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ABSTRACT OF THE THESIS
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Research Advisor: Professor Tao Ju

Medial axis is a classical shape descriptor. It is a piece of geometry that lies in

the middle of the original shape. Compared to the original shape representation,

the medial axis is always one dimension lower and it carries many intrinsic shape

properties explicitly. Therefore, it is widely used in a large amount of applications in

various fields.

However, medial axis is unstable to the boundary noise, often referred to as its insta-

bility. A small amount of change on the object boundary can cause a dramatic change

in the medial axis. To tackle this problem, a significance measure is often associated

with the medial axis, so that medial points with small significance are removed and

only the stable part remains. In addition to this problem, many applications prefer

even lower dimensional medial forms, e.g., shape centers of 2D shapes, and medial

curves of 3D shapes.

Unfortunately, good significance measures and good definitions of lower dimensional

medial forms are still lacking. In this dissertation, we extended Blum’s grassfire
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burning to the medial axis in both 2D and 3D to define a significance measure as

a distance function on the medial axis. We show that this distance function is well

behaved and it has nice properties. In 2D, we also define a shape center based on

this distance function. We then devise an iterative algorithm to compute the distance

function and the shape center. We demonstrate usefulness of this distance function

and shape center in various applications. Finally we point out the direction for future

research based on this dissertation.
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Chapter 1

Introduction

1.1 Medial Axis

The medial axis was first introduced by Blum [14] via a grassfire analogy. A grassfire

is lit at the boundary of an R2 shape and burns inwards at a uniform speed. The

medial axis is formed at the locations where the grassfires from two different directions

meets and quenches (Fig. 1.1 (a)). Equivalently, the medial axis can be defined as

the union of the centers of maximally inscribed discs which touch the shapes at least

bitangentially [64]. This definition is the same as the union of the points that have at

least two closest boundary points. Fig. 1.1 (b) shows a medial point that satisfies these

conditions. From this definition, we can easily derive the spoke representation [64]

at every medial point (Fig. 1.1 (c)). At least two equally long spokes start from any

medial point and end at boundary points. The spoke representation also guarantees

an accurate reconstruction of the original shape that indicates the equivalence of the

medial axis to the original shape [64].

Figure 1.1: Medial axis defined as the shock graph in the distance transform (a)
(image courtesy of Attali et al. [7]) , medial axis defined as the union of the centers of
maximally bi-tangentially inscribed balls (b), and the spoke representation of medial
axis.

1



The medial axis explicitly encodes many important shape properties. The spoke

representation makes it easy to see that shape boundaries are symmetric relative

to the medial axis, and that the medial axis lies in the middle of the shape. The

length of the spoke reflects the local thickness. Each branch corresponds to one

part of the shape and the relationship amongst these branches suggests the relation

amongst shape parts. In addition to these obvious properties, it has been proven that

the medial axis always at least one dimension less than the original shape, i.e., the

medial axis of an Rn shape is always at most Rn−1 [14], and the medial axis has the

same homotopy/connectivity as the original shape [45].

Due to this set of intrinsic properties, the medial axis is widely used in many ap-

plications and in many different fields. Medial axes are extracted from shapes as

small as protein molecules [10, 9] and as large as galaxies [67]. Often, medial axis

is used to visualize the structure and the connectivity of such complex shapes, since

it faithfully captures their topology and it makes their visualization simpler due to

its lower dimension. The centeredness of medial axis makes it possible to achieve a

better coverage of wireless sensors [41]. Robots navigating along medial axis stay as

far away from obstacles as possible [38]. The correspondence between a medial axis

branch and a shape part leads to a natural algorithm of shape segmentation by de-

composing shape parts at branch junctions [59, 60]. A local object coordinate system

can be easily defined based on the spoke representation at every medial point, and

any affine transformation defined on the medial point can be propagated to deform

shape parts [76, 77]. The advantage of medial axis-based deformations is that they

offer a more intuitive interaction for users to deform models. The homotopy equiva-

lence between medial axis and its original shape has been used to analyze and modify

the topology of the original shape [27, 42], or to identify the topological errors and to

mend them [42]. The union of balls at all medial points results in the original shape

and editing the medial axis could therefore be used to easily alter the appearance

of the input shape. Some have used this power to simplify the original shape by

simplifying its medial axis [70]. More sophisticated morphological transformations,

such as careful enlarging and shrinking, have been used to smooth out small surface

features like bumps and dents while retaining big features such as big sharp corners

[49]. The hierarchical structure of medial axis can be easily described by a few simple

rules that can be used as a grammar for a procedural modeling of trees [62]. The

aforementioned applications are all intra-shape, but the medial axis is also used in
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inter-shape applications such as shape matching and retrieval [69]. The similarity

in the hierarchical structures of medial axes suggests the overall shape similarity be-

tween two shapes, and hence such techniques are less sensitive to the surface noise

and isometric deformations when compared to techniques relying on surface features

such as curvature.

1.2 Instability of Medial Axis

The damaging weakness of medial axis is its instability. Even a small amount of

surface noise can create significant extraneous branches on medial axis (Fig. 1.2).

These extraneous branches are often referred to as the unstable parts since a little

perturbation on the surface can make them disappear from the medial axis. Medial

axes with these unstable parts pruned are more desirable in many applications. In

scientific visualization, biologists prefer to see only those parts of the medial axis that

correspond to the structure of a protein, and they are not interested in the parts

created by the bumpy surface features. The structure of medial axis is analyzed

and decomposed into branches at junctions, so that the shape can be segmented

accordingly. However, the extraneous branches do not correspond to any meaningful

shape parts, and they should be ignored in the segmentation process. In the medial

axis based shape matching and retrieval, if the noisy branches are not removed before

comparing the medial axes, then two similar shapes like the two in Fig. 1.2 will be

missed. Hence, identifying and pruning the unstable parts is important for many

applications.

Figure 1.2: Medial axis of a rectangle (a), and medial axis of a rectangle with a very
small bump (b).
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To differentiate the stable parts from the unstable ones, it is necessary to define

an significance metric that measures the stability of every medial point. We call this

metric a significance measure and the larger the measure is, the more stable the medial

point is. A lot of effort has been made to define different significance measures in

order to effectively differentiate the stable and unstable parts. There exist two main

categories of such measures: local and global. The majority of existing measures are

local. Local measures can be computed efficiently based on the local information

associated with the medial points, but they are scale unaware. In consequence, they

may accidentally identify a long but thin tube as unimportant. In contrast, the global

measures look at a large scale to compute the significance measure, and therefore they

are more accurate. However, such measures are scarce and, in general, more expensive

to compute. A good significance measure that can capture global shape properties in

a large scale and yet can be computed efficiently is still needed.

1.3 Lower Dimensional Medial Forms

Lower dimensional medial forms, i.e., shape centers in R2 and medial curves in R3, are

more desirable than the medial axis in many applications. In R2, the shape centers

can be used to translate two shapes to achieve a good initial alignment for shape

correspondence establishment. When creating an animation, a motion path specified

for the shape center is better than for an arbitrary point, especially if the shape is

undergoing an isometric deformation following the motion path. Another application

of the shape center is in map creation, as the shape centers are good locations to

put text annotations. In R3, medial curves are mainly used in three fields: medical,

computer graphics, and CAD. In the medical field, medial curves are used to describe

thin structures such as the backbones of proteins [10], or the center lines of the tubular

organs [11], such as bronchia [54] or intestines [40]. The center lines can be used to

navigate a virtual camera in an endoscopy system, or they can be straightened to

measure the length of the organ [66]. In computer graphics, medial curves are used

for shape decomposition [58, 48] because one curve branch corresponds to one part

of a shape. Another popular application of medial curves in computer graphics and

computer vision is shape matching. It is especially effective to use medial curves in

matching two shapes when their structures are similar but their postures are different

4



[22, 1]. Medial curves can also be used as handles to deform shapes by applying

inverse kinematics (IK) [13]. In CAD, medial curves with an associated thickness can

be used for collision detection [37], and many other applications.

Good definitions of the lower dimensional medial forms are still needed. In R2,

there are different definitions of the shape centers, but none of these approaches

can simultaneously guarantee that the centers are in the interior, are unique, and

are stable. Note that these properties are very important for the aforementioned

applications. In R3, many heuristics-based algorithms have been carefully devised to

compute medial curves, but they are not based on a mathematical definition, and

many of them are tuned for specific applications. As far as we know, there is only one

definition of medial curve, given by Dey and Sun [29], but this definition has its own

limitations (Section 2.3.2). Without a mathematical definition, it is not possible to

study the properties of the computed lower dimensional medial forms, and the results

can only be demonstrated pictorially on a small set of examples. In [23], Cornea et al.

listed a set of criteria for judging the quality of medial curves. Medial curves should

be centered, homotopic (having the same topology as the original shape), connected,

invariant under isometric transform, robust (insensitive to boundary noise), and thin.

Medial curves computed as the singularities in the distance field [57] or the potential

field [24] cannot guarantee homotopy. The Voronoi Diagram based methods can

guarantee homotopy but they are very sensitive to boundary noise [74]. Thinning

on a discrete grid often results in medial curves that are not thin, and their shape

changes when the model is rotated [53].

1.4 Our Contributions

In this dissertation, we address several problems that have been mentioned in the

previous sections. Our contributions are:

• In R2, we propose a new unified definition for a global shape measure as well

as the shape center. The proposed global shape measure, which we call the

extended distance function (EDF), has several nice properties such as continuity,

constant gradient, and many others. It captures the global shape elongation
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property, and hence it is more stable to boundary noise than other existing

measures. Our shape center, called the extended medial axis (EMA), is directly

derived from the definition of the EDF. We show that our EMA is interior,

unique and stable to boundary noise. We prove that the EDF is equivalent

to the extended grassfire burning process on the medial axis, which leads us

to devise an iterative discrete algorithm to compute the EDF and EMA. We

demonstrate the usefulness of the EDF and EMA in various applications such

as medial axis pruning, shape alignment, and boundary signature for shape

matching.

• We demonstrate that a direct extension of EDF to 3D leads to a distance func-

tion that has several limitations. In contrast, we show that a distance function

derived from the burning time of the extended grassfire is well behaved, even

when used in 3D. We formalize the latter definition and we describe its proper-

ties.

This dissertation gives a good foundation to many problems for future research. Most

of the open questions exist in R3, and they can be grouped into three categories:

theory, algorithms and applications. Unlike in R2, the relation between the EDF

and the shape properties is not obvious in R3, which makes it more difficult to use

in practice. Another problem is how to define homotopy-preserving medial curves

directly based on the EDF in R3, or more generally, whether we can define even lower

dimensional medial form, such as shape centers, in R3. Even though empirically we

have observed the stability of the EDF and the EMA under significant amount of

boundary perturbation, a rigorous mathematical proof of this stability is still lacking

in both R2 and R3. Also, an accurate computational algorithm for EDF and EMA

on the medial axis in R3 is still needed. In case an accurate algorithm for general

cases is infeasible, it would be interesting to explore some specific scenarios where it

is possible. Another important step would be to derive an approximation algorithm

for computing the EDF and EMA, with theoretical guarantees bounding the error.

Last but not least, it is important to explore possible application of EDF and EMA

in R3.
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1.5 Dissertation Overview

In Chapter 2, we review the existing methods for computing the medial axis, the

existing significance measures for identifying the stable parts of the medial axis, and

the existing definitions of the lower dimensional medial forms and their computational

algorithms. We also discuss the advantages and the drawbacks of these approaches.

In Chapter 3, we give a mathematical definition of our significance measure (EDF)

and shape center (EMA) in R2. Based on the properties of our definition, we devise

a discrete iterative algorithm to compute the EDF and the EMA. We compare our

measure (EDF) and our shape center (EMA) with existing ones, and empirically show

that our measure and shape center are more stable than existing approaches. Finally,

we demonstrate the usefulness of the EDF and the EMA through applications.

In Chapter 4 we first show that a naive extension of EDF from 2D to 3D leads to a

flawed measure that is difficult to compute. We then define a new measure that is

directly derived from the extended grassfire burning on the medial axis in 3D and we

show that this measure is well behaved.

In Chapter 5, we elaborate on the possible future directions outlined above.
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Chapter 2

Related Works

In this chapter, we review the existing related works and discuss their advantages and

drawbacks. These existing works include the computational algorithms of the medial

axis, the significance measures to identify the stable parts of the medial axis, and the

definitions of lower dimensional medial forms.

2.1 Computation of the Medial Axis

Even though the medial axis has simple definitions, nice properties and a close relation

to the shape representation, an accurate computation of the medial axis is usually

infeasible for generic shapes, because of its high algebraic degree. Therefore many

algorithms focus on calculating an approximation to the medial axis instead. The

exact medial axis can be computed only for a set of simple shapes, such as point sets,

polyhedra, and union of balls. We review the exact computational algorithms for a set

of simple shapes first, and then we give an overview of the approximation methods for

generic shapes. Among the approximation methods, we provide a description of the

state-of-the-art Voronoi diagram based methods, because this is the very method we

use for approximating medial axis of generic shapes. Other approximation methods

are only briefly reviewed and we refer interested readers to the recent book [64] for

details, since approximation algorithms are not closely related to the topic of this

dissertation.
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2.1.1 Accurate Medial Axis Computation

There are three types of simple shapes, for which the accurate medial axis computa-

tion is feasible: Point sets, polyhedra, and a union of balls. The medial axes of these

three shapes have at most quadratic algebraic degree, which makes them tractable.

Point sets The medial axis of a point set in Rn is equivalent to its Voronoi Diagram

[12], so to compute its medial axis is to compute its Voronoi Diagram. Voronoi

Diagram computation is a solved problem in the computational geometry community.

The Voronoi Diagram decomposes the space into cells, one cell for each input point.

The distance from any point in the interior of a cell to its corresponding input point

is smaller than the distance to any other input points (Fig. 2.1 (a)). The elements

of the Voronoi diagram that have dimension less than n are the medial axis (Fig. 2.1

(b)), since any point from these elements has at least two closest input points.

Figure 2.1: The Voronoi Diagram (a) and the medial axis (b) of a point set. The
Voronoi Diagram partitions the space into cells, colored differently for each input
point. The boundary of these cells is the medial axis of the input points since any
point on the boundary has at least two closest boundary points.

Polyhedra Polyhedra are closed shapes bounded by piecewise linear elements, and

medial axes of such shapes consist of at most quadratic elements. Many algorithms

have been proposed to trace out the medial axis [25, 63, 50]. In particular, Sherbrooke

et al. classified the elements of the medial axis into three types: Medial sheets, medial

seams and medial junctions (see Fig. 2.2 (a)), and their relations were described in [63].

Based on these relations, they traced out the medial seams from the medial junction
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points, and the medial sheets from the medial seams. Fig. 2.2 shows one example

of the medial axis of a polyhedron. Culver et al. [25] improved this algorithm by

representing each element as a quadratic equation to achieve an accurate computation,

while [63] only represented the positions of the medial elements in floating precision

arithmetic.

Figure 2.2: The classified elements of the medial axis of a polyhedron (a), an input
polyhedron (b) and its medial axis (c) (Image courtesy of Culver et al. [25]).

Union of balls Attalia and Montanvert [6] first characterized the medial axis of a

union of balls in Rn. They pointed out that the medial axis is piece-wise linear, and

that it consists of only two types of points: (1) the singular faces in the α-shape of

the union of balls [33], (2) the subset of the Voronoi diagram of the singular points

on the boundary surface, which has closest boundary points only from these singular

points. Singular faces in an α-shape are those that do not bound any element of

dimension n, such as the highlighted edge in Fig. 2.3 (b). The singular points on

the boundary of the union of balls are those points intersected by at least n balls

in Rn. However, this characterization does not directly lead to a computational

algorithm. In [4], Amenta and Kolluri characterized the medial axis into a simpler

form and proposed an algorithm to compute it. They simplified the second type into

the intersection between the Voronoi diagram of the singular boundary points and

the α-shape. Fig. 2.3 shows a simple shape made from the union of balls, its α-shape

and its medial axis.

2.1.2 Medial Axis Approximation

The high algebraic degree of the medial axis makes its accurate computation difficult,

therefore the medial axis is in general approximated. The approximation algorithms
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Figure 2.3: A shape made from a union of balls (a), its α-shape (in gray) with singular
elements highlighted in red (b), and its medial axis in red and blue (c). The medial
axis consists of the singular elements in the α-shape (in red) and the intersection (in
blue) between the Voronoi Diagram (dashed lines) of the boundary singular points
(black dots) and the α-shape (in gray) (image courtesy of Amenta and Kolluri [4]).

are categorized into four types based on the input shape representation and how

the medial axis is approximated. These four categories are Voronoi diagram based,

distance filed based, thinning, and hybrid.

Voronoi Diagram of sampled points on the surface of the shape Brant

and Algazi [16] proved that, in R2, the inner Voronoi vertices and edges converge to

the real medial axis when the sampling density goes to infinity, and hence the inner

Voronoi vertices and edges can be a good approximation of the medial axis. In R3,

Amenta et.al [2] showed that not all inner Voronoi vertices are close to the medial

axis, but only a subset of the inner Voronoi vertices are, and this subset converges

to the medial axis as the sampling density approaches infinity. Such Voronoi vertices

are farthest away from their corresponding sampling points in the inner direction,

and they are called the inner poles. In [2], the authors also proved that the union

of the inner Voronoi balls and its power crust are both a good shape approximation

with a bounded geometric error and with the same topology. An inner Voronoi ball

is centered at an inner pole and has radius equal to the distance from this inner

pole to its corresponding sample point. In [3], Amenta et al. gave an algorithm

to compute a medial axis approximation, called the power shape. It consists of the

inner poles, whose connectivity is established based on the connectivity of the power

diagram of the inner Voronoi balls. Tam and Heidrich in [71] pointed out and fixed a

few problems with the power shape. First, the power shape includes flat tetrahedra
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which contradicts the fact that the medial axis is at most two dimensional in R3.

Second, the computation of the power shape easily generates a degenerate point for

duplicated times, which causes cracks in the result. To fix these problems, Tam and

Heidrich [71] took the intersection between the power shape and the accurate medial

axis of the union of inner Voronoi balls using the aforementioned algorithm [4], and

they also detected and filtered the repeated degenerate points.

The medial axis approximated from the Voronoi diagram is homotopy equivalent to

the original shape, and it has a convergence guarantee. This is the same technique

we use to compute the medial axis in R2 in Chapter 3. The drawback is that extra

care needs to be taken to deal with the degenerate cases, especially in R3, and the

sampling density is required to be very high near the surface features.

Distance field based medial axis approximation The distance field represents

the distance from any interior point to its closest boundary point. The input shape

could be a grid representation or a polygonal mesh. If the shape is a polygonal mesh,

then its interior is discretized into a grid representation [35] so that the distance

field can be represented by associating each interior point with a distance. Many

algorithms have been proposed to approximate the distance field in various dimensions

[26, 15, 72, 39, 65]. The medial points are detected based on the local Laplacian

[75], Hessian matrix [75], or the average outward flux of the gradient field [32, 65].

The detected singular points may not be connected, and hence this technique is

often followed by a homotopy-preserving thinning (see the following paragraph). The

interior points with the same distance to the boundary form a level set, which can

be evolved from the shape boundary. Some methods directly evolve the boundary

surface inward based on the Eikonal equation, and during the evolution, the shock

locations are detected and preserved at points where the normal or the curvature does

not exist [55].

The distance based methods are, in essence, based on the definition of the medial

axis. However, the detection of the singular points can be error prone. Extra singular

points lead to extra branches after thinning. A good distance approximation on a

grid representation is often very complex with a lot of issues to deal with.
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Thinning on the grid representations of the input shapes Thinning meth-

ods are widely used in computer vision for pattern recognition since the data come

naturally as grid images. The input image consists of the object and the background

pixels, and thinning turns the object pixels into the background pixels layer by layer,

mimicking the grassfire burning process, until there is only one thin layer left. The

remaining thin layer is the approximated medial axis. The key part of these algo-

rithms is a set of criteria specified on the local neighborhood (2 ∗ 2 or larger in R2) of

a grid point to determine if this point is simple or if it is medial. A simple point can

be removed without altering the topology, while a medial point should be preserved.

Surveys [43, 78] offer a good in depth review of this category.

Thinning methods are very simple to implement and most of them are homotopy

preserving. The major drawback is that they are biased by the direction of the grid

and hence, they are not rotation invariant, as the underlying distance field generated

by the thinning process is based on the city-block distance instead of the Euclidean

distance. Also, the resulting medial axis may not lie in the middle. For example, a

shape with an even number of layers can never have a layer that is right in the middle.

The medial axis that is represented as pixels has a bumpy look, and a smoother medial

axis requires a higher resolution of the original input, which in turn makes it more

expensive to thin. Also, the discrete nature of the grid representation may introduce

additional branches that do not correspond to any surface features.

Hybrid methods Different methods can be easily combined, so that their advan-

tages are united. For example, [75, 51] computed the distance field and identified a

set of medial points based on this distance field first, and then discretized the model

into a grid representation that was further thinned with the detected medial points

preserved. This combines the relatively more accurate medial points detection of the

distance based methods and the homotopy preservation of the thinning methods.

In this section, we reviewed the existing algorithms for computing the medial axis

accurately on a set of simple shapes and approximately on generic shapes. In par-

ticular, the Voronoi Diagram based methods are simpler than other approximation

methods, and they have a theoretic convergence guarantee, which is the very reason

we use them in this dissertation.
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2.2 Significance Measures

The instability of the medial axis is a well-known problem. In most applications, it is

more desirable to find the stable parts of a medial axis as they correspond to the global

shape properties. Unstable extraneous branches correspond to small surface features

and noise, and they should be removed from the medial axis. In order to detect the

stable parts, medial points are often associated with a significance measure. Parts

with significance measures smaller than a specified threshold are pruned, so that only

the stable parts remain. Numerous strategies have been proposed in the literature to

measure the significance. There exist two main categories, local and global, that we

review in this section.

2.2.1 Local Significance Measures

The majority of pruning algorithms are based on local measures due to their simplic-

ity, since they can be easily computed from the local information associated with the

medial points. Below is a description of several most popular local measures.

The separation angle For any medial point, its separation angle is formed between

the two rays starting from this medial point and ending at its two closest boundary

points. If there are more than two closest boundary points, the separation angle is

defined as the largest among all possible angles. A lot of pruning algorithms rely

on this measure [8, 5, 30, 36, 68, 6]. Fig. 2.4 shows the definition of the separation

angle (Fig. 2.4 (a)) and the pruned result based on this measure (Fig. 2.4 (b, c)). As

indicated by Fig. 2.4 (c), a naive pruning based on the separation angle alone could

lead to a disconnected result. In [68], Sud et al. proposed a homotopy preserving

pruning strategy. The key idea is to prune from the border of the medial axis, so that

an interior point is not removed when its measure is smaller than the threshold while

being surrounded by medial points with measures larger than the threshold. Note

that such a thinning strategy could be easily combined with any significance measure

to preserve homotopy.
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Figure 2.4: The separation angle θ(x) at the medial point x (a), the pruned medial
axis with the threshold π

2
(b), and the disconnected pruned medial axis of another

model with the threshold π
3
(c). The separation angle is defined by the two rays

from the medial point x to its two closest boundary points y1 and y2 (a). Note that a
naive pruning based solely on separation angle could easily break the topology (image
courtesy of Sud et al. [68]).

The combination of the separation angle and the local thickness The key

problem with the separation angle is that it is scale unaware. For example, separation

angles of medial points corresponding to the bottom rectangle are the same as those

of medial points corresponding to the small blunt bump in Fig. 2.4 (c). Attali and

Montanvert [8, 5] combined the separation angle with the local thickness (the distance

from the medial point to one of its closest boundary points). They observed that

the surface noise can be identified by either a small separation angle or by a small

local thickness (Fig. 2.5 (b)), therefore only points with both values above specified

thresholds are preserved. For example, those medial points with their separation

angles and their local thickness in the upper right corner in Fig. 2.5 (b) are preserved,

resulting in the bottom one in Fig. 2.5 (a). However, the local thickness condition

may eliminate some parts that are important to the shape composition, such as a

part of a medial axis corresponding to a long, but thin, dangling tube (Fig. 2.5 (c)).

The λ-medial axis Chazal and Lieutier [19, 20] proposed a subset of the medial

axis called the λ-medial axis and studied its properties. To describe it, they define a

local measure called the feature size r(x) at any medial point, which is the radius of

the smallest ball that encloses all of the closest boundary points to this medial point.

Note that this r(x) is different from the local thickness. For example, the r(x) of

a medial point with two closest boundary points is the half length between the two

boundary points, unlike the local thickness which could be larger (see Fig. 2.6 (a)).
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Figure 2.5: An input model with its medial axis before and after pruning (a), the ρ
and θ distribution of all medial points (b), and the pruned medial axis of a model
with a snail on a tree branch (c). The medial points corresponding to the upper right
quadrant are those preserved after pruning in the bottom figure of (a). Note that
the prominent features, antennae of the snail, are accidentally pruned based on the
combination measure of ρ and θ, because they have small thickness (ρ) (images (a)(b)
courtesy of Attali and Montanvert [8]).

The λ-medial axis is defined as all the medial points whose r(x) are no less than a

given λ. Listed below are a few properties of the λ-medial axis that have been proven

in [19]:

• If λ ≤ wfs, then the λ-medial axis is guaranteed to have the same homotopy

as the medial axis, where wfs is short for the weak feature size. The weak

feature size is defined as the minimum of feature size r(x) at all critical medial

points. A medial point is critical if it is a critical point in the gradient field of

the distance field.

• If the Hausdorff distance between two inputs is bounded, then the Hausdorff

distance between their λ-medial axes is bounded too, when the λ satisfies cer-

tain conditions. This indicates that a λ-medial axis of an original shape could

be approximated within a bounded geometric error as long as the shape ap-

proximation is within a bounded geometric error. Note that the approximated

shape could be noisy.

• As the Hausdorff distance between the approximation and the shape approaches

0, then the λ-medial axis converges to the real medial axis (the λ should also

be constrained by the Hausdorff distance).
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Attali et al. [7] drew the connection between the λ-medial axis and their local measure

which combines the separation angle and the local thickness. Note that r(x) =

ρ ∗ sin(θ) holds at the majority of the medial points, where ρ is the local thickness

and θ is half of the separation angle. To give a threshold on r(x) is equivalent to

draw a hyperbola in the plot of ρ and θ in Fig. 2.5 (b) which is similar to [7].

Figure 2.6: The medial axis (a) and its λ-medial axis when λ is slightly larger than
its wfs (b). The difference between the local thickness ρ(x) and the feature size
r(x) can be seen at the annotated medial point x (in black), where the red circle is
the bi-tangentially inscribed medial circle and the blue circle is the minimal circle
that encloses the two closest boundary points (in red). The three hollow points are
the critical points and wfs is the smallest feature size of the three. Note that the
topology of λ-medial axis is different from the original model when λ > wfs for this
model (image courtesy of Attali et al. [7]).

The major drawback is that the λ-medial axis is guaranteed to be homotopy preserv-

ing only when the λ is smaller than the wfs. If the λ is too big, then the λ-medial

axis could have a different homotopy (see Fig. 2.6 for an example). Unfortunately,

the wfs can be arbitrarily small for general shapes.

2.2.2 Global Significance Measures

Due to the limitations of local measures, many researchers have resorted to global

measures. The existing global measures determine the significance of a sub-part or of

a whole branch of the medial axis by the elongation (e.g. erosion thickness [61]) or by

the change in the reconstructed shape caused by its absence (e.g., potential residue

[52], circularity residue [52], chord residue [52], erosion area [61]).
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Erosion thickness Roughly speaking, the erosion thickness is measured as the

difference between the length of the branch and the thickness of the branch, therefore

it effectively captures the elongation of the branch. Fig. 2.7 illustrates the accurate

computation of the erosion thickness. At a medial point, the length of the branch is

measured as the summation of the geodesic length along the medial axis from this

medial point to the end point of the branch and the thickness at this end point, which

is approximately the length from the medial point to a boundary point. The branch

thickness is defined as the local thickness at the given medial point. The erosion

thickness is scale dependent. For example, a large blunt feature can have a very large

erosion thickness because of its size rather than because of the shape elongation. In

order to remove the part of the medial axis corresponding to such a blunt feature,

the threshold needs to be increased, which may accidentally remove a large part of

the medial axis that corresponds to features at a small scale (see Fig. 3.6 in Chapter

3 for one example).

Figure 2.7: The erosion thickness (a), the three residues (b), and the erosion area
(c). The erosion thickness at q is measured as the difference between the length of
the branch and the thickness of the branch, i.e., the elongation of the branch. The
length of the branch is measured as the summation of the geodesic distance d(p, q)
from the medial point q to the branch end point p and the local thickness ρ(p) at
p. The thickness of the branch is measured as the local thickness ρ(q). L(B), L(A)
and L(C) are the lengths of the boundary curve, the arc, and the chord connecting
the two closest boundary points respectively. The potential residue, the circularity
residue and the chord residue at q are L(B), L(B)−L(A), and L(B)−L(C). They all
estimate the change in the boundary length when the branch attached to the medial
point q is removed. The erosion area of q is colored in gray in (c), which estimates the
change in the area of the reconstructed shape in the absence of the branch attached
to q (image courtesy of Shaked and Bruckstein [61]).
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Potential residue, circularity residue, chord residue These measures were

first defined in R2 [52], and later they were extended to R3 [29]. In R2, Potential

residue is defined as the length of the boundary curve at a medial point, which is

measured as the geodesic distance between its two closest boundary points on the

boundary curve. Circularity residue is measured as the difference between the length

of the boundary curve and the length of the arc between the two closest boundary

points, where the arc connects the two closest boundary points on the bi-tangentially

inscribed medial ball at the medial point. Chord residue is measured as the difference

between the length of the boundary curve and the length of the segment connecting

the two closest boundary points. All three measures are similar because they all try

to capture the change in the length of the reconstructed boundary if the branch of the

medial axis is removed. The reconstructed boundary is represented as nothing, the

arc, or the chord, for the three residues respectively. Fig. 2.7 shows them in different

colors. The potential residue has been extended to R3 as the geodesic distance be-

tween the two closest boundary points along the surface [29]. Note that the geodesic

computation has to be carried out often, so the method can be very computationally

expensive. There are two other very important limitations of potential residue. First,

it is not continuous at junctions. Second, it is not robust with respect to boundary

perturbations, which can significantly enlarge the boundary distance.

Erosion area In R2, the erosion area measures the change in area in the recon-

structed shape by removing a segment on the medial axis (Fig. 2.7). Note that the

change in the area is very expensive to compute. One can imagine extending this

algorithm to R3 by measuring the change in volume caused by removing a part of the

medial axis, which is even more expensive to compute.

In this section, we reviewed several significance measures. In general, the local sig-

nificance measures can be computed efficiently based on the local information at the

medial points, but they can misclassify some important medial points as unimpor-

tant, or vice-versa. The global significance measures are computed at a large scale,

but they are very expensive to compute.
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2.3 Lower Dimensional Medial Forms

The lower dimensional medial forms (e.g., the shape centers in R2, the medial curves

in R3) are desirable in many applications (Chapter 1.3). There are many definitions of

the shape centers in R2, but none of them are guaranteed to be in the interior, unique

and stable simultaneously. Many heuristics-based algorithms have been proposed

to compute the medial curves in R3, but only a few are based on a mathematical

definition. As far as we know, there is only one mathematical definition of medial

curves [29]. The lack of mathematical definition makes the computed medial curves

hard to analyze and hence the results are often judged visually on a small set of shapes.

In this section, we review the definitions of the shape centers and the medial curves,

and we refer interested readers to the recent comprehensive survey of computational

methods of the medial curves by Cornea and Silver [23].

2.3.1 Center Points of 2D Shapes

The most common way of defining a shape center is the “center of mass” or the

centroid, which minimizes the sum of squared Euclidean distances to all points either

on the boundary of the shape or over the entire shape. However, the centroid may

lie outside the shape if it is non-convex, and can be unstable under large shape

deformations (see Fig. 2.8).

In the computational geometry literature, there are a number of alternative definitions

that utilize geodesic distances within the shape to prevent the center from going

outside. The geodesic center [56] minimizes the maximum geodesic distance to any

point in the shape. The link center [44] in a polygonal region minimizes the maximum

number of straight line segments in the geodesic path to any point in the shape. The

geodesic median [34] minimizes the average geodesic distance in the L1 norm to any

point in the shape. However, these center locations may lie on the boundary (e.g., a

concave vertex in a non-convex shape), and hence they are not always strictly interior.

Note that, among these definitions, the link center is not uniquely defined.

In geography, one way to define the center of a geographical region is the furthest

point from the boundary (or center of the largest inscribed disk). Although strictly
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interior, such a center is obviously not unique. This, and other centers, are compared

with our extended medial axes (EMA) in a simple 2D shape in Fig. 2.8.

Centroid Geodesic center Geographic center EMA

Figure 2.8: Comparison of several center definitions. The last one is defined by our
definition (more details in Chapter 3).

Ogniewicz and Ilg [52] showed that the PR measure has a unique local maximum on

the medial axis for a simply connected shape. This maximum is a unique, interior

center point. However, as we demonstrate in Chapter 3, this local maximum can be

sensitive to non-uniform boundary perturbations.

2.3.2 Definition of Medial Curves

As far as we know, there is only one mathematical definition of the medial curves,

proposed by Dey and Sun [30]. Their definition is similar to the definition of the

medial axis. They first defined a function called the medial geodesic function (MGF)

on the medial axis, and then they defined lower dimensional medial points as the sin-

gular points of this function. The authors also proposed an approximation algorithm

to compute the medial curves based on their definition.

MGF at a regular medial point is defined as the geodesic distance between the two

closest boundary points along the boundary surface. A medial point is regular if it

has only two closest boundary points. Fig. 2.9 (b) is a plot of MGF on the medial axis

of the human model. Dey and Sun proved a few properties of MGF: (1) The singular

points of MGF are thin, i.e., 1D or 0D; (2) MGF is continuous and differentiable in

the manifold part of the medial axis. A point is manifold if its local neighborhood
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can be flattened down to a plane without an overlap. For example, a point on a

wall is manifold, but a point on the bottom line of a wall separating two rooms is

not manifold. They conjectured two more properties and sketched the proofs: (1)

The MGF does not have local minima; (2) The singular points of the MGF lie in the

middle, or in other words, singular medial points have two boundary geodesic paths

of equal lengths.

Figure 2.9: An input human model (a), its medial axis colored based on the medial
geodesic function (MGF) (b), and the extracted medial curves (c) (image courtesy of
Dey and Sun [29]).

Dey and Sun’s proposed method for approximating the medial curves consists of many

steps. First, the medial axis is approximated and the MGF is computed based on its

definition. Then, the singular points of the MGF are detected by thresholding the

average outward flux, similar to the techniques used to detect the medial points in

the distance field [65]. Finally, a homotopy-preserving erosion is run on the medial

axis, while preserving the detected singular points. The erosion result is the medial

curve.

Dey and Sun [30] gave the first definition of medial curves based on the MGF and

proved the thinness of medial curves and the continuity of MGF. However, rigorous

proofs for the nonexistence of local minima of the MGF and the centeredness of
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medial curves are still lacking. In addition although they computed the curves in a

homotopy preserving manner, which is guaranteed by the erosion algorithm, it is still

unknown if the singular points of the MGF alone are homotopic equivalent to the

input shape.

In this section, we reviewed the existing definitions for the shape centers and the

medial curves, and we discussed their limitations. These limitations show that good

definitions for the lower dimensional medial forms are still needed.

2.4 Summary

In this chapter, we reviewed the methods for computing and approximating the medial

axis, the significance measures for pruning the instable parts of the medial axis, and

the definitions for the lower dimensional medial forms. We pointed out that there is

still a dire need for a significance measure that captures the global shape properties

while being efficient to compute. Good definitions of the lower dimensional medial

forms still need exploration. The main goal of this dissertation is to resolve these

limitations.
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Chapter 3

Extended Grassfire Transform on

Medial Axes of 2D Shapes

In this chapter we present a uniform approach to define a global shape measure (called

the extended distance function, or EDF) along the 2D medial axis as well as the center

of a 2D shape (called the extended medial axis, or EMA), that we published in [47].

We reveal a number of properties of the EDF and EMA that resemble those of the

boundary distance function and the medial axis, and show that EDF and EMA can

be generated using a fire propagation process similar to Blum’s grassfire analogy [14],

which we call the extended grassfire transform. The EDF and EMA are demonstrated

on many 2D examples, and are related to, and compared with, existing formulations.

Finally, we demonstrate the utility of the EDF and EMA in pruning medial axes,

aligning shapes, and shape description.

3.1 Formulation

3.1.1 Motivation

Our definitions of the extended distance function and the extended medial axis are

motivated from those of the boundary distance function and the medial axis. In a 2D

shape O, the distance from an interior point x to the boundary of O can be defined

as the radius of the largest circle centered at x and inscribed in O. A point is on the

medial axis if its largest inscribed circle touches the boundary of O at two or more
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points. Due to the isotropic nature of the circle, the distance function at x captures

the amount of uniform shape expansion around x, and the medial axis is where such

expansion is constrained at two or more sites, and hence “maximal”.

To capture the elongation, or “side-ways” expansion, of a shape around a point x on

the medial axis, our extended distance function essentially measures the half-length of

the longest “tube” centered at x and inscribed in O. This tube extends longitudinally

along the medial axis, rather than uniformly as in the case of the circle. The extended

medial axis consist of those points on the medial axis whose longest inscribed tubes

are confined at both ends, and hence are where the elongation is maximal.

x z
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R(z)

x z

y

R(y)

(a) (b)

x
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y

R(y)

R(z)

x z

y

R(y)

R(z)

(c) (d)

Figure 3.1: Axes (blue) and their tubes (gray): (a) an axis with a single constrained
end z, (b) an inscribed axis of x with a constrained end y, (c) an inscribed and
maximal axis of x with two constrained ends y, z, (d) an inscribed and maximal axis
of x ∈ M̃ .
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3.1.2 Definitions

We assume the 2D shape O is a closed set bounded by piece-wise C2 smooth curves.

The medial axis M of O are the closure of those points with two or more closest

points on the boundary of O (or the “cut loci”) [73]. The regularity of the boundary

implies a number of important properties of M , such as its homotopy equivalence to

O [73], its low-dimensionality (1) [73], and its finite structure [21]. We denote the

boundary distance function at x ∈ O as R(x).

We first introduce the notion of “axes” and “tubes”:

Definition 1. Let f : R1 → R2 be a local embedding of the real interval D = [0, 1]

onto M . The image f(D) ⊆ M (noted simply as f hereafter) is called an axis.

An axis is a path on M such that each interior point on the path has a manifold

neighborhood. By local embedding (i.e., immersion), we allow an axis to be non-

simple and hence contain loops. This relaxation is crucial to obtain some important

properties later, such as the homotopy equivalence between the extended medial axis

and the medial axis.

We call the union of all largest inscribed circles centered at points on an axis f the

tube of f . Intuitively, the tube is formed by “rolling” a circle along f , while changing

its radius according to the boundary distances on f . Note that when the axis is a

non-simple path, the tube can “wrap around” and overlap itself.

Given some point x on an axis f , we are interested in the radius of f with respect to

x, which is defined as the distance from x to the closer end of the tube of f :

Definition 2. Given an axis f and a point x ∈ f ,

rf (x) = min
y∈∂f

(df (x, y) +R(y))

is called the radius of f with respect to x, where df (x, y) is the geodesic length of

segment [x, y] on f . An end y ∈ ∂f is called a constrained end with respect to x if it

attains the minimum in this equation, and an unconstrained end otherwise.
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Figure 3.1 (a,b,c) illustrate three different axes and their radii for a same point x on

the medial axis. The first two axes each have one constrained end (z in (a) and y

in (b)), where the radius of the axis is attained. The third axis has two constrained

ends (y, z) due to symmetry of the shape, both attaining the radius of the axis.

The extended distance function at x is the largest radius of any axis containing x:

Definition 3. Given a point x ∈ M ,

R̃(x) = sup
f∋x

rf (x)

is called the extended distance function (EDF) at x. The axis f that attains the

supremum is called the inscribed axis at x.

Intuitively, the EDF captures the maximum amount of “side-ways” shape expansion

on both sides of x. In Figure 3.1, the axes in (b,c) are inscribed axes of x and attain

the EDF R̃(x), which is the sum of the geodesic distance between x to the top-left

end of the medial axis y and R(y). The EDF can be understood as the half-length of

the longest tube that can be centered at x.

The extended medial axis is the locus where the inscribed axis cannot be further

expanded:

Definition 4. An axis f is called maximal if both of its ends are constrained. A

point x ∈ M lies on the extended medial axis (EMA) M̃ if every inscribed axis of x

is maximal.

Note that all inscribed axes of an EMA point need to be maximal. This requirement is

important for distinguishing the center of the shape from the local symmetry centers.

For example, even though the axis in Figure 3.1 (c) is an inscribed axis of x and is

maximal, x has some other inscribed axis that is not maximal (e.g., (b)), and hence

x /∈ M̃ . On the other hand, the point x in (d) is on M̃ since all of its inscribed axes

are maximal (one is shown in the picture). Observe that x in (d) is more “centered”

with respect to the entire shape than the x in (c), the latter being centered only with

respect to two symmetric shape parts.
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We make a final note of the scenario in which the radius rf (x) is infinity, which

happens when f is a non-simple path that travels infinitely on both sides of x. By

the above definitions, both ends of f are constrained, hence f is maximal. On the

other hand, R̃(x) = ∞ = rf (x), hence f is an inscribed axis of x, and all inscribed

axes of x have infinite radius. As a result, x is on the EMA M̃ , since all of its

inscribed, infinite-radius axes are maximal.

3.2 Properties

The EDF and EMA, defined on the medial axis, share several important properties

with the boundary distance function and the medial axis, which we examine in this

section (the proofs are provided in Appendix A).

We start by examining the range of values of the EDF, showing that it is lower

bounded by the boundary distance function and is finite away from loops in the

medial axis:

Proposition 1. Let x ∈ M :

1. R̃(x) ≥ R(x), and the equality holds only when x ∈ ∂M .

2. R̃(x) = ∞ iff there is some subset S ⊂ M containing x such that ∂S = ∅.

The result in 1 aligns with the intuition that the “side-ways” expansion of the shape

around x (captured by R̃(x)) is no smaller than the uniform expansion there (captured

by R(x)). An immediate corollary of 2 is that R̃ is finite everywhere on the medial

axis M of a simply connected shape O (i.e., one without interior holes), since M is a

tree and so is any of its subset. If O contains interior holes, the proposition implies

that R̃(x) is infinite over the largest subset of M that does not have open boundaries

(similar to the 1-core of a graph), and finite everywhere else.

Next, we examine the local behavior of the EDF, and show that the EDF behaves like

a geodesic function over the medial axis, similar to the boundary distance function
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over the 2D shape. We consider the local behavior separately at the boundary of the

medial axis, on the EMA, and on the rest of the medial axis:

Proposition 2. Let x ∈ M :

1. If x ∈ ∂M , R̃ has a directional gradient of 1 along M leaving x.

2. If x /∈ ∂M and x /∈ M̃ , R̃(x) has a directional gradient of 1 on exactly one of

the out-going branches of M at x, and a directional gradient of −1 on one or

more of the out-going branches.

3. If x ∈ M̃ and R̃(x) ̸= ∞, R̃(x) has a directional gradient of −1 on two or more

of the out-going branches at x.

4. If x ∈ M̃ and R̃(x) = ∞, R̃ is infinite on two or more of the out-going branches

at x.

5. In all three cases (2,3,4), R̃ on the remaining out-going branches is bounded

strictly below R̃(x), and has constant gradient −1.

In short, any point on the medial axis that is not a boundary or part of the EMA

has some neighborhood where the EDF is continuous and has a constant gradient of

1. As immediate corollaries, the function R̃ is upper semi-continuous over all M , has

no local minima except at the boundary ∂M , and is locally maximal at each point

on M̃ where R̃ is finite. The last statement also implies that the part of M̃ where R̃

is finite consists of isolated points.

Finally, we show that the EMA preserves the topology of the medial axis, which in

turn preserves the topology of the 2D shape:

Proposition 3. M̃ is homotopy equivalent to M .

If the shape O is simply connected, the proposition implies that M̃ has the homotopy

of a point. Combined with the argument above that M̃ consists of only isolated

points, one can conclude that M̃ is a unique point on the medial axis (e.g., a center

point). If O contains interior holes, M̃ has the homotopy of a system of loops. Hence

M̃ consists entirely of the part of M where R̃ = ∞ without additional isolated points.
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Figure 3.2: An illustration of intermediate states in the extended grassfire burning on
the medial axis. Yellow dots are the fire fronts, arrows indicate the burning direction,
and the red, blue, and green squares are where fire fronts are ignited, annihilated,
and quenched.

3.3 A Grassfire Analogy for Computation

While explicitly defined, the EDF and EMA cannot be directly computed from their

definitions, which involve exploring an infinite set of axes at each point. On the other

hand, the properties of the EDF established by Proposition 2, particularly its lack

of local minima and constant gradient, suggests that the function can be obtained

by propagating values geodesically along the medial axis from its boundary points.

In the following, we design a propagation method for computing EDF and EMA

guided by their local properties. The propagation bears close resemblance with (and

in some sense “continues”) Blum’s grassfire, and hence is called the extended grassfire

transform.

3.3.1 Extended Grassfire Transform

Akin to Blum’s grassfire analogy, imagine the medial axis M is made up of a thin

thread of grass. Each end z ∈ ∂M is ignited at time R(z), that is, when Blum’s

grassfire reaches there. The fire propagates from those ends geodesically along M at

a uniform speed. When a fire front comes to a junction, it continues onwards if there

is exactly one remaining un-burned branch, and annihilates if there are two or more

branches remaining. When multiple fire fronts meet at the same location, and if there
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are no remaining un-burned branches, the fire fronts quench against each other. The

process terminates when no fire front is active. A simple example illustrating this

grassfire burning is shown in Figure 3.2. In this extended grassfire analogy, the EDF

at a point on M is the time at which the point is burned by the fire, and infinity

if the point is never burned. If the shape O is simply connected, the entire M will

be burned out, and the EMA is the quench site of the fire fronts. Otherwise, if O

contains interior holes, EMA is the remaining un-burned portion of M .

Note that our extended grassfire can be combined with Blum’s grassfire to a single

fire-burning process, since the arrival time of Blum’s grassfire at a medial axis point

(R(x)) is always earlier than the arrival time of the extended grassfire (R̃(x)). In

this combined burning, the fire front starts from the boundary of the shape, quenches

along the interior of the medial axis, and continues onto the medial axis from their

boundaries.

3.3.2 Discrete Algorithm

The analogy gives rise to a simple, thinning-based algorithm that can compute R̃(x)

and M̃ over a discretely represented medial axis M in time linear to the number of

elements in M . The algorithm assumes that M is represented as a weighted graph

that captures a piece-wise approximation of the medial axis. The graph nodes are

vertices on the medial axis, and the weight of an arc between two nodes is the length

of the line or curve segment connecting the two vertices. In addition, the distance to

the shape boundary is given at each degree-1 node (the “end”) of M .

The algorithm iteratively reduces the graph M to compute R̃i at each node i, which is

initialized to be the boundary distance at each degree-1 node and infinity elsewhere.

At each iteration, the degree-1 node i with the smallest R̃i is removed with its incident

arc. If the removal exposes a new degree-1 node, j, then R̃j is updated as the sum

of R̃i and the weight of arc {i, j}. Iteration terminates when the graph is reduced to

either a single node or a set of cycles, which are output as the EMA M̃ .

In our experiments, we compute the discrete medial axis M as the subset of the

Voronoi diagram of points sampled on O, consisting of the interior Voronoi vertices
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and their connecting Voronoi arcs. This subset is a provenly good approximation of

the 2D medial axis, and converges to the medial axis as the sampling density increases

[17].

3.4 Examples and Comparisons

We start with two simple examples in Figure 3.3 computed using our discrete algo-

rithm. One of the two shapes is simply connected, while the other contains an interior

hole. We can observe the properties of the EDF and EMA discussed in Section 3.2

in this picture. In particular, the EDF is identical with the boundary distance at

the ends of the medial axis, and increases at a constant gradient away from the ends

(most notably in the 3D height map in (c)) while staying above the boundary distance

function (as seen in the overlay in (b)). At each junction, the EDF is continuous along

at least two branches. The EMA is the global maximum of the EDF in the simply

connected shape (the gray dot), and a loop on the medial axis in the other shape (the

gray loop) where the EDF is infinite.

Observe from Figure 3.3 that the medial-axis points with higher values of EDF lie in

more elongated parts of the shape. The infinite EDF over a medial axis loop describes

an infinite elongation there, since a tube can wrap around the loop for infinitely many

times. More importantly, observe that the EDF is not sensitive to minor boundary

perturbations in elongated shape parts. Intuitively, the EDF captures the half-length

of a longest fitting tube, which is a global measure that does not change significantly

by adding or removing small protrusions.

The noise-insensitivity of EDF is most notable in a complex example like the one in

Figure 3.4, which contains a significant amount of boundary noise. Observe that the

EDF along medial axis branches corresponding to small boundary noise are very close

to the boundary distance function (which is most notable in the overlaying picture in

(b)), whereas branches corresponding to prominent shape protrusions have a much

higher EDF than the boundary distance function. Intuitively, EDF and boundary

distance at a medial axis point capture respectively the “length” and “thickness” of

the local shape, and hence their difference is a good measure of how protruded the
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Figure 3.3: EDF and EMA in a simply connected shape (left) and a shape with an
interior hole (right). The medial axis is colored by the EDF in (a) while the EMA is
drawn in grey, (b) shows the boundary distance function in the background, and (c)
plots both EDF and the boundary distance function as a 3D height map. The heat
coloring scheme is used (blue is low and red is high).
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Figure 3.4: EDF (a) and overlayed on the boundary distance function (b) for a shape
with boundary noise.

shape is. In fact, this measure has been widely used for identifying significant parts

of the medial axes, although without an explicit formulation (see discussion below).

We further examine the stability of the EDF and the EMA under synthetic boundary

perturbations in Figure 3.5 (top row). Here we perform a uniform perturbation of

a square shape (a,b) and a non-uniform perturbation on one side of a key shape

(c,d). Note that neither EDF nor EMA changes significantly, despite the change in

the topology of the medial axis near the EMA (b) and the addition of a significant

amount of medial axis branches (d).

We next compare EDF with two existing global measures on the medial axis, one

based on heuristics (the Erosion Thickness) and the other formulated mathematically

(the Potential Residue). In the first case, we show that the measure behaves similarly

to EDF by giving an explicit characterization of the measure. In the second case, we

demonstrate several advantages of EDF in terms of analytical properties and stability.
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Figure 3.5: Comparing the EDF (top row) and the Potential Residue (PR) measure
(bottom row) on the medial axis under boundary perturbation: the EDF and EMA are
stable under both uniform (a,b) and non-uniform (c,d) perturbations, while PR can
have sudden jumps (e,f), and both PR and its local maximum can exhibit significant
drift (g,h). Each picture is colored by the EDF or PR normalized by the maximum
value of EDF or PR present on the medial axis. The inserts in (a,b,e,f) zoom in on
the middle of the medial axis where there is a connectivity change after perturbation.
The closest boundary points to the local maximum of PR are shown as crosses.

3.4.1 Erosion Thickness

The Erosion Thickness (ET) measure captures the loss of the shape due to the pruning

of a medial axis branch. For a point x located on a medial axis branch directly

connected to an end of the medial axis y, ET is formulated as:

ET (x) = d(x, y) +R(y)−R(x)

Shaked and Bruckstein [61] proposed an extension of the measure to the entire medial

axis using a rate pruning paradigm, where ET (x) is determined as the time at which

the pruning front reaches x. In this paradigm, the pruning front propagates similarly

to the fire fronts in our extended grassfire analogy, with two differences. First, the

pruning fronts start simultaneously from all medial axis ends at time 0. Second, the

pruning front propagates at a non-uniform speed 1/(1− Rα(x)), where Rα(x) is the

gradient of R at x.
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While the rate pruning paradigm can be implemented in a discrete algorithm (just

like the extended grassfire), an explicit formulation of ET (x) is not known. As a con-

sequence, the meaning of ET (x) beyond the medial axis branches directly connected

to the ends is not clear. Here we give an explicit definition of ET (x), which reveals

its link to shape properties. In fact, ET is the residue of the EDF after subtracting

the boundary distance function, that is,

ET (x) = R̃(x)−R(x)

The equivalence of this definition and the pruning time of the rate pruning paradigm

can be verified by examining the property of the residue based on those of R̃(x) (as

discussed in Section 3.2) and R(x) (i.e., continuous over M and has bounded deriva-

tive within (−1, 1)). As mentioned earlier, the difference of EDF and the boundary

distance captures how much “longer” the shape is over its “thickness” around a me-

dial axis point. As a result, medial axis points with higher ET values represent more

prominent shape protrusions.

The definition of ET implies that it has very similar behavior to EDF. In particular,

both functions share the same continuity and gradient direction over the entire medial

axes. Also, both ET and EDF share the same set of local maxima, the EMA. From

a practical point of view, the definition offers a simpler way of computing ET: rather

than using the original rate pruning paradigm in [61] which requires a pruning rate

that varies with a differential quantity (Rα), the ET can instead be obtained by a

uniform-speed propagation (which gives R̃(x)) followed by subtraction of R(x).

3.4.2 Potential Residue

The Potential Residue (PR) measures, at each medial axis point x of a simply con-

nected shape, the shortest distance along the shape boundary between the two bound-

ary points closest to x [52]. The intuition is that the closest boundary points for medial

axis branches reaching to small boundary bumps are typically close together, hence

the PR is small on those branches. Ogniewicz and Ilg showed that PR increases mono-

tonically from the ends of the medial axis inward, and that there exists a unique local

maximum of PR on the medial axis [52]. Note that the recently introduced definition
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of the curve skeleton of a 3D shape by Dey and Sun [31] is in fact a 3D extension

of the local maximum of the PR measure. The extended measure, called the Medial

Geodesic Function (MGF), is the geodesic distance on the boundary surface between

the two closest boundary points to a medial axis point.

We show several notable differences between the EDF and PR through analysis and

experiments. First, although being monotonic like EDF, PR in general is not contin-

uous at the junctions of the medial axis, which have three or more closest boundary

points. In contrast, EDF is continuous along at least two branches at any junction.

Second, and more importantly, PR and its local maxima can change dramatically

under boundary perturbations. We perform the same perturbation tests we had

for EDF in Figure 3.5 for PR (bottom row). Observe that a slight change in the

connectivity in the middle of the medial axis (see insert of (f)) causes a big increase

in PR there after perturbation (note that the coloring of PR in both (e,f) is after

normalization by the maximum PR over each medial axis). This is because the pair

of closest boundary points to that part of the medial axis (shown as cross marks)

changes dramatically after perturbation. Also, both PR and its local maxima are

strongly affected by non-uniform boundary perturbations. In (g,h), perturbations

on one part of the key shape cause PR and its local maximum to shift significantly

towards that part, where the curve lengths increase greatly. Note that EDF and EMA

are much more stable in both examples.

3.5 Utility

As demonstrated above, the EDF offers stable, global measures of shape elongations,

and the EMA is a stable choice of shape center (for a simply connected shape). In

this section, we show several ways in which these descriptors can be utilized for shape

modeling.
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Figure 3.6: The Erosion Thickness (ET) measure (a) and Shape Tubularity (ST)
measure (b) over a 2D shape, and pruning using a low ET threshold (c), a high ET
threshold (d), and the combination of a low ET threshold with an ST threshold (e).

3.5.1 Pruning Medial Axes

Since meaningful parts of the medial axis should capture elongated shape parts, we

can use EDF to define significance measures for pruning the medial axis. As shown

in Section 3.4.1, the difference between EDF and the boundary distance function is

equivalent to the Erosion Thickness (ET) measure. Here we present another EDF-

based measure called Shape Tubularity (ST), defined as:

ST (x) =
R̃(x)−R(x)

R̃(x)
= 1− R(x)

R̃(x)

The measure is a scalar between [0, 1], reaching 0 only at the boundary of the medial

axis (where R̃(x) = R(x)) and 1 only at the EMA of a non-simply-connected shape

(where R̃(x) = ∞).

Intuitively, ST captures the ratio (rather than the difference, as in ET) of the “thick-

ness” over the “length” of the shape around a medial axis point. A high ratio implies

a “sharp” protrusion (e.g., a needle), while a low ratio indicates a “blunt” one. Fig-

ure 3.6 compares ET (a) with ST (b) in a synthetic shape that contains both blunt

(e.g., corners of the rectangles) and sharp (e.g., the smaller rectangle) protrusions.

Note that ET treats the medial axis branches reaching diagonally to the corners of

the bigger rectangle as important as those lying centered in the small rectangle. In

contrast, ST along the diagonal branches is much lower than in the small rectangle,

indicating that the later is a sharper protrusion.
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Figure 3.7: More pruning examples combing ET and ST. Examples in (a,b,c) include
the original medial axes, the EDF and the boundary distance functions, and the
pruned medial axes. Only pruned medial axes are shown in (d).

While capturing “sharpness” of protrusion, ST does not reflect the “size” of protru-

sion, and hence can be high around boundary noise (see the tip of the small bump in

Figure 3.6 (b)). We therefore combine both ET (which captures the scale of protru-

sion) and ST for pruning, which removes parts of the medial axis representing shape

features that are either small in size or weak in sharpness.

The advantage of using this combination over using ET alone is demonstrated in Fig-

ure 3.6 (c,d,e). Note that using ET alone with a low threshold (0.05 of the dimension

of the shape in this example) is sufficient for removing branches caused by boundary

noise (see (c)), but branches representing blunt features remain (e.g., the diagonal

ones). While these branches can be removed using a high ET threshold (see (d)),

branches representing sharp features are significantly shortened (e.g., the center axes

of the small rectangle). The result in (e) is produced by using the same ET threshold

as in (c) in combination with a suitable ST threshold (1 − 1/
√
2 ≈ 0.3) (that is, a

medial axis point has to satisfy both ET and ST thresholds to be retained), which

removes the diagonal branches but retain the length of the center axes in the small

rectangle as in (c).

Note that the subset of the medial axis satisfying both ET and ST thresholds may

not preserve the connectivity of the medial axis. For applications that require a

topology-preserving curve skeleton, we may need to expand this subset to retain the

original topology of the medial axis. This can be easily done by slightly modifying
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the discrete thinning algorithm presented in Section 3.3.2. Instead of removing all

degree-1 nodes, we shall preserve those with ST and ET values greater than or equal

to the given thresholds. Since removing degree-1 nodes preserve the homotopy of the

initial medial axis, the remainder after thinning is a topology-preserving subset. We

show more examples of combined pruning with topology preservation in Figure 3.7,

all computed using the same sets of thresholds as in Figure 3.6 (e).

3.5.2 Shape Alignment

Aligning two shapes is an important step for matching and recognition. Oftentimes,

the first step of alignment is translating two shapes so that their centroid coincide.

However, when two shapes that differ by a large variance such as isometric deforma-

tions (body movement in a human figure), the centroid can often change drastically

(e.g., pink dots in Figure 3.8), and aligning the shape by their centroid would lead to

unsatisfactory results (e.g., Figure 3.8 (b)).

In contrast, EMA, defined by the structure of the medial axes, is stable under a range

of deformations including similarity transforms and isometric deformations. Hence

EMA offers a good alternative to “centroid” for translational alignment of shapes

undergoing these deformations. In the examples on the top of Figure 3.8, the EMAs

are drawn as red dots. Note that they all lie roughly at the waist location of the

human body. Alignment using EMA therefore achieves much better overlap between

shapes, as shown in (d). We also compare with the local maxima of the Potential

Residue (PR) measure, which are drawn as blue dots in the pictures. Note that

these local maxima can sometimes drift significantly (see the last green figure), a

phenomena that we already observed in the previous section. Hence the alignment

using the PR local maxima (shown in (c)) does not look as good as the one produced

by the EMA.

3.5.3 Shape Signature

While EDF offers a global shape metric over the medial axes, many applications such

as shape matching require a descriptor (or signature) over the boundary of the 2D
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Figure 3.8: Top: several human shapes and their centroid (pink), local maximum
of PR (blue), and EMA (red). Bottom: alignment using the centroids (b), local
maximum of PR (c), and the EMAs (d).

shape. An ideal boundary signature should not only highlight local geometry, such

as concavity or convexity, but also global shape properties, such as shape parts and

extremities.

Common boundary signatures include curvature maps and local feature size (LFS),

both providing only local shape information. As illustrated in Figure 3.9, the local

curvature is homogenous on most parts of the boundary other than a few places

where the curve bends strongly (see (a)). The LFS offers more information on the

“thickness” of the local shape, as it measures the distance to the closest medial axis

point. But LFS cannot differentiate parts with a common thickness. Also, note that

the local nature of these descriptors make them very sensitive to boundary noise.

We introduce a new boundary signature for a simply connected shape, called Bound-

ary Eccentricity (BE), which captures how far a boundary point is away from the

EMA along the medial axis. For a point x on the medial axis M , let E(x) be the
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Figure 3.9: Boundary signatures: local curvature (a), local feature size (b) showing
also the medial axis, Boundary Eccentricity (BE) (c,d) showing also E(x) over the
medial axes, and a matching result using BE (e).

geodesic distance from x to the EMA. For any boundary point p, let Xp ∈ M be the

set of points on the medial axis whose closest boundary point is p. BE is defined as:

BE(p) = min
x∈Xp

(E(x) +R(x))

Both BE and the function E(x) over M are plotted in Figure 3.9 (c). Observe that,

despite the noisiness of the shape, BE is a smoothly varying function that highlights

shape parts and extremities that are away from the shape center. As shown in a

different shape in (d), BE is also stable under isometric deformations. With these

properties, BE is a good descriptor for matching 2D shapes that may be noisy and

undergoing large deformations. We demonstrate this by matching the two curves

in (c,d) guided by the BE values using a simple dynamic algorithm. The resulting

correspondence for several critical points of BE on the first shape (c) is shown in (e).

3.6 Summary

In this chapter, we defined a global shape measure (EDF) over the medial axis that

captured shape elongation, a shape center (EMA) where the elongation is maximal,

and rigorously studied their properties. Both the EDF and EMA can be obtained

using an extension of Blum’s grassfire analogy onto the medial axis. The EDF and
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EMA are demonstrated by examples, compared to related formulations, and used in

several shape modeling applications.
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Chapter 4

Extended Grassfire Transform on

Medial Axes of 3D Shapes

In this chapter, we define a function on the medial axis of a 3D shape that captures

the side-ways elongation that is similar to our EDF function in 2D. There are two

equivalent ways of defining the EDF in 2D, one based on the length of the longest

centered tubes, and the other based on an extended grassfire burning. This chapter

starts by showing that a direct extension of the first definition from 2D to 3D does

not yield a burning-like function on the 3D medial axis. Therefore, we define our

function by extending the grassfire burning analogy and we show that the burning

time of the grassfire over the 3D medial axis shares many properties with the 2D EDF

function.

4.1 A First Attempt: Largest-Plate Definition

The elongation of the medial axis in 3D can be defined in a similar fashion as in

2D. In 2D, the elongation at a medial point x is measured as the half length of

the longest “tube” centered at x and inscribed in the input shape O. This tube

extends longitudinally along the medial axis. The counterpart elongation in 3D at

a medial point x can be measured as the radius of the widest “plate” centered at

x and inscribed in O. This plate extends sideways along the medial axis, therefore,

it can be considered as the side-ways elongation of the 3D shape. We first give the

definition using the plate radius, then we explain several issues with the definition

through examples, which motivate our alternate definition in the next section.
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4.1.1 Definition

In 2D, we first define any possible 1-dimensional local neighborhood of any medial

point x along the medial axis as an axis f . The union of all of the medial disks

with centers on f form a tubular shape, then the radius of f at x is defined as

the shorter half length of the tubular shape. The radius is measured at all possible

axes enclosing medial point x, and the largest among them is the EDF at x. This

intuitively corresponds to the half length of the longest tube we can embed along the

medial axis at the medial point x.

Figure 4.1: A 3D shape made from two rectangular cuboids with smooth boundary
edges (a), the 3D shape with its medial axis embedded inside (b), a disk (in blue) on
the medial axis surrounding medial point x (c), and the plate (in blue) corresponding
to the disk (d). The LPDF at x is achieved by the red curve path in (c), where z is
a boundary point of the blue disk and R(z) is the radius of the medial ball (the red
ball in (d)) at z. The plate is the union of all medial balls with centers from the blue
disk. We highlighted a few balls inside the plate in blue and red.

These definitions in 2D can be directly extended to 3D as follows, which is illustrated

through a simple example in Fig. 4.1. We start with the definition of a 2D neighbor-

hood of any medial point x along the medial axis as disk f . The blue disk in Fig. 4.1

(c) is an example of such a disk neighborhood f . Note that by a disk, we mean only
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a 2D area that is topologically equivalent to a disk, and it does not necessarily have

to have a circular shape. The union of medial balls centered on medial points from f

forms a “plate” (the counterpart of a 2D “tube” in 3D). The blue plate in Fig. 4.1 (d)

corresponds to the disk in Fig. 4.1 (c), with a few interior medial balls highlighted in

blue and red. The radius at the medial point x with respect to the disk is then defined

as the minimum of df (x, z) + R(z), where df (x, z) is the geodesic distance between

the two points on the medial axis, z is any point on the boundary of the disk f , and

R(z) is the radius of the medial ball at z. Note that the path x, z together with the

radius connects point x to a boundary point on the 3D plate. Therefore, the radius

essentially captures how wide the 3D plate is. In the example given in Fig. 4.1 (c),

the radius of x with respect to the blue disk is the length of the curve marked in red.

This radius computation is carried out for all possible plates that contain the medial

point x, and our distance function at x (which we call the “largest-plate” distance)

is defined as the maximum of them all. In this particular case, the distance at x is

precisely df (x, z) + R(z), since no other plates can have a larger radius with respect

to x.

To be more precise, we define:

Definition 5. Let f : R2 → R3 be a local embedding of the disk D = {p|p ∈ R2, |p| ≤
1} onto M . The image f(D) ⊆ M is called a disk.

Given some point x on a disk f , we are interested in the radius of f with respect to

x, which is defined as the distance from x to the shortest boundary point of the plate

of f (which is the union of medial balls centered on f):

Definition 6. Given a disk f and a point x ∈ f ,

rf (x) = min
z∈∂f

(df (x, z) +R(z))

is called the radius of f with respect to x, where df (x, z) is the geodesic length of

segment [x, z] on f (the red path in Fig. 4.1 (c)).

The largest-plate distance function at x is the largest radius of any disk containing

x:
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Definition 7. Given a point x ∈ M ,

R̃(x) = sup
f∋x

rf (x)

is the largest-plate distance function (LPDF) at x.

4.1.2 Example and Issues

We examine the behavior of the LPDF using a simple non-manifold medial axis shown

in Fig. 4.2. The medial axis consists of two planar sheets joined at a non-manifold

junction, one sheet parallel to the ground (called the “board”) and one sheet shooting

straight-up (called the “fin”). For simplicity, we assume that the board is bounded

on one side (denoted B) and extends infinitely away from that side (indicated by the

arrows), and that the fin is bounded on two sides (denoted F and N and meeting

at point c) and extends infinitely away from F and N . The two sheets meet at the

non-manifold junction N . We assume that the angle between F and N is 1
2
π, and the

angle between N and B is 3
4
π. In addition, we assume that the radius of the medial

ball at each medial point is arbitrarily small. With this assumption, the LPDF at a

medial point x reduces to the radius of the largest circular disk centered at x that

lies on the medial axis.

Figure 4.2: The board and fin example (right) made from a long and wide “board”
(left) and a long and tall “fin” (middle). The black lines are their boundary lines
and the arrows represent infinite expansion. A non-manifold curve is formed at the
intersection between the board and the fin.
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Figure 4.3: The LPDF distribution on the board and fin example (top), and the
paths (in white) that realize the LPDF of medial points from its three different zones
(bottom). The value of the LPDF increases when the hue color changes from red
to purple. The medial points with the same LPDF forms an iso-curve (in black in
the top row), which is upper semi-continuous at the non-manifold point and only C0

continuous in the manifold region. The LPDF of points in zone 1 and zone 3 are
realized by their distance to the border of their zones, while the LPDF of points in
zone 2 are realized by their distance to the corner point c.

The LPDF on this medial axis is displayed using hue color in Fig. 4.3 (top). To explain

this picture, we divide the medial axis into three zones and analyze the behavior of the

function within each zone (see Fig. 4.3 bottom; each zone is hue-colored by distance):

• Zone 1 consists of the entire fin. A circular disk centered at any point x on

the fin lies either completely on the fin or extends partly onto the board. The

largest disk is confined by the fin’s boarder F . Hence the LPDF in this zone

increases linearly away from F .

• Zone 2 consists of a “wedge” region on the board, which is bounded on one

side by the non-manifold junction N and on the other side by the parabola P

consisting of points that are equally distant to B and c. The intersection point

of P and N is denoted k. Among all possible circular disks centered at some

point x in this wedge, the largest one lies partly on the fin and partly on the
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board and touches the point c (note that the distance from x to c is greater

than the distance from x to the board’s border B). Hence the LPDF in this

zone is a circular distance function centered at c.

• Zone 3 consists of the remainder of the board that is not in zone 2. The largest

circular disk centered at a point x outside of zone 2 is one that lies completely

on the board and is confined by the board’s border B. Hence the LPDF in this

zone increases linearly away from B.

Observe that the LPDF in each zone is a continuous function, and that the LPDF

in two abutting zones meets continuously along the zone border. When three zones

meet along a common border (e.g., the portion of N that extends infinitely away from

point k), the LPDF in two of the zones meets continuously (in this case, zone 1 and

zone 2) with values higher than those from the third zone. In other words, the LPDF

is continuous everywhere on the medial axis away from the non-manifold junctions,

and upper-semi continuous along the junctions. Such continuity closely mimics the

continuity of our EDF on a 2D medial axis.

One of the key properties of our EDF definition in 2D is that it behaves like the

burning time of a grassfire. While the LPDF has a similar behavior as burning time

it increases away from the border of the medial axis, a closer look in the pictures in

Fig. 4.3 (top) reveals a subtle but important difference. Along the parabola P that

separates zone 2 and 3, the LPDF is only C0 continuous, that is, it is not differentiable

(this can be concluded from our prior analysis of the LPDF in each zone). Intuitively,

the iso-curve of LPDF for values higher than the value at point k has a sharp and

concave corner at P (as seen in Fig. 4.3 (top)). On the other hand, the firefront of a

grassfire on the board should be everywhere smooth except at convex corners (where

different fronts meet and quench). Hence the LPDF cannot be interpreted as the

burning time of a grassfire propagation.

The practical implication of this difference is that the LPDF cannot be computed

as easily as the EDF on 2D medial axis. The burning formulation of EDF allows

the value at a medial point to be inferred locally from the values at its neighboring

points, and hence a linear pass over the medial axis is sufficient to compute the entire

function. However, the LPDF at a medial point depends on more global information

(e.g., which border of the medial axis is used to compute the distance function),
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which makes the design of simple, local computations difficult, if not impossible.

From a theoretical point of view, the non-differentiability of LPDF also makes it a

non-desirable choice.

4.2 Burning-based Definition

As discussed above, direct extension of the longest-tube definition of our 2D EDF

onto the 3D medial axis loses the burning-time property of our 2D definition. To

remedy this loss, we next attempt to derive a distance function directly from the

grassfire burning process over the medial sheets of a 3D shape. We first describe the

burning process in an informal language with illustrating examples. We then detail

the necessary mathematical notations and the formal definitions.

4.2.1 Intuition

Recall that our extended grassfire transform over the medial axis of a 2D shape

proceeds as follows:

• The fire is ignited at the ends of the medial axis at the time equal to the radius

of the medial balls.

• Fire propagates geodesically along the medial axis at a uniform speed.

• When the fire front of one branch reaches a junction, it dies out if there are at

least two unburned branches there.

• Fire fronts quench when they meet.

The following rules generalize these 2D rules to 3D, with specific extensions to the

non-manifold structure of the 3D medial axis:

• The fire is ignited at the border of the medial axis. For a medial point x at the

border, the ignition time is the radius of the medial ball at x.
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• Fire propagates geodesically along the medial sheets at a uniform speed.

• When the fire front from one sheet comes to a non-manifold junction at point

x, it dies out if there are at least two other unburned sheets at x.

• Fire fronts quench when they meet.

Figure 4.4: The burning time distribution on the board and fin example (top), and
the burning front at three different time points (bottom). The grassfire starts from
the borders, and burns forward at a geodesic uniform speed. At the beginning, the
burning front on the top fin is ahead of that of the board (bottom left). This lasts
until they reach the point k (called the “kink” point) (bottom middle). Afterwards,
the burning fronts on the top fin merges with that of the front sheet, while the burning
front of the back sheet advances faster (bottom right).

We illustrate this burning process using the same board-and-fin example as in Fig. 4.2.

With the assumption that maximal balls are arbitrarily small at all medial points,

the fire is lit at both borders B and F at time 0. Fig. 4.4 (bottom) shows the fire

front (i.e., iso-curves of the burning time) at three different stages, which we explain

as follows:

• At the beginning of the fire propagation, the fronts advance at uniform speed

on the board and the fin from their respective borders (B or F ). Note that the
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fire on the fin stops along the non-manifold junction N , since the board is not

yet burned (Figure 4.4 bottom-left).

• At time equal to the distance between c and k (which is the point on N that is

equal-distant to c and B), the fronts on the board and the fin become connected

at k (Figure 4.4 bottom-middle).

• Afterwards, because the portion of the board behind the fin forms a smaller

angle 1
4
π with the non-manifold junction N than the front side of the board

and the fin, the fire front on the back side of the board will reach the non-

manifold junction earlier than the fronts from the front side of the board and

the fin. As a result, the fire front on the back side of the board will stop at

the junction, while the remaining fronts propagate along the fin and the front

side of the board. Intuitively, the back side of the board becomes the new “fin”

while the remainder of the original fin and the front side of the board together

become the new “board” (Figure 4.4 bottom-right).

The burning time is plotted as hue color in Fig. 4.4 (top). Observe that the function

is quite similar to the LPDF function (Fig. 4.3), as it increases away from the border

of the medial axis. Such similarity implies that the burning time, too, characterizes

the expansion of shape. Like LPDF, the burning time is continuous everywhere away

from the non-manifold junction. At a non-manifold medial point, the burning time

is continuous over two sheets coming to that point, and is greater than the burning

time over the third sheet. However, unlike LPDF, the burning time is differentiable at

places where the LPDF is only C0 continuous. Also, the erosion formulation implies

that the burning time at a medial point only depends on the burning time of its

neighboring points, hence making it possible to design efficient and local algorithms

that propagate values over the medial axis from its borders.

It is also interesting to note that the pair of sheets with continuous burning time

may vary along a non-manifold junction. In this example, for a medial point between

the segment {c, k}, the burning time is continuous along the back and front sheets

of the board. For a medial point after k on the same junction, the burning time is

continuous along the fin and the front sheet of the board. We hence call k the “kink

point” as it is where the behavior of the function changes. Note that kink points have

no counterparts in 2D, as the only non-manifold entity in the medial axis of 2D shape
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is a point, and hence there is no “change” in the behavior of the function along the

non-manifold junction.

4.2.2 Notations

We now introduce some notions about medial axes in preparation for formally defining

the burning time. Here, we assume the input medial axis M of a 3D shape is a

piecewise smooth cell complex equipped with the distance function f : ∂M → R. f

maps a point on the boundary of medial axis to the radius of the medial ball centered

at this point. Note that f is a 1-Lipschitz function. A function is k-Lipschitz if

|f(x)− f(y)| ≤ k d(x, y) and that Lipschitz functions are automatically continuous.

M naturally decomposes into 2-dimensional, 1-dimensional, and 0-dimensional regions

as follows. The manifold regions, M (2), are any points that have a neighborhood in

M which is homeomorphic to a disk where the point lies in either the interior or

on the boundary of the disk. In the second case, the point is also on the boundary

of M . Singular curves, denoted M (1), consists of all points x ∈ (M − M (2)) with

neighborhoods homeomorphic to a 1-dimensional disk. These are edges of the cell

complex where three or more 2-cells meet. Singular points, denoted M (0), are the

intersections between two (or more) singular curves, or M \(M (2)∪M (1)) (see Fig. 4.5

(a) for an annotated example). If a small neighborhood of a singular point was cut up

along the singular curves, the remaining components are referred to as sectors. We

refer to the union of M (1) and M (0) as the singular set of M and we use the notation

M (s).

The boundary of M , denoted ∂M can be defined in terms of the manifold regions and

singular curves:

∂M = (∂M (2) ∩ (M −M (s))) ∪ (∂M (1) ∩ (M (1) −M (0)))

Notice that this is precisely the points in the portion of the boundary of the manifold

region that are disjoint from the singular set and the endpoints of the singular curves

that are not singular points.
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Figure 4.5: The decomposition of a medial axis (a), and the shortest path between
points p1, p2 on M (2) realized by a non-crossing curve (in yellow) (b). The medial axis
is decomposed into 2-dimensional (M (2), in grey), 1-dimensional (M (1), in blue), and
0-dimensional (M (0), in red) regions, and it is bounded by curves and points (∂M , in
black). M (2) in general is noncompact (open at the dashed lines in b), so the shortest
geodesic path may not always exist (e.g., p1, p2). To overcome this problem, we
define non-crossing curves which are allowed to touch singular points but not allowed
to cross singular curves, so that the shortest geodesic path between two points can
always be realized by a non-crossing curve.

The extended grassfire locally burns along a geodesic path. We wish to constrain the

curve on M (2) only, but M (2) in its nature is noncompact since it is not closed, which

makes it impossible to assume that we have shortest geodesic paths between two

arbitrary points and other useful properties. For example, the shortest path between

p1 and p2 on M (2) can get arbitrary close to the length of the shortest path on M

in Fig. 4.5 (b), but not equal, because the path touches the singular curve which

does not belong to M (2). Therefore, we first define the shortest distance between two

points on M (2) as dM(2)(p1, p2) = inf{|PM(2)(p1, p2)| | P is a path between p1, p2}. We

then also define a non-crossing curve as a curve that is constrained in M (2) so that

it touches the singular sets but never crosses them (e.g. the yellow path between p1

and p2 in Fig. 4.5 (b)). Otherwise, a curve that crosses a singular set is a crossing

curve. A non-crossing curve can be infinitesimally perturbed to be completely inside

ofM (2). It turns out there always exists a non-crossing curve that realizes the shortest

distance between two points on M (2), as the following lemma says:
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Lemma 1. Given x, y ∈ M (2) there exists a non-crossing curve γ : I → M with

γ(0) = x, γ(1) = y and |γ| = dM(2)(x, y).

4.2.3 Burning Sets and Burning Times

We formally define a burning process for M described in Section 4.2.1. The burning

starts at the boundary at times specified by f : ∂M → R. We characterize the

part of the medial axis M that is burned away at time t as the burning set BM(t).

This characterization leads directly to an iterative definition. Intuitively, we know

that the set BM(t) monotonically increases since more parts of the medial axis are

burned away as time goes by, and finally it stays unchanged when burning ends. The

monotonicity indicates that if a medial point p shows up in the burning set at time t,

it will stay in the burning set thereafter, therefore the earliest time when p ∈ BM(t)

is the burning time of p. We formalize these definitions in this section.

In the course of our burning, the grassfire reaches a medial point from all possible

disk neighborhoods. For example, a medial point in the manifold area has a single

disk neighborhood, and the extended grassfire burns in from one direction and exits

from this point in another direction inside the disk. However, if the point has a non-

manifold neighborhood, the disk neighborhood becomes more complex, so we instead

consider the regular neighborhood radius and the set of disk types at any point:

Definition 8. The regular neighborhood radius at a point x, RM(x), is the sup{r | ∀r1, r2 ∈
(0, r), B(x, r1) ∩M ∼= B(x, r2) ∩M}. The set of disk types at a point x, DM(x), is

the set of all possible combinatorial types of disks centered at x with radius equal to

the regular neighborhood radius, {D | x ∈ D ⊂ M,dM(x, y) = RM(x) ∀y ∈ ∂D}.

The grassfire could reach a medial point x on any of the combinatorial disks. Fig. 4.6

shows one example of RM(x) and DM(x) at a medial point x. Note that x is burned

away only when the fire in all disks DM(x) have touched x. For example, point x in

Fig. 4.6 is not burned away when the fire front from the lower-left border of the board

first reaches there, as the disk D3(x) is not yet burned. We now formally define the

burning set BM(t) as follows:
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Figure 4.6: The regular neighborhood radius (RM(x)) at a point x (a), and its disk
types DM(x), including D1, D2 and D3 (b).

Definition 9. The burning set of M at time t is defined as:

BM(t) = {x ∈ ∂M | f(x) ≤ t} ∪

{x ∈ M | ∀D ∈ DM(x) ∃γ : I → M such that γ(0) = x, γ(1) ∈ BM(t− |γ|)),

γ does not cross the singular set,∃δ > 0 such that γ([0, δ]) ⊂ D}

In other words, a point x is in the burn set at time t either if it is on the boundary

and has f(x) ≤ t (so that it already has “burned” by time t), or if for every possible

disk type, there is a non-crossing path γ going in some direction, where the other

endpoint of γ is in the burn set at time t−|γ|. γ in each disk is the slot burned away

by grassfire by time t.

The following lemma justifies how we can view burning sets as erosion process as time

progresses more points are “burned away”.

Lemma 2. s ≤ t implies that BM(s) ⊆ BM(t)

Finally, we are ready to define the burning time of a point based on our burning sets.

From Lemma 2, it is easy to see that if x ∈ BM(t), then x ∈ BM(s), for any s ≤ t.

The burning time should be the earliest time that x appears in the burning set:

Definition 10. The burning time BTM(x) of a point x is:

BTM(x) =

inf{t | x ∈ BM(t)} if x ∈
∪

t∈RBM(t)

∞ otherwise
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Figure 4.7: The shortest geodesic path (in yellow) between points x, y on a medial
axis made from a large board at the bottom and the side of a hollow cylinder on top.
It is an example for demonstrating when the burning path can get arbitrarily close,
but not equal to, the shortest geodesic path.

Note that we use the infimum of t instead of the minimum of t in the definition,

because the minimum may not exist in some cases. Fig. 4.7 shows one such example.

This example consists of a board at the bottom and the side face of a hollow and

long cylinder on top. The board and the cylinder meet at a non-manifold circular

curve. Let y be the geodesically closest point to a point x on the border of the

board, and suppose the shortest path between x and y on the board uses a segment

of the non-manifold curve. Note x is in burning set BM(dM(x, y) + ϵ), ϵ > 0, but

x is not in the burning set BM(dM(x, y)), therefore only the infimum exists but not

the minimum. The reason is that the grassfire cannot burn along the shortest path

between x, y, which touches a part of the singular curve that is not burned away

until it is reached by the grassfire from the top border of the cylinder. The grassfire

can burn along a path that is arbitrary close to the shortest path between x, y with

a length that is strictly larger than dM(x, y) by an arbitrarily small positive value.

Note that in the simplest case when M is a manifold, the burning time is equal to

min{dM(x, y) + f(y) | y ∈ ∂M}.

The burn process can get arbitrarily close to a medial point at multiple times, or in

other words, a medial point is touched multiple times by the grassfire. For example,

the medial point x in Fig. 4.6 is first touched by the grassfire from the lower-left
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border of the board, then burned away by the grassfire from the border of the fin. We

call the set of times when the grassfire gets arbitrary close char times. Apparently

burning time is always in char times.

Definition 11. The set of char times CTM(x) of a point x is:

CTM(x) = {t | ∃{xi} → x with {BTM(xi)} → t}

4.3 Properties of Burning Times

In this section we prove that burning times are well behaved, nice functions that in

many ways generalize our definition of the EDF in 2D.

We begin by examining how distances affect the burning time, eventually proving that

the function BTM(x) is 1-Lipschitz when restricted to either the manifold regions or

singular curves, therefore the burning time is continuous on manifold regions and on

singular curves.

Proposition 4. For i ∈ {1, 2} and x, y ∈ M (i),

1. x ∈ BM(t) implies y ∈ BM(t+ dM(i)(x, y))

2. |BTM(x)−BTM(y)| ≤ dM(i)(x, y)

The sketch of the proof is as follows (full proof can be found in Appendix B). When

x, y are both in M (i), there exists a non-crossing curve α between x and y with length

dM(i)(x, y) based on Lemma 1. Since both x, y are in M (i), this α can serve as γ in

the burning set definition (Definition 9) at the point x, which directly proves that

x ∈ BM(t) implies y ∈ BM(t+ dM(i)(x, y)). Part 2 can be proved from the definition

of the burning time and the conclusion of part 1.

Recall that a function f : X → R ∪∞ is upper semi-continuous if for every x0 ∈ X

and ϵ > 0 there exists a neighborhood U of x such that f(x) ≤ f(x0)+ϵ for all x ∈ U .

In particular, this implies for any sequence xn → x0 with {f(xn)} converging we have

f(x0) ≥ limn→∞ f(xn). Lower semi-continuity is similarly defined.
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Proposition 5. 1. BTM(x) is upper semi-continuous. Furthermore, for some se-

quence {xn} converging to x BTM(x) = limn→∞BTM(xn).

2. minCTM(x) is lower semi-continuous. Furthermore, minCTM(x) = limn→∞ BTM(xn)

for some sequence {xn} converging to x.

From Proposition 4 we know that if x is in the manifold regions, Proposition 5 au-

tomatically holds, since continuous functions must be both upper and lower semi-

continuous. When x is on the singular curve, this proposition matches our intuitive

extended grassfire burning rules. The extended grassfire burns towards x in multiple

disks. If grassfire touches x when there is still an intact disk, this grassfire simply

dies, which suggests the limit of the sequence following this grassfire is no larger than

the burning time of x. On the other hand, the minimum of char times at x can be

considered as the time of the sequence following the grassfire that first reaches x,

and hence it is always smaller than or equal to the minimal char times in its local

neighborhood.

Burning times are not a continuous function; however at any point there is a disk on

which burning is continuous at that point. Intuitively, when the grassfire burns on

the last intact disk at a medial point x, it leaves a continuous burning trace through

x.

Proposition 6. For every x ∈ M − ∂M there exists a disk D with x ∈ D ⊂ M such

that BTM |D is continuous at x.

Unlike the distance function f , there are points where burning times could be infinite.

It turns out that these points are precisely the largest subset of M without boundary,

similar to the closed loops which have infinite values of EDF in 2D.

Proposition 7. {x ∈ M | BTM(x) = ∞} is equal to the maximal closed subcomplex

of M .

Intuitively, this set is never burned by the extended grassfire since it does not have a

boundary.

In sum, the burning time is continuous at any point on the medial axis within a

small disk-neighborhood around the point, and it is finite when the point is not in
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the closed subsets. These properties are reminiscent of those of the EDF over the 2D

medial axis.

4.4 Summary

In this chapter, we explored two different extensions of EDF from 2D medial axes

to 3D. The first extension, based on the radius of the largest plate, results in a

continuous function but one that does not have an erosion formulation. The second

extension explicitly formulates burning over the 3D medial axes, and we present

several properties such as continuity and finiteness. These properties lay a theoretical

foundation for developing computational algorithms of the burning time, as well as for

defining lower-dimensional medial geometry in 3D such as medial curves and center

points.
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Chapter 5

Future Work

In this dissertation, we extended Blum’s grassfire burning to medial axis in both

2D and 3D. This extended grassfire burning leads to a function on the medial axis

that captures intrinsic shape properties which further can be used to define lower

dimensional medial forms.

This dissertation gives a good foundation to many problems for future research. Most

of the open questions exist in R3, and they can be grouped into three categories:

theory, algorithms and applications, which we discuss in the following sections.

5.1 Theory

5.1.1 Burning Time and Shape Properties

Unlike in R2, the relation between the burning time and the shape properties is not

obvious in R3, which makes the burning time more difficult to use in practice. In

R2, we have shown that EDF is the half the length of the longest tube that could

be embedded inside the 2D shape, and hence it reflects how elongated a 2D shape is.

Unfortunately, the burning time in R3 does not correspond to the radius of the widest

plate (LPDF) that can be possibly embedded inside the 3D shape (Section 4.1). But

still, the burning time is somehow related to how wide the medial axis is at a medial

point, as when the medial axis is wider, the burning time is larger. This behavior is

also indicated by the highly similar value distribution of LPDF and the burning time

on the board and fin example (Fig. 5.1).
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Figure 5.1: The LPDF distribution on the board and fin example (top), and the
burning time distribution (bottom). The iso-curves are drawn at medial points with
the same function value. The function distribution is also drawn only on the board
(right column).

In the future, it would be interesting to characterize the relation between the burning

time and the 3D shape properties formally, so that the burning time can be used to

help the understanding of 3D shapes.

5.1.2 Homotopy Preserving Lower Dimensional Medial Forms

Another problem is how to define homotopy preserving medial curves directly based

on the burning time in R3, or more generally, whether we can define an even lower

dimensional medial form, such as the shape center, in R3, since they are widely used

in many applications (Section 2.3).

Defining lower dimensional medial curves on the medial axis in R3 is not easy because

of the non-manifold structure of the medial axis. We think a potential way to define
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the medial curves is based on the burning paths of the extended grassfire. The burning

paths are the curves that the extended grassfire burns along. Note that in Blum’s

grassfire burning analogy, the burning path starts at a boundary point and ends at

a medial point. Similarly, on the medial axis of a 3D shape, the burning paths end

at the medial curve points. We demonstrate that the medial curves created based on

this definition in Fig. 5.2. Note that the medial curves are still disconnected, which

is likely to be solved by carefully adding a few extra burning paths to connect them.

Figure 5.2: The medial curves defined from burning paths. Black arrows indicate the
burning paths of the extended grassfire. The end points of these burning paths are
medial curve points.

A formal characterization of the points on medial curves is still needed. The extended

grassfire can also be used to define a deformation retract to prove the homotopy equiv-

alence. When this problem is solved, it would be interesting to know if the grassfire

can be further extended to the medial curves to define even a lower dimensional

medial form, i.e., the shape center.

5.1.3 Stability

Even though we have empirically observed the stability of EDF and EMA under

significant amount of boundary perturbation, a rigorous mathematical proof of this

63



stability is still lacking in both R2 and R3. The stability is a very important property

for a significance measure to be useful in practice (Chapter 2).

Figure 5.3: The medial axis (black line) of a very thin 2D shape and its EMA (black
dot) (top), the medial axis (red curve) of its perturbed shape within ϵ-Hausdorff
distance, whose EMA (red dot) is shifted.

By stability, we mean that the EDF and EMA stay almost unchanged when the

boundary is perturbed. Let us focus on the EMA in 2D for now. A popular way

to measure the change in boundary shape or in EMA is Hausdorff distance. Un-

fortunately, our EMA is not stable relative to this measure. One example is shown

in Fig. 5.3. The black curve is the medial curve of a very thin 2D shape O whose

thickness is almost zero, and the center black point is the EMA. The red curve is the

medial axis of a perturbed shape of O which is within its ϵ Hausdorff distance, and

the red point is its EMA. Note that we can add arbitrarily many red teeth on the

left side, and this will lead to a big shift in the EMA. This simple example implies

that our EMA is not stable under Hausdorff distance, and we need to apply a harsher

constraint on the boundary noise. A possible candidate is the Hausdorff distance or

some other curve metrics, such as Isotopic Frechet distance [18], normalized by the

local thickness of the shape as indicated by the radius of the maximum balls.

5.2 Algorithms

In order to use the burning time in practice, it is necessary to devise a new com-

putational algorithm. An accurate computational algorithm is preferred, because all

the properties of the burning time hold true when the result is accurate. Apparently,

the computation of burning time can only be more difficult than the computation

of medial axis, and we know that an accurate computation of medial axis is limited

to a few classes of shapes. As a result, we will first study accurate computational

algorithms for the burning time on these shapes. We will also consider approximate
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algorithms on approximations of the medial axis, such as on a discretized grid, and

study the approximation accuracy of such algorithms.

We think that the accurate computation of the burning time on a piecewise linear

medial axis is feasible. By piecewise linear, we mean that the medial axis consists

only of points, straight line segments, and flat triangles (flat polygons can always be

split into triangles without altering the shape). Note that the medial axis of a union

of balls or a convex polygon is precisely piecewise linear, and the Voronoi Diagram

based medial axis approximation algorithm results in a piecewise linear medial axis

with both topology and convergence guarantees (Chapter 2).

Similar to the sweeping algorithm computation of Voronoi Diagram [28], we could

develop a sweeping approach to mimic the extended grassfire burning on the piecewise

linear shape. The sweeping algorithm maintains the burning front that is advanced

in the normal direction. Note that the burning time at the boundary of the medial

axis is not 0, because the boundary of the medial axis starts burning at time f , which

is the radius of the medial ball at that boundary point. We know f is piecewise

quadratic on the boundary of the medial axis of a union of balls. Also, similar to [28],

we need to identify all the events that could happen, when we advance the burning

front. The events not only include sweeping over a point, an edge or a triangle, but

they also include the merge of burning fronts from different manifold pieces, which is

more complicated to implement but still manageable.

5.3 Applications

The burning time and medial curves carry intrinsic shape information and they can

be used in shape analysis and shape matching.

Shape analysis The burning time is related to the side-ways expansion of 3D

shapes. A large burning time indicates the corresponding local shape is planar, while

a small burning time indicates the corresponding local shape is tubular. The parts of

medial axis that correspond to planar shape parts should be represented by medial

sheets, and the tubular shape parts should be represented by medial curves. This
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mixed-dimensional medial structure is useful in certain applications, for example,

the visualization and analysis of the secondary structure of a protein, which consists

of tubular α-helixes and planar β sheets (see Fig. 5.4). Of this mixed dimensional

medial axis, the area of the medial sheets and the length of the medial curves can

be measured and used as a shape signature. The medial curves defined based on our

burning time can be used in various applications discussed in Section 2.3.

Figure 5.4: A surface model of a protein (a) and the abstract illustration of its
secondary structure (b) (α-helix in green and β-sheets in cyan).

Shape matching In 2D, we mapped the EDF to the boundary curve of the shape to

define a boundary signature called boundary eccentricity. Compared to other bound-

ary signatures, ours is smoother and more stable with respect to boundary noise. We

then applied boundary eccentricity to identify prominent shape features and to estab-

lish the correspondence between two similar shapes. One can imagine such boundary

eccentricity to be directly extended to 3D, so that feature points can be identified for

shape matching. For example, Fig. 5.5 shows two bones from two different subjects.

The burning time and medial curves are approximated by our previously developed
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discrete algorithm [46]. Even though the size and shape of the same bone vary be-

tween the two subjects, the overall burning time distribution and structure of the

medial curves are rather similar, which indicates that our burning time and medial

curves can be used for shape matching.

Figure 5.5: Two bones from two different subjects (top and bottom). Each bone is
illustrated by a surface model, the model with its medial axis embedded colored by
an approximated burning time using our own discrete algorithm [46], and the model
with the extracted medial curves embedded. Note that even size and shape of the
same bone vary in the two subjects locally, the burning time and medial curves are
rather similar. Therefore, they can be used for shape matching.
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Appendix A

Proofs of Propositions in Chapter 3

A.1 Proof of Proposition 1

Proof:

1. By triangle inequality, for any axes f containing distinct points x, y, we have

R(x) < df (x, y) + R(y). Hence rf (x) ≥ R(x) with the equality attained iff x is

an end of f . If x ∈ ∂M , all axes containing x will have x as an end, and hence

R̃(x) = R(x). Otherwise, there is some axes that does not have x as an end,

and so R̃(x) > R(x).

2. First, suppose there a subset S ⊂ M containing x such that ∂S = ∅. Then it is

possible to obtain an axes f where rf (x) = ∞ by extending a path from x in

both directions infinitely without encountering a boundary. Hence R̃(x) = ∞.

Next, suppose R̃(x) = ∞, which implies rf (x) = ∞ for some axes f . Since O

is bounded, R is finite, and hence both the geodesic distances from x to both

ends of f need to be infinite. Note that O is bounded by piece-wise analytic

curves, hence M contains a finite set of analytic curve arcs [21], and so M does

not contain an infinite simple path. As a result, both segments of the axes f

on the two sides of x need to overlap with themselves. It is easy to see that

the subset of M covered by the segments of f on each side of x up to the first

overlapping event is one without boundary.

�
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A.2 Proof of Proposition 2

We begin by showing several lemmas that lead to the proof.

Lemma 3. Extending an axes f from its ends does not reduce its radius with respect

to some fixed x ∈ f .

Proof: Denote the ends of f as z0, z1, and the ends of the extended axes f ′ as z′0, z
′
1.

For each i ∈ {0, 1}, we have:

df (x, zi) +R(zi) = df ′(x, zi) +R(zi)

≤ df ′(x, zi) + df ′(zi, z
′
i) +R(z′i)

= df ′(x, z′i) +R(z′i)

Hence rf ′(x) is no smaller than rf (x). �

Let f be an axes containing two points x, y, we say y is on the constrained side (or

unconstrained side) of x if y lies on the segment of f between x and a constrained

(or unconstrained) end of f with respect to x. We have:

Lemma 4. Let f be a non-maximal inscribed axes of x /∈ M̃ , or a maximal axes of

x ∈ M̃ and R̃(x) ̸= ∞. The following holds for any y ∈ f that lies on the constrained

side of x,

R̃(y) = R̃(x)− df (x, y)

Proof: Since f is an axes containing y, and since y is on the constrained side of x,

we have

rf (y) = rf (x)− df (x, y) = R̃(x)− df (x, y).

We next show that there exists no other axes f ′ such that rf ′(y) > rf (y), and hence

R̃(y) = rf (y). Suppose such f ′ exists. Denote the two ends of f as z0, z1, so that y lies

on the segment [z0, x] on f . Denote the two ends of f ′ as z′0, z
′
1, so that the segment

[y, z′0] on f ′ does not share the same half-disk neighborhood of y as the segment [y, x]

on f (see Figure A.1 (a)). Consider a new axes f ′′ made up by segments [z′0, y] on f ′
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and [y, z1] on f . Note that x ∈ f ′′, and

df ′′(x, z′0) +R(z′0) = df (x, y) + df ′(y, z′0) +R(z′0)

≥ df (x, y) + rf ′(y)

> df (x, y) + rf (y) = rf (x)

(A.1)

On the other hand,

df ′′(x, z1) +R(z1) = df (x, z1) +R(z1) ≥ rf (x) (A.2)

If the last equality in Equation A.2 holds, f is a maximal axes of x whereas f ′′

is an inscribed axes of x (because of the strict inequality in Equation A.1), which

contradicts to the assumption of the lemma. Otherwise, f ′′ has a greater radius than

f with respect to x, which contradicts with the fact that f is inscribed. �
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Figure A.1: Notations used in the proofs.
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Let us further denote a junction of a set of curves as a point whose local neighborhood

on the set contains more than two 1-D half-disks. We have a similar result as the

previous lemma but concerning the unconstrained side of an axes:

Lemma 5. Let f be an inscribed, non-maximal axes of x /∈ M̃ . The following holds

for any y ∈ f that lies on the unconstrained side of x,

R̃(y) = R̃(x) + df (x, y),

if the half-open interval (x, y] does not contain any junction on M , and if

df (x, y) <
∥df (x, z0) +R(z0)− df (x, z1)−R(z1)∥

2
(A.3)

where z0, z1 are the two ends of f .

Proof: Using Lemma 4, we only need to show that f is an inscribed axes of y, is not

maximal, and x lies on the constrained side of y on f . The last two properties are

assured by the inequality in Equation A.3, which also implies that rf (y) = rf (x) +

df (x, y).

To show inscribedness, suppose on the contrary there exists f ′ containing y such that

rf ′(y) > rf (y). Since the segment (x, y] of f is free of junctions on M , and since we

can always extend an axes without reducing its radius by Lemma 3, we can always

find an f ′ that shares the segment (x, y] with f , and hence x ∈ f ′. Denote the two

ends of f as z0, z1, so that y lies on the segment [x, z1] on f . Denote the two ends of

f ′ as z′0, z
′
1, so that the segment [y, z′0] on f ′ contains x (see Figure A.1 (b)). Consider

a new axes f ′′ made up by segments [z′0, x] on f ′ and [x, z1] on f . Using a similar

argument as in Lemma 4, and since f is not a maximal axes of x, one can conclude

that f ′′ has a greater radius than f with respect to x, reaching a contradiction with

the fact that f is inscribed. �

Now we are ready to prove Proposition 2:

Proof: We consider each case as follows:
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1. If x ∈ ∂M , any axes f with one end at x is an inscribed, non-maximal axes of

x (due to Proposition 1(i)). By Lemma 5, and due to the finite structure of M

[21], there is some finite segment [x, y] on f where R̃ increases with constant

gradient 1.

2. If x /∈ ∂M and x /∈ M̃ , x has at least one inscribed, non-maximal axes. Note

that the unconstrained side of x in all these axes share the same half-disk neigh-

borhood of x, or otherwise a longer axes could be constructed by concatenating

two unconstrained segments on two inscribed axes. By Lemmas 4 and 5, R̃ in-

creases with gradient 1 along the shared unconstrained segment, and decreases

with gradient -1 along the constrained segment of each inscribed axes.

3. If x ∈ M̃ and R̃(x) is finite, x has at least one inscribed axes and all such axes

are maximal. By Lemma 4, R̃ decreases with a gradient of -1 on both sides of

each of its inscribed axes.

4. If x ∈ M̃ and R̃(x) = ∞, by Proposition 1, x lies in a subset S ⊂ M such that

∂S = ∅. Hence all points on the neighborhood of x in S have infinite R̃.

5. Consider a branch at x that is not part of any inscribed axes of x, and take

a point y on the branch so that the segment (x, y) is free of junctions on M .

Consider an inscribed axes f of x and denote its two ends as z0, z1 where z1 is

constrained. Consider an inscribed axes f ′ of y and denote its two ends z′0, z
′
1,

so that the segment [y, z′1] on f ′ contains the segment (y, x) (see Figure A.1

(c)). Again, such an axes f ′ can always be found due to Lemma 3. It is easy to

see that the new axes f ′′ by joining segment [z′0, x] on f ′ and [x, z1] on f is an

inscribed, non-maximal axes of y, and that

df ′′(y, x) <
df ′′(y, z1) +R(z1)− df ′′(y, z′0)−R(z′0)

2
.

By Lemma 5, for any point w on the open interval (y, x), R̃(w) increases with

a constant gradient 1 as w moves from y to x. Combining with the above
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equation, we have:

R̃(w) = R̃(y) + df ′′(y, w)

< df ′′(y, z′0) +R(z′0) + df ′′(y, x)

< df ′′(y, z1) +R(z1)− df ′′(y, x)

= df (x, z1) +R(z1) = R̃(x)

Hence the limit of R̃(w) as w → x is bounded below R̃(x).

�

A.3 Proof of Proposition 3

Proof: To show homotopy equivalence, we use the common technique of constructing

a deformation retract from M to M̃ . We will find a mapping h(t, x) that is continuous

in both t ∈ [0, t0] for some t0 > 0 and x ∈ M , so that h(0,M) = M and h(t0,M) = M̃ .

We do so by establishing a “direction” field over M which will be followed by h. At

each point x ∈ M that does not belong to M̃ , Proposition 2 implies that there is a

unique out-going branch at x where R̃ increases with the gradient of 1. This out-going

direction is said to be the flow direction at x, v(x). For x ∈ M̃ , its v(x) is set to

null. Note that the flow directions are continuous. By Proposition 2, v(y) at a point

y in the neighborhood of x points away from x only when v(x) points towards y, and

points towards x if v(x) is either null or points away from y.

We define h(t, x) as the point on M that has travelled t time away from x at the

geodesic speed of 1 following the field v. By the continuity of v, h(t, x) is continuous

in both t, x. Let T = supx∈M,x/∈M̃ R̃(x)+1. Since R̃ increases at least with the gradient

of 1 along v (with possible jumps at junctions), h(T, x) for x /∈ M̃ must be at M̃ ,

otherwise R̃(h(T, x)) would be greater than supx∈M,x/∈M̃ R̃(x). Since h(t, M̃) = M̃ for

t ∈ [0, T ], h is a deformation retract, and M̃ is homotopy equivalent to M . �
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Appendix B

Proofs of Lemmas and

Propositions in Chapter 4

B.1 Proof of Lemma 2

Proof. Suppose x ∈ BM(s), so we know that x is in one of the two sets from defini-

tion 9.

Suppose x is in the first set, so x is on the boundary of M and f(x) ≤ s. Since s ≤ t

by assumption, we have f(x) ≤ t also and so x ∈ BM(t).

If x is not on the boundary, than for each disk type Di in the set of disk types Dm(x),

we have a curve γi which is initially contained in Di, does not cross the singular set

, and has γi(0) = x and γi(1) ∈ BM(s− |γi|).

We will use each γi to construct a new curve αi which will show that x is also in

BM(t) for t ≥ s. Choose a point on γi which is outside of γi([0, δ]) (where δ is the

length of γi which stays inside Di from definition 9) and add a curve of length t− s

that begins and ends at this point which does not cross a singular set. Then from the

definition, this curve αi witnesses that x ∈ BM(t), since αi has length |γi|+ t− s and

αi(1) = γi(1) so that αi(1) ∈ BM(s− |γi|).
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B.2 Proof of Proposition 4

Proof. Part 1: First suppose we have x and y in the same component of M (2). By

Lemma 1, we know that there is a non-crossing path α : I → M realizing dM(2)(x, y)

which goes from x to y.

Since x and y are inM (2), there is only 1 disk type for each, so |DM(x)| = |DM(y)| = 1.

In order to show that y ∈ BM(t + dM(2)(x, y)), we simply take our γ in definition 9

to be the reversal of α above. Since x ∈ BM(t), this gives that y ∈ BM(t + |γ|) =

BM(t+ dM(2)(x, y)).

For two points x, y ∈ M (1), we simply note that any disk in DM(x) contains part of

the shortest path from x to y in M (1), since a portion of M (1) to any side of x must be

in any disk containing x. So same use of α as in the M (2) case will prove our lemma

for M (1).

Part 2: Suppose BTM(y) = t. From our definition of BTM as the infimum of all the

burning sets that y belongs to, this means that for any ϵ > 0, y ∈ BM(BTM(y) + ϵ).

Now, we use part 1. Since y ∈ BM(BTM(y) + ϵ), we get that for any ϵ > 0, x ∈
BM(BTM(y) + ϵ + dM(i)(x, y)). Now recall that by our definition, BTM(x) is the

infimum of all the burning sets that x belongs to, and we know that for any ϵ > 0,

x ∈ BM(BTM(y)+dM(i)(x, y)+ϵ). We conclude that BTM(x) ≤ BTM(y)+dM(i)(x, y).

The proof that BTM(x) ≤ BTM(y) + DM(2)(x, y) is completely symmetric, and the

statement of the proposition follows immediately.

We will now address continuity, or rather exactly when burning time is discontinuous.

First, however, we need the a few technical lemmas which describe what kind of paths

γ (from the definitions of burning sets) we may use.

For the next two lemmas, we will use Bk
M(t) to denote these burning sets (as defined

in Definition 9, where the curves γ are restricted to have length ≤ k. In a similar

fashion, we define BT k
M(x) = inf{t|x ∈ Bk

M(t)}.

Lemma 6. For i ∈ {1, 2} and x, y ∈ M (i),
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1. If x ∈ Bk
M(t) and dM(i)(x, y) ≤ k, then y ∈ Bk

M(t+ dM(i)(x, y)).

2. If dM(i)(x, y) ≤ k, then |BT k
M(x)−BT k

M(y)| ≤ dM(i)(x, y)

Proof. This follows immediately from the same proof as part 1 of Proposition 4. In

part 1, the only difference is that α has length ≤ k, which does not change the rest

of the argument. In part 2, we deal with BT k
M and Bk

M , but otherwise the proof is

unchanged.

Next, we make a more general statement about the sets Bk
M(t), proving that they are

in fact completely equivalent to our original definition of burn sets.

Lemma 7. For any value k > 0, we may assume that |γ| < k (where γ is the curve

in definition 9) without changing the burning sets BM(t).

Proof. Clearly, we know that Bk
M(t) ⊆ BM(t), since any curve with length less than

or equal to k is in the set of all possible curves.

So we must show that BM(t) ⊆ Bk
M(t). Consider x ∈ BM(t) which uses a γ that has

length longer than k, where γ(0) = x and γ(1) = y. Note that by lemma 1, we can

assume that γ is a shortest path in M (2), so it is piecewise geodesic in M .

We break γ into subpaths, each of which is a geodesic of length ≤ k. Let x1, x2, . . . xl

be the endpoints of these subpaths, where xl is the point closest to y. We know

that BT k
M(xl) ≤ BT k

M(y) + d(xl, y) from Lemma 4. We also know that BT k
M(xi) ≤

BT k
M(xi+1)+d(xi, xi+1) for each i ∈ 1, . . . l − 1, using the same lemma. If we combine

these inequalities, we get that BT k
M(x) ≤ BT k

M(y) + d(x, y).

But then this means that x ∈ Bk
M(t) also, since x is in the burn set of y′s burn time

plus the distance from x to y.
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B.3 Proof of Proposition 5

Proof. Part 1: We will actually show something slightly stronger than upper semi-

continuty. Instead, we’ll show that for any point x, BTM(x) ≥ lim supxn→xBTM(x),

and that in fact there is a sequence of points xn → x such thatBTM(x) = lim supBTM(xn).

First, note that this holds trivially for any x ∈ M (2), since BTM is 1-Lipschitz and

therefore continuous on M (2).

Let x be a point in the singular set, and assume for the purposes of contradiction

that there is a sequence xn → x with lim supn→∞BTM(xn) < BTM(x). Since xn is an

infinite sequence and we have a finite number of disk types at any point, we can find

an infinite subsequence of points which converge to x and lie entirely on one sector of

M (2) which is in a small neighborhood of x; we will thus assume that all of the points

xn lie on a single sector of M (2) near x or else they are entirely contained in M (1).

In addition, we may likewise assume that for every n, BTM(xn) < BTM(x), since the

sequence xn must have an infinite subsequence with this property.

Consider any one of these points xn. We know that there is a non-crossing path

from xn to x, so from definition 9 and definition 10 (using this path as our γ), we

know that BTM(xn) < BTM(x) + d(x, xn). (Note that this is not implied by our

1-Lipschitz proof, since x is not in M (2)). Rearranging, we have that for any n,

BTM(xn)−BTM(x) < d(x, xn).

Now sinceM (2) can be extended to a compact closed manifold, we know that lim supBTM(xn)

exists. Since this limit is strictly less than BTM(x), we can thus find a point xm with

dM(x, xm) < | lim supBTM(xn) − BTM(x)|. This directly contradicts our previous

statement that for any n, d(x, xn) > BTM(xn)−BTM(x), and we therefore conclude

that the function BTM is upper semicontinuous.

It remains to show that there is a sequence xn where lim supBTM(xn) = BTM(x).

Suppose this is not the case, so that we have x withBTM(x) > sup{xn}→x lim supn→∞BTM(xn).

(

Now we know that BTM is continuous in the interior of each sector since it is 1-

Lipschitz on these regions, and we also know that there is a unique way to continuously
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extend each sector to its boundary. Since we have finitely many sectors, we may in

fact say that BTM(x) > maxsectors s limn→∞ BTM(xn) where {xn} is any sequence

converging to x on sector s.

Since we are taking the maximum over a finite number of sectors, each of which has

a unique extension to its closure, we can set b = maxsectors s limn→∞ BTM(xn).

Now, pick any ϵ > 0 which is less that (BTM(x) − b)/3; we know this is a positive

value since we have assumed that there is a gap between BTM(x) and the value b (or

else BTM would be upper semicontinuous at x).

From the definition of BTM(x) = inf{t|x ∈ BM(t)}, we know that x ∈ BM(BTM(x)+ϵ

for any sufficiently small ϵ. From our definition, this means that for any D ∈ DM(x),

there exists a path γD : I → M with γD(0) = x, γD a noncrossing path, γD contained

in D for some initial length, and γD(1) ∈ BM(BTM(x) + ϵ− |γD|).

By lemma 7, we may also assume without loss of generality that |γD| < (BTM(x) −
b)/3.

Now, using lemma 2, since b < BTM(x), we also have that γD(1) ∈ BM(b+ |γD|+ ϵ),

since γD is the curve from our definition of BT and therefore must get a burn time

no worse than any other possible γ.

So then we have that x ∈ BM(b+|γd|+ϵ+|γD|), again since γD is the curve that realizes

BM(x). Now x ∈ BM(b+ ϵ+2|γD|), which means that BTM(x) ≤ b+2|γd|+ ϵ, which

(by assumption, since there is a gap between b and BTM(x)) is less than BTM(x),

giving a contradiction.

Part 2: Since we know that BTM is 1-Lipschitz on M (2) and M (1), we know that

BTM is also continuous on those sets. Since the function is continuous on an open set,

there is a unique way to extend that function to the closure in a way that maintains

continuity. We have assumed that any point in M (1) has a finite number of half disks

adjacent to it, since DM(x) is finite, so any point x ∈ M (1) has a finite number of

values in CTM(x). Since we are taking the minimum of a finite set, it will be lower

semi-continuous.
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B.4 Proof of Proposition 6

Proof. We know that for any x ∈ M (2), since BTM is 1-Lipschitz (and thus continu-

ous), the lemma trivially holds.

Consider x ∈ M (1). The local neighborhood of x consists of k of half disks, where

each half disk is extends into a component of M (2) but is bounded by the singular

curve which x belongs to. Since BTM is 1-Lipschitz, we know that BTM on each half

disk can be uniquely extended to the closure in a continuous fashion.

Each of these continuous extensions gives a burning value at the point on the clo-

sure that corresponds to x. We know that one of these values is equal to BTM(x),

since from the previous lemma, we know that some sequence of points xn achieves

lim supBTM(xn) = BTM(x). If another value is equal to BTM(x), then we are done,

since these two sheets can be glued together to give a disk with BTM on this disk

being continuous at x.

So suppose every other half disk’s extension gives a lower value that BTM(x). Con-

sider the set of disks in DM(x), and again consider our definition of burning sets. For

each possible disk type, we now have a disk that contains a path γ that can avoid

the half disk realizing BTM(x). In other words, γ can always find a burn set that is

smaller, meaning that the burning time at x cannot be BTM(x).

Finally, take x ∈ M (0). If we intersect any small neighborhood of x with M (2), we

get a series of sectors, which are either half disks (as in the singular curve case) or

“quarter disks”, where we have a region of M (2) which is bounded by a portion of

each of the two singular curves which x lie upon. We will these regions sectors. Note

that again, each of these sectors has a unique extension of BTM to its closer which

maintains continuity.

We will construct a disk from these sectors with the property that BTM on the disk

is continuous at x.
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