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ABSTRACT OF THE DISSERTATION 

 
Novel Plasmonic Nanostructures for Applications in  

Sensing, Imaging, and Controlled Release  

by 

Weiyang Li 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2011 

Professor Younan Xia, Chairperson 
 

 
 

This research placed emphasis on engineering the properties of novel plasmonic 

nanostructures, especially silver (Ag) and gold (Au) nanostructures with well-defined 

shapes, for biomedical applications in sensing, imaging and drug delivery.   

The first part of this work focused on the development of novel dimeric 

nanostructures of Ag for surface-enhanced Raman scattering (SERS) applications. In 

this section, I successfully demonstrated the synthesis of well-defined Ag dimers 

consisting of nanospheres with a broad range of sizes by using two methods. The first 

method was based on polyol process and the second was based on wet etching. The 

key for the dimerization process is to control the colloidal stability by adding 

appropriate amount of ionic species. I then investigated the SERS properties of the 

dimers of Ag nanospheres with various sizes and the application of using these 

dimers as SERS tags for Raman mapping of cancer cells.  

The second part of this work systematically investigated the use of Au nanocages 

as a novel class of optical tracers for noninvasive sentinel lymph node (SLN) imaging 
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by photoacoustic (PA) tomography. The transport kinetics of Au nanocages in a 

lymphatic system was evaluated by PA imaging on the axillary region of a rat. 

Several experimental parameters, including the injection concentration, particle size, 

and surface charge were systematically studied. Quantification of the amount of 

nanocages accumulated in the lymph nodes was achieved by correlating the data from 

PA imaging with the results from inductively-coupled plasma mass spectrometry.  

In the final part of this work, I focused on the development of Au nanocages as a 

new platform for controlled drug release. Two temperature-regulated systems were 

developed by combining Au nanocages with high-intensity focused ultrasound 

(HIFU). Because it can penetrate more deeply into soft tissues than near-infrared light, 

HIFU is a potentially more effective external stimulus for rapid, on-demand drug 

release. The first system was based on nanocages covered with smart, thermally-

responsive polymers, and the second was based on nanocages filled with a 

biocompatible phase-change material. The released dosage could be remotely 

controlled by manipulating the power of HIFU and/or the duration of exposure. 

Localization and depth capability of the HIFU-controlled release have also been 

investigated.  
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Chapter 1 

 

Introduction 

 

1.1. Plasmonics and Metal Nanostructures 

Plasmonics refers to the study of light-matter interactions that can be used to 

localize and manipulate electromagnetic waves down to the length of nanometer 

scale.[1,2] The key component of plasmonics is metal nanostructures, which can serve 

as antennas to convert light into localized electromagnetic fields (E-fields) or as 

waveguides to route light to desired locations with nanometer precision. All of these 

are realized through a resonant interaction between the incident light and free 

electrons in the nanostructures. When a metal nanoparticle is illuminated with an 

electromagnetic wave, the delocalized conduction electrons of the metal will begin to 

oscillate collectively relative to the lattice of positive ions, creating intense scattering 

and absorption at resonant wavelengths. This phenomenon has been widely known as 

localized surface plasmon resonance (LSPR).[3] Here, surface refers to the 

polarization of surface charges resulting from collective electron oscillations; 

plasmon is in analogy to the collective electron oscillations within gaseous plasma; 

localized indicates that the oscillation of plasmon is confined to the surface of a 

nanostructure. 

Figure 1.1 illustrates the LSPR phenomenon for a metal nanosphere with a size 

much smaller than the wavelength of light.[4] For a small, spherical nanoparticle, the 
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surface plasmon oscillation is dominated by the dipolar mode with a polarizability α 

given by the equation as below: [5]    

α = r3(ɛ − ɛm)/(ɛ + 2ɛm)                                (1) 

where r is the radius of the sphere, ɛm is the dielectric constant of the external 

environment, and ε is the complex dielectric function of the metal nanoparticle, which 

is given by: 

                                ɛ(ω) = ɛr(ω) + iɛi (ω)                                       (2) 

where ɛr and ɛi denote the real and imaginary part of ε, respectively, expressed as a 

function of the frequency (ω) of light. As such, the strongest resonance occurs at a 

frequency ω where ɛr =−2ɛm (when the denominator of equation 1 equals zero), thus 

determining the LSPR frequency.  

The large optical polarization associated with the LSPR enables enhanced E-fields 

near the nanoparticle surface, as well as strong absorption and scattering of light at 

the LSPR frequency, thus imparting unique optical properties to the nanoparticles. 

The LSPR frequency is highly dependent on the size, shape, and structure (solid vs. 

hollow) of the nanoparticles, as well as the dielectric properties of the surrounding 

medium and inter-nanoparticle coupling interactions.[3,6-10] By tailoring these 

parameters, one can readily manipulate the LSPR properties of plasmonic 

nanoparticles for a variety of applications. 

 

1.2. Applications of Plasmonic Nanostructures 

The bright colors of noble metal nanoparticles, especially those of gold (Au) and 
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silver (Ag), have attracted considerable attention since historical times as decorative 

pigments in stained glasses and artworks. In recent times, the rapid advances in the 

synthesis of metal nanoparticles with controllable sizes, shapes as well as tunable 

LSPR properties have enabled a rich variety of applications in photonics, catalysis, 

information storage, chemical/biological sensing, and biomedicine.[11-16] 

Surface-enhanced Raman scattering (SERS) is one of the most important 

applications of plasmonic nanostructures, in which normally weak Raman signals can 

be amplified by many orders of magnitude (as high as 108-1014) near a nanoparticle 

surface, allowing ultrasensitive trace analysis and single-molecule detection.[17-20]  

SERS can provide unique rotational/vibrational information of a molecule, for the 

purpose of fingerprinting. Therefore, SERS does not just infer the existence of a 

molecule through spectral signals, but can be used to identify its structure based on 

the spectroscopic fingerprint. For these reasons, SERS is considered as a direct and 

sensitive technique, and its use in biomedical sensing and imaging has been actively 

explored over the past decades.[21-23]  

The enormous enhancement of Raman signals in SERS strongly depends on the 

magnitude of near fields originating from the LSPR.[24-26] These near fields can be 

optimized by careful tuning the LSPR peak to ensure maximal overlap with the 

exciting laser, and by using SERS-active substrates based on plasmonic 

nanostructures that generate enhanced E-fields. Silver nanostructures are especially 

attractive for SERS due to its large enhancement of near fields, and the enhancement 

can be an order of magnitude greater than what is possible with similar Au 

nanostructures.[24] The signal enhancement provided by Ag nanostructures is most 
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pronounced when the LSPR is excited by the incident light under a resonant condition. 

As a result, there is a strong desire to synthesize Ag nanostructures with tunable 

LSPR properties. 

In recent years, plasmonic nanostructures, especially those of Au, provide a 

versatile, multifaceted platform for a broad range of biomedical applications.[4]   

Recent studies have validated their use in a number of techniques for both cancer 

diagnosis and therapies. For example, they can function as contrast agents for a 

number of optical imaging modalities; they can act as carriers for the delivery and 

controlled release of drugs; and they can serve as transducers for the photothermal 

destruction of tumor cells. For in vivo applications, especially when optical excitation 

or transduction is involved, the LSPR peaks of the nanostructures have to be tuned to 

the transparent window of soft tissues in the NIR region (from 700-900 nm) in order 

to maximize the penetration depth. In this so-called transparent window, light can 

penetrate deeply into soft tissues due to a great reduction in absorption from 

hemoglobin and water in the blood and in scattering by the tissue.[27] For this reason, 

much research has focused on tuning the LSPR peaks of plasmonic nanostructures to 

wavelengths in the NIR region. For conventional Au colloids with a solid structure 

and a spherical shape, their LSPR peaks are typically limited to the visible region 

ranging from 500-600 nm. Only those Au nanostructures with nonspherical 

morphologies (e.g., rod, rice, multipod, and star) or a hollow structure (e.g., shell, box, 

and cage) can have LSPR peaks in the NIR region.[4] While nanostructures made of 

other metals can also exhibit strong LSPR, the non-reactive and relatively bio-inert 

nature of Au makes this metal the most prominent candidate for both in vitro and in 
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vivo applications.  

One novel class of nanostructures with tunable LSPR peaks in the NIR region is 

AuNCs, invented and developed by our group.[28] These versatile nanostructures are 

characterized by hollow interiors, ultrathin and porous walls, and can be prepared 

using a remarkably simple procedure based on the galvanic replacement between Ag 

nanocubes and aqueous chloroauric acid.[29] Figure 1.2, A and B, shows scanning 

electron microscopy (SEM) images of Ag nanocubes and the resultant AuNCs, 

respectively, and the insets display their corresponding transmission electron 

microscopy (TEM) images. The LSPR peaks of AuNCs can be readily and precisely 

tuned to any wavelength in the NIR region by controlling their size and/or wall 

thickness. Gold nanocages possess many unique features that make them particularly 

intriguing materials for biomedical applications: i) they are single crystals with good 

mechanical flexibility and stability, as well as atomically flat surfaces; ii) they can be 

routinely produced in large quantities with wall thicknesses tunable in the range of 2-

10 nm with an accuracy of 0.5 nm; iii) their LSPR peaks can be easily and precisely 

tuned to any wavelength of interest in the range of 600-1200 nm by simply 

controlling the amount of HAuCl4 added into the reaction, as shown in Figure 1.2C; 

iv) their hollow interiors can be used for encapsulation, and their porous walls can be 

used for drug delivery, with the release being controlled by various stimuli; v) their 

sizes can be readily varied from 20 to 500 nm to optimize biodistribution, facilitate 

particle permeation through epithelial tissues, or increasing drug loading; vi) their 

LSPR peaks can be dominated by absorption or scattering to adapt to different 

imaging modalities.  Because of all of these attributes that AuNCs can provide, they 
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have been investigated for a broad range of biomedical applications:[30,31] i) as tracers 

for tracking by multi-photon luminescence imaging; ii) as contrast agents for 

photoacoustic (PA) and multimodal imaging; iii) as photothermal agents for the 

selective destruction of cancerous tissue; and iv) as drug delivery vehicles for 

controlled and localized release. 

 

1.3. Scope of This work 

This work will be organized into three main sections: i) development of novel 

dimeric nanostructures of Ag for SERS applications; ii) in vivo quantitative 

evaluation of the transport kinetics of AuNCs in a lymphatic system by noninvasive 

PA tomography; iii) development of AuNCs as a new platform for controlled drug 

release with high-intensity focused ultrasound (HIFU).  

In Chapter 2, I focus on the synthesis and SERS applications of well-defined 

dimers consisting of Ag nanospheres with a broad range of sizes. Two methods were 

developed for generating the Ag dimers. The first one was based on the polyol 

process, in which the growth of single-crystal Ag nanospheres and their dimerization 

occurred at the same time by adding a small amout of NaCl into the reaction 

solution.[32] During the reaction, single-crystal Ag nanoparticles were formed as a 

result of oxidative etching, and the particle dimerization happened due to a change to 

colloidal stability. The second method was based on etching of Ag nanocubes with 

Fe(NO3)3.[33]  During the etching process, the corners and edges of the Ag nanocubes 

were truncated off to generate spherical particles, accompanied by dimerization 

because of the addition of ionic species. I further compared the SERS properties of 
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the dimers of Ag nanospheres with various sizes to achieve a systematic study of the 

hot-spot phenomenon in SERS. By correlating with SEM imaging, the SERS 

enhancement factors (EFs) of the dimers were calculated. Finally, I investigated the 

application of using these dimers as SERS tags for Raman mapping of cancer cells. 

Chapter 3 systematically investigates the use of AuNCs as a novel class of optical 

tracers for noninvasive sentinel lymph node (SLN) mapping by PA imaging on a rat 

model.[34] The transport and uptake of AuNCs in the lymphatic system were evaluated 

by PA imaging on the axillary region of a rat. Quantification of the amount of AuNCs 

accumulated in the lymph nodes was achieved by correlating the data from PA 

imaging with the results from inductively-coupled plasma mass spectrometry (ICP-

MS). Several experimental parameters, including the injection concentration, particle 

size, and surface charge were systematically studied.  

Chapter 4 demonstrates two temperature-regulated release systems by combining 

the unique features of AuNCs with HIFU. In the first system, I functionalized the 

surface of AuNCs with smart, thermally-responsive polymers.[35]   When a significant 

amount of acoustic energy is delivered to the focus using HIFU, the polymer chains 

will collapse as the temperature increases beyond a certain point, opening the pores 

and thus releasing the pre-loaded effectors. The second system simply involves filling 

the hollow interiors of AuNCs with a phase-change material (PCM).[36] When 

exposed to HIFU, the PCM will melt when the temperature is above its melting point, 

and escape from the interiors of nanocages, concurrently releasing the molecules 

encapsulated in the PCM. The released dosage could be remotely controlled by 

manipulating the power of HIFU and/or the duration of exposure. The two controlled 
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release systems can also be further developed into a theranostic system with an array 

of functions, including the capabilities for in vivo molecular imaging, as well as 

chemo- and photothermal therapy.  
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Figure 1.1. Schematic illustration of the LSPR phenomenon of a metal nanosphere, 

showing that the free electrons in the metal nanosphere can be displaced from the 

lattice of positive ions and collectively oscillate in resonance with the incident light. 
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Figure 1.2. SEM images of (A) Ag nanocubes and (B) Au nanocages. The inset 

shows the corresponding TEM images of the same sample. (C) UV-vis spectra of the 

samples obtained by titrating an aqueous suspension of Ag nanocubes with different 

volumes of 0.1 mM aqueous HAuCl4 solution. 
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Chapter 2 
 

Novel Dimeric Nanostructures of Silver for Surface-Enhanced 

Raman Scattering (SERS) Applications 

 

2.1. Introduction 

Silver nanostructures have attracted considerable interests because of their 

spectacular property known as localized surface plasmon resonance (LSPR), which 

has enabled their widespread use as optical probes, contrast agents, sensors, 

plasmonic waveguides, and substrates for SERS.[1-5] Among various applications of 

Ag nanostructures, SERS has particularly been of great interest due to its application 

in ultrasensitive trace analysis and single-molecule detection as it has been 

demonstrated with samples fabricated from Ag nanoparticles via salt-induced 

aggregation.[6,7] For these substrates, it is generally accepted that single-molecule 

sensitivity can only be achieved at the specific site known as hot spot -- the gap 

region of a pair of strongly coupled Ag (or Au) nanoparticles, where the 

electromagnetic field can be drastically amplified, leading to the observation of 

enhancement factors (EFs) several orders in magnitude greater than those of the 

individual nanoparticles.[8-10] 

Although the hot spot phenomenon has been extensively investigated from both 

theoretical and experimental perspectives, it remains an elusive, feebly understood 

subject. One of the most commonly used methods for generating hot spots is based on 

the salt-induced, random aggregation of Ag or Au colloidal particles in a solution 
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phase.[11,12] In addition to the poor reproducibility in terms of inter-particle spacing 

and number of particles that is characteristic of a random aggregation process, the 

constituent nanoparticles are also troubled by irregularity and non-uniformity in terms 

of size, shape, crystallinity, and overall morphology. As a result, it has been hard (if 

impossible) to correlate the observed giant EF to the specific attribute(s) of a hot spot. 

In an attempt to address this issue, many research groups have developed various 

methods for controlling the assembly of Ag or Au nanoparticles into well-defined 

structures for SERS applications.[13-16] Most of these studies were, however, based on 

functionalization of the surface of nanoparticles with organic or biological 

molecules.[17-21] In general, the procedures for producing a dimeric structure through 

surface modification are rather complicated, usually involving a number of steps. On 

the other hand, the resultant dimers are limited in use for SERS applications because 

the biological or organic linkers that bridge the two nanoparticles tend to prevent the 

analyte molecules from entering the hot spot. As a result, it still remains a grand 

challenge in assembling Ag or Au nanoparticles into dimers with well-defined hot 

spots for SERS. 

During the past decade, SERS has been used as an effective technique in many 

analytical systems, including environmental monitoring,[22] heterogeneous catalytic 

reaction monitoring,[23] chemical warfare-stimulant detection,[24] and explosive-agent 

detection.[25] In recent years, SERS has attracted much attention in biomedical 

applications, and has been developed as a viable and novel imaging technique for 

cellular/tissue imaging and tumor detection.[26-29]  SERS imaging takes advantage of 

the high intensities of SERS signals and the rich chemical information contained in a 
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SERS spectrum to generate images of metal nanoparticle distributions.[26,29,30-33] 

SERS imaging effectively locates the nanoparticles over a scanned region, and the 

presence of nanoparticles can be used to infer the presence of a desired target. 

Typically, the metal nanoparticle (usually Ag or Au) is derivatized with Raman probe 

molecules and coated with a shell made of SiO2 or polymer to generate the so-called 

SERS tag. The probe molecule provides a unique SERS signal, while the shell 

protects the Raman probes and allows further conjugation with targeting ligands, such 

as monoclonal antibodies, peptides, or small molecules, to target cells and tissue with 

high specificity.  

The main benefits of SERS imaging lie in its multiplexing capabilities and 

sensitivity:[32-35] i) many unique SERS probes can be fabricated by simply changing 

the probe molecules attached to the surface of metal nanoparticles; ii) compared with 

fluorescence bands, the SERS vibrational bands are much narrower, allowing for 

easier and more accurate data analysis and image construction; iii) unlike quantum 

dots and fluorescence molecules, only a single excitation source is needed to generate 

the SERS signals from numerous different probe molecules, and the excitation can be 

conveniently tuned to the transparent window of soft tissues in the NIR region.  

In this chapter, I will discuss the synthetic methods for generating well-defined 

dimers consisting of Ag nanospheres and the feasibility to employ these novel 

dimeric nanostructures for ultrasensitive detection and imaging through SERS. First, 

in Section 2.2, I will discuss the synthesis of dimers of Ag nanospheres with a range 

of sizes by using two methods. The first method is based on polyol synthesis and the 

second is based on wet etching. I have found that the key for the dimerization process 
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is to control the colloidal stability by adding appropriate amount of ionic species. In 

Section 2.3, I will discuss the SERS properties of the dimers of Ag nanospheres with 

various sizes. By correlating with SEM imaging, I have measured and compared the 

SERS EFs for individual dimers with different sizes. Finally, in Section 2.4, I will 

discuss the feasibility of using the dimers of Ag nanospheres as SERS tags for 

imaging cancer cells.  

 

2.2. Syntheses of Dimers of Silver Nanospheres 

I developed two methods for synthesizing dimers made of Ag nanospheres by 

manipulating the colloidal stability with the addition of ionic species into a 

suspension.[36,37] Spherical particles will give additional benefit for the study of hot 

spot due to their simplicity for computational simulation. I focus on Ag instead of Au 

because Ag has been shown to outperform Au by at least ten folds in terms of SERS 

sensitivity.[38] 

 

2.2.1. Dimerization Based on the Polyol Process 

The first method for generating the Ag dimers is based on the polyol process,[39] 

in which a polyol (a molecule containing multiple hydroxyl groups) such as ethylene 

glycol (EG) serves as both a solvent and a precursor to the reducing agent. In a 

typical synthesis, a capping agent, poly(vinyl pyrrolidone) (PVP), and a Ag precursor, 

AgNO3, were injected into pre-heated EG, and the reduction of Ag+ ions resulted in 

the nucleation and growth of Ag nanostructures. By introducing a small amount of 

NaCl into the reaction solution, I obtained single-crystal Ag nanoparticles as a result 
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of oxidative etching, and at the same time dimerization due to a reduction of the 

colloidal stability.  

Figure 2.1A shows a typical TEM image of the dimers of Ag nanospheres 

obtained at 20.5 h into the reaction, with the addition of 90 μL NaCl/EG solution into 

the mixture. Black circles were drawn to highlight the dimers. Counting over 150 Ag 

nanoparticles, I found that ~58% of them had dimerized during the synthesis (the 

percentage of dimerization is defined as the number of dimerized spheres divided by 

the total number of spheres). To confirm that the dimers were formed in the reaction 

solution rather than during TEM sample preparation, I added tetraethylorthosilicate 

(TEOS) to the reaction mixture to fix the dimers via silica coating. Figure 2.1B shows 

a TEM image of the SiO2-coated sample. Many dimers can be easily identified in this 

sample, clearly demonstrating the presence of dimers in the reaction solution. The 

clear contrast between the core and shell indicates that the SiO2 coating had a uniform 

thickness of ~7 nm over the entire surface of the dimer. 

 A magnified TEM image of an individual dimer (Figure 2.1C) shows a spherical 

shape for the two Ag nanoparticles that were 30.0 and 31.7 nm in diameter. There is a 

narrow gap of 1.8 nm wide between the two nanospheres, forming the so-called hot 

spot. The Ag nanospheres obtained using this protocol were actually truncated 

octahedrons (or cuboctahedrons) with a rounded profile (see the inset of Figure 2.1C), 

which are enclosed by a mix of (111) and (100) facets.[40] The uniform contrast across 

each particle indicates that the Ag nanospheres were single crystalline, which is also 

supported by the high-resolution TEM image (Figure 2.1D). Each sphere displayed a 

periodic fringe with an inter-planar spacing of 0.24 nm, a value that is consistent with 
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the separation between the {111} lattice planes. As labeled in the same Figure, the 

top sphere interacted with the bottom sphere through one of its (111) facets. In a 

truncated octahedron, the angle between adjacent {111} facets is 73.2°, indicating 

that the facet used by the bottom sphere to interact with the top sphere was also (111). 

All these results are supported by previous observations, where PVP was found to 

interact more strongly with the {100} than {111} facets,[41] and thus preferentially 

adsorb on the {100} facets. When two Ag nanospheres approached each other, it is 

not unreasonable to expect that they would prefer to interact through the {111} rather 

than {100} facets.  

To further understand and monitor the evolution of dimers, I took samples at 

various stages of the reaction as guided by the distinctive color changes. Within the 

first minute of reaction, the solution turned into light yellow, indicating the formation 

of Ag nanoparticles due to polyol reduction. The yellow color kept increasing in 

intensity and maintained its appearance for another 20 min. Our group’s previous 

experiments showed that most of the particles had a twinned structure at this time.[39]  

As the reaction proceeded, the yellow color started to fade and became colorless after 

ca. 1 h due to oxidative etching of the twinned nanoparticles in the solution. The 

solution remained colorless for a long period of time until a light yellow color 

appeared again at ca. 19 h into the synthesis. Note that the time at which the reaction 

mixture became light yellow again could vary for different syntheses, so the state of 

the reaction should be identified from the color change rather than a specific time. 

Figure 2.2A shows a TEM image of the sample when the reaction mixture turned into 

light yellow again after oxidative etching. The inset in Figure 2.2A gives a TEM 
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image at a higher magnification. It is clear that the sample at this point contained 

many dimers, but the nanospheres in the dimers were very small, with their diameters 

being in the range of 8-10 nm. When the reaction was continued, the color of the 

reaction mixture became darker. Figure 2.2B shows a TEM image of particles 

sampled 1.5 h later when the reaction mixture exhibited a bright yellow color with a 

slight orange tint. Compared to the sample shown in Figure 2.2A, the Ag nanospheres 

increased to ~30 nm in diameter as shown by the magnified TEM image (inset of 

Figure 2.2B). As the reaction was continued for another 0.5 h, the solution became 

dark orange-yellow with a slight red-brown tint. From the TEM images (Figure 

2.2C), it can be seen that the Ag particles grew a little bigger and their shape became 

more or less cubic, not as spherical as those shown in Figure 2.2B. In addition, I 

found that instead of approaching each other through the {111} facets as shown in 

Figure 2.1C, the Ag nanoparticles with a cubic shape could also interact with each 

other through their {100} facets. This is because the particles had evolved into cubes 

with only slight truncation at corners and thus mainly enclosed by {100} facets due to 

the preferential stabilization of these facets by PVP. This observation suggests that 

the two Ag nanoparticles in the dimer could freely rotate in space during the 

synthesis, reflecting the dynamic aspect of the dimeric structure.  

Figure 2.2D shows UV-vis spectra taken from samples at these three different 

reaction stages, corresponding to the products shown in Figure 2.2, A-C, respectively 

(the inset in Figure 2.2D shows photographs of these samples dispersed in ethanol). 

Note that the LSPR peak at 400 nm associated with the Ag nanoparticles gradually 

increased in intensity as the reaction proceeded. It is worth noting that a shoulder 
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peak appeared in the range of 450 to 550 nm for samples in Figure 2.2, B and C, 

which could be attributed to dimerization. It is worth pointing out that spectrum-b 

agrees well with the extinction spectrum calculated for dimers of Ag nanospheres,[42] 

further confirming the formation of dimers in the reaction solution. Additionally, 

there was a slight red-shift for the main peak as the reaction proceeded, which could 

be ascribed to the growth of particle size.  

I found that the yield of the dimers was sensitive to the concentration of NaCl in 

the reaction mixture. Figure 2.3A shows a TEM image of the sample when a smaller 

amount (66 rather than 90 μL) of NaCl/EG solution was added to the reaction. In this 

case, both single-crystal and multiply twinned nanoparticles were formed, but there 

was essentially no dimer in the sample. This observation can be explained by the 

oxidative etching scheme outlined in the previous studies.[43]  According to this 

scheme, a combination of oxygen from air and a ligand for the metal ion (such as 

chloride for Ag+) in the reaction solution can result in a powerful etchant for both the 

nuclei and seeds. In the presence of sufficient chloride, the defects inherently present 

on twinned particles will provide more reactive sites for oxidative dissolution, while 

single-crystal seeds are more resistant to oxidative etching as there are no twin 

boundary defects on the surface. As clearly shown in Figure 2.3A, both single-crystal 

and twinned particles were formed when not enough NaCl was added. In contrast, 

when a larger amount (114 μL) of the NaCl/EG solution was added to the reaction, 

dimers of single-crystal Ag nanospheres could also be produced, as shown in Figure 

2.3B. However, it is clear that the yield of dimers was much lower than the sample 

shown in Figure 2.1 and larger aggregates could be easily found in the sample. The 
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higher degree of agglomeration can be attributed to the higher concentration of NaCl 

in the reaction mixture.  

We can use the DLVO theory to explain the formation of dimers and the 

dependence of yield on the concentration of NaCl. The DLVO theory, which was 

proposed by four renowned scientists Derjaguin, Landau, Verwey, and Overbeek 

during the 1940s, provides a framework for colloidal interactions and colloidal 

stability (the theory became known by the initial letters of their names: DLVO). In 

the DLVO theory, colloidal stability is determined by a balance between the short-

range double-layer repulsion and long-range van der Waals attraction.[44]  As two 

particles approach each other, a repulsive barrier appears due to the electrostatic 

repulsion between the double layers. When the repulsive barrier is greater than 10kBT, 

where kB is the Boltzmann constant and T is the temperature, the collisions derived 

from Brownian motion will be unable to overcome the barrier and thus there is no 

agglomeration. However, when the repulsive barrier is reduced to the scale below 

10kBT, it is highly possible that dimerization, as well as higher degrees of 

aggregation, will occur in the suspension as a result of the constant collisions between 

colloidal particles derived from Brownian motion. In the diffusive double layer, the 

repulsive electrostatic potential VR can be expressed by the following equation:[44] 

VR(h) ∝ κ-1e–kh                                 (2.1) 

where h is the separation distance between two particles, and κ is the inverse Debye 

length. In general, κ is given by 

κ= (F2Σicizi
2/ε0εRT) 1/2                     (2.2) 
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where F is the Faraday constant, ε0 is the permittivity of vacuum, ε is the dielectric 

constant of the dispersion medium, R is the ideal gas constant, and ci and zi are the 

concentration and valence of each ionic species i. Based on equation (2.2), the easiest 

way to control κ is to vary the concentration and nature of the electrolytes or ionic 

species. An increase in the electrolyte concentration ci will result in a decrease 

repulsive electrostatic potential VR, causing an unstability for the colloidal system, 

thus inducing dimerization and higher degrees of aggregation for the colloidal 

particles. In order to optimize the yield of dimers, one has to control the concentration 

of NaCl in the medium region, not too low or too high. 

  

2.2.2. Dimerization Based on the Etching Process 

As a disadvantage for the polyol growth-based method for generating the dimers I 

developed in Section 2.2.1, I could not extend it to produce dimers of Ag spheres 

larger than 30 nm, because further growth will lead to transformation of the spheres 

into cubic particles. As shown in Figure 2.2C, when the reaction was extended to a 

longer time, the shapes of the Ag particles became more or less cubic. It will be a 

great advantage to have dimers made of Ag nanospheres with a broad range of sizes 

for SERS studies due to the simplicity of spherical particles for computational 

simulation.  

Our group has developed a number of protocols for producing Ag nanocubes, and 

their edge lengths could be controlled from 30 to 200 nm by adjusting the reaction 

parameters.[45-47] Starting from a uniform sample of Ag nanocubes, I demonstrated a 

facile method based upon wet etching with Fe(NO3)3 for generating well-defined 
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dimers of Ag nanospheres with a wide range of sizes. The etching reaction was 

performed at room temperature in ethanol with the help of PVP. When an aqueous 

suspension of Ag nanocubes was mixed with a small amount of aqueous Fe(NO3)3 

solution in ethanol, the corners and edges of the cubes were truncated off to form 

spheres, which were also induced to dimerize at the same time. This approach was 

demonstrated to work well for Ag cubes having edge lengths in the range of 40-100 

nm. 

Figure 2.4 schematically illustrates the procedure I used for fabricating the 

dimers. I started with Ag nanocubes dispersed in a mixture of ethanol (majority) and 

water. Aqueous Fe(NO3)3 solution can be used as a powerful wet etchant to dissolve 

Ag,[48] and the reaction can be described as the following: 

  Ag(s) + Fe(NO3)3(aq) → AgNO3(aq) + Fe(NO3)2(aq)            (2.3) 

As I discussed in the last section, the stability of a colloidal system is dependent on 

the concentrations of electrolytes or ionic species in the medium, which can be 

explained by the DLVO theory. An increase in the electrolyte concentration will 

reduce the stability of a colloidal system. Therefore, when a small amount of aqueous 

Fe(NO3)3 solution was added into an ethanol suspension of Ag nanocubes, the salt not 

only served as an etchant for the Ag cubes but also triggered the resultant Ag spheres 

to dimerize at the same time.  

Figure 2.5, A and B, shows typical SEM and TEM images of the Ag nanosphere 

dimers prepared from Ag nanocubes of ~100 nm in edge length. White and black 

ellipses were drawn to highlight the dimers in the SEM and TEM images, 

respectively. It can be seen that a large number of dimers were distributed over a wide 



 

25 
 

area on the substrate, indicating that a significant proportion of the particles in the 

final product existed in the well-defined dimeric structure. Counting over 150 Ag 

nanoparticles on the SEM or TEM images, I found that the percentage of dimerization 

was ~66%. The insets in Figure 2.5, A and B, show magnified SEM and TEM images 

of the dimers, implying that the dimers had a smooth surface. The magnified TEM 

image of an individual dimer clearly shows a spherical shape for the two constituent 

Ag spheres that were 79.4 and 81.1 nm in diameter, respectively. Because the cubes 

we used for the etching process were single crystals, the resulting nanospheres in the 

dimers were also single crystals, as confirmed by the uniform contrast across the 

particle under TEM. This is further supported by the HRTEM image shown in Figure 

2.5C. There was a narrow gap of ~0.67 nm wide between the two nanospheres, 

forming the so-called hot spot. Figure 2.5D shows a TEM image of the sample after 

SiO2 coating. Again, a large number of dimers can be easily identified in this sample, 

demonstrating that the dimers were formed in the reaction solution rather than on the 

substrate during SEM or TEM sample preparation. The inset in Figure 2.5D shows a 

magnified TEM image of an individual SiO2-coated dimer. The strong contrast 

difference between Ag and SiO2 suggests that the SiO2 coating had a more or less 

uniform thickness of ~11.6 nm over the entire surface of the dimer.  

This etching method of preparing dimers can be extended to Ag nanospheres with 

a range of different sizes by employing Ag nanocubes of different edge lengths as 

precursors. Figure 2.6, A and B, shows typical SEM and TEM images of Ag dimers 

of nanospheres derived from Ag cubes ~82 nm in edge length. Figure 2.6, C and D, 

shows SEM and TEM images of dimers fabricated from Ag cubes ~47 nm in edge 
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length. Similar to the sample shown in Figure 2.5, a large number of dimers can be 

easily identified from the SEM and TEM images, as highlighted again by white and 

black ellipses. The inset in each image shows a magnified SEM or TEM image of the 

sample, indicating that all of the spheres had a smooth surface and exhibited a round 

profile. The dimers derived from 82- and 47-nm Ag cubes were consisted of single-

crystal spheres approximately 63 and 40 nm in diameter, respectively. Table 2.1 

provides a summary of the major parameters for the different samples. It can be seen 

that the as-prepared samples all had relatively high percentages of dimerization 

(>60%), and the gap widths of the dimers all fell into a narrow range of 0.6-0.7 nm.  

Figure 2.7 shows the SEM images of the Ag nanocubes with average edge lengths 

of 100 nm, 82 nm, and 47 nm, respectively. Figure 2.8 shows the UV-vis extinction 

spectra of the cube precursors and the resulting dimers. Four LSPR peaks were 

present for both the 100- and 82-nm cubes, while three peaks can be resolved for the 

47-nm cubes. These observations are consistent with the characteristic dipole and 

quadrupole resonances for Ag nanocubes of these sizes.[44] After wet etching and 

dimerization, the primary LSPR peak of the samples all blue-shifted because of the 

reduction in size as compared to the corresponding cube precursors. The two peaks 

located at 350 and 390 nm disappeared due to higher symmetry of a sphere than a 

cube. It is worth noting that a shoulder peak appeared at ~500 nm (just next to the 

primary LSPR peak) for the 40-nm Ag sphere dimers, indicative of dimerization. This 

is consistent with the LSPR study on dimers consisting of 30-nm Ag spheres 

described in the previous section. However, the existence of a shoulder peak that 

implies dimerization could not be resolved from the spectra of dimers made of 80- 
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and 63-nm spheres. This can probably be attributed to the broad LSPR peaks for Ag 

spheres of such large sizes, which could overshadow the shoulder peaks characteristic 

of dimers.  

The etching process for generating the Ag dimers was typically performed in a 

medium containing a large amount of ethanol, a small quantity of water, and a certain 

amount of PVP. Both PVP and ethanol played an important role in the dimerization 

process. I found that the etching reaction could not proceed without the addition of 

PVP. Figure 2.9 shows SEM image of the product obtained under the same 

experimental condition as that for the sample shown in Figure 2.5 except that no PVP 

was added. In this case, the resulting product exhibited a cubic shape instead of the 

spherical morphology, and no dimers could be found. Compared to the precursor 

cubes, the surface of the cubes shown in Figure 2.9A was much rougher and there 

was an obvious coating deposited on the surface. When the reaction time was 

extended to 18 h, more coating was found on the surface of the cubes and there was 

still no dimers (Figure 2.9B), indicating that the etching process was essentially 

blocked by the coated material. Energy-dispersive X-ray (EDX) analysis was 

performed in order to identify the composition of the coating on the surface of the 

nanocubes. Figure 2.9C displays the EDX spectrum taken from the 18-h sample. In 

addition to the peak for Si from the substrate and the peak for Ag from the cubes, we 

also detected the peak for Fe. It is known that Fe(III) ions tend to undergo hydrolysis 

in an aqueous solution to form iron hydroxide, Fe(OH)3, and the reaction can be 

described as the following:  

                          Fe3+ + 3H2O  Fe(OH)3 + 3H+   (2.4)  
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Even though the etching process was performed in a medium largely made of ethanol, 

a small amount of water was introduced into the system when we added the aqueous 

Fe(NO3)3 solution (40 or 50 µL) and the aqueous suspension of Ag nanocubes (20 

µL) into the reaction system. Therefore, formation of Fe(OH)3 during the etching 

process would be inevitable. Meanwhile, Fe(OH)3 has long been known as a good 

adsorbent, and is widely used in water purification for entrapping and removing 

contaminants. Therefore, it can easily adsorb onto the surface of Ag nanocubes. As I 

discussed in the previous section, PVP was found to strongly interact with the surface 

of Ag nanoparticles, with a preferential adsorption on the {100} facets.[39] Since the 

surface of the cubes were all covered by {100} facets, it is possible that PVP could 

prevent the adsorption of Fe(OH)3 onto the surface of Ag cubes, thereby facilitating 

the etching process. In addition, ethanol was also found to be a key component for the 

successful preparation of the dimers. No dimers was found in our group’s  previous 

study when the etching was performed in water even with the addition of extra 

PVP.[49] Some coating was still observed on the surface of the product prepared in 

water, which was most likely Fe(OH)3. This is because the hydrolysis of Fe(III) ions 

in water is much faster than it is in ethanol. It is not unexpected that more Fe(OH)3 

would be formed when the reaction was performed in water, which subsequently 

impeded the formation of dimers. 

 

2.3. SERS Properties of Dimers of Silver Nanospheres with Different 

Sizes 
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2.3.1. SERS of the Dimers Prepared Using the Polyol Process 

I first performed correlated SERS/SEM measurements on the dimers of 30-nm Ag 

spheres prepared using the polyol method.  In a typical procedure, the sample was 

prepared by drop-casting an ethanol suspension of the dimers on a Si substrate that 

had been patterned with registration marks and letting it dry under ambient 

conditions. Once the sample had dried, it was rinsed with copious amounts of ethanol, 

immersed in a 5 mM solution of 4-methyl-benzenethiol (4-MBT) in ethanol for 3 h, 

taken out, washed with copious amounts of ethanol, and finally dried under a stream 

of nitrogen. All samples were used immediately for SERS measurement after 

preparation.  

Figure 2.10 shows SERS spectra taken from the sample that had been 

functionalized with 4-MBT. I used 4-MBT as the probe molecule because it is known 

to form a well-defined monolayer on the Ag surface with a characteristic molecular 

footprint, which is critical to estimate of the total number of molecules probed in the 

SERS measurement and thus calculation of the EF. In addition, the relatively small 

size of 4-MBT molecules makes it easier for them to get into the hot-spot region of 

the dimers.  Owing to the relatively small size (~30 nm in diameter) of the Ag 

nanospheres, I expect that probe molecules outside the hot-spot region will not 

contribute to the detected SERS signals.[50] Hence, these small dimers can provide an 

ideal model system for investigating the EF and polarization effect of an individual 

hot spot. The top trace in Figure 2.10A shows the SERS spectrum taken from a single 

dimer, with the laser polarization parallel to the longitudinal axis. The two 

characteristic peaks for 4-MBT at 1079 and 1594 cm-1 were clearly resolved, albeit at 
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low intensity. The peak at 1079 cm-1 is due to a combination of the phenyl ring-

breathing mode, CH in-plane bending, and CS stretching, while the peak at 1594 cm-1 

can be assigned to phenyl stretching (8a vibrational mode).[51,52] The low intensity 

reflects the small number of molecules trapped in the hot-spot region and the 

relatively smaller Raman cross-section for the 4-MBT molecules as compared to 

organic dyes usually employed in single-molecule SERS studies.[6,7]  Figure 2.10 also 

gives the SERS spectra recorded from two Ag nanospheres separated by ~600 nm 

(middle trace) and a single Ag nanosphere (bottom trace). In these two cases, there 

was no hot spot involved. In the case of two Ag nanospheres separated by 600 nm, 

both of them were within the laser focal volume (~10 μm in diameter), and the total 

number of probed 4-MBT molecules should be similar to the case of a dimer. The 

absence of detectable SERS signals confirm that only 4-MBT molecules trapped in 

the hot-spot region are responsible for the SERS peaks at 1079 and 1594 cm-1.  

I employed the peak at 1079 cm-1 to estimate the EF of the hot spot through the 

following equation: 

        EF = (Isers × Nbulk) / (Ibulk × Ntrap)               (2.5) 

where Isers and Ibulk are the intensities of the same band for the SERS and bulk spectra, 

Nbulk is the number of bulk molecules probed for a bulk sample, and Ntrap is the 

number of molecules probed in the SERS spectrum. The areas of the 1079 cm-1 band 

were used for the intensities Isers and Ibulk. I chose this band because it was the 

strongest band in the spectra. Nbulk was determined based on the ordinary Raman 

spectrum of a 0.1 M 4-MBT solution in 12 M NaOH(aq) and the focal volume of our 

Raman system (1.48 picoL). When determining the number of trapped molecules 
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(Ntrap) in the hot spot region, I assume that the 4-MBT molecules will be absorbed as 

a monolayer with a 0.19 nm2 molecular footprint onto a spherical cap having h = r/6.6 

located on each Ag nanosphere of the dimer (i.e., the inter-particle region), as shown 

in Figure 2.10B. This approximation was based on the TEM images shown in Figure 

2.1, C and D, and yielded Ntrap = 2,510. This number represents a theoretical 

maximum number of molecules, and is surely an overestimate, thus the EF reported 

here is likely an underestimate rather than an overestimate of the actual EF value. 

According to this approach, the EF of the hot spot was calculated to be 1.9×107. 

Alternatively, if we assume that the hot spot region is enclosed by two hexagonal 

(111) faces (see the inset in Figure 2.2C), Ntrap = 1,904 and the EF became 2.5×107, 

which is also close to 1.9×107. It is important to note that 4-MBT does not exhibit any 

absorption bands around 785 nm (the wavelength of the laser), which excludes the 

possibility of any resonance Raman effects for the excitation laser employed in our 

study. Further enhancement of the SERS effect can be achieved by employing probe 

molecules with resonance effects and/or by optimizing the laser wavelength 

employed in the measurements. 

I also found that the SERS signals were highly dependent on the laser 

polarization. It can be observed that the 4-MBT peaks were maximized when the laser 

was polarized parallel to the longitudinal axis of the dimer. The 4-MBT signals were 

gradually reduced when the laser was rotated by 22.5 and 45 degrees away from the 

longitudinal axis. At 45 degrees, the area of the peak at 1079 cm-1 was reduced by a 

factor of ~3. Finally, the 4-MBT peaks disappeared when the polarization was off 

from the longitudinal axis by angles larger than 45 degrees (e.g., 77 and 90 degrees). 
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2.3.2. SERS of the Dimers Prepared Using the Etching Process 

Although the small dimers prepared using the polyol process provide useful 

information about the hot-spot phenomenon, the detected SERS signals were actually 

very weak due to the small size of the Ag spheres (~30 nm) and thus the small 

number of molecules trapped in the hot-spot region, suggesting the difficulty of 

dimers with such a small size for ultrasensitive detection. It will be a great advantage 

to have dimers made of Ag nanospheres with bigger of sizes for SERS studies. 

Therefore, I further performed SERS measurements on the dimers of Ag nanospheres 

with various sizes prepared using the etching process. Figure 2.11 shows the SERS 

spectra taken from a single dimer of 80-nm Ag spheres, with the laser polarization 

parallel (top trace) and perpendicular (middle trace) to the dimer’s longitudinal axis. 

The bottom trace in Figure 2.11 gives the SERS spectrum recorded from an 

individual Ag nanosphere. The insets show the corresponding SEM images. The two 

strong peaks located at 1072 and 1583 cm-1 are the characteristic peaks for 4-MBT. 

The broad band shown in the middle and bottom trace at 900-1000 cm-1 comes from 

the Si substrate. In order to compare the SERS spectra recorded for the three different 

systems in one figure, I amplified the SERS signals by 10 times for the middle and 

bottom spectra in the plot. It is clear that the intensity of the characteristic 4-MBT 

SERS peaks decreased in the order of: dimer (parallel) >> dimer (perpendicular) > 

single sphere.  

Table 2.2 summarizes the EFs for dimers of Ag nanospheres with three different 

sizes with the laser polarization parallel and perpendicular to the dimer’s longitudinal 
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axis, as well as the corresponding individual spheres. The EF was calculated using 

Equation (2.5) described in Section 2.3.1, except replacing the Ntrap with NSERS. NSERS 

is the number of molecules probed in the SERS spectrum, based upon the assumption 

that a monolayer of 4-MBT molecules was formed on the surface of Ag with 0.19 

nm2 molecular footprint. It can be seen that the EFs for the dimer decreased with 

decreasing size for the sphere. In addition, the EFs for dimers with laser polarization 

parallel to the dimer’s longitudinal axis are all much higher than the corresponding 

ones with the polarization perpendicular to the dimer’s longitudinal axis. This 

indicates that the SERS signals taken from the dimer were polarization dependent, 

which is consistent with our study on the dimers made of 30-nm Ag spheres. The 

strong dependence on laser polarization could be attributed to the difference in the 

electric field enhancements under different excitation directions.[53] When comparing 

the EF of a dimer and that of a single sphere, we found that the EF of an individual 

sphere was much lower than that of the corresponding dimer, indicating the hot-spot 

phenomenon. Besides, the EF (1.7 × 108) for a dimer of 80-nm spheres with the laser 

polarization parallel to the dimer’s longitudinal axis is almost 10 times higher than 

that of the dimer of 30-nm spheres. 

 

2.4. Dimers of Silver Nanospheres as SERS Tags for Raman Imaging 

In this section, I will discuss the feasibility of using dimers of Ag nanospheres as 

SERS tags for Raman imaging. The surface of the dimers of Ag nanospheres was first 

modified with Raman probe molecules, and then coated with a SiO2 shell for 

protection. After that, anti-HER2 antibodies were immobilized on the SiO2 shell. I 
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then incubated cancer cells that overexpress HER2 with the as-prepared SERS tags 

and used a Raman system to generate SERS images of these cancer cells. I also 

prepared SERS tags from Ag nanospheres and Ag nanocubes, and compared their 

properties with the tags fabricated from the Ag dimers. 

 

2.4.1. Structural and Optical Characterization of the SERS Tags 

Figure 2.12 shows typical TEM images and UV-vis extinction spectra of the three 

different SERS tags fabricated from the dimers of Ag nanospheres, Ag nanospheres, 

and Ag nanocubes. In the following discussion, they will be termed dimer-tags, 

sphere-tags, and cube-tags, respectively. The Ag particles of the three samples were 

all first functionalized with 4-mercaptobenzoic acid (4-MBA), a Raman probe, and 

then coated with SiO2. As shown in Figure 2.12, A-C, the diameter of the Ag spheres 

in the dimer, the diameter of the individual Ag spheres, as well as the edge length of 

the Ag cubes were all about 50 nm. The thicknesses of the SiO2 coating of all three 

samples were also kept the same, ~15 nm, as indicated by the clear contrast difference 

between Ag and SiO2. The UV-vis spectra (Figure 2.12, D-F) show that after surface 

modification (including both 4-MBA functionalization and SiO2 coating), the LSPR 

peaks of the three samples (Ag dimers, spheres, and cubes) were all slightly red-

shifted. In addition, the LSPR peak of the dimer-tags was more red-shifted, and much 

broader than that of the sphere-tags, indicating the dimerization of the particles.  

 

2.4.2. Raman Characterization of the SERS Tags 

Figure 2.13 shows the SERS spectra of individual SERS tags deposited on a glass 
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slide. The insets show SEM images of the corresponding SERS tags, from which the 

spectra were recorded. It can be observed that the two characteristic peaks for 4-MBA 

at 1080 and 1588 cm-1 were clearly resolved for the Ag dimer-tag,[54] while the peak 

at 1080 cm-1 was barely detected for the sphere-tag and cube-tag due to the relatively 

weak enhancement. For a Ag dimer-tag, the SERS signals of 4-MBA were gradually 

reduced when the laser was rotated by 45° and 90° away from the longitudinal axis of 

the dimer. At 90°, the intensity of the peak at 1588 cm-1 was reduced by a factor of 

~15 compared to that with laser polarization parallel to the dimer's longitudinal axis. 

In addition, the SERS signal recorded from a dimer-tag was obviously much stronger 

than that of a sphere-tag or cube-tag, indicating the efficient preservation of the hot 

spot in the dimer-tag. With respect to the cube-tag (Figure 2.13C), it can be seen that 

the intensity of the SERS signal with the laser polarization along a face diagonal of 

the cube was about two times stronger than that with laser polarization along an edge 

of the cube. Additionally, the SERS signal from the cube-tag was higher than that 

from the sphere-tag, mainly due to the sharp corners associated with the cube.  

Furthermore, the SERS signals from aqueous suspensions of the Ag dimer-tags, 

sphere-tags, and cube-tags with the same particle concentration (~1.2 × 1015 

particles/L) were also compared. As shown in Figure 2.14, the intensity of the 4-

MBA peaks from the suspension of the dimer-tags was about 14 times stronger than 

that from the sphere-tags and about 5 times stronger than that from the cube-tags.  

I then employed the peak at 1588 cm-1 (the strongest band in the spectra) to 

estimate the SERS EFs of different SERS tags, as summarized in Table 2.3. It can be 

seen that the EF for a dimer-tag gradually decreased when the laser was rotated by 
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45° and 90° away from the longitudinal axis of the dimer. At 90°, the EF is about 6.5 

times lower than that with laser polarization parallel to the dimer’s longitudinal axis. 

When comparing the EF of a dimer-tag and that of a sphere-tag, we found that the EF 

of the dimer-tag (laser parallel to the dimer’s longitudinal axis) was about 15 times 

higher than that of a sphere-tag on the substrate; while in the solution phase, the EF of 

the dimer-tags are about 7 times and 4 times higher than that of the sphere-tags and 

cube-tags, respectively.  In addition, the EFs of the cube-tags, either on the substrate 

or in the solution, are both greater than that of the sphere-tags. 

 

2.4.3. SERS Tags for Cancer Cells Imaging 

I finally examined the feasibility of using the as-prepared SERS tags for imaging 

cancer cells. SK-BR-3 human breast adenocarcinoma cells that overexpress HER2 

were chosen as a model to demonstrate the SERS imaging, while U-87 MG human 

glioblastoma cells that do not express HER2 were used as a negative control. The 

cells were incubated with the as-prepared SERS tags conjugated with HER2 

antibodies. When an incident laser beam was used to illuminate a cancer cell, the 

SERS signals from the Raman reporter molecules of the SERS tags were detected. 

SERS images were acquired using a point-mapping method. It generated a spectral 

image by measuring the Raman spectrum of each pixel of the image, one at a time, 

and thus a SERS image showing the distribution of the SERS tags attached to the 

cancer cell could be obtained. As shown in Figure 2.15, in each panel, (a) is the 

bright-field optical microscope image of a single cell, while (b) are the corresponding 

Raman mapping image acquired based on the intensity of the band of 4-MBA at 1588 
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cm-1. The Raman signals of 4-MBA could be detected on SK-BR-3 cells incubated 

with anti-HER2 antibodies-conjugated Ag dimer-tags (Figure 2.15A), sphere-tags 

(Figure 2.15B), and cube-tags (Figure 2.15C), respectively, while the signals could 

not be detected from U-87 cells due to the lack of HER2 receptors. These results 

show the excellent targeting capability of the as-prepared SERS tags. Typical SERS 

spectra of different spots on the Raman mapping images, as indicated by the 

coordinates A6, D6, G6 and J6, are shown in (c) of each panel. It was found that the 

dimer-tags gave the strongest SERS signals, about 5 and 4 times greater than those 

from the sphere-tags and cube-tags, respectively. These results show that the dimer-

tags could be used as promising candidates in SERS imaging for cancer diagnosis. 

 

2.5. Summary 

In summary, I have successfully developed two methods for generating well-

defined dimers consisting of Ag spheres with a wide range of sizes. The key to the 

success of these two methods lies in the control of colloidal stability by optimizing 

the amount of ionic species added into a suspension. The first method was a facile, 

one-step approach based on the polyol reduction, in which the growth of Ag 

nanospheres and their dimerization occurred at the same time with the addition of 

trace amount of NaCl. The dimers prepared from this method are consisted of single-

crystal Ag nanospheres ~30 nm in diameter and separated by a gap of 1.8 nm wide. 

The second method was based on etching of Ag nanocubes of various sizes with 

Fe(NO3)3, in which the corners and edges of the nanocubes were truncated off to 

generate spherical particles, accompanied by dimerization because of the addition of 
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ionic species. This method can be extended to produce dimers of Ag nanospheres 

with a broad range of sizes. Additionally, the dimers prepared from the two methods 

were all SERS active and could serve as ideal systems for experimental studies on the 

hot-spot phenomenon in SERS. By correlating with SEM imaging, we measured the 

SERS EFs for individual dimers consisting of 30-nm, 40-nm, 60-nm and 80-nm Ag 

spheres using 4-MBT as a probe molecule, and an average value of 1.9 × 107, 3.9 × 

107, 9.3 × 107, and 1.7×108 was obtained, respectively. I further successfully 

demonstrated the application of using these dimers as SERS tags for Raman imaging 

of cancer cells, showing that the dimer-tags were better candidates for SERS imaging 

than the cube-tags and sphere-tags because of the preservation of the hot spots. 

 

2.6. Experimental Section 

 Synthesis of Dimers of Ag Nanospheres. For the synthesis of dimers of Ag 

nanospheres based upon the polyol method, in a typical procedure, 5 mL of EG (J. T. 

Baker, 9300-03) was placed in a three-neck flask equipped with a reflux condenser 

and heated in an oil bath at 145 oC for 90 min. Meanwhile, 0.064 g of AgNO3 

(Aldrich, 08922LE) and 0.064 g of PVP (Mw ≈ 55,000, Aldrich, 04207JD) were 

dissolved separately in 3 mL of EG at room temperature. A certain amount of 10 mM 

NaCl, which was pre-dissolved in EG, was added to the PVP/EG solution. The 

AgNO3 and PVP solutions were then simultaneously injected into the hot EG at a rate 

of 45 mL/h using a syringe pump (KDS-200, Stoelting). Magnetic stirring was 

applied throughout the synthesis. The reaction mixture went through a series of color 

changes, including light yellow, yellow, colorless, light yellow again, strong yellow, 
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and strong yellow with a slight orange tint. A series of samples were taken using a 

glass pipet after the reaction mixture became light yellow again. The samples were 

washed with acetone and then with water to remove most of the EG and PVP. In the 

washing process, the suspension was first centrifuged at 6,000 rpm for 45 min when 

acetone was used and then centrifuged at 13,000 rpm for 10 min when water was 

used. Finally, the precipitate was re-dispersed in ethanol for further characterization.  

For the synthesis of dimers of Ag nanospheres based upon the etching process, the 

Ag nanocube precursors used in this method were synthesized according to published 

protocols developed by our group: the 47-nm cubes were synthesized using a sulfide-

mediated polyol synthesis;[47] the 82-nm and 100-nm cubes were prepared using a 

HCl-mediated polyol synthesis that involved oxidative etching of twinned seeds.[45] In 

a typical synthesis of dimers of Ag nanospheres, 0.01 g of PVP was dissolved in 1.5 

mL of ethanol. Then, a small aliquot of Ag nanocubes (dispersed in water, 20 μL) 

was added into this ethanol solution. Under magnetic stirring, the nanocube 

suspension was mixed with 50 μL of 10 mM Fe(NO3)3 (Aldrich, 05713KH) aqueous 

solution. After the reaction had proceeded at room temperature for 2 h, the product 

was collected by centrifugation at 10,000 rpm for 5 min and washed three times with 

ethanol. To prepare the 40 nm-dimer, 40 μL of 10 mM Fe(NO3)3 was added and the 

etching time was 1 h. The sample was then re-dispersed in ethanol for further 

characterization.  

In a typical process of silica coating on dimers of Ag nanospheres, the as-prepared 

dimers of Ag nanospheres were mixed with 0.5 mL ethanol. Then, 0.25 mL of this 

mixture was then transferred to a solution of 0.8 mL ethanol and 20 μL deionized 
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water. Under continuous magnetic stirring, 20 μL of 29% ammonia solution and 10 

μL TEOS (Aldrich, 09118DJ) were sequentially added. After the reaction had 

proceeded at room temperature for 5 h, the solution was centrifuged at 10,000 rpm to 

isolate the precipitate, which was then re-dispersed in ethanol for further 

characterization.  

Preparation of SERS Tags. The prepared solution of dimers of Ag nanospheres, 

Ag nanocubes, or nanospheres was suspended in 3 mL of ethanol containing 0.5 

mg/mL PVP to form a ~0.2 nM nanoparticle solution. 50 μL of 1 mM Raman reporter 

molecule (4-MBA or 1,4-BDT) in ethanol were added into the nanoparticle solution 

with stirring. After 1 h, 250 μL of H2O, 70 μL of 29% ammonia solution, and 4 μL of 

TEOS were sequentially added. After the reaction had proceeded at room temperature 

for 3 h, the resultant SiO2-coated Ag nanoparticles were collected by centrifuging at 

10,000 rpm and washed with water three times.  

Amino groups were firstly introduced onto the SiO2 shell by adding 5 μL of (3-

aminopropyl)trimethoxylsilane (APTMS, Aldrich, 97%) into 3 mL of SiO2-coated Ag 

nanoparticle ethanol solution (0.1 nM), followed by a 2 h reaction at room 

temperature with stirring. Anti-HER2 antibodies were covalently linked to the 

aminated SiO2-coated Ag nanoparticles using the periodate oxidation method. 

Briefly, 500 μL of anti-HER2 antibody (1 mg/mL) in 0.01 M acetate buffer (pH=5.2) 

were mixed with 5 μL of 0.3 M NaIO4. After incubation for 20 min, unreacted 

reagents were removed by dialysis against deionized water. The dialyzed solution was 

then adjusted to pH=9.0 before the amino group modified SiO2-coated Ag 

nanoparticles were added. After 6 h at 4°C, NaBH3CN was added at a final 
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concentration of 5 mM followed by incubation for 6 h. The antibody-linked Ag 

nanoparticles were finally blocked by adding an equal volume of blocking solution 

(10 mM Tris-HCl buffer containing 2% bovine serum albumin (BSA), 4% sucrose, 

and 1% glycine, pH=7.8). The resulting SERS tags were rinsed twice with 10 mM 

Tris-HCl buffer (pH=7.8) and finally suspended in 100 μL Tris-HCl buffer and stored 

at 4°C. 

Cell Culture and Targeting. Cell culture: SK-BR-3 human adenocarcinoma cells 

and U-87 MG human glioblastoma cells were obtained from ATCC. SK-BR-3 cells 

were maintained in McCoy’s 5A medium (ATCC), supplemented with 10% fetal 

bovine serum (FBS, ATCC) and 1% penicillin-streptomycin (P/S, Invitrogen). U-87 

cells were maintained in Eagle’s Minimum Essential Medium (EMEM, ATCC), 

supplemented with 10% FBS and 1% P/S. All cultures were kept in an incubator at 37 

°C in a humidified atmosphere containing 5% CO2 and the media were changed every 

other day. Immunofluorescence: The cells were seeded in the wells of a 24-well plate 

at a density of 1×104 cells/well, and left to attach overnight. The cells were then fixed 

with 4% formaldehyde for 10 min, and washed for 3 times with phosphate buffered 

saline (PBS, Invitrogen). The cells were then blocked with a PBS solution containing 

1.5% BSA for 1 h, followed by incubation with primary antibody (mouse anti-HER2, 

1:200) in the above-mentioned blocking solution overnight at 4 °C. After washing 

with PBS for 3 times, fluorescein isothiocyanate (FITC)-conjugated secondary 

antibody (goat anti-mouse IgG, Invitrogen, 1:200) was applied for 1 h at room 

temperature, followed by PBS washes. Cell nuclei were labeled with 4',6-diamidino-

2-phenylindole (DAPI, Invitrogen). The fluorescent micrographs were taken using a 
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QICAM Fast Cooled Mono 12-bit camera (Q Imaging, Burnaby) attached to an 

Olympus microscope with Capture 2.90.1 (Olympus), and were then converted into 

corresponding color images in Photoshop (Adobe). Cell targeting with SERS tags: 

The cells were seeded onto sterile cover glasses in the wells of a 24-well plate, at a 

density of 5×103 cells/well, and left to attach overnight. The staining method was the 

same as immunofluorescence except for that, mouse anti-HER2 primary antibody was 

replaced with anti-HER2 conjugated SERS tags. 

Electron Microscopy and Spectroscopic Characterization. TEM images were 

captured using a Tenai G2 Spirit Twin microscope operated at 120 kV (FEI, 

Hillsboro, OR). High-resolution TEM images were captured using a field-emission 

2100F microscope (JEOL, Tokyo, Japan) operated at 200 kV. SEM images were 

captured using a Nova NanoSEM 230 field-emission microscope (FEI, Hillsboro, 

OR) operated at an accelerating voltage of 15 kV. Samples were prepared by 

dropping an ethanol suspension of the particles on a piece of silicon wafer (for SEM) 

or carbon-coated copper grid (for TEM). The UV-vis extinction spectra were 

recorded with a Cary 50 spectrometer (Varian) using a quartz cuvette with an optical 

path length of 1 cm. 

SERS Measurements. The SERS spectra were recorded using a Renishaw inVia 

confocal Raman spectrometer coupled to a Leica microscope with 50x objective in 

backscattering geometry. The 785 nm (or 514 nm) wavelength was generated with a 

diode laser (or an argon laser) coupled to a holographic notch filter. The 

backscattered Raman signals were collected on a thermoelectrically cooled (-60 °C) 

CCD detector. The scattering spectra were recorded in the range of 800-2000 cm-1, in 
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one acquisition, 30 s accumulations, and 1.5 mW at the sample. SERS images were 

obtained using a Raman point-mapping method, in which a spectral image was 

generated by measuring the Raman spectrum of each pixel of the image, one at a time. 

SERS signals were collected by scanning an area of 24 μm × 24 μm with a step size 

of 2.0 μm.  
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Figure 2.1. (A) TEM image of dimers of Ag nanospheres, and (B) TEM image of the 

dimers after their surface had been coated with silica. The dimers are highlighted by 

black ellipses. The inset in (B) shows a magnified TEM image of the sample. (C) 

TEM image of an individual dimer of Ag nanospheres. The inset in (C) gives a 

schematic illustration of the Ag nanospheres (cuboctahedra) in the dimer. (D) 

HRTEM image of the gap in an individual dimer of Ag nanospheres. Experimental 

conditions: temperature: 145 oC; the amount of NaCl/EG solution (10 mM): 90 μL; 

and the reaction time: ca. 20.5 h.  
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Figure 2.2. TEM images of samples obtained at three different stages of the reaction. 

The samples were taken when the color of the reaction mixture was (A) light yellow 

(ca. 19 h), (B) bright yellow with a slight orange tint (ca. 20.5 h), and (C) and dark 

orange yellow with a slight red-brown tint (ca. 21 h). The insets show magnified 

TEM images of the samples. The inset in (C) shows dimers of cubic Ag nanoparticles 

that were formed by interacting with different types of facets. (D) UV-vis extinction 

spectra of the samples taken at different reaction states. Experimental conditions: 

temperature: 145 oC; and the amount of NaCl/EG solution (10 mM): 90 μL. 
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Figure 2.3. TEM images of samples prepared with the addition of different amounts 

of NaCl/EG solution (10 mM): (A) 66 μL and (B) 114 μL. The reaction temperature 

was 145 oC. The dimers are highlighted by black ellipses in (B).  
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Figure 2.4. A schematic showing how dimers of Ag nanospheres are formed during 

etching of Ag nanocubes with an aqueous Fe(NO3)3 solution in ethanol. 
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Figure 2.5. (A) SEM and (B) TEM images of dimers of Ag nanospheres prepared 

from 100-nm Ag nanocubes. (C) HRTEM image of the gap in a dimer and (D) TEM 

image of the dimers after their surface had been coated with SiO2. The dimers are 

highlighted by white and black ellipses in SEM and TEM images, respectively. The 

inset in each image shows a magnified SEM or TEM image of the same sample. 

Experimental conditions: 0.01g of PVP, 1.5 mL ethanol, 50 μL of Fe(NO3)3 aqueous 

solution (10 mM), and etching for 2 h at room temperature.  
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Figure 2.6. (A, C) SEM and (B, D) TEM images of dimers of Ag nanospheres with 

different sizes prepared from 82-nm and 47-nm Ag nanocubes, respectively. The 

dimers are highlighted by white and black ellipses in the SEM and TEM images, 

respectively. The inset in each image shows a magnified SEM or TEM image of the 

same sample. The dimers of 63 nm-spheres were prepared under the same conditions 

as those in Figure 2, except for the use of 82-nm Ag nanocubes. To prepare the 

dimers of 40 nm-spheres, 40 μL of 10 mM Fe(NO3)3 was added and the etching time 

was 1 h.  
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Table 2.1. A sumamry of the edge lengths of the Ag nanocubes (lcube), diameters of 

the resultant spheres in the dimers after etching (dsphere), percentages of dimerization, 

and widths of the gap regions in the dimers.  

 

 
lcube (nm) dsphere (nm) dimerization% gap width (nm) 

100.4 ± 4.5 80.4 ± 4.2 66% 0.67 
  82.2 ± 4.5 63.0 ± 3.7 65% 0.69 
  47.4 ± 3.5 39.7 ± 3.4 61% 0.65 

 

 



 

51 
 

 
 

Figure 2.7. SEM images of Ag nanocubes with an average edge length of (A) 100 

nm, (B) 82 nm, and (C) 47 nm, respectively.  
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Figure 2.8. UV-vis extinction spectra of Ag nanocubes (dashed line) of (A) 100 nm, 

(B) 82 nm, (C) 47 nm in edge length, and spectra of the corresponding dimers of Ag 

nanospheres (solid line) of (A) 80 nm, (B) 63 nm, (C) 40 nm in diameter, which were 

prepared by etching.  
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Figure 2.9. (A, B) SEM images of two samples obtained by wet etching for (A) 1 h 

and (B) 18 h, respectively. The etching was carried out under the same conditions as 

those used in Figure 2, except that no PVP was added. (C) EDX spectrum taken from 

the 18-h sample. 
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Figure 2.10. (A) SERS spectra taken from (top) a dimer of Ag nanospheres, (middle) 

two Ag nanospheres separated by ~600 nm, and (bottom) a single Ag nanosphere. 

The scale bars in the insets correspond to 50 nm. (B) A schematic showing our 

approach to estimate the number of probe molecules trapped in the hot spot (Ntrap) of 

a dimer. The hot spot region is assumed to comprise a cap on the surface of each 

nanosphere in the inter-particle region of the dimer (red color). Ntrap is obtained by 

calculating the total surface area of the hot spot region (surface area of the two caps) 

and dividing it by the molecular footprint of a 4-MBT molecule. In our calculations, h 

= r/6.6 (where h is the height of the cap and r is the radius of the nanosphere).  
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Figure 2.11. SERS spectra taken from a dimer of Ag nanospheres when the laser 

polarization was parallel (top trace) and perpendicular (middle trace) to the 

longitudinal axis of the dimer; and from a single Ag nanosphere (bottom trace). As 

indicated by “10×”, the intensity of the SERS signals was multiplied by ten times for 

the middle and bottom traces. The insets show the corresponding SEM images. The 

scale bar corresponds to 100 nm and is applied to all the images.  
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Table 2.2 Enhancement factors (EFs) for dimers of Ag nanospheres with the laser 

polarization parallel (EFdimer-para) and perpendicular (EFdimer-perp) to the dimer’s 

longitudinal axis, as well as those of the corresponding spheres (EFsphere). 

 
dsphere (nm) EFdimer-para EFdimer-perp   EFsphere 
80.4 ± 4.2 1.7 × 108 1.5 × 107 1.0 × 107 
63.0 ± 3.7 9.3 × 107 9.2 × 106 7.8 × 106 

39.7 ± 3.4 3.9 × 107 4.6 × 106 1.2 × 106 
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Figure 2.12. TEM images of three different SERS tags: (A) Ag dimer-tags, (B) Ag 

sphere-tags, (C) Ag cube-tags, with encapsulated Raman reporter molecules 4-MBA 

inside the SiO2 shell. The insets show TEM images of individual SERS tags at a 

higher magnification. Scale bars in the insets are 20 nm. The corresponding UV-vis 

extinction spectra of the SERS tags were shown in the right column (D-F). The solid 

and dashed lines indicate the spectra of the Ag dimers, spheres and cubes before 

(solid) and after (dashed) the surface modification.  
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Figure 2.13. SERS spectra of individual SERS tags deposited on glass slides: (A) Ag 

dimer-tags, (B) Ag sphere-tags, (C) Ag cube-tags. The double arrows denote laser 

polarization. The insets show SEM images of the corresponding SERS tags from 

which the spectra were recorded.  
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Figure 2.14. SERS spectra obtained from aqueous suspensions of (A) Ag dimer-tags, 

(B) Ag sphere-tags, (C) Ag cube-tags. The concentration of the SERS tags was ~1.2 × 

1015 particles/L in all experiments.  
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Table 2.3. The EFs of individual SERS tags supported on glass slides (EFsubstrate) and 

EFs of the different SERS tags in solution phase (EFsolution). Each value represents an 

average of the data from 20 independent experiments. The double arrows denote 

direction of the laser polarization.  
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Figure 2.15. SERS images of SK-BR-3 cells incubated with (A) Ag dimer-tags, (B) 

Ag sphere-tags, and (C) Ag cube-tags conjugated with anti-HER2 antibodies. In each 

panel, (a) is bright-field images of an individual cell, while (b) is the corresponding 

Raman mapping image based on the intensity of the band of 4-MBA at 1588 cm-1; (c) 

shows typical SERS spectra of the different spots on the Raman mapping images, as 

indicated by the coordinates A6, D6, G6, and J6.  
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Chapter 3 

 

Quantitative Evaluation of the Transport Kinetics of Gold 

Nanocages in a Lymphatic System by Photoacoustic (PA) 

Tomography 

 

3.1. Introduction 

The metastatic spread of a tumor occurs by invading the adjacent tissue and 

disseminating cancerous cells through the lymphatic system into the blood stream.[1] 

The closest lymph node that receives the drainage from a tumor is known as the 

sentinel lymph node (SLN), which represents the most likely first location of 

metastatic spread. To reduce the side effects of axillary lymph node dissection,[2] 

sentinel lymph node biopsy (SLNB) is widely performed and has become the 

standard for axillary staging in breast cancer patients.[3] Although SLNB with blue 

dyes (such as lymphazurin or methylene blue) or radioactive colloidal tracers has an 

identification rate of more than 90%, these methods involve invasive surgical 

operations and use carcinogenic ionizing radiation. They may also fail to identify 

axillary diseases owing to a high false negative rate of 5-10%.[4] Furthermore, they 

can pose a risk of postoperative complications, such as seroma formation, 

lymphedema, and motion limitation.[5] 

Recently, ultrasound-guided fine needle aspiration biopsy (FNAB) has been 

clinically evaluated as a minimally invasive procedure.[6] This technique requires 
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accurate positioning of the SLN, which initiates studies to develop accurate, 

nonionizing, and noninvasive methods for SLN mapping. Photoacoustic (PA) 

imaging is such a technique with remarkable resolution, which is based on the optical 

absorption contrast mechanism.[7,8] Since the spatial resolution of this technique is 

determined by ultrasound parameters, the imaging depth can be extended to the 

optical quasidiffusive or diffusive regime while maintaining high resolution. By using 

diffusive photons, the maximum PA imaging depth can be pushed up to 50 mm in 

biological tissues.[9] Our previous work successfully demonstrated PA SLN imaging 

by using clinically available organic dyes.[10, 11] Although this dye-based PA imaging 

system has been demonstrated with a depth capability of ~31 mm, satisfactory spatial 

resolution, and clinical potential, it still has a number of drawbacks: i) the size of the 

dye molecule is rather small (<2 nm), so it can easily transport into the echelon lymph 

nodes, causing a high possibility of false positives;[12] and ii) it is hard to bioconjugate 

the dye molecule to form molecular probe with the targeting capability.  

In contrast, gold nanocages (AuNCs) have proper size range (30–100 nm) to stay 

ensure sufficiently fast migration and sufficient duration of trapping in SLN for 

imaging.[8] The LSPR peak of AuNCs can also be precisely tuned to the NIR region 

from 700 to 900 nm, in which the attenuation of light by blood and soft tissue is 

relatively low.[13] Most importantly, compared to organic dyes, AuNCs can be easily 

bioconjugated with various types of ligands such as antibodies, peptides, and nucleic 

acids to target specific receptors,[14,15] potentially eliminating the need for invasive 

axillary staging procedures in addition to providing noninvasive SLN mapping. Other 

attractive features of AuNCs include bio-inertness, large absorption cross sections 
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(almost five orders of magnitude greater than those of conventional organic dyes), 

and the ability to encapsulate therapeutic drugs, which offers a great benefit for 

theranostic applications.[16] In a previous report, we have demonstrated a proof-of-

concept use of AuNCs for SLN imaging by PA, where an intradermal injection of 100 

µL of 2 nM AuNC solution was performed on the forepaw pad of a rat, and the SLN 

was identified with enhanced contrast and good spatial resolution.[17] Many 

parameters associated with the AuNCs, including the minimum requirement on the 

concentration and injected volume and the influence of particle size, shape, and 

surface characteristics on their transport kinetics and uptakes by lymph nodes, still 

need to be examined and optimized before this system can be further considered for 

potential clinical use.  

In this chapter, we will quantitatively evaluate the transport of AuNCs in the 

lymphatic system and the uptake by lymph nodes through PA imaging on a rat model. 

The influences of concentration, particle size, and surface characteristics will be 

systematically examined by using suspensions of AuNCs with a range of 

concentrations, two different sizes (50 and 30 nm in edge length), and three different 

surface charges (negative, positive, and neutral). Figure 3.1, A and B shows TEM 

images of AuNCs with an edge length of 50 and 30 nm, respectively. Except for the 

experiments involving comparison of particle size, the AuNCs used in all studies 

were 50 nm in edge length. The surface of the as-synthesized AuNCs is typically 

covered with PVP (MW≈55,000), a biocompatible polymer. To investigate the effect 

of surface charges, the PVP layer was replaced by heterofunctional poly(ethylene 

glycol) (PEG, MW≈5,000) with one end terminated in the sulfhydryl group and the 
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other terminated by the amine (-NH2), methoxy (-OMe), or carboxylic acid (-COOH) 

group, to generate positive, neutral, or negative surface charges, respectively. The as-

prepared AuNCs covered by PVP were used in all experiments except the study of 

surface charges. The injection volume was kept the same at 100 µL for all 

experiments while the concentration of AuNCs was varied. PA imaging of the 

axillary region of a Sprague-Dawley rat (250-300 g) was performed at different time 

points after intradermal injection of an aqueous suspension of AuNCs in the left 

forepaw pad, and the amplitude change of PA signals was then monitored as a 

function of time. The amounts of AuNCs accumulated in the SLNs will be quantified 

by ICP-MS analysis of the dissected lymph nodes after the rats are euthanized. The 

results can provide valuable information for further development of this AuNC-based 

PA imaging system for noninvasive lymph node mapping. 

 

3.2. Ex Vivo and In Vivo Sensitivity of PA Tomography for SLN 

Imaging with Gold Nanocages 

 Because AuNCs have much larger optical absorption cross sections than those of 

organic dyes,[18] their concentration can be drastically reduced. As such, the potential 

toxicity of AuNCs can be minimized. We first tested the ex vivo sensitivity of our 

current deep-reflection mode PA imaging system by using gelatin phantoms based on 

a mixture of gelatin and AuNCs.[17,19] As shown in Figure 3.2, PA signals from the 

gelatin phantom containing AuNCs at a concentration as low as 10 pM could still be 

detected with a signal-to-noise ratio (SNR) of ~2.2 dB. This detection limit 

corresponds to ~2×105 (or 3.3×10-19 mol) AuNCs per imaging voxel. If we assume 
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the typical volume of SLN in a rat is ~23.6 mm3 (the SLN is approximated as an 

ellipsoid of 3 mm × 5 mm × 3 mm), this detection sensitivity indicates that only 

~1.3×108 (or 2.1×10-16 mol) AuNCs need to enter the lymph node to provide 

sufficient signals for imaging. The noise equivalent concentration (i.e., the 

concentration that provides an SNR of unity) is calculated to be ~4.5 pM. 

To evaluate the in vivo sensitivity of our PA system and AuNCs for lymph node 

imaging, we intradermally injected an aqueous suspension of AuNCs at a specific, 

decreasing concentration (100, 50, and 20 pM) at a dose of 100 µL (this corresponds 

to an amount of 2.2×107, 1.1×107, and 0.55×107 AuNCs per gram of body weight, 

respectively) on the left forepaw pad of a rat and then the left axillary region of the rat 

was noninvasively imaged using the PA system. Before the injection of AuNCs, PA 

images were acquired as control images (Fig. 3.3, A, D and G), revealing the 

vasculature within ~3 mm below the skin surface. After the injection of AuNCs, a 

series of PA images were obtained up to 120 min post-injection. It can be observed 

that the SLNs started to appear at 5 min after the injection of 100 pM (Fig. 3.3B) and 

50 pM (Fig. 3.3E) AuNC suspensions while the SLN was not detected at 5 min after 

the injection of 20 pM AuNCs (Fig. 3.3H). As time elapsed, the PA signals gradually 

increased and the SLNs, including the case with the injection of 20 pM AuNCs, could 

be clearly observed at 120 min post-injection (Fig. 3.3, C, F and I). Note that the 

minimum concentration of 20 pM we used here for PA SLN imaging in a rat model 

was about 100 times less than the value (2 nM) reported in our previous work,[17] 

greatly reducing the potential toxicity of AuNCs. It is also worth pointing out that the 

drainage of AuNCs to lymph nodes was much faster than that of Au nanorods, even at 
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a relatively low injection concentration. In our previous study, it took more than 20 h 

for Au nanorods (10 nm in diameter and 41 nm in length) with an injection 

concentration of 1 μM to be observed at SLNs.[20] These results suggest that AuNCs 

should serve as a better diagnostic imaging agent than Au nanorods for SLN imaging.  

We also performed in vivo PA SLN imaging in two additional rats at each 

concentration, following the same procedure. The PA signal enhancements in SLNs 

were summarized as a function of time (Fig. 3.4A). Each data point was normalized 

against the PA signal from the corresponding adjacent blood vessels (BV) acquired 

before the injection of AuNCs. This normalization method was also applied to the 

experiments described in other sections. We found that the PA signal enhancement 

increased with increasing injection concentration. The enhancement also increased 

with post-injection time, indicating the gradual accumulation of AuNCs in SLNs. For 

example, after the injection of 100 pM AuNCs, the enhancement was 182% ± 12% at 

t=5 min, and then gradually increased to 355% ± 24% at t=120 min post-injection. 

For the group with 20 pM AuNCs, the SLNs in two of the three rats were not even 

detected at t=120 min post-injection. This high false negative rate indicates that we 

had reached the in vivo detection limit of the PA system. Note that the standard errors 

for PA signal enhancement at 5 and 30 min post-injection in the group of 50 pM 

AuNCs injection were still relatively high compared to those with 100 pM sample, 

indicating that a 100 pM suspension of AuNCs at a dose of 100 µL (2.2×107 AuNCs 

per gram of body weight) seems to be the best candidate to start with for SLN 

imaging. We further quantified the number of AuNCs accumulated in the SLN by 

ICP-MS analysis of the excised node. The accumulated amount of AuNCs in SLN for 
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the 100 pM sample was approximately 2 and 7.5 times higher than the 50 pM and 20 

pM samples, respectively (Fig. 3.4B). The average numbers of AuNCs in SLN per 

mass at 120 min post-injection of 20, 50 and 100 pM of AuNCs were about 

(0.86±0.74)×1010, (3.25±1.07)×1010, and (6.43±0.94)×1010 AuNCs/g, respectively, 

which were qualitatively consistent with the trend revealed by PA enhancement 

shown in Figure 3.4A. According to our measurements, the average weight of the 

SLN in the rats was about 16.8 mg; therefore, about 18% of the injected 50 pM and 

100 pM AuNCs had been accumulated in the SLN at t=120 min post injection, while 

about 12% of the injected 20 pM AuNCs had been accumulated in the SLN. 

 

3.3. Depth Capability of PA Tomography for SLN Imaging with 

Gold Nanocages 

The SLNs of rats are located at ~2 mm below the skin surface. In humans, the 

mean depth of SLNs is ~12 mm underneath the skin.[17] Therefore, it is necessary to 

demonstrate the minimal dose of AuNCs at the clinical depth by using the same PA 

imaging modality. Similar to the previous experiments, after the SLN of a rat in the 

group of 100 pM AuNCs was identified (Fig. 3.5A), a chicken breast tissue of 5 mm 

thick was placed on top of the axillary surface of the rat, and a PA image was 

acquired at 150 min post-injection. The SLN of the rat could be obviously identified 

from this image, and the total depth of the SLN was now ~7 mm (Fig. 3.5B). With the 

addition of a second layer of chicken breast tissue, an imaging depth of ~12 mm was 

achieved by acquiring a PA image at 180 min post-injection (Fig. 3.5C), and the SLN 

can still be imaged with a good contrast. In the B-scan image (Fig. 3.5D), the depth 
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information of the SLN is clearly shown with ~7 dB SNR. 

 

3.4. Comparison of Gold Nanocages with Different Sizes 

An ideal mapping agent for lymphoscintigraphy should have proper size: on one 

hand, it should be small enough to rapidly drain to lymphatic vessels and then 

transport to lymph nodes; on the other hand, it should be large enough to stay within 

the lymph nodes during the imaging process. Particles smaller than 5 nm could easily 

leak into blood capillaries or migrate to echelon lymph nodes and thus cause false 

positives,[21] while particles larger than 100 nm are believed to be trapped in the 

interstitial compartment for a long period of time, and are thus unable to transport to 

lymph nodes fast enough for lymphoscintigraphy.[22] Therefore, it is critical to 

identify an optimal size range for the AuNCs in order to have sufficiently fast 

migration and sufficient duration of trapping for SLN mapping.  

We compared the PA enhancements in SLNs as a function of time using AuNCs 

with edge lengths of 50 nm and 30 nm, respectively (Fig. 3.6A). We performed the in 

vivo PA imaging in 3 rats for each group. Note that the surface of the as-prepared 

AuNCs was covered with PVP, and thus the hydrodynamic diameter of the AuNCs 

measured by dynamic light scattering was about 95 nm, so we did not choose AuNCs 

with an edge length larger than 50 nm. Additionally, nanoparticles with larger size 

(>50 nm) are known to exhibit short circulation times in blood,[23] making them less 

useful in diagnostic imaging. The injection concentrations for both the 30-nm and 50-

nm AuNCs were 200 pM, as the SLN could hardly be detected with the injection of 

30-nm AuNCs at a concentration of 100 pM. Both curves show that SLNs could be 
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detected at 5 min post injection, and the PA signal enhancement kept increasing in the 

following 120 min. It can be seen that the 50-nm AuNCs showed higher signal 

enhancement (about 150% to 170%) than the 30-nm sample. This difference can be 

ascribed to the fact that the 30-nm AuNCs had a smaller optical absorption cross 

section than the 50-nm AuNCs, generating weaker PA signals. We have also 

measured the absorption cross sections of these AuNCs using a PA-based method 

developed in our groups.[18] The absorption cross section of the 50-nm AuNCs was 

found to be about 2.1 times higher than that of the 30-nm AuNCs. Figure 3.6B shows 

a comparison of the accumulation of 50-nm and 30-nm AuNCs in SLNs as a function 

of post-injection time calculated from the PA signals. Since the PA signal is directly 

proportional to the absorption coefficient (μa) of the AuNCs,[17] the accumulation of 

AuNCs can be calculated according to the equation: Nnano=μa,nano/σa,nano, where Nnano 

is the concentration of the AuNCs (number of particles per m3) and σa,nano is the 

absorption cross section (m2) of the nanocages. Each data point was then normalized 

against the accumulation of 50-nm AuNCs in SLN at 5 min post-injection. It can be 

seen that the 30-nm AuNCs transported into the SLN faster than the 50-nm AuNCs 

and showed a larger amount of accumulation in the SLN. The ICP-MS data in Figure 

3.6C indicate that the average number of 30-nm AuNCs in the excised SLN per mass 

at 120 min post-injection was about 1.8 times higher than that of the 50-nm AuNCs, 

(14.5 ± 1.0) × 1010 vs. (8.0 ± 0.6) × 1010 AuNCs/g, which is consistent with the trend 

of accumulation derived from the PA signals. 

 

3.5. Comparison of Gold Nanocages with Different Surface Charges 
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Early studies on the transport kinetics and lymphatic uptake of particles showed 

that surface characteristics, such as charge and hydrophobicity, could affect the rate 

of particle drainage from the injection site to lymph nodes and their distribution 

within the lymphatic system.[22] Therefore, it is important to study the transport 

behaviors of AuNCs with different surface charges. We replaced the PVP layer on the 

AuNCs with SH-PEG5000-X (X=OMe, NH2, or COOH to give a neutral, positive, or 

negative surface charge). Following the same procedure, we performed in vivo SLN 

imaging using AuNCs modified with different surface charges. Each group had 3 rats 

and the injection concentration was 200 pM for all 3 groups. Figure 3.7 shows typical 

PA images acquired before as well as 5 min and 60 min after the injection of AuNCs 

modified with different surface charges. Unlike the other two groups, AuNCs with 

negative charges accumulated not only in the SLN but also in the adjacent lymphatic 

vessels. The lymphatic vessels began to show up in PA images at 5 min post injection 

(Fig. 3.7B) and the AuNCs could be trapped there for 60 min (Fig. 3.7C). It is known 

that lymphatic vessels play an important role in lymphatic metastasis,[24,25] providing 

crucial prognostic information. Cancer cells can exploit these vascular systems by 

expressing growth factors, altering the normal pattern of angiogenesis and lymphatic 

vessel growth, creating conduits for tumor metastasis. As a result, the ability to target 

and image aberrant drainage patterns is of clinical significance. However, studies on 

lymphatic vessels have been hindered by technical limitations.[26] The AuNCs with 

negative charges can potentially be used as a good contrast agent for 

lymphangiogenesis imaging. In addition, AuNCs with positive charges also showed a 

unique feature. It took 30 to 60 min, a much longer time than the other two groups, to 
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transport to SLNs and accumulate enough amounts for PA imaging (Fig. 3.7, D-F). 

Figure 3.8A shows PA signal enhancement in SLNs as a function of time after the 

injection of AuNCs with different surface charges. It can be seen that the signal 

enhancement originating from AuNCs with positive charges is much lower than that 

from the neutral AuNCs, especially in the first 60 min post injection, indicating a 

much slower transport rate to lymph nodes. As for the PA enhancement from the 

AuNCs with negative charges, it was also lower (about 50% to 60%) than the neutral 

AuNCs, but higher (about 150% to 160%) than the positive AuNCs in the first 60 min 

post injection, and then leveled off. The ICP-MS data in Figure 3.8B show that the 

average number of AuNCs in the excised SLN per mass at 240 min post injection 

decreased in the order of neutral > positive > negative, which is consistent with the 

trend for PA signal enhancement shown in Figure 3.8A.  

We also found that the AuNCs were not only able to transport to the SLN, but 

also further down to the second and third axillary lymph nodes of a rat. As shown in 

Figure 3.9, C and D, both in vivo and ex vivo PA images clearly show the 

accumulation of nanocages in all three lymph nodes of the rat after the injection of 

AuNCs at a relatively higher concentration (500 pM) at 72 h post injection. Taken 

together, these features can probably be used to design AuNCs with switchable 

surface charges for noninvasive axillary lymph node staging of breast cancer by 

taking advantage of their different transport kinetics in lymph nodes. For example, we 

can conjugate the surface of AuNCs with an enzyme-sensitive peptide which can be 

cleaved by enzymes (e.g., matrix metalloproteases, a recognized biomarker associated 

with cancer-cell invasion and metastasis) overexpressed by cancer cells in the 
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metastatic lymph node.[27] As such, the surface charges on the AuNCs will be 

different before and after the enzyme cleavage, and the transport rates of AuNCs 

between lymph nodes will be different for patients with different stages of metastatic 

cancer. In addition, we can also attach fluorescence dyes to the surface of AuNCs via 

an enzyme-cleavable peptide.[28] The dye molecules will be cleaved and released from 

the surface of the nanocage in the presence of a protease, and thus fluorescence will 

be recovered. In practice, the distribution of AuNCs in lymph nodes can be mapped 

by PA imaging while the protease activity can be monitored by fluorescence 

spectroscopy, providing critical information for the diagnosis of breast cancer 

metastasis. Related researches are currently underway.  

 

3.6. Summary 

In this chapter, we have quantitatively evaluated the transport of AuNCs in a 

lymphatic system and their uptakes by lymph nodes in a rat model through PA 

imaging. We systematically examined and optimized a number of experimental 

parameters including the concentration, size, as well as surface characteristics of the 

AuNCs. We reduced the concentration of injected AuNCs down to 100 pM (20 times 

lower than our previous proof-to-concept report, greatly reducing the potential 

toxicity of AuNCs) for SLN imaging at a depth of ~12 mm (the depth of SLN in 

human) while keeping a sufficient signal-to-noise ratio. It was found that the 30-nm 

AuNCs exhibited a faster transport rate and a larger amount of accumulation in the 

SLN than the 50-nm AuNCs, but the latter generated stronger PA signals due to a 

larger optical absorption cross section. This result indicates that the 50-nm AuNCs 
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seem to be an ideal contrast agent for SLN imaging by PA tomography. As for 

AuNCs with different surface charges, their transport rates to SLNs decreased in the 

order of neutral > negative > positive. In addition, AuNCs with negative charges 

could be trapped in lymphatic vessels, making them potentially useful as contrast 

agents for lymphangiogenesis by PA imaging. We also found that the AuNCs were 

not only able to transport to the SLN, but can also further to the second and third 

axillary lymph nodes of a rat. These results can serve as guidelines for choosing 

optimal experimental parameters of AuNCs in metastatic lymph nodes mapping and 

other biomedical applications by noninvasive PA imaging. 

 

3.7. Experimental Section 

Synthesis and Surface Modification of AuNCs. The AuNCs were synthesized 

using the galvanic replacement reaction between Ag nanocubes and chloroauric acid 

in water according to our published protocol.[29] To obtain different surface charges, 

the nanocages were derivatized with SH-PEG5000-X (X=OMe,  NH2, and COOH; all 

from Laysan Bio; Mw ≈ 5,000). In a typical process, 0.1 mL of HS-PEG5000-X 

aqueous solution (0.1 mM) and 0.1 mL of AuNCs aqueous suspension (1 nM in terms 

of particles) were added to 2.8 mL deionized water. The mixture was kept stirring at 4 

oC overnight. After that, the mixture was centrifuged at 14,000 rpm for 15 min and 

the supernatant was decanted to remove the excess PEG. The PEGylated-AuNCs 

were then washed with water twice and re-suspended in water at a concentration of 

200 pM (in terms of particles) for in vivo studies. 

The PA Imaging System. A deep reflection-mode PA imaging system was used 
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for all PA experiments.[19] A tunable Ti:sapphire laser (LT-2211A; Lotis TII, Minsk, 

Belarus) pumped by a Q-switched Nd:YAG (LS-2137; Lotis TII) laser was used for 

excitation, providing <15-ns pulse duration and a 10-Hz pulse repetition rate. A dark-

field ring-shaped illumination was adopted to reduce the surface PA signal 

generation.[30] The light energy on the sample surface was controlled to be less than 

the American National Standards Institute standard for maximum permissible 

exposure. A 5-MHz central frequency, spherically focused ultrasonic transducer 

(V308; Panametrics-NDT, Waltham, MA, USA) was used to acquire the generated 

PA signals. The 5 MHz ultrasonic transducer yields axial and transverse resolutions 

of 150 and 560 µm, respectively. The signal was amplified by a low-noise amplifier 

(5072PR; Panametrics-NDT) and recorded using a digital oscilloscope (TDS 5054, 

Tektronix, Beaverton, OR). A photodiode (SM05PD1A, Thorlabs, Newton, NJ) was 

used to compensate for the energy instability of laser pulses. A linear translation stage 

(XY-6060, Danaher Motion, Radford, VA) was used for raster scanning to obtain 

three-dimensional (3D) PA data. The signal was not averaged for any image to 

shorten the data acquisition time. By measuring PA amplitudes according to the 

arrival times, one-dimensional depth-resolved images (A-lines) are acquired. 

Additional raster scanning along a transverse direction provides two-dimensional 

depth-resolved images (B-scans), consisting of multiple A-scans, and further 

scanning along the other traverse direction provides 3D images. The acquired 3D raw 

data can be processed as a maximum amplitude projection (MAP)—a projection of 

the maximum PA amplitude along each A-line onto the corresponding plane. Typical 

scanning values were as follows: field of view, 20 × 20 mm; voxel dimension, 0.2 × 
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0.4 mm; laser pulse repetition rate, 10 Hz; and acquisition time, ~24 min. The 

transducer was located inside a water container with an opening of 5 × 5 cm at the 

bottom, sealed beneath a photoacoustically transparent clear membrane. The rats or 

gelatin phantom samples made from a mixture of gelatin solution and AuNCs were 

placed under the membrane, and ultrasonic gel was used for ultrasound coupling.  

Animal Handling. All animal experiments were in compliance with the 

Washington University Institutional Animal Care and Use Committee. Sprague–

Dawley rats weighting 200–300 g (Harlan, Indianapolis, IN) were anesthetized with a 

mixture of ketamine (87 mg/kg) and xylazine (13 mg/kg) at a dose of 0.15 mL per 

100 g body weight. The hair in the left axillary region was removed by gentle 

clipping and depilatory cream before imaging. PA imaging was acquired before and 

after intradermal injection of AuNC solution (0.1 mL) in the left forepaw pad. Full 

anesthesia of the animal was maintained throughout the experiment by using 

vaporized isoflurane (1 L/min of oxygen and 0.75% isoflurane) and vitals were 

monitored by a pulse oximeter (NOMIN Medical, 2000SA). The body temperatures 

of the rats were maintained with a water heating pad. After data acquisition, the rats 

were euthanized by overdosed pentobarbital and SLNs were dissected for ICP-MS 

measurements. 

ICP-MS of AuNCs in Dissected Lymph Nodes. The excised lymph nodes were 

weighed and then were completely digested with 5 mL of aqua regia in a 50 mL 

beaker at boiling temperature. The solution was evaporated to 1 mL and subsequently 

diluted to 15 mL with deionized water. Samples were passed through a 0.45-mm filter 

to remove any undigested debris prior to ICP-MS measurement. The analysis of Au 
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content was performed with ICP-MS (Perkin Elmer, Elan DRC II), and the 

concentration of Au ions was converted to the concentration of nanocages once the 

geometric dimensions of the nanocage had been determined from TEM images.  
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Figure 3.1. TEM images of Au nanocages (AuNCs) with average edge lengths of (A) 

50 nm and (B) 30 nm, respectively. 
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Figure 3.2. PA signals recorded from gelatin phantoms containing AuNCs at various 

concentrations (R2=0.99), showing that the detection limit of AuNCs (50 nm in edge 

length) was less than 10 pM, or 2×105 (or 3.3×10-19 mol) AuNCs per imaging voxel, 

for the PA system. If we assume the typical volume of the SLN in a rat is ~23.6 mm3 

(the SLN is approximated as an ellipsoid of 3 mm × 5 mm × 3 mm), this detection 

sensitivity indicates that only ~1.3×108 (or 2.1×10-16 mol) AuNCs need to enter the 

lymph node to provide sufficient signals for imaging. 
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Figure 3.3. PA images of the axillary region of rats acquired at 0, 5, and 120 min 

after injection of the AuNCs with different concentrations. (A, D, G) PA images 

before injection of the AuNCs; (B, E, H) PA images 5 min after the injection of 

AuNCs at different concentrations. The SLNs started to appear except for the 20 pM 

sample; (C, F, I) PA images 120 min after the injection of AuNCs at different 

concentrations. The three concentrations correspond to amounts of 2.2×107, 1.1×107, 

and 0.55×107 AuNCs per gram of body weight, respectively. BV, blood vessels; SLN, 

sentinel lymph node. 
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Figure 3.4. (A) PA signal enhancement in SLNs as a function of time after the 

injection of AuNCs at different concentrations (n=3 rats for each group): 100, 50, and 

20 pM, respectively. Each data point was normalized against the PA signal from the 

corresponding adjacent blood vessels before the injection of AuNCs. (B) Average 

numbers of AuNCs accumulated in the SLNs dissected at 120 min post injection, as 

measured using ICP-MS. Here NLN denotes the number of AuNCs per unit lymph 

node mass (g).  
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Figure 3.5. PA imaging of SLN in a rat after the injection of 100 pM AuNCs. The PA 

images were acquired (A) at 120 min post-injection with no chicken breast tissue 

added, (B) at 150 min post injection with one layer (thickness: 5 mm) of chicken 

breast tissue added, and (C) at 180 min post injection with two layers (total thickness: 

10 mm) of chicken breast tissue added. (D) PA B-scan along the dashed line in (C), 

showing the SLN located at a depth of ~12 mm. SLN, sentinel lymph node. 
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Figure 3.6. (A) PA signal enhancement in SLNs after the injection of 50-nm and 30-

nm AuNCs with the same concentration and dose (200 pM and 100 µL) as a function 

of post-injection time (n=3 rats for each group), respectively. (B) Accumulation of the 

50-nm and 30-nm AuNCs in SLNs as a function of post-injection time calculated 

based on the PA signals. The data points were normalized against the 50-nm AuNCs 

at 5 min post injection. (C) Average numbers of AuNCs accumulated in the SLNs 

dissected at 2 h post injection of the 30-nm and 50-nm AuNCs, as measured by ICP-

MS. Here NLN denotes the number of AuNCs per unit lymph node mass (g). 
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Figure 3.7. PA images acquired before, 5 min, and 60 min after the injection of 

AuNCs (200 pM, 100 µL) with different surface charges. The PVP layer on the 

nanocages surface was replaced with SH-PEG5000-X, X=OMe, NH2, or COOH to 

generate a neutral, positive, or negative surface charge. (A, D, G) PA images before 

the injection of AuNCs: (B, E, H) PA images at 5 min post injection of AuNCs with 

different charges. SLNs started to appear except for the case of AuNCs with positive 

charges. Some lymphatic vessels were also observed in the case of AuNCs with 

negative charges; (C, F, I) PA images at 60 min after the injection of AuNCs with 

different charges. BV, blood vessels; LV, lymphatic vessels; SLN, sentinel lymph 

node.  
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Figure 3.8. (A) PA signal enhancement in SLNs as a function of time post injection 

of AuNCs with different surface charges: negative (blue line), positive (red line), and 

neutral (black line) (n=3 rats for each group). (B) Average number of AuNCs 

accumulated in the SLN dissected at 4 h post injection of AuNCs with different 

surface charges, as measured by ICP-MS (n=3 rats for each group). Here NLN denotes 

the number of AuNCs per unit lymph node mass (g).  
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Figure 3.9. PA images acquired (A) before, (B) 1 h, and (C) 72 h after the injection 

of AuNCs (500 pM, 100 µL), showing the transport of AuNCs from SLN to the 

second lymph node (LN2) and third lymph node (LN3). (D) Ex vivo PA image (top) 

and photograph (bottom) of dissected lymph nodes containing AuNCs. The scale of 

the ruler is mm/div. 
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Chapter 4 

 

Gold Nanocages for Controlled Release by High Intensity Focused 

Ultrasound (HIFU)  

 

4.1. Introduction 

Hollow nanostructures have attracted intensive attention as drug delivery systems 

owing to their unique capability to encapsulate and release drugs.[1,2] Most of these 

structures are composed of lipids, including liposomes (uni- and multi-lamellar 

vesicles) and multi-channeled cubo- or hexosomes.[3-5]  Polymeric nanoparticles with 

various compositions, structures, and porosities have also been investigated for 

similar applications.[6-9] Typically, the interiors of these hollow nanostructures are 

loaded with drugs (hydrophilic or hydrophobic), which escape through diffusion or 

degradation-triggered release. The release can also be triggered and regulated in 

response to environmental changes, for example, pH and temperature. Recently, 

inorganic and composite hollow nanostructures have also received attention for drug 

delivery applications. A number of groups have reported delivery systems based on 

mesoporous silica particles containing water-insoluble drugs,[10,11] and metal-organic 

framework (MOF) particles incorporated with drugs.[12,13] Although the inclusion of 

inorganic components such as metal ions may cause potential toxicity issues, it offers 

advantages such as multi-functionality, a feature required for future theranostic 

applications. For example, the metal ions can serve as contrast agents for magnetic 
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resonance imaging (MRI), adding a unique capability to resolve and track the in vivo 

location of a drug delivery system.[14-16]   

Hollow nanostructures of noble metals, such as Au nanocages (AuNCs), represent 

another attractive platform for drug delivery because it offers a great advantage of 

multi-functionality, a vital feature required for theranostic applications. Thanks to 

their strong, highly tunable scattering and absorption in the NIR from 700-900 nm, 

AuNCs have been successfully used as superb optical tracers or contrast agents for a 

variety of imaging modalities including optical coherence tomography,[17] 

photoacoustic tomography,[18-20] and multi-photon luminescence-based detection.[21,22] 

Therefore, the availability of AuNCs loaded with drugs provides a great benefit to 

theranostic applications because the locations of nanocages can be monitored with 

optical imaging techniques while the drug is released at the targeted site in a 

controllable fashion. The surface of AuNCs can be easily functionalized with a 

variety of targeting moieties based on the well-established Au-thiolate chemistry, 

guiding the nanocages to the specific site of interest, and thus the drugs can be 

selectively released at the targeted region, greatly minimizing the side effect. Our 

previous work has demonstrated the use of AuNCs covered with smart polymers for 

controlled release under the irradiation of NIR laser through the photothermal 

effect.[23] As expected, the released drug can greatly enhance the efficacy of 

photothermal cancer treatment, which has been demonstrated with success in the 

absence of an anticancer drug. However, a drawback of this light-triggered drug 

delivery system is that the penetration depth of the laser is limited by the strong light 

scattering of the tissue, hindering its potential use in clinical applications. Therefore, 
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it is critical to seek alternatives that can trigger the drug release at desirable depths. 

HIFU has been a subject of interest for decades in medical research and is often 

considered to be attractive for cancer treatment because it is non-invasive or 

minimally invasive.[24]  Unlike conventional radiation therapy, there is no maximum 

cumulative dose for focused ultrasound, so the treatment can be repeated until a 

tumor is destroyed. Because of the significant acoustic energy deposition at the focus 

of HIFU, temperature rises rapidly, generating tissue necrosis at a small spot with 

pinpoint accuracy. Additionally, a local temperature rise at the focus can be used for 

drug delivery to a specifically targeted region with minimum side effect on the 

surrounding tissue.  

In this chapter, I will discuss two temperature-regulated systems for controlled 

release by combining AuNCs with HIFU. Because HIFU can penetrate more deeply 

into soft tissues than NIR light, it could be a more effective external stimulus for 

rapid, on-demand drug release. While the NIR laser-triggered release has to rely on 

the photothermal effect of AuNCs, HIFU can directly deposit acoustic energy in the 

focal volume to rapidly raise the temperature. The first system I have developed is 

based on AuNCs covered with smart, thermally-responsive polymers.[25] The polymer 

chains will collapse as the temperature increases beyond a certain point, opening the 

pores and thus releasing the pre-loaded drugs. In the second system, the hollow 

interiors of AuNCs were filled with a biocompatible phase-change material 

(PCM).[26] The PCM would melt when the temperature was raised above its melting 

point, diffusing from the interiors of nanocages and concurrently releasing the drugs 

encapsulated in the PCM. We can remotely control the released dosage by 
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manipulating the power of HIFU and/or the duration of exposure. Localization and 

depth capability of the HIFU-controlled release have also been investigated. I believe 

that the AuNC-based drug delivery system can be further developed into a promising 

theranostic platform with multi-functionality, including the capabilities for in vivo 

molecular imaging and chemo- and photothermal therapy. 

 

4.2. A Controlled Release System Based on Gold Nanocages Covered 

with Smart Polymers 

 

4.2.1. Experimental Setup and Mechanism  

Figure 4.1A shows a schematic of the experimental setup. The HIFU transducer 

(TX 009, Philips) was operated at a central frequency of approximately 1.6 MHz, 

with a focal length of 40 mm and a focal spot 0.9 mm in diameter. It was driven by a 

continuous sinusoidal voltage produced by a function generator (33250A, Agilent) 

and passed through a radiofrequency amplifier (240L, ENI). The HIFU transducer 

and the targeted sample were both immersed in a water bath to provide ultrasound 

coupling between them. Figure 4.1B illustrates how the controlled-release system 

works. The surface of the AuNCs was functionalized with thermally-responsive 

copolymers, poly(NIPAAm-co-AAm) (NIPAAm: N-isopropylacrylamide; AAm: 

acrylamide), by means of the Au-thiolate linkage. These copolymers can change 

conformation in response to temperature variations at a transition point known as the 

low critical solution temperature (LCST).[27] When the temperature of the solution is 

below its LCST, the polymer is hydrophilic and solvated by water. As the 
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temperature increases beyond its LCST, the polymer undergoes a phase transition and 

becomes collapsed and highly hydrophobic. This conformational change with 

temperature is reversible, allowing one to control the dosage of drug release by 

altering the duration in which the polymer chains are kept at the high-temperature 

state. When a significant amount of acoustic energy is delivered to the focus using 

HIFU, the temperature in the focal volume of the sample increases rapidly. As the 

temperature rises beyond the LCST of the copolymer, the polymer chains change 

from a stretched conformation to a collapsed state. As a result, the pores on the 

nanocages are opened, releasing the chemical or drug pre-loaded in the nanocages. 

When HIFU is turned off, the temperature drops to its original state and the polymer 

chains relax back to their extended conformation, blocking the pores and thus 

terminating the release. The released dosage can be remotely controlled by 

manipulating the power and/or the duration of HIFU irradiation.  

 

4.2.2. Synthesis of Thermally-Responsive Polymers 

The smart copolymers, poly(NIPAAm-co-AAm), used in the present work were 

prepared by reversible addition-fragmentation chain transfer (RAFT) radical 

polymerization instead of the atom-transfer radical polymerization (ATRP) method 

used in our previous study.[23] RAFT radical polymerization offers a number of 

advantages over ATRP: i) it can eliminate the tedious purification step that often 

involves dialysis over a long period of time; ii) it is free of residual Cu species 

(associated with the catalyst for ATRP), which could complicate their applications in 

biomedical research; and iii) copolymers prepared with RAFT show a much narrower 
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molecular weight distribution, with a polydispersity index (PDI) of 1.3, compared to 

those synthesized using ATRP (PDI >1.6). As schematically shown in Figure 4.2, 

RAFT copolymerization of NIPAAm and AAm monomers (at a molar feeding ratio 

of 9 to 1) was carried out in 1,4-dioxane at 65 °C in the presence of a disulfide-

containing chain transfer agent (CTA) and 2,2′-azobis(isobutyronitrile) (AIBN, a 

thermal initiator). The 1H-NMR spectra of the purified copolymers shown in Figure 

4.3A clearly indicates the existence of CTA (resonances at 2.74, 2.91, and 7.10-7.30 

ppm) across the copolymer backbone, with corresponding integral ratios of 1:1:2.2, 

further confirming a well-defined structure for the poly(NIPAAm-co-AAm) 

copolymers. The composition of the copolymer was determined using quantitative 

13C-NMR spectroscopy (Figure 4.3B) through a comparison of the integral values of 

two types of amide carbonyls: primary amide for the AAm residue at 178.2 ppm and 

secondary amide for the NIPAAm residue at 174.7 ppm. From the quantitative 13C 

NMR analysis, the molar ratio between the two different repeating units was 

determined to be NNIPAAm/NAAm ≈ 9:1, which was very close to the feeding ratio of the 

monomers. Furthermore, our thermo-responsive measurements showed that the LCST 

of the copolymer in deionized water and PBS buffer solution was 38.5 and 37.7 °C 

(Figure 4.4), respectively, which are between the human physiological temperature 

(37 °C) and hyperthermia (42 °C). 

 

4.2.3. Surface Modification of Gold Nanocages 

Figure 4.5A shows typical TEM images of the AuNCs after being functionalized 

with poly(NIPAAm-co-AAm). The nanocages were about 52 nm in edge length, with 
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a wall thickness of around 9 nm. The pores on the surface of the nanocages were, on 

average, 7 nm in size, and the thickness of the copolymer on the cage surface was 

around 3 nm in the dry state (inset of Fig. 4.5A). The hydrodynamic diameter 

(measured by dynamic light scattering) of the nanocages increased from 110 to 137 

nm after surface functionalization with the copolymer. Also, the LSPR peak of the 

nanocages shifted from 754 to 780 nm (Fig. 4.5B). Both results indicate that the 

copolymers were successfully grafted to the surface of the nanocages.  

 

4.2.4. HIFU-Controlled Release for the Gold Nanocages Covered 

with Smart Polymers 

I used rhodamine 6G (R6G) as a fluorescent dye to demonstrate the capability of 

controlled release. This dye is similar to doxorubicin, a commonly used drug for 

cancer chemotherapy, in terms of molecular weight (similar size) and surface 

charges.[28] Since R6G has a strong absorption peak at 527 nm, its release could be 

easily monitored by UV-vis spectra of the supernatants at different time points after 

the nanocages had been centrifuged down. To load the dye, the copolymer-covered 

nanocages were added to an aqueous solution of R6G and stirred at 42 °C overnight. 

Then, the suspension was quickly cooled with an ice bath to trigger a conformational 

change for the copolymer, blocking the pores and keeping the loaded dye inside the 

nanocages.  

Figure 4.6, A and B, compares the release of R6G when the dye-loaded nanocages 

were heated at 40 °C and irradiated by HIFU at a power of 10 W, respectively, for 

different periods of time.  It can be seen that the intensity of optical absorption peak 
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for R6G increased with the duration of heating or HIFU irradiation, indicating that the 

released dosage could be controlled by varying the amount of heat delivered to the 

system. As heating was prolonged, the total amount of R6G released into the solution 

kept increasing, but eventually leveled off. By referring to a calibration curve 

separately prepared for the same dye, I determined the exact concentration of R6G 

released from the nanocages at different time points, as shown in Figure 4.6C. The 

release profiles indicate that more dye was released within the same period of time 

when the release was triggered by HIFU than by conventional heating, and the release 

rate was also higher for the system with HIFU. The concentration of the released R6G 

was about 2.15 µM when exposed to HIFU for 5 min, while it took more than 20 min 

for the same concentration of R6G to be released by conventional heating. In addition, 

when HIFU was used to trigger the release, most of the dye was released in 10 min, 

and the concentration of the released dye increased only about 0.1 µM from 10 to 20 

min, and then essentially did not change after 20 min. A control experiment of release 

at the human physiological temperature (37 °C) was also conducted, and no obvious 

release was observed (less than 0.06 µM) after the dye-loaded nanocages had been 

heated at 37 °C for 48 h (Figure 4.7). 

 

4.2.5. Localization of the HIFU-Controlled Release 

The fast response associated with HIFU can be attributed to the rapid local 

temperature rise within the focal volume achieved by the focused-ultrasound wave. 

Figure 4.8 shows the temperature increase measured at the focal volume of HIFU 

(about 4.26 μL, the focal volume was considered as a cylinder with a diameter of 0.9 
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mm and a height of 6.7 mm) for aqueous suspensions of AuNCs (0.1 nM) after 

exposure to HIFU for different periods of time and at different powers. The 

temperature could increase from about 35 °C to 41.2, 39.6, 37.6 °C in 1 min, and 

saturated at 43, 41 and 39 °C after 2 min, at powers of 10 W, 8 W, and 6 W, 

respectively. In addition, the rate of temperature rise increased with the power. 

Because more heat was generated by HIFU than conventional heating, the copolymer 

could maintain its conformation in an extended state for a longer period of time, 

keeping the pores on the nanocages open for a longer period of time to release more 

dye molecules. 

The rapid temperature rise within the focal volume induced by HIFU can be used 

to trigger a highly localized release. I investigated this feasibility by using gelatin 

phantoms made from a mixture of gelatin solution and AuNCs pre-loaded with the 

dye. As described in the experimental section, the mixture was added into a petri dish 

to cast into a uniform, dark-blue gelatin film (inset of Figure 4.9A). The dark-blue 

color can be attributed to the presence of AuNCs. In a typical procedure, I first 

focused the HIFU on the bottom surface of the petri dish at a relatively high power 

(15 W) for 5 second to generate a tiny white spot, which would allow us to easily 

locate the release spot under a fluorescence microscope. I then reduced the power to a 

lower level (e.g., 10 W or a less) and moved the focal point vertically into the gelatin 

phantom. Figure 4.9A shows fluorescence microscopy image taken from the gelatin 

phantom with dye-loaded nanocages before HIFU irradiation and it served as a 

control. The dye molecules encapsulated in the AuNCs were not expected to 

fluoresce due to the quenching effect of the Au surface.[29,30] Figure 4.9, B and C, 
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show two typical fluorescence microscopy images of the gelatin phantoms after 

exposed to HIFU at a power of 10 W for 2 and 20 min, respectively. It can be 

observed that only a small area around the focal volume exposed to HIFU showed 

release of the dye. The fluorescence intensity of the released dye was obviously 

increased from 2 to 20 min. The release pattern was more or less circlar in each image, 

suggesting the involvement of dye diffusion and heat dissipation from the focal point. 

The contrast difference in the center of each image (the relatively dark area) was 

caused by the mark we generated on the bottom surface of the petri dish. We also 

took fluorescence microscopy images of the gelatin phantoms after exposed to HIFU 

at powers of 6 and 8 W, respectively, for 2, 5, 10, and 20 min. The images were 

similar to those in Figure 4.9, B and C, except the difference in fluorescence intensity. 

Figure 4.9D shows the normalized fluorescence intensity as a function of time, where 

the data were calculated from the fluorescence images. The average value from the 

image shown in Figure 4.9A was considered as the background. The corresponding 

fluorescence intensity of each image was obtained by eliminating the background and 

averaging the values of the remaining pixels. Each data point was then normalized 

against the average fluorescence intensity for the image of a gelatin phantom taken 

after exposed to HIFU at a power of 6 W for 2 min. It can be observed that the 

fluorescence intensity increased with the duration of time exposed to HIFU for the 

same power, which is consistent with the results obtained from the UV-vis 

measurements (shown in Figure 4.6B). At the same duration of HIFU exposure, the 

fluorescence intensity increased with increasing power.  
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4.2.6. Depth Capability of the HIFU-Controlled Release 

I further evaluated the capability to release at a deep penetration depth with HIFU 

by adding chicken breast tissue to the top of the gelatin phantom. Figure 4.11A shows 

fluorescence microscopy image of the sample (containing dye-loaded AuNCs) 

covered with a chicken breast tissue of 15 mm thick, after HIFU irradiation at a 

power of 10 W for 20 min. The fluorescence intensity was reduced relative to the 

sample under the same experimental conditions without chicken tissue (Figure 4.9C), 

indicating stronger attenuation of ultrasound by soft tissue than by water. However, 

the release of dye was still visible as indicated the strong fluorescence signal shown 

in Figure 4.11A, indicating the excellent penetration ability of HIFU. The diamater of 

the released region was about 6 mm. When a second layer of chicken breast tissue 

was added (with a total thickness of 30 mm), release of the dye could still be 

observed, even though the fluorescence intensity was further reduced (Figure 4.11B). 

We did not add more layers of chicken breast tissue because the HIFU transducer we 

used was limited to a focal length of 40 mm. However, we believe that deeper 

penetration depths can be achieved by modifying the focal length of the tranducer as 

well as by manipulating the power and irradiation time. 

 

4.3. A Controlled Release System Based on Gold Nanocages Loaded 

with Phase-Change Material (PCM) 

 

4.3.1. Mechanism 
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The second controlled release system we develop simply involves filling the 

hollow interiors of AuNCs with a PCM. The PCM was used as the medium to help 

load the drug, which can also serve as a “gate-keeper” to control the release of drug in 

response to temperature increase.[31,32] In principle, the encapsulated drug should not 

be released until the PCM has been melted due to heating by a thermal, photothermal, 

or ultrasonic means. Figure 4.11A shows a schematic diagram of the encapsulation 

and release mechanisms. Since a PCM reversibly changes its physical states between 

solid and liquid over a narrow temperature range, it can perfectly confine drug 

molecules inside the AuNCs at a temperature below its melting point (the solid state). 

When the local temperature is raised beyond the melting point of the PCM, it will 

begin to melt (the liquid state) and the drug will be released from the melted PCM 

through diffusion. As long as the drug is miscible with the PCM phase, it can be 

conveniently loaded into the hollow interiors of AuNCs as the PCM diffuses into the 

nanocages. This requirement can be readily met by choosing PCMs with the 

surfactant-like behavior, such as those containing both long hydrophobic tails and 

hydrophilic heads. Here, we choose 1-tetradecanol, a fatty alcohol characterized by 

attractive features such as immiscibility with water, good biocompatibility, and a 

melting point (38-39 °C) slightly higher than the normal human body temperature 

(37.0 °C). It can also be mixed with a range of hydrophilic and hydrophobic 

substances. Furthermore, 1-tetradecanol is an ingredient widely used in cosmetics due 

to its low toxicity (oral, rat LD50 >5 g/kg).[33,34]  Figure 4.11, B and C, shows TEM 

images of the AuNCs before and after loading of the PCM/dye mixture. Compared 

with the pristine sample, nanocages loaded with the PCM/dye mixture showed a 
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conspicuous difference in contrast.  

 

4.3.2. HIFU-Controlled Release for the Gold Nanocages Loaded with 

PCM/Dye 

For encapsulation, we used R6G and methylene blue (MB) as two examples of 

drugs with different solubilities in water. As a major advantage over most real drugs, 

the release of these two dyes can be easily monitored and quantified through the use 

of UV-vis absorption spectroscopy. The PCM and the dye molecules were loaded into 

the nanocages at the same time. For the loading process, in a typical experiment, the 

PCM was added to a glass vial and placed in an oil bath set to 90 °C to melt the PCM 

into a liquid, followed by the addition of a dye. After the dye and PCM had been 

thoroughly mixed, we introduced the AuNCs as a suspension in methanol. Even after 

the methanol had been evaporated due to stirring and heating, the AuNCs were still 

well dispersed in the liquid PCM. During this process, the mixture of PCM and dye 

molecules slowly entered the hollow interior of each nanocage by diffusion through 

the pores on the surface. After the system had been continued with heating at 90 oC 

for 2 h, a small amount of hot water was added to generate two separated phases, one 

being the PCM/dye mixture and the other containing the loaded AuNCs and water, as 

a result of immiscibility between the PCM and water. The AuNCs were preferentially 

extracted into the water phase due to their hydrophilic surfaces. Interestingly, both 

PCM and dye molecules inside the nanocages were effectively retained because it 

was difficult for the PCM molecules to quickly diffuse into water due to their 

immiscibility. Finally, the AuNCs encapsulated with the PCM/dye mixture were 
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collected by centrifugation and then re-dispersed in deionized water. 

Figure 4.12 shows the release of R6G from the AuNCs by direct heating and 

HIFU heating, respectively. As shown in Figure 4.12A, the amount of R6G released 

was negligible at room temperature because the dye was entrapped by solid PCM 

inside the nanocages, which makes it difficult for the dye molecules to diffuse into 

the surrounding medium. At 37 °C, there was a slight increase in the release of R6G 

(still below 5% over a period of 3 days) although the melting point of 1-tetradecanol 

(38-39 °C) was still slightly higher than this temperature. In comparison, 28% of the 

encapsulated R6G was released from the AuNCs in 3 days when the sample was held 

at 40 °C. As an important feature, the PCM-based release could be easily regulated by 

controlling the temperature. We confirmed this feature by investigating the release 

behaviors during repeated heating-cooling cycles at temperatures below and above 

the melting point of 1-tetradecanol (Fig. 4.12B). Note that the release of dye was only 

observed when the sample was heated to 40 °C and held for 2 h. 

Due to its good compatibility with both hydrophobic and hydrophilic substances, 

we found that the PCM could also be used as a matrix for the encapsulation and 

release of a drug more soluble in water than R6G. We demonstrated this capability by 

switching to MB, a dye more hydrophilic than R6G. In this case, we found that the 

loading capacity of MB was much lower than that of R6G (57% vs. 84% for the MB 

and R6G, respectively, see Section 4.4 for calculation of the loading capacity). As a 

result, the cumulative release of MB was three times higher than that of R6G (Fig. 

4.12C). Since MB was quickly photo-bleached (Fig. 4.13), the cumulative release 

percentage corrected for bleaching showed that 80% of the loaded MB was released 
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in 24 h (Fig. 4.14). These results clearly demonstrate that the PCM works for 

chemical species with different solubilities in water, making this new system a useful 

platform for a wide variety of drugs.  Figure 4.12D shows the release profiles of R6G 

as a function of the power of HIFU. As expected, the quick increase in temperature 

by HIFU caused the R6G to release from the hollow interiors of AuNCs. The release 

profile also displayed a strong dependence on the power of HIFU, making it possible 

to control the release dosage on demand. 

 

4.4. Summary 

In this chapter, we have successfully demonstrated two temperature-regulated 

drug release systems by combining the unique features of AuNCs and HIFU. The first 

one was based upon AuNCs covered with thermally-responsive polymers, while the 

second one was based upon AuNCs loaded with PCM. Localized release was 

demonstrated by taking fluorescence microscopy images from gelatin phantoms 

containing the dye-loaded AuNCs after HIFU exposure at different powers for 

different periods of time. Only a small region around the focal volume of HIFU 

showed release of the dye. In addition, by placing chicken breast tissue on top of the 

gelatin phantom, a penetration depth of at least 30 mm was demonstrated. We believe 

that the AuNC-based drug delivery system can be further developed into a promising 

theranostic platform with multi-functionality, including the capabilities for in vivo 

molecular imaging and chemo- and photothermal therapy. 

 

4.5. Experimental Section 
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Chemicals and materials. N-isopropylacrylamide (NIPAAm, 99%) was obtained 

from Acros Organics (Thermo Fisher Science) and re-crystallized from hexane before 

use. Acrylamide (AAm, 99%) and 2,2′-azobis(isobutyronitrile) (AIBN, 95%) were 

both purchased from Aldrich and re-crystallized from methanol before use. 

Anhydrous diethyl ether 3,3′-dithiodipropionic acid, 1,4-dioxane, N,N′-

dicyclohexylcarbodiimide (DCC), 4-(dimethylamino)pyridine (DMAP), glutaric 

dialdehyde (50 wt%), and methanol (≥99.9%) were obtained from Aldrich and used 

as received without further purification. Rhodamine 6G (R6G, Acros Organics, 

Thermo Fisher Science) was used as received. Benzyl 2-hydroxyethyl 

carbonotrithioate was synthesized according to the literature.[35] Phosphate buffered 

saline (PBS) was purchased from Invitrogen, GIBCO.  In all experiments, we used 

deionized water with a resistivity of 18 MΩ, which was prepared using an ultrapure 

water system (MILLIPORE). 

Synthesis of disulfide-containing chain transfer agent (CTA). DCC (4.6 g, 22 

mmol) and DMAP (0.25 g, 2 mmol) were added into a suspension of benzyl 2-

hydroxyethyl carbonotrithioate (5.4 g, 22 mmol) and 3,3′-dithiodipropionic acid (2.1 

g, 10 mmol) in 60 mL of anhydrous diethyl ether. The reaction mixture was stirred 

for 24 h and then filtered with celite. The filtrate was stored at 4 ºC overnight and 

filtered with celite again. The crude product was further purified by silica gel flash 

column chromatography (15% ethyl acetate/hexane, v/v) to obtain the disulfide-

containing CTA as yellow oil (1.6 g, 22% yield). 1H NMR (300 MHz, CD2Cl2) δ 2.74 

(t, J = 7.0 Hz, 4H), 2.92 (t, J = 7.0 Hz, 4H), 3.68 (t, J = 6.3 Hz, 4H), 4.33 (t, J = 6.3 

Hz, 4H) 4.63 (s, 4H), 7.30-7.36 (m, 10H). 



 

110 
 

Synthesis of poly(NIPAAm-co-AAm through RAFT polymerization. Disulfide-

containing CTA (50 mg, 0.08 mmol) and 1,4-dioxane (40 mL) were added into a 100 

mL argon-dried Schlenk flask and magnetically stirred for 5 min to obtain a 

homogeneous solution. NIPAAm (4.07 g, 36 mmol), AAm (0.284 g, 4 mmol), and 

AIBN (2.6 mg, 16 μmol) were added to this solution and stirred for 10 min. The 

reaction mixture was degassed through three cycles of freeze-pump-thaw. After the 

last cycle, the reaction mixture was stirred for 10 min before being immersed in a pre-

heated oil bath at 65 °C to start the polymerization. After 4.5 h, the NIPAAm 

monomer conversion reached ~75%, as measured by analyzing the collected aliquots 

with 1H-NMR spectroscopy. The polymerization was quenched by cooling the 

reaction flask with liquid N2. The copolymer was purified by precipitating it three 

times in 700 mL of diethyl ether at 0 °C. The precipitates were collected, washed with 

200 mL of cold ether, and dried under vacuum overnight to obtain the copolymer as a 

yellow solid (3.0 g, 90% yield based on monomer conversion). 1H NMR (600 MHz, 

CD2Cl2) δ 0.90 (br, N(CH3)2 Hs from the NIPAAm), 1.40 (br, copolymer backbone 

protons), 2.74 (t, CH2 Hs from the CTA), 2.91 (t, CH2 Hs from the CTA), 4.00 (br, 

CHN(CH3)2 Hs from the NIPAAm), 4.63 (br, 2Hs from the copolymer backbone 

methine terminus connected to trithiocarbonate), 6.50 (br, amide Hs from NIPAAm 

and AAm), 7.20 (br, Ar Hs); 13C NMR (150 MHz, CD2Cl2) δ 23.0, 26.1, 30.6, 36.0, 

41.8, 43.0, 67.6, 71.1, 125.8, 125.9, 128.8, 132.2, 136.5, 152.0, 164.8, 171.7, 174.7, 

178.2. 

Surface modification of AuNCs with poly(NIPAAm-co-AAm) copolymers. The 

AuNCs were synthesized using the galavanic replacement reaction between Ag 



 

111 
 

nanocubes and chloroauric acid in water according to our published protocol.7 A 5 

mL aqueous suspension of AuNCs (~8 pmol) was added dropwise, at a rate of 0.2 

mL/min, into a 10 mL aqueous solution of poly(NIPAAm-co-AAm) copolymer (425 

mg) in the absence of light. The mixture was stirred at 800 rpm for 5 days at room 

temperature. The solution was then centrifuged at 14,000 rpm for 15 min, and the 

supernatant was discarded. The copolymer-covered nanocages were then washed with 

water four times and re-suspended in 0.6 mL water. 

Loading the copolymer-covered AuNCs with a dye. The aqueous suspension (0.6 

mL) of copolymer-covered nanocages was mixed with 1.0 mL of R6G solution (5 

mg/mL). The mixture was vortexed and sonicated for 5 min before being immersed in 

a pre-heated oil bath at 42 °C. After incubation at 42 °C overnight, the mixture was 

cooled in an ice bath for 1 h, and then centrifuged at 14,000 rpm and 20 °C for 15 

min. The supernatant was discarded, and the R6G-loaded nanocages were washed 

with deionized water several times, until the absorbance of the supernatant at 527 nm 

measured using an ultraviolet-visible (UV-vis) spectrometer was less than 0.01. 

Dye release from the copolymer-coated AuNCs by conventional heating. Before 

dye release, the R6G-loaded AuNCs were centrifuged and the supernatant was 

decanted. Warm water (40 °C, 0.6 mL) was added into the sample, which was 

immediately vortexed and incubated in a 40 °C oil bath for increasing periods of time. 

At intervals, the solution was cooled with an ice bath for 5 min, followed by 

centrifugation at 14,000 rpm and 20 °C for 15 min. The supernatant was then taken 

out for UV-vis spectral measurement, after which it was returned to the sample for 

further interval testing. 
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Dye release from the copolymer-coated AuNCs by HIFU. Aqueous suspension 

(0.6 mL) of R6G-loaded nanocages was placed in a 1.5-mL centrifuge tube and then 

exposed to HIFU for different periods of time at a fixed power of 10 W. After 

exposure, the solution was cooled with an ice bath for 5 min, and centrifuged at 

14,000 rpm and 20 °C for 15 min.  The supernatant was taken out for UV-vis spectral 

measurement. A uniform gelatin film was cast to study the localized release of R6G 

by HIFU. The copolymers-covered AuNCs (loaded with dye) were mixed with an 

aqueous gelatin solution (10 wt%) and added to a petri dish. Glutaric dialdehyde, a 

cross-linker, was then added into the mixture. The petri dish was sealed with parafilm 

and put in the aqueous medium for HIFU treatment. 

Loading AuNCs with PCM/Dye. The AuNCs dispersed in methanol were added 

to a dye solution (R6G or MB) in 1-tetradecanol at 50 °C, followed by increasing the 

temperature to 90 °C to evaporate methanol. The above mixture was stirred for 5 h 

and then centrifuged with hot DI water at 14,000 rpm for 5 min to obtain the AuNCs 

loaded with 1-tetradecanol and dye. The retrieved AuNCs were washed with cold DI 

water at least 8 times before the release test.  

Dye Release from the PCM loaded AuNCs by heating and by HIFU. The 

AuNCs loaded with 1-tetradecanol and dye were added into a vial and placed in an oil 

bath set to the designated temperature (25, 37, or 40 °C) and heated for different 

periods of time. At intervals, the solution was cooled with an ice bath, followed by 

centrifugation at 14,000 rpm for 5 min. The supernatant was then taken out for UV-

vis spectral measurement. Likewise, HIFU was used to heat the sample and trigger 

the dye release at different powers (4, 8, and 12 W) for different periods of time. 
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Estimate of loading capacity of R6G and MB in AuNCs. To obtain the mole of 

dye in each AuNC, a sample of AuNCs loaded with PCM and dye was added into 

methanol to fully dissolve the PCM and release all the dye molecules from the 

AuNCs. The concentration of AuNCs we used was about 1.2 nM and there were 7.2 × 

1012 nanocages in each sample. The total mole of dye in the sample (Ndye, total) was 

obtained by comparing its peak absorbance with a calibration curve: 

NR6G, total = 5.81 × 10-7 mol 

NMB, total = 3.35 × 10-7 mol 

Therefore, the mole of dye molecules encapsulated in each AuNC can be calculated 

as: 

NAu cage = 7.2 × 1012 per sample 

NR6G = NR6G, total/NAu cage = 8.06 × 10-20 mol/cage 

NMB = NMB, total/NAu cage = 4.65 × 10-20 mol/cage  

These data indicate that the loading capacity of MB was about 57% of that of R6G. 

Instrumentation. The 1H, 13C, and quantitative 13C NMR spectra of the as-

prepared copolymers were recorded on a Varian 600 MHz spectrometer with CD2Cl2 

as solvent and internal standard. Chemical shifts were referred to the proton 

resonance of the solvent. Gel permeation chromatography (GPC) with N,N-

dimethylformamide (DMF) as a mobile phase was conducted on a chromatography 

system (Waters, Milford, MA) equipped with an isocratic pump model 1515, a 

differential refractometer, model 2414, and a two-column set of Styragel HR 4 and 

HR 4E 5 µm DMF 7.8 × 300 mm columns. The system was equilibrated at 70 °C in 

pre-filtered DMF containing 0.05 M LiBr, a polymer solvent and eluent (flow rate set 
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to 1.00 mL/min). Polymer solutions were prepared at a concentration of ~ 3 mg/mL 

and injected at a volume of 200 µL. Data collection and analysis were performed with 

Empower Pro software (Waters). The system was calibrated with poly(ethylene 

glycol) standards (Polymer Laboratories) ranging from 615 to 442,800 Da. The LCST 

of a polymer is defined as the temperature at which the light transmission of the 

polymer solution drops to 90% of the original value.[27] For the poly(NIPAAm-co-

AAm) copolymer, we measured its LCST in both deionized water and PBS buffer 

solution (with a concentration of ~3 mg/mL) using a Varian Cary 100 Bio UV-vis 

spectrophotometer. The transmittance of the polymer solution at 600 nm was 

recorded over temperatures ranging from 25-70 °C, while the solution was heated at a 

rate of 1.0 °C/min.  

TEM images were obtained with a Technai G2 Spirit microscope operated at 120 

kV (FEI, Hillsboro, OR). Samples were prepared by dropping an aqueous suspension 

of particles on carbon-coated copper grids and drying at ambient temperature. The 

concentration of AuNCs was determined using an inductively coupled plasma mass 

spectrometer (ICP-MS, Perkin Elmer): the concentration of Au ions was converted to 

the concentration of nanocages once the geometric dimensions of the nanocage had 

been determined from TEM images. Hydrodynamic diameters for the polymer-

covered AuNCs in aqueous solutions were determined using dynamic light scattering 

(DLS) with a Malvern Nano ZS DLS system (Malvern Instrument, Westborough, 

MA). UV-vis extinction spectra were recorded using a Cary 50 spectrometer (Varian, 

Palo Alto, CA). Fluorescent micrographs were taken using a QICAM Fast Cooled 

Mono 12-bit camera (Q Imaging, Burnaby, BC, Canada) attached to an Olympus 
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microscope with Capture 2.90.1 (Olympus). All the images were taken with the same 

exposure parameters. 
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Figure 4.1. Schematic illustrations showing (A) setup for the high-intensity focused 

ultrasound (HIFU) experiments, (B) how the controlled-release system works. 
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Figure 4.2.  Procedure for the synthesis of poly(NIPAAm-co-AAm) copolymers 

through RAFT copolymerization. DCC: N,N'-Dicyclohexylcarbodiimide; DMAP: 4-

Dimethylaminopyridine. 
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Figure 4.3. (A) 1H-NMR and (B) quantitative 13C NMR spectra of the as-prepared 

poly(NIPAAm-co-AAm)  copolymers. 
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Figure 4.4. The LCST measured spectrosphotometrically, with the solution being 

heated at a rate of 1.0 °C/min. The measurement was conducted in water (black line) 

and PBS buffer (red line), respectively. The temperature at 90% light transmittance 

(at 600 nm) of the original polymer solution was defined as the LCST. 
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Figure 4.5. TEM images of (A) the AuNCs functionalized with poly(NIPAAm-co-

AAm). The inset of (A) shows a magnified TEM image of the corner region of such a 

nanocage. (B) UV-vis extinction spectra of an aqueous suspension of AuNCs before 

(dashed line) and after functionalization with poly(NIPAAm-co-AAm) copolymers 

(solid line). 
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Figure 4.6. Controlled release of R6G from AuNCs covered by a copolymer with an 

LCST at 38.5 °C. The absorption spectra were taken after the samples had been (A) 

heated at 40 °C for 2, 5, 10, and 20 min and (B) exposed to HIFU at a power of 10 W 

for 2, 5, 10, and 20 min. (C) A comparison of the concentration profiles of R6G 

released from the nanocages triggered by conventional heating and HIFU, 

respectively. 
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Figure 4.7. The absorption spectra taken before the release (black line) and after the 

samples had been heated at 37 °C for 48 h (red line). 
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Figure 4.8. The changes in temperature measured at the focal volume of HIFU for 

aqueous suspensions of AuNCs (0.1 nM) after exposed to HIFU at different powers 

for different periods of time. 
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Figure 4.9. Fluorescence microscopy images of the gelatin phantom with dye-loaded 

AuNCs (A) before and (B, C) after exposure to HIFU at a power of 10 W for 2 and 20 

min, respectively. The scale bar corresponds to 500 µm, and applies to all images. 

The inset of (A) shows a photograph of the gelatin phantom in a petri dish prepared 

from a mixture of gelatin solution and AuNCs pre-loaded with the dye. (D) The 

normalized fluorescence intensity as a function of time calculated from fluorescence 

microscopy images of the gelatin phantoms after exposure to HIFU for different 

periods of time (2, 5, 10, and 20 min) and at different powers (6, 8, and 10 W). Each 

data point represents three measurements and was obtained by normalizing against 

the average fluorescence intensity of the sample exposured to HIFU at a power of 6 

W for 2 min. 
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Figure 4.10. Fluorescence microscopy images of the gelatin phantoms that were 

covered with chicken breast tissues of two different thicknesses and then exposed to 

HIFU: (A) 15 mm and (B) 30 mm. The scale bars correspond to 500 µm. 



 

126 
 

 
 

Figure 4.11. (A) Schematic illustrating the release of drugs from AuNCs loaded with 

a drug-doped PCM. TEM images of (B) the as-prepared AuNCs and (C) AuNCs after 

loading with 1-tetradecanol and R6G. 
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Figure 4.12. Release profiles of (A) R6G under direct heating to various temperatures 

for different periods of time, (B) R6G through different cycles of heating (40 °C, for 

2 h) and cooling (to room temperature), (C) R6G and MB by direct heating to 40 °C 

for different periods of time, and (D) R6G by HIFU at different applied powers. 
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Figure 4.13. Photobleaching ratio of R6G and MB in aqueous solutions as a function 

of exposure time at room temperature. 
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Figure 4.14. Release profiles of MB at 37 °C and 40 °C. The solid lines represent 

experimental data and the dashed lines are the release profiles corrected by 

considering photobleaching of MB.  
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