtered data without aliasing. In some cases, other filter

functions support more efficient spatial representations of the filtered data while preserving

one copy without interference.

We propose a spatially efficient filtering strategy with periodic, nonzero, boundaries. Our

approach requires at least one sample axis to be aligned with a BRT direction. Without

loss of generality, we assume θs is aligned with the horizontal sampling axis. We refer to the

original sampled image width as = L1∆1. We then select

ad =
as

|θs · θd|
. (2.67)

To accomodate the increased extent of filtered data, we pad the original image size

N1 = 3L1 (2.68)

N2 = L2 + dad ‖θs × θd‖ /∆2e . (2.69)
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The horizontal padding is selected precisely to support nonzero symmetric boundaries. The

vertical padding is only included to avoid aliasing. These suggested values ensure horizontal

boundaries will be zero.

We employ two filter functions, one for each CBT

ms(x) = δ(x)− δ (x+ 3asθs + adθd)− δ (x+ 2asθs) + δ (x+ 2asθs + adθd) (2.70)

md(x) = δ(x)− δ (x+ adθd)− δ (x+ 2asθs) + δ (x+ 2asθs + adθd) . (2.71)

These functions only differ by the second right-hand terms. The two-dimensional Fourier

transforms of these functions read

m̃s(w) = −j2 sin (2πasw · θs) ej2πasw·θs − j2 sin (πasw · θs) ej5πasw·θsej2πadw·θd (2.72)

m̃d(w) = −4 sin (2πasw · θs) sin (πadw · θd) ej2πasw·θsejπadw·θd . (2.73)

To obtain the filtered BRT, we must apply the corresponding CBT to each filter function.

In this context, we omit the delta functions in the CBT (see (C.10)), and define

h̃B(w; θ) =
−1

i2πw · θ
. (2.74)

Superimposing the filtered results for θs and θd, we have

h̃FBRT(w) = m̃s(w)h̃B(w; θs) + m̃d(w)h̃B(w; θd). (2.75)

Sampling this continuous function at the frequencies dictated by the padded DFT yields

filtered data with symmetric boundaries. For the operator (2.75), the required DFT padding

decreases with ‖θs × θd‖ as indicated by (2.69).
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Figure 2.3: Filtered CBT data effecting periodic BRT data. CBT data associated with the
directions θs and θd are shown in Figures 2.3a and 2.3b, respectively. Summing these results,
we obtain the periodic BRT data shown in Figure 2.3c. The magenta rectangle indicates
the support of the original image. In Figure 2.3c, the rectangle also indicates cropping
boundaries to obtain the truncated BRT data of interest.
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(a) Reference image (b) BRT data, ξ = π
11 (c) BRT data, ξ = −π5
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Figure 2.4: Reference image and associated BRT data. Figure 2.4a depicts the Shepp-Logan
phantom as a reference image. Figure 2.4b and 2.4c depict BRT data with different scatter
angles. The BRT data were determined analytically and sampled at the scatter points
associated with the pixel centers of Figure 2.4a.

2.6 Numerical Simulations

2.6.1 Analytic BRT Inversion of Sampled Data

We provide results of numerical simulations to demonstrate the utility of this analysis. We

use the modified Shepp-Logan phantom [25, 26] in most of our simulations as depicted in

Figure 2.4. This phantom is reasonably challenging and the BRT data can be determined

analytically as demonstrated in Appendix D.1. For Figure 2.4 we sample the image and

data space uniformly in y and t. For y we use Ny = 600 sampling over [−1, 1]. For t we

use Nt = 400 sampling over [−0.75, 0.75]. This effects different sampling rates in t and y.

Limiting the extent of available BRT data in this way truncates the data both in y and t as

shown in Figure 2.4b and Figure 2.4c.

We first demonstrate filtering bounds support of the data. Results are shown for both the

BRT and SBRT in Figure 2.5. In this case the filtered image and filtered data were all

obtained analytically and then sampled.

Filtering can also be applied to sampled BRT data directly. For sampled data this effects

small errors which we quantify against the reference data of Figure 2.5. Results are shown
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(a) Image I (b) BRT data for Image I
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(c) Image II (d) SBRT data for Image II

Figure 2.5: Image filtering effects BRT data with bounded support. Figure 2.5a depicts a
notional phantom defined by filtering the image of Figure 2.4a analytically using the PSF
(2.28). In this case ξi = π and ξj = π/11, where the subscripts distinguish the directions
θi = (cos ξi, sin ξi). The associated analytic BRT data are shown in Figure 2.5b and indicate
bounded support. To bound support of SBRT data, filtering need only address the unique
scatter directions associated with the two BRT data sets. Figure 2.5c and Figure 2.5d show
the filtered image and filtered SBRT data, respectively. Here the scatter angles for the BRT
data composing the SBRT data are ξj ∈ {π/11,−π/5}.
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(a) Absolute BRT filtering error

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

(b) Absolute SBRT filtering error

Figure 2.6: Error extending and filtering sampled, truncated, BRT data. Figure 2.6a depicts
the error due to extending and filtering the data of Figure 2.4b. The reference data are
shown in Figure 2.5b. Similarly, Figure 2.6b depicts the error due to extending and filtering
the data of Figure 2.4b and Figure 2.4c. In this case the reference data are shown in Figure
2.5d.

in Figure 2.6. Artifacts are observed at scatter points for which resulting rays are tangent

to large transitions in the image. These artifacts are a consequence of sampling. For both

BRT and SBRT filtering the peak absolute error is less than 5% the peak image value.

Further analysis of h(w) provides insights on BRT inversion. We can express (2.4) in polar

coordinates with the change of variables

w = ρ (cosφ, sinφ) θi = (cos ξi, sin ξi) θj = (cos ξj, sin ξj) , (2.76)

such that

ĥ((ρ, φ)) =
− cos

(
φ− 1

2
(ξi + ξj)

)
cos
(

1
2

(ξi − ξj)
)

iπρ cos (φ− ξi) cos (φ− ξj)
. (2.77)

We make a few observations. First, ρ in the denominator of (2.77) implies the BRT attenuates

high frequency content. Reconstruction will be sensitive to noise at high frequencies. Second,

there are singularities at φ = ξi ± π/2 and φ = ξj ± π/2. Filtering ensures the image and

data are zero at these frequencies. Finally, (2.77) is zero at φ = 1
2

(ξi + ξj)± π/2. These

zeros do not appear in the CBT, but arise in the combination of two CBTs.
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ξj = π/20 ξj = π/7 ξj = π/4
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Figure 2.7: Changes in |K| (2.54) with respect to regularization ε and angle ξj. The first
column of images corresponds to scatter direction ξj = π/20, the second column to ξ = π/7,
and the third column to ξ = π/4. For all images we fix ξi = π. Each row of images uses a
different ε; the first row uses 1e−6, the second 1e−5, and the third 1e−4. For all images the
zero-frequency content is centered for both axes. Further, the same display scale is used as
shown in the colorbar.

The matrix K plays a critical role in BRT reconstruction (2.55). This incorporates changes

to h(w) due to ξj, and the regularization term ε. Changes to |K| with respect to these terms

is shown in Figure 2.7. Here we fix ξi = π without loss of generality. The lines indicating

strong attenuation are due to singularities of (2.77) at φ = ±π/2, and φ = ξj ± π/2. Zeros

in (2.77) effect large amplitudes in |K| along φ = ξj/2. However, this amplitude is curtailed

through regularization as ε increases. Large regularization will attenuate spectral content

at these frequencies and effect blurring in reconstructed images. Without regularization, we

would expect artifacts along this spectral line. Selection of ε will be application specific and

will depend on the desired performance metric.
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The original global BRT inversion formula is due to Florescu et al. [1]. We will refer to

their inversion formula the FMS formula. Specifically contrasting with our algorithm, we

analyze the same square phantom in Figure 2.8. The original work assumed data available

over an infinite strip with no additional insights on limiting the data. The data of Figure

2.8b violates this assumption. Directly applying the FMS formula to this data yields poor

results as shown in Figure 2.8c. However, we can simulate additional data using Algorithm

1. Applying the FMS formula to the extended BRT data yields results consistent with

those previously published [1]. In this way, Algorithm 1 can be used as a preprocessing step

to reduce the extent of sampling required for reconstruction using the FMS formula. The

direction of the artifacts is explained by the nullspace of the forward operator (2.4). Striations

are observed in the direction ξ/2 + π/2. Employing the regularizied approximation of the

inverse (2.54) further improves reconstruction as demonstrated in Figure 2.8f.

Inversion results for the Shepp-Logan phantom on noisy data are shown in Figure 2.9. The

BRT data were obtained analytically, sampled, and corrupted with additive Gaussian noise.

For small ε, we see artifacts where the direction ξ is tangent to high frequency edges of the

image. This is a consequence of sampling errors and extending the BRT data. Additionally,

edges perpendicular to the direction ξ/2 are not well resolved. This blurring appears along

the direction ξ/2. Increasing ε increases the angular extent of blurring. The effect is reduced

as ξ increases.

2.6.2 Contrasting BRT Operator Implementations

Iterative algorithms make frequent use of forward and backward (adjoint operators). For

this reason it is important to ensure implementations are both accurate and computationally

efficient. In the following we contrast performance of three implementations.

Linear forward and backward operators, on sampled data, can be summarized as

(Gµ)(y) =
∑
x∈X

h(y|x)µ(x), ∀ y ∈ Y (2.78)

(G†g)(x) =
∑
y∈Y

h(y|x)g(y), ∀x ∈ X , (2.79)
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(a) Reference image (b) BRT data (c) Results, FMS formula
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(d) Extended BRT data (e) Results, FMS formula (f) Results, Algorithm 2

Figure 2.8: Noise-free reconstruction from limited data. The reference image is shown in
Figure 2.8a, and we limit the available BRT data as shown in Figure 2.8b with ξj = −π/4.
FMS [1] reconstruction, using limited data, is shown in Figure 2.8c. The limited BRT data
of Figure 2.8b can be extended using Algorithm 1 as shown in Figure 2.8d. Figure 2.8e
depicts results applying the FMS formula to the extended data of Figure 2.8d. Similarly,
Figure 2.8f depicts results applying Algorithm 2 to the extended data of Figure 2.8d. All
images use the same display scale shown in the colorbar.
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Figure 2.9: Reconstruction of noisy, truncated, BRT data using Algorithm 2. The first
column of images corresponds to scatter direction ξj = π/20, the second column to ξj = π/7,
and the third column to ξj = π/4. Each row of images uses a different ε in (2.54) which
appears in the reconstruction formula (2.55); the first row uses 1e−6, the second 1e−5, and
the third 1e−4. All images use the same display scale shown in the colorbar. The same
realization of Gaussian noise was added to each data set. The standard deviation of the
noise was 10−3 times the peak amplitude of the image.
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respectively. Here we have omitted indices distinguishing the ray directions which we assume

consistent between operators.

A direct implementation of (2.78) is achieved by explicitly computing the |Y| × |X | matrix

H such that [H]y,x = h(y|x). This matrix represent numeric approximations of line integral

through a sampled image. One approach is presented in Appendix D.2. For the broken ray

transform this matrix is sparse as each broken ray path intersects few image voxels. Once

H is available, the forward and adjoint operators are simply the inner product with H and

its transpose, respectively.

When the forward operator is linear and shift-invariant (LSI), direct computation of H

can be avoided using h(y|x) = h(y − x). For LSI systems, (2.78) represents convolution.

Representing µ and h in the frequency domain, the convolution in (2.78) becomes an elemnt-

wise product. This process is described in Algorithm 3. However, aperiodic and unbounded

support of the data complicate frequency-domain representations. Addressing these issues

comes at costs both in computational complexity and fidelity.

Filtering has been demonstrated to bound the support of BRT data [24] and is convenient

to implement in the frequency domain. However, padding is required to ensure filtered

copies do not overlap. Judicious choice of filter functions can reduce the required padding.

Padding can have a significant impact on computational efficiency of two-dimensional Fourier

transforms.

Since we are concerned with real images, we can reduce the required DFT order by exploiting

conjugate symmetry of real signals. For two-dimensional DFTs, this can be used to reduce

the DFT order of one dimension by a factor of two. This approach is described in Algorithm

13.

Computation times associated with three methods are shown in Table 2.1. We contrast

time required to initialize the operators and employ them for both forward and backward

transforms. Additionally, we contrast time with the scatter angle. In both cases, the source

direction is π, and the images are 300 × 400 pixels. All times are in seconds and were

performed on a single laptop (MacBook Pro, late 2016. 2.9 GHz Quad-Core Intel Core i7).
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Table 2.1: BRT Operator Processing Times in Seconds

θj = π/4 θj = π/20

Method Setup Forward Backward Setup Forward Backward

Direct 63.958 0.068 0.028 37.518 0.062 0.026
Fourier 0.138 0.016 0.016 0.076 0.009 0.010

Real Fourier 0.102 0.017 0.017 0.060 0.009 0.009

Setup time for the direct implementation includes computation of H, which is significant.

Long setup times may be prohibitively expensive for approaches requiring frequent changes

between operators (e.g. ordered subsets). It should be noted, however, that this task is highly

paralellizable. The time required could be reduced significantly on some architectures. There

is a small reduction in the setup time for the smaller scatter angle. This difference is due

to asymmetry of the narrow image size. For our narrow image, θj = π/20 effects an H with

fewer nonzero entries.

The Fourier methods offer a significant reduction in processing time. The difference between

the Fourier and Real Fourier results seem to be within the measurement error. For the direct

operator, the backward transform is significantly faster than the forward transform. This is

due to the column-major storage in Matlab.

To quantify consistency of the forward and adjoint operators, we consider the following

relation ∑
x∈X

∑
y∈Y

g(y)h(y|x)µ(x) =
∑
y∈Y

g(y)(Gµ)(y) (2.80)

=
∑
x∈X

µ(x)(G†g)(x). (2.81)

In application, sampling precludes equality of these expressions. Errors are implementation-

specific and vary with choice of µ, and g. We consider the the metric

τ =
2
∣∣∣∑y∈Y g(y)(Gµ)(y)−

∑
x∈X µ(x)(G†g)(x)

∣∣∣∑
y∈Y g(y)(Gµ)(y) +

∑
x∈X µ(x)(G†g)(x)

, (2.82)
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Table 2.2: Percentage Error for BRT Forward and Backward Operators

θj = π/4 θj = π/20

Method Smooth Impulsive Smooth Impulsive

Direct 1.73e-15 1.53e-15 2.62e-15 1.15e-15
Fourier 4.80e-16 5.13e-07 4.37e-16 5.68e-06

Real Fourier 3.60e-09 5.34e-07 5.66e-09 5.57e-06

which represents a percentage error between the right-hand side of (2.80) and right-hand

side of (2.81).

To contrast operator consistency, we consider the metric (2.82) for two datasets and scatter

angles. For the smooth case, µ(x) is the modified Shepp-Logan phantom and g(y) is the

corresponding BRT which was generated analytically then sampled. For the impulsive case

we set µ(x) = 1 and g(y) is a sparse binary image with 600 randomly spaced nonzero pixels.

Resulting percentage error, using (2.82), are depicted in Table 2.2.

Table 2.2 demonstrates consistent performance using the direct implementation over both

smooth and non-smooth datasets and scatter angles. The resulting percentage error is on

the order of double-precision quantization errors. For smooth datasets, the Fourier method

performs similarly. However, this percentage error increases for datasets characterized by

impulsive noise. The percentage error increases significantly for the real Fourier method,

even for the smooth dataset.

To further investigate the difference between the direct and Fourier operator implementa-

tions, we consider the transform of an image with a single nonzero pixel (20,10) with a weight

of 1. We assume square pixels with an edge length of 1. Again we use θi = π and θj = π/20.

Transform results for both the direct and Fourier method are shown in Figure (2.10).

Discrepancies between Figures 2.10a and 2.10b are explained by different analytic interpre-

tations of the sampled image. For the direct operator, images are interpreted as piecewise

continuous. In this case, the analytic interpretation of the image is a two-dimensional rect-

angular function. For the Fourier operator, images are interpreted as band-limited by the

sampling rate. In this case, the analytic interpretation of the image is a two-dimensional

sinc function. Obviously the support of a two-dimensional rectangular function differs from

the support of a two-dimensional sinc function. The small nonzero values in Figure 2.10b
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are associated with ray integrals through sidelobes of the sinc function. In Figure 2.10a the

corresponding samples are zero because a rectangular function has no sidelobes.
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(a) Direct
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Figure 2.10: BRT data computed using different forward operator implementations on the
same unit-impulse image. Results computed using direct and Fourier implementations are
shown in Figures 2.10a and 2.10b, respectively. Small nonzero samples in 2.10b are due to a
bandlimited interpretation of the sampled data.
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Chapter 3

Joint Image Estimation from

Incomplete Data

X-ray scatter imaging has a long history [27] with many potential applications (see [12, 28]

and references therein). The joint image estimation problem is important as both scatter

density and attenuation are media dependent. Solving the joint problem could improve object

identification [13] and avoid separate measurement systems. This problem has remained

largely avoided as authors focus on scatter density alone. For example, the attenuation

image has been trivialized as constant [28, 29] or negligible [12–14]. To our knowledge, we

are the first to address joint estimation of scatter and attenuation from noisy measurements

while accounting for regions with zero scatter.

Three measurement geometries have received attention recently. We focus on the selected

volume tomography (SVT) [30] which has been referred to as a translation-only measure-

ment geometry [24] and the BRT measurement system [3]. SVT is distinguished from ro-

tational measurement geometries [7, 9, 10, 21, 23] which are related to secondary radiation

tomography [30]. We briefly extend our notation to a rotational measurement geometry

in Appendix G.4. Additionally, we distinguish the SVT measurement system from coded

apertures [12–14]. Coded aperture measurement geometries share commonality with SVT in

that both avoid rotation, and the single scatter approximation is utilized. However, coded

aperture measurements do not distinguish a unique broken ray path. Further, the source-

detector paths do not all share a common plane and elude two-dimensional analysis. Each
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detector pixel in a coded aperture measurement geometry can be summarized as integrat-

ing sparse samples in a high-dimensional space comprising SVT measurements at multiple

scatter angles.

The BRT was introduced in the context of single-scatter optical tomography [2] simulating

a measurement geometry similar to SVT under an appropriate change of variables [1]. Early

work relied on two significant assumptions: isotropic scatter, and strictly positive scatter

everywhere. The first assumption simplifies aggregation of of data collected from multiple

scatter angles. Isotropic scatter applies to x-ray fluorescence imaging, but additional condi-

tions are required for Bragg and Compton scatter imaging [11, 24]. The second assumption

ensures the log of the data is finite everywhere. This assumption is convenient since the

attenuation and scatter terms separate in the log of the data. Linear combinations of the

log-data, using multiple scatter angles, can be used to isolate the attenuation terms [3, 4].

The remaining log-residue of the data is not a sample of the attenuation image. Rather,

it comprises integrals of the image along the single-scatter path. The BRT is this integral

along the single-scatter path.

BRT data are typically not available directly. Instead, the BRT appears in the exponent

in the data model according to Beer’s law. Prior analytic BRT inversion strategies have

focused on recovering the attenuation image from the log-residue of the data. Solutions are

well-defined for analytic images with bounded support [1, 7, 8, 10] and with nonzero scatter

(at least over the support of the attenuation image [3]). Under these constraints, joint image

recovery has been simulated [1, 4].

Analytic BRT inversion presents several numerical challenges exacerbated by noise, sam-

pling, and missing data (e.g. regions of zero scatter). Effects on analytic attenuation image

reconstruction are shown in Figure 3.1. Analytic inversion of noise-free data yields images

with few sampling artifacts (Figure 3.1 (b)). Recovery requires boundary conditions to be

enforced [1]. Small sampling artifacts are a consequence of both truncated data and the

nontrivial nullspace of the forward operator [24]. Enforcing boundary conditions is chal-

lenging for noisy data; removing them degrades reconstruction quality (see Figure 3.1 (c)).

Additionally, some practical applications require imaging objects with regions of zero scat-

ter (e.g. luggage scanning). Without accounting for such cases, the only explanation is

highly attenuating regions obscuring regions with missing data. Invalidating the positive
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scatter assumption considerably degrades reconstruction quality as depicted in 3.1 (d). As

a final complication we consider Poisson-distributed data. Even with positive scatter ev-

erywhere, performance suffers using analytic techniques (see Figure 3.1 (e)). Results for

Poisson-distributed data with nonnegative scatter are shown in Figure 3.1 (f).

3.1 Problem Formulation

3.1.1 Measurement Geometry

We consider a two-dimensional, single-scatter measurement geometry where the data are

indexed by scatter location y ∈ Y . Additionally, for each scatter location, we assume data

are available for multiple scatter angles. An example measurement geometry is shown in

Figure 3.2. In this case, a pencil-beam source is directed through the media of interest.

Along the beam, scattering is observed in two direction {θ1, θ2}. Along the incident beam,

multiple scatter locations are resolved simultaneously using a collimated array of detectors.

Translating the source and detector arrays as a system allows scanning over all sample

points Y . This schema could be extended to three dimensions using fan beam illumination

and two-dimensional collimated detector panels.

As a matter of notation, we use θ = (θs, θd) to represent an ordered pair of source and

detector directions, respectively. Let I := {θ1,θ2, . . .} represent the collection of source-

detector pairs for which data are available. For the measurement system depicted in Figure

3.2, we have I = {(θ0, θ1), (θ0, θ2)}. Here we assume only one source-direction, θ0, is utilized.

To simplify the notation, we will simply refer to broken ray directions using the index i

which implies θi = (θ0, θi). Each pair (i, y) ∈ I × Y uniquely define a path, from source to

detector, through the scatter location y.

3.1.2 Data Model

Our objective is the recovery of two images, attenuation and scatter density, from a single

dataset. For clarity we use separate discretizations of the images using x ∈ X and y ∈ Y
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Figure 3.1: Degradation of analytic attenuation image reconstruction quality. The reference
attenuation image µ(x) is shown in Figure 3.1(a). The remaining figures contain reconstruc-
tions from: (b), noise-free data; (c), noise-free data without enforcing boundary conditions;
(d), noise-free data with missing samples (regions of zero scatter); (e) Poisson-distributed
data with uniform scatter; and (f) Poisson-distributed data with missing samples.
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Figure 3.2: Measurement geometry with pencil-beam source and two detector arrays. We use
y ∈ Y to indicate the location of the scatter event. The direction θ0 indicates the direction
of the source from the scatter location y. The directions θi, i > 0, indicate the observed
scatter direction using the ith detector array.
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to index the set of attenuation and scatter image voxels, respectively. Later we will en-

force X = Y , enabling computationally efficient algorithms. Let A := {µ : µ(x) ∈ R≥0} and

S := {α : α(y) ∈ [0, 1]} represent the set of possible attenuation and scatter images, respec-

tively. Let d represent the available data where di(y) ∈ R≥0 for each (i, y) ∈ I × Y .

We model the data di(y) as Poisson distributed with mean

gi(y : α,µ) := βi(y) + I0(y)α(y) exp

(
−
∑
x∈X

hi (y|x)µ(x)

)
. (3.1)

Here we use I0(y) > 0 and β(y) ≥ 0 to represent the known source intensity and background

counts, respectively. The exponential term is a numeric approximation of Beer’s law along

our broken ray path through the attenuation image. We explicitly refer to the summation

as the discrete broken ray transform. We assume both the image and forward transform are

finite everywhere.

The log-likelihood function of the data, parameterized by α, µ, is

l(d : α,µ) :=
∑
i∈I

∑
y∈Y

di(y) ln gi(y : α,µ)− gi(y : α,µ) (3.2)

excluding constant terms of the data alone. Maximizing the log-likelihood is equivalent to

minimizing the Csiszár I-divergence between the data and the mean

I
(
d
∥∥ g (α,µ)

)
:=
∑
i∈I

∑
y∈Y

di(y) ln
di(y)

gi(y : α,µ)
− di(y) + gi(y : α,µ). (3.3)

Here we use g (α,µ) := {gi(y : α,µ) : i ∈ I}. This form is a generalization of the Kullback-

Leibler divergence [31].

3.1.3 Objective Functions and Surrogates

Joint image recovery from (3.3) is ill-posed due to conditioning of the BRT forward operator

[24] in the exponent (3.1), noise, and scaling. To improve conditioning of this problem we
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incorporate two regularization terms in the objective function

J(α,µ) := I
(
d
∥∥ g (α,µ)

)
+ λαR(α) + λµR(µ). (3.4)

Here R is a convex regularization function (further conditions given in Appendix F.3). The

scalars λα and λµ emphasize regularization of the corresponding images.

Direct minimization of (3.4) remains difficult due to its high dimensionality and interde-

pendence of the image pixels. To make the problem tractable, we employ two techniques.

First, we use separable surrogate functions for the terms in (3.4). Separability here means

the gradients separate as functions of single image samples. The ensuing algorithm is highly

parallelizable, allowing each pixel update to be computed in parallel. The second technique

we employ is alternating updates between the scatter and attenuation images. The use of

surrogate functions guarantees monotonic reduction in the objective while alternating image

updates.

We use a surrogate for the data fidelity term

D (µ : α̂, µ̂) ≥ I
(
d
∥∥ g (α̂,µ)

)
, ∀µ ∈ A (3.5)

D (µ̂ : α̂, µ̂) = I
(
d
∥∥ g (α̂, µ̂)

)
, (3.6)

which is given by (F.30) and derived in Appendix F.2.

Additionally, we consider a surrogate for the regularization term

R (µ : µ̂) ≥ R (µ) , ∀µ ∈ A (3.7)

R (µ̂ : µ̂) = R (µ̂) ., (3.8)

which is given by (F.45) and derived in Appendix F.3.

Making use of these surrogate functions, we define two objectives

Jα(α : α̂, µ̂) := I
(
d
∥∥∥ g (α, µ̂)

)
+ λαR(α : α̂) (3.9)

Jµ(µ : α̂, µ̂) := D (µ : α̂, µ̂) + λµR(µ : µ̂), (3.10)
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which lead to an iterative update algorithm

α(k+1) = arg min
α∈S

Jα(α : α(k),µ(k)) (3.11)

µ(k+1) = arg min
µ∈S

Jµ(µ : α(k+1),µ(k)). (3.12)

This approach guarantees monotonic reduction of the regularized objective and convergence

to a local minimum.

Lemma 3.1. Monotonic reduction of J(α,µ) is guaranteed whenever a local objective, (3.9)

or (3.10), is reduced.

Proof. Combining the definitions (3.4) and (3.9), and making use of (3.7), we have

J(α, µ̂)− λµR (µ̂) ≤ Jα(α : α̂, µ̂). (3.13)

According to (3.8), we have equality when α = α̂, such that

J(α, µ̂)− J(α̂, µ̂) ≤ Jα(α : α̂, µ̂)− Jα(α̂ : α̂, µ̂). (3.14)

Therefore, any α reducing Jα guarantees a reduction in J . Further, the improvement in the

objective is bounded by the improvement to the local surrogate. The same can be shown for

any µ reducing Jµ.

Applying Lemma 3.1, alternating updates ensure

J(α(k+1),µ(k+1)) ≤ J(α(k+1),µ(k)) ≤ J(α(k),µ(k)). (3.15)

Iterative updates result in a sequence of costs that are monotonically decreasing and bounded

from below, since J(α,µ) ≥ 0. Convergence of this sequence is guaranteed.

Lemma 3.2. Convergence of (3.11) and (3.12) implies a fixed point.

Proof. The divergence (3.3) is convex with respect to α (see Appendix F.1), and R is strictly

convex (see Appendix F.3). Therefore, the local surrogate Jα is strictly convex over α ∈ S,
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with a unique minimizer α∗. When (3.11) does not improve the objective, we have

Jα(α∗ : α(k),µ(k)) = Jα(α(k) : α(k),µ(k)) =⇒ α∗ = α(k) (3.16)

such that α(k) is a fixed point. The same can be shown for Jµ.

Applying Lemma 3.2, equality in (3.15) implies α(k+1) = α(k) and µ(k+1) = µ(k).

3.2 Algorithms

Our iterative joint estimation approach is a two-step process summarized by Algorithm 4.

The first step requires computation of the forward BRT, and the second requires computation

of the backward BRT.

Algorithm 4 JointEstimate: Iterative algorithm for joint image estimation

Require: α(0),µ(0)

1: for k = 0, 1, 2, . . . do
2: α(k+1) = ScatterUpdate

(
α(k),µ(k)

)
3: µ(k+1) = AttenuationUpdate

(
α(k+1),µ(k)

)
4: end for

3.2.1 Regularized Scatter Update

The objective function (3.9) is strictly convex with respect to α over S (see Appendices F.1

and F.3). Therefore, each α(y) is either 0 or the solution to an unconstrained minimization

problem. Nonzero voxels are then determined by setting the gradient of (3.9) equal to zero

and solving for α(y). Expanding (3.9), we have

∂Jα(α : α(k),µ(k))

∂α(y)
=
∂I
(
d
∥∥ g
(
α,µ(k)

))
∂α(y)

+ λα
∂R(α : α(k))

∂α(y)
. (3.17)

The first and second terms on the right-hand side are given by (F.3) and (F.46), respectively.

Expanding these terms, we find the gradient is separable with respect to α(y). Each α(k+1)(y)
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can be determined in parallel solving

0 =
∑
i∈I

(
ġi(y : µ(k))− di(y)ġi(y : µ(k))

α(y)ġi(y : µ(k)) + βi(y)

)
+ λα

(
c1(y : α(k)) + 2c2(y : α(k))

(
α(y)− α(k)(y)

))
. (3.18)

Here ġ is given by (F.2). For each i ∈ I, computing ġi requires computing the forward BRT

of µ(k). The functions c1 and c2 refer to (F.43) and (F.44), respectively. These have been

re-appropriated for use with the scatter image and depend on the previous estimate α(k).

This process is described in Algorithm 5. We emphasize (3.18) has at most one positive

solution since (3.9) is strictly convex over α ∈ A.

Algorithm 5 ScatterUpdate: Single update of the scatter image.

Require: α̂, µ̂
Ensure: α

1: for each scatter angle i do
2: bi(y) =

∑
x∈X hi(y|x)µ̂(x) . Forward BRT

3: ġi(y) = I0(y) exp (−bi(y))
4: end for
5: Compute c1 (y : α̂) using Eq. (F.43)
6: Compute c2 (y : α̂) using Eq. (F.44)
7: for each point y do
8: Compute α(y) by solving Eq. (3.18)
9: end for

3.2.2 Regularized Attenuation Update

The objective function (3.10) is strictly convex with respect to µ over A (see Appendices F.2

and F.3). Therefore, each µ(x) is either 0 or the solution to an unconstrained minimization

problem. Nonzero voxels are then determined by setting the gradient of (3.10) equal to zero

and solving for µ(x). Expanding (3.10), we have

∂Jµ(µ : α(k+1),µ(k))

∂µ(x)
=
∂D(µ : α(k+1),µ(k))

∂µ(x)
+ λµ

∂R
(
µ : µ(k)

)
∂µ(x)

. (3.19)
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The first and second terms on the right-hand side are given by (F.31) and (F.46), respectively.

Expanding these terms, we find the gradient is separable with respect to µ(x). Each µ(k+1)(x)

can be determined in parallel solving

0 = b1(x : α(k+1),µ(k))− b2(x : α(k+1),µ(k)) exp
(
− Z0

(
µ(x)− µ(k)(x)

))
+ λµ

(
c1(x : µ(k)) + 2c2(x : µ(k))

(
µ(x)− µ(k)(x)

))
. (3.20)

The functions b1 and b2 are given by (F.28) and (F.29), respectively. Here we emphasize their

dependence on prior estimates α(k+1) and µ(k). Prior estimates are used to compute q̂i(y, 1)

using (F.6), which determine p̂i(y, 1) using (F.9b). The adjoint BRT is required to compute

b1 and b2 from p̂i(y, 1) and q̂i(y, 1), respectively. This process is described in Algorithm 6.

Algorithm 6 AttenuationUpdate: Single update of the attenuation image.

Require: α̂, µ̂
Ensure: µ

1: b1,b2 ← 0
2: for each scatter angle i do
3: Compute q̂i(y) using Eq. (F.6)
4: Compute p̂i(y) using Eq. (F.9b)
5: b1(x) +=

∑
y∈Y hi(y|x)p̂i(y) . Backward BRT

6: b2(x) +=
∑

y∈Y hi(y|x)q̂i(y)
7: end for
8: Compute c1 (x : µ̂) using Eq. (F.43)
9: Compute c2 (x : µ̂) using Eq. (F.44)

10: for each point x do
11: Compute µ(x) by solving Eq. (3.20)
12: end for

3.3 Simulations

In the following we quantify performance of our algorithm using simulated data. First

we demonstrate performance on a simple rectangular phantom from noise-free data. This

case highlights challenges which manifest in more complicated datasets. Subsequently we

demonstrate performance on the Shepp-Logan phantom. For the Shepp-Logan phantom we

demonstrate performance on noisy data for both single image and joint image estimation.
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3.3.1 Noise-Free Reconstruction for A Rectangular Phantom

Image reconstruction from noise-free data for simple phantoms helps characterize the per-

formance of our algorithm. Here we consider a simple rectangular phantom with a binary

attenuation image (µ(x) ∈ 0, 1). We consider two cases distinguished by the scatter image.

In the first case, we assume nonzero scatter everywhere

α>0(y) :=
√

0.1 + 0.2µ(y). (3.21)

For the second case, we allow the scatter to be zero outside support of the attenuation image

α≥0(y) :=
√

0.15µ(y), (3.22)

which implies missing data. This transform ensures spatial discontinuities occur in the same

places for both images. Here we use source intensity I0 =1e4, and background counts b = 50.

To preserve scaling, we divide the data by I0. Data are shown for the nonzero scatter and

missing data case in Figure 3.3, and Figure 3.4, respectively.

In Figure 3.3, the data are nonzero everywhere. Data associated with the positive scatter

angle, Figure 3.3 (a), have the most signal in the top left corner of the rectangle. For this

phantom, both scatter and attenuation are higher within the rectangle. Along the top of the

rectangle, the scatter direction is oriented away from the centroid. These broken ray paths

suffer less attenuation. Similar structures arise in Figure 3.4 over the rectangle indicating

support of the scatter image. Data outside the support of the scatter image are nonzero

due to b alone. However, they are not affected by attenuation and the gradations depicted

in Figure 3.3 do not appear in 3.4 outside the rectangular region. This loss of information

complicates reconstruction.

For the case α>0, reconstructed scatter and attenuation images are shown in Figure 3.5 and

Figure 3.6, respectively. Reconstruction errors are shown in Figure 3.7. The scatter image

is recovered reasonably well with small artifacts along the top and bottom of the rectangle.

For the attenuation image, transitions orthogonal to the source direction are challenging to

resolve spatially.
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Figure 3.3: Simulated data for the rectangular phantom with strictly positive scatter.
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Figure 3.4: Simulated data for the rectangular phantom with nonnegative scatter (missing
data).
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Figure 3.5: Recovered scatter image for the rectangular phantom with strictly positive scat-
ter.
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Figure 3.6: Recovered attenuation image for the rectangular phantom with strictly positive
scatter.
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(b) Attenuation Error

Figure 3.7: Error in recovered images for the rectangular phantom with strictly positive
scatter. Figure 3.7a and Figure 3.7b depict results for the the scatter and attenuation
images as labeled. Poor resolution of vertical edges in the attenuation image estimate are
due to strong attenuation of the BRT operator.
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Figure 3.8: Recovered scatter image for phantom with missing data.

For the missing-data case α≥0, reconstructed scatter and attenuation images are shown in

Figure 3.8 and Figure 3.9, respectively. Reconstruction errors are shown in Figure 3.10.

Again, the scatter image is recovered reasonably well, although there is a smoothing of the

leading edge. In contrast, the attenuation image suffers significant errors. There is some

blurring of the leading edge, and the trailing edge is not resolved.

A vertical slice, bisecting the rectangular phantom is shown in Figure 3.11. Even for this

noise-free case, we observe errors in the scatter image estimates. In Figure 3.11a, the errors

are largest toward the middle where the broken ray paths suffer the most attenuation. The

attenuation image, shown in Figure 3.11b demonstrates significant error.

So far we have depicted attenuation estimates only in the image space. It is also helpful

to consider attenuation in the data space. In Figure 3.12, we contrast the BRT of the true

attenuation image with the BRT of our estimated attenuation image. Differences in the data

64



(a) reference (b) ours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.9: Recovered attenuation image for phantom with missing data.
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(b) Attenuation Error

Figure 3.10: Error in recovered images for phantom with missing data. Figure 3.10a and
Figure 3.10b depict results for the the scatter and attenuation images as labeled.

66



0 50 100 150 200 250 300 350 400

sample index, y-axis

0

0.1

0.2

0.3

0.4

reference

noise free,  = 0,  = 0

(a) scatter

0 50 100 150 200 250 300 350 400

sample index, y-axis

0

0.2

0.4

0.6

0.8

1

reference

noise free,  = 0,  = 0

(b) attenuation

Figure 3.11: Vertical slice of reconstructed images taken at the midpoint. Reconstructed
from the positive scatter data shown in Figure 3.4.
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Figure 3.12: BRT of true and estimated attenuation images.

space are small relative to the differences in the image space (c.f. Figure 3.9). This is one

illustration of the poor conditioning of the inverse problem for attenuation image recovery.

It is also interesting to note attenuation errors in the data space are predominantly outside

the support of the scatter image. Since the scatter image applies multiplicatively in the data

model, errors outside this support have no effect on the data fidelity term. In Figure 3.13a

we show errors in the data space. In Figure 3.13b we set all errors outside the support of the

scatter image to 0. Over the support of the scatter image, the data space attenuation errors

have a similar structure to the scatter image errors shown in Figure 3.10a. This similarity

demonstrates ambiguity in the joint image estimation problem.

68



-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(a) Error

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Error with mask

Figure 3.13: Error in BRT dataspace between true attenuation, µ, and our result, µ̂, esti-
mated from noise-free data. Figure 3.13a depicts the error (Gµ)(x) − (Gµ̂). Figure 3.13b
depicts the errors subject to a mask, where all values outside the support of α are set to 0.
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Table 3.1: Simulation parameters and reconstruction hyperparameters

case α cµ β I0 θ1 λµ λα δ

1 α≥0 1 50 1e+03 π/5 1e-03 1e-03 1e-02
2 α≥0 10 50 1e+04 π/5 4e-04 4e-04 1e-02

3.3.2 Shepp-Logan Phantom

To assess performance of our algorithm in a more realistic setting, we consider simulated

data using the Shepp-Logan phantom. In general, reconstruction quality will vary greatly

depending on the problem parameters. Here we demonstrate results for a few cases intended

to demonstrate some of this variability. The simulation parameters and reconstruction hy-

perparameters are listed in Table 3.1.

We simulate data at two symmetric scatter angles. For the attenuation image we use the

modified Shepp logan phantom [25, 26]. From this analytic phantom, the BRT is computed

analytically (see Appendix D.1) and sampled. For the scatter image, we use a nonlinear

transform of the attenuation image using (3.22). The data are sampled uniformly as 400×300

square pixels pixels with edge lengths 5e− 3. The same sample locations are used for each

scatter angle. Resulting data are shown in Figure 3.14 and Figure 3.15 for cases 1 and 2,

respectively. In contrast, case 2 demonstrates stronger attenuation.

We first consider recovery of the attenuation image using analytic BRT inversion formulas.

These formulas do not operate on detector counts directly. Rather, they assume availability

of BRT data directly. For this we consider the crude estimate of the BRT data

gi(x) ≈ ln I0 − ln (max(di(x), 1)) . (3.23)

The max operation is necessary as the data may be zero for any given pixel. The expression

(3.23) highlights a significant limitation of the analytic inversion strategy: samples with no

scatter are associated with high-attenuating broken ray paths. For analytic reconstruction

of the attenuation image in the presence of unknown scatter, we require difference of the log

data. This residue approximates the modified [24] (or signed [8]) broken ray transform of

the attenuation image. Results are shown in Figure 3.1(f), for the case 1 data. The poor

performance is largely due to the missing data and not simply the stochastic nature of the
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Figure 3.14: Simulated data. Simulation parameters correspond to case 1 in Table 3.1. Here
the data counts have been normalized by I−1
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Figure 3.15: Simulated data. Simulation parameters correspond to case 2 in Table 3.1. Here
the data counts have been normalized by I−1

0 , and the color scale is logarithmic.
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Figure 3.16: Scatter image and reconstructions using the analytic BRT inversion formula.
From left to right: (a) the reference scatter image α(y); and (b) analytic reconstruction using
case 1 data.

data. In contrast, Figure 3.1(d) comprises results on noise-free data. For Poisson distributed

data characterized by uniform scatter, analytic inversion formulas yield a modest estimate

as depicted in Figure 3.1(e).

Analytic reconstruction of the scatter image has received less attention (exceptions include

[4]). Analytically, scatter images can be recovered from single-angle observations when the

scatter is strictly positive and the attenuation image is finite everywhere. A more robust

approach is to estimate the scatter image by averaging the corrected data based on the

attenuation image, µ̂. Given an analytically reconstructed attenuation image estimate, we

reconstruct the scatter image analytically

α̂(y) :=
1

|I|
∑
i∈I

[
di(y)

I0(y)
exp

(∑
x∈X

hi(y|x)µ̂(x)

)]
. (3.24)

Results are shown in Figure 3.16.

Our iterative reconstruction algorithm represents a generalized approach to the joint image

estimation problem. It can also be specialized for single-image estimates. Here we consider

four reconstruction problems: (1) scatter estimation with known attenuation; (2) attenuation
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Figure 3.17: Joint image reconstructions from Poisson data (case 1). Scatter and attenuation
reconstructions are shown in Figures 3.17a and 3.17b, respectively.

estimation with known scatter; (3) joint image estimation from Poisson data; and (4) joint

image estimation from noise-free data. For case 1 data, image reconstructions are shown in

Figures 3.17a and 3.17b for the single-image estimation problems (1) and (2), respectively.

Image reconstructions for the joint image estimation problems (3) and (4) are shown in

Figures 3.18 and 3.19, respectively.

The results shown in Figure 3.17 are not particularly impressive alone. The scatter estimate

was recovered well, but this image was featured prominently in the data (c.f. Figure 3.14).

The attenuation estimate was not resolved spatially, and most features of the phantom were

lost. However, the joint image estimates of Figure 3.17 were obtained from the same data

(case 1) yielding the analytic attenuation reconstruction of Figure 3.1(f) and the scatter

reconstruction of Figure 3.16(b). Our results demonstrate significant improvements over

analytic reconstructions.
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Figure 3.18: Single-image reconstructions using known images and case 1 data. Figure 3.18a
depicts reconstructed scatter given known attenuation. Conversely, Figure 3.18b depicts
reconstructed attenuation given known scatter. These images were reconstructed indepen-
dently from the same realization of Poisson-distributed data.
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Figure 3.19: Joint image reconstructions from noise-free data (case 1). Scatter and attenu-
ation are shown in Figures 3.19a and 3.19b, respectively.
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Plotting slices through the reconstructed images provides another assessment of image qual-

ity. For each problem we obtain a slice through the reconstructed image and overlay the

results on the same plot. The results will vary depending on which slice is extracted. We

contrast three slices depicted in Figure 3.20, Figure 3.21, and Figure 3.22.

A vertical slice, bisecting the phantom is shown in Figure 3.20. In Figure 3.20a, the line

“α known” represents truth. The line “µ known” overlays nicely subject to some noise.

We observe a small trend in the joint estimates (3) and (4), which are negatively biased.

In Figure 3.20b, the line “µ known” represents truth. Both α and µ estimates for both

joint estimation problems exhibit significant deviations from truth, particularly through the

midpoint. This artifact is less significant for the weak-attenuation media (case 1) and will

be displayed more prominently in results for the strong-attenuation media (case 2).

Figure 3.21 and Figure 3.22 both represent horizontal slices through the images. Figure 3.21

bisects the phantom, while Figure 3.22 represents a cut through the small detail ellipses in the

Shepp Logan phantom. The horizontal slice bisecting the attenuation image demonstrates

poor agreement as shown in Figure 3.21b. Off the midpoint, agreement improves somewhat

as in Figure 3.22b. However, agreement remains poor on the edges (e.g. sample indices 50

and 250). This blurring is consistent with the poor spatial resolution of edges orthogonal to

the common direction θ0 as shown in Figure 3.9.

As a second example, we consider data from media with stronger attenuation as shown in

Figure 3.15. Results of joint image reconstruction are shown in Figure 3.23. In this case the

attenuation image is better resolved, however the scatter image shows some cupping. We

believe this is due to a bias in the estimated attenuation and the longer path lengths through

the midpoint of the image. This cupping is particularly evident in vertical slices as shown

in Figure 3.24. This is also demonstrated contrasting Figure 3.25 and 3.26 which represent

medial and inferior horizontal slices, respectively.
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Figure 3.20: Vertical slice of reconstructed images taken at the midpoint. Image estimates
from case 1 data.
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Figure 3.21: Horizontal slice of reconstructed images taken at the midpoint. Image estimates
from case 1 data.
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Figure 3.22: Horizontal slice of reconstructed images at y = −0.8 through the small detail
ellipses in the Shepp Logan phantom. Image estimates from case 1 data.
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Figure 3.23: Joint image reconstructions from Poisson data (case 2). Scatter and attenuation
are shown in Figures 3.23a and 3.23b, respectively.
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Figure 3.24: Vertical slice of reconstructed images taken at the midpoint. Image estimates
from case 2 data.
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Figure 3.25: Horizontal slice of reconstructed images taken at the midpoint. Image estimates
from case 2 data.
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Figure 3.26: Horizontal slice of reconstructed images at y = −0.8 through the small detail
ellipses in the Shepp Logan phantom. Image estimates from case 2 data.
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Chapter 4

Conclusions and Future Work

4.1 Summary and Conclusions

The broken ray transform is an important operator for a broad class of imaging problems

characterized by the single scatter approximation. Analysis of the operator has suggested

joint image separation is possible in this setting. Howver, prior inversion formulas perform

poorly for practical cases with missing data. Our analysis of the BRT has highlighted sam-

pling issues and identified solutions necessary for numeric applications. We then developed

computationally efficient inversion formulas and operators for sampled data. Computation-

ally efficient operators are particularly useful for iterative algorithms. Our choice of an itera-

tive algorithm was motivated by a noisy model for the data. A major benefit of our approach

is image reconstruction with missing data. Our generalized algorithm can be specialized for

single image recovery. Estimates of the attenuation image improve is the scatter-density

image is known. Estimates of the scatter-density image improve if the attenuation image is

known. One known image is particularly useful for resolving ambiguity in the joint problem

at low frequencies.

4.2 Future Directions

Anticipating use in problems with photon counting processes, we assume Poisson models.

The approach can be altered for Gaussian data models which may be a convenient approxi-

mation, employing the central limit theorem, when the number of counts for each detector
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is high. However, in scattering applications the number of counts per detector is character-

istically small (e.g. ∼ 100) for which the Poisson model is appropriate.

The choices for the simulations in this paper were made to demonstrate the potential per-

formance improvement in disparate cases. The exact statistical model would need to be

determined by the physics of that system. In particular, scaling of both the scatter and

attenuation images affect the convergence rate and quality of the reconstructed images.

Our simulation results demonstrate ambiguity resolving low frequency content for joint image

estimation. Often both images were under estimated, and the severity depends on the total

path attenuation. Providing one image clarifies ambiguity at low frequencies. A similar am-

biguity appears when attempting to recover both activity and attenuation images from TOF

PET data [32]. Similarities between the BRT and TOF PET are discussed further in Ap-

pendix G.1. It is also interesting to note the puerly local inversion strategy of Katsevich [3],

discussed in Appendix G.2, does not apply to TOF PET. In Appendix G.3 we demonstrate

Katsevich’s local inversion strategy does not apply in the TOF PET measurement geometry

because the TOF PET measurement geometry invalidates Zhao’s conditions [6].

Here we focus on the SVT measurement geometry which we view as a necessary first step

to addressing joint image reconstruction for coded aperture measurement geometries. The

coded aperture data can be described as a sparse sampling across multiple SVT measurement

geometries with differing scatter directions. Coded apertures simultaneously observe multiple

scatter paths with each detector. Integrating over multiple paths is important for addressing

the low signal counts associated with single-path single-scatter measurements. Previous

work on coded apertures trivialized the effects of the attenuation image as constant [29],

or negligible [13, 14]. Our results suggests joint attenuation estimation, with no additional

data, may improve estimation of momentum transfer.

Joint image recovery for coded aperture measurement geometries will require computations

in a high dimensional space comprising scattering from many angles. Ordered subsets is a

modern range-decomposition approach for iterative image reconstruction in high dimensions.

Our simplification of the BRT forward and adjoint operator is useful in this setting as

it reduces the computational burden when both constructing and applying the operator.

However, our forward operator assumes global transform of a bounded image. Transforms

of subsets must account for boundary conditions of the cone beam transform [24].
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Appendix A

Momentum Transfer and Bragg’s Law

Differing conventions for momentum transfer have been used in the literature. All known

conventions are consistent up to a scale factor. However, scaling discrepancies add unnec-

essary complication when relating fundamental concepts. In this section we derive Bragg’s

law from momentum transfer using traditional wavevector notation.

A scattering event can be described as a change in wavevectors. Let k and k′ represent the

incident and scattered wavevectors respectively. The result, q = k′−k, is commonly referred

to as the momentum transfer. These vectors are depicted in Fig. A.1.

Elastic, or coherent, scattering by definition preserves the incident wave energy. This forces

|k| = |k′|. In such cases, we can express q := |q| in terms of |k| and θ

q = 2|k| sin
(
θ

2

)
. (A.1)

This quantity is generally given in units of Å-1.

We assume the convention |k| = 1/λ. Recall the Planck-Einstein relation for photon energy,

E = hf , where h is Planck’s constant and f is the photon frequency. Assuming wave velocity

is constant in all media of interest, wavelength and frequency are related according to the

k

k′

θ

q

Figure A.1: Momentum transfer and related vectors for coherent scattering.
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speed of light using λ = c/f . These relations lead to equivalent expressions

q = 2
1

λ
sin

(
θ

2

)
(A.2)

= 2
f

c
sin

(
θ

2

)
(A.3)

= 2
E

hc
sin

(
θ

2

)
. (A.4)

Several authors omit the factor of 2 in (A.1). This omission appears to have started with

expression (3) in [15] which is similar to our (A.2). Similarly, (10) in [14] and (1) in [29] varies

from our (A.4) by a factor of 2. However, in [29] the authors include an additional factor

of 2 in the lattice spacing. A different variant was used in [12] similar to (A.3) without the

factor c. Finally, physicists, by convention, include a factor of 2π in wavecectors. Therefore,

qphys =
4π

λ
sin

(
θ

2

)
(A.5)

= 2
E

~c
sin

(
θ

2

)
(A.6)

are also common.

Regardless of the variant, all of these expressions are within a scale factor of Bragg’s Law

n

d
= 2

1

λ
sin

(
θ

2

)
. (A.7)

This expression is often used in x-ray crystalography to relate crystalline lattice spacing (d)

to the strongest scattering angle (θ) and incident wavelength (λ). Integer-valued n extends

the model to cover harmonics. Measurements of x-ray scatter intensity will be negligible for

incident angles and energies which do not satisfy (A.7) for the media of interest.

In some cases it is convenient to define the momentum transfer as a function of a = cos(θ).

This leads to

q(a,E) :=
2E

hc

√
1− a

2
. (A.8)
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Clearly, we have

D1q(a,E) = −E
hc

√
1

2(1− a)
(A.9)

D2q(a,E) = q(a, 1). (A.10)
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Appendix B

Differential Analysis

B.1 Derivatives of the Measured Data

Our interest is in distinguishing the terms in the log data using multiple measurements. In

this section we generalize the notion of multiple measurements using differential equations.

For convenience, we restate (1.7a)

l(x, α, β, E) = ln f (x, q (α · β,E))− (Bµ)(x,−α)− (Bµ)(x, β). (B.1)

Here we present notation for the first derivative of (1.7) with respect to each input parameter.

These differential equations provide a framework for contrasting prior work.

The inputs α, β to (B.1) are drawn from S2. The notion of a derivative is not directly available

over S2 as it is not a vector space. However, the set S2 is a two-dimensional manifold

embedded in three-dimensional space. Since a manifold locally approximates Euclidean

space, we may locally approximate S2 as the tangent plane in R3. This approximation

supports directional derivatives for any direction in the tangent plane. This concept is

discussed further in Appendix B.3.

For some differentiable function f : S2 → R3, we use 〈Df(θ), u〉 for the directional derivative

of f in the direction u. We emphasize 〈Df(θ), u〉 is scalar-valued. For an orthogonal basis

set θ, u, v we have

Df(θ) = 〈Df(θ), u〉u+ 〈Df(θ), v〉v. (B.2)
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Here u, v are a basis for the plane orthogonal to θ. While selection of u, v are not unique,

Df(θ) ∈ R3 is. By definition 〈Df(θ), θ〉 = 0.

Differentiating (B.1) with respect to each of its four arguments we obtain

D1l(x, α, β, E) =
D1f (x, q (α · β,E))

f (x, q (α · β,E))
−D1(Bµ)(x,−α)−D1(Bµ)(x, β) (B.3)

D2l(x, α, β, E) =
D2f (x, q (α · β,E))

f (x, q (α · β,E))
D1q(α · β,E)β −D2(Bµ)(x,−α) (B.4)

D3l(x, α, β, E) =
D2f (x, q (α · β,E))

f (x, q (α · β,E))
D1q(α · β,E)α−D2(Bµ)(x, β) (B.5)

D4l(x, α, β, E) =
D2f (x, q (α · β,E))

f (x, q (α · β,E))
D2q(α · β,E). (B.6)

Here we use Euler’s notation for the differential operator where the subscript identifies the

argument acted upon. Since f : R3 × R→ R, D1f ∈ R3, and D2f ∈ R. Differentiation over

S2 results in an element of R3 as discussed previously.

Expanding (B.4),(B.5) using (B.2) requires an orthogonal basis in R3. We can expand

(B.4),(B.5) using (B.2) as

D2l(x, α, β, E) = 〈D2l(x, α, β, E), ψ〉ψ + 〈D2l(x, α, β, E), φ〉φ (B.7)

D3l(x, α, β, E) = 〈D3l(x, α, β, E), θ〉θ + 〈D3l(x, α, β, E), φ〉φ. (B.8)

The four directional derivatives are

〈D2l(x, α, β, E), φ〉 = −〈D2(Bµ)(x,−α), φ〉 (B.9)

〈D2l(x, α, β, E), ψ〉 =
D2q(x, α · β,E)

q(x, α · β,E)
〈β, ψ〉 − 〈D2(Bµ)(x,−α), ψ〉 (B.10)

〈D3l(x, α, β, E), φ〉 = −〈D2(Bµ)(x, β), φ〉 (B.11)

〈D3l(x, α, β, E), θ〉 =
D2q(x, α · β,E)

q(x, α · β,E)
〈α, θ〉 − 〈D2(Bµ)(x, β), θ〉. (B.12)

These expressions are significant in that (B.9) and (B.11) are not influenced by q(x, α·β,E) >

0. This suggests µ could be recovered, up to an additive constant, given sufficiently sampled

data. One could obtain (B.9) and (B.10) by perturbing the transmitter location about the
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focal point x. Similarly, perturbing the receiver location could reveal (B.11) and (B.12).

However, such measurements are insufficient to distinguish the two terms in (B.10) and

(B.12).

B.2 Angular Differential Measurements

Using subscripts to reference the initial angle β1, we define a second scatter direction

β2 = α (α · β1) + ψ1 (θ′1 · β1) . (B.13)

This represents a 90-degree rotation of β about α with the following relations

β1 · α = β2 · α (B.14)

θ′2 = φ1 (B.15)

φ2 = −θ′1 (B.16)

〈D2(l)(x, α, β2, E), θ′1〉 = −〈D2(Bµ)(x,−α), θ′1〉 (B.17)

D2q(x, α · β,E)

q(x, α · β,E)
=

1

β1 · θ′1
(〈D2(l)(x, α, β1, E), θ′1〉 − 〈D2(l)(x, α, β2, E), θ′1〉) (B.18)

D2(Bµ)(x, α) = −φ1〈D2(l)(x, α, β1, E), φ1〉 − θ′1〈D2(l)(x, α, β2, E), θ′1〉. (B.19)

A similar approach can be employed to obtain D2(Bµ)(x, β). Obiously 90-degree rotations

are not required. These quantities could be found for arbitrary rotations subject to the

conditioning of the associated linear system. While this expansion is concise, obtaining

these measurements is not convenient using current acquisition systems.

B.3 Directional Derivative on S2

Practical examples of directional derivatives may avoid some confusion. The directional

derivative on S2 implies a rotational derivative. However, the derivative is only relevant in

certain directions. In this section we expand the vectors in Cartesian coordinates. Addition-

ally, we will re-appropriate θ and φ to reference spherical coordinates.
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Any element of S2 can be described with two spherical coordinates, θ and φ, with the

implication r = 1. For example

d(θ, φ) =

cos θ sinφ

sin θ sinφ

cosφ

 . (B.20)

Clearly

D2d(θ, φ) =

cos θ cosφ

sin θ cosφ

− sinφ

 . (B.21)

For the special case φ1 = φ2 = π
2

∂

∂φ
(d(θ1, φ1) · d(θ2, φ2))

∣∣∣∣
φ1,φ2=π

2

= 0. (B.22)

This special case can be useful. For any two unique vectors, d1 6= d2, d1, d2 ∈ R3 there exists

one unique plane containing these two vectors. Without loss of generality we may assume

a rotation such that d1 and d2 lie in the x-y plane. Therefore, (B.22) applies whenever the

derivative is taken in the direction orthogonal to both vectors. This explains the absence of

the momentum transfer term in (B.9) and (B.11).

We may extend the definition of the cone beam transform to include θ, φ as

(Bf)(s, θ, φ) =

∫ ∞
0

f

s+ t

cos θ sinφ

sin θ sinφ

cosφ


 dt. (B.23)
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In this expression we use s ∈ R3 to avoid confusion with the coordinate x. Again, a special

case simplifies the result

− ∂

∂φ
(Df)(s, θ, φ)

∣∣∣∣
φ=π

2

= −
∫ ∞

0

cos θ cosφ

sin θ cosφ

− sinφ

 · ∇f
s+ t

cos θ sinφ

sin θ sinφ

cosφ



∣∣∣∣∣∣∣
φ=π

2

dt (B.24)

=

∫ ∞
0

0

0

1

 · ∇f
s+ t

cos θ

sin θ

0


 dt (B.25)

=

∫ ∞
0

∂

∂z
f

s+ t

cos θ

sin θ

0


 dt. (B.26)

This may provide a more intuitive expansion of Grangeat’s formula. In this case, the negative

sign accounts for the difference in the orientation of φ. This follows one of two proofs given

by Natterer [16].
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Appendix C

Fourier Analysis

C.1 Derivation of the Fourier Transform of the CBT

We define the Fourier transform as a function of frequency to avoid scaling the inverse. For

a one-dimensional function we define the one-dimensional Fourier transform and its inverse

F1{f(x)} :=

∫ +∞

−∞
f(x)e−i2πwxdx (C.1)

F−1{f̂(w)} :=

∫ +∞

−∞
f̂(w)ei2πwxdw. (C.2)

For two-dimensional functions we define the two-dimensional Fourier transform and its in-

verse

F2{f(x)} :=

∫
R2

f(x)e−i2πw·xd2x (C.3)

F−2{f̂(w)} :=

∫
R2

f̂(w)ei2πw·xd2w. (C.4)

In this form, we have

F1{u(x)} =
1

i2πw
+

1

2
δ(w), (C.5)

where δ(x) and u(x) represent the Dirac delta function and the unit step function, respec-

tively.
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For CBT data associated with a fixed direction, θ, we define the two-dimensional Fourier

transform

b̂θ(w) = F2{(BµC)(x, θ)} (C.6)

=

∫
R2

∫ ∞
0

µC(x+ tθ)dt e−i2πw·xd2x (C.7)

=

∫ ∞
0

∫
R2

µC(y)e−i2πw·yd2y ei2πtw·θdt (C.8)

= µ̂C(w)

∫ ∞
0

ei2πtw·θdt (C.9)

= µ̂C(w)

[
−1

i2πw · θ
+

1

2
δ(w · θ)

]
. (C.10)

In (C.8) we changed the order of integration and substituted y = x+ tθ. In (C.9) we sub-

stituted µ̂C(w) = F2{µC(x)}. Finally, in (C.10) we made use of (C.5).

C.2 BRT Inversion by Fourier Analysis

To invert the BRT, we start by multiplying both sides of (2.3c) by the reciprocal of (2.4).

Rearranging terms, we have

µ̂C(w) = iπµ̂C(w)
(w·θi)(w·θj)
w·(θi+θj) δ (w · θi) + iπµ̂C(w)

(w·θi)(w·θj)
w·(θi+θj) δ (w · θj)

+ĝi,j(w)
−i2π(w·θi)(w·θj)

w·(θi+θj) , ∀w /∈ Θi,j. (C.11)

The first two terms on the right-hand side vanish under integration. We note the inverse

two-dimensional Fourier transform∫
R2

(w · θ) δ (w · θ) ei2πw·xd2w = 0, ∀x ∈ R2. (C.12)

Incorporating multiplicative functions does not change this result as long as they are finite

for all w · θ = 0. For the first term in (C.11), we expand w = sθi + tθ⊥i as an orthonormal
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basis and set s = 0. This leads to

µ̂C(w)
w · θj

w · (θi + θj)

∣∣∣∣
w=tθ⊥i

= µ̂C(tθ⊥i ), ∀ θi 6= θj, (C.13)

which is finite for all t by our assumptions on µC(x). Applying a similar process for the

second term, we find

F−2

{
iπµ̂C(w)

(w · θi) (w · θj)
w · (θi + θj)

[δ (w · θi) + δ (w · θj)]
}

= 0. (C.14)

To address the third term in (C.11) we make use of the derivative and integral properties of

the Fourier transform. Now we expand x = sθ + tθ⊥ and consider the directional derivative

d

dθ
f(x)

∣∣∣∣
x=sθ+tθ⊥

=
d

ds
f(sθ + tθ⊥). (C.15)

Applying this to the inverse two-dimensional Fourier transform, we find

d

dθ
f(x) =

d

dθ
F−2

{
f̂(w)

}
(C.16)

=

∫
R2

d

ds
f̂(w)ei2π(sw·θ+tw·θ

⊥)d2w (C.17)

= F−2
{
i2π (w · θ) f̂(w)

}
. (C.18)

We previously derived the integration property of the two-dimensional Fourier transform in

the context of the CBT. From (C.10), we have

F2

{∫ ∞
0

f (x+ sθ) ds

}
= f̂(w)

[
−1

i2πw · θ
+

1

2
δ(w · θ)

]
. (C.19)

When f̂(w · θ) = 0 for all w ∈ R2, substituting −θ in (C.19) we also find∫ ∞
0

f (x+ sθ) ds = −
∫ ∞

0

f (x+ s(−θ)) ds (C.20)

= −
∫ 0

−∞
f (x+ sθ) ds. (C.21)
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From (2.3c), ĝi,j(0) is not guaranteed to be finite, much less zero. However, from (2.3c) we

have

(w · θi) (w · θj) ĝi,j(w) = 0, ∀w · (θi + θj) = 0. (C.22)

Putting this all together, we have equivalent expressions

µC(x) =
1

‖θi + θj‖

∫ ∞
0

d

dθi

d

dθj
gi,j

(
x+ s

θi + θj
‖θi + θj‖

)
ds (C.23)

=
−1

‖θi + θj‖

∫ 0

−∞

d

dθi

d

dθj
gi,j

(
x+ s

θi + θj
‖θi + θj‖

)
ds. (C.24)

We emphasize equality only holds for images, µC(x), with bounded support. This assumption

is necessary due to the nullspace of the forward operator.

C.3 Two-Dimensional Fourier Transform of a Parallel-

ogram

Parallelograms are often expressed in terms of the edge directions and edge lengths. We

consider the directions θi, θj and associated edge lengths ai, aj, respectively. The total area

of the resulting parallelogram is aiaj| det (θi, θj) |. As an alternative to edge lengths, we also

consider the orthogonal distance between parallel sides. We define bi and bj as the extent

(height) of the parallelogram in the orthogonal directions θ⊥i and θ⊥j , respectively. These

distances are related to the edge lengths through the change of variables

bi := aj |det (θi, θj)| (C.25)

bj := ai |det (θi, θj)| . (C.26)

Additionally, we define the one-dimensional rectangular function

ΠT (t) :=

{
1, |t| ≤ T/2

0, otherwise.
(C.27)
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We define the two-dimensional parallelogram indicator function, centered at x = 0,

pi,j(x; ai, aj) := Πbi

(
x · θ⊥i

)
Πbj

(
x · θ⊥j

)
. (C.28)

Here bi, bj are determined by aj, ai using (C.25) and (C.26), respectively. The area of this

function is equivalently∫
R2

pi,j(x; ai, aj)d
2x = aiaj| det (θi, θj) | =

bibj
| det (θi, θj) |

. (C.29)

To determine the two-dimensional Fourier transform of (C.28), we exploit the convolution

property of the Fourier transform. We transform the two rectangular functions separately,

then convolve the results in the frequency domain. The one-dimensional Fourier transform

of (C.27) is

F {ΠT (t)} = T sinc (wT ) . (C.30)

Extending this to two dimensions, we have the relation

F2
{

ΠT (x · θ)δ
(
x · θ⊥

)}
= T sinc(Tw · θ) (C.31)

F2 {ΠT (x · θ)} = T sinc(Tw · θ)δ
(
w · θ⊥

)
. (C.32)

We derive the two-dimensional Fourier transform of (C.28) as

p̂i,j (w; ai, aj) = bibj sinc(biw · θ⊥i )δ (w · θi) ∗ sinc(bjw · θ⊥j )δ (w · θj) (C.33)

= bibj

∫
R2

sinc(biy · θ⊥i )δ (y · θi) sinc(bj (w − y) · θ⊥j )

× δ ((w − y) · θj) d2y (C.34)

= bibj

∫
R

sinc(bit) sinc(bj
(
w − tθ⊥i

)
· θ⊥j )δ

((
w − tθ⊥i

)
· θj
)
dt (C.35)

=
bibj

| det (θi, θj) |
sinc

(
bi
w · θj
θ⊥i · θj

)
sinc

(
bjw ·

(
θ⊥j − θj

θi · θj
θ⊥i · θj

))
(C.36)

=
bibj

| det (θi, θj) |
sinc

(
bi
w · θj
θ⊥i · θj

)
sinc

(
bj
w · θi
θi · θ⊥j

)
(C.37)

= aiaj| det (θi, θj) | sinc (ajw · θj) sinc (aiw · θi) . (C.38)
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For (C.35), we expand the integration variable in (C.34) using the orthonormal basis,

y = sθi + tθ⊥i , and integrate over s. Changing the variable of integration again effects a

change in scaling in (C.36). The second sinc function of (C.36) comprises expansion of θi

using the orthonormal basis θj, θ
⊥
j . Restoring θi, we obtain (C.37). Restoring aj, ai using

(C.25), (C.26), we obtain (C.38).

104



Appendix D

Geometric Problems

The BRT, as a forward operator, can be decomposed as a series of geometric problems.

Solving these problems analytically improves precision and computational efficiency. Our

work here is useful both for simulation, and for inversion algorithms requiring a forward

model.

D.1 Ray Intersection with Ellipsoid

Ellipsoids are a convenient geometric shape for specifying bounded regions within a larger

volume. These shapes can be used to define nontrivial phantoms analytically such as the

Shepp-Logan phantom [26]. BRT data from such phantoms can also be determined analyti-

cally. For this we must determine whether the ray intersects the ellipsoid, and if so, where

along its path.

We choose to represent the ellipsoid in point-matrix form. Let a ∈ Rn represent the centroid

of the ellipsoid, and symmetric positive-definite matrix A ∈ Rn×n determine the scaling and

principle axes. Using

he(x) = (x− a)T A (x− a)− 1 (D.1)

we define the surface of the ellipsoid as the set S := {x ∈ Rn : he(x) = 0}.
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We consider the ray, originating from x0 ∈ Rn, in the direction θ ∈ S2. Intersections with

the ellipsoid are determined by roots of the polynomial

he(x+ sθ) = s2θTAθ + s2xTAθ + xTAx− 1. (D.2)

This is a real quadratic polynomial with scalar coefficients. As such, the roots must be real

or represent conjugate pairs. There are three cases of interest: complex roots, repeated real

roots, and distinct real roots.

Complex roots are the result of a line which does not intersect the ellipsoid. Repeated real

roots imply the line only intersects the ellipsoid once. In such cases the line lies within the

tangent plane at the intersection point. Two distinct real roots imply the line travels through

the ellipsoid with two distinct intersection points.

It is also interesting to note the case of one positive and one negative root of (D.2). Such

results imply x lies within the ellipse. Conversely two positive or two negative roots imply

x lies before or after the ellipse with respect to the direction θ.

The tangent plane associated with a point on the ellipse can be determined by differentiating

(D.2) which yields

∇he(x) =
(
A+ AT

)
x. (D.3)

This is the outward-facing normal vector at x. From the constraint he(x) = 0, using (D.1)

and (D.3), we have xT∇he(x) = 2. We can define the tangent plane at x as the set

Pe = {y : y · ∇he(x) = 2}. (D.4)

.

D.2 Ray Discretization through Uniformly Sampled

Image

Many iterative algorithms require a forward operator for sampled images. For the BRT, the

forward operator involves integrals along two rays. For each point in the sampled data, we
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must resolve the contribution of each voxel in the image. This operator is sparse in that each

broken ray intersects few voxels. To represent these line integrals concisely, we first consider

a related problem: the discretization of a single ray through a sampled image.

Along a ray, through a sampled image, the associated sample index changes as a function of

length. We approximate the image as constant-valued over voxels. The sample index along

the ray only changes as the ray passes through voxel boundaries. This piecewise-constant

function can be summarized by the location of discontinuities and associated change in sam-

ple indices. In the following we justify this representation and present an efficient algorithm

for determining its parameters. This is straightforward for sampling over rectangular pixels.

However, generalizing the problem to higher dimensions, and sampling over nonorthogonal

basis vectors [8], requires additional care.

Here we consider a ray passing through an image which has been discretized over a uniformly

sampled lattice. We seek a a right-contiguous discretization of a ray. The discontinuities

occur at ray lengths where the ray traverses boundaries of the sampling lattice. Ultimately,

we will define a one-dimensional discretization of the ray l(m) : Z→ R and associated lattice

coordinates k(m) : Z→ Zn for segment index m and lattice dimension n.

We consider a mapping of coordinates, k, to spatial locations using f : Zn → Rn

f(k) = x0 + V k. (D.5)

Here x0 represents the spatial location of the point k = 0. The matrix V represents a set of

linearly independent basis vectors. We will refer to the ith column of V using vi.

Let X ⊂ Rn represent a point lattice

X = {f(k) : k ∈ Zn} . (D.6)

We partition Rn into voxels, indexed using coordinates k ∈ Zn, with centroids f(k) ∈ X.

When V = I (and n = 2) the resulting voxels are simply square unit pixels. In general the

voxels are parallelepipeds with edges parallel to the columns of V .

To map each spatial location to a voxel coordinate we consider an inverse mapping from

x ∈ Rn to k ∈ Zn. For this we approximate the sampled image as constant-valued over each
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voxel. The voxels are bounded by a series of planes. The normal vectors to these planes are

given by the basis vectors for the reciprocal lattice. We introduce the notation ∗ to indicate

reciprocal basis vectors

V −1 =
[
v∗1 v∗2 · · · v∗n

]
. (D.7)

Making use of these vectors, we form a mapping g : Rn → Zn

g(x) = bV −1 (x− x0)e. (D.8)

Here we use b·e to represent the nearest-integer function. Clearly, (g ◦ f) (k) = k for all

k ∈ Zn.

We now turn our attention to the ray. Let r0 ∈ Rn represent the ray origin, and θ ∈ Sn−1

represent the ray direction. Locations along the ray are specified by the function r(l) :

R≥0 → Rn,

r(l) = r0 + lθ. (D.9)

We can now map ray length to a lattice coordinate using (D.8) and (D.9)

(g ◦ r) (l) = bV −1 (r0 + lθ − x0)e. (D.10)

We decompose this expression as n scalar functions hi : R≥0 → Z

hi(l) = bbi + lwie, (D.11)

using the change of variables wi, bi ∈ R

wi := v∗i · θ, bi := v∗i · (r0 − x0) . (D.12)

We recognize (D.11) as the quantization of an affine function.

Immediately we have hi(0) = bbie. For l > 0, we find hi(l) is piecewise-constant, and dis-

continuities occur at frequency wi. At each discontinuity, hi(l) monotonically changes by

sgn (wi). Let `i indicate the location of the first discontinuity satisfying

bi + `iwi = bbie+
1

2
sgn (wi) . (D.13)
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We then specify hi(l) as the left-continuous function with segments indexed by m ∈ Z≥0

according to

li(m) = `i +
m

|wi|
(D.14)

(hi ◦ li) (m) = bbie+ sgn (wi)m. (D.15)

Combining these definitions for i ∈ {1, . . . , n}, we obtain a discretization of the ray. When

|wi| ≈ 0, we assume the ith lattice coordinate does not change (no discontinuities occur).

In application we are limited to a finite collection of samples. This implies a maximum

length along the ray before the ray exits the sampled volume. We consider a finite number

of samples along the ith direction indicated by Ki. Ensuring (hi ◦ li) (m) ∈ [0, Ki − 1] implies

an upper bound on m. We refer to this bound as

M̂i =


∞, wi = 0

Ki − 1− bbie, wi > 0

bbie wi < 0.

(D.16)

The maximum ray length associated with the sampled volume is therefore

`MAX := min
i
li

(
M̂i

)
, (D.17)

which we use to correct Mi ≤ M̂i using

Mi := b(`MAX − `i) |wi|c. (D.18)

For |wi| ≈ 0, we assign Mi = −1 indicating no discontinuities occur. All that remains is to

interleave the discontinuities across all basis vectors.

We form the array of unordered discontinuities

t =
[
l1(0) l1(1) · · · l1(M1) l2(0) · · · ln(Mn)

]T
. (D.19)

At each discontinuity, the lattice coordinates update monotonically. To determine the coor-

dinates, we must cumulatively sum the discretization boundaries along each sampling basis.
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Associated with t, we define a binary matrix indicating updates to lattice coordinates for

each basis i ∈ {1, . . . , n}. We store these in the block-diagonal matrix S with n blocks each

comprising a column vector of length (Mi + 1),

[S]i = |wi|1Mi+1. (D.20)

Here 1N is the N -length column vector of all ones. In the event |wi| ≈ 0, we assign Mi = −1,

effectively setting the ith column of S to all zeros with the inclusion of no additional rows.

Finally, we sort the rows of S using t. Let P represent the permutation matrix such that

the vector Pt is monotonically increasing.

Putting this together, we partition the ray into right-contiguous segments associated with

segment index m > 0. The length associated with the start of each ray segment is therefore

l(m) = [Pt]m (D.21)

and is associated with the lattice coordinates

[k(m)]i = bbie+
m−1∑
j=0

[PS]j,i . (D.22)

The origin of the ray is associated with l(0) = 0 and [k(0)]i = bbie. The length segment m

is therefore l(m+ 1)− l(m) which is, in general, nonuniform.
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Appendix E

Additional Numeric Algorithms

E.1 Filtering Sampled Cone Beam Transform Data

With extended CBT data available, filtered data can be synthesized by superimposing a

shifted copy of the original data with the extended data. This process is described in Algo-

rithm 7.

Algorithm 7 CbtFilter: Bound support of the data by adding a negated shifted copy.
The original data are first extended. The shift distance is determined automatically such
that the horizontal translation is exactly Nt samples (width of B). Here we use horzcat to
horizontally concatenate matrices.

Require: B ∈ RNy×Nt , α ∈ R+, p ∈ Z+

Ensure: Bm ∈ RNy+Nξ×2Nt ,bs ∈ RNy+1

1: Nξ = dαNte
2: Q2, Q3, Q4 ← CbtExtend(B(:, 1), B(1, :)T , |α|, p) . Algorithm 1
3: B1 = vertcat(Q3, Q2)
4: B2 = vertcat(Q4, B)
5: W = NonIntShift(B2, −αNt, p+ 1, []) . Algorithm 12
6: bs = W (1 : Ny + 1, Nt)
7: B1(1 : Ny + 1, 1 : Nt) += W (1 : Ny + 1, :)
8: Bm = horzcat(B1, B2)
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E.2 Filtering Sampled Broken Ray Transform Data

Numeric filtering of BRT data is simplified when at least one direction (θi or θj) is axis

aligned. The process is simplified because integer-sample translations along axis-aligned

directions require no interpolation. Using the definitions in Section 2.5.1, we extend the data

in the direction +t (or −θi) by simply replicating the column G(:, Nt). However, we must

extend the data after translation in the direction −y, as well. It is for this reason Algorithm

7 returns the additional term bs. The complete algorithm for filtering BRT data is detailed

in Algorithm 8. Notice here we expand support of the scatter angle to ξ ∈ (−π/2, π/2) by

flipping G on input and Gm on return based on the sign of the extension length, α.

Algorithm 8 BrtFilter: Filter truncated BRT data.

Require: G ∈ RNy×Nt , α ∈ R, p ∈ Z+

Ensure: Gm ∈ R(Ny+Nξ)×3Nt

1: if α < 0 then
2: G = flipud(G)
3: end if
4: Nξ = d|α|Nte
5: Bm,bs ← CbtFilter(G, |α|, p) . Algorithm 7
6: Gm = horzcat(−Bm(:, 1 : Nt), B

m)
7: Gm += −Bm(:, Nt + 1 : 2Nt)
8: Gm(1 : Ny + 1, Nt + 1 : 2 ∗Nt) += bs
9: Gm(Nξ + 1 : Nξ +Ny, 2 ∗Nt+ 1 : 2Nt) += −G(:, Nt)

10: if α < 0 then
11: Gm = flipud(Gm)
12: end if

E.3 Inversion of BRT Data with Regularization

In Section E.2 we presented a filtering algorithm for BRT data, which assumed

ξ ∈ (−π/2, π/2). For such data, a complete inversion algorithm is listed in Algorithm 9.

In addition to filtering the data, this algorithm truncates the result. We crop the result such

that the output image has the same dimensions as the input and reconstructs µ devoid of

shifted copies.
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Algorithm 9 BrtInvert: Invert truncated BRT data. This implementation accepts only
one angle ξ. We assume the other direction is aligned with the direction −t (i.e. π as
indicated in Line 3).

Require: G ∈ RNy×Nt ; ∆t,∆y, ε ∈ R+; ξ ∈ (−π/2, π/2); p ∈ Z+

Ensure: Ψ ∈ RNy×Nt

1: α = ∆t

∆y
tan ξ

2: Gm ← BrtFilter(G,α, p) . Algorithm 8
3: Ψm =← BrtInvertFiltered(Gm,∆t, ∆y, ε, ξ, π) . Algorithm 2
4: N0 = max(0, dαNte) . Account for filtering shift
5: Ψ = Ψm(N0 + 1 : N0 +Ny, 2Nt + 1 : 3Nt) . Truncate filtered copies

E.4 Modified Broken Ray Transform Data and Filter-

ing

The MBRT is the difference between two BRT data sets. The motivation for this is to cancel

the spatially varying scatter density term using two BRTs sharing one common direction. In

addition, this operation cancels the attenuation effects along the common direction. Filtering

need not address the common direction. This motivates a subtly different approach to

filtering for MBRT data.

We distinguish the two BRT data sets by the unique scatter angles ξi and ξj. We will use

the same subscript to distinguish the data Gi from Gj. We consider the MBRT of Gi −Gj.

Since the MBRT represents a linear combination, as does filtering, there is some flexibility

in the order of operations. Filtering could be applied to the modified BRT data (Gi − Gj)

or applied to Gi and Gj separately. Again, the challenge lies in the data extension. For

MBRT data, |ξi − ξj| may be small. It may be difficult to distinguish (RµC)(x · θ⊥i , θi) from

(RµC)(x · θ⊥j , θj). Instead we assume a known background scatter density that is constant

along the perimeter of the data. This term can be removed as a correction to the data. In

this case, (RµC)(x · θ⊥i , θi) and (RµC)(x · θ⊥j , θj) can be recovered from Gi and Gj separately.

Under this assumption Gi and Gj can be extended and filtered independently.

Algorithm 10 operates on BRT data independently. It does not bound support of the data

as we do not address the incident direction. However, results from separate BRT data, at
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different scatter angles, can be superimposed to form filtered MBRT data. This process is

demonstrated in Algorithm 11 lines (3)-(5).

Algorithm 10 MbrtFilter: Filtering truncated BRT data for MBRT. Generate 4 shifted
copies of the data to ensure bounded support in two scatter directions. Here we ignore the
incident direction. We distinguish the direction αi associated with the input BRT data. The
input αj identifies the scatter direction associated with the other BRT data externally used
to form the MBRT.

Require: G ∈ RNy×Nt ; αi, αj ∈ R; p ∈ Z+

Ensure: Gm ∈ R(Ny+Nξi+Nξj )×3Nt

1: Nξi = d|αi|Nte
2: Nξj = d|αj|Nte
3: if αi < 0 then
4: G = flipud(G)
5: end if
6: Bm ← CbtFilter(G, |αi|, p) . Algorithm 7
7: if αi < 0 then
8: Bm = flipud(Bm)
9: end if

10: if αj < 0 then

11: Bm = vertcat(Bm,0Nξj×2Nt)
12: else
13: Bm = vertcat(0Nξj×2Nt , Bm)
14: end if
15: W ← NonIntShift(Bm, −Ntαj, p+ 1) . Algorithm 12
16: Bs = W (1 : Nξi +Nξj +Ny, :)
17: Gm = horzcat(−Bs(:, 1 : Nt), B

m)
18: Gm(:, Nt + 1 : 2Nt) += −Bs(:, Nt + 1 : 2Nt)

For MBRT the forward operator has a subtly different form. Due to the difference of CBTs,

the forward operator (2.4) is not directly applicable. Instead we have

−1

j2π (w · θi)
+

1

j2π (w · θj)
=

−w · (θi + (−θj))
j2π (w · θi) (w · (−θj))

. (E.1)

Notice the right-hand side of (E.1) is equivalent to (2.4) excepting the sign change for θj.

Here we lose commutativity with respect to θi and θj. Of course negating θj is equivalent to

adding π to ξj. To invert filtered MBRT data, we can reuse Algorithm 2 by adding π to the

input ξj. Algorithm 11 describes an approach for filtering truncated BRT data sets, sharing

a common direction, which is robust against spatially varying scatter density.
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Algorithm 11 MbrtInvert: Invert MBRT from two BRT data sets sharing one common
direction. The unique directions ξi and ξj distinguish the data Gi from Gj.

Require: Gi, Gj ∈ RNy×Nt ; ∆t,∆y, ε ∈ R+; ξi, ξj ∈ (−π/2, π/2); p ∈ Z+

Ensure: Ψ ∈ RNy×Nt

1: αi = ∆t

∆y
tan ξi

2: αj = ∆t

∆y
tan ξj

3: Gm
i ←MbrtFilter(Gi, αi, αj, p) . Algorithm 10

4: Gm
j ←MbrtFilter(Gj, αj, αi, p)

5: Gm = Gm
i −Gm

j . Filtered MBRT data
6: Ψm =← BrtInvertFiltered(Gm,∆t, ∆y, ε, ξi, π + ξj) . Algorithm 2
7: N0 = max(0, dαiNte)
8: N0 += max(0, dαjNte)
9: Ψ = Ψm(N0 + 1 : N0 +Ny, 2Nt + 1 : 3Nt)

E.5 Non-Integer Shifts of Sampled Signals

Non-integer shifts of sampled signals requires interpolation. A shift in the spatial domain rep-

resents a phase ramp in the frequency domain. Fast implementation of the discrete Fourier

transform can be leveraged to implement a computationally efficient shifting algorithm for

sampled signals. This approach is exact for periodic, band-limited signals. However, appli-

cation for aperiodic signals requires additional considerations.

For continuous signal x(t), and uniform sample spacing ∆, we define the sampled signal

x[n] := x(∆n), ∀n = {0, . . . , N − 1}. (E.2)

We seek an approximation to

z[n] = x(∆n−∆s), ∀n = {0, . . . , N − 1} (E.3)

= x[n− s]. (E.4)

from the discrete samples x[n]. The problem is that when s is non-integer valued, x[n − s]
is not available directly. For this we make use of the DFT.
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For an N -length signal x[n], we define the Fourier coefficients using the DFT

y[m] =
N−1∑
n=0

x[n] exp (−j2πnm/N) (E.5)

for m ∈ {0, . . . , N − 1}. The corresponding IDFT is

x[n] = DFT−1 {y[m]} (E.6)

=
1

N

N−1∑
m=0

y[m] exp (j2πnm/N) (E.7)

To approximate z[n], from y[m] we simply plug (E.4) into (E.7)

z[n] =
1

N

N−1∑
m=0

y[m] exp (j2π(n− s)m/N) (E.8)

= DFT−1 {y[m] exp (−j2πsm/N)} . (E.9)

Since s is represented in samples (E.9) is independent of sampling rate. This is particularly

efficient when multiple shifted copies of the same signal are required. In such cases y[m]

need only be computed once. Additional savings are realized computing the IDFT in (E.9)

for all signals at once.

This approach is exact for periodic, band-limited, signals. In application the input signals

do not satisfy this requirement. There are two distinct consequences due to aperiodicity.

First, if x[0] 6= x[N − 1], the periodicity assumption of the DFT will effect aliasing artifacts.

Small shifts may effect large oscillations around z[0] and z[N − 1]. The mitigation strategy

for this is to add samples to X smoothing the transition. Reducing the transition reduces

the effects of sidelobes. Secondly, shifting an aperiodic requires extrapolation. The assumed

values of this extrapolated signal (e.g. 0) should be incorporated in the input signal.
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For application of (E.9) to aperiodic signals, we define three vectors

xL ≈
[
x(−NL∆) x(−(NL − 1)∆) · · · x(−∆)

]T
(E.10)

xC =
[
x(0) x(∆) · · · x((NC − 1)∆)

]T
(E.11)

xR ≈
[
x(NC∆) x((NC + 1)∆) · · · x((NC +NR − 1)∆)

]T
. (E.12)

Here we use xC to represent an NC-length vector of the available data. We use vectors xL

and xR to approximate samples to the left and right of xC respectively. The intention is to

minimize sidelobe artifacts within a window of output samples and precision is not required.

In the absence of additional information, xL and xR could be filled with values x(0) and

x((NC − 1)∆) respectively. We then construct the input vector

x =
[
xTC xTR 0p xTL

]T
. (E.13)

where 0p is a p-length row-vector of all zeros. The length of x is therefore

N = NC +NR + p+NL. (E.14)

The selection of p, NL, and NR will depend on x(t) and s. For s > 0, it is expected

K + NL > s to avoid overlap with xR. Alternatively for s < 0, we expect K + NR > |s| to

avoid overlap with xL.

Algorithm 12 describes this processes for a vector of shift values s. In the resulting matrix

the first and final rows approximately represent

Zn,m ≈ x(∆(n− s[m])) (E.15)

ZN−n,m ≈ x(∆(−n− s[m])) (E.16)

respectively. Some applications may require repartitioning the result based on the sign of s.
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Algorithm 12 NonIntShift: Non-integer shifting of a sampled signal. Without loss of
generality, we use xR to refer to the vertical concatenation of (E.11) and (E.12). We use
vertcat{·} to vertically concatenate matrices, and � represents element-wise multiplication
with assumed expansion along singleton dimensions.

Require: xR, s, p, xL

Ensure: Z

1: x = vertcat(xR, 0p, xL)

2: n =
[
0 1 · · · dim(x)− 1

]T
3: y = DFT(x)

4: W = exp
(
−j2π

(
n� sT

)
/N
)

5: Z = DFT−1{y �W}

E.6 Real BRT Operator

While many DFT implementations operate on complex signals, we are interested in trans-

forms on real signals only. Real signals exhibit conjugate symmetry in the frequency domain.

This symmetry can be exploited to transform a length 2N real signal as a length-N complex

signal. For multi-dimensional images this trick can only be exploited in one dimension only.

However, this may be particularly useful for BRT computations of large images. In the

following we generalize this as filtering an N2 × 2N1 image.

For the real Fourier BRT implementation, we start by decimating the image. Assuming

X ∈ RN2×2N1 , we define F ∈ CN2×N1

[F ]n,m := [X]n,2m + j [X]n,2m+1 (E.17)

From the Fourier BRT system matrix (2.66), we compose two matrices[
H̃A

]
n,m

=
[
H̃θ

]
n,m

(1 + sin (−2πm/2N1)) +
[
H̃θ

]
n,m+N1

(1− sin (−2πm/2N1)) (E.18)[
H̃B

]
n,m

=
[
H̃θ

]
n,m+N1

cos (2πm/2N1) (E.19)
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Taking the two-dimensional Fourier transform of F , we apply the filter[
G̃
]
n,m

=
1

2
F̃ (n,m)

[
H̃A

]
n,m

+ j
1

2
F̃ ∗(N2 − n,N1 −m)

[
H̃B

]
n,m

. (E.20)

Taking the inverse two-dimensional Fourier transform of G we approximate the filtered image

[Y ]n,2m = <
{

[G]n,m

}
(E.21)

[Y ]n,2m+1 = =
{

[G]n,m

}
. (E.22)

For the adjoint BRT operator, we simply replace H̃A and H̃B in (E.20) with their complex

conjugates. This process is described in Algorithm 13.

Algorithm 13 RealFBRT: Fourier BRT on real images employing decimation by two.

Require: X ∈ RL2×L1 ; H̃ ∈ CN2×N1 ; L2 ≤ N2, L1 ≤ N1

Ensure: Y ∈ RL2×L1

1: Compute F (n,m) = X(n, 2m) + jX(n, 2m+ 1) . Decimation by 2

2: F̃ = DFT2 (F,N2, N1) . Zero pad input

3: Compute F̃B(n,m) = F̃B(N2 − n,N1 −m)
4: if ADJOINT then
5: G̃ = 1

2
F̃ � H̃∗A + j 1

2
F̃B � H̃∗B . backward BRT

6: else
7: G̃ = 1

2
F̃ � H̃A + j 1

2
F̃B � H̃B . forward BRT

8: end if
9: G = DFT−2

(
G̃
)

10: Y (n, 2m) = <{G(n,m)} . Truncate result
11: Y (n, 2m+ 1) = ={G(n,m)} . Truncate result
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Appendix F

Data Fidelity and Regularization

Terms

F.1 Scatter Image Fidelity

Our choice of Y for indexing both d and α aides separability when updating scatter image

estimates. Differentiating (3.3) with respect to α(y) we obtain separable functions for each

y ∈ Y . Further, (3.3) is convex with respect to α for µ fixed. Surrogate approximations are

not necessary to update α. This is demonstrated through the following Lemma.

Lemma F.1. The KL-divergence (3.3) is convex over α ∈ S when there exists at least one

i ∈ I such that di(y) > 0.

Proof. For convenience we define

ġi(y : µ) :=
∂

∂α(y)
gi(y : α,µ) (F.1)

= I0(y) exp

(
−
∑
x∈X

hi (y|x)µ(x)

)
(F.2)

We emphasize ġi(y : µ) is independent of α. Since the BRT of the image is finite, and

I0(y) > 0, we have ġi(y : µ) > 0 for all y, i.
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Taking the derivative of (3.3) with respect to α(y), we find

∂I
(
d
∥∥ g (α,µ)

)
∂α(y)

=
∑
i∈I

(
ġi(y)− di(y)ġi(y : µ)

α(y)ġi(y : µ) + βi(y)

)
. (F.3)

The second derivative is then

∂2I
(
d
∥∥ g (α,µ)

)
∂α(y)2

=
∑
i∈I

di(y)ġi(y : µ)

(α(y)ġi(y : µ) + βi(y))2 . (F.4)

If di(y) is positive for at least one i ∈ I, then (F.4) is also positive. Therefore (3.3) is strictly

convex over α ∈ S.

F.2 Attenuation Fidelity Surrogate

Direct minimization of (3.3), with respect to µ, is complicated by hi(y|x) and βi(y) > 0.

Instead, local surrogate approximations lead to computationally efficient updates guaran-

teeing monotonic reduction of (3.3). Here we adopt the approach of O’Sullivan and Benac:

recasting the problem as joint estimation over members of a linear family and an exponential

family [44].

The first surrogate is found expanding both g and d as linear combinations. For this purpose,

two families of functions are introduced. Let L(d) define a linearly family whose marginals

equal the data

L(d) =

{
p : pi(y, E) ≥ 0,

∑
E

pi(y, E) = di(y)

}
. (F.5)

Let E(α) define an exponential family, associated with α, and parameterized by µ

E(α) =

{
q : qi(y, 0 : µ) = βi(y), qi(y, 1 : µ) = I0(y)α(y) exp

(
−
∑
x∈X

hi (y|x)µ(x)

)}
(F.6)

Using a single element of the exponential family, we composes the data model

gi(y : α,µ) =
∑
E

qi(y, E : µ). (F.7)
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In [44], E was used to distinguish spectral measurements. However, the index remains useful

for mono-energetic measurements when β(y) > 0.

The divergence between elements of the linear and exponential families reads

I
(
p
∥∥ q
)

=
∑
i∈I

∑
y∈Y

∑
E

(
pi(y, E) ln

pi(y, E)

qi(y, E : µ)
− pi(y, E) + qi(y, E : µ)

)
. (F.8)

Let q̂ ∈ E(α) indicate the element of the exponential family associated with µ̂. Fixing q̂ in

(F.8), we consider the minimizer p ∈ L(d) which is subject to the linear constraint (F.5).

The result is available in closed form

p̂ = arg min
p∈L(d)

I
(
p
∥∥ q̂
)

(F.9a)

=

{
pi(y, E) = di(y)

qi(y, E : µ̂)∑
E′ qi(y, E

′ : µ̂)

}
. (F.9b)

Plugging these result back into (F.8), we find a variational form of (3.3),

I
(
d
∥∥ g (α,µ)

)
= min

p∈L(d)
I
(
p
∥∥ q
)
, (F.10)

due to O’Sullivan and Benac [44]. This motivates the surrogate function

D(µ : µ̂) := I
(
p̂
∥∥ q
)
, (F.11)

where p̂, parameterized by µ̂, is given by (F.9b). That (F.11) serves as a surrogate for (3.3)

can be summarized as

D (µ̂ : µ̂) = I
(
d
∥∥ g (α, µ̂)

)
(F.12)

D (µ : µ̂) ≥ I
(
d
∥∥ g (α,µ)

)
, ∀µ ∈ A. (F.13)

The equality in (F.12) is a restatement of (F.10). The inequality in (F.13) is an application

of the convex decomposition lemma [44]

f

(∑
x

t(x)

)
≤
∑
x

r(x)f

(
t(x)

r(x)

)
. (F.14)
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This holds for all r ∈ {r : r(x) ≥ 0,
∑

x r(x) = 1} and follows from Jensen’s inequality [44].

Equivalently, we restate

D(µ : µ̂) = d0 (µ̂) +
∑
i∈I

∑
y∈Y

p̂i(y, 1)
∑
x∈X

hi(y|x)µ(x)

+
∑
i∈I

∑
y∈Y

I0(y)α(y) exp

(
−
∑
x∈X

hi(y|x)µ(x)

)
, (F.15)

where we have summarized all of the terms which do not depend on µ with the single additive

scalar

d0 (µ̂) =
∑
i∈I

∑
y∈Y

(∑
E

p̂i(y, E) ln (p̂i(y, E))

)
− di(y)

+ βi(y)− p̂i(y, 0) ln βi(y)− p̂i(y, 1) ln I0(y)α(y). (F.16)

Introducing the auxiliary function

ψi(x|y) := hi(y|x) (µ(x)− µ̂(x)) , (F.17)

we restate

D(µ : µ̂) =
∑
i∈I

∑
y∈Y

p̂i(y, 1)
∑
x∈X

(ψi(x|y) + hi(y|x)µ̂(x))

+
∑
i∈I

∑
y∈Y

q̂i(y, 1) exp

(
−
∑
x∈X

ψi(x|y)

)
+ d0 (µ̂) . (F.18)

Recognizing the function

f(y, E, t) = tp̂i(y, 1) + q̂i(y, 1) exp(−t) (F.19)
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as convex over t, we again make use of the convex decomposition lemma. This yields

D(µ : µ̂) ≤ d0 (µ̂) +
∑
i∈I

∑
y∈Y

∑
x∈X

[
p̂i(y, 1)hi(y|x)µ(x)

+ ri(x|y)q̂i(y, 1) exp

(
−hi(y|x)

ri(x|y)
(µ(x)− µ̂(x))

)]
(F.20)

for all ri(x|y) > 0 such that ∑
x∈X

ri(x|y) = 1. (F.21)

This constraint can be mitigated with the addition of a dummy x = 0 such that hi(y|0) = 0,

∀y, i. This has no effect on (F.15), but x = 0 contributes to the right-hand side of (F.20).

This bias is independent of µ but varies with q̂. As such it will not affect the current update

but obscures reduction in the objective D(µ : µ̂).

We select

ri(x|y) =


hi(y|x)

Zi(x)
, x 6= 0

1−
∑

x∈X\{0}

hi(y|x)

Zi(x)
, x = 0.

(F.22)

In general, Zi(x) must be sufficiently large such that ri(0|y) ≥ 0. This motivates the decou-

pled objective function

D(µ : µ̂) :=
∑
i∈I

∑
y∈Y

∑
x∈X\{0}

[
µ(x)p̂i(y, 1)hi(y|x)

+ q̂i(y, 1)
hi(y|x)

Zi(x)

(
exp

(
− Zi(x) (µ(x)− µ̂(x))

)
− 1
)]

+ d0 (µ̂) +
∑
i∈I

∑
y∈Y

q̂i(y, 1). (F.23)

Here we incorporate additional terms due to x = 0 such that

D(µ̂ : µ̂) = D (µ̂ : µ̂) (F.24)

D(µ : µ̂) ≥ D (µ : µ̂) , ∀µ ∈ A. (F.25)

Combining these with (F.13) and (F.12), we find D is also a surrogate for I
(
d
∥∥ g (α,µ)

)
.
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The expression (F.23) can be simplified when Zi(x) is constant over i and x. For this purpose,

we define

Z0 := max
y∈Y

∑
x∈X

hi(y|x). (F.26)

Further simplifying the notation, we define

b0 := d0 (µ̂) +
∑
i∈I

∑
y∈Y

q̂i(y, 1) (F.27)

b1(x) :=
∑
i∈I

∑
y∈Y

hi(y|x)p̂i(y, 1) (F.28)

b2(x) :=
∑
i∈I

∑
y∈Y

hi(y|x)q̂i(y, 1). (F.29)

The expressions (F.28) and (F.29) comprise adjoint broken ray transforms of p̂i(y, 1) and

q̂i(y, 1), respectively. Putting this all together, we have

D(µ : µ̂) = b0 +
∑

x∈X\{0}

[
µ(x)b1(x) + b2(x)

1

Z0

(
exp

(
− Z0

(
µ(x)− µ̂(x)

))
− 1
)]

. (F.30)

The gradient separates as

∂D(µ : µ̂)

∂µ(x)
= b1(x)− b2(x) exp

(
− Z0

(
µ(x)− µ̂(x)

))
. (F.31)

The second derivative is nonnegative for all µ(x) since b2(x) ≥ 0. Therefore, D is convex

with respect to µ.

F.3 Regularization Surrogate

We consider the general regularization term for image µ and sample indices X

R(µ) :=
∑
x∈X

∑
z∈Nx

w (x, z)φδ (µ(x)− µ(z)) . (F.32)

Here Nx ⊂ X indicates the collection of voxels within a neighborhood of x ∈ X , and

φδ : R → R is an edge-preserving potential function. Specifically, we assume φδ is strictly
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convex, even, and φ̇δ (t) /t is monotone decreasing for t > 0. Therefore, R(µ) ≥ 0 with

equality for any constant image µ(x) = µ0.

Minimizing (F.32) is problematic for a few reasons. Differentiating this function directly

with respect to µ(x) is not separable as each element of the gradient references µ(z) for

all z ∈ Nx. Additionally, nonlinear φδ precludes closed-form solutions. Computationally

efficient surrgotates are useful for iterative solvers. A common approach involves two ap-

proximations. First, we define a separable surrogate making use of Jensen’s inequality.

Second, we employ a quadratic approximation to φδ.

Using a constant image µ̂, we expand φδ (µ(x)− µ(z)) using Jensen’s inequality

φδ (µ(x)− µ(z)) ≤ 1

2
[φδ (2µ(x)− µ̂(x)− µ̂(z)) + φδ (2µ(z)− µ̂(x)− µ̂(z))] . (F.33)

Here we make use of both the convexity and symmetry of φ. This motivates the separable

surrogate regularization function

R̆ (µ : µ̂) :=
1

2

∑
x∈X

∑
z∈Nx

w (x, z) [φδ (2µ(x)− µ̂(x)− µ̂(z)) +φδ (2µ(z)− µ̂(x)− µ̂(z))]

(F.34)

due to De Pierro [45]. Separability is emphasized by restating

R̆ (µ : µ̂) =
∑
x∈X

R̆x (µ(x)) , (F.35)

where

R̆x (t) :=
1

2

∑
z∈Nx

w (x, z)φδ (2µ(x)− µ̂(x)− µ̂(z))

+
1

2

∑
z∈N bx

w (z, x)φδ (2µ(x)− µ̂(x)− µ̂(z)) . (F.36)

Here we use N b
x := {y : Ny 3 x} to represent the set of voxels with x as a neighbor. For

symmetric problems, when Nx = N b
x and w(x, z) = w(z, x), the two terms in (F.36) are

equivalent.
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As a second approximation, we replace φ in (F.34) with the quadratic surrogate φ : R→ R,

φ(t) := φ
(
t̂
)

+ φ̇
(
t̂
) (
t− t̂

)
+

1

2

φ̇
(
t̂
)

t̂

(
t− t̂

)2
(F.37)

∂φ(t)

∂t
= φ̇

(
t̂
)

+
φ̇
(
t̂
)

t̂

(
t− t̂

)
. (F.38)

This represents an upper bound on φ under the requirements φ is convex, symmetric, and

when φ̇ (t) /t is monotone decreasing for t > 0. Equality is achieved at t = t̂ such that

φ(t̂)− φ(t̂) = 0. Further, it can be shown t = t̂ minimizes this difference (see Lemma 8.3

in [46]).

Specifying the expansion point in (F.37) as

t̂ = µ̂(x)− µ̂(z) (F.39)

t− t̂ = 2 (µ(x)− µ̂(x)) , (F.40)

we define the separable quadratic surrogate

R (µ : µ̂) :=
1

2

∑
x∈X

[∑
z∈Nx

w (x, z)φδ (2µ(x)− µ̂(x)− µ̂(z))

+
∑
z∈N bx

w (z, x)φδ (2µ(x)− µ̂(x)− µ̂(z))

 . (F.41)

Therefore, R (µ : µ̂) ≥ R(f) with equality when µ = µ̂. For convenience, the following

definitions are parameterized by µ̂ and independent of µ:

c0 :=
1

2

∑
x∈X

[ ∑
z∈Nx

w (x, z)φδ (µ̂(x)− µ̂(z)) +
∑
z∈N bx

w (z, x)φδ (µ̂(x)− µ̂(z))

]
(F.42)

c1(x) :=
∑
z∈Nx

w (x, z) φ̇δ (µ̂(x)− µ̂(z)) +
∑
z∈N bx

w (z, x) φ̇δ (µ̂(x)− µ̂(z)) (F.43)

c2(x) :=
∑
z∈Nx

w (x, z)
φ̇δ (µ̂(x)− µ̂(z))

µ̂(x)− µ̂(z)
+
∑
z∈N bx

w (z, x)
φ̇δ (µ̂(x)− µ̂(z))

µ̂(x)− µ̂(z)
. (F.44)
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Using these definitions in (F.41), we obtain

R (µ : µ̂) = c0 +
∑
x∈X

(
c1(x) (µ(x)− µ̂(x)) + c2(x) (µ(x)− µ̂(x))2) . (F.45)

Taking the derivative with respect to µ(x), we find

∂R (µ : µ̂)

∂µ(x)
= c1(x) + 2c2(x) (µ(x)− µ̂(x)) . (F.46)

Observing c2(x) > 0 for all µ̂, R is strictly convex.

Here we derived a surrogate for the regularization image µ. Regularization can be applied

to the scatter image by replacing µ,X with α,Y , respectively. The weights w, δ, and neigh-

borhood N may also be tailored to differences in sampling and image scaling.
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Appendix G

Related Problems

G.1 Small-Angle Scatter and the Time of Flight Ana-

log

The problem of joint estimation of activity and attenuation arises in positron emission to-

mography (PET) [35]. Time-of-flight information improves the conditioning of the separation

problem for PET as demonstrated by Defrise et al. [32, 34]. In this section we summarize

prior results using notation presented in previous sections.

In sinogram coordinates the attenuation-corrected activity distribution for PET in two-

dimensions is given by

p(s, t, ξ) =

∫ +∞

−∞
f
(
sβ̃⊥(ξ) + lβ̃(ξ)

)
w(t− l)dl. (G.1)

Here s ∈ R1 and ξ ∈ [0, π) are the sinogram coordinates. The direction vector β̃(ξ) ∈ S1 is

parallel to the line of response (LOR). Here we use the ˜ decoration to distinguish β ∈ S2

which will be utilized below. The time of flight (TOF) measurement isolates the event

location along the LOR with some ambiguity. This is modeled using a Gaussian weighting

function

w(t) =
1√

2πσ2
exp

(
−t2/2σ2

)
. (G.2)
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β

x

σ2

Figure G.1: Finite beam width and small-angle scattering lead to positional ambiguity in
scatter source location.

Without loss of generality we assume β̃(ξ), and β̃⊥(ξ) are defined such that dβ̃/dξ = −β̃⊥(ξ),

and dβ̃⊥/dξ = β̃(ξ). The function (G.1) then satisfies the differential equation

Dp (s, t, ξ) = t
dp

ds
+
dp

dξ
− sdp

dt
+ σ2 d

2p

dsdt
= 0. (G.3)

This differential equation applies when s, t are coordinates in the rotated measurement space.

This expression is fundamental to the separation of the attenuation and scatter images as

identified by Defrise et al. [32].

In the broader context of the BRT, the scatter location is the break-point of the ray. In

all prior work this point is assumed known within quantization errors of the measurement

system. Scatter point localization accuracy depends on scatter angle and incident beam

width as shown in Fig. G.1. Here we consider positional ambiguity along the scatter direction

only.

Transitioning to our notation, we define the attenuation-corrected scatter image over (x, β),

p(x, β) =

∫ +∞

−∞
f (x+ βl)w(l)dl. (G.4)

Here we maintain x ∈ R3, and β ∈ S2. We define the directional derivative with respect to

the first argument, in the direction β

〈D1p(x, β), β〉 =

∫ +∞

−∞
w(l)β · ∇f(x+ βl)dl (G.5)

=

∫ +∞

−∞
w(l)f(x+ βl)

l

σ2
dl. (G.6)
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The second equality is found using integration by parts and depends on the Gaussian weight-

ing function (G.2). Similarly, we have

〈D1p(x, β), θ〉 =

∫ +∞

−∞
w(l)θ · ∇f(x+ βl)dl. (G.7)

Here we make use of an orthogonal direction θ such that θ · β = 0. Taking the derivative of

(G.6) with respect to x again, in the orthogonal direction θ, we have

〈D1 〈D1p(x, β), β〉 , θ〉 =

∫ +∞

−∞
w(l)θ · ∇f(x+ βl)

l

σ2
dl. (G.8)

Taking the derivative with respect to the second argument, in the direction θ, we have

〈D2p(x, β), θ〉 =

∫ +∞

−∞
w(l)θ · ∇f(x+ βl)ldl. (G.9)

This leads to the second-order partial differential equation

Dp(x, β) = σ2 〈D1 〈D1p(x, β), β〉 , θ〉 − 〈D2p(x, β), θ〉 = 0. (G.10)

This is analogous to (G.3) where we have extended the differential equation to three dimen-

sions using our notation.

G.2 Pointwise Inversion Leveraging Additional Detec-

tors

We consider a measurement geometry in which the incident beam direction, α, is fixed. Let

βi represent the scattering direction associated with the ith detector. Let x represent the

intersection of all paths defined by the incident beam and collimated detectors. To simplify

notation we define

cαi := α · βi, cij := βi · βj. (G.11)
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We choose the log of the observed scattering intensity as our data function

gi(x) = ln f(x, cαi)−
∫ ∞

0

µ(x+ tα(x))dt−
∫ ∞

0

µ(x+ tβi(x))dt. (G.12)

Here µ(x) represents the total attenuation (scattering plus absorption) and f(x, cαi) repre-

sents the scatter density function. To preserve the scatter density between detectors we fix

cαi = cαj for all i, j. In the subsequent expressions we omit the second argument in q without

ambiguity.

It will be useful to define a unique orthonormal basis for each detector. For scatter direction

βj, we define φj and ψj which together form an orthonormal basis. We will use

cφij :− βi · φj, (G.13)

where the superscript is always associated with the second subscript. Without loss of gen-

erality we can define φj in the plane containing βj and α where cφαj > 0. We can then define

ψj = βj × φj. When the collimated detectors lie in a plane orthogonal to α, they must

be placed in a circular configuration to enforce cαi = cαj. In this description ψj lie in the

detector plane, tangent to the ring, at the jth detector.

Building on the previous notation we can expand the directional derivative

∇β
i = cβij∇

β
j + cφij∇

φ
j + cψij∇

ψ
j . (G.14)

In this expression ∇β
i represents the directional derivative operator in the direction βi.

Observing the change in the data function as the target scatter location is shifted along the

incident beam, we have

∇αgi(x) = ∇α ln f(x) + µ(x)−∇α

∫ ∞
0

µ(x+ tβi(x))dt (G.15)

= ∇α ln f(x) +
(

1 + cβαi

)
µ(x)−

(
cφαi∇

φ
i + cψαi∇

ψ
i

)∫ ∞
0

µ(x+ tβi(x))dt (G.16)

= ∇α ln f(x) +
(

1 + cβαi

)
µ(x)− cφαiJ

φ
i − c

ψ
αiJ

ψ
i , (G.17)
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where

Jφi = ∇φ
i

∫ ∞
0

µ(x+ tβi(x))dt (G.18)

Jψi = ∇ψ
i

∫ ∞
0

µ(x+ tβi(x))dt, (G.19)

which we will solve for in the following.

Contrasting the observations of separate detectors, we can remove the scatter density term.

We define the differential data function as a difference of two observations sharing a common

transmitter and scattering angle

gij(x) =

∫ ∞
0

µ(x+ tβi(x))dt−
∫ ∞

0

µ(x+ tβj(x))dt. (G.20)

The directional derivative (G.20) yields a similar form,

∇igij(x) = −µ(x) + cβijµ(x)− cφij∇
φ
j

∫ ∞
0

µ(x+ tβi(x))dt− cψij∇
ψ
j

∫ ∞
0

µ(x+ tβj(x))dt

(G.21)

= (−1 + cβij)µ(x)− cφijJ
φ
j (x)− cψijJ

ψ
j (x). (G.22)

We can collect multiple differential measurements as a system of equations∇2g21(x)

∇3g31(x)

∇4g41(x)

 =

c
β
21 − 1 −cφ21 −c

ψ
21

cβ31 − 1 −cφ31 −c
ψ
31

cβ41 − 1 −cφ41 −c
ψ
41


 µ(x)

Jφ1 (x)

Jψ1 (x)

 . (G.23)

When the first matrix on the right-hand side is nonsingular, we can solve for µ(x). Solving

for µ(x), Jφ1 (x), Jψ1 (x), the results can be plugged into (G.17) to obtain ∇α ln f(x).

The solutions to Jφ1 (x) and Jψ1 (x) must satisfy

∇1J
φ
1 = −∇φ

1µ(x) (G.24)

∇1J
ψ
1 = −∇ψ

1µ(x). (G.25)

133



This is equivalent to (2.12) in [3] for flat detectors in three dimensions. Using (G.23) to solve

for µ(x), Jφ1 (x), Jψ1 (x) and plugging the results back into (G.25) extends the range condition

of Katsevich and Krylov [3].

G.3 Infeasibility of Pointwise Inversion for TOF PET

Local inversion methods for the broken ray transform were developed in the context of single-

scatter optical tomography. In that context the incident and scatter angles were not colinear.

Here we demonstrate that the TOF PET data does not satisfy the local inversion criteria of

the BRT.

Local inversion methods were initially developed by Katsevich and Krylov [3]. Subsequently

Zhao et al. provided additional mathematical formalism including an inversion criterion [6].

This provides a more natural starting point for the TOF PET extension.

If we could measure a single cone beam transform (Bµ)(x, α), then a simple, local, recon-

struction method is provided through a first-order, directional derivative

− 〈D1(Bµ)(x, β), β〉 = µ(x). (G.26)

We consider a notional data function superimposing multiple cone beam transforms sharing

a common origin

Φ(x) =
∑
j

wjβj(Bµ)(x, β). (G.27)

In this expression we have introduced scalar-valued wk which are assumed known weighting

coefficients. Once Φ(x) is available, inversion is achieved through the divergence

µ(x) = − 1∑
j wj
∇ · Φ(x). (G.28)

When scatter density varies spatially, an approach to obtaining Φ(x) is not obvious. A major

contribution by Zhao et al. was providing criteria for obtaining this data function [6]. Zhao’s
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approach began with expanding Φ(x) as a combination of the measured data

Φ(x) =
∑
j

∑
k

cjkl(x,−βj, βk) (G.29)

=
∑
j

∑
k

cjk (ln f (x)− (Bµ)(x, βj)− (Bµ)(x, βk)) . (G.30)

Here we ignore momentum transfer and omit the E term in our measured data function.

The vector-valued cjk must be selected such that (G.30) equals (G.27) while also taking into

account the available data. This form suggests a transmitter and receiver are colocated at

every direction βj. The following conditions on c are due to Zhao:

(i)
∑

jk cjk = 0

(ii) ckk = 0

(iii) cjk = ckj

(iv) sk =
∑

j cjk = wkβk .

Enforcing (ii) alleviates the need for backscatter measurements. Since l(x,−βj, βk) =

l(x,−βk, βj), it is sufficient to enforce (iii). Enforcing (i) cancels the f(x) term in Φ(x).

Combining (i) with (iv) ensures G.30 and (G.27) are consistent.

In general there remain many solutions to c that satisfy the conditions (i)-(iv). This ac-

commodates considerable flexibility in measurement systems such as the number of unique

incident and scatter angles. The general solution for arbitrary dimension, satisfying (i)-(iv),

is to select c according to

cjk = (wjβj + wkβk) (1− δ(j − k)) (G.31)

such that ∑
k

wkβk = 0. (G.32)
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For 3 unique scatter angles, we can represent c with the matrix

0 w1β1 + w2β2 w1β1 + w3β3 w1β1

w2β2 + w1β1 0 w2β2 + w3β3 w2β2

w3β3 + w1β1 w3β3 + w2β2 0 w3β3

w1β1 w2β2 w3β3 0

(G.33)

Here the final row and final column represent the column and row sums respectively.

Applying this formulation to TOF PET data requires additional constraints. While we

can consider multiple rays through x, the incident and scatter angles must be colinear.

In contrast to the traditional BRT, this limits the available data to few combinations of

transmitter-receiver pairs. Let us index the scatter angles such that

β2j−1 = −β2j. (G.34)

This implies c is zero except for the first off-diagonal row. Since β2j−1 and β2j are colinear,

we can set wj = 0 for j-odd. This limits c to

cjk =

{
wkβk, j odd, j = k − 1

0, otherwise,
(G.35)

where wk must be selected such that ∑
j

w2jβ2j = 0. (G.36)
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The expression (G.36) implies a minimum of three coincident detector pairs are required

which represent 6 unique directions. We can represent this as a matrix

0 w2β2 0 0 0 0 w2β2

w2β2 0 0 0 0 0 w2β2

0 0 0 w4β4 0 0 w4β4

0 0 w4β4 0 0 0 w4β4

0 0 0 0 0 w6β6 w6β6

0 0 0 0 w6β6 0 w6β6

w2β2 w2β2 w4β4 w4β4 w6β6 w6β6 0

(G.37)

Plugging (G.35) into (G.30), we have

Φ(x) =

K/2∑
j=1

w2jβ2j (−(Bµ)(x, β2j−1)− (Bµ)(x, β2j)) (G.38)

=

K/2∑
j=1

w2j (β2j−1(Bµ)(x, β2j−1)− β2j(Bµ)(x, β2j)) (G.39)

=
K∑
j=1

w̄jβj(Bµ)(x, βj). (G.40)

For the last expression we have defined

w̄j :=

{
wj+1 j odd

−wj, otherwise,
(G.41)

in which case we have ∑
j

w̄j = 0, (G.42)

which is incompatible with (G.28). Therefore, this inversion approach is not applicable for

TOF PET.

There is an intuitive explanation for this as well. The break-point in the BRT is analogous

to the TOF coordinate in TOF PET. The measured data in TOF PET comprises both
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local scattering and a line integral of the attenuation map through the complete data. This

integral simply does not change with the TOF coordinate.

G.4 Rotational BRT

Rotational measurement geometries for the BRT have received considerable attention re-

cently [10,21]. This is largely motivated by applications of SPECT with Compton cameras.

The rotational measurement geometry for BRT is considerably different from translational

measurement geometries used in single-scatter optical tomography and measurement ge-

ometries associated with the Radon transform. In particular, the source is always directed

through the origin. Accordingly, a separate coordinate system and inversion formulas have

been developed.

The Fourier slice theorem is a well-known equality between the one-dimensional Fourier

transform of image projections (e.g. Radon transform) and a slice through the two-

dimensional Fourer transform of the image. Here we derive an analog for projections from

the rotational BRT. The BRT for rotational measurement geometries has received consider-

able attention in the literature [9,10,23,41]. Our contribution is unique in that we maintain

consistency with the previously defined coordinate system.

In previous sections we defined the incident beam and scatter directions α, β ∈ S2. Addi-

tionally we defined a vector, θ, orthogonal to β but within the span of two vectors {α, β}.
We emphasize α, β, θ are coplanar.

In this section we limit our imaging system to a 2D plane. In this context it is convenient

to consider x ∈ R2, and α, β, θ ∈ S1. This is otherwise consistent with previous definitions,

as β, θ remain orthonormal.

For S1, we only require a scalar angle to specify elements of the set. It is convenient to

define the scatter direction as a rotation from the incident direction. For this we introduce
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the vector-valued function û(a) : R→ S1

û(a) :=

[
cos a

sin a

]
. (G.43)

The incident direction can be parameterized by a ∈ [−π, π) such that

α = û(a). (G.44)

We also define the rotation matrix as a function R(a) : R→ SO(2)

R(a) :=

[
cos a − sin a

sin a cos a

]
. (G.45)

The scatter direction can be specified as

β = R(b)α (G.46)

= û(b+ a). (G.47)

For b ∈ [0, π/2), we additionally define

θ = R (π/2) β (G.48)

= û (b+ a+ π/2) , (G.49)

which is entirely consistent with previous definitions. Negative values of b would require a

rotation of −π/2.

We consider a rotational measurement system in which the source is always directed through

the origin. A collimated detector is focused at a point along the incident beam. This point

can be specified using the radial distance t from the origin, along α, toward the source. The

scatter location is uniquely defined using

x = −αt. (G.50)

We assume multiple detector locations are available to measure scatter in the direction β

at varying distances t ≥ 0 along the incident path for all a ∈ [0, 2π). We define the 2D
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rotational BRT g(t, a) : R+ × [−π, π)→ R

g(t, a) = gα(t, a) + gβ(t, a), (G.51)

where

gα(t, a) = (Bµ) (−tû(a),−û(a)) (G.52)

gβ(t, a) = (Bµ) (−tû(a), û(a+ b)) . (G.53)

The conebeam transform in (G.52) is simplified since the incident path pases through the

origin, so

(Bf)(−tα,−α) =

∫ −t
−∞

f(rα)dr. (G.54)

We can expand

gα(t, a) =

∫ ∞
t

f(rû(a+ π))dr. (G.55)

In this section we use the radial frequency for the Fourier transform. The Fourier transform

of (G.55) with respect to a is

Gα(t, w) =

∫ π

−π
gα(t, a)e−jwada (G.56)

=

∫ π

−π

∫ −t
−∞

µ(rû(a))e−jwadrda (G.57)

=

∫ ∞
t

µ̂a(r, w)e−jwπdr. (G.58)

In the final expression we use

µ̂a(r, w) :=

∫ π

−π
µ(rûa)e

−jwada, (G.59)

which represents a Fourier transform along a circular path in the image centered about the

origin.

We would like to express (G.51) in terms of (G.59) as well. However, expanding the line

integral in polar coordinates is challenging as the radial index is not unique. Consider the
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point y ∈ R3

y := t sin(b)θ. (G.60)

This represents the point along the scatter path closest to the origin. In other words, the

radial coordinate is minimized at this point. We can expand (G.51) as the line integral

gβ(t, a) = (Bµ) (−tα, β) (G.61)

=

∫ ∞
−t cos b

µ(t sin(b)θ + lβ)dl, (G.62)

where we have made use of the orthonormal basis β, θ. We make a change of variables

replacing l with an angular measure v, defined implicitly as

tan v = −l/t sin b (G.63)

dl = −t sin b sec2 vdv. (G.64)

The radial distance as a function of v is t sin b sec v. Putting this together we have

gβ(t, a) =

∫ π/2−b

−π/2
t sin b sec2 v µ (t sin b sec v û (v + a+ b+ π/2)) dv. (G.65)

The Fourier transform with respect to a is

Gβ(t, w) =

∫ π

−π
gβ(t, a)e−jwada (G.66)

=

∫ π/2−b

−π/2
t sin b sec2 v µ̂a (t sin b sec v, w) eiw(v+b+π/2)dv. (G.67)

Therefore we can decompose the Fourier transform of the BRT for rotational geometries

G(t, w) =

∫ 2π

0

g(t, a)e−jwada (G.68)

= Gα(t, w) +Gβ(t, w), (G.69)

where g(t, a) is the brokenray transform according to (G.51). The remaining terms Gα(t, w),

Gβ(t, w) are given by (G.58), (G.67) respectively. Notice that the Fourier transform is taken
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with respect to a single dimension in both the image and data. In this way, the result is

analogous to the Fourier slice theorem for the Radon transform.
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