Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-44

1992-12-01

Formal Specifications and Design of a Message Router

Christian Creveull and Gruia-Catalin Roman

Formal derivation refers to a family of design techniques that entail the development of
programs which are guaranteed to be correct by construction. This paper investigates the
possible application of one such technique-- UNITY-style specification refinement-- to industrial-
grade problems. The formal specification and design of a message router illustrates the
derivation process and helps identify those methodological elements that are likely to contribute
to successful use of this technique in industrial environment. Although, the message router
cannot be characterized as being industrial-grade, it is a sophisticated problem that pose
significant specification and design challenges-- its apparent simplicity is rather... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Creveull, Christian and Roman, Gruia-Catalin, "Formal Specifications and Design of a Message Router"
Report Number: WUCS-92-44 (1992). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/606

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/606?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/606

Formal Specifications and Design of a Message Router

Christian Creveull and Gruia-Catalin Roman

Complete Abstract:

Formal derivation refers to a family of design techniques that entail the development of programs which
are guaranteed to be correct by construction. This paper investigates the possible application of one such
technique—- UNITY-style specification refinement- to industrial-grade problems. The formal specification
and design of a message router illustrates the derivation process and helps identify those methodological
elements that are likely to contribute to successful use of this technique in industrial environment.
Although, the message router cannot be characterized as being industrial-grade, it is a sophisticated
problem that pose significant specification and design challenges- its apparent simplicity is rather
deceiving, The main body of the paper consists of a complete formal specification of the router and a
series of successive refinements that eventually lead to a trivial construction of a correct UNITY program.
Each refinement is accompanied by its design rational and is explained both formally (proofs being
included in an appendix) and informally, in a manner accessible to a broad audience. We use this example
to make the case that program derivation provides a good basis for introducing rigor in the design
strategy, regardless of the degrees of formality one is willing to consider.

https://openscholarship.wustl.edu/cse_research/606?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/606?utm_source=openscholarship.wustl.edu%2Fcse_research%2F606&utm_medium=PDF&utm_campaign=PDFCoverPages

£8Washington

WASHINGTON » UNIVERSITY +IN + ST« LOUIS

School of Engineering & Applied Science

Formal Specification and Design of
a Message Router

Christian Creveuil
Gruia-Catalin Roman

WUCS-92-44

December 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Printed 12/29/92

Abstract

Formal derivation refers to a family of design techniques that entail the development of programs which are
guaranteed to be correct by construction. This paper investigates the possible application of one such technique—
UNITY-style specification refinement—to industrial-grade problems. The formal specification and design of a
message router illustrates the derivation process and helps identify those methodological elements that are likely to
contribute to successful use of this technique in an industrial environment. Although, the message router cannot be
characterized as being industrial-grade, it is a sophisticated problem that poses significant specification and design
challenges—its apparent simplicity is rather deceiving. The main body of the paper consists of a complete formal
specification of the router and a series of successive refinements that eventually lead to a trivial construction of a
correct UNITY program. Each refinement is accompanied by its design rational and is explained both formally
(proofs being included in an appendix) and informally, in a manner accessible to a broad audience. We use this
example to make the case that program derivation provides a good basis for introducing rigor in the design strategy,
regardless of the degrees of formality one is willing to consider.

Acknowledgments: The first author was supported by the Institut National de la Recherche en Informatique et en
Automatique under a postdoctoral grant. The second author was supported in part by the National Science
Foundation under the Grant CCR-9015677. The government has certain rights in this material,

The authors thank H. C. Cunningham, K. C. Cox, and J. Y. Plun for their reviews of the manuscript.

Correspondence: All communications regarding this paper should be addressed to

Dr. Gruia-Catalin Roman office: (314) 935-6190
Department of Computer Science secretary: (314) 935-6160
‘Washington University fax: (314) 935-7302
Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899 roman@cs.wustl.edu

1. Introduction

Increasing demands for reliable performance provide a strong impetus for the software engineering
community to evaleate and adopt formal methods. Formal notations led to the development of specification
languages; formal verification contributed to the application of mechanical theorem provers to program checking;
and formal derivation—a class of techniques that ensure correctness by construction—has the potential to reshape the
way software will be developed in the future. Program derivation is less costly than post-factum verification, is
incremental in nature, and can be applied with varying degrees of rigor in conjunction with or completely apart from
program verification. More significantly, while verification is tied to analysis and support tools, program derivation
deals with the very essence of the design process, the way one thinks about problems and constructs solutions.

In sequential programming, formal derivation enjoys a long standing and prestigious tradition [4, 5, 7, 8,
15, 16]. By contrast, derivation is a relatively new concern in concurrent programming. Although a clean and
comprehensive characterization of the field is difficult to make and is beyond the scope of this paper, three general
directions seem to have emerged in the concurrency arena. Constructivist approaches start with simple components
having known properties and combine them into larger ones whose properties may be computed. CSP-related efforts
[6,9, 11, 12] appear to favor this approach in part due to the algebraic mindset that characterizes the work on
abstract CSP. Specification refinement has been advocated strongly in the work on UNITY [2, 10, 20]). An initial
highly-abstract specification is gradually refined up to the point when it contains so much detail that writing a
correct program becomes trivial. Program refinement uses a correct program as starting point and alters it until a-
new program satisfying some additional desired properties is produced. In some of the work on action systems [1],
for instance, sequential programs are transformed into concurrent or distributed ones. Mixed specification and
program refinement [19] has been used in conjunction with the Swarm model and its proof logic [3, 17, 18].

Encouraged by these recent developments, it is reasonable to pose the question whether program derivation
is a viable substitute for current, mostly ad-hoc, methods employed by concurrent system designers. With this aim
in mind, our research group has embarked on a number of case studies whose immediate objective is to develop an
understanding of how program derivation may be applied to industrial-grade problems. The emphasis is not on tool
development but on identifying a design style and associated skills that can be taught effectively and applied
productively. We want to show that, given the right model and heuristics, program derivation can be made simple to
the point that it can be explained even to the non-specialist. :

The message router is one of the program derivation exercises we carried out recently. In the simplest
terms, the message router is a device which accepts messages on a number of input lines and delivers them to its
output lines. Each message consists of a header, one or more body packets, and a tail. The header contains the
packet destination. Packet ordering within a message is preserved, packets belonging to different messages are not
interleaved, and messages from the same input line going to the same output line are not reordered. We chose this
problem due to its deceiving simplicity. Anyone can understand the basic problem but its formal treatment requires
careful attention to detail.

The body of this paper consists of a formal specification of the router problem introduced in Section 2 and a
UNITY -style specification refinement process developed in Section 3. The UNITY program is derived from the final
specification in Section 4, and Section 5 summarizes the lessons we have learned from this exercise. Appendices
provide technical details regarding the proof logic, and the proofs of the refinement steps.

2. Specification of the Router Problem

We first give a brief overview of the UNITY logic, then informally describe the router problem, and finally
present the formal specification.

2.1. UNITY Logic
The description we give in this paragraph is intentionally informal and intuitive, in order to allow non-

specialist readers to understand the router specification and design. A more formal description may be found in
appendix A.

Before presenting the logic, we need to say a few words about UNITY programs, and especially the way
they are executed. A typical UNITY program consists of three sections: a declare section, which contains Pascal-
style declarations of variables; an initially section, where all or some of the variables are initialized; an assign
section, which is a set of multiple assignment statements. The execution of a UNITY program consists simply in
repeating forever the following sequence: select at random a statement in the assign section, and execute it. The
only constraint on the selection process is that each statement is chosen infinitely often. The semantics of a UNITY
program can then be defined as a set of execution sequences. Each sequence begins with the inidal state, as defined
in the initially section, and each of the following states is obtained from the previous one by executing a statement.

The UNITY logic is used both as a specification language and as a proof logic. It is composed of several
unary and binary operators, which allow to define global properties over the execution sequences. Let p and g be two
predicates. The list of properties, with their intuitive definition, is given below. Let us note that the program we
refer to in the remaining of the paragraph is either the program we want to derive, if the logic is used as a
specification Ianguage, or the program we want to verify, if the logic is used as a proof logic.

* punless g: this property means that whenever predicate p holds for a program state, p continues to
hold in the execution sequence at least until gholds. In other words, from a state verifying pa — g, the
execution can either stay in this state, or move to a state satisfying g

=

Note that p unless g does not require gto hold; in such a case, p must hold forever.

« stable p: predicate pis a stable predicate if it remains true forever once it becomes true. This
property is equivalent to p unless false,

» const p: predicate p is constant if both p and — p are stable predicates. In other words, premains true
forever if it is initially true, and false forever if it is initially false.

+ inv p: predicate pis invariant if it holds in the initial state, and is stable along any execution
sequence.

The four properties described above are safety properties, in the sense that they prevent the occurrence of
certain state transitions. For instance p unless g disallows the transition from pA — ¢t0 — pA —¢. However, to
specify problems, we must also be able to state that some progress is made, i.e., that certain predicates hold at some
point in the future. For this, the UNITY logic offers the following properties:

* p>q: predicate p leads to predicate ¢if, from a state in which p holds, a state in which gholds is
eventually reached.

* puntilq: this property is slightly stronger than p— g, since it guarantees also that p holds at least
until gholds. Its definition is: punlessgaprs g

* pensures ¢ this last property is strongly related to the text of the program. It states that, whenever
pholds, it must hold at least until gholds (p unless g), and that there must exist a statement in the
program that establishes the truth of ¢ The ensures property is thus stronger than untif, since the
truth of gin the wn ¢if case can be established by the execution of more than one statement.

2.2. Description of the Problem

We consider a communication network that connects Nsenders of messages to Mreceivers via a message
router. Each sender is connected to one of the input ports of the router, and each receiver to one of the output ports

(Figure 1).

Recv 1 Recv M

Sender N|———p»

: Router

Sender 1 ———7»

Figure 1. Structure of the system.

Each message is composed of a finite number of packets that can be of three different types: header, body,
and fail. The header, which is the first packet of the message, contains the port address of the message destination.
Each header is followed by one or more body packets which contain the actual data, Finally, the tail packet marks
the end of the message.

The behavior of the router is defined by the following requirements:
* Each packet that is sent must eventually be delivered to the intended receiver.

* The value of the body packets must not be modified, but, for control purposes, the router may modify
the value of the header and tail packets.

» Packet ordering within a message must be preserved.
* Messages from the same source going to the same destination must not be reordered.

* Messages from different sources going to the same destination must not be interleaved.

2.3, Formal Specification

The system we want to specify is composed of three interacting entities: an input environment (the N
senders), an output environment {the Mreceivers), and the router. The UNITY formalism offers the possibility to
specify those three parts separately, and then to compose the three specifications. However, this implies the use of
conditional properties (for instance, assuming that property P1 is true in the input environment, property P2 is true
in the router), which make reasoning and understanding more difficult. We believe it is easier to deal with a unique
specification describing the behavior of the system in its entirety, without any interaction with the outside world.

To do so, we abstract the senders and the receivers as infinite input and output quenes (Figure 2). Initially
the inpat queues contain all the packets that have to be sent, and the output queues, as well as the router, are empty.
Each packet in the input and output environments resides at some distinct location, which is a pair of coordinates
(row, column). For instance, packets in the input queues have a row coordinate that ranges from 1 to N, and a
column coordinate that ranges from 0 to -oo,

o A output
; 1 queues M
: &» -
: L 3
N
input
quenss Ronter
1
b iRREEEE LR PR
- oo (0.0}

Figure 2. Abstract structure of the system.

Let us define some notation. Packets are designated by notation #/v], where 7, the packet type, is
equal to 4, b, or £—header, body, or tail—and v, the packet value, belongs to some set V. Each packet is
augmented with four auxiliary variables: n, m, i, and j. These auxiliary variables cannot be nsed by the
program we want to derive, their only purpose is to make the specification and design process easier.
Variables n and m, ranging respectively from 1 to Nand from 1 to M, are the addresses of the sender and
receiver of the packet (or, in other words, the numbers identifying the source input queue and destination
output queue). Variable 7 is the number of the message the packet belongs to. We define the number of the
first message sent by each sender to be equal to 1, the number of the second message to be equal to 2, and
so on. Finally, variable j is the packet number, that is the position of the packet within the message. A
packet augmented with the auxiliary variables is called a logical packet, as opposed to the physical packets
carried by the network. We use notation z(m,m,1,/)fv] to designate a logical packet. Note that the pair
(n,1)—(sender number, message number)—uniquely identifies a message in the system, and that the triple
(n,i,j)—(sender number, message number, packet number)—uniquely identifies a packet.

In the specification, the notation 7(#,m,1,j){v] is never used. We rather designate logical packets
by Greek letters (&, B or 8), and access the packet atiributes through several access funciions, Function
type, applied to a packet, returns the type of the packet (7). Functions sr¢ and dest return the tdentity of the
source input queue (1) and of the destination output queue (m). The message number (7) and packet number
() are given by functions mnr and pnr. Finally, we use the functions mid and pid to access the message
identifier (i.e., the pair (h,7)) and the packet identifier (i.e., the triple (11,77)). When it is necessary to deal
explicitly with the value of a packet, we use the notation ofvj, where orepresents 7(n,m,ij).

The location of packets in the system is given by the function IZ. Let A be the set of Iogical
packets in the router and its environment. Let Ebe the set of locations in the environment:

E=(set p,q : (15p<N A g<0) v (p2N+1 A 1<gsM) :: (p,g)).1

1 This is an example of a constructor, a syntactic element which occurs frequently in UNYTY notation. The
general form of the constructor is:

Let R be the set of locations in the router {the value of R is unknown at this time). Function J7 is then defined as
follows:

IT:A—>EuUR.

To make the specification easier to read, we use notation a2/ to mean that packet & is at location I—i.e.,
IT.a=I (throughout the paper, the operator “.” is used to denote function application). We sometimes add a type
designator (&, b, or) to the variables representing packets. For instance, i@/ means that a header packet & is at
location . a@l A type.a=h. To state the no-reordering and non-interleaving constraints, we define a relation — on
packets. Its definition is:

o-Be Gpaq': ¢<q<0 : 0@(p.9) A P@M.QN v
(3p.p'.q : N+1<p<p' :: 0@(p.q) A P@{P'.Q) A src.o=src.B) v
@pr.a.q': g0 A p2N+1 1 0@(p.9) A B@ (P, A sre.a=src.f).
That is, Bis ahead of & according to £~ iff §is in front of ¢ in the same input queue, or Bis in front of ¢ in the
same output queue and both packets come from the same source, or 8is in the output environment, « is in the input
environment, and both packets have the same source.

The top-level specification S is given below. Explanations follow the specification. Any free varizble
appearing in the UNITY assertions is assumed to be universally quantified over all the elements of its domain,

Message Representation

inv @1 : a@) A k= B.! : @] A mid.fp=mid.c. :: 1)
=

(P1
k23 A (pnr.o=1 < type.a=h) A (1<pnr.a<k < type.o=b) A (prr.a=k < type.o=t))
const (Av]: olv]P@D) ®2)
const (31 :: o[v]P@1) ®3)
const 3v]l: o[v]'@l) @D

Message Location in the Environment

inv a@@,9 A (p2N+1 v g<0) A B@(P'.q) A (P2N+1 v q'<0) = (pid.a=pid.B <= (p.9)=(p"9") .(P5)

inv (0@(p,q) A g0 = p=src.o) A (0@(p,q) A p2N+1 = q=dest.ct) (P6)
Queue Properties .

(344 : 9<q’<0 :: 0@(p.9) A P@(p.q)) unless -3 q': ¢'<0 :: P@(p.q)) (P7)

stable (3 p:p=N+1 = o@(@.q) A =3Gp' : p>p : B@©M'.Q))) (P8)
No-Reordering Property

inv oC" B = pid.B<pid.a (P9

Non-Interleaving Property
inv o B § A mid.o=mid.§ = mid.f=mid.c. P10)

Packet Movement
clvi@(p.g) A q<0 s A v p'.q : p2N+1 = o[vI@(P.¢)) (P11)

{ op dummy_variables : range_constraint :: expression)
where op is typically a binary, associative, and commutative operator (such as +, *, A, v, written ¥, [1, V, 3,
respectively). Logically, the constructor creates a multi-set of values {v,, v,, ..., vy} by evaluating the expression
for every possible instantiation of the dummy_variables satisfying the range_constraint. The final value of the
constructor is obtained by evaluating the expression v, op v, 0p ... op vy,. If the range is empty the zero-
element for the operator is returned. Other frequently used operators are min, max, and set, having the obvious
interpretations. e

The first four properties are related to the representation of the messages. Property (PI) states that
messages are properly structured. If e is a packet at some location in the system, and & is the number of packets of

the message o belongs to, then:
» kis greater than or equal to 3, i.e., each message is composed of at least three packets;

» the packet number of & is equal to 1 iff ¢ is a header, ranges strictly from 1 to kiff ¢ is a body, and is
equal 1o Kiff o is a tail.

Properties (P2} to (P4) state that packets are neither created nor destroyed, and that the value of body packets may not
be modified. Let us for instance explain property (P2). Going back to the definition of cons¢, (P2) means that:

+ If the header packet of/v/exists initially in the system, it will exist forever, but not necessarily with the
same value {existential quantification on v).

« If, for any value v, gfv/does not initially exist in the system, then it will never exist.

Property (P4} is the symmetric of (P2) for tail packets. In addition, property (£3) prevents the value of the body
packets to be changed,

Properties (F5) and (Pg) specify packet locations in the environment. (P5) states that each packet has a
unique location, and that each Iocation contains at most one packet. Property (P6) expresses the requirement that
each packet in the input environment resides in its source input queue, and each packet in the output environment
resides in its destination output quene.

Properties (P7)and (P} specify that the input rows and output columns are queues. (P7) states that packets
are sent in the order they are queued, i.e., a packet cannot be sent if there are packets in front of it in the queue:
considering packet Bin its input queue, and packet & behind Bin the same queue, & must stay behind Sas long as 8
isin the input queue. Property (P5) states that packets received in the output queues can only appear behind the
packets already present in the quenes. A way to specify it is to say that, considering two packets & and f, if e is in
its output queue and Bis not ahead of & in the queue, then it will never be.

The no-reordering and non-interleaving constraints are expressed by properties (P2)and (PI0). Initially, the
packets in the input environment are queued in the order they have to be sent—i.e., the packets with the
lexicographically smallest identifiers are in the first positions of the queues. This means that if packet Bis ahead of
a (a=p), B's pid is smaller that o's one. To express the no-reordering constraint, we have to state that this
relation is invariant all along the execution, as expressed by property (P9). The non-interleaving requirement is
specified by property (P10). Considering three packets ¢, f, and & such that §is ahead of Swhich is ahead of @, if
o and J belong to the same message, S must also belong to the same message.

The first ten properties are all safety properties. The only progress requirement is stated by property (P11).
Each packet ofv/in the input environment must eventually reach the output environment, but not necessarily with
the same value.,

3. Router Design

The specification Sp is composed of input/output properties of the router, but never mentions the router
itself, The reason is that we were only interested in specifying whar the router is supposed to do (i.e., deliver
messages from its input to its output with some no-reordering and non-interleaving constraints), and not how it is
actually doing it. Consequently, Sp can lead to many different solutions for the router design. We describe one of

these solutions in this section.

Our design process entails several refinement steps. The objective of these steps is to gradually give a more
and more detailed description of the router, up to the point where a UNITY program can be derived trivially from the
specification. To be correct, each refined specification must imply the specification of the previous step. We start
with a brief overview of the refinement steps.

Refinement 1. In the first refinement, we define the general topology of the router as a grid of NxM
switches. The Ninput lines and M output lines are thus extended inside the router. Each switch can receive packets
from its left neighbor on the row or its bottom neighbor on the column, and can route them either to its right
neighbor on the row or 10 its upper neighbor on the column, depending on the destination of the packets. So, to
move from its source row to its destination column, each packet first travels along the row (one switch at a time)
until it reaches the destination column, and then just moves up the column (also one switch ata time).

Refinement 2. The second refinement provides additional details about the behavior of each single
switch, by defining the mechanism that prevents messages from being interleaved along the columns. We will see
that this can be done by associating two mutually exclusive signals—zum and up—with each switch. Signal fum
prevents messages to move through the switch along the column when a message is currently passing through the
switch from the row to the column, and the other way around for signal up.

Refinement 3. In the third refinement, we specify further the behavior of the switches by introducing a
strong fairness constraint, which prevents more than one message to pass through a switch on the column (from the
row to the column) when another message is waiting on the row (on the column).

Refinement 4, At this point in the design, each switch on the rows makes the decision to route
messages either to the next switch on the row, or to the next switch on the column, by comparing the message
destination to the number of the column it is located at. This implies that each switch has to know its location.
The purpose of the fourth refinement is to eliminate this knowledge by using the value of the header packets. We
will make the value of each header packet decreased by one each time the packet passes through a switch along the
row. Since the value is initially equal to the destination column, this implies that a message will have to take a
turn when the value is equal to 1.

Refinement S. The fifth refinement deals with the execution control we impose on the switches. A
possible choice is to have the switches running asynchronously, another choice is to have them working in a
synchronous way, We chose the more realistic asynchronous behavior. Since each location can contain at most one
packet, this implies that a packet will not be able to move to the next location, unless it is empty.

Refinement 6. Finally, the last refinement step is the transformation of the leads-to properties into
ensures properties. As we said earlier in the paper, ensures properties are strongly related to the text of the program,
which implies that we can easily derive assignment statements from them.

3.1. Refinement 1: Definition of the Router Topology

The router we are designing consists of a NxM grid of switches. As an example, a three-sender four-
receiver router is depicted in Figure 3,

Figure 3. Internal structure of a three-sender four-receiver router

The location of each switch in the grid is given by the pair (p,g} where p is the row number, and gthe column
number. Each switch (p,g)contains two registers—a row and a column register—and an arbitration element

(Figure 4). We identify the location of the row register by the triple (p,¢,0), and the location of the column register
by @.g,4). The function of the arbitration element is to handle the movement of the packets showing up in the row
and column registers, in order to avoid interleaving of messages on the columns. Its design will be the subject of
refinement 2,

{p+l,q,1)

/ arbitration element

EELEICEN TN

{p.g+1,0)
mw registcr ------- COIIIE-ﬂI] l'CgiS [Cl'
location (p,g.0) 1 location (p,q,1)

Figure 4. Internal structure of switch (p,q).

The packet movement inside the router is defined as follows: from the row register of switch (pgi—i.e.,
location (p,g,0}—a packet moves to the row register of switch (p,g+1)}—i.e., location (p,g+I,()—if gis not the
destination column, or to the column register of switch (p+1,g)—i.e., location (p+1,9,1)—if gis the destination
column. Once it has reached its destination column, a packet just goes up, one location at a time.

. Let us now give some definitions and notation. To make the location spaces inside and outside the router
uniform, and thus make the specification simpler, we redefine environment locations (5,¢) to be triples (@.q,0) in the
input queues, and triples (p,g,)in the output queues. The previous set E of environment locations is thus refined
into the following set E': '

E'=(set p.q,r: (1<pN A q<0 A 1=0) v (p2N+1 A 12g2M A £=1) 2 (p,q,0)).
The definition of R, the set of locations inside the router, is: '
R = {set p,q,r: I<p<N A 1£g<M A 0<r<1:: (p,q.0)).
The location function 77 is refined into the function J7*
IIM':A->EuR
and the relation between 7 and IT*is given by the following coupling invariant:

{(Vop.g.r, =t p<N A g21 A 0811 = [TLa=(p,q,1) < IT.0=(p,q.0)]
A q<0 = [[L.o=(p,q) < II".0=(p,q,0)]
A p2N+1 = [[Loa=(p.q) <> IT".a=(p,q,)]).

We now use a@(p,q.r) to mean IT.c=(p,q,r), and we introduce the notation (P.4.0>(p,q.r) to mean;
(0'=p A @'=q+1 Ar=r'=0) v (p'=p+1 Aq'=q AT=]).

The operator “»” relates valid pairs of consecutive locations. Location (p,g,0) is thus in relation with @.g+10) and
(p+1,q,1), and location (p,g,7)s in relation with (p+1,q,1). The relation L=is refined into the relation <. Its
definition is:

o<B & @Gp.ag': a<q : a@(P,g0) A BR(P.Q.0) v

Ap.p'q : p<p' :: @(p.q.1) A B@(D',q,1) A ste.0=s1C.BY v
P49 1 959 :: 0@(p,q.0) A P@(P'.q.1) A stc.o=src.B).

That is, Bis ahead of o according to < iff Bis in front of & on the same row, or Bis in front of & on the same
column and both packets come from the same source, or Bis on its column, & is on its row at the left of 3, and
both packets have the same source. The refined specification S is the following:

Message Representation

Properties (P1), (P2), (P3) and (P4).

Message Location
inv 0@(p.q.1) A f@(p'.q'r} = (pid.o=pid B > (p.g,0)=(0'.q'1)) (P5.1)
inv 0@(p,q.1) = (p=src.o, A gsdest.o A 1=0) v (p>src.0 A g=dest.c A r=1) P6.1)

No-Reordering Property
inv o<} = pid.B<pid.oc 9.1)

Non-Interleaving Property
inv 0<p<8 A mid.o=mid.d = mid.B=mid.oc (P10.1)

Packet Movement in the Environment
olvl@(p.gx) A (p2N+1 v g<0) until 3 p'.q'x' : (0.q»@\q\r) oVI@ (P q'1)) (P11.1)

Packet Movement inside the Router
o[vi@(.q,0) A pSNA gzl until @ v'.p.qx : (0.4.0»F.Q.r) V1@ (Pi1.2)

Properties (F5), (Pg), (PS), (P10), and (P11) of specification Sg, which define properties of the packets in
the environment, have been extended to the entire system. Property (P5.1) specifies that each packet in the
environment or the router has a unique location, and that each location contains at most one packet. Property (P6.1)
defines the set of locations packets are allowed to be at. Each packet can only be located in the source input row or
the destination output column, but cannot move beyond the destination column on the row, and below the input row
on the column. Property (P9.1) states that packets remain ordered according to their identifiers, and (P7 0.1) specifies
that messages are not interleaved. Finally, property (P11), which states that every packet in the input eventually
moves to the output, has been refined into two progress properties, one for the environment, and the other one for
the router. Property (P11.1) states that each packet in the environment eventually moves to the next location, as
defined by the operator "»". Since itis an unti/ property, (P11.1)also specifies that packets cannot move anywhere
but to the next location. Property (PI1.2) is quasi symmetrical to (P11.1) for packets inside the router. The only
difference is that packet values are allowed to change.

Proof Obligations. We need to show that each property of Sp is implied by 5;. Note that even though
properties (P1)to (P4)are not syntactically modified, the definition of the function @ has changed, which implies
that these properties also need to be verified.

Eroof Qutline. The formal proof of each of the refinement steps can be found in appendix B. In the proof outline
sections, we just give an intuitive explanation in order to convince the reader of the validity of the refinements.

The proof of properties (P1)-(P6) and (P9)-(P10}is straightforward. Each property is directly implied by the
corresponding property in .5y and the coupling invariant.

The proof that packets are sent in the order they are quened (property (P7)) follows from the fact that packets
in the input queues move one location at a time (property (P71.1)), and that each location can contain at most one
packet (property (P5.1)). This implies that packets cannot pass each other, and hence that they can only be sent in
the order they are queued.

The proof of (P8)—packets in the output quenes can only appear behind the packets already present in the
queues— is a bit more complicated. We need to show that, considering two packets ¢z and S, if ¢ is in its output
queue and s not ahead of & in the queue, then it will never be. Three cases are possible. If [does not exist in the

10

system, then it will never be ahead of ¢ since packets cannot be created (properties (P2)-(P4)). If Sexists in the
system, but its destination column is different from the destination column of ¢, then it will also never be ahead of
o since a packet in the output environment can only reside in its destination column, The final case is Sexisting in
the system with the same destination column as ¢. In this case, the only way for Sto move ahead of ¢ is to
overtake it, which is not possible, as stated above.

Finally, the fact that packets in the input eventually move to the output (property (P11)) can be proved
from (P11.1)and (P11.2)by a double application of the induction principle. We can first show that a packet in the
input environment eventually moves to its destination column, by using the distance between the destination
column and the position of the packet in the row as the metric. This distance decreases by one with each move. We
can also prove that a packet on the destination column inside the router eventually moves to the output environment.
The metric in this case is the distance between row NI and the position of the packet in the column; it also
decreases by one with each move. The truth of (P1.1) follows from the transitivity of leads-to.

3.2. Refinement 2: Arbitration Element Refinement

The role of the arbitration element is to route out of the switch the packets showing up in the row and
column registers. The main problem is to avoid the interleaving of messages passing through the switch on the
column and from the row to the column. To solve this problem, we introduce two mutually exclusive signals—{um
and up—whose purpose is to regulate the movement of packets at the intersection of the row and the column
(Figure 5). When the signal fum is on—which implies that up is off—the paths from location (p,q,0) to location
».g+1,0), and from (p,q,1)t0 (p+1,q,1) are broken. Packets can only move from location (p,g,0) on the row to
location (p+1,q,1) on the column. When the signals furnand up are off, packets can only move through the switch
along the row. Finally, when the signal up is on—which implies that fum is off—packets can simultaneously
move through the switch along the row and along the column.

; (p+1.q.1)

l
| (0,.g+1.0) ' (p,g+1,0)

- - b el

B | 1,

030 | Nggp

Figure 5. Possible states of the arbitration element.

‘The furn and up signals are initially false, and are triggered by the arrival of header packets in the row and
column registers. The furn signal is eventually set when a header packet whose destination column is equal to ¢
shows up at location (p,g,0). The signal remains on as long as the tail of the same message has not showed up, and
is turned off as the tail moves through the switch. The policy associated with the up signal is symmetrical. Let us
mention that we do not impose any priority between the row and column registers. That is, when two headers
(going to the same location (p+1,g,1)) are in the row and column registers at the same time, the choice of which
signal to be turned on is non-deterministc.

We define the predicate frn(p,q) to mean that the furn signal in switch (p,g)is on, and up(p,g) to mean that
the up signal in switch (p,¢)is on. We also define a two-parameter function message. The expression message...l’
is interpreted to mean that there is a message in the system whose head is at location /, and tail at location J°
Formally:

message.LI' = Go.B : mid.c=mid.p :: ah@] A B'@1").

The refined specification .52 is the following:

11

Message Representation

Properties (P1), (P2), (P3), and (P4).

Message Location
Properties (P5.1) ard (P6.1).

No-Reordering and Non-Interleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
inv —(turn(p,q) Aup(®.q) (P12)
inv g21 A (3p'q'x'.q" : ¢"sq<q' :: message.(p'.q'1).(p.q",0)) = —tumn(p,q) (P13)
inv g21 A 3p'.q': p>p A q'<q :: message.(p',q,1).(p,q",0)) = mm(p,q) P14)
inv psN A Tp'p".q"x": p>p A (p"<p v (p"=p A 1"=1)) : message.(p',q,1).0".q"1")) = up(p.®) (P15)
inv wmp,g) = @p'.q.r': (=0 A p=p) v (r'=1 A p>p)) A q'<q :: message.(p',q.0).(p.q',0)) (P16)
inv up(p.q) = &' p".q"1" p2p A @"<p v (P"=p A 1"=1)) :: message.(p',q,1).(p".q" ")) (P17)
ah@ (0.9.0) A g=dest.o. A tum(p,q) unless -o@(p.q,0) F18)
al'@(p,q.1) A p<N A up(p.q) unless —0@([p.g,1) (P19)
a'@(p.q.0) A =1 A tun(p,q) unless —a@(p,q,0) A—turn(p,q) P20)
a'@(p.9,1) A psN A up(p,g) unless —a@(p,q,1) A—up(p.q) P21

Packet Movement in the Environment
Property (P11.1).

Packet Movement inside the Router

o[vi@(.ar) A p<N A g1 unless @v',p.q'r : (p.g.0>@'.q 1) 2 ovI@D.q.) (P11.2.1)
olvI’@(,0.0) A 621 A qrdest.olv] - Gv:oVI@(p.g+1.0) (P11.2.2)
olvI'@(p.q.0) A T£h A @21 A —tum(p,q) > @0 [vI@(p.q+1,0)) ®11.2.3)
olvI'@(p.q.0) A g=dest.c > o[vI@(D,q,0) A urn(p,g) P11.2.4)
o(vl@{p.q.0) A @1 A um(p,q) - 3v' 2 o[vI@(p+1,q.1)) (P11.2.5) -
olv'@(.q,1) A p<N - S[VI@(p,q,1) A up(p.9) (P11.2.6)
olvi@(P,q.1) A psN A up(p.q) — @v' 2 o[v]@(p+1.9,1)) P11.2.7

The safety properties of the switch signals are described by (P12)-(P21). The fact that the two signals are
mutually exclusive is expressed by (PZ2). The meaning of invariant (P13)is illustrated in Figure 6. If a message is
in transit through the switch (p,¢) along the row—i.e., the header is past the switch, either still on the row or already
on the destination column, and the tail has not passed the switch yet—then the turn signal is off.

column column
q q
(pn‘ q',r')
header
.q",0 r'\q'.x) (r.q",0)
row (P4 .) E] z 0 4
P tail header tail

Figure 6. The fumn signal is off when a message is in transit throngh the switch along the row.

12

As depicted in Figure 7, invariant (P14) states that, if a message is in transit through the switch (p,g) from
the row to the column—i.e., the header is past the switch on the column, and the tail is still on the row—then the

furn signal is on.,

{r'q,1)
P-4 ® header
{p,q,0) =1 oW
Ly T P
tail
column
q

Figure 7. The furm signal is on when a message is in transit from the row to the column.

Invariant (P15)is symmetric to (P14) for the up signal. It states that, if a message is in transit through the
switch (p,g)along the column—i.e., the header is past the switch on the column, and the tail is either on the column
and has not moved through the switch yet, or is still on the source row—then the up signal is off.

column . column

q q
¢ header , ® header

(r'.a.1) (P.a.1)

oW 1 1 TOW
P Ll L P
tail (" " 0
" P".q",0)
(p qul)T e voneveeDRORO

tail
Figure 8. The up signal is on when a message is in transit throngh the switch along the column,

Invariants (P16)and (PI7) further specify that when the furn signal (up signal) is on, there must exist a
message in transit through the switch from the row to the column (on the column). Note that, as opposed to (P74)
and (P15), properties (P16) and (P17} provide for the case where the header of the message is still in the row register
(column register) of the switch. The reason is that, when a header is in the Tow or column register, the proper signal
is first turned on, and only in a subsequent step the packet is allowed to move.

Properties (P18)and (P19) state that once a signal is turned on, it remains on until the header moves. This
prevents signals from being turned on and off repeatedly while the header of the message is still waiting in the row
or in the column register. Finally, properties (P20) and (P21) express the fact that signals are turned off at the same
time the tail of the message moves through the switch.

- The movement of the packets inside the router is now described by properties (P11.2,1)-(P11.2. 7). Asin
the previous specification, packets can only move to the next location (property (P11.2.1)). Properties (P11.2.2)
and (P11.2.3) specify the movement of the packets along the rows. The former states that a header packet at location
(p.q.0), with gdifferent from the destination column, eventually moves to the next location on the row. The latter
states that the body and tail packets showing up at location (p,g,0) eventually move to the next location on the row
if the signal furm is off, i.e., if it has not be turned on by the header of the message. Properties (P11.2.4) and
(P11.2.5) deal with the movement of the packets from the row to the column. The fum signal in switch (p,g)is
eventually turned on after the arrival of a header packet whose destination column is g(property (P11.2.4)). Once the

13

signal has been turned on, packets are allowed to move to location (p+1,q,Z} on the column (property (P11.2.5)).
Properties (P11.2.6} and (P11.2,7) are symmetric to (P11.2.4}and (P11.2.5) for the upsignal.

Proof Obligations. The only change brought to specification $; is the refinement of (P11.2)into (P11.2.1)-
(P11.2.7). Sowe only need to show that Sz implies (P11.2).

Proof Qutline. The unless part of (P11.2) is equivalent to (P11.2.1). To prove the leads-to part, we need to
show that every packet inside the router eventually moves to the next location. The movement on the rows is
implied by properties (P11,2.2), (P11,2.3), and invariant (P13). Property (P11.2.2) directly states that the header of
each message will eventually move to the next location. The movement of the remaining packets of the message is
guaranteed by (P11.2.3) when the fum signal is off, which is implied by invariant (P13} The movement from the
row to the column is implied by properties (P11.2.4), (P11.2.5), and invariant (P74). The movement of the header
packets follows from the transitivity of leads-to applied to (P11.2.4}and (P11.2.5). 'The movement of the non-
header packets is guaranteed by (P11.2.5) when the furn signal is on, which is implied by (P14). The proof of the
movement on the columns follows similarly from (P11.2.6), (P11.2.7), and (PI5).

3.3. Refinement 3: Introduction of a Fairness Constraint

At this point in the design, packets are guaranteed to move through the switches without being interleaved
on the columns, but no property in the specification constrains the arbitration elements to behave fairly. Consider
for instance the case where 11 consecutive messages going to the same destination ghave been sent by the same
sender p. Suppose that when the first of these messages arrives at switch (p,g), another message is waiting on the
column for moving up through the switch. Then a possible scenario is to have the n messages on the row moving
through the switch up to the column, before the message on the column is allowed to do so, thus blocking all the
messages behind it. A symmetric problem occurs when a message is waiting on the row, while several messages are
passing through the switch along the column,

We want to prevent such undesirable behaviors by imposing a strong fairness constraint on the arbitration
elements. No more than one message must pass through a switch from the row to the column (along the column),
while another message is waiting on the column (on the row). Figures 9 and 10 describe a simple mechanism
implementing this requirement. In the first case—a message mz is waiting on the column while another message
my is moving from the row to the column (Figure 9)—the solution is to tarn the up signal on as the tail of my is
passing through the switch. Since the specification guarantees that the up signal cannot not be tumed off before the
head of m2 moves (property (P21)), no other message will be able to move from the row to the column.

ml ml
tail B2
5
Bl
header header

Figure 9. No more than one message can move from the row to the column,
while another one is waiting on the column.

In the second case—a message my is waiting on the row while another message m; is moving along the
column (Figure 10)—the solution is to turn the furm signal on as the tail of m; is passing through the switch.

14

mil ml
tail B
2 2
Bw /3’ @
header \ header
tail

Figure 10. No more than one message can move along the column,
while another one is waiting on the row.

Formally, this refinement entails the addition of two new properties describing the preceding behaviors.
The refined specification §3 is:
Message Representation
Properties (P1)-(P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Non-Interleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
Properiies (P12)-(P21).

a'@(p,q0.0) A g1 A um(p,q) A BP@(p,q,1) unless ~a'@(p.q.0) A up(p,q) P22)
a'@(p.a,1) A p<N A up(p,) A BA@(P.q.0) A g=dest.p unless —o*@(p,q,1) A tumn(p.g) P23)

Packet Movement in the Enviroament
Property (P11.1).

Packet Movement inside the Router
Properties (P11.2.1)-(P11.2.7).

The proof of the refinement is trivial since the specification $7 includes all the properties of S2.

3.4. Refinement 4: Refinement of the Header Values

A shortcoming of the design at this point is that switches need to know their location in the grid to route
the packets. This knowledge appears in properties (P/1.2.2) and (P11.2.4), which state that when a header packet
shows up in a row register, the switch either routes the packet to the next location on the row if the number of the
column is different from the packet destination ((P11.2.2)), or sets the furn signal if the number of the column is
equal to the packet destination ((P1.1.2.4)).

The purpose of the fourth refinement is to eliminate this knowledge by making the value of each header
decreased by one, each time the packet moves through a switch along the row. Since the value is initially equal to
the number of the destination column, switches can now make the decision to route the header packets to the next
location on the row when the header value is different from 1, and to set the fumn signal when the header value is
equal to 1. The location knowledge is not needed anymore. The refined specification Sy is:

15

Message Representation
Properties (P1)-(P4).

Message Location
Properties (P5.1) and (P6.1).
No-Recrdering and Non-Interleaving Properties
Properties (P9.1) and (P10.1).
Signal Properties
Properties (P12)-(P23).
Header Value Imvariant
inv o[vI"@(p,as) A q21 = v=dest.o[v]-q+1 (P24)
Packet Movement in the Environment
Property (P11.1).

Packet Movement inside the Router
Property (P11.2.1).

olVP@(p,0,0) A @1 A v£1 > olv-1]@(p,g+1,0) (P11.2.2.1)
o[vI'@(D.a.0) AT#h A q21 A —turn(p,q) -+ S[V]@(p.q+1,0) P11.2.3.1)
o[v"@(p.q.0) A v=1 - 6[V]@(p,q,0) A tum(p,q) (P11.2.4.1)
o[vl@(p.q,0) A g21 A turn(p,q) - o[VI@{p+1,q,1) (P11.2.5.1)
olvi"@(p.q,1) A p<N - o[vI@(p.g,1) A up(p.9) (P11.2.6.1)
o(vl@(p.q.1) A p<sN A up(p,q) - o[vI@(p+1,q.1) (P11.2.7.1)

The value of the header packets is constrained by the invariant (P24) which states that, along the rows
inside the router, the value is decreased by one with each move, and that it remains constant once the packet has
reached the destination column. The movement of the packets inside the router is trivially refined by properties
(P11.2.2.1)-(P11.2.7.1).

Proof Obligations. We need to show that properties (P11.2,1)-(P11.2,7) are implied by S4.

Proof OQutline. The proof is straightforward. Properties (P11.2.3), (P11.2.5), (P11.2.6), and (P11.2.7) are
directly implied by the corresponding refined properties (P11.2.3.1), (P11.2.5.1), (P11.2.6.1), and (P11.2.7.1). To
prove that (P11.2.2)and (P11.2.4) are implied by (P11.2.2.1)and (P11.2.4,1), we only need to show:

inv olvIP@(p.q.0) A 921 = (g=dest.olvi © v=1)
which is trivially implied by the invariant (P24).
3.5. Refinement 5: Switches Work in an Asynchronous Way
The last design decision concerns the execution control we impose on the switches. Between the two
possible choices—either synchronous behavior, or asynchronous behavior—we chose the more realistic
asynchronous behavior. Since each location can contain at most one packet, this means that, before routing a packet
to the next location, a switch must first check whether this location is empty. Note that, in the case of a

synchronous behavior, this constraint would not have been needed, since two consecutive packets have to move
synchronously in this case.

Let us define the predicate empfy@(p,q,r) to mean that location (,g,r) does not contain any packet:

16

empty@(p,q.0) = (Vo :: ~0@(,q.0).

A way to specify the asynchronous behavior is to state that each packet inside the router must Ieave an empty
location behind it when it moves:

@ (P.q.1) A pSN A g1 unless empty@(p,q.1)-

This forces the switches to wait for the next location {0 be emptied, before routing a packet. The refined
specification S5 contains all the properties of 8¢ plus the previous one. The proof of the refinement is therefore

straightforward.

Message Representation
Properties (P1)-(P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Non-Interleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
Properties (P12)-(P23).

Header Value Invariant
Property (P24).

Packet Movement in the Environment
Property (P11.1).

Packet Movement inside the Router

' Property (P11.2.1).
Properties (P11.2.2.1}-(P11.2.7.1).
@(p,q.1) A psN A q21 unless empty@(p,q.1). (P25)

3.6. Refinement 6: Transformation of the Leads-to Properties into Ensures Properties

This last refinement i3 not motivated by a design decision. The motivation here is to transform the
specification into a form that can be directly translated into program text, i.e., introduce ensures properties
expressing atomic transformations. The progress properties are property (P1.1.1) specifying the packet movement in
the environment, and properties (P11.2.2.1)-(P11.2.7.1) expressing the packet movement inside the router. Since
we are only interested in the design of the message ronter, we will not transform the environment property (P11.1)
into an ensures property. We will just make sure that it is satisfied when deriving the program. However, to make
it more explicit, we can split it into two properties, one for the input queues and the other one for the output queues:

olvI@(.q.0) A <0 until o[VI@(p,q+1.0) (P11.1.1)
o[vI@(0,q,1) A p2N+1 until cvVI@(p+1,g,1). (P11.1.2)

Let us now focus on properties (P71.2.2,1)-(P11,2.7.1). The simplest way to transform a Jeads-to property
into an ensures property is to directly replace "—" by "ensures”, and to see if the resulted property can be satisfied
in an atomic transformation. By applying this method on (P11.2.2,1), we gel:

olvI"@(p,0.0) A 21 A v#1 ensures c[v-1J@(p.q+1,0).

This property cannot be satisfied in an atomic transformation since the next location may be busy at the time. This
suggests the following property:

o[v}h@(p,q,{)) A g21 A vl A empty@(p,q+1.0) ensures o[v-11@(p,g+1,0) (P11.2.2.1.1)

17

which can easily be satisfied in an atomic step. In the same way, we get from (P11.2.3.1):
o[v]'"@(P.q,0) A t£h A g21 A —turn(p,q) A empty@(p,q+1,0) ensures o[vl@(p,q+1,0). (P11.2.3.1.1)

The transformation of the properties (P11.2.5.1) and (P11.2.7.1) is slightly more complicated. We need
to separate the cases where packets stay inside the router {(p<Njor move from the router to the output environment
(p=N). In the former case, we can transform the properties in the same way we did before. We get:

o[vl@(©.q.0) A @21 A p<N A tarn{p.q) A empty@(p+1,q,1) ensures o[vi@(p+1,q,1) (P11.2.5.1.1)
and:
o[vi@(p.q.1) A p<N A up(p.q) A empty@(p+1.9,1) ensures o[VI@(p+1,q,1). (P11.2.7.1.1)

Since we do not require that locations outside the router be emptied before packets move, properties (P11.2.5,1) and
(P11.2.7.1) with pequal to N, can simply be transformed into:

o[vVI@(N,q.0) A g21 A um(N,q) ensures olvI@(N+1,q,1) (P11.2.5.1.2)
and:

ovi@N,q.1) A up(N,q} ensures o[vI@N+1,q,1). {P11.2.7.1.2)
This implies that packets moving out of the router are allowed to simultaneousty push forward all the packets in the
output queues.

Letus now concentrate on property (P11.2.4.1), A direct transformation into an ensures property:

c[v}h@(p,q’o A v=1 ensures o[vl@{p,q,0) A mun(p,q)

is not possible because the furn signal cannot be set when a message is currently passing through the switch along
the column, i.e., when the up signal is on. This suggests the following transformation:

olvI’@(p,q,0) A v=1 A ~up(p,q) ensures o[vI@(p,4,0) A tumn(p.q).

This is however not yet satisfactory. Consider the case where a header packet with value 1 is in the row register, the
up and furn signals are off, and another header packet is in the column register. It is easy to see that the up signal
cannot be turned on without invalidating the un/ess-part of the previous property. This means that we need to find a
mechanism preventing the up signal to be turned on in this case. Even though it is possible to do it, we do not
want to establish any priority between the two signals, in order to have a non-deterministic behavior. The solution
to this problem is to transform (P71.2.4.1) in the following way:

oVPR@(.0.0) A v=1 A —up(p,q) ensures (o[vi@(p.q.0) A tum(p,q)} v up(p,q) (P11.24.1.1)

which allows the up signal to be turned on. A similar transformation on (P17.2.6.1) leads to:
olvI'@(p.q,1) A p<N A —tumn(p,q) ensures (GIvI@(D,q,1) A up(p,Q)} v urn(p.q). (P11.2.6.1.1)

The final and complete specification Sgis:
Message Representation
inv (Gl a@) A k=(Z B,1 : B@] A mid.f=mid.c. :: 1)
=

(P1)

k23 A (pnr.o=1 & type.o=h) A (1<pnr.o<k & type.o=b) A (pnr.a=k &> type.o=t)
const @v,|l:: o(viIP@D ®2)
const (3l :: o[v]P@1) ®3)
const (Ivl: ovii@n (P4)

Message Location

inv o@(p,40) A P@(P'.q'r) = (pid.o=pid.p < (p.a.0=(p'.q'r) (P5.1)
inv 0@(p,qr) = (p=src.ct A g<dest.o A 1=0) v (p>src.oL A g=dest.o A 1=1) P6.1)

18

No-Reordering Property
inv o<p = pid.P<pid.a P9.1)

Noun-Interleaving Property
inv 0<B<d A mid.o=mid.8 = mid.p=mid.o. (P10.1)

Signal Properties

inv —{mmn(p,q) Aup®,9) (P12)
inv g21 A 3p'q'1.q": q"<q<q’ :: message.(p',q'1).(p,q",0)) = —turn(p,q) {P13)
inv g1 A (Jp'q': p>p A q'<q i message.(p',q,1).(p.q.0)) = mm(p,q) P14)
inv p<N A (3p'p".q"1": P>p A (p"<p Vv (0"=p A 1"=1)) :: message.(p',q,1).(0".¢".r")) = up(p.9) (P15)
inv wm(p,g) = 3p'q.r': (=0 A p'=p) v (r'=1 A p>p)) A q'<q :: message.(p',q.r).(p.q',0) (P16)
inv up(p. = (Ep'p".q"1" p'2p A @"<p Vv (p"=p A 1"=1)) :: message.(p',q,1).(0".q"1") P17
oP@(p.q,0) A q=dest.c A turn(p,q) unless —o@(p,q,0) P18)
oP@(D.q.1) A p<N A up(p.q) unless —@(p.g,1) (P19)
a'@(p,q.0) A g1 A turn(p,q) unless —o@(p,q,0) A—turn(p,q) P20)
a'@(p.4,1) A p<N A up(p,q) unless —c@{p,q,1) A—up(p,q) P21)
o'@(P..0) A 21 A tum(.9) A B'@(p,q, 1) unless —o@(p.a.0) A up(p,q) ®22)
ar@(,q,1) A pN A up(p.Q) A Bh@(p,q,O) A q;dest.B unless —@(p.q,1) A turnip,q) P23)
Header Value Invariant |
inv o[vI"@(@,q.0) A @1 => v=dest.o[v]-q+1 (P24)
Packet Movement in the Environment
oivl@(p.q,0) A g0 until o[vl@{p,q+1,0) . (P1l.1.1)
olVl@(p.q.1} A p2N+1 until ofv]@(p+1.g,1). (P11.1.2)
Packet Movement inside the Router
o[vi@(p.q.r) A psN A g21 unless Gv'.p.q'+ : (.40»(@q'x) 2 o[VI@(P.q.1)) P11.2.1)
o[vI@(p,q.1) A psN A g1 unless empty@(p,q.r) ®25)
oIVP@(p,q,0) A 21 A v#l A empty@(p,q+1,0) ensures ofv]l@(p,q+1,0) (P11.2.2.1.1D
a[vI'@(p.9.0) A 1#h A g21 A —tum(p,g) A empty@(p,q+1,0) ensures c[vI@(p,q+1,0) *11.2.3.1.1)
olv'@(p,q,0) A v=1 A —up(p,q) ensures (c[vI@(p,q,0) A turn(p,q)) v up(p,Q P11.2.4.1.1)
o[v]@(p,q,0) A g=1 A p<N A turn(p.q) A empty@(p+1,q,1) ensures o[vI@(p+1,q,1) (P11.2.5.1.1)
o[vi@(MN,q,0) A g21 A turn(N,q) ensures o[v]@N+1,q,1) (P11.2,5.1.2)
ofvI"@(p,g,1) A p<N A —turn(p,q) ensures (GvI@(.q,1) A 1p(p.q)) v tum(p,q) (P11.2.6.1.1)
olvi@(p.q,1} A p<N A up(p,q) A empty@(p+1,q,1) ensures o[vi@(p+1,q,1) (P11.2.7.1.1)
ovi@(N,q,1) A up(N,q) ensures olvJ@(N+1,q,1) P11.2.7.1.2)

Eroof Obligations. We need to show that properties (P/1.2.1.1)-(P11.2.7.1) are implied by Sg.

Proof Outline. The proof that packets inside the router eventually move to the next location—properties
(P11.2.2.1), (P11.2.3.1), (P11.2.5.1), and (P11.2.7.1}—can be decomposed into three cases: packet movement along
the columns, from the rows to the columns, and finally along the rows. The movement along the columns can be
proved by induction on the row number. The base case is established by the property (P11.2.7,1.2) which directly
implies the packet movement from the upper locations (V,g,1) to the output queues. Since a packet leaves an empty
location behind it when it moves, the base case and the property (P11.2.5.1.1) allow us to prove that packets at
locations (N-1,g,1) will move to locations (N,g,1), and so on, down to row 1.

19

Packet movement from the row N'to the output environment is directly implied by (P11.2.5.1.2). For p
between 1 and V-1, we have just proved that packets along the columns are guaranteed to move to the next location,
This implies that locations along the columns will eventually be emptied, and thus, according to (P11.2.5.1.1), that
packets at their turning switches will eventually move to their destination columns.

The packet movement along the rows can be proved by induction on the column number. We know that
packets at the right end of the rows (locations (p,M,0)} are necessarily at their turning switches. They will thus
move to the columns and leave empty locations behind them. This will allow packets at locations (p,M-1,0) to
move to locations (p,M,() (properties (P11.2,2.1.1) and (P11.2.3.1.1)}, and so on, down to column 1.

Finally, we need to prove that the proper signals are eventually turned on when header packets show up in
the registers (properties (P11.2.4.1)and (P11.2.6.1)). From (P11.2.4.1.1) we know that the furn signal will
eventually be turned on, unless the up signal is turned on. In this case, the faimess property (P23) assures that the
furn signal will also be turned on, as the tail of the message moving along the column will pass through the switch.
The proof of (P11.2.6.1) is symmetrical.

4. Derivation of a Program from the Specification

The final step of the design consists of writing the program text. We fizst define the types and data
structures used in the program, and then derive the program statements from the progress properties of the final
‘specification.

4.1. Types and Data Structures of the Program
We define the type packefto be the Cartesian product between {#,5,£} and the set Vof all the possible

packet values. If pis a variable of type packet, we use the notation p. 7 to access the type, and p.2 to access the
value. The grid of NxM switches is implemented by a 3-dimensional array:

switch : array[1..N,1.M,0..1] of packet L {.L}

such that switch/p,q,0] represents the row register of switch (p,g) and switch{p,q,1] the column register. When a
register does not contain any packet, we assume that its value is equal to L. We define functions header; body, tail,
emply, and val in the following way:

header.(p,qr) = (switch[p,q,r].1=h),
body.(p.qr) = (switchp,q.r].1=b),
il (p,qr) = (switch[p,g,r).1=t),
empty.(p,q.r) = (switch[p.q.ri=L)},
val.(p,qr) = switchp,q1].2.

We also define the function dec;_valwhich accepts a header packet (A,v) as argument and returns the packet (&, v-1).
The switch signals fum and up are implemented by two Boolean arrays:

tum,up : array[1..N,1..M] of Boolean
and the Ninput queues and M output quenes are represented by two arrays of sequences of packets:

input : arrayf1..N] of sequence of packet,
output : array[1..M] of sequence of packet.

We suppose that the output queues are initially empty, and that the input queues contain all the packets that have to
be sent. Finally, we use the following operations on sequences:

hd.s = head element of the sequence s,

ths = tail sequence of the sequence s,

{s;x) = sequence obtained by appending the element x at the end of the sequence s,
nils = sis an empty sequence.

4.2. Program Text

Let us first briefly describe the UNITY program notation. As we stated at the beginning of the paper, a
typical UNITY program consists of a declare section, which contains Pascal-style declarations of variables; an

20

initially section, where ail or some of the variables are initialized; and an assign section, which is a set of multiple
assignment statements separated by the operator "[". The statements may be of the form:

var_list ;= exp_list

or may be conditional:
var_listy := exp_list; if bexp; ~ exp_listp if bexpy ~ ...

Several statements may be composed with the parallel bar to form a bigger statement:
statement; |f statementy || ...

Finally, it is possible to generate a list of statements by using the following constructor:
{l dummy_variables : range_constraint :: statement),

The program derived from the specification is as follows (we omitted the declare section):
Program Message Router
initially
{ip.q: 1<p<N A 1<q<M :: switchlp,q,0],switch[p,q,1],tarn[p,q],uplp,q] := L, L false false)
assign
{Packet movement from the input to the ronter: property (P11.1.1))
{J p : 1<p<N :: switch[p,1,01, input[p] := hd.input[p], tl.inputlp] if empty.(p,1,0) A —nil.input[p])

0 {Packet movement along the rows: properties (P11.2.2.1.1) and (P11.2.3.1.1)}
{ p.g: 1<pN A 1<q<M =
switch[p,q,0], switch[p,q+1,0] ;==
L, dec_val.switch[p,q,0] if header.(p.q,0) A val.(p,q,00#1 A empty.(p,q+1,0) ~
L, switch{p,q,0] if (body.(p,q,0) v tail.(p,q,0)) A —tumip.q] A empty.(p,q+1,0)

| (Packet movement from the rows (<N} to the columns: properties (P11.2.5.1.1), (P20), and (P22)}
d pa: 12p<N A 12q<M ::
switch[p,q.0], switch[p+1,q,1] := L, switch{p,q,0] if tum{p,q] A —empty.(p.q,0) A empty.(p+1,q,1)
Il tum[p,q] :=false if tum[p,q] A tail.(p,q,0) A empty.(p+1,q,1)
II : uplpq] :=true if turn(p,q] A tail.(p,q,0) A empty.(p+1,,1) A header.(p,q,1)}

I {Packet movement from row N to the outpnt: properties (P11.2.5.1.2), (P20), and F22)}
{q:1zqM
switch{N,q,0], output{q] := L, (output[gl;switch[N,q,0]) if turn[N,q] A —empty.(N,q,0)
I wm{N,q] :=false if wm[N,q] A tail.(N,q,0)
Il up[N.q] :=true if twmN,g] A tail.(N,q,0) A header.(N,q,1))

0 {Packet movement along the columns inside the router: properties (P11.2.7.1.1), (P21), and (P23)}
{l p.q : 1<p<N A 15qsM =
switch[p,q,1], switch[p+1,q,1] := L, switch{p,q,1] if up[p,q] A —empty.(p,q,1) A empty.(p+1,q,1)
| uplp.q] :=false if up[p,q] A tail.(p,q,1) A empty.(p+1,,1)
Il tum[p,q} :=true if uplp.q] A tail.(p,q,1) A empty.(p+1,q,1) A header.(p,q,0)
Aval{p,q,0)=1)

0 {[{’acket movement from the columns to the output: properties (P11,2.7.1.2), (P21), and (P23)}
{lq:1<g<M =
switch[N,g,1], output{q] := L, (output[q];switch[N,q,11) if up[N,q] A —empty.(N,q,1)
I up[N,q] :=false if up[N,q) A tail.(N,q,1)
i wrn[N,q] :=true if up[N,q] A tail.(N,q,1) A header.(N,q,0) A val.(N,q,0)=1)

[{Signal changes: Properties (P11.2.4.1.1) and (P11.2.6.1.1)}
(I p.q : 1<p<N A 12gSM :: turap,q] == true if —tumfp,q] A —up[p.q] A header.(p,q,0) A val.{p,q,0)=1)
I {dp.q:1spsN A 1<q<M :: uplp,q) := true if —up[p,q] A—tumn([p,q] A header.(p,q,1))

end

21

Initially, ail the row and column registers are empty, and the furz and up signals are off. The packet
movement in the input queues (property (P11.1.1)) is implemented by the first statement of the gssign section. As
long as there exists an input queue that is not empty, its head element is removed and assigned to the first register on
the row, if it is empty. This implies that all the packets in the queune simultaneously move forward from one
position.

The second statement takes care of the packet movement along the rows. It was trivially derived from the
properties (P11.2.2.1.1}and (P711.2.3.1.1).

The movement from the lower rows (below row N} to the columns is realized by the third statement, which
consists of three components. The first component was trivially derived from the progress property (P11.2.5.1.1).
The second component makes sure that the fum signal is tumed off when the tail of the message is passing throngh
the switch. It was suggested by the safety property (P20), or more precisely by the conjunction of (P20} and
(F11.2.5.1.1). The third component, which was derived from the conjunction of (P22)and (P71.2.5.1.1}, makes
sure that the up signal is turned on when the tail of the message is passing through the switch and a header packet is
waiting in the column register. The packet movement along the columns inside the router (fifth statement) was
derived from the properties (P11.2,7.1.1), (P21), and (P23)1in a similar way.

The movement of the packets from the upper locations inside the router—either on the rows (fourth
statement) or on the columns (sixth statement)— is achieved by just appending the outgoing packet at the end of the
output queue, Note that this implies that packets simultaneously move forward from one position in the output
queue, and thus satisfies the property (P11.1.2).

Finally, the properties (P11.2.4.1.1) and (P11.2.6.1.1), specifying that the furn or up signals are turned off
when a header packet shows up in the row or column registers, suggested the last two statements. To be complete,
we also need to show that each statement preserves the safety and invariant properties of the specification. We omit
the proofs here since they can be verified easily using the program text.

5. Conclusion

This paper presents the formal derivation of 2 message router, The refinement methed is that of UNITY.
Although UNITY-style formal derivations have appeared in print before, the questions addressed by this case study
- are different and the lessons learnt bear careful scrutiny and further investigation, Others have been concerned with
the issue of whether formal derivation can be applied successfully to sophisticated problems, such as the router. We
are intrigued by the possibility that careful management of the refinement process may render formal derivation
capable of supporting industrial-grade applications. Most of our effort went not into the router derivation per se but,
in fine tuning the derivation process. In earlier sections we described the ultimate outcome of this study, a series of
refinements and their motivation. Now we turn our attention to those elements of the derivation process that have
been instrumental in shaping the specification style and the derivation strategy.

Early on we observed that it is better to specify and reason about a closed system—i.e., a system and its
environment—rather than an open one. In the latter case, conditional propersties make specifications more complex
and proofs more difficult. In the router example, we have been able to specify a closed system by representing the
input and output environments as infinite input and output queues, with the input queues initially containing all the
packets that had to be sent. The unified formal treatment of the sysiem and its environment reduced complexity
without compromising the desire to separate concerns, the two types of properties were simply identified as
addressing distinct issues. Naturally, only system properties were refined while the environmental properties were
left unchanged.

Another critical element is the formulation of the top-level specification. On one hand, it should be as
general as possible $o as not to restrict prematurely the range of possible designs; on the other hand, it ought to
make the refinements simple. The former is achievable by focusing the top-level specification on input/output
properties alone while the latter is facilitated by selecting the "right" notation. For instance, by identifying packet
locations in the environment as pairs of coordinates (row,column) the refinement of the router as a grid of switches
became very natural. One does not stumble upon appropriate notation. Experience, exploration, and some looking
ahead can provide the required insight. Derivation papers are often criticized for fortuitous early decisions which
seem to indicate that the authors already have seen the final solution. Such objections are valid only if one claims
that the nature of the specification dictates (in some mechanistic way) the next refinement step. True design,

22

however, never makes such pretense. Looking ahead and backtracking are part of the method. Insights gained from
considering various alternatives ultimately lead—relatively early in the process—to the notation we adopted and to
the choice of auxiliary variables: n (source row), m (destination column), 7 (message namber), and j (packet number).
The selection of auxiliary variables was one of the key decisions we had to make; it enabled simple formulation of
many central properties such as those involving message location, no-reordering, and non-interleaving, Note, for
instance, that using the destination column variable in the early stages of the design allowed us to deal with the
valne of the header packets only in the fourth refinement.

The scope of the individual refinements is another issue affecting the ease with which the derivation can be
explained to others and verified formally. As expected, small refinements proved helpful in both respects. They also
seem to help the designer avoid premature commitments. The refinement process can be viewed as a tree, where
internal nodes represent specifications, and leafs represent programs. The more internal nodes, the more leafs at the
bottom of the tree. This conservative strategy leads to a broader exploration of alternatives and a decrease in the
likelihood that not all implications of each design decision are well understood and considered.

Finally, we discovered that it was relatively easy to separate the formal treatment of the proofs from the
refinement process itself. We spent a lot of investigation time on choosing the right top-level specification, the
right notation and auxiliary variables, and the right sequence of refinements. During all this time, we came up with
different solutions, but we hardly ever felt the need to formally verify the correctness of the refinements we
generated—only at the end of the design, when all the design decisions were set, we generated the required formal
proofs for each refinement step, This made us conclude that the refinement process is sufficiently intuitive to allow
arigorous design methodology to proceed without the burden of unnecessary and cumbersome proofs. This also
means that design and verification can actually be carried out by different people. People with synthetic skills could
focus their energy on the design while people with strong analytical skills could deal mostly with the proofs, often
without even requiring an understanding of the design details. These observations strengthen our belief that formal
methods may soon play an important role in the development of industrial-grade software systems.

References

M} Back, R. J. R., and Sere, K., “Stepwise Refinement of Parallel Algorithms,” Science of Computer
Programming, vol. 13, no. 2-3, pp. 133-180, 1990.

2] Chandy, K. M., and Misra, J., Parallel Program Design: A Foundation, Addison-Wesley, New York, NY,
1988.

3] Cunningham, H. C., and Roman, G.-C., “A UNITY-Style Programming Logic for a Shared Dataspace
Language,” IEEE Transactions on Parallel and Distributed Systems, vol. 1, no, 3, pp. 365-376, 1990.

4] Dijkstra, E. D., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[51 Dijkstra, E. W., and Fiejen, W. H. J., A Method of Programming, Addison-Wesley, Wokingham, England,
1988.

I6] Ebergen, J. C., and Hoogerwoord, R. R., “A Derivation of a Serial-Parallel Multiplier,” Science of
Computer Programming, vol. 15, pp. 201-215, 1990.

[7 Gries, D., The Science of Programming, Springer-Verlag, New York, NY, 1981.

8 Gries, D., and Prins, J., “A New Notion of Encapsulation,” ACM SIGPLAN NOTICES, vol. 20, no. 6,
pp. 131-139, 1985,

9] Hoogerwoord, R. R., “A Calculational Derivation of the CASOP Algorithm,” Information Processing
Letters, vol. 36, pp. 297-299, 1990.

[10] Knapp, E., “An Exercise in the Formal Derivation of Parallel Programs: Maximum Flows in Graphs,”
ACM Transactions on Programming Languages and Systems, vol. 12, no. 2, pp. 203-223, 1990.

f11]
(12
(13]
[14]

[15]
[16]
[17]

{18]

[19]

[20]

23

Lengauer, C., “A Methodology for Programming with Concurrency: the Formalism,” in Science of
Computer Programming, North-Holland, vol. 2, pp. 19-52, 1982,

Lenganer, C,, and Hehner, E. C. R., “A Methodology for Programming with Concurrency: an Informal
Presentation,” in Science of Computer Programming, North-Holland, vol. 2, pp. 1-18, 1982,

Misra, J., “General Conjunction and Disjunction Rules for unless,” Dept of CS, The University of Texas at
Austin, Austin, TX 78712, Notes on UNITY 01-88, 1988.

Misra, J., “Stable Conjunction,” Dept of CS, The University of Texas at Austin, Austin, TX 78712, Notes
on UNITY 21-90, 1990.

Morgan, C. C,, “The specification statement,” ACM TOPLAS, vol. 10, pp. 403-419, 1988.
Morris, 1. M., “Laws of data refinement,” Acta Informatica, vol. 26, pp. 287-308, 1989.

Roman, G.-C., and Cunningham, H. C., “Mixed Programming Metaphors in a Shared Dataspace Model of
Concurrency,” IEEE Transactions on Software Engineering, vol. 16, no. 12, pp. 1361-1373, 1990.

Roman, G.-C., and Cunningham, H. C., “Reasoning about Synchronic Groups,” in Research Directions in
High-Level Parallel Programming Languages, J. P. Bandtre, D. L. Métayer, Eds., Springer-Verlag, New
York, NY, vol. 574, pp. 21-38, 1992.

Roman, G.-C., Wilcox, C. D., and Plun, J. Y., “On Deriving Distributed Programs from Formal
Specifications of Functional Requirements and Architectural Constraints,” 12th International Conference on
Distributed Computing Systems., pp. 494-501, 1991,

Staskauskas, M., “A Formal Specification and Design of a Distributed Electronic Funds-Transfer Network,”
IEEE Transactions on Computers, vol. 37, no. 12, pp. 1515-1528, 1988.

24

A . FORMAL DEFINITION OF THE UNITY LOGIC OPERATORS

The definition of the UNITY operators is based on the Hoare triple:
{p}s{q]

which means that, starting in a state satisfying the precondition p, the execution of the statement sends in a state
satisfying the postcondition ¢ Let Fbe a UNITY program, F.assign be the assign the section of F, and INITa
predicate denoting the initial state of F. The UNITY operators are formally defined in the following way:
* punless g = {Vs:se Fassign :: {pa—q} s {pvq}).
Whenever the predicate p holds for a program state, it continues 10 hold at least until gholds.

» stablep = (Vs:se Fassign: {p} s {p}) =p unless false.
The predicate pis a stable predicate if it remains true forever once it becomes true.

* const p = stable p A stable —p.
The predicate p is constant if it remains true forever if it is initially true, and false forever if it is
inidally false,

*» invp = (INIT=p) Astable p.
The predicate p is invariant if it holds in the initial state, and is stable all along the execution.

* Dpensures g = punless g (3s:s e Fassign :: {pa-q} s {q]).

Whenever p holds, it must hold at least until gholds (p znless g), and there must exist a statement in
the program that establishes the truth of ¢

* P2q.

The assertion p+— ¢ (pleads to g) is true iff it can be derived by a finite number of applications of the
following inference rules:

p_ensures g
p—g

Jd T .

—— (trangitivity)
(Vm:me W : pm g
{(IJm :m e W: p(m)) —q

for any set W (disjunction)

B. FORMAL PROOFS OF THE REFINEMENTS

We give here the proofs of the first, second, and sixth refinement. The proofs of the other refinements,
which are trivial, have been done in the body of the paper. We sometimes give numbers to properties, using the
following conventions: numbers (DP1), (DP2), ... are used for properties that are derived from the specifications;
numbers (Q1), (Q2), ... are used for intermediate properties that have to be proved; numbers (R1), (R2), ... are
finally used for results that have been proved. The numbering starts from 1 at each new refinement proof. Finaily,
let us mention that the UNITY theorems that we use below are listed in appendix C.

B.1l. Proof of Refinement 1 '

We need to show that specification Sy implies specification Sy, i.e., properties (PI) through (P11).

25

¥ Proof of Property (P1)

Although properties (P1) through (P4) are not syntactically changed in the refinement, the definition of the
function @ has changed, which implies that they need to be verified. To avoid confusion, we call them (P'I), (P2),
(P3), and (P4)in §}, and we explicitly use functions 77and J7'in the formulas. The property (PL)is:

inv {31 Lo=l) A k=(Z B.1: I1.p=l A mid.p=mid.o. :: 1)
= ®1)
k23 A (par.o=1 & type.a=h) A (1<pnr.a<k < type.o=b) A (prr.c=k ¢ type.o=t).

Let’s show that (P'1) is equivalent to (P1). For this, we need to show:
@Al s o=l & @1 o=l QD

(X B : IT'B=1 A mid.B=mid.cc :: 1} = (¥ B, : ILB=1 A mid.B=mid.cx :: 1). Q2

Proof of Property (Q1)
@l o=l
< [definition of E'and R}

(3p.a.r : 1<p<N A 129SM A 0<e<1 = IT.o=(p,g1))
v 3p.q: 1<psN A g=0 :: IT'.0=(p,q,0)}
v {dp.q: p2N+1 A 1<gsM :: o=(p,q,1))

¢> {coupling invariant}

{3p,q.r : 1<psN A 1<9sM A 0=r<1 3 [Lo=(p,q.0))
v (Ip.q: 1<p<N A q<0 :: [Lo=(p,q))
v (3p.q: p2N+1 A 1<g<M :: ILo=(p,q)

< {definition of Fand R}
3l i TLo=l). a

Proof of Property (Q2)
{2 B : IT.B=Il A mid.p=mid.ct :: 1)
= {definition of E'and R}

(Z B.p.art, : 1<p<N A 15g<M A 0<1<1 A IT'.B=(p.q.5) A mid.p=mid.c =z 1)
+ (X B.p.q: 1SpsN A q<0 A IT'.B=(p,q,0) A mid.B=mid.c. :: 1)
+ (ZB.p.q: p2N+1 A 1gsM A IT'.B=(p,q,1) A mid.B=mid.c¢ :: 1)

= {coupling invariant]
(Z B.p.gr, : 15p<N A 1<g<M A 0<r<1 A I1B=(p,q,r) A mid.f=mid.ct :: 1)

+ (X B.p.q : 1=p<N A q<0 A I1.B=(p.q,0) A mid.B=mid.cx :: 1)
+ (Z B.p.q: p2N+1 A 15g<M A TLB=(p,q,1} A mid.f=mid.cx :: 1}

= {definition of Eand R}
(T Bl : ILB=l A mid.f=mid.cx =: 1), 0

The proofs of properties (P2), (F3), and (P4) are similar.
¥ Proof of Property (P5)

In the environment, each packet has a unique location, and each location contains at most one packet:
inv c@(.9) A (q20 v p2N+1) A B@(D'.q) A (¢SO v p2N+1) = (pid.a=pid.p < @.0)=('.q). [156)]

Let us start from property (F5. 1)

and

26

inv 0@(p.q1) A B@'q'r) = (pid.o=pid.f & (p.4.0=('q'1Y)

{predicatecalculus}

inv a@(p,q,r) A [(1=0 A q<0) v (r=1 A p2N+1)] A B@(D,q'1) A [('=0 A ¢'<0) v (r'=1 A P2N+1)]
=

(pid.o=pid B & (p.4.0)=(".q'1))
{coupling invariant}
inv 0@(p.9) A (<0 v p2N+1) A B@(P'q) A (g0 v P2N+1) = (pid.o=pid.B = (p,0)=(0'q)).

The truth of (P6) can easily be derived from (P6.1) in the same way.
Proof of Property (P7)

Packets are sent in the order they are quened:

(344" : q<q'<0 : 0@(p.9) A P@(p.q)) unless —(3 q': ¢'<0 :: B@(p.9)). PT)

From (P11.1), (P6.1), and the definition of “»”, we easily get:
o@(p.,q.0) A gsO0unless 0@(p,g+1,0) A q<0

B@(.9'.0) A ¢'<s0 unless P@(p,q'+1,0) A q'<0.

By applying the conjunction rule, and restricting gto be smaller than ¢ we get:

o@(p,q,0) A B@(.9.0) A g<q'<0

unless

(0@(.9.0) » B@(p.q'+1,0)) v (2@(p.q+1.0) A B@(p.9'0)) v (0@(p.q+1.0) A B@(p.q'+1.0)] A g<q'<D
{consequence weakening}

@(p.q.0) A P@(p.q'0) A q<q’<0

unless

{@rn : wEn'sl A (r=q A 10'=q") :: 0@(p,%,0) A B@(p,1',0))

{each location contains at most one packet (property (P3. 1))}

0@(p.q,0) A P@(P.q4,0) A q<q'<0

unless

Gr,n’ - w<w'<l A -(n=q A 7'=q) :: a@(p,%.0) A B@ (P70

{each packet has a unique location (property (P5.1))

o@(p,q,0) A B@(p.q.0) A g<q'<0

unless

—(0@(P,q.0) A B@P.q".0) A @nx : n<w’<l i 0@(p,x,0) A B@(,7',0)
{introducing quantification on gand g and naming the predicates)

(Vq,q' : g<q'<0 :: P(q.q) unless —P(q,q) A 3r,n' 1 n<n'<l 2 P(m,m)))
{corollary of the general disjunction rule}

(3a.9'+ 9<q's0 :: P(q,)) unless (Vq.q': q<q'<0 :: ~P(q,9)) A (34,9 : q<q’<1 :: P(q.q)
{predicate calculus + consequence weakening)

{34,9' : g<q'<0 :: P{q,q)) unless (Jq: q<1 :: P(q,1))

{unfolding P+ consequence weakening)

F4.9' : q<q'<0 :: 0@(p,q,0) A B@(p.q,0)) unless P@(p,1.0)

{consequence weakening: each packet has a unique location)

{39.9' : g<q's0 :: a@(p,q.0) A P@(P.q.0)) unless ~3q' : ¢'<0 :: B@(p.q,0))
{coupling invariant}

@7,

27

¥ Proof of Property (P8S)

Packets received in the output queues can only appear behind the packets already present in the queues:
stable (3p: p2N+1:: 0@(p,g) A =Gp': p>p =2 BERE.Q)). (P8)

We first prove some properties that will be useful along the demonstration.

Derived Property 1

Packets on the rows can only move to their destination column:

@vip.g = o'vI@)'.q'.0) A q=dest.o’[v]) unless 3v'p' : p'<sN+1 :: ¢'V]I@ P'.a.1)). (DP1)

Proof of Property (DP1)

From the unless part of (P11.1)and (P11.2), and the definition of "»", we get:
olvi@(@'.q.0) A g=dest.o' VI Aq'#q unless 3v" :: G'V'I@(p',q'+1,0))
=> {consequence weakening: each packet has a unique location}
o {vi@{@'.q.0) A g=desta'[v]1Aq2zq unless —o'[VI@(D'q.0) A GV".q" :: o' VI@ '.q",0. (R1)

From (P11.2) and the definition of "»", we also get:

o' [v1@(p',q.0) A g=dest.c'[v]] unless 3v" :: o'[v]@P+1,q,1) A p'+1sN+1)
= {consequence weakening: each packet has a unique location}

o'vi@(@'.9.0) A g=desta'[v] unless —o'[vI@(p'.q,0) A 3v"p" : p"sN+1 =: o'vi@(".a,1
= [simple disjunction with (R1)}

o' vI@@'q.0) A g=dest.o'[v]

unless

_ﬁo.vivll@(pl,ql,o) A (Gvu,qn = O"[V"}@(p',q",O))) (avu,pn : p"S.N“}‘l . 0.1 [V"]@(D",q, 1)})
= {corollary of the general disjunction rule on v p’q)

@vip'q = ' IVI@(P'q.0) A g=dest.o'v])

unless

(Fvipig = ~oVI@E.Q0) A (@V'P'd = S VIRET) v @V’ : PN+ = STVIRE 1)
= {predicate calculus + consequence weakening)

@v'p\q o' [v1@(p'.q.0) A g=dest.o’[v]) unless 3v.,p': PN+l :: o' VI@('.q.1)). g
Derived Property 2

Packets stay in the output environment forever, once they reach it:

stable (3p : p2N+1 :: o[vi@(p.q.1)). (DP2)

Proof of Property (DP2)

From (P11.1) and the definition of " »", we get:
olvl@(,q.1) A p2N+1 unless o[vl@(p+1,q,1) A P2N+1
=> {consequence weakening: each packet has a unique location) _
olvi@(p,q,1) A p2N+1 unless —o[vi@(p,q,1) A p2N+1 A ' p2N+2 1 o[VI@(p'.9,1))
= {corollary of the general disjunction rule on p)
{Gp : p2N+1 :: 6[VI@(p,q,1)) unless (¥p : p2N+1 it —o[vI@(p.q,1)) A (Tp : p=N+2 =: olvl@(p,q,1)

28

<> {predicatecalculus}
(p : p2N+1 3 6[v]@(p.q.1)) unless false. 0

To prove (P11), we are going to show :
stable (Ip : p2N+1 :: o[vI@(p.q.1) A =(Fp' : p'>p : S VI@(D,a, 1)) (Q3)
which, according to the coupling invariant, is equivalent to (P71). Since each packet has a unique value, the second
conjunct is equivalent to;
—3v'p': p>p : 6 TVI@(D' . 1)
& {predicatecalculus)
=(Evip': p>p 2 o VIRE'\QI) A (HEVP.Q 1 SIVIRE.E I v @VipLd S VIRM QL))
«> {predicatecalculus)
-“'lGV',pl,q.,r' :: Gt[vr]@(pt’ql’rl)) v (_'(Bv.,p. : pi>p - G'[V']@(D',q,l)) A {HV',p',q',r' :: 0'[\"3@([)‘,(;‘,1“))).
The second disjunct is equivalent to:
=@V PSP A Q=g AT=L 2 O VIQP' G A GV G 1 o TVI@(D.G)
< {predicatecalculus}
@vip.qr i —(>p A q=q Ar'=l) i S [VI@QP.q.))
< ([predicatecalculus)
@vplair i =(p>p A q=q ar'=1) : SVI@(P.G'T) A (dest.o’[vVizg v dest.o'[v]=q)}
« (dest.o(vihig = —(q=gAr=I)+ predicate calculus}
@vip.g'r i o' vI@P'.q') A dest.o'[v]=g)
\"4 (BV‘,pr’q’ . (G'[V']@(p"qlgo) A deSLG'[V']=Q) v (G'[V']@(p',q,l) A pusp))
So, the second conjunct of property (Q3)is equivalent to:

—~3v'p.q.r : SIVI@P g) R2)

v @v.pla.r O VI@[M.q'r) A dest.o'[v]=g) (R3)

v@Evip.g = (0 VI@r'q,0) A desta'vl=g) v (G'[VI@(D\q,1) A p'<p)). R4
To prove (23), it is sufficient to show:

3p : p2N+1 :: o[vl@(p.a.1) A (R2)) unless false Q9

{Gp : p2N+1 =2 o[vI@(p.q.1) A (R3)) unless false Q5)

(3p : p2N+1 :: o[vI@(p,q,1) A (R4)) unless false. (Q6)

Proof of Property (Q4)

From (P2), (P3), (P4), and the definition of const, we get:
-{3vpqr i o' VI@({p'.q' 1)) unless false
= {simple disjunction with (DP2)}
(3p : p2N+1 =z o[vl@(p.q,1)) A ~(3V',p.q.1 2 ' TVI@(D' .10 unless false
< {predicatecalculus}
Q4). 0

Proof of Property (Q5)

From (F2), (P3), (P4), and the definition of const, we get:
@v'pig'r o'IVI@(p'.q'1)) unless false

29

=> {stable conjunction}
@viplgir s o VI@(P'.q.r) A grdest.o’[v]) unless false
= {simple disjunction with (DP2))
(Fp : p2N+1 :: o[v1@(p.q. 1)) A 3V p'q' 1 2 O [VI@(P'.q'1) A grdest.o’[v']) unless false
<> [predicatecalculus}
(Q5) Qa

Proof of Property (Q6)

By applying the conjunction rule on (DP2) and (DPI), we get:

(Elpl: p2N+1 1 o[vl@(p.q.1) A 3v'.p'q" = S [VI@(D'.q',0) A g=dest.a’[v]))
unless
(Jp : p2N+1 = o[VI@(P.q.1) A 3v'p': pP'SN+1 = ' VI@ (', 1))
= {consequence weakening: each location contains at most one packet)
(@p: p2N+1 = o[VI@(p.g.1) A Bv'.0'.q i S VI@(D'.q,0) A g=dest.c'[vV]))
uniess R5)
{Fp @ p2N+1 = o[vI@(p.q,1) A @v'p' : p'<p : I VI@(D',0,1))).

From (P11.1), (P11.2), and the definition of "»", we get;
olvl@(p.q.1) A p2N+1 unless o{vi@(p+1,q,1) A p>N+1

o'[vI@(p'q,1) A p'<p unless 3w’ ;1 o'Twi@(p'+1,q,1)) A p'<p.

An application of the conjunction rule Ieads to :

cr[vi]@(p,q,l) A o' V]@(p'q,1) A p2N+1 A p'<p
unless
[(olvi@(p,a.1) A Gw':: o' [W]@(p+1,9,1)))
v (olvl@(p+1,4,1) A ¢'[VI@(p'q.1))
v (o[vl@(p+1.,1) A 3w i o' W@ (D'+1,9,1)))] A p2N+1 A p'<p
= {consequenceweakening}
olvl@(p.q.1) A o' V1@ (p'q,1) A p2N+1 Ap'<p
unless
3w’ 1 i2N+1 A TET A —(1=p A ®'=p") :: 6[VI@(m.q.1) A o'wl@(r',q,1))
<> {each location contains at most one packet}
olvl@(p.q,1) A o'[vVI@(D'q,1) A p2N+1 A p'<p
unless
EwW' a1 w2N+L A TR A (T=p A ©'=p) :: 6[v]@(m,q,1) A S'WI@ (' q.1))

<> {each packet has a unique Iocation}

c[vl]@(p,q,l) A o' VI@(p',q,1) A p2N+1 A p'<p
unniess
—(ovl@(.q.1) A ¢ [VI@([P'q,1)) A GW'm,w 1 T2N+1 A T<n 2 o[VI@(n,q,1) A S TWI@(n'q.1))

= {universal quantification on v}p,p'+ naming the predicates}

(VV'.p.p' : p2N+1 A p'<p 2 P(v',p,p) unless —P(v',p,p) A @w' a1 m2N+1 A w'<r o —P(w' 7,1
=> {corollary of the general disjunction rule}

Gv"p’p. : p2N+1 A p‘<p :: P(v"p’p!))

unless

{VV.p.p' : p2N+1 A p'<p i =P(v'p,p)) A Gv',p,p' : p2N+1 A p'<p :: P(v',p,p")

30

¢ {predicate calculus + unfolding P}
3v'p.p' 1 p2N+1 A p'<p : VI@(D.q,1) A V1@ (P',q,1)) unless false
& {predicatecalculus}
(Gp : p2N+1 :: olvI@(p.q.1) A 3V'p': p'<p :: S IVI@(P'.q,1))) unless false
= {cancellation with (R5))
(Qe). a

¥ Proof of Property (P9)

From the row to the column, packets remain ordered according to their identifiers:

inv o= B = pid.B<pid.c. (P9)

From the definition of <, we get:

inv (@pg.q :q<qs0: 0@(p,q.0) A B@(p.q'0))
v (Gp.p'\q : N+1<p<p' :: a@(p,q,1) A B@(p',.q,1) A sTc.0=51.8)
v {3p.pq.q : <0 A p2N+1 &2 0@(p.q,0) A B@(P'a,1) A sre.o=src.p)
=
o<p

= {property (P9.1))

inv (EGpg.q :g9<q<0 : 0@(.q.0) A B@(p.4'0))
v {3p.p'.q : N+1<p<p' :: 0@(p,q,1) A B@('.q.1) A src.o=src.B)
v Op.p.a.q : <0 A PN+ a@(D.q.0) A B@(P'q,1) A stc.oe=src.B)
==

pid.B<pid.cc
< {coupling invariant}
inv o B = pid.p<pid.ct,
Property (P10)can be derived from (PI0.1)in a similar way.
¥ Proof of Property (P11)

Every packet in the input eventually moves to the output.

ovi@@.9) A g0 3 v'p'q' 1 p2N+1 i olv]@('q)). (P11)
To prove (P11), we will use (P11.1), (P11.2), and the induction principle to show that :

+ Packets in the input eventually move 1o the destination column;

clvi@([®.4.0) A <0+ (3v'.q' : o[vI@(p+1.9,1)). Q7N

» Packets on the destination column eventually move to the output:
(v.p.q: p<N : o[VI@(p.g, 1)) > (v,p,q : p2N+1 :: ovI@(p.q.1))- Q8

Proof of Property (Q7)

From (Pi1.1), (P11.2), and the definition of "»" , we easily get:
olvl@(@.q,0) > Gv' i o[vI@(p.a+1.0) v @v' i1 olvI@(p+1,q.1))
= (stable conjunction + (V'v,v' > dest.ofv]=dest. ofv'])}
o[vI@(p.q.0) A dest.olvl-g=d i (Iv' :: o[vI@(p,q+1,0) A dest.olv']-(g+1)=d-1) v (3V' :: olvl@{+1.q,1)

31

= {general disjunction on vand ¢

(3v.q :: o[v1@(p.q.0) A dest.o[v]-g=d)

—

@v.q :: olvl@(p,q.0) A dest.olvl-g=d-1) v (3v,q :: 6[vVI@(p+1,q,1)
= {induction principle)

(Av.q @ oVI@(p.q.,0) - (3v.q = o[vI@(p+1.4,1))
= {implication rule + transitivity of leads-to)

Qn. Q
Proof of Property (Q8)

From (P11.2), we get:
olvl@{®.q.1) A pN - @v' i 6[v1@(p+1.9,1) A p+1<N) v @' i o[vI@N+1,g,1))
= {stable conjunction}

olvl@([@.g.1) A p<N AN-p=d

>
@vi olvl@(p+lq,1) A p+lsN A N-(p+1)=d-1) v 3v' 2 o[VI@(N+1,9,1))
=» {general disjunction on v, p, and g}
(EV,I),Q . PSN = O'[V]@ (p:q’l) A N—p=d)
|_)
Gv.p.q : pN :: o[vI@(,q,1) A N-p=d-1) v @v,q :: o[VI@(N+1,q,1))
= {induction principle}

(3v.pq : psN :: 6[VI@ (.. 1)) - Evq =: olVI@N+1,g,1))
= (implication rule + transitivity of leads-to)

(Q8).]

The truth of (P11) for p equal to Nfollows directly from (Q7

olvI@MN.q.0) A g0 3viq' :: olvVI@N+1,q,1))
=> {coupling invariant}

olvl@N,g) A g0+~ (3 v'p'q : p2N+1 =2 [VI@({P'.q))-

For p smaller than N, we have (property (Q7):

o[vl@(p.4,0) A p<N A g=0 > 3v',p'q" : p'SN :: olVI@(p g, 1))
= {uansitivity with (Q8)}

ovl@(.9.0) A p<N A g0 — @v',p'q : p2N+1 = ofvI@(p'q',1))
< {coupling invariant)

o[vl@P.@) A p<N A q<0— T v'p'.q : p2N+1 = o[VI@EP' Q).

B.2. Proof of Refinement 2
We first need to show several derived properties,
Derived Property 1

If a non header packet is in the row register of a switch (p,g)and gis not the destination column, a message
is in transit through the switch along the row :

inv o[vI'"@(0.,q.0) A th A q21 A grdest.o[v] = Op.q'r'g" : q"<q<q' :: message.(p',q'.r).(p.q",0)). (DP1)

32

Proof of Property (DPI1)

Let us first prove:
inv o[vI'@(p,q,0) A 1#h A g21 A geedest.olv] = (Gop'.q'r': mid.o=mid.ov] A q<q’: ch@(p',q.r). (Q1)
Since messages are properly structured {property (P1)), we have:
inv o[v]*@(p,q,0) A 1#h = Go.p'.q'x : mid.o=mid.cfv] :: (xh@(p',q',r'))
= [predicatecalculuos)
inv o[v]"@(p,q.0) A T#h A @21 A gedest.olv] = (Joup'.q'r : mid.o=mid.olv] :: M@ ("))
<> {packets reside either on the source row or on the destination column)
inv o[vI*@{D.0,0) ~ t#h A g21 A g#dest.o[v]
=

Gotq ¢ mid.a=mid.olv] :: PM@(p.q.0)) v Seup'.q' : mid.o=mid.o[v] A q=dest.o :: c2@(p',q", 1)
= [packets are ordered according to their identifiers, and the header packet has the smallest identifier}

inv o[vI"@(p.q.0) A Tth A g=1 A gedest.o[v]
=
{Jo,q": mid.o=mid.olv] A g<q’:: ah@(p,q',O))vGa,p',q': mid.a=mid.o[v] A g'=dest.oc: o@(p',q',1))
= (packets from the same message have the same destination}

inv o[v]'@(p.q,0) A T#h A g21 A gdest.olv]
1

Fo.g’ : mid.o=mid.o[v] A g<q':: M@(p,q"0)) v oup'.q' : mid.o=mid.o[v] A q<q’ :: M@ (p',q. 1))
= {predicatecalculus)
QD).

Let us now prove:

inv o[vI'@(,q,0) A t#h A 21 A grdest.olv] = @B,q" : mid.p=mid.olv] A q"<q: Bl@(p.q".00). Q2)

If ofv/is a tail packet, (Q2)is trivially true. Let us prove (Q2)for body packets. Since messages are properly
structured, we have:

inv o[vI’@(p,q.0) = 3B.p".q"x" : mid.B=mid.o[v] :: B'@(p",q".1")
= {predicatecalculus}

inv o[vI’@(p.q0.0) A g1 A gedest.o[v] = (3B.p".q"x" : mid.B=mid.c[v} :: B'@(p".q".1"))
&> (packets reside either on the source row or on the destination column}

inv o[vI’@(p,q,0) A g1 A gedest.olv]

=
(3B.q" : mid.B=mid.c[v] :: B'@(p,q",0)) v (3B.p".q" : mid.B=mid.c[v] A q"=dest.} :: B'@(p".q".1))
<> {the identifier of the tail packet is greater than the identifiers of the other packets of the message}

inv o[vI’@(p,q,0) A @21 A gedest.olv]
=
(3B.q" : mid.B=mid.c[v] A pid.p>pid.clv] :: B'@(p.q".0))
v {E@B.p",q" : mid.B=mid.c[v] A q"=dest.B A pid. B>pid.olv] :: B'@(p",q",1))
¢> {from the rows to the columns, packets are ordered according to their identifiers (property (F9.1))
inv o[vI°@(p.q,0) A q21 A gedest.o[v] = (3B.q9" : mid.B=mid.o[v] A q"<q :: B'@(p.q".0)).

The truth of (DPI) finally follows from the conjunction of (Q1)and (Q2). x

33

In a very similar way, we can deduce the two following properties from Sz
Derived Property 2
If a non header packet is in the row register of its turning switch, a message is in transit through the switch

from the row to the column:
inv o[v]"@(p,q.0) A 1#h A g=dest.olv] = (Fp'.q' : P>DPA Qg message.(p',q,1).(.q,0)). (DP2)
Derived Property 3
If a non header packet is in the column register of a switch (p,g), a message is in transit through the switch

along the column:

inv o[vI'@(p.q,1) A T#h A psN

= (DP3)
Gp'p"q"1" 1 p>p A @'<p v (p"=p A 1"=1)) :: message.(p'.q.1).(p".q"x")).

Let us now focus on the proof of the refinement, i.e., the proof that Sz implies property (P77.2);

olvi@({D.q,t) A psN A g21 until 3 v'p'q'r : (0.0.»@'4'F) : o[vVI@D.Q'1)). P11.2)
The unless part of (P11.2}is equivalent to (P11.2,1). The proof of the leads-to part can be decomposed in three
steps:

+ Packet movement along ihe rows:
o[vi@(P.0,0) A g21 A gzdest.olv] > Gv' 2 alVI@(p.g+1.0)). Q3

= Packet movement from the rows to the columns:

olvl@(p.q.0) A g=dest.olv] s @v' 2 o[VI@(p+1,9,1)). Q4

= Packet movement along the columns:

olvi@({.q,1) A p<N - @v' : o[v1@(p+1,9,1)). Q3

The leads-to part of (P11.2) can then be derived from (Q3), (Q4), and (Q5) by applying the simple disjunction rule.
Proof of Property (Q3)

For header packets, (Q3)is equivalent to (P11.2.2). For non header packets, we have:
o[V'@(.q.0) A T2h A @21 A gdest.o[v]
= {property (DPL)}
olvI"@([.q0.0) A T#h A g21 A 3p'a'F.q" : q"Sq<q’ = message.(p’,q'.0).(p.q".0)}
=> {invariant (P13)}
olvI'@(p.q,0) A Th A g=1 A —tum(p,q)
~» {property (P11.2.3)}
@vue[vi1@(p,g+1,00). Q

34

Proof of Property (Q5)

For header packets, (Q3) follows from the transitivity of leads-to applied to properties (P11.2.4) and
(P11.2.5). For non header packets, we have:

o[vI*@(P.q.0) A Th A g=dest.o[v]
= ({property (DF2) + destofvl>1)
olvI'@(p,q,0) A T#h A @21 A (Fp'.q' : p>P A q'<q = message.(p',q,1).@(p.q'.0))
=» {invariant (P14)} :
oIVI'@(p.q.0) A Th A 21 A turn(p.q)
> {property (P11.2.5))
@viovi@(p+1,q,1). a

The proof of (QX6), based on properties (P11.2.6), (P11.2.7), (P15), and (DP3), is symmetrical.
B.3. Proof of Refinement 6

We must show that Sgimplies properties (P11.2.2.1)-(P11.2.7.1) specifying the packet movement inside
the router. We are first going to show the packet movement along the columns, and then use that result to show the
packet movement at the turning switches and along the rows.

¥ Proof of Properties (P11.2.6.1) and (P11.2.7.1)

We are going to prove the packet movement along the columns:

0@(p.4.1) A p<N A up(p,q) - 0@(p+1.4,1) (P11.2.7.1)
and the fact that headers on the columns eventually turn the up signal on:
o"'@(.9,1) A p<N - 0@(p.g,1) A up(p,9) | (P11.2.6.1)

by induction on the row number p. However, to prove that each property is true for the row b, weneed to know that
both are true for the row p+1. This implies that (P11.2.7.1) and (P11.2.6.1) must be proved simultaneously in the
same inductive proof.

Let us first say a few words about (P11.2.6.1). The refined property (P11.2.6.1.1) states that, when 2
header is waiting on the column and the signal furnis off, either the up or the furn signal will be turned on:

aP@(p,q,1) A p<N A —tun(p,g) ensures (cP@(p.g,1) A up(p,g) v tarn(p.q)
= (conjunction with &?@(p,q,1) unless (3o : pid.ci=pid.cz > a?@(p+1,9,1)))

ah@(l)»q’l) A pSN A "‘mm(p:Q)
ensures

(©*@@.q.) Aup@E) v @@ (p.a,1) A @) v (G : pid.or=pid.o: :: h@(p+1,,1)) A turn(p,q)
= {property (P6.1) =>src.a<p + src.c'=sre.q)

ah@(p,q,1) A p<N A —tum(p,q)
ensures

(@P,a.1) Aup(.9) v (P@(p.a.1) A tum(p,g) v (Fet' : sre.o<p 1z eP@(p+1,q,1)) A um(p,q))
=> {messagesare properly structured }

al'@(p,g,1) A pSN A —turn(p,q)
ensures

(©P@(.g,1) A up@.D) v (P@(p.q,1) A turn(p,))
v (G0’ Bp\q'r : mid.f=mid.o’ A p'<p :: aP@(p+1,g,1) A B*@(p'.q.r)) A tum(p,q))
< {invariants (P15} and (P12)}

o"@(,g,1) A psN A —tumn(p.q) ensures (¢P@(p,g,1) A up(p,)) v (ch@ .q,1) A turn(p,q)).

35

To prove (P11.2.6.1), we thus only need to show that when a header is waiting on the column and the signal furmis
on, the #p signal will eventually be turned on:

oR@(p,q,1) A p<N A tun(p,g) > M@ (P,q,1) A up(p,q). Qn

Informaily, the truth of (Q1)is based on the fact that, if the signal furm is on, a message is currently taking its turn
through the switch (p,g) and, according to the faimess property (P22), when the tail of the message will pass through
the switch, the up signal will be turned on. To prove it formally, we need to show some intermediate results.

Definifi
We define predicate failp, @(p,q,0) to be true iff a message is taking its turn (or waiting for taking its turn)

through the switch (p,¢), and the tail of the message is at location (p,g.0).

ow:

tailp, @ (p.q"0)
GouB.p' : dest.o=q A mid.o=mid.p :: B'@(p.q'0) A (M@ (p.9.0) v R@(p'.q. 1))).

Derived Property 1

The tail of the message mrning through the switch (3,¢) can only move one location at a time along the

tailp (@ (p.q.0) A q'<q unless tailp @ (p,q'+1,0). (DP1)

Proof of Property (DPI)

Property (DPI) follows from the three properties below, which can be derived from (P71.2.1);

@3v = olv]"@(p.q,0) A q=dest.o[v]) unless (v,p' : olvIN@(p'.q, 1)) R1)
@v,p' : olvI*@(p'.q.1)) unless false R2)
@w :: FWI'@(p.q'0) A g'<dest.o’[w]) unless 3w :: o'[w]l'@(p.q+1,0)). ®3)

By applying the cancellation rule on (R1)and (R2), we get:

@v,p : (o[vI'@(p,q,0) v o[vI'@(p'.q. 1)) A g=dest.o[v]) unless false
{conjunction with (R3)and restricting o/w/to belong to the same message as ofv]}

@vwp': o WI'@(.q.0) A (CIVIP@(P.4.0) v SIVIN@(p'.q.1)) A q'<q A g=dest.o[v] A mid.o'[w]=mid.ofv])
unless
@v.wp' 1 ¢WI'@(p.g+1,0) A (o[vI'@(p,q.0) v o[v"@(p'q,1)) A g=dest.o[v] A mid.c'[wl=mid.o[v])

{general disjunction on ¢and o'+ consequence weakening)

(30u.B.p’ : g=dest.a A mid.B=mid.c. :: B'@(p.q0) A (¢P@(p.q.0) v @ (p',q,1))) A q'<q
unless

{Fo,B.p' : g=dest.o A mid.B=mid.c :: B'@(p,q+1,0) A (ah@(p,q,O) v ah@(p',q,l)))
{definition of tailp, g}

(DP1). a

Derived Property 2
The signal tum(p,q) stays on until the tail of the message turning through the switch (p.g} shows up:
turn(p,q) unless turn(p,q) A tailp ¢@(p.q.0). (DP2)

36

Proof of Property (DP2)

From (P11.2.1), we can easily derive:

{Gw.,q" :: ' W' @(p.q.0) A dest.o'[wl=q) unless Ow :: ¢'[w] t@(p,q,0)) R4
{conjunction with (R2)and restricting ofw/ 1o belong to the same message as ofvj)

@Ev,w,p.q : oTwW'@(p.q,0) A olvIP@(p'.q,1) A mid.c* fwl=mid.o[v]}

unless

@vwp’ : o' WI'@([.a.0) A olvI"@(p'.g,1) A mid.o'[wl=mid.c[v])

{general disjunction on oand o'+ consequence weakening}

(Qo.B.p'g’ : midf=mid.o. :: B'@(p.q4'0) A P@(p',q,1))

unless

(FoBp' : mid.f=mid.a :: B'@(p.q,0) A cP@(p'q,1))

(invariant (P14)}

(Fo.p.p'q : midf=mid.c :: B'@(p.q'0) A M@(p',q,1)) A tum(p,q)

unless R5)
Gofp' : mid.p=mid.c :: B'@(p,q,0) A th@(p',q,1)} A mm(p.q).

Furthermore, from (P18), we get:

@v = olvI"@(p.q,0) A g=dest.oTv]) A urn(p,q) unless —3v 1 GIVIN@(,q.0)
{conjunction with (R1)+ each packet has 2 unique location}

@v :: o[vIN@(p,.0) A g=dest.olv]) A um(p,g) unless Gvyp' :: o[vii@ @',q.1))
{conjunction with (R4)and restricting ofwjto belong to the same message as o/v/}

@v,wg W@ P.q.0) A olvih@ (0.4,0) A g=dest.c[v] A mid.c'[wl=mid.o[v]) A um(p,q)
uﬁﬁl,:zs,;',q' i o'w]'@(p,g\0) A olvIh@(p'g,1) A mid.¢'[wl=mid.cfv])

{general disjunction on oand o'+ consequence weakening)

(BouBq’ : g=dest.o A mid.p=mid.cx :: B'@(p.q'.0) A oM@ (p,q,0)) A tum(p,q)
unless

Fop'\q" : mid.p=mid.o :: B'@(p,q'0) A @', 1))
{invariant (P14)}

(FouB.q' : g=dest.o A mid.B=mid.ct :: B'@(p.q.0) A oM@ (p,q,00) A turn(p,q)
unless

(Ho.B,p'.q" : mid.B=mid.c :: B'@(p,q'0) A ah@(p',q,l)) A tumn(p,q)
{cancellation with (R5)}

GoB.p'.q : g=dest.a A mid.B=mid.c: :: B'@(.q.0) A (oM'@(p,q,0) v oM@ (p',q,1))) A turn(p,q)
unless

Go.p.p' : mid.f=mid.c. :: '@(p.q,0) A aB@(p’,q, 1)) A turn(p,q)

{invariant (P16))

turn(p,) unless (Gof,p' : mid.f=mid.cx :: B@(p.q,0) A '@ (p'.q, 1)) A turn(p,q)

{definition of tailp g} .

(DP2). 0

37

Derived Property 3
If a non header packet is in the row register of a switch (p,g)and gis not the destination column, the signal
tum{p,q) is off:

inv o¥@(p,q,0) A 1#h A g21 A grdest.olv] = —turn(p.q). (DP3)

Proof of Property (DP3)

In the proof of the second refinement, we have showed that when a non header packet ¢ is in the Tow
register of a switch (p.g)and gis not the destination column, there exists a message in transit throngh the switch
along the row:

inv a'@(p,q.0) A T#h A g21 A g#dest.o[v] = (Op'q'r'.q" : g"<q<q’ :: message.(0.4.0).(p.0"0)). (R6)

This property is still valid since none of the properties used to prove it has been refined. The validity of (DF3)
follows from (R4} and invariant (P13). O

In the same way, we can easily prove the properties (DF4)and (DF5) below:

Derived Property 4

If a non header packet is in the row register of its turning switch, the signal fum(p,q}is on:

invy o'@(p.q,0) A T#h A g=dest.ct = turn(p,q). (DP4)

Derived Property 3
If a non header packet is in the column register of a switch (p,g), the signal up(p,g}is on:
inv o'@(p.,q,1) A t#h A p<N = up(p,Q). : (DPS)

Derived Property 6
Assuming that packets are guaranteed to move from the row to the column when the signal fum is on :

a@(,q,0) A g1 A tum(p,g) > BmPtY@(Paq,O)

all the packets residing inside the router between the switch (p,g) and the tail of the turning message will eventually
move:

turn(p,q) A tailp o@(P.4'.0) A 4'<q A B@(p.q".0) A §'21 A q'<q"<q ~+ empty@(p.,q",0). (DP6)
Proof of Property (DP6)

We are going to show (DPg) by induction on g7

* DBase case: q''=q

The hypothesis of (DPg) implies:
B@(p.9.0) A 21 A tum(p,q) > empty@(p,q.0)
= {implcation rule + transitivity of leads-to}
turn(p,q) A tailp (@(.4'.0) A q'<q A P@(p.q.0) A g21 > empty@(p,q,0).

38

« Induction Hypothesis
tum(p,g) A tailp (@(P.9',0) A g'<g A B@(p.q"+1,0) A ¢"+1>1 A q'<q"+1<q - empty@(p,q"+1,0).

* Induction Step

Let us show:
turn(p,q) A tailp ¢@(p.q'.0} A q'<q A 3@(p.9",0) A 0"21 A q'<q"<q > empty@(p.q".0).

From the property (P11.2.1), we get:
3@(p.q".0) A q"<dest.d unless (38" : pid.&'=pid.§ :: 8@ (p,q"+1.,0))
= {conjunction with S@(p,q"+1,0) A ¢"+1<1 unless empity@(p,q"+1,0) (property (P25)
3@(p.q",0) A 1=q"<dest.5 A B@(p,q"+1,0) unless 3@(p,q",0) A q"<dest.5 A empty@(p.q"+1,0)
= [PSP with induction hypothesis)
turn(p,q) A tailp 0@ (p.4.0) A 4'<q A 5@(p.0",0) A 1<q"<dest.5 A 9'<q"<q A B@(p.q"+1.,0)

|
8@(p.q",0) A g"<dest.5 A empty@(p,q"+1,0)
=> {general disjunction on £}
tm@:fﬂ A taﬂp,q@(P,Q',O) Fa¥ q‘-v:q A 5@(13’qu’0) A 1Sq"<dest.5 A quqv|<q A __‘empty@ (p,q"+1,0)

-
3@(p.q".0) A q"<dest.5 A empty@(p,q"+1,0).

From the fact that messages are not interleaved, we can deduce that Sbelongs to the message that is taking
its turn, which implies that dest.dis equal to ¢ Since we have ¢, the expression g"<dest.5 can be dropped from
the Ieft-hand side. Furthermore, from the fact that messages are properly structured, we can deduce that & cannot be 2
header packet. So the last property is equivalent to:

mmn(p.Q) A 1ailp,g@(p.4'0) A 4<q A S@P.".0) A 4">1 A q'<q"<q A—empty@(p.q"+1.0)
'—)

5'@(p.q".0) A Th A q"<dest.3 A empty@(p,q"+1,0)

= {Property (DP3))
turﬂ(p,q) A mﬂp’q@(p’q"()) A q'<q A 8@@3(1":0) A qnal A q'ﬂ"*:q /\""!emi)ty@(p,q""l'l,())
fer

8'@(p.q".0) A T#h A —tum(p.q") A empty@(p,q"+1,0)
= (transitivity with (P12.2.3.1.1))

turn(p,g) A tailp @(p,q',0) A 4'<q A 3@(p.q",0) A q"21 A q'Sq"<q A ~empty@(p.q"+1,0)

=3
&@(p.q+1,0)

= (PSP with 6@(0.q"0) A ¢"21 uniess empty@(p.q".0) (property (P23))
um(p,q) A tailp (@ (p.q',0) A 4'<q A S@(P.q".0) A 4"21 A q'<q"<q A —empty@(p.q"+1,0)

[
empty@(p.q".0).

To complete the proof, we now need to show that § will eventually move when the next location is empty.
From (PIL2.3.1.1), we get:

3%@(.9",0) A T#h A 021 A —turn(p,q") A empty@ (p,q"+1,0) — 3@(p,q"+1,0)
= (PSP with 6@(p,q",0) A q"21 unless empty@(p,q".0)}
5'@(p.q".0) A T2h A @"21 A —turn(p,q") A empty@(p.q™+1,0) > empty@(p,q".0)

&

39

< {implication rule + transitivity of leads-to}
tumn(p,q) A tailp (@(.9'.0) A q'<q A 5@(p,q",0) A Th A 1<q"<dest.5 A q'<q"<q A —tumn(p,q")
A empty@(p,q"+1,0)

>
empty@(p.q".0)

& {property (DF3)}
wm(p,q) A tailp o@(P.q',0) A g'<g A 3'@(p.q",0) A T#h A 1<q"<dest.8 A q'<q"<q A empty@ (p,q"+1,0)
>

empty@(p.q".0)
<> {messages are not interleaved and properly structured = 7:¢h A dest. 6=g)

turn(p,q) A tailp g@(@,q,0) A q'<q A 8@(P.q",0) A 021 A q'Sq"<q A empty@(p,g"+1,0)

| d
empty@(p.q".0)
= {disjunction with (R7)]
turn(p.q) A tailp (@(p.q',0) A 9'<g A 3@(.q".0) A 4"21 A §'<q"<q > empty@(p,q".0). 0

Derived Property 7
Assuming that packets are guaranteed to move from the row to the column when the signal fum is on :
o@(p,q,0) A 421 A tum(p,q) -» empty@(p.q,0)
the tail of the turning message will eventually move to the next location :
tum(p.q) A tailp @(.9',0) A q'<q +> turn(p,q) A taily (@ (P.g+1,0). - DP7)

Proof of Property (DP7)

"The proof can be decomposed into two cases: g’<0and g1, In the first case, we get from (P11, 1x
@B = B'@ (.90 A g'<0+ (3B :: B'@(p,q+1.0))
¢> {implication rule + transitivity of leads-to}

um(p.g) A (3 :: f'@(.q.0)) A q'<0 - B 2 B'@(p.q"+1,0)). (R8)

By applying the conjunction rule on (DPI) and (DP2), we get:
tm(p,g) A Iailp,q@ a0 Aq<g

unless

tun(p,q) A tailp 4@(p,q+1,0)

v (turn(p,q) A tailp ¢@(p,9.0) A tailp @ (p.q'.0))

v (mm(p:q) A If-ﬂlp,q@ (p,q,O) A mﬂp,(l@(piql+1 -.O))

< {messagesare notinterleaved)

turn(p,q) A tailp ¢@(p.q'.0) A q'<q unless tumn(p,q) A tailp 0@(p.q'+1,0) R
= [PSP with (R8))

turn(p,g) 1ailp, (@(p.q'0) A @B :: @D} A IO A g'<q

>
(turn(p,q) A tailp g@ (.40} A P :: B'@(P.q+1.0))) v (turn(p,q) A tailp g@(p,q+1,0))
<+ {definition of zaify, g +messages are not interleaved and properly structured}
tom(p,q) A t2ilp q@(p,q',0) A 'S0 A q'<q > turn(p,q) A tailp 0@(p,q'+1,0).

In the second case (g=1), we can deduce from (DP6);

40

turn(p,q) A ailp q@(p,9,0) A 4'<q A B'@(p.q',0) A 21 > empty@(p,q',0)
=> {general disjunction on S+ definition of faily, g}
turn(p,q) A tailp (@ (0.q'.0) A 1<q'<q 1> empty@(p.q',0)
= [PSP with (R9)}
turn(p,Q) A tailp 4@(p.q".0) A 15q'<q 1> tum(p,q) A tailp (@(p.q+1.0). Q

Derived Property 8
Assuming that packets are guaranteed to move from the row to the column when the signal furm is on :
o@(p,q,0) A g1 A turn(p,q) = empty@(p.q,0)
a tail is guaranteed to show up in the row register of the turning switch:
tumn(p,q) - turn(p,g) A (3P :: '@(@.4,0))- (DPS)

Proof of Property (DP3)

Let us start from (DP7) :

turn{p,q) A tailp 4@(p,q',0) A g'<q -+ tum(p,g) A tailp @ (p,q'+1,0)
< {predicatecalculus}

turn(p,q) A tailp 4@ (.40 A q'<q

>

(turn(p.q) A tailp @ (@.q+1,0) A g +1<q) v (umn(p,q) A tailp (@(p,0,0))
= {stable conjunction}

urn(p.q) A tailp (@(P.q'0) Aq'<qAg-g'=d

—3

(wm(p,g) A tailp 4@ (@.q'+1,0) A g'+1<q A g-(q'+1)=d-1) v (turn(p,q) A tailp ;@ (@,q,0))
= {general disjunction on g}

turn(p,q} A (3q' : q'<q :: tailp o@(p,q'0) Ag-g'=d)

E)ummq) A 39 : g'<q = tailp g@(p.q.0) A g-q'=d-1}} v (m(p,q) A tailp (@(p.q,0))
= {induction principle}
turn(p,q) A (3q’ : q'<q :: tailp g@(p.q'.0)) > um(p,q) A tailp (@ (p.q.0)
< {reflexivity of leads-to}
turn(p,Q) A (3¢’ : q'<q =2 1ailp @(p.q',0)) > turn(p,q) A tailp g@(p.q,0)
= (mp,g) = (3q": q'sq : tailp ¢@(p,q"0)) (invariant (P16)) + definition of taily, o@(p.q,0))
turn(p,q) > turn(p.q) A (3B :: B'@(p.q.0)). Q

We are now able to prove properties (P11.2.7.1)and (Q1), by induction on p. Let us rename them 77(p)
and T2}

T1(p) = 0@ (.q.1) A p<N A up(p,q) > 0@(p+1,9,1)
T2(p) = oP@(p.q.1) A p<N A turn(p,g) —» ¢"@(p,q,1) A up(p,q)-

Base case: p=N

The validity of TN

41

0@(N,q.1) A upN.q) - s@(N+1,9,1)
is directly implied by property (P11.2.7.1.2). To prove T2(N}
ah@MN.g,1) A um(N,q) - eP@(N,q,1) A up(N,0)
we need the derived property (DPS). So, to be able to use it, we must prove:
@(N.q,0) A 421 A turn(N,g) - empty@ (N.q,0).
From (P11.2.5.1.2), we get :
c@(N,q,0) A 21 A un(N.q) > 0@(N+1,g,1)
= (PSP with a@(N,q,0) A g21 unless empty@(N,q,0)}
0@(N,q,0) A 421 A urn(N.q) 1> empty@(N,q,0).

We can now prove 72(N). From (PI1.2.1), we get:
aP@(Nq,1) unless (Jo' : pid.o'=pid.cx :: aP@(N+1,q,1)
<> {invariant (P15}+ messages are properly structured}
ol@(N,q,1) unless (Fo : pid.o=pid.c :: aP@N+1,g,1)) A upMN.0) R10)
= {conjunction with (DF2) + furnand upare mutually exclusive}
oh@MN,g,1) A turn(N,g) unless a*@M,q,1) A tn(N,q) A tailN g@(N,q,0)
= [PSP with (DP8) + definition of tailN g}
eN@MN.q.1) A tun(N.g) - P@(N,g,1) A um(N,g) A @B :: B@IN,0,0)). R11)
Furthermore, from (P11.2.1)and (P20}, we get:
P@MN,q.0) A 21 A tumn(N,q) unless (Gp' : pid.B'=pid.p :: B'@N+1,q,1)) A—turn(N,q)
= {conjunction with (R10)+ consequence weakening}
B'@MN.9,0) A tum(N,g) A acl@(N,q,1) unless ~m(N,g) A ch@(N,q,1)
= {conjunction with F@W,q,0) A tun(N,q) A &f'@(N,g,1) unless up(N,q) (property (F22))}
B'@(N,q,0) A turn(N,g) A oP@(N,q,1) unless up(N,q) A cP@N,g,1) R12)
= (PSP with F@WN,q,0) A g1 A turn(N,q) — F@(N+1,g,1) (property (P11.2.5.1.2))}
B@N.q.0) A tum(N,g) A e"@[MN,g,1) > upM,9) A M@ g,1)
= {general disjunction on £+ transitivity with (R11)}
aP@(N,q,1) A um(N,g) — oP@(N,q,1) A up@,g).

Induction Hypothesis

Let us suppose Tr(prl)
o@(p+1,9,1) A p+1sN A up(p+1,9) — 0@(p+2.9,1)
angd T2(p+1)
al@(p+1,q,1) A p+1<N A tun(p+1,9) -5 o'@(p+1,q,1) A up(p+1,q).
To prove T3(p)and T2(p), we will need the following property:
—empty@(p+1.q,1) A p+1=N — empty@(p+1,q,1).

Let us call it T3(p+1), and let us prove that it is implied by T'7(p+1)and T2(p+1). The property Top+1), along
with the following property we derived from (P71.2.6.1.1):

oa@(p+1,q,1) A p+1SN A —urn(p+1,g)
ensures

(cP@@+1a.1) A up(p+1,9) v (P@(p+1,q,1) A tun(p+1,0)).
implies:
ob@(p+1.,1) A p+1<N - oP@(p+1,q,1) A up(p+1,q)
= {transitivity with Ty(p+1)}
ah@(p+1,9,1) A p+IN » 0@(p+2,0,1).
Furthermore, from Ty(p+1) we also get:

'@ (p+1,9,1) A T#h A p+H1<N A up(p+1,9) -5 0@(p+2.9,1)
& {property (DP5)}
a'@(p+1,q,1) A 2h A p+1=N > 0@(p+2,4,1).
So, we have proved :
c@(p+1,q,1) A p+1<N - 0@(p+2,9,1)
= (PSP with o@(p+1,9,1) A p+1SN unless empty@(p+1,9,1))
o@(p+1.,1) A p+1<N 1> empty@(p+1,q,1)
= {general disjunction on ¢}

T3(p+1).

Induction Step

Let us prove T7(@)(for p<N). From the fact that a packet can move to the next location only if this
location is empty, we can easily prove:

a@(p,g,1) A p<N A up(p,9) A —empty@(p+1,q9,1)

unless

a@(p.q,1) A p<N A up(p,q) A empty@(p+1.9,1)
= (PSP with T3(p+1)

@ (p.q,1) A p<N A up(p.g) A —empty@(p+1,9,1) -» 2@(p.q,1) A p<N A up(p,g) A empty@(p+1,9,1)
We also know, from (P11.2.7.1.1).
a@(p.q,1) A p<N A up(p,q) A empty@(p+1,4,1) > c@(p+1,q,1)
=> {transitivity of leads-to + disjunction with the previous property}
@(p,q.1) A p<N A up(p,q) > a@(p+1,9,1)

As in the base case, to prove T2(p) for p<N, we first need to prove the following property:

0@(p.q.0) A g21 A p<N A turn(p,q) ~» empty@(p,q,0).

From the fact that a packet can move to the next location only if this location is empty, and by using the PSP
theorem with T3(p+1) we get:

o@(P,q,0) A g21 A p<N A turn(p,q) A ~empty@(p+1,q,1)

—
o@(p.q.0) A g21 A p<N A turn(p,q) A empty@(p+1,,1)

= (transitivity of leads-to + disjunction with (P11.2.5.1,1)}
@ (.4,0) A q21 A pN A um(p.g) - o@(p+1,9,1)

= (PSP with a@(p,q,0) A ¢21 unless empty@(p,q,0))
o@(D,q,0) A g=1 A p<N A turn(p,q) > empty@ (p+1,4,0).

42

43

We can now prove T2(pt In the same way we proved (R11)in the base case, we have:

al@(p.g.1) A p<N A tum(p,g) - P@(.a,1) A p<N A tum(p,q) A @B :: B'@(.0.0)). (R13)
In the same way we proved (R12), we get:
B'@®.9.0) A p<N A um(p,g) A 0P@(p,q,1) unless o@(p.q,1) A up(p.g)
= [PSP with F@(p,q,0) A p<N A g21 A tun(p,q) A empty@(p+1,g,1) ~ B'@(p+1,q.1) (P11.2.5.1.1)]
B'@®.a.0) A p<N A tun(p,q) A 6"@(D,q,1) A empty@ (p+1,.1) - 02 @(p,q.1) A up(p.9).
‘We can also easily prove:

B'@(p.q.0) A p<N A turn(p.q) A 0P@(p.q,1) A —empty@(p+1,3,1)

4
B'@(@.q.0) A p<N A tum(p,q) A eP@(p.q,1) A empty@(p+1,,1)
=> {transitivity of leads-to + disjunction with the previous property}

B'@1.9.0) A p<N A tum(p,g) A &"@(P.g.1) - 0"@(.0.1) A up(p.)
= {general disjunction on S+ transitivity with (R13))

ah@(p,q,1) A p<N A rn(p,q) — eh@(p,q.1) A up(p.q).
¥ Proof of Property (P11.2.5.1)

Packets eventually move from the row to the column when the signal fum is on:
o@(p.a.0) A g21 A turn(p,qQ) - o@(p+1,q,1). (P11.2.5.1)

The truth of (P11.2.5.1) for p=Nis directly implied by (P11.2.5.1.2). Let us prove it for p<N. From the
fact that a packet can move to the next location only if it is empty, we get:

0@(p,q,0} A g21 A p<N A um(p,q) A —empty@(p+1,9,1)

unless
0@(p.q.0) A g21 A p<N A tumn(p,g) A empty@(p+1.q,1)

= (PSP with - emply@(p+1,q,1) A p+I<N 1 emply@(p+1,q,1) (property T3(p+1))}
o@(p.q.0) A =1 A p<N A tum(p,q) A —empty@(p+1,q,1)

>
o@(p.4,0) A q21 A p<N A turn(p,q) A empty@(p+1,q,1).
We also know, from (P11.2.5.1.1)

o@(p.q.0) A g21 A p<N A tumn(p,q) A empty@(p+1,q,1) = o@(p+1,g,1)
= ({transitivity of leads-to + disjunction with the previous property}

0@(p.q,0) A @21 A p<N A tumn(p,q) - 0@ (p+1,q,1).
¥ Proof of Property (P11.2.4.1)

Headers with value 1 along the row eventually turn the furn signal on:

olvI'@(p.q.0) A v=1 - o[vI'@(p,q,0) A turn(p,q). (P11.2.4.1)

The refined property (P11.2.4.1.1) states that, when a header is waiting at its turning switch and the signal
up is off, either the furn or the up signal will eventually be mmed on:

o[vIP@(p.q,0) A v=1 A —up(p,q) ensures (6[vIi@(p,q.0) A tun(p.a)) v up(p,q).
In the same way we did for the property (P11.2.6.1.1), we can prove that this implies:

olvIP@(®,q.0) A v=1 A ~up(p,g) ensures (6[VI"@(p,q,0) A turn(p.q) v (SIvIP@(D.4.0) A up(p.q)).

44

So, to prove (P11.2.4.1), we only need to show that when a header is waiting at its turning switch and signal upis
on, the fum signal will eventually be turned on:

olVI'@(p.4.0) A v=1 A up(p,g) 5 S[VII@(p,q,0) A tum(p,q). Q2
As in the proof of (P11.2.6,1), we need several intermediate results.

Definiti
We define predicate fai/ 0.9@([©.q.r)t0 be true iff a message is passing (or waiting for passing) through the
switch (p¢)along the column, and the tail of the message is at Iocation (p’q.r).
s tp’ q@(pr’q! ’rt)

éa,ﬁ,p" p2pA(p'<p v (pP=p Ar=1)) A mid.o=mid.p :: B'@(p"q'1") A ah@(p“,q,i)).
Derived Property 9

The signal up(p,qg) stays on until the tail of the message passing through the switch (p,g) along the column
shows up:

up(p,q) unless up(p,q) A tailp @(p,q, 1). (DP9
Derived Property 10

When the signal up(p,g) is on, a tail is guaranteed to show up in the column register of the switch o.qr
up(p,@) - up(p,q) A (3. =2 '@(p.q.1)). (DP10)

The proof of (DP9) is symmetrical to the proof of (DP2). The proof of (DP10)is based on the same steps
as the proof of (DP8). However, it is slightly more complicated, since the tail of the message can either still be on
the source row, or already on the column. So, to move to the switch (p.g). the tail may have to first travel along the
row up to its turning switch, and then move up the column. Let us also remark that, unlike (DP8), the property
(DP10)is not a conditional property. We do not need to assume that Packets at location (p,g, 1) will eventually
move to the next location when signal up is on, since it is implied by the property (P11.2.7.1) we have proved early
on,

Let us now focus on the proof of property (Q2). From (P11.2.1), (P6.1), and invariant (P24), we can
deduce:

olvi"@(p.q,0) A v=1 unless olvI'@(p+1,4,1) A ste.ofvi=p
= {invariant (P14)+ messages are properly structured)
olvI'@(p,q,0) A v=1 unless o[vI'@(p+1,q,1) A tum(p,q) ®R14)

= {conjunction with (DP9)+ fumand up are mutuaily exclusive)
olvI"@(p,q.0) A v=1 A up(p,q) unless olvI"@(p.a.0) A v=1 A up(p,g) A tail'p (@ (p.q.1)
= {PSP with (DP10)+ definition of tail'p, g}
cr[v]h@(p,q,O) A v=1 Aup(p,Q) > o{v]h@(p,q,()) Av=l AupD.9) A o it a'@(p,q,1)). R15)
Furthermore, from (P11.2.1) and (P21), we get:

a'@(p.q,1) A p<N A up(p,q) unless (G’ : pid.o'=pid.ox 0" @(p+1,q, D) A —up(p,q)
= {conjunction with (R14)+ consequence weakening)

o'@(p.q.1) A p<N A up(p,Q) A olvI'@(p,q.0) A v=1 unless o[vI*@(p,q,0) A—up(p,q)

43

= (conjunction with a/@(p,g,1) A p<N A up(p,g) A o vI@(p,q.0) uniess tun(p,qg) (property (P23))}
a'@(p.q,1) A psN A up{p,q) A o[v]h@(p,q,O) Av=1 unless o[v]h@(p,q,(}) A tum{p,q). R18)

When pis equal to N, (R16}is equivalent to:
a'@MN.q,1) A up(N,@) A OvIN@(N,q,0) A v=1 unless o[vI"@(N.q,0) A tum(N,q)
= (PSP with o'@(N.q,1) 7 up(N.g) » '@+ 1,4,1) (property (P11.2.7.1.2)))
a'@(N,q,1) A up(N,q) A SIVIN@ (N,q,0) A v=1 s um®N,g) A V@M ,,0)
= {general disjunction on o + transitivity with (R15)}
olvI'@MN.9.0) A v=1 A up(N,g) 5 ovIP@EN,G,1) A turn(N,q).

When pis smaller than N, (R16)is equivalent to:
a'@(P.q.1) A p<N A up(p,g) A 6[VIP@(p,,0) A v=1 unless olvi'@(p,q,0) A turn(p,q)
= (PSP with &’@(0.q,1) A p<N A up(p,@) A emply@(p+1,q,1) - o'@(p+1,q,1) (property (P11.2.7.1,)
'@P.a.1) A p<N A up(p.g) A OVI'@(D.0.0) A v=1 A empty@(p+1,0,1) v o[v]@ (.0.0) A turn(p,g).
We can also easily prove:
'@(.q,1) A p<N A up(p,q) A ovI"@(p,q.0) A v=1 A —empty@(p+1,q,1)
z‘@@,q.l) A PN AuDE.Y) A oTVI*@(,0,0) A v=1 A empty@(p+1,q,1)
= {transitivity of leads-to + digjunction with the previons property)

a'@(p.q,1) A p<N A up(p,g) A olvVIP@(.q.0) A v=1 1 o[vI*@(p,q.0) A tum(p,q)
=> [general disjunction on ¢ + transitivity with (R15)}

olvIP@(p.q,0) A v=1 A p<N A up(,9) - olvIN@(p,q,0) A tum(p,g).
¥ Proof of Properties (P11.2.2.1) and (P11.2.3.1)

We will show that header packets whose value is different from 1 eventually move to the next location on
the row:

oVI'@(P.q,0) A vi£l A g21 olv-11"@(p.g+1.0) (P11.2.2.1)
and that non header packets eventually move to the next location on the row when signal furn is off:
0" @(.9,0) A Th A g1 A —turn(,q) +-» o"@(p,q+1,0) (P11.2.3.1)

by induction on the column number ¢ Since, from location (p,M,(), packets can only move to the column, the
base case is:

Base Case: q=M-1

Let us first show (P11.2.2, 1). From the fact that a packet can move to the next location only if it is
empty, we can easily prove:

G[V]h@(pM-l,O) A VEL A —empty@(p,M,0) unless cr{v]h@(p,M-l,O) A VL A empty@(p,M,0). RIT)

From the two packet movement properties (P11.2.4.1)and (P11.2.5.1) we have just proved, we can easily
derived that packets at their turning switch eventually move to the next location:

0@ (p,q,0) A g=dest.o. > empty@(p,q,0).
Since packets at the right end of the rows are necessarily at their turning switch, we have:

@ (P.M,0) - empty@(p,M,0)

46

= [general disjunction on &}
—empty@{(p,M,0} > empty@ (p.M,0) (R18)
= (PSP with Ri7}}
olvIP@(pM-1,0) A v£l A —empty@(P,M,0) -» cr[v]h@(p,M-l,O) A vzl A empty@{(p,M,0).
We also know, from (P11.2.2,1.1);
olivI@(pM-1,0) A v£1 A empty@(p,M,0) - olv-11"@(p,M,0)
=% {transitivity of leads-to + disjunction with the previous property}
olvIh@(p,M-1,0) A v#1 - o[v-118@ (p,M,0).

Let us now show (P71.2.3.1). We can easily prove:

o"@(p,M-1,0) A t#h A —turn(p.M-1) A —empty@ (p,M.0)
unless
o"@(p,M-1,0) A T#h A —turn(p,M-1) A empty@(p,M,0)

= (PSP with (RI8))
o @(p,M-1,0) A Th A ~tum(p,M-1) A —empty@(p.M,0)

—
a"@(p,M-1,0) A th A —turn(p,M-1) A empty@(p,M.,0).

We also know, from (P11.2.3.1.1x

o"@(p.M-1,0) A t2h A —turn(p,M-1) A empty@(p,M.0)— @ (p,M,0)
= {transitivity of leads-to + disjunction with the previous property}
a'@(p.M-1,0) A 12h A —tum(p,M-1) 1 o*@(p,M,0).

Induction Hypothesis

Let us suppose:

ovI'@(p.g+1,0) A vl A g+1>1 - o[v-113@(p.q+2.0)
o"@(p,q+1.0) A T#h A g+1>1 A —tumn(p,g+1) - @ (p,q+2.0).

From these two properties we can easily prove:

o@(p.q+1,0) A 1<g+l<dest.a - empty@(p,q+1,0).
We also know:

o@(p.g+1,0) A g+l=dest.cc — empty@(p,q+1,0).
So, we have:

a@(,q+1,0) A g+1>1 - empty@(p.g+1,0)
= {general disjunction on o}
—empty@(p,q+1,0) A g+1>1 > empty@(p.q+1,0). R19)

Induction Step

The proofs of:

olvil@(.q.,0) A v£1 A @21 - ofv-11"@(p,g+1,0)
a'@(P.q,0) A 2h A g1 A —~turn(p,q) ~» o*@(p,g+1,0)

are identical to the proofs of the base case. We just have to replace M-1 by g and use (R19) instead of (R18).

47

C. THEOREMS ABOUT UNLESS, ENSURES, AND LEADS TO

The theorems are listed without any proofs. They can be found in [2] and in the notes 01-88 and 21-90 on
UNITY (13, 14].

C.1. Theorems about Unless

Consequence Weakening
D unless g, g =r

p unlessr

Conjunction and Simple Conjunction

p unless q,p' unless d
® A p) unless (p A DvP APV Qag

p unless gq,p’ unless g
P A D unless gqvq

Stable Conjunction

p unless q, stable b
P A b unless q Ab

Disjunction and Simple Disjunction

p_unless g,p' unless g
® v p)unless (pagq v Cp'Adv@gaqg)

p_unless q,p' unless g
P Vv D unless qvq

General Disjunction and Corollary

(Vi :: p.i unless q.i}
(3i = p.i) unless (Vi : =Pi v Qi) A (3i :qi)

(Vi :: p.i unless —ping.i)
(3i : p.i) unless (Vi :: —p.i) A (3L q.i)

Cancellation

p unless g.q unlessr
P v qunlessr

BT L T Y At < e e g

C.2. Theorems about Ensures
Conjunction

p nnless q,p' ensuresd
@Aaplensures PAQY VP AQY @ad

C.3. Theorems about Leads to
Implication

pP=4q
P =4

Reflexivity
PP

Stable Conjunction

P — g, stableb
P Abm— qgab

General Disjunction

(VYm : m e W:: p{m) s g(m))
{(3m :me W: pm) » (3m : m € W ::q(m))

for any set W

Progress-Safety-Progress (PSP)

D= q,runlessb
PAr=>@ganvhb

Induction Principle

Let (W,<) be a well-founded set, and M a function from the program state to W, We have:

(Vm : me W:ipaAMme— {pArMm va)
p—=q

48

	Formal Specifications and Design of a Message Router
	Recommended Citation
	Formal Specifications and Design of a Message Router

	tmp.1454425567.pdf.kyVI8

