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ABSTRACT OF THE DISSERTATION  

NEW METHODS FOR DISCOVERING COMMON AND RARE 
 GENETIC VARIANTS IN HUMAN DISEASE 

 

By 
 Peng Lin 

 

Doctor of Philosophy in Biology and Biomedical Sciences  
Human and Statistical Genetics 

Washington University in St. Louis, 2011 
 

Professor John Rice, Chair 
Professor Anne Bowcock, Co-chair 

 

 

Since the discovery of Mendel’s laws, one of the most challenging problems in genetic 

research has been to locate and characterize genetic variants that cause human disease. 

Although thousands of disease-associated genetic variants have been discovered, many 

remain unknown. New methods are needed to facilitate the discovery process. Here, we 

present new methodology to improve detection of these genetic variants for genotyping 

imputation, Copy Number Variations (CNV) and sequencing data.  

 

Currently, imputation is widely used to evaluate the evidence for association at genetic 

markers that are not directly-genotyped. However, imputation can be problematic 

especially when a genetic variant has low minor allele frequency. We present a new 

statistic, the imputation quality score, developed to better differentiate well-imputed and 

poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency 

and datasets that are genotyped on different platforms. 
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CNV calling, on the other hand, is not reliable. We developed a statistical method for 

estimating sensitivity and positive predictive rate, and evaluated the relative performance 

of CNV calling on a genome wide scale. We found that the positive predictive rate 

increases with the number of probes and the size of CNVs. We also noticed that CNVs 

reported by multiple programs have a higher reproducibility rate and positive predictive 

rate.  This method was applied to the dataset from the Study of Addiction: Genetics and 

Environment. Our analysis revealed that CNVs in 6q14.1 (P= 1.04 x10-6) and 5q13.2 (P= 

3.37 x10 -4) are significantly associated with alcohol dependence after adjusting for 

multiple tests.  Evidence also suggested that CNVs at 5q13.2 increase the risk for alcohol 

dependence by lowering conscientiousness, or more specifically, self-discipline.  

 

As genetics is looking towards the future with sequencing data, improved methods are 

needed for rare variants. By taking advantage of the simulation data from the Genetic 

Analysis Workshop, we integrated both the collapsing method and the family data 

method in an attempt to increase power for rare variants.  We concluded that this 

combinational approach offers a substantial power boost for certain causal genes, and is 

therefore worth further investigation.  

 

By focusing on improving the interpretation of data from imputation, CNV calling and 

sequencing, our work parallels the development of genetic research over the past few 

years, provides a direction for on-going methods development, and will be useful for 

future research endeavors.  
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Chapter 1: Introduction 
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A BRIEF REVIEW OF METHODS IN STATISTICAL GENETICS RESEARCH  

The hereditary nature of different phenotypes lies secretly in the genome. The goal of 

genetic research is to identify these secret genetic components that affect these different 

phenotypes. Since Mendel first discovered the law of inheritance, the rapid development 

of technology has revolutionized technologies we can use to study genetics, and 

consequently the statistical methods to process the information generated by these new 

technologies. 

 

One of the most important research areas in human genetics in the last century has been 

the effort to link various traits and diseases to a relatively-large region in the human 

genome. This would not have been possible without the discovery of Restriction 

Fragment Length Polymorphisms (RFLPs), Variable Number Tandem Repeat (VNTR) 

and Microsatellite (or simple sequence repeats) [1, 2].  Due to limited number of these 

genetic markers and also partly due to technical challenges, these genetic markers can 

only cover an extremely small fraction of total variants in the entire genome. Fortunately, 

it was known at that time that the recombination frequency between the genetic marker 

and a particular trait is correlated with the physical distance between the known genetic 

marker and the underlying gene for the particular trait. Linkage thus maps the position of 

underlying genes relative to known genetic markers in terms of recombination frequency. 

The LOD score (logarithm of odds), developed by Newton E. Morton, is a statistical test 

often used for linkage analysis in human. The LOD score compares the likelihood of 

obtaining the test data if the two loci are indeed linked, to the likelihood of observing the 

same data by chance. By convention, a LOD score greater than 3.0 is considered strong 
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evidence for linkage, whereas smaller LOD scores indicate that linkage is less likely. 

Linkage has proven to be successful, numerous trait and disease genes loci have been 

found, and several new methods based on linkage have been developed [3]. 

 

More recently, the development of DNA microarray has made genome wide association 

studies possible [4]. Rather than <10,000 genetic markers used in linkage studies, these 

studies typically genotype 100,000–1,000,000 variants in each of the individuals being 

studied. As of today, some commercial DNA microarrays can genotype more than 

2,500,000 Single Nucleotide Polymorphisms (SNPs). The total number of SNPs that can 

be genotyped in a DNA microarray is still far less than the total number of genetic 

variants in the human genome, but SNPs can tag surrounding blocks of ancient DNA 

(haplotypes). This property is often described in the term of linkage disequilibrium (LD).  

This huge number of SNPs provides a relatively sufficient coverage for the entire human 

genome, which underlies the rational of genome wide association studies. In 2005, the 

first widely replicable genome wide association study reported association between the 

complement factor H (CFH) gene and age-related macular degeneration (AMD) [5]. This 

discovery was the earliest of its kind in part because variation at CFH has a large effect—

greater than fourfold—on AMD risk. In 2007, the Wellcome Trust Case Control 

Consortium carried out genome-wide association studies for the diseases of coronary 

heart disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, Crohn's disease, 

bipolar disorder, and hypertension[4]. This study was one of the largest studies at that 

time, including more than 14,000 cases of seven common diseases and 3,000 shared 

controls. To date, more than 1200 genome wide association studies have been conducted, 
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over 200 diseases and traits have been examined, and about 4000 SNP associations have 

been found [6]. 

 

However, it has been estimated that more than 10 million common SNPs are likely to 

exist in the human genome [7]. Therefore, a typical genome wide association study can 

only examine a very small fraction of these common SNPs, and millions of known 

common variants have to be ignored. As described previously, SNPs can tag surrounding 

genetic variants; therefore, it is also possible to infer genotypes at unobserved SNPs 

based on multiple surrounding genetic variants in a procedure commonly known as 

imputation, leading to improved power. Imputation typically needs a reference panel that 

includes a large number of genetic variants. Study samples genotyped are compared to 

this reference panel and shared haplotype are then guessed and assigned with different 

probabilities. Missing genotypes for each study sample can be predicted by matching 

reference haplotypes [8]. A recent type 2 diabetes study showed that the accuracy of 

imputation is high. In this study, the investigators compared imputed genotypes generated 

in silico with experimental genotypes generated in the lab. Their results showed excellent 

concordance between genotype calls, with an overall concordance rate of  >98% between 

genotyped and imputed SNPs [9]. Since there is almost no cost associated with 

imputation, and the benefit to have more in silico genotyped SNPs is obvious, imputation 

has become very popular and paves the way for meta-analysis that combines dozens of 

different studies.  
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Most variants found in genome wide association studies so far confer relatively small 

increments in risk (1~1.5 fold), and explain only a small proportion of heritability—the 

portion of phenotypic variance in a population attributable to additive genetic factors [10].  

For example, the estimated heritability for human height is over 80%, so far at least 40 

loci have been found, yet they together explain only about 5% of phenotypic variance 

[11]. Many investigators question how the remaining, ‘missing’ heritability can be 

explained. Several potential answers are offered. Some investigators suggest that copy 

number variation (CNV) may contribute a substantial amount to the heritability, while 

some others propose that the missing heritability may lie in rare variants, which cannot be 

well captured by current genome wide association studies.  

 

Copy Number Variations usually refer to duplications or deletions of a particular segment 

in the human genome. Evidence has shown that CNVs can change the expression level of 

genes in or near these CNV regions[12]. In the past, CNVs are usually discovered by 

hypothesis-driven lab experiments at a limited number of target regions. The advent of 

genome-wide association studies (GWAS) has led to the possibility of discovering CNVs 

across the genome. Many CNV detection programs have been developed for this purpose, 

including CNVpartition, PennCNV, and QuantiSNP. Many studies have identified CNVs 

that may be associated with diseases [13-19]. Now it is not uncommon practice that many 

research groups will search CNVs after completing genome wide association studies.  

 

Different from the common disease common variant hypothesis, the rare variant 

hypothesis proposes that a significant proportion of total variation may be due to the 
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effects of a large number of low frequency genetic variants [20]. Some rare variants may 

be individually rare, but cumulatively large in number in the population, while others 

may be extremely private, and only exist in certain families. These rare variants cannot be 

tagged or imputed by surrounding common SNPs that are genotyped in genome wide 

association studies. The only way to find these rare variants is to do high-throughput 

sequencing, which is not economically feasible until just one or two years ago.   
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IMPUTATION ACCURACY  

In statistics, agreement statistic describes the degree of agreement among raters. A large 

number of statistics are designed to assess agreement. Different statistics are often 

appropriate under certain conditions. One of the most commonly used statistics is 

concordance rate, which is the percentage of agreed paired measures among all paired 

measures (Table 1.1).  

 

݁ݐܽݎ ݁ܿ݊ܽ݀ݎܿ݊ܥ ൌ ݏݎ݅ܽ ݂ ݎܾ݁݉ݑ݊ ݈ܽݐݐ ݄݁ܶݏݎ݅ܽ ݀݁݁ݎ݃ܽ ݂ ݎܾ݁݉ݑ݊ ݄݁ܶ  

 

Concordance rate is simple and straight forward, and gives a quick answer to evaluate 

agreement. Some other statistics are more applicable in a more complicated situation, for 

example joint-probability of agreement, Cohen's kappa and the related Fleiss' kappa, 

inter-rater correlation, concordance correlation coefficient and intra-class correlation [21]. 

Many methods for genetic research, including linkage analysis, genome wide association 

studies and imputation, depend heavily on the agreement statistic, because it addresses an 

important issue − the data quality.  For example, in linkage analysis, genotyping errors 

are spotted by comparing genotypes of children and parents [22]. In genome wide 

association studies, duplicate samples are often included in a study design to assess SNP 

genotyping accuracy [23]. For imputation, the imputed genotypes are often compared to 

experimental genotypes generated in the lab [9].  

 

More specifically, the commonly used concordance rate in imputation is defined by the 

proportion of correctly classified genotypes, or equivalently by the discrepancy rate 
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between imputed and observed genotypes [24]. Evidence has shown that imputation has a 

high concordance rate and provides a cost efficient way to improve power [9]. But as the 

current research trend shifts toward genetic variants with low allele frequency, the 

commonly used concordance rate is not sufficient to evaluate imputation reliability, and 

can be misleading and even wrong in some scenarios. Table 1.1 shows that the 

occurrence of a positive reading (“+”) is 1 in 10. The positive readings in Test 1 and Test 

2 do not match with each other. However, according to the formula, the concordance rate 

is 0.8. This concordance rate is largely due to chance agreement of negatives.  

This phenomenon becomes more serious when the frequency of positive readings 

continues to decrease. Because of chance agreement, an uncommon SNP has a higher 

apparent concordance rate than a common SNP. By randomly assigning the two alleles of 

a rare SNP, using only the MAF (<5%), an apparent accuracy greater than 90% can be 

reached if it is measured by the concordance rate [25, 26]. A related issue in statistical 

genetics is the difficulty of combining datasets that are genotyped on different platforms. 

Different platforms have different sets of SNPs and imputation is necessary to predict 

SNPs that are not genotyped in one platform or the other. If the concordance rate is used 

for quality control, the following analysis will report an enormous number of false 

positives [26].   
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THE RELIABILITY OF CNV DETECTION USING SNP GENOTYPING ARRAY  

Copy Number Variations are a prevalent form of genetic variation. They are known as 

duplications or deletions of a particular segment of DNA. The comprehensive 

identification and validation of CNVs would greatly benefit the genetic research of 

human disease. Previous experimental studies for CNV detection were mainly performed 

by microarray comparative genomic hybridization (array- CGH) [27]. However, array-

CGH has limited sensitivity and poor resolution and is highly subject to the variation of 

existing CNVs among unrelated samples that are used as a reference. The advancement 

of SNP microarray makes it more suitable for genome wide CNV detection. A typical 

DNA microarray provides total fluorescent intensity signals at each probe and the relative 

ratio of the fluorescent signals between two alleles at each SNP probe. These signals are 

often referred as the “log R Ratio” and “B Allele Frequency” respectively [28]. CNVs 

thus can be readily discovered by examining the pattern change of log R Ratio and B 

Allele Frequency.    

 

Many methods are available to identify CNVs from SNP microarray. Conventional 

methods discover CNVs by averaging log R Ratio of probes in a sliding window, while 

more sophisticated methods involve the hidden Markov model to assign different CNV 

modes across the genome. Similar to rare SNPs, the majority of CNVs are not common in 

the population. Therefore, CNVs called by these methods typically have an apparent high 

concordance rate whereas other more appropriate measures indicate less confidence in 

CNV calling. In our study, we have compared CNVs from duplicate samples. Despite a 
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concordance rate as high as > 98%, only about half of CNVs can be reproduced in the 

duplicate samples [29].    

 

Due to poor reliability, CNV calls require further experimental validation. Quantitative 

PCR is the most commonly used technique to validate CNVs. However, it is not 

economically feasible − at least at this time − to validate all CNV calls across the genome 

by experiments. Without experimental validation, these CNV calls have no experiment 

validated results to be compared with and thus it is difficult to evaluate calling reliability. 

Analysis based on these results may cause many false positives. This thesis aims to find 

part of the solutions for this challenge.  
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THE CHALLENGE OF DISCOVERING RARE VARIANTS 

Genome-wide association studies have identified many common genetic variants that 

contribute to complex diseases, but together they can only explain a small fraction of 

total variation. Many researchers believe that a large number of genetic variants 

contributing to disease susceptibility are yet to be discovered [30], and these genetic 

variants are very likely to be genetic variants with low frequency [20].  

 

Association analyses involving rare variants are not as easy as analyses involving 

common variants. Power analysis has shown that in a standard case control study design, 

the sample size needed to detect an association with a single rare variant dwarfs the 

sample size of any current genome wide association studies (Figure 1.1).  

 

Several methods have been proposed to overcome the power issue. One strategy involves 

collapsing sets of rare variants into a single group, and then compares their collective 

frequency between cases and controls [31]. Another strategy takes the family-based 

approach, because in theory, individuals sharing the same rare variant can be more easily 

recruited in the family-based study design. Currently, many investigators have ongoing 

research in this area and there is no consensus among the research community on what is 

the best approach.     
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CONCLUSION 

The field of statistical genetics has evolved rapidly in the past few years. New 

technologies are introduced, and accordingly new methods are developed. The traditional 

methods have proved to be extremely successful in genetic research, but they are not 

sufficient to address challenging issues involved with the latest discoveries. 

  

This work will mainly focus on imputation and CNV studies, partly due to the fact that 

imputation and CNV studies have a higher error rate and therefore require more 

sophisticated methods. It is also partly because most part of this research was done at the 

time frame when imputation and CNV studies were in a rapid development period. The 

development of new methods for imputation and CNV studies will be discussed in 

Chapter 2 and Chapter 3 respectively. In Chapter 4, this work will cover the application 

of these new methods in real datasets to facilitate the searching process for genetic 

variants that are associated with alcohol dependence and further link alcohol dependence 

with the “Big Five” factors in personality. Both of alcohol dependence and personality 

have been proved to have a strong genetic component. One goal of this work is also to 

cast light on the solutions for future genetic research.  As whole genome sequencing will 

become economically feasible in the years ahead, this work also covers a new method for 

rare variants in the coming age of “common disease, rare variant.” 
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Table 1.1 - Concordance rate  

 1 2 3 4 5 6 7 8 9 10 

Test 1 + - - - - - - - - - 
Test 2 - + - - - - - - - - 
 

Concordance rate is defined as the percentage of agreed paired measures among all 
paired measures. The concordance rate between Test 1 and Test 2 is 0.8.  
 

 

  



14 
 

 

Figure 1.1 - The sample size required to detect rare variants  

 

 

Adapted by permission from Macmillan Publishers Ltd: Nature reviews [30], copyright 
2010 
 
The x-axis indicates the ratio of the frequency of the allele in the case versus control 
groups. The y-axis shows the sample size required to detect rare variants when type I 
error rate is set to 10−9. These lines with different colors indicate the allele frequency in 
control group.   
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Chapter 2: A New Statistic to Evaluate Imputation Reliability  

 

*This chapter is adapted from: Lin P et al. (2010) A New Statistic to Evaluate Imputation 
Reliability. PLoS ONE 5(3): e9697. doi:10.1371/journal.pone.0009697.  
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ABSTRACT 

As the amount of data from genome wide association studies grows dramatically, many 

interesting scientific questions require imputation to combine or expand datasets. 

However, there are two situations for which imputation has been problematic: (1) 

polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects 

are genotyped on different platforms.  Traditional measures of imputation cannot 

effectively address these problems. 

 

We introduce a new statistic, the imputation quality score (IQS). In order to differentiate 

between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS 

adjusts the concordance between imputed and genotyped SNPs for chance. We first 

evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped 

on the Illumina 1M array, we extracted those SNPs that were also on the Illumina 550K 

array and imputed them to the full set of the 1M SNPs. As expected, the average IQS 

value drops dramatically with a decrease in minor allele frequency, indicating that IQS 

appropriately adjusts for minor allele frequency. We then evaluated whether IQS can 

filter poorly-imputed SNPs in situations where cases and controls are genotyped on 

different platforms. Randomly dividing the data into "cases" and "controls", we extracted 

the Illumina 550K SNPs from the cases and imputed the remaining Illumina 1M SNPs. 

The initial Q-Q plot for the test of association between cases and controls was grossly 

distorted (λ=1.15) and had 4016 false positives, reflecting imputation error. After filtering 

out SNPs with IQS < 0.9, the Q-Q plot was acceptable and there were no longer false 

positives. We then evaluated the robustness of IQS computed independently on the two 



17 
 

halves of the data. In both European Americans and African Americans the correlation 

was > 0.99 demonstrating that a database of IQS values from common imputations could 

be used as an effective filter to combine data genotyped on different platforms. 

 

IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly 

useful for SNPs with low minor allele frequency and when datasets are genotyped on 

different platforms. 
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INTRODUCTION 

Genome-wide association studies (GWAS) represent a powerful approach to the 

identification of genetic variants involved in common human diseases[32]. GWAS use 

commercial SNP microarrays to genotype large numbers of genetic markers. However, 

SNP microarrays currently can only genotype up to one million of the 9–10 million 

common SNPs in the assembled human genome [7]. In addition, for a typical case-

control design, several thousand cases and several thousand controls may be needed for 

adequate power to detect associations[33].  With little cost, imputation can boost power 

both by increasing SNP coverage and by combining samples from similar studies.  Based 

on haplotypes from the International HapMap project[14], imputation infers untyped 

variants from known genotypes.  The inference uses one of several model-based methods, 

and the resulting imputed SNPs can be tested for association with a phenotype [34]. The 

power of this method has been demonstrated in the literature where several groups have 

found novel causal genes [35-38].  

 

There are two situations where researchers avoid imputation due to increased error in 

imputation: (1) SNPs with minor allele frequency less than 1% [4, 35, 39], and (2) 

association studies where cases and controls are genotyped on different platforms.  

Imputation accuracy, calculated for each SNP as the proportion of genotypes correctly 

classified, is the gold standard for evaluating the quality of imputation. Unfortunately, it 

is an inadequate filter in both of these circumstances. For the majority of SNPs, 

imputation programs such as IMPUTE [34], MACH[39], and BEAGLE[40], have very 

high imputation accuracy [34, 40-42]. However, the use of imputation accuracy in low 
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frequency SNPs to evaluate imputation quality can be misleading. When the minor allele 

frequency of a SNP is less than 5%, a program could randomly assign the two alleles to 

the sample only using the minor allele frequency and achieve more than 90% accuracy. 

Although SNPs with low minor allele frequencies (MAF<5%) are referred to as 

uncommon SNPs, they represent more than 30% of SNPs in the HapMap Phase II CEU 

population, and this proportion is even higher in African populations[7]. This problem 

assessing imputation accuracy in lower frequency SNPs means that a large part of the 

genome will not be adequately interrogated using imputation. 

 

The second problematic situation for imputation is where cases and controls are 

genotyped on different platforms. This is problematic because imputation error can vary 

between cases and controls, causing increased rates of false positives in association 

studies. There is no known method for effectively filtering the poorly imputed SNPs from 

the well imputed SNPs on different platforms. Although this situation has been avoided 

by researchers, it is an important application. Large studies such as Wellcome Trust and 

the NIMH GAIN samples use common controls that could be used in other studies to 

gain power [32, 43]. But, if the primary datasets were genotyped on a different platform, 

imputation is necessary.  

 

In order to assess the reliability of imputation with an emphasis on the less common 

SNPs and an interest in evaluating data imputed from different platforms, we introduce a 

new statistic, the imputation quality score (IQS). Partly motivated by Cohen’s statistic 

Kappa to quantify rater agreement[44],  IQS takes chance agreement into account and 
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thus controls for allele frequencies. In this paper, we introduce IQS, demonstrate its value 

in situations of low minor allele frequencies, and demonstrate how it can be used to 

improve the type I error rate when cases and controls are genotyped on different 

platforms.  
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MATERIALS AND METHODS 

Ethics statement 

De-identified data from the Study of Addiction: Genetics and Environment (SAGE) were 

analyzed for the research reported in this manuscript. SAGE consists of existing data 

from three genetic studies of addiction: the Collaborative Study on the Genetics of 

Alcoholism (COGA), the Collaborative Genetic Study of Nicotine Dependence 

(COGEND), and the Family Study of Cocaine Dependence (FSCD). All participants in 

COGA, COGEND and FSCD provided written informed consent for genetic studies and 

agreed to share their DNA and phenotypic information for research purposes. The 

institutional review boards at all data collection sites granted approval for data collected 

from COGA, COGEND and FSCD to be used for the Study of Addiction: Genetics and 

Environment. Specifically, approval was obtained from the Washington University 

Human Research Protection Office (for COGA, COGEND and FSCD), the State 

University of New York Downstate Medical Center Institutional Review Board (COGA), 

the University of Connecticut Health Center Human Subjects Protection Office (COGA), 

the Indiana University Research Compliance Administration (COGA), the University of 

California, San Diego Human Research Protections Program (COGA), the Howard 

University Institutional Review Board (COGA), The University of Iowa Human Subjects 

Office (COGA), and the Henry Ford Health System Institutional Review Board 

(COGEND). The second dataset was obtained from the National Institute of Mental 

Health Center for Collaborative Genetic Studies on Mental Disorders 

(http://www.nimhgenetics.org/) and was also de-identified. 
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Methods 

The computation of IQS requires the posterior probabilities of AA, AB and BB as output 

by the imputation program. For one SNP genotyped on N individuals, the probabilities 

can be readily tabulated into a 3 × 3 table where each cell, nij, represents the number of 

individuals with true genotype i and imputed genotype j (Table 2.1). Note, in this 

scenario, nij may not be an integer due to imputation probabilities being reported rather 

than imputed genotypes.  

 

We define the observed proportion of agreement (Po) as:  

..
i ii

o

n
P

n
∑

 

The observed proportion of agreement can be used to evaluate imputation reliability. But, 

like imputation accuracy and average maximum posterior probability, it can overestimate 

reliability for uncommon SNPs because it is not adjusted for “chance” agreement.  

 

IQS adjusts for allele frequency by subtracting “chance” agreement from the “observed” 

agreement.  Similar to Po, “chance” agreement (Pc) is computed as the sum of the 

products of marginal frequencies that would occur if genotypes are called at random 

using the same marginal rates:    

. .
2..

i i i
c

n n
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IQS is then computed by subtracting the chance agreement from the observed agreement 

and dividing by the maximum possible value of the numerator. The value of one indicates 

a perfect match, and negative values indicate that the imputation program performed 

worse than chance.  

1
o c

c

P PIQS
P

 

 

In addition, the calculation of IQS can be expanded to evaluate non-random error. When 

cases and controls are genotyped on different platforms (e.g., cases genotyped on the 

Affymetrix array and controls genotyped on the Illumina array), some SNPs are not 

genotyped in either array but are imputed from their respective arrays. This imposes non-

random errors on the imputed genotypes. In particular, if we combine these imputed 

genotypes together, it will inflate false positive rates. IQS can take this into account by 

incorporating marginal frequencies into the calculation. For instance, if imputation from 

the Illumina array reports that for a particular SNP, the probabilities of AA, AB and BB 

are a1, a2, a3, and imputation from the Affymetrix array reports that the probabilities for 

the three genotypes are b1, b2, b3, then nij in the calculation of Po becomes 

ij i jn a b  

In this scenario, IQS provides a useful criterion to exclude unacceptable SNPs imputed 

from different sources.   
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Data and imputation 

The first dataset was collected as part of SAGE, one study in the Gene Environment 

Association (GENEVA) project (http://genevastudy.org/). Samples were genotyped on 

the Illumina Human 1M array at the Center for Inherited Disease Research (CIDR) at 

Johns Hopkins University. The Illumina 1M array has a total of 1,049,008 probes as SNP 

assays. All SNPs with a genotype call rate <98% were removed, as were SNPs with a 

Hardy-Weinberg exact p value <1x10-4.  Additional data cleaning procedures were 

applied to ensure the highest possible data quality, including using HapMap controls, 

detection of gender and chromosomal anomalies, hidden relatedness, population structure, 

batch effects, Mendelian error detection, and duplication error detection[23]. The 

composition of the remaining project samples in terms of self-identified ethnicity is 2597 

European Americans and 1264 African Americans, confirmed by principal component 

analysis. Among the 1,049,008 SNPs, 948,658 SNPs (90%) passed data cleaning 

procedures.   

 

The second dataset consists of controls from the National Institute of Mental Health 

Center for Collaborative Genetic Studies on Mental Disorders 

(http://www.nimhgenetics.org/).  A total of 418 subjects (controls) were genotyped using 

both the Affymetrix GeneChip Mapping 500K Array Set and the Illumina HumanHap 

550K Array set and passed all cleaning procedures.  All individuals in this study were 

European Americans with no evidence of heterogeneity, verified by principal component 

analysis[45].  All SNPs with a genotype call rate <95% were removed, as well as SNPs 

with a Hardy-Weinberg exact p value <1x10-5. After quality control, 447,250 autosomal 
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SNPs were retained from the Affymetrix 500K array, and 527,095 autosomal SNPs were 

retained from the Illumina 550K array.  

 

Imputation from each array to Hapmap SNPs was done by the program IMPUTE 

(https://mathgen.stats.ox.ac.uk/impute/impute_v0.5.html) [34]. European Americans 

were imputed using the CEU reference panel (HapMap release 22 - NCBI Build 36 

dbSNP b126). African Americans were imputed separately using the YRI reference panel 

(HapMap release 22 - NCBI Build 36 dbSNP b126). We omitted sex chromosomes in 

this study because of the complication of imputation on these chromosomes. The 

Illumina 1M array contains a small number of strand-ambiguous A/T C/G SNPs. 

Although Illumina provides strand information about those SNPs, we still found a few 

inconsistencies compared with the reference panel. In order to make sure that all SNPs 

were reported on the same strand, all strand-ambiguous A/T and C/G SNPs (5583 in total, 

0.5% of all Illumina 1M SNPs) were excluded from the comparison.  

Imputation efficiency is calculated as the proportion of genotypes that had a maximum 

posterior probability greater than 0.9, as recommended by IMPUTE.  

 

Association tests were done by the program SNPTEST with the “-proper” option[34]. 

With this option, SNPTEST runs a logistic regression based on the probability of 

genotype rather than dichotomous genotype, allowing the uncertainty of the imputation to 

be factored into the consideration [46].   
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Statistical estimates of imputation quality 

Both IQS and imputation accuracy compare true genotypes to imputed genotypes. Given 

that imputation is designed to infer unknown genotypes, one purpose of this paper was to 

use IQS to evaluate statistics that measure the quality of imputation without knowing the 

true genotype. The two statistics most commonly used for this purpose are the variance 

ratio (rsq_hat in MACH)[39] and the imputed information score (PROPER_INFO in 

SNPTEST) [34]. The variance ratio for a particular SNP is a ratio of the empirically 

observed variance (based on the imputation) to the expected binomial variance p(1-p), 

where p is the minor allele frequency[46].  As the amount of information available to 

impute the SNP decreases, the empirically observed variance decreases and the variance 

ratio approaches zero. The product of the variance ratio and sample size defines the 

‘effective sample size’.  Similarly, the imputed information score is a measure of 

genotype information content,  which is related to the effective sample size (power) for 

the genetic effect being estimated [32, 34, 46]. Although computed using a different 

approach, the information score is analogous to the variance ratio. For example, a SNP 

with an imputed information score of 0.75 indicates that the imputed SNP genotypes are 

equivalent to a dataset with 75% of the full sample size with precisely known genotypes.  
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RESULTS  

The Illumina 1M array covers all of the SNPs on the Illumina 550K array.  We started 

with all SAGE subjects genotyped on the Illumina 1M array and extracted the 545,966 

SNPs that are present on the Illumina 550K SNPs. We used these Illumina 550K SNPs to 

impute to the full Illumina 1M array.  We imputed 262,864 autosomal SNPs in 2597 

European Americans (EA), and 304,425 autosomal SNPs in 1264 African Americans 

(AA). We compared imputed SNPs to the genotyping results from the Illumina 1M array. 

The remaining SNPs could not be evaluated due to the absence of those SNPs in either 

the Illumina 1M array or reference panel.  

 

The imputation results are given in Table 2.2. The mean IQS is lower than the mean 

accuracy in both EA and AA. There are cases where IQS is negative, indicating that 

imputation did worse than chance in assigning genotypes. In this situation, 95% of the 

minor allele frequencies lie between 0 and 0.058, 95% of the  chance agreement rates lie 

between 0.78 and 1, and the imputation accuracy is below chance agreement with 95% of 

the values between 0.81 and 1. These are strong examples of how imputation accuracy 

can be misleading when “chance” contributes so strongly to the proportion of agreement.   

 

A second notable result is that the quality of imputation in AA is markedly lower than in 

EA. This is seen in the decreased efficiency by nearly ten percentage points, and decrease 

in mean IQS by nearly twelve percentage points. This is likely due to two factors. First, 

African Americans have more diverse haplotypes and more uncommon alleles. Second, 

there is non-negligible difference between African Americans and the YRI reference 
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panel, which  was clearly reflected by Eigenstrat population structure analysis [45]. 

Interestingly, imputation accuracy is nearly the same for EA as for AA, again 

highlighting how imputation accuracy can overestimate the quality of imputation. 

 

The relationship between IQS and imputation accuracy with respect to minor allele 

frequency is seen in Figure 2.1. Although imputation accuracy increases with decreased 

minor allele frequency, IQS drops dramatically with decreased minor allele frequency. 

Because it is known that low minor allele frequency decreases the quality of imputation, 

many studies drop SNPs with minor allele frequency less than 1%. According to this plot, 

this practice would still retain SNPs with an average IQS score of 88%, and would 

eliminate some well-imputed SNPs.   

 

We then evaluated the effectiveness of IQS in the situation where cases and controls are 

genotyped on different platforms. We randomly divided the SAGE data into two 

subgroups labeled “cases” and “controls”.  In “cases”, original genotypes were retained 

for SNPs on the Illumina 550K array; and then imputation was performed to obtain the 

full Illumina 1M array. In “controls”, original genotypes were retained for all SNPs on 

the Illumina 1M array.  This process is equivalent to combining cases genotyped by the 

Illumina 550K array and controls genotyped by the Illumina 1M array.  

 

We tested genetic association of all the 1M SNPs with the cases and controls. A Quantile-

Quantile  Plot (Q-Q plot) is shown in Figure 2.2. By comparing the distribution of 

observed P values against the theoretical model distribution of expected P values, Q-Q 
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plots are used in genome wide association studies to assess the inflation of false positive 

rates [47]. In randomized data without type I error arising from population stratification 

or some other artifact, the Q-Q plot should be a 45 degree line. To ensure that our random 

division of the data did not result in population stratification, we constructed a Q-Q plot 

based on the true genotypes, which was normal as expected (λ=1.03) (Figure 2.2 A). 

However, the Q-Q plot of imputed SNPs compared to genotyped SNPs is greatly 

distorted (λ=1.15), suggesting that combining imputed SNPs with genotyped SNPs 

without other quality control is problematic (Figure 2.2 B). Therefore, the observed 

distortion was due to imputation error and the statistically skewed SNPs (Figure 2.2 B) 

are false positives. We then filtered the imputed data by removing all SNPs with IQS ≤ 

0.9, retaining 76% of the imputed SNPs, and dramatically improving the Q-Q Plot 

(λ=1.04) (Figure 2.2 C). The Q-Q plot remained grossly distorted even when the filter 

was changed to an imputation accuracy of > 99%, retaining 72% of the SNPs, although λ 

improved to 1.05 (Figure 2.2 D). Although this is a very strict value for imputation 

accuracy, the Q-Q plot clearly shows there is significant type I error. 

 

A more practical way of evaluating this approach is to look at the false positive rate. 

Specifically, although no SNPs are associated with case/control status based on the true 

genotypes, there were 4016 imputed SNPs that reach genome-wide significance (p<5×10-

8). The IQS filter >0.9 eliminated all the false positive SNPs, but the imputation accuracy 

filter >0.99 still retained 759 false-positive SNPs. Based on these results, IQS is better for 

discriminating between well-imputed SNPs and poorly-imputed SNPs. 
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Although IQS can serve as an effective filter to minimize the use of poorly-imputed SNPs, 

the computation of IQS requires a sample that was both imputed and genotyped for the 

SNPs of interest. This is impractical in most situations. A secondary goal of this paper is 

to determine whether there are ways to evaluate imputation quality without knowing the 

true genotypes. 

 

The two common methods for filtering imputed data are to combine a minor allele 

frequency threshold with either the imputed information score >0.3 ~ 0.5 

(PROPER_INFO in SNPTEST) [39, 46, 48-50] or the variance ratio >0.3 (rsq_hat in 

MACH) [36, 39, 48-53]. We calculated these two statistics for our data and compared 

these filters to IQS (Table 2.3). After filtering by these statistics, the type I error inflation 

decreases. In the AA sample, IQS also acts as an effective filter and can be cautiously 

approximated by a combination of MAF and either the imputed information score or the 

variance ratio (Table 2.4). Unfortunately, even in the most conservative situation, over 

three thousand false positives remain.  Therefore this is an ineffective approach for 

filtering poorly-imputed SNPs. 

 

 Filtering on MAF differences between the Hapmap and the study genotypes is another 

possible approach to control false positives. In Table 2.3 and Table 2.4, we provided 

results filtered by MAF difference at 0.01, 0.1 and 0.2 for European Americans and 

African Americans, respectively.  Filtering by MAF difference of 0.01 resulted in a 

reduction of false positives, but retained less than 25% of the SNPs. In contrast, filtering 

with a MAF difference of 0.1 or 0.2 retained many false positives. 
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A second method for using IQS without directly genotyping would be to develop a 

database of common imputations in common populations that records IQS scores for each 

SNP. To test the practicality of this approach, we randomly divided the data into two 

groups and tested the robustness of the IQS score for the SNPs imputed from the Illumina 

550K array to the Illumina 1M array in both EA and AA. Because small changes in the 

denominator of IQS (1-Pc) will dramatically affect the value of the statistic when MAF is 

small, we included only SNPs with MAF>0.01.  Figure 2.3 plots the IQS scores in both 

populations. The correlation in EA is 0.99519 and the correlation in AA is 0.99020, 

indicating that IQS is robust for the same imputation in a relatively homogeneous 

population.  

 

We further tested whether the set of hard-to-impute SNPs compiled from the first group 

can be used to filter the imputed data in the second group. We applied a similar procedure 

as in Figure 2.1. We randomly divided the second group into cases and controls. Cases 

were genotyped on the Illumina 550K array and the remaining Illumina 1M SNPs were 

imputed. Controls were genotyped on the Illumina 1M array. Figure 2.4 shows that the 

QQ plot can be adjusted to normal by IQS calculated from the first group. This implies 

that the development of a database of IQS scores for standard imputations would allow 

researchers to use data genotyped on different platforms and filter out potential false 

positives. 
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In order to confirm these results in a different dataset, we replicated the study in 

European American subjects genotyped on two different platforms, Affymetrix 5.0 array 

and Illumina 550K array. All subjects were controls from the National Institute of Mental 

Health Center for Collaborative Genetic Studies on Mental Disorders. We randomly 

divided about 400 individuals into two subgroups labeled “cases” and “controls” in a 

similar manner as above.  “Cases” were genotyped by the Affymetrix 5.0 array and 

“controls” were genotyped by the Illumina 550K array. In the replication, we also 

expanded our investigation to include those SNPs that were not genotyped in either array, 

but were imputed from their respective arrays. In fact, we had genotype data from both 

platforms. No genome wide significant SNPs were found. Therefore, if there were any 

significant SNPs in this simulation, they should be false positives. The result was similar 

with inflation of Type I error that is effectively filtered by IQS, whereas filtering by MAF 

and either the imputed information score or the variance ratio continue to have many 

false positive values (Table 2.5).  
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DISCUSSION 

There are two situations in which imputation is avoided[46]: (1) SNPs with low minor 

allele frequency and (2) cases and controls genotyped on different platforms. The 

statistics previously used for measuring the accuracy of imputation are inadequate for 

evaluating the quality of imputation due to their dependence on marginal SNP frequency. 

Specifically, imputation accuracy, a measure of the concordance rate between the 

imputed and observed genotypes for each SNP, dramatically over-estimates reliability 

when minor allele frequencies are low and does not address the inflation of false positive 

rates arising from imputation error due to random agreement. We developed IQS to more 

precisely estimate imputation error, effectively filtering imputation error in these two 

problematic situations. We showed that IQS is a more appropriate measure to evaluate 

imputation reliability because it adjusts for “chance” agreement, and filtering by IQS 

eliminates the inflation of the false positive rate arising from imputation error.  

 

It is important to note that the traditional genome inflation factor λ is not an ideal 

indicator of potential problems related to imputation quality. In our studies, we noticed 

that λ is not dramatically different from 1, in contrast to the extent that the Q-Q plot is 

distorted (Figure 2.2 B D). The reason is that λ reflects systematic inflation on all SNPs 

while the distortion of the Q-Q plot in our studies is due to a small number of poorly-

imputed SNPs. However, problems with this limited number of SNPs (less than 0.5% of 

total SNPs) can be dramatic and lead to pronounced false positive P values that exceed 

genome wide significance.  
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We also would like to emphasize that we are dealing with the extreme situation when 

cases and controls are genotyped on different platforms. The elevated false positive rates 

are not explicitly reported in the literature, as most groups do not have this problem 

because of the study design. But many groups have noticed it. In a recent paper by de 

Bakker[46], the author noted “the dangers of combining cases genotyped on one platform 

and controls genotyped on another” (Page 124). In the GENEVA consortium, there is a 

consensus that genotypes imputed from one array should not be combined with imputed 

genotypes from another array.  

 

The reasons for the false positives are very complicated. Among the 4016 genome wide 

significant SNPs, most of them have low R square with other available SNPs. It is 

difficult to correctly assign their values based on related haplotypes, and they therefore 

tend to receive the allele frequency from the reference panel.  

 

Filtering by the difference between the reference and the estimated minor allele 

frequency can effectively remove some genome wide significant SNPs. Of the 4016 

genome wide falsely-significant SNPs, 3120 (77.7%) SNPs are removed by removing 

those SNPs whose minor allele frequency difference is greater than 0.01.However, there 

are still 832 (21% of the 4016 SNPs) that have passed the filter. Most of the 832 

remaining SNPs share one character: they tend to have very low minor allele frequency 

(MAF median =0.00096). Imputation tends to over-assign the major genotype to the 

imputed SNPs, resulting in different allele frequency and therefore inflating the P value. 

However, to filter by MAF difference at 0.01 is not an acceptable option. Most SNPs are 
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correctly predicted even if the minor allele frequency is different. When we tried to 

remove all SNPs whose minor allele frequency difference was greater than 0.01, 583,456 

of the total 788,944 available SNPs (74%) were removed. Most of these SNPs were 

correctly predicted even if minor allele frequency was different. This is because 

imputation does not assign predicted genotype based on minor allele frequency, but 

rather on haplotype modeling. 

 

The typical methods for filtering poorly-imputed SNPs are using either the variance ratio 

or the imputed information score combined with minor allele frequency. Imputation 

quality is especially important in a study that combines genotypes from different 

platforms. Therefore, we increased our thresholds for variance ratio and the imputed 

information score in Table 2.3, Tables 2.4 and 2.5.  But these measures were ineffective 

in this extreme situation.  However, IQS may be used as an effective filter to combine 

data genotyped on different platforms. 

 

Because IQS requires direct genotyping for evaluation, it is not a practical statistic for 

directly evaluating imputation in the case where imputation is used to screen for 

associations as a proxy for genotyping. However, IQS was shown to be a robust measure 

of imputation for specific imputations (from one standard platform to another) and within 

a broad population (tested in both EA and AA).  

 

Generally speaking, different populations have different linkage disequilibrium structures 

and different allele frequencies that lead to different IQS values. A mixture of different 
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populations will make the IQS sensitive to the ratio of population mixture. Therefore, as 

in general association studies, a mixture of different populations should be avoided. 

However, African Americans have a unique and relatively stable genetic structure. The 

IQS score from African Americans is stable in our study and is useful to filter out poorly 

imputed SNPs.   

 

Based on this theory, a database can be constructed and used to filter future imputations 

and to avoid false positive associations. In order to advance the development of this 

database, we have posted IQS scores for imputation from Illumina 550K to Illumina 1M 

for CEPH on the website of the NIMH Center (http://www.nimhgenetics.org/). We 

envision this as a dynamic database to be updated when new datasets include subjects 

genotyped on multiple platforms. We will further provide IQS scores for various array 

combinations when the genotype data of  6,000 controls typed  on both the Affymetrix 

6.0 and Illumina 1M array are available in the near future [24]. The future database will 

include IQS scores for the following imputations: (1) from Affymetrix 6.0 to Illumina 1M, 

(2) from Illumina 1M to Affymetrix 6.0, (3) from Illumina 300K to Affymetrix 6.0 plus 

Illumina 1M, (4) from Illumina 550K to Affymetrix 6.0 plus Illumina 1M, and (5) from 

Affymetrix 5.0 to Affymetrix 6.0 plus Illumina 1M. Although genotyping will be 

ultimately required to confirm associations, using IQS as a filter will decrease the amount 

of false positive findings that arise, making follow up of positive associations practical. 

 

As genome wide association studies move toward rare variants, over-estimation of the 

quality of imputation due to chance concordance of uncommon alleles will be more 
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common. In addition, imputation will and should be used to analyze increasingly 

complex data structures. IQS can be used as an accurate evaluation of imputation quality 

enabling researchers to examine low allele frequencies and complex data structures. 
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Figure 2.2 - The Q-Q plots based on randomly dividing data into cases and controls  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Samples were divided randomly into cases and controls. (A) All Illumina 1M SNPs are 
directly genotyped indicating there is no population stratification or other non-random 
factors in cases and controls. (B) Cases were genotyped on the Illumina 550K array and 
the remaining Illumina 1M SNPs were imputed. (C) An IQS filter (IQS>0.9) was applied, 
retaining 92% of the SNPs. (D) An imputation accuracy filter (>0.99) was applied, 
retaining 91% of the SNPs. 
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Figure 2.3 - Evaluation of the robustness of IQS score 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
European Americans (A) and African Americans (B) datasets were split in half and 
Illumina 550K SNPs were imputed to Illumina 1M SNPs. IQS score for the two halves of 
the data were plotted against each other. SNPs with minor allele frequency less than 0.01 
were excluded to avoid zero in the denominator.  
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Chapter 3: Copy Number Variation Accuracy in Genome Wide Studies 

 

* This chapter is adapted from: Lin P et al. (2011) Copy Number Variation Accuracy in 
Genome Wide Studies. Human Heredity. In Press   
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ABSTRACT 

Copy Number Variations (CNVs) are a major source of variation between individuals and 

are a potential risk factor in many diseases. Numerous diseases have been linked to 

deletions and duplications of these chromosomal segments. Data from genome-wide 

association studies (GWAS) and other microarrays may be used to identify CNVs by 

several different computer programs, but the reliability of the results has been questioned. 

 

To help researchers reduce the number of false positive CNVs that need to be followed 

up with laboratory testing, we evaluated the relative performance of CNVpartition, 

PennCNV and QuantiSNP, and developed a statistical method for estimating sensitivity 

and positive predictive value of CNV calls and tested it on 96 duplicate samples in our 

dataset.  

 

We found that the positive predictive rate increases with number of probes in the CNV 

and the size of the CNV, with the highest positive predicted rates in CNVs of at least 

500kb and at least 100 probes. Our analysis also indicates that identifying CNVs reported 

by multiple programs can greatly improve the reproducibility rate and the positive 

predicted rate.  

 

Our methods can be used by investigators to identify CNVs in genome-wide data with 

greater reliability. 
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INTRODUCTION 

Copy Number Variations (CNVs) are duplications or deletions of a particular segment of 

an individual’s genome. Over the past 10 years, evidence has accumulated that CNVs 

play an important role in disease [13-19]. It is hypothesized that a CNV changes the 

expression level of genes in or near those regions, leading to various phenotypes, 

including disease[12]. Therefore, CNVs constitute a major source of inter-individual 

variation that could contribute to common disorders and complex traits[54]. The advent 

of genome-wide association studies (GWAS) has led to the possibility of discovering 

CNVs across the genome. So far, many CNV detection programs have been developed 

for this purpose, including CNVpartition, PennCNV, and QuantiSNP.  

 

However, despite the obvious scientific importance of understanding the role that CNVs 

play in human disease, there is some controversy regarding the use of GWAS data to 

detect CNVs. First, a recent study suggested that disease-related CNVs detected from 

GWAS data are well tagged by SNPs, and, therefore, CNVs do not add further 

information[55][55][55][55][55][55]55(Rice, Rochberg et al. 1992). Second, there is 

evidence that different methods for identifying CNVs from GWAS data report different 

results, even when applied to the same array data[56].  

 

To address the first controversy, although many common CNVs that are well-typed in a 

microarray can be tagged by SNPs[55][55][55][55][55][55]55(Rice, Rochberg et al. 1992), 

there are at least three reasons why testing the association between a trait and CNVs 

remains important. First, CNVs may be the true causative variant of the trait, and will 
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therefore show a stronger association than a SNP tag. For example, the copy number of 

the salivary amylase gene (AMY1) is correlated positively with salivary amylase protein 

level[12]. Second, the number of common CNV loci is limited, and therefore, the typical 

GWAS significance level of p<5x10-8 is overly conservative [57]. After adjusting for 

multiple tests in GWAS, SNPs tagging associated CNVs are unlikely to be statistically 

significant at this stringent threshold, although they would be significant in a setting 

where only CNVs were tested. Third, de novo CNVs are not well-tagged by SNPs. In 

addition, tagging a recurrent CNV by multiple SNPs demands heavy computation. Thus, 

despite the potential for some CNVs to be tagged by SNPs, many researchers continue to 

look for CNVs in GWAS data [58].  

 

The second controversy with localizing CNVs is the imprecision of estimation. 

Methodologies for measurement of CNVs in GWAS microarrays continue to evolve, 

leading to the varied results mentioned above. Currently, most methods that make use of 

SNP microarray data to detect CNVs depend on LogR ratio and b-allele frequency from 

microarray data. One simple and straightforward method draws LogR ratio and b-allele 

frequency as the Y axis and chromosome position as the X axis. When a deletion or 

duplication occurs, the pattern of LogR ratio and b-allele frequency will change 

accordingly [59]. However, this method requires extremely high data quality and 

necessitates investigators spot pattern changes. Subsequently, more sophisticated 

methods of identifying CNVs have attempted to adjust undesirable microarray artifacts, 

such as genomic wave [60], and build a mathematical model to detect CNVs from those 

data. Numerous programs have been written for this purpose. The most widely used are 
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CNVPartition (http://www.illumina.com/software/illumina_connect.ilmn), PennCNV[28] 

and QuantiSNP [61]. Although all three programs use standard statistics from the 

observed data to estimate the location of CNVs, they use different iterative mathematical 

methods. CNVPartition uses a likelihood-based algorithm, PennCNV implements a 

hidden Markov model (HMM), and QuantiSNP uses an Objective Bayes Hidden-Markov 

Model (OB-HMM). A detailed comparison of these different algorithms can be found in 

Dellinger et al’ study[56]. These three programs have helped many studies find putative 

disease-related CNVs[62-66]. Moreover, several recent studies have used SNP 

microarray data to study the characteristics of CNVs[59, 67]. However, there is evidence 

that the varied algorithms identify different CNVs even with the same data, questioning 

the reliability of using these programs to detect CNVs [56]. 

 

Although laboratory confirmation is necessary to validate CNVs derived from SNP array 

platforms[14, 57, 63-66], it is not economically feasible to validate all CNVs in a 

genome-wide scale, especially for the purpose of estimating measurement accuracy. Here, 

using duplicates in a GWAS sample, we develop an algorithm to better evaluate the 

accuracy of CNVs predicted by several CNV calling algorithms for GWAS data. 

Whether a CNV that is called the first time can be confirmed the second time is restricted 

by sensitivity and specificity. This gives some insight about CNV calling accuracy to 

investigators wishing to evaluate CNVs found in SNP microarray data that might be 

associated with disease. 
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METHODS 

Data and quality control  

The dataset was collected as part of the Study of Addiction: Genetics and Environment 

(SAGE) [68]. SAGE is part of the Gene Environment Association Studies(GENEVA) 

project (http://genevastudy.org/) [58]. All participants in SAGE provided written 

informed consent for genetic studies and agreed to share their DNA and phenotypic 

information for research purposes. The institutional review boards at all data collection 

sites granted approval for the use of the data. In this study, all samples were de-identified 

and only subjects who consented to health research were included.   

 

Samples were genotyped on the Illumina Human 1M array at the Center for Inherited 

Disease Research (CIDR) at Johns Hopkins University. The Illumina 1M array has a total 

of 1,072,820 probes, of which 23,812 are “intensity-only”. Data cleaning procedures 

included using HapMap controls, detection of gender mis-annotation and chromosomal 

anomalies, cryptic relatedness, population structure, batch effects, Mendelian error 

detection, and duplication error detection [23, 68]. In this study, 107 study subjects were 

genotyped in duplicate on the Illumina 1M array. These subjects were selected randomly 

from the study sample for the purpose of assessing genotyping accuracy. The mean of the 

SNP calling discordance rate between the duplicates was 0.02%. These duplicates were 

further compared against each other to determine the accuracy of CNV calling.  
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CNV calling  

We used three common programs to call CNVs: CNVPartition, PennCNV, and 

QuantiSNP. We also implemented a procedure to adjust genomic waves when we called 

CNVs by PennCNV and QuantiSNP[60]. Both PennCNV and QuantiSNP report data 

quality control measures. In order to pass the quality control, a subject and its replication 

need to be considered as good quality by both PennCNV and QuantiSNP. After quality 

control, 96 subjects and their replications passed these filters. CNVpartition does not 

provide any quality control information for individual subjects. We also removed all 

CNV calls with Log Bayes Factor(LBF) less than 10, which is recommended by 

QuantiSNP (See supplementary materials for more details). 

 

PennCNV reports log R ratio standard deviation (LRR_SD), B allele frequency drift 

(BAF_Drift) and waviness factor (WF) for quality control. We used the following criteria 

to look for good samples (http://www.yale.edu/state/Pipeline.htm). 

1. LRR_SD < 0.28 

2. BAF_Drift <0.01  

3. WF > -0.05 and < 0.05  

If a subject satisfied these criteria, it was considered a sample with good quality. 

Similarly, QuantiSNP reports B allele frequency outliers (BAFout), LogR standard 

outliers (LogRout), B allele frequency standard deviation (BAFstd) and LogR standard 

deviation (LogRstd) for each chromosome. The following criteria were used to determine 

good quality.  

1. BAFout ≤ 0.1 
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2. LogRout ≤ 0.1 

3. BAFstd ≤ 0.2 

4. LogRstd ≤ 0.4 

For any subject, if one or more autosomal chromosomes did not satisfy these criteria, the 

sample was considered poor quality.  

 

In order to pass quality control, a sample and its replication had to be considered as good 

quality by both PennCNV and QuantiSNP. After quality control, 96 subjects and their 

replication data passed the filter. CNVpartition does not provide any quality control 

information for individual subjects.  

 

In these samples, we identified 2348 potential regions across the genome for deletions 

and 851 potential regions for duplications. For any particular potential region, at least one 

of these 96 subjects had a duplication or deletion in this region. We restricted our study to 

only these potential regions.  

 

Each program also reports a confidence score based on different mathematical models. 

The confidence score is a positive number representing the likelihood that there is a CNV 

at that region, with a higher number representing a greater probability of a CNV in that 

region. The confidence scores for the three programs are calculated differently and are on 

different scales. CNVPartition uses a likelihood-based method to compute the confidence 

score (http://www.illumina.com/software/illumina_connect.ilmn).  QuantiSNP computes 

a Bayes Factor by comparing the evidence of the region containing deletions or 
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duplications to that of having two copies, and reports the log of the Bayes Factor as the 

confidence [61]. PennCNV reports an experimental confidence score that is not well 

documented[28]. These confidence scores allow users to filter out CNV regions that are 

likely to be false positives. Due to variability of the confidence score distributed among 

the three programs, we converted the confidence scores within each program into 

percentiles and used them as covariates for modeling.  

 

 

Comparative statistics 

These CNV calls are then compared against each other among duplicate samples. 

Concordance is defined as the percentage of regions that have been consistent in the 

existence or absence of CNVs between duplicate samples. However, this measure is 

misleading, because a large percentage agreement is the chance agreement of negatives.  

 

In addition to the concordance rate, we reported the reproducibility rate. We define a 

CNV as being reproduced when the percentage of overlap of these two CNVs is greater 

than 30% of the region where the two CNVs cover. The reproducibility rate is defined as, 

the percentage of CNVs that can be reproduced at time point 2 among CNVs that are 

discovered at time point 1.    

 

Statistical modeling 

Whether a CNV discovered at the first time can be confirmed at the second time is 

restricted by sensitivity and specificity. In turn, this information can be used to estimate 
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sensitivity and specificity. Using a model derived in previous work [55, 69, 70], we 

calculated CNV sensitivity and positive predicted rate with logistic regression parameters 

derived from CNV characteristics. All CNVs called by any program or more than one 

program were used to fit the model. We also added the consistency rate--the number of 

programs reporting a CNV at a particular locus--as a covariate. The mathematical model 

allows us to estimate the cumulative probability of being true for a set of CNVs with 

similar characteristics, and thus avoids the issue of testing whether a particular CNV is 

true or not.  

 

The model is derived from our previous work on psychiatric disorder diagnoses [55, 70]. 

For some psychiatric disorders, the symptoms are not stable, and similar to CNV calling, 

the diagnoses may not be accurate. Whether a positive diagnosis at time point 1 can be 

confirmed at time point 2 is determined by sensitivity and specificity. And this 

information can be used to estimate sensitivity and specificity per se. Similarly in this 

study, we used the result of CNV calling from replication samples to estimate sensitivity 

and specificity.  We realized that testing the validity of each CNV is unfeasible on a 

genome wide scale. We therefore constructed a mathematical model to estimate the 

probability of being true at a larger scale. 

 

For the mathematical model, we defined the reproducibility as being reproduced by any 

of the three algorithms; however, there are arguably several valid ways to do this. Some 

may require a region shared by one, two, and all of the three algorithms. We decided to 

calculate the maximum coverage of all available algorithms: it could be a direct report if 
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only one algorithm was available, maximum coverage of two if two were available and 

maximum coverage of three if three were available. Then we tested whether the shared 

region of the maximum coverage was over 30% of the total coverage. We chose this 

approach because: 1. this issue is overcomplicated and needs to be simplified, and 2. the 

boundary of CNV is hard to define, thus any report may be treated as evidence of a CNV.  

 

We modeled the positive predicted rate for duplication and deletion separately. We let T 

denote true state and Oi denote observed state, at time i (i=1,2). T and Oi take the value 1 

for “presence” and 0 for “absence” of CNVs (duplications or deletions). The sensitivity p 

and specificity q are   

Pr( 1| 1)ip O T  

Pr( 0 | 0)iq O T  

Each CNV calling program typically reports a value for calling confidence. Let Z denote 

a set of CNV characteristics, including percentile distribution of confidence scores from 

each program and the number of programs that report a CNV at a particular CNV 

segment. Let k denote the true base rate at this region. Therefore, we have  

Pr( 1)k T  

Then the probability of observing a CNV (duplication or deletion) at evaluation i is given 

by 

(1)         Pr( 1| ) (1 )(1 )iP O Z pk q k   

Similarly, the probability of observing a case at the second time, conditional on observing 

a case at the first time at condition Z is 

(2)  2 1 1 1Pr( 1| 1, ) Pr( 1| 1, ) (1 )(1 Pr( 1| 1, ))O O Z p T O Z q T O Z       
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In order to estimate theoretical sensitivity for this model, we used the following 

methodology. At time 2, the probability of confirming a true positive which is discovered 

at time 1 (i.e. identifying a CNV in the second replicate, given that it is true and it was 

seen in the first replicate) is the theoretical sensitivity of this model. Let Zmax denote the 

theoretical condition for which all three CNV estimation programs asymptotically reach 

the maximum value for prediction of a CNV. Then, we make the assumption that if a 

CNV is identified (O1=1) with the theoretical maximum values of the three programs 

(Zmax), then the CNV is a true positive (T=1): 

1 maxPr( 1| 1, ) 1T O Z  

This is a theoretical situation. Because we used percentile distributions of confidence 

scores, Zmax should be 100 for each confidence score, and 3 for the consistence rate, 

which are the theoretical maximum values that Zmax can reach.  Combining 

1 maxPr( 1| 1, ) 1T O Z with Function (2), we have: 

2 1 maxPr( 1| 1, )p O O Z  

where p is the theoretical sensitivity of our mathematical model. The value of 

2 1Pr( 1| 1, )O O Z can be modeled by a logistic regression model because O2, O1, and Z 

are all observed values: 

2 1Pr( 1| 1, ) 1/ [1 exp( )]O O Z Z  

The percentile of confidence scores from CNVpartition, PennCNV and QuantiSNP, as 

well as the consistency rate, were all significant for duplications or deletions. Based on 

the logistic regression and the formula 2 1 maxPr( 1| 1, )p O O Z  , we estimated that the 
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theoretical sensitivity is 0.91 for duplications, and 0 .97 for deletions. This is the 

theoretical sensitivity for the mathematical model, and should be distinguished from the 

sensitivity p’ for each subcategory. We also wanted to point out that these regions are 

restricted to 851 potential regions for duplications and 2,348 potential regions for 

deletions. 

 

We have duplicate samples. The probability of observing a CNV (duplication or deletion) 

at both times is given by 

(3)             2 2
2 1 1 2Pr( 1, 1| , ) (1 ) (1 )P O O Z Z p k q k    

Now, q can be solved by combining function (1) and (3), 

p P P pPq
p P

 

From this formula, we also can estimate that the theoretical specificity, which is 0.986 for 

duplications and 0.989 for deletions.  

 

For each CNV, by solving function (2), we can obtain the positive predicted rate R+, 

which is the probability of being a CNV, conditioned on being positive at time 1.  

1 2 1Pr( 1| 1, ) [Pr( 1| 1, ) 1] / ( 1)R T O Z O O Z q p q  

R+ was calculated for all CNVs, and we took the mean value of R+ of CNVs within each 

category. This is the positive predicted rate for each subcategory reported in Tables 3.2-

3.5. And this value is later used to calculate the sensitivity for each subcategory as 

described below. We assume p’, q’ are the sensitivity and specificity within each 

subcategory, respectively, and k is the true base rate. We have   
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(4)    ' Pp R
k

 

Functions (1), (3) and (4) together only have 3 unknown variables: k, p’ and q.  P+ and 

P++ can be obtained from the data directly. By solving functions (1), (3) and (4), we can 

obtain the following formula for p’ . 

2' ' 0ap bp c  

Among them,  

a P R ,  2 2 2( )b P P R P P R ,   c P R P  

Finally,  

2 4'
2

b b acp
a

 

The negative root is ignored because it is out of boundary.  

Given that p’ can be calculated from the function above, and both P+ and R+ are available, 

we can also estimate the base rate k by solving function (4). Therefore, we have  

'
Pk R
p

 

When all CNV callings are considered, the base rate k  is 0.016 for deletions and 0.012 

for duplications. 

 

Based on this model, we estimated the probability that an observed CNV is a true positive, 

and further the sensitivity for different methods. Duplications and deletions were 

modeled separately. The percentile of confidence scores from CNVpartition, PennCNV 

and QuantiSNP, as well as the consistency rate, were all significant for duplications or 
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deletions, and thus were included in our model (See supplementary materials for more 

details). 

 

 

Model validation 

In calculating the positive predicted rate R+, we assumed that 1 maxPr( 1| 1, ) 1T O Z , 

i.e., a theoretical CNV is true if three programs simultaneously report the highest 

confidence scores. This assumption is only used to estimate the theoretical sensitivity of 

our mathematical model. Zmax is the characteristic from a theoretical CNV that has the 

highest confidence score and is confirmed by all three programs. Because we used 

percentile distributions, the vector of Zmax includes 100 for each confidence score and 3 

for the consistence rate. For a theoretical CNV like this, our mathematical model can only 

capture part of it; therefore probability is the theoretical sensitivity of our mathematical 

model. This theoretical CNV does not exist in reality. We can only test some CNVs with 

weaker characteristics. Our rationale is that if a CNV with slightly weaker characteristics 

can meet the requirement, a theoretical CNV with perfect characteristics can meet the 

requirement as well. We tested CNVs with weaker characteristics on Chr 14 by qPCR. 

Among them, 48 subjects have CNVs with R+ more than 0.91, with the average as high 

as 0.98. The qPCR experiment confirmed that all 48 subjects were reported as having the 

CNVs and 0 were false positive. 

 

Based on our model, we were able to calculate the positive predicted rate for each CNV. 

We grouped CNVs with similar positive predicted rates together and compared the 
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positive predicted rate of each group against the proportion of CNVs from that group that 

can be reproduced.  We reported a CNV as reproduced in the duplicate if the CNV 

detected by the two independent genotyping shares more than 30% of the total coverage. 

We were able to obtain agreement between theoretical positive predicted rate and 

experimental reproducibility in duplicates (Figure 3.1).   

 

We also randomly selected 90% of replicate pairs, and randomly assigned status as 

discovery or replication, and then we calculated the positive predicted rate for “any 1 of 3 

programs” method. We repeated the process 100 times. The positive predicted rate was 

stable across many repeats (Figure 3.2), indicating that our result is not subject to serious 

random fluctuations.   
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RESULTS 

We tested the concordance rate of CNV calls from each program in duplicate samples. 

The concordance rates for the three programs range from 98.0% to 99.3% (Table 3.1). 

However, concordance rate is not a good indicator of CNV calling reliability, because the 

concordance rate also includes the agreement of the absence of CNVs.  Similar to SNPs 

with very low minor allele frequencies [71], a large portion of agreement is due to the 

chance agreement of negatives. Because of this, we believe that the reproducibility rate is 

a more appropriate measure for CNV calling reliability. We reported a CNV as 

reproduced in the duplicate if the CNV detected by the two independent genotyping 

shares more than 30% of the total coverage. The reproducibility among deletions ranged 

from 59% to 62%, and the reproducibility among duplications ranged from 43% to 57% 

(Table 3.1). This highlights the variation between methods and the low reliability of all 

three methods.  

 

We then estimated the reproducibility rate, the positive predicted rate and the sensitivity 

for each CNV calling method (Table 3.2). As expected, deletions have higher 

reproducibility rates, higher positive predictive rates and better sensitivity. For both 

duplications and deletions, the method that requires CNVs to be reported by all three 

programs has the highest reproducibility rate and the highest positive predicted rate.  

 

False CNV calling may be caused by intensity variation (noise) from the microarray. A 

short CNV segment with few probes is particularly vulnerable to noise. Because of this, 

we estimated both the reproducibility rate and the positive predicted rate R+ within four 
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subcategories for each method based upon number of probes contained within the CNV 

(Table 3.3). Some of these subcategories are often used in the literature as thresholds for 

quality controls [28].  Not surprisingly, a higher positive predicted rate R+ was seen when 

there were more probes in a single CNV. We also tested the relationship between the size 

of CNV segments and positive predicted rate R+ (Table 3.5). As expected, the result was 

similar to Table 3.3, because a larger CNV segment typically contains more probes.   

 

The primary purpose of this study was to determine the reliability of CNVs found in 

microarrays, such as in GWAS. We found that if a CNV is reported by at least 3 of 3 

programs, it has the highest positive predicted rate. Moreover, in a microarray, probes are 

not always evenly spaced. We hypothesized that the combination of the number of probes 

and the size would boost the positive predicted rate. We tested this hypothesis by using 

both the number of probes and the size as filters. The results suggest that a minimum of 

10 probes and 10K base pairs are necessary to reach > 80% positive predicted rate (Table 

3.4).   
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DISCUSSION 

Data from genome wide association studies can be used to estimate locations of CNVs 

and their potential effects on disease. There is disturbing evidence that calling CNVs 

from SNP microarray data is not reliable [56]. For this reason, investigators are interested 

in quantifying the reliability.  To our knowledge, this is the first study that compares 

CNV calls from a considerable number of duplicate samples. 

 

Although experimental validation is necessary for CNV association studies, it is both 

demanding and costly and should be limited to regions most likely to contain true CNVs 

associated with disease. In this study, we introduced a convenient way to identify 

potential false positive CNVs on a genome wide scale, using an estimated positive 

predicted rate for CNV callings. Our results confirmed that combining CNVs from 

different programs is one way to improve the positive predicted rate.  

 

In this study, we found that 10 probes and 10 kb in size maximize CNV calling quality. 

We also discovered that deletions are much easier to detect than duplications. The reason 

is that when calling genotypes from the microarray, one deletion represents a 50% 

decrease in signal intensity, rather than the 33% increase caused by one duplication. In 

addition, the B allele frequencies—a reported measure from microarray—of those SNPs 

at a particular deletion region usually take the value of 0% or 100%, leading to a 

distinctive pattern that is relatively easy to spot.    
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Different methods for estimating the locations of CNVs use different mathematical 

models. Both PennCNV and QuantiSNP use hidden Markov models [28, 61], while 

CNVPartition estimates model parameters using bivariate Gaussian distributions. Each 

method has its own strengths, but all also have relatively high frequencies of false-

positive CNVs. The “3 of 3” method, however, minimizes false positives.  

 

When 3 different programs call the same CNV, different boundaries may be reported, 

leading to a quandary on how to categorize this particular CNV. To resolve this, we 

included all CNVs for one category if a CNV reported by any program satisfies the 

category. Therefore, the total number of CNVs for “3 of 3 programs” may be higher than 

the total number of CNVs reported by each program alone.   

 

Moreover, the reproducibility in our manuscript is defined either as being reproduced by 

itself or being reproduced by any of the three algorithms. The exact definition is indicated 

below in Tables 3.1-3. 2. The reason for this is to address both self-reproducibility and 

across-the-spectrum reproducibility. In Table 3.1, we adopted “being reproduced by itself” 

as the criterion in order to show self reproducibility. That is because self reproducibility 

is a good indicator of reliability when the truth is not known, and also a good point to 

start with. The fact that a program cannot even reproduce its result is surely a good sign 

of poor reliability. In Table 3.2, we want to compare the reproducibility among the three 

algorithms and the three combinational methods, therefore, a consistent criterion, which 

is across-the-spectrum reproducibility for this table, is needed in order to make the 

comparison fair and meaningful.     
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The sensitivity here is restricted to CNVs that can be detected by a microarray. In our 

data from 96 replication subjects, we identified 2348 potential regions across the genome 

for deletions and 851 potential regions for duplications. For any particular potential 

region, at least one of these 96 subjects had a duplication or deletion in this region. 

Among these regions, the true base rate k is 0.016 for deletions and 0.012 for duplications 

(See the supplementary materials). We restricted our study only to these potential regions. 

Some CNVs in the genome may be located at particular regions where no probes or very 

few probes exist. Those CNVs can never be detected by microarray technology, and 

therefore are excluded from the estimation of sensitivity. The sensitivity here may be 

better understood as the sensitivity adjusted by the total number of those potential CNV 

regions. Therefore, the sensitivity reported by our study should not be directly compared 

to other studies [56, 72].  

 

Based on our model parameters, investigators can estimate the probability that an 

estimated CNV is true. Interested researchers can estimate the positive predicted rate for 

their own data if confidence scores and some other information can be provided. Finally, 

it is important to emphasize that there are benefits to be gained from utilizing multiple 

CNV calling approaches and then comparing the results between them. This can 

maximize the sensitivity for discovery, maximize the positive predicted rate for 

verification, or balance the sensitivity and the positive predicted rate to a desired point. 

As genome wide association studies move forward from SNPs to CNVs, investigators 
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can better identify CNVs associated with human disease by using multiple estimation 

programs and calculating the positive predictive rates of observed CNVs.  
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Figure 3.1 - The relationship between positive predicted rate and reproducibility 

rate in duplicate samples 

 

 

 

 

  



75 
 

Figure 3.2 - The positive predicted rate is stable across many replications 

A 

 

B 

 

 
We randomly selected 90% of replicate pairs, and randomly assigned status as discovery 
or replication, and then we calculated the positive predicted rate for “any 1 of 3 programs” 
method. We repeated the process 100 times. The positive predicted rate fluctuates in a 
narrow range for duplications (A) and deletions (B).  
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Chapter 4: CNVs and Alcohol Dependence 

 

* This chapter is adapted from: Lin P et al. Copy number variations in 6q14.1 and 5q13.2 
are associated with alcohol dependence. In Preparation.   
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ABSTRACT 

Excessive alcohol use is the third leading cause of preventable death and is highly 

correlated with alcohol dependence, a heritable phenotype. Many genetic factors for 

alcohol dependence have been found, but several remain unknown. In search of 

additional genetic factors, we examined the association between DSM-IV alcohol 

dependence and all common copy number variations (CNV) with good reliability in the 

Study of Addiction: Genetics and Environment (SAGE).   

 

All participants in SAGE were interviewed using the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA), as a part of three contributing studies. 2,610 non-

Hispanic European American samples were genotyped on the Illumina Human 1M array. 

We performed CNV calling by CNVpartition, PennCNV and QuantiSNP and only CNVs 

identified by all three software programs were examined. Association was conducted 

with the CNV (as a deletion/duplication) as well as with probes in the CNV region. 

Quantitative polymerase chain reaction (qPCR) was used to validate the CNVs in the 

laboratory. 

 

CNVs in 6q14.1 (P= 1.04 x10-6) and 5q13.2 (P= 3.37 x10 -4) are significantly associated 

with alcohol dependence after adjusting multiple tests.  On chromosome 5q13.2 there 

were multiple candidate genes previously associated with various neurological disorders. 

The region on chromosome 6q14.1 is a gene desert that has been associated with mental 

retardation, and language delay. The CNV in 5q13.2 was validated whereas only a 

component of the CNV on 6q14.1 was validated by qPCR. 
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This is the first study to show an association between DSM-IV alcohol dependence and 

common CNVs. CNVs in regions previously associated with neurological disorders may 

be associated with alcohol dependence.  
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INTRODUCTION 

During 2001-2005, excessive alcohol use contributed to about 79,000 deaths and 2.3 

million years of potential life lost in the United States [73] . Excessive alcohol 

consumption, the third leading cause of preventable death in the United States, can cause 

damage to the central and peripheral nervous system, and to nearly every organ system in 

the body [74, 75]. It is also strongly correlated with alcohol dependence, a serious 

psychiatric disorder that affects about 12% of American adults across their lifetime [76]. 

Alcohol dependence is a common, complex disease characterized by compulsive and 

uncontrolled alcohol consumption despite its negative effects on the drinker's health, 

relationships, and social standing. 

 

There is robust evidence for heritable influences on the liability to alcohol dependence 

[77].  Siblings of alcohol dependent individuals have a 3-8 fold increased risk of 

developing alcoholism [78] with twin studies revealing the heritability of alcohol 

dependence to be ≈50% [79-81].  Given its serious public health impact [82] and the 

strong evidence for its biological underpinnings, numerous linkage and association 

studies have been targeted at gene identification for alcohol dependence [78, 83-86]. 

Recently, several genome wide association studies (GWAS) queried the genome for 

association [83, 87-89]. Results surpassed genome-wide significance in one study of 

early-onset male alcoholics [87], but across the multiple efforts, effect sizes were small 

and did not replicate. This has generated considerable interest in the examination of other 

possible contributors to the “missing heritability” for alcohol dependence. One such 

contributor is copy number variations (CNVs). 
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CNVs are duplications or deletions of a particular segment of an individual’s genome and 

reflect inherent structural instability in the architecture of the genome. They are  

prevalent forms of common genetic variation and can have a substantial influence on 

gene expression levels [12]. For instance, Mendelian disorders such as Williams-Beuren 

Syndrome (due to a deletion at chromosome region 7q11.23) and Charcot-Marie-Tooth 

neuropathy Type 1A (caused by duplication at chromosome region 17p11.2 [90, 91] are 

attributable to CNVs. Despite the deleterious effects of CNVs and their links to disease, 

few studies have examined CNVs in the context of psychiatric illness, particularly 

alcohol dependence. This is primarily due to the inherent challenges involved in 

identification of what constitutes a CNV. While traditional methods of CNV 

identification involve laboratory-based experiments, they can also be identified (or 

“called”) using GWAS data where a series of single nucleotide polymorphisms (SNPs) or 

“intensity” probes are interrogated for their occurrence in a state other than the expected 

disomic (i.e. 2 copy) state. Typically, the intensity of the probe signal that is expected 

when two copies of the probe are present is compared with the observed intensity, which 

is expected to be enhanced for duplications, or suppressed for deletions. These probes are 

routinely included in GWAS chips and thus, as GWAS technology became more 

accessible, there was an up-swell in CNV identification efforts. However, this method of 

CNV calling from GWAS microarrays can be associated with relatively high error rates. 

For instance, in a previous study, we demonstrated the relatively modest concordance in 

CNV detection using three widely utilized software packages with varying algorithms. In 

that study, we implemented statistical measures that enhance the reliability of the 
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detected CNVs using multiple algorithms and further, validated the CNVs identified 

using statistical programs by quantitative Polymerase Chain Reaction (qPCR) in the 

laboratory [29].    

 

Other challenges of CNV detection include (a) size of the CNV, with smaller CNVs (<10 

kb) being harder to detect, (b) number of CNV probes in the region of the CNV, with 

fewer probes resulting in greater noise, (c) the general quality of the data (including 

artifacts in the SNP data) and genomic waves (intensity variations in normalized GWAS 

data), (d) ethnic variations and (e) source of the sample that was genotyped – for instance, 

it now well known that deletions and duplications can arise in DNA drawn from cell lines 

(i.e. extracting cells from a DNA source and maintaining them in laboratory cultures to 

enhance longevity) and, thus CNV detection using cell cultures requires caution. Yet, if 

attention is paid to these challenges, CNVs represent a unique route for enquiry into the 

genetic architecture of alcohol dependence. 

 

There continues to be a great deal of progress in statistical methods for CNV detection. In 

tandem, there is growing excitement about the association between these CNVs and 

human behavior and the extent to which these intriguing variations in the human genome 

may contribute to that elusive “missing heritability” in complex behavioral phenotypes 

and psychiatric illness. While there has been some promise in studies of autism, and 

intellectual disabilities [92, 93], as well as schizophrenia and bipolar disorder [94, 95], 

research on CNVs in studies of addiction, particularly alcohol dependence, is lacking. In 



82 
 

this study, we examine the CNVs for DSM-IV alcohol dependence in a large sample of 

European-American subjects. 
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MATERIALS AND METHODS  

Samples 

Data were drawn from the Study of Addiction: Genetics and Environment (SAGE) [68]. 

SAGE is one study of the Gene Environment Association Studies (GENEVA) project 

[58]. Cases and controls for the SAGE sample were drawn from 3 contributing projects: 

the Collaborative Study on the Genetics of Alcoholism (COGA), the Collaborative Study 

on the Genetics of Nicotine Dependence (COGEND) and the Family Study of Cocaine 

Dependence (FSCD). While the contributing studies originally ascertained subjects for 

alcohol dependence (COGA), nicotine dependence (COGEND: based on an FTND score 

of 4 or greater in current smokers, controls being smokers) and for cocaine dependence 

(FSCD), the subset of cases selected for genotyping in SAGE were uniformly defined as 

those meeting criteria for DSM-IV alcohol dependence (N=1899) while controls 

(N=1946) were individuals who reported drinking alcohol but not meeting criteria, during 

their lifetime, for alcohol dependence. Of these, 1,186 cases and 1,397 controls are of 

self-reported non-Hispanic European-American descent.  All participants agreed to share 

their DNA and phenotypic information for research purposes and provided written 

informed consent following instructions from institutional review boards at all data 

collection sites.   

 

Measures 

A lifetime diagnosis of DSM-IV alcohol dependence was determined via self-reported 

interview information collected using the Semi-Structured Assessment for the Genetics of 
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Alcoholism (SSAGA). Controls were individuals who had drunk alcohol atleast once in 

their lifetime but did not meet criteria for alcohol dependence. 

 

Genotyping and quality control 

The Center for Inherited Disease Research (CIDR) at Johns Hopkins University 

genotyped all samples on the Illumina Human 1M array. An extensive data cleaning 

effort had been made to ensure data quality. These procedures included, but not limited to, 

using HapMap controls, detection of gender mis-annotation and chromosomal anomalies, 

cryptic relatedness, population structure, batch effects, Mendelian error detection, and 

duplication error detection. A detailed description of data cleaning effort is described 

elsewhere [23, 83].  

 

CNV calling  

The Illumina 1M array has a total of 1,072,820 probes, predominantly indexed by 

polymorphic SNPs. 23,812 of these probes are non-SNP “intensity-only” markers for 

CNV detection. All of the 1,072,820 probes were used for the CNV analyses. Three 

common programs were used to call CNVs: CNVPartition, PennCNV [28], and 

QuantiSNP[61]. Genomic waves were also adjusted when we called CNVs by PennCNV 

and QuantiSNP [60]. Both PennCNV and QuantiSNP report a metric score for quality 

control purposes. As recommended by QuantiSNP documentation, we removed all CNV 

calls that had Log Bayes Factor (LBF) less than 10, as well as poor quality samples based 

on quality control measures for CNV analysis, following the approaches described in our 

previous work [29]. In total, we genotyped 2,583 non-Hispanic European American 
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samples in SAGE and among them 95 samples failed to pass quality controls for CNV 

analysis.  

 

Comparative statistics 

The CNV calls from different programs were compared against each other. In our 

previous work, we have demonstrated that a CNV that is confirmed by all three CNV 

calling programs has a higher reproducibility rate, and thus, a higher reliability [29]. 

Therefore, we required that in this study, only CNVs detected by all three programs 

would be studied. 

 

Association analysis 

Logistic regressions were performed on all CNV regions. After identifying potential 

regions, individual dummy variables for duplications and deletions were created to 

dissect the association signal with DSM-IV alcohol dependence. Several covariates were 

included in the model based on the previous GWAS of these data [83], including sex, age, 

and two principal components indexing continuous ancestral genetic variation. We also 

included a dummy variable to indicate the source of DNA (cell line versus whole blood). 

In addition, we ensured that these potentially confounding variables were not directly 

associated with the identified CNVs. 

 

CNVs with different starting and ending point 

Even when all three programs detect a CNV, they often report different starting and 

ending points for the same CNV segment, which leads to computational challenges in 



86 
 

combining CNV reports. There is a lack of consensus in the research community 

regarding this issue and therefore, in addition to studying the CNV as a deletion or 

duplication, we adopted an additional straightforward approach for association. First, 

SNP probes and intensity-only probes were used to detect CNVs by multiple programs. 

Second, a change of copy number at a particular probe was considered detected when all 

CNV programs reported CNV segments that cover the probe. Third, association between 

alcohol dependence and each probe (assigned the same copy number as the CNV) was 

examined. For instance, if a CNV (duplication or deletion) was detected in region X, 

using probes (SNP or intensity probes) A, B C, D, E, F and G by three different programs,  

then the results from the three programs for each probe were compared against each other 

(Figure 4.1). If agreement was reached among three programs, then the CNV for these 

probes (Probe D and E) were confirmed and would be used in the following analysis. If 

there was disagreement among the three programs, then a missing value was assigned to 

these probes (Probe B, C, and F).   

 

Validation 

CNVs identified by 3 independent programs were validated in subjects carrying the 

variant with quantitative PCR (qPCR). We selected a TaqMan CNV probe in the target 

region. The probe was predesigned by Applied Biosystems (Applied Biosytems, Foster 

City, CA, USA). Genomic DNA was analyzed with real-time PCR using an ABI-7900 

Fast PCR system. Each real-time PCR run included within-plate duplicates. Correction 

for sample-to-sample variation was done by simultaneously amplifying a standard CNV 

reference assay, RNAse P. Real-time data were analyzed using the comparative Ct 
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method [96]. The Ct values of each sample were normalized with the Ct value for the 

RNAse P assay. Only the samples with a standard error <0.15 were analyzed. Copy 

numbers were calculated using ABI CopyCaller™ Software v1.0.  
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RESULTS 

Socio-demographic characteristics  

 Of the 2,583 non-Hispanic European American samples from SAGE, 95 failed to pass 

quality control for CNV analysis, leaving 1,140 cases and 1,348 controls.  The mean ages 

among subjects with alcohol dependence was 38.2 [SD=10.0], and for controls was 39.0 

[SD=9.5]. Sixty percent of the cases and 29.2% of the controls were male. As shown in 

Table 4.1, cases were more likely to be dependent on nicotine and illicit drugs, including 

nicotine, cocaine, and marijuana. They were also more likely to meet criteria for a 

lifetime history of conduct disorder and major depression. 

   

Alcohol history 

Cases also reported an earlier age of heavy and regular alcohol use, and, by definition, 

reported more alcohol symptoms (Table 4.2).  

 

CNV detection 

Of the samples that passed quality control, we identified 1,139 CNV regions with length 

greater than 50 kb and number of probes not less than 10 [29]. Among them, only 141 

CNV regions have frequency higher than 1%. All of these CNV regions had previously 

been documented in the database of genetic variants [97]. Thus, after adjusting for 

multiple tests, our significance threshold for association analyses is 0.05/141=3.54 x10-4. 

 

Association between CNVs and Alcohol Dependence 
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Two CNV regions were significantly associated with alcohol dependence (Table 4.3): 

chromosome 6q14.1 (OR=2.86, P= 1.04 x10-6, n=121 subjects with the duplication) and 

chromosome 5q13.2 (OR=1.99, P= 3.37 x10 -4, n=59 subjects with the duplication, and 

n=58 subjects with deletions). The P values for each probe in these two regions are listed 

in Tables 4.4 & 4.5.  

 

Validation using qPCR. 

For the CNV at 5q13.2, over 97% of these CNVs were confirmed as true CNVs using 

qPCR. However, for 6q14.1, while all deletions were confirmed, none of the duplications 

were reproduced via qPCR. This suggests that the result for 6q14.1 should be viewed 

with caution. 

 

Relationship among Personality, Alcohol Dependence, and CNVs 

We noticed that alcohol dependence is significantly associated with agreeableness 

(P=1.04 x10-20), conscientiousness (P=3.93 x10-22), extraversion (P=1.15 x10-12) and 

neuroticism (P=6.95 x10-40). . We also found an exceptional P value (P=4.8 x10-5) for 

conscientiousness in Chr5: 68,921,426 - 70,412,247, but not for the other four factors. 

This observation drives us to hypothesize that Chr5: 68,921,426 - 70,412,247 increase the 

risk of alcohol dependence by lowering conscientiousness, or more specifically self-

discipline (Table 4.6). 
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DISCUSSION 

These analyses evaluated the association between CNVs and alcohol dependence among 

a relatively large sample of alcohol-dependent cases and non-dependent alcohol exposed 

controls. We found two regions significantly associated with alcohol dependence: Chr5: 

69,916,523- 70,373,564 and chr6:79,034,386-79,090,197. To our knowledge, this is the 

first study to connect common CNVs and alcohol dependence.  

 

The identified chromosomal regions have been previously associated with several 

neurological and other disorders. Chr5: 69,916,523- 70,373,564 covers several genes, 

including SMA4, SERF1, SERF1B, SMN2, SMA3, NAIP, GTF2H2, GTF2H2D and the 

downstream OCLN. Among them, SMA3, SMA4 and SMN2 are known to be associated 

spinal muscular atrophy [98, 99]. Recent research shows that the genes in this region 

have a function in the nervous system [100], including  OCLN, another candidate in this 

region,  which is an integral membrane protein that is required for cytokine-induced 

regulation of the tight junction paracellular permeability barrier.   Mutations in this gene 

are thought to be a cause of pseudo-TORCH syndrome, an autosomal recessive 

neurologic disorder that mimics the clinical characteristics (e.g. microcephaly, seizures, 

spasticity) attributable to congenital infections due to Toxoplasmosis, Other Agents, 

Rubella, Cytomegalovirus or Herpes Simplex [101]. While the CNV in Chr6:79,034,386-

79,090,197 is located in a gene desert, there is evidence that suggests a link between 

chromosome region 6q14.1 and mild mental retardation, language delay, and minor 

dysmorphisms [102, 103]. Also, it is hypothesized that non-coding intergenic regions, 
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such as this, may contain regulatory elements, such as enhancers and chromosome 

scaffold components that are capable of changing gene expression.  

 

The observation that conscientiousness is associated with Chr5: 68,921,426 - 70,412,247 

drives us to hypothesize that CNVs at 5q13.2 increase the risk of alcohol dependence by 

lowering conscientiousness. But it is possible that this link can be contributed to 

confounding effects. We believed it is not likely the case, because agreeableness, 

extraversion and neuroticism, all of them are associated with the risk of alcohol 

dependence but none of them are linked to this CNV.  

 

We restricted our association tests to non-rare (>1%) CNVs for two reasons. First, the 

traditional genome wide association study design has little power to detect rare genetic 

variants (<1%), and the case control study design of this project cannot provide enough 

power to detect rare CNVs. Second, accuracy of CNV detection diminishes with 

decreasing frequency.   

 

In addition we required that all CNVs be reproduced by 3 independent programs, a step 

that increases confidence in the results but that raises the potential problem of the same 

CNV region being detected with different starting and ending points, which results in 

uncertainty on how to combine these different CNV calls. In order to avoid this 

controversy, we adopted an intuitive method where we tested each genetic marker instead 

of a particular CNV segment. A CNV status is assigned to a particular genetic marker 

when all programs report a CNV that covers this probe (Tables 4.4 & 4.5). We validated 



92 
 

our findings by qPCR – while the region on chromosome 5q13.2 replicated, the 

duplication on 6q14.1 did not. This underscores the considerable importance of 

experimental validation of CNVs identified using software algorithms. 

 

Our finding of the association between these CNVs and alcohol dependence is 

encouraging because it identifies regions previously associated with neurological 

disorders, however these findings will require replication. Nonetheless, our study is 

amongst the first to examine the role of CNVs in the etiology of alcohol dependence. 

This reflects the exciting phase of the post-GWAS genomics era where the quest to 

articulate the genetic architecture of serious psychiatric problems like alcohol dependence 

moves beyond single SNP association to new frontiers, such as CNVs and rare variants.  
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Table 4.4 - Associations of each probe and alcohol dependence in Chr5: 68,921,426- 
70,412,247 
 
 
Chr Position RS ID or probe ID Beta Std Error P value 
5 68921426 cnvGap_CNV_9695.2p30 1.199816 0.384087 0.001785 
5 68930217 cnvGap_CNV_9695.2p34 1.201797 0.384229 0.001761 
5 68940434 cnvGap_CNV_9695.2p36 1.022875 0.354005 0.003859 
5 68950807 cnvGap_CNV_9695.2p40 0.752159 0.317977 0.018008 
5 68956063 rs2872744 0.791176 0.326499 0.015384 
5 68977500 cnvGap_CNV_9695.2p52 0.731418 0.311746 0.018966 
5 68989477 cnvGap_CNV_9695.2p56 0.708313 0.313653 0.023929 
5 68999018 cnvGap_CNV_9695.2p60 0.639949 0.308121 0.037807 
5 69011885 cnvGap_CNV_9695.2PP1 0.768489 0.300768 0.010616 
5 69027097 cnvGap_CNV_9695.2p74 0.631037 0.291654 0.030491 
5 69031745 cnvGap_CNV_9695.2p75 0.584503 0.269701 0.030218 
5 69041250 cnvGap_CNV_9695.2p77 0.610001 0.258246 0.018172 
5 69049740 cnvGap_CNV_9695.2p82 0.558177 0.250013 0.025576 
5 69061359 cnvGap_CNV_9695.2p88 0.454047 0.242656 0.061324 
5 69096757 cnvGap_CNV_9695.2p10 0.432948 0.23653 0.067188 
5 69099351 cnvGap_CNV_9695.2p10 0.432948 0.23653 0.067188 
5 69111519 cnvGap_CNV_9695.2p11 0.41567 0.2376 0.080214 
5 69118987 cnvGap_CNV_9695.2p11 0.415922 0.237575 0.079999 
5 69130746 cnvGap_CNV_9695.2PP2 0.368784 0.233744 0.114628 
5 69145115 cnvGap_CNV_9695.2PP2 0.334341 0.23186 0.149303 
5 69150402 cnvGap_CNV_9695.2p13 0.353716 0.230783 0.125355 
5 69159243 cnvGap_CNV_9695.2p13 0.367197 0.229883 0.110194 
5 69172823 cnvGap_CNV_9695.2p14 0.32113 0.231953 0.166217 
5 69183643 cnvGap_CNV_9695.2p14 0.321074 0.231953 0.166291 
5 69190743 cnvGap_CNV_9695.2p14 0.321015 0.231974 0.166407 
5 69199857 cnvGap_CNV_9695.2p14 0.312488 0.226807 0.168275 
5 69210590 cnvGap_CNV_9695.2p15 0.321634 0.228144 0.158604 
5 69221673 cnvGap_CNV_9695.2p16 0.451626 0.238605 0.058388 
5 69233077 cnvGap_CNV_9695.2p16 0.452504 0.238721 0.058022 
5 69247965 cnvGap_CNV_9695.2p17 0.464867 0.23734 0.050154 
5 69251715 cnvGap_CNV_9695.2p17 0.503588 0.235621 0.032575 
5 69262959 cnvGap_CNV_9695.2p18 0.503588 0.235621 0.032575 
5 69280018 cnvGap_CNV_9695.3p28 0.509937 0.237742 0.031959 
5 69289210 cnvGap_CNV_9695.3PP1 0.48309 0.239443 0.043637 
5 69304294 cnvGap_CNV_9695.3p11 0.534143 0.248472 0.031578 
5 69315096 cnvGap_CNV_9695.3p18 0.520903 0.249389 0.036733 
5 69326897 cnvGap_CNV_9695.3p26 0.674162 0.253549 0.00784 
5 69331520 cnvGap_CNV_9695.3p30 0.674162 0.253549 0.00784 
5 69345138 cnvGap_CNV_9695.3p39 0.722887 0.249519 0.003766 
5 69359352 cnvGap_CNV_9695.3p46 0.723277 0.249613 0.00376 
5 69369617 cnvGap_CNV_9695.3p50 0.723277 0.249613 0.00376 
5 69390807 cnvGap_CNV_9695.3p54 0.756269 0.249072 0.002395 
5 69400684 cnvGap_CNV_9695.3p58 0.756269 0.249072 0.002395 
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5 69409672 cnvGap_CNV_9695.3p61 0.741535 0.249818 0.002994 
5 69428601 cnvGap_CNV_9695.3p65 0.7834 0.260774 0.002663 
5 69430212 cnvGap_CNV_9695.3p66 0.7834 0.260774 0.002663 
5 69439738 cnvGap_CNV_9695.3p69 0.809719 0.26522 0.002266 
5 69455867 cnvGap_CNV_9695.3p74 0.667099 0.280284 0.017309 
5 69459806 cnvGap_CNV_9695.3p76 0.667099 0.280284 0.017309 
5 69476562 cnvGap_CNV_9695.3p87 0.66676 0.280188 0.017327 
5 69510771 cnvGap_CNV_9695.4p77 0.714841 0.286388 0.012558 
5 69522322 cnvGap_CNV_9695.4p11 0.713733 0.286203 0.012638 
5 69551174 cnvGap_CNV_9695.4p24 0.666819 0.270958 0.013856 
5 69566693 cnvGap_CNV_9695.4p27 0.683789 0.269716 0.011238 
5 69570933 cnvGap_CNV_9695.4p27 0.701269 0.268428 0.008988 
5 69586554 cnvGap_CNV_9695.4p35 0.538879 0.235836 0.022314 
5 69590946 cnvGap_CNV_9695.4p39 0.538879 0.235836 0.022314 
5 69606832 cnvGap_CNV_9695.4p44 0.563723 0.2313 0.014802 
5 69611483 cnvGap_CNV_9695.4p46 0.524986 0.227573 0.021061 
5 69629469 cnvGap_CNV_9695.4p53 0.485993 0.218098 0.025859 
5 69636067 cnvGap_CNV_9695.4p56 0.485993 0.218098 0.025859 
5 69641101 cnvGap_CNV_9695.4p59 0.485993 0.218098 0.025859 
5 69651103 cnvGap_CNV_9695.4p63 0.486 0.218117 0.025869 
5 69662828 cnvGap_CNV_9695.4p67 0.509414 0.21455 0.017581 
5 69670671 cnvGap_CNV_9695.4PP1 0.460186 0.212049 0.029992 
5 69685334 cnvGap_CNV_9695.4p79 0.497897 0.210767 0.018161 
5 69692210 cnvGap_CNV_9695.4p83 0.448661 0.208357 0.031293 
5 69706422 cnvGap_CNV_9695.4p92 0.4288 0.202809 0.034489 
5 69713288 cnvGap_CNV_9695.4p95 0.42941 0.202791 0.034217 
5 69724106 cnvGap_CNV_9695.4p10 0.437324 0.20042 0.029106 
5 69733571 cnvGap_CNV_9695.4PP2 0.371912 0.191615 0.052267 
5 69741366 cnvGap_CNV_9695.4p10 0.386067 0.194716 0.047399 
5 69751404 cnvGap_CNV_9695.4p11 0.450406 0.20269 0.026274 
5 69768625 cnvGap_CNV_9695.4p11 0.528363 0.213867 0.013492 
5 69773055 cnvGap_CNV_9695.4p11 0.559303 0.215967 0.009604 
5 69788867 cnvGap_CNV_9695.4p12 0.564798 0.233271 0.015469 
5 69791981 cnvGap_CNV_9695.4p12 0.58497 0.238321 0.014106 
5 69809114 cnvGap_CNV_9695.4p13 0.801829 0.277339 0.003838 
5 69810251 cnvGap_CNV_9695.4p13 0.801829 0.277339 0.003838 
5 69823637 cnvGap_CNV_9695.4p13 0.837268 0.275872 0.002405 
5 69831300 cnvGap_CNV_9695.4p14 0.837268 0.275872 0.002405 
5 69841867 cnvGap_CNV_9695.4p14 0.87538 0.279896 0.001763 
5 69851260 cnvGap_CNV_9695.4PP3 0.875937 0.27989 0.001751 
5 69865823 cnvGap_CNV_9695.4p15 0.862827 0.280838 0.002124 
5 69876032 cnvGap_CNV_9695.4p15 0.895296 0.279328 0.00135 
5 69882833 cnvGap_CNV_9695.4PP3 0.895296 0.279328 0.00135 
5 69893882 cnvGap_CNV_9695.4PP3 0.896231 0.279376 0.001337 
5 69902168 cnvGap_CNV_9695.4p16 0.839408 0.275278 0.002294 
5 69916523 cnvGap_CNV_9695.4p16 0.929826 0.270602 0.00059 
5 69922377 cnvGap_CNV_9695.4p17 0.929826 0.270602 0.00059 
5 69936538 cnvGap_CNV_9695.4PP3 0.844825 0.267901 0.001613 
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5 69943485 cnvGap_CNV_9695.4p18 0.858466 0.266437 0.001273 
5 69954494 cnvGap_CNV_9695.4p18 0.858466 0.266437 0.001273 
5 69973658 cnvGap_CNV_9695.4p19 0.756466 0.265982 0.004454 
5 69980978 cnvGap_CNV_9695.4p19 0.756384 0.265997 0.004461 
5 69997937 cnvGap_CNV_9695.4p20 0.724284 0.262874 0.005865 
5 70002621 cnvGap_CNV_9695.4p20 0.731238 0.267667 0.006297 
5 70022132 cnvGap_CNV_9695.4p21 0.759332 0.272195 0.005276 
5 70033323 cnvGap_CNV_9695.4p22 0.759684 0.272224 0.00526 
5 70054944 cnvGap_CNV_9695.4PP5 0.764576 0.279212 0.006175 
5 70065114 cnvGap_CNV_9695.4PP5 0.765482 0.279118 0.006097 
5 70078585 cnvGap_CNV_9695.4p23 0.634303 0.286028 0.02658 
5 70093265 cnvGap_CNV_9695.4p24 0.601258 0.293154 0.040267 
5 70104506 cnvGap_CNV_9695.4p24 0.416646 0.324074 0.198565 
5 70132660 cnvGap_CNV_9695.4p26 0.742946 0.34966 0.033606 
5 70145118 cnvGap_CNV_9695.4p26 0.550989 0.321841 0.086898 
5 70160109 cnvGap_CNV_9695.4p27 0.496704 0.274422 0.070295 
5 70161507 cnvGap_CNV_9695.4p27 0.496537 0.274459 0.070428 
5 70179802 cnvGap_CNV_9695.4p28 0.515022 0.272403 0.058669 
5 70181307 cnvGap_CNV_9695.4p28 0.515022 0.272403 0.058669 
5 70202676 cnvGap_CNV_9695.4p29 0.484197 0.260942 0.063515 
5 70212521 cnvGap_CNV_9695.4p30 0.495478 0.260042 0.056731 
5 70222045 cnvGap_CNV_9695.4p30 0.494999 0.260111 0.057037 
5 70232726 cnvGap_CNV_9695.4p31 0.493616 0.260006 0.057633 
5 70245258 cnvGap_CNV_9695.4p32 0.512855 0.262521 0.050751 
5 70256087 cnvGap_CNV_9695.4p32 0.513487 0.262557 0.050498 
5 70261872 cnvGap_CNV_9695.4p32 0.513487 0.262557 0.050498 
5 70274080 cnvGap_CNV_9695.4p32 0.603484 0.249562 0.015599 
5 70300876 cnvGap_CNV_9695.5p24 0.521426 0.217213 0.016372 
5 70304036 cnvGap_CNV_9695.5p42 0.497972 0.213587 0.019729 
5 70309633 rs575909 0.472588 0.197371 0.016647 
5 70311476 cnvGap_CNV_9695.5p73 0.46997 0.196627 0.016841 
5 70327006 cnvGap_CNV_9695.5p12 0.512376 0.169714 0.002536 
5 70335524 cnvGap_CNV_9695.5p15 0.553221 0.172349 0.001328 
5 70341309 rs28751879 0.5665 0.168459 0.000771 
5 70341452 rs28538463 0.5665 0.168459 0.000771 
5 70342434 rs28447466 0.566707 0.168305 0.000759 
5 70343142 rs36065930 0.567762 0.168294 0.000742 
5 70343220 rs4976210 0.566641 0.171011 0.000921 
5 70351828 cnvGap_CNV_9695.6p46 0.620636 0.18749 0.000932 
5 70368925 cnvGap_CNV_9695.6p10 0.650221 0.189743 0.000611 

5* 70373564 cnvGap_CNV_9695.6p11 0.693727 0.193509 0.000337 
5 70391854 cnvGap_CNV_9695.6p16 0.55771 0.194912 0.004218 
5 70405153 cnvGap_CNV_9695.6p22 0.576782 0.202344 0.004365 

 
* The probe with the most significant P value in this CNV region.  
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Table 4.5 - Associations of each probe and alcohol dependence in Chr6:79,034,386-
79,090,197 
 
 
Chr Position RS ID or probe ID Beta Std Error P value 
6 79034386 rs818258 1.208651 0.25355 1.87065E-06 
6 79036117 rs818262 1.189742 0.249361 1.83165E-06 
6 79039487 rs818313 1.095437 0.232592 2.48088E-06 
6 79042356 rs818310 1.07382 0.225953 2.01012E-06 
6 79052979 rs11964123 1.017069 0.219191 3.48217E-06 
6 79056617 rs1093580 1.053288 0.217916 1.34181E-06 
6 79056822 rs818301 1.053288 0.217916 1.34181E-06 
6 79059458 rs6932920 1.053288 0.217916 1.34181E-06 
6 79063712 rs6918807 1.004236 0.212568 2.30915E-06 
6 79065940 rs6911209 1.003881 0.212539 2.32078E-06 
6 79065999 rs6931912 1.003881 0.212539 2.32078E-06 
6 79067895 rs9361392 1.001207 0.212502 2.4589E-06 
6 79069278 rs818295 1.005926 0.21264 2.23806E-06 
6 79069674 rs9448350 1.005926 0.21264 2.23806E-06 
6 79070425 rs964927 1.005926 0.21264 2.23806E-06 
6 79075016 rs7749022 1.01238 0.212543 1.90567E-06 
6 79076024 rs9448356 1.046794 0.214308 1.03678E-06 
6 79076473 rs9448357 1.046794 0.214308 1.03678E-06 

6* 79077158 rs818290 1.046827 0.214304 1.03542E-06 
6* 79077999 rs7774454 1.046827 0.214304 1.03542E-06 
6 79078423 rs818288 1.042325 0.214243 1.14368E-06 
6 79081009 rs16889854 1.00384 0.224986 8.12803E-06 
6 79082584 rs16889859 0.968943 0.226665 1.91323E-05 
6 79083049 rs818285 0.969383 0.226686 1.90001E-05 
6 79083083 rs818284 0.965082 0.226739 2.07794E-05 
6 79083326 rs9443550 0.974056 0.226628 1.72314E-05 
6 79086086 rs9448361 0.976535 0.226689 1.64874E-05 
6 79088461 rs818280 0.964914 0.227086 2.1462E-05 
6 79090197 rs7773124 0.951371 0.228169 3.05157E-05 

 
* The probes with the most significant P value in this CNV region.  
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Chapter 5: Challenges and directions: an analysis of Genetic Analysis Workshop 17 

data by collapsing rare variants within family data 

* This chapter is adapted from: Lin P et al. (2011) Challenges and directions: an analysis 
of Genetic Analysis Workshop 17 data by collapsing rare variants within family data. 
BMC proceedings. In Press.    
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ABSTRACT  

Recent studies suggest that the traditional case-control study design does not have 

sufficient power to discover rare risk variants. Two different methods—collapsing and 

family data—are suggested as alternatives for discovering these rare variants. Compared 

with common variants, rare variants have unique characteristics. In this paper, we assess 

the distribution of rare variants in family data. We notice that a large number of rare 

variants exist only in one or two families and that the association result is largely shaped 

by those families. Therefore we explore the possibility of integrating both the collapsing 

method and the family data method. This combinational approach offers a potential 

power boost for certain causal genes, including VEGFA, VEGFC, SIRT1, SREBF1, 

PIK3R3, VLDLR, PLAT, and FLT4, and thus deserves further investigation.  
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BACKGROUND  

Genome-wide association studies have accelerated the discovery of genetic variants that 

cause disease. Thus far, nearly 600 genome-wide association studies have examined 

about 150 distinct diseases or traits, and more than 800 SNPs associated with these 

diseases or traits have been identified[104]. Recent studies have suggested that rare 

variants contribute to common diseases, but the case-control study design does not have 

sufficient power to discover rare causal variants.   

 

Two common approaches are used to increase the power to detect rare variants. One 

method is to collapse rare variants on the basis of predetermined criteria. By grouping 

risk variants together, the frequency of rare risk variants can be increased in the data set. 

Extensive research on collapsing has been done for population-based data [105]. Another 

approach is to examine family data. The potential advantage of family data is that a 

particular rare variant found in an affected individual is more common in that 

individual’s family than in subjects randomly sampled in the population.  

 

The Genetic Analysis Workshop 17 (GAW17) is a collaborative effort among researchers 

to improve our current understanding of genetic architecture. It provides simulated data 

based on real exon sequence data, and thus offers a unique and relatively realistic 

opportunity to evaluate statistical genetic methods that are relevant to current analytical 

problems. In For this workshop, we designed this a study to (1) test both the collapsing 

methodology and the family design in data sets generated with the same biological model, 

and (2) assess the power of combining these two approaches: (collapsing rare variants 
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within family data). This study will help guide researchers to design and analyze future 

studies for the detection of rare genetic variants. 

 

  



106 
 

METHODS 

Family-based association testing 

To test genetic associations in family data, investigators need to address the correlation 

among family members. Several methods are available [31, 106, 107]. We accounted for 

correlated genotypes by using the modified quasi-likelihood score test (MQLS) developed 

by Thornton and McPeek [106]. This method is implemented in the computer program 

MQLS.  

 

MQLS is an improvement on the previous quasi-likelihood score test, WQLS, developed by 

Bourgain et al. [108]. It accounts for the correlations among related individuals by using 

a defined kinship matrix and assigns optimal weights depending on the pedigree 

information, thus providing an efficient estimator of allele frequency under the null 

hypotheses. Interested researchers should refer to Thornton and McPeek’s paper for more 

details [106]. 

 

Collapsing rare variants within family-based association testing  

A causal gene can be shared by more than one or two families, although this gene can 

have different rare risk variants in those families. Traditional family-based association 

tests fail to combine signals from different rare variants. To address this issue, we 

proposed to collapse these rare variants. Many collapsing methods are available. Some 

methods simply account for the presence or absence of rare variants, whereas others 

assign an adjustable weight to different types of rare variants, based on biological 

function or minor allele frequency, and then calculate a final score for each gene [105]. 
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Currently, there is no conclusive evidence to argue for or against a particular collapsing 

method. To generate data that can be analyzed by MQLS, we created a gene indicator that 

collapses rare variants within the same gene. Similar to SNPs, the gene indicator is a 

dichotomous variable that indicates presence or absence of any rare variant within the 

region of interest, so it can be processed by the MQLS program. A gene indicator variable 

G for the nth subject is defined as 

 

if any predefined rare variants exist in a particular gene,
if no predefined rare variants exist in a particular gene.n

AB
G

AA
⎧
⎨
⎩

 (1) 

 

Although genotype BB can be defined when both alleles of a particular SNP are the rare 

alleles, the likelihood of this situation is small, because we are dealing with rare variants.  

We have developed a SAS macro to implement our method with the MQLS program. The 

SAS macro is available to interested investigators.  

 

Power analysis 

A subset of genes that had sequence data available in the 1000 Genomes Project was 

included in this GAW17 project. GAW17 simulated the phenotype based on a predefined 

simulation model and generated 200 different phenotype files under the same model. 

Thus the 200 replicate phenotype files provide a unique opportunity to estimate power. 

We tested associations under different conditions and calculated the power of different 

approaches. Power is defined as the proportion of times that a particular test reaches the 

significance threshold.  
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RESULTS  

Distribution of rare variants within family data 

The GAW17 data set has 697 subjects (209 case subjects and 488 control subjects) from 

8 families. A total of 24,487 SNPs were simulated for 3,205 genes. Fully informative 

identical-by-descent (IBD) scores were also provided for each gene.  

 

We defined a SNP as rare if its minor allele frequency (MAF) in the population was less 

than 0.01. By this definition, in the GAW17 data there are 18,131 rare SNPs, 56.4% of 

which do not exist in the family data. According to the simulation model, 162 SNPs 

underlie the disease status. Among them, 145 are rare SNPs. Unfortunately, more than 70% 

of these rare SNPs do not exist in the family data. In addition, a large proportion (85%) of 

the remaining SNPs exist in only one or two families (Figure 5.1).  

 

Moreover, many existing rare variants are not passed on in the family. Analysis of the 

family data shows that 30 of the 42 rare variants that exist in founders are not passed on 

to offspring. In fact, only 10 of the 42 rare SNPs (7% of all the causative rare SNPs) have 

an allele frequency (frequency in family data) greater than 0.01.  

 

Family-based association test  

Because 85% of the 36 rare SNPs found in families exist in only one or two families, it is 

expected that only one or two families can contribute to the final association result. 

Among the 145 rare SNPs that underlie the disease status, most signals exist in only one 
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or two families. The distribution of signals is shown in Figure 5.2, and it matches the 

distribution of rare SNPs within families well.  

 

In addition, combining families that have a particular risk allele with families that do not 

have the particular risk allele unintentionally diminishes the power. We compared the 

association result from all families and the association result from each family. Seventy-

seven percent of rare causal SNPs have more significant P-values from one family than 

from all data analyzed together.  

 

Collapsing rare variants within family-based association test  

As we have shown, for a particular rare risk variant, only one or two families contribute 

to the signal, but one gene may have multiple risk variants, each of which may be 

possessed by different families. Cystic fibrosis transmembrane conductance regulator 

(CFTR) is a good example. Since CFTR was identified, more than 1,000 mutations have 

been found for cystic fibrosis [109]. And similar to CFTR, a causal gene may have 

multiple mutations, and different families may have different risk mutations within the 

same gene. Because these different mutations can be designated by a risk gene indicator, 

we believe that collapsing those different mutations to a gene indicator may provide an 

additional boost on power. 

 

We tested collapsing within family data using the method described in the Methods 

section. One particular question we want to address here is whether there is any benefit to 
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collapsing within families compared to collapsing in population-based data, which has 

been extensively researched.  

 

We set our significance level to a loose level of P < 0.05 for power calculation and 

repeated our analysis in the 200 phenotype data sets. We collapsed all rare SNPs (MAF < 

0.01) within genes. The SNP for GCKR has a MAF greater than 0.01 and thus was 

excluded from analysis. Among 35 available genes, 17 reached the significance threshold. 

The power for these genes is shown in Table 5.1. For comparison, we did similar 

analyses in the population data with two dummy variables to adjust for ancestry. From 

the table, we notice that family-based collapsing is more useful for certain genes.  

 

Among those genes for which the family-based collapsing has power, we set our 

significance threshold to the stringent level of 0.05/3,205 = 1.56 × 10−5. The power for 

VEGFC and VEGFA is 99% and 94.5%, respectively. Population-based collapsing, 

however, has no power to detect these two genes. Among the 200 phenotypes, the 

population-based collapsing reported a median P-value of 0.98 for VEGFC and 0.54 for 

VEGFA.  

 

Another issue we want to address is whether there is any gain in power for collapsing 

within families compared to the family approach without collapsing. We tested each SNP 

using MQLS within family data. The result is shown in Table 5.2. The comparison shows 

that collapsing may be useful for some variants and may be detrimental for some other 

variants. In fact, collapsing a causal variant with a noncausal variant will diminish power. 
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We found that SIRT1 and VLDLR have a power drop, but for some other genes, such as 

SREBF1, PIK3R3, PLAT, and FLT4, there are considerable power gains. Further analysis 

shows that among those genes that have power gains by the family-based collapsing, 

many families that possess different risk variants have contributed to the signal.  
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DISCUSSION  

Recent advances in genome-wide association studies have identified hundreds of 

common SNPs that are associated with different diseases, but collectively they can 

explain only a small fraction of variation. Many investigators believe that the missing 

heritability may be partly explained by the rare variants, which are difficult to discover in 

the common case-control study design. One reason that the existing study design does not 

have sufficient power is simply because these rare variants are rare. In general, for any 

statistical test, a certain number of subjects who possess this particular rare variant are 

required in order to obtain enough power. From this perspective, the family design and 

the collapsing approach, both of which are potential methods for discovering rare variants, 

aim to increase the presence or the frequency of the risk variant or haplotype in the data 

set. However, some challenges are associated with these two methods.  

 

It is generally thought that because a rare mutation can be transmitted to offspring, family 

data may have more copies of rare mutations than can be found in population-based data. 

However, a large number of rare mutations that are possessed by founders are not passed 

on in the family data. Among 145 rare SNPs, only 10 have an allele frequency (frequency 

in family data) greater than 0.01. This may partly explain the general conclusion reached 

in the GAW17 meeting that family data are not particularly helpful for discovering rare 

risk variants.  

 

In addition, collapsing should be used with caution. The assumption behind collapsing is 

that risk alleles tend to be rare. This assumption may be supported by evolution theory. If 



113 
 

one new variant is generated by mutation and is beneficial, then this new variant will be 

favored by selection and therefore its frequency will increase over time. Similarly, 

malicious alleles are selected against, and therefore their frequency will decrease over 

time. Moreover, if a nonsynonymous mutation occurs at a conservative gene coding 

region, it is likely that the mutation will be malicious, because that is why the sequence is 

otherwise conservative. However, some neutral rare variants can exist in the population 

as a result of random mutation. Grouping a risk variant with a neutral variant may 

decrease the power, as we have shown in Table 5.1.  

 

In GAW17, all risk variants are nonsynonymous SNPs. In Table 5.1, the power is lower 

when collapsing all rare variants than when collapsing only nonsynonymous SNPs. It is 

tempting to argue that we should collapse only nonsynonymous SNPs. In reality, 

however, synonymous SNPs may play a significant role in biological function, for 

example, alternative splice site, transcription factor binding site, or even chromatin 

structure protein binding site. Meanwhile, nonsynonymous SNPs may have no function at 

all. At the protein level, an amino acid change, which is usually the result of 

nonsynonymous SNPs, often fails to change the secondary structure and tertiary structure 

of a protein and therefore may have no impact on protein function. Although it is 

generally difficult to predict whether a synonymous SNP or a nonsynonymous SNP is 

biologically functional or not, we believe that the use of prediction algorithms for 

function will be helpful. Several function prediction algorithms are available, for example, 

SIFT and PolyPhen-2 [110, 111]. Unfortunately, all causal variants in the GAW17 

simulation data were chosen based on PolyPhen and SIFT predictions of the likelihood 
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that the variant would be deleterious. Thus the application of the function prediction 

algorithm to the GAW17 simulation data, which were generated using the same function 

prediction algorithm, may not be illuminating. 

 

One purpose of this study is to cast new light on future study designs. We noticed that in 

family data, the association signals exist in only one or two families. We also noticed that 

combining these families with families that do not possess these risk variants 

unintentionally diminishes power. Therefore we argue that, given a limited sample size, a 

large pedigree may be more useful for discovering rare risk variants. Although many rare 

variants cannot be discovered, a large pedigree is still useful because at least some causal 

rare variants are more likely to be found.  

 

In conjunction with association testing, linkage can identify regions of interest. Therefore 

regional sequencing can be done instead of whole genome sequencing. In addition, the 

selection of the most informative families or family members may further reduce the total 

genotyping cost. In addition, the use of extremes of a phenotypic distribution may 

provide tremendous information and reduce the required sample size [112].  

 

In this study, we tested collapsing within family data, which combines the two widely 

proposed methods: the family design and the collapsing approach. The new 

combinational method provides considerable power gain for some genes. Although we 

noticed that the power gain is obtained at the cost of power for some other genes, this is 

still useful, especially if the alternative is that nothing can be found. As we have shown in 
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this paper, this method can be useful for discovering novel variants associated with 

disease, and thus it merits further study.  
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CONCLUSIONS  

Family data are believed to be one way to increase the presence of rare variants in the 

data set. But a large number of rare risk variants cannot be sampled in the family data. 

Even for existing rare risk variants, a large proportion of them are not passed on in the 

family. Many existing rare risk variants are seen in only one or two families, and the 

result from association is largely shaped by those families. To aggregate signals from 

different rare variants in different families, we integrated the collapsing method within 

the family data method. To our knowledge, this is the first attempt in the literature to do 

collapsing within family data. This combinational approach offers a promising power 

boost for certain causal genes and thus deserves further investigation.  
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Figure 5.1 - Distribution of rare causal SNPs within families 

 

 
 
In the GAW17 data set, 145 of 162 casual SNPs are rare variants. Of these 145 rare 
variants, 103 do not exist in the family data. Eighty-five percent of the existing rare 
variants exist in only one or two families. The number above each bar indicates the exact 
number of rare SNPs in this category. It partly explains why many rare variants cannot be 
discovered using family data.  
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Figure 5.2 - Distribution of association signals within families 

 

 
 
Each category indicates the number of families that report an association signal for each 
SNP. The number above each bar indicates the total number of rare causal SNPs in this 
category. The distribution of association signals matches well to the distribution of rare 
SNPs within families. It shows that when all families are analyzed together, the final 
result is largely shaped by only a few families.  
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Chapter 6: Conclusions and Future Directions 
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CONCLUSIONS 

The human genome has around 3 billion base pairs of DNA and stores most, if not all, the 

information needed to build up a human being from scratch. Our very existence − both 

physical existence and mental existence − is determined by the combinational effects of 

gene and environment. Human diseases, ranging from Alzheimer’s disease to Zadik 

Barak Levin syndrome, are no exceptions. Since the discovery of Mendel’s laws, one of 

the most challenging problems in genetic research is to find and characterize different 

genetic variants that contribute to various human diseases. In the past decade, the 

research community has made impressive progress. New technologies were introduced, 

numerous methods were proposed and a large number of disease-associated genes were 

found [6]. The work presented here has largely reflected the recent development of this 

field, and as a result this work presented several new methods to address current research 

challenges.   

 

One of the most important developments in the past 5 years is genotyping imputation [8]. 

Genotyping imputation allows researchers to evaluate the evidence for association at the 

genetic markers that are not directly-genotyped. It can improve power of individual scans 

and is particularly useful for combining results from different studies. However, there are 

two situations for which imputation has been problematic: (1) polymorphisms with low 

minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different 

platforms.  The imputation quality score that we introduced in Chapter 2 is sufficient to 

address these two issues. After filtering out poorly-imputed SNPs, we were able to 

remove thousands of false positives and obtain an acceptable Q-Q plot. We concluded 
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that IQS is particularly useful for SNPs with low minor allele frequency and when 

datasets are genotyped on different platforms.  

 

By using the same approach described in chapter 2, we discovered that CNVs with low 

minor allele frequency also have similar problems in the dataset of the CNV Discovery 

Project [113]. Our intent was to evaluate the relative performance of CNV calling in a 

genome wide scale despite the lack of experimental validation at individual CNV loci. 

The underlying rational is that whether a CNV that is called the first time can be 

confirmed the second time is restricted by both sensitivity and specificity. This kind of 

information in turn can give us some clues on sensitivity and specificity. By using the 

proposed method, we found that the positive predictive rate increases with the number of 

probes in the CNV and the size of the CNV. We also noticed that CNVs reported by 

multiple programs have a higher reproducibility rate and positive predicted rate.  Our 

method was intended to find an efficient way to evaluate CNV calling in a genome wide 

scale. The fact that CNVs that are reported by multiple programs have a higher reliability 

is not part of our method, but rather our observation. The exact reasons for our 

observation may need further investigation, but it may be due to the fact that real CNVs 

have a more distinguished pattern that is easier to be spotted by different programs.    

 

We applied our CNV methods to the Study of Addiction: Genetics and Environment [68]. 

Our analysis revealed that CNVs in 6q14.1 (P= 1.04 x10-6) and 5q13.2 (P= 3.37 x10 -4) 

are significantly associated with alcohol dependence after adjusting multiple tests.  The 

following qPCR experiments on these two CNV loci showed over a 97% agreement rate 
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for our CNV calls. The experimental validation not only confirmed the association signal 

for alcohol dependence, but also demonstrated the power and legitimacy of our methods.  

 

Interestingly, we also noticed the connection between alcohol dependence and 

personality. Among the five factors of the FFM dimensions, agreeableness (P=1.04 x10-

20), conscientiousness (P=3.93 x10-22), extraversion (P=1.15 x10-12) and neuroticism 

(P=6.95 x10-40) are all significantly associated with alcohol dependence. We also found 

an exceptional P value (P=4.8 x10-5) for conscientiousness in Chr5: 68,921,426 - 

70,412,247, but not for the other four factors. This observation drives us to hypothesize 

that Chr5: 68,921,426 - 70,412,247 increases the risk of alcohol dependence by lowering 

conscientiousness, or more specifically self-discipline. Because conscientiousness and 

alcohol dependence are associated, it is possible that this link can be contributed to 

confounding effects. We believed that this is not likely the case, because agreeableness, 

extraversion and neuroticism are all associated with the risk of alcohol dependence but 

none of them are linked to Chr5: 68,921,426 - 70,412,247.   

 

As the whole research community shifted its focus from common variants to rare variants 

[30], we also explored the possibility of applying our methods described in Chapter 2 & 3 

to rare variants. Particularly, we noticed that some of the issues that we intended to 

address in Chapter 2 & 3 arise from rare variants. We had evidence that our methods are 

applicable to rare variants as well. However, we also noticed that our methods cannot 

address one major problem of detecting rare variants – the lack of power. By taking 

advantage of the simulation data from the Genetic Analysis Workshop, we integrated 
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both the collapsing method and the family data method in an attempt to increase power.  

We concluded that our combinational approach offers a substantial power boost for 

certain causal genes that cannot be discovered otherwise.    

  

There are several highlights of the work presented here. The motivation for Chapter 2 and 

Chapter 3 was to address data quality of imputation and CNV calling. The data quality 

issues are more noticeable when the allele frequency of SNPs and CNVs becomes rarer. 

Chapter 5 confirmed the commonly-held belief that traditional study design does not have 

sufficient power to discover rare variants, and hence proposed a new method to increase 

power. As a result, the work presented here aimed to provide solutions to the issues 

regarding the currently-ongoing transition from common variant research to rare variant 

research.  

 

Many new methods are justifiable in mathematical theory, but may not be applicable in 

real data. The work presented here was also fortunate because it reaches beyond theory. 

The method and the Imputation Quality Score proposed in Chapter 2 were used in real 

SAGE data to assess imputation quality of some interesting SNPs, especially those at 

some target loci. The methods proposed in Chapter 3 were used to improve CNV calling 

in the alcohol dependence study and the BMI study. The results of connecting CNV calls 

and alcohol dependence by the method described in Chapter 3 were reported in detail in 

Chapter 4. Though at the current stage, we do not have enough sequencing data to test the 

method described in Chapter 5. But it is expected that the method we propose here will 

be applied to real sequencing data when it soon becomes available. In fact, several groups 
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in the Genetic Analysis Workshop showed great interest in this combinational approach 

or some similar methods.     

 

Another highlight of this work is that we had in silico and experimental validation for the 

methods described here. In Chapter 2, we used IQS to filter out poorly-imputed SNPs, 

and successfully removed many false positives. In Chapter 4, we did qPCR to validate 

CNVs that were called by the methods described in Chapter 3. We were able to confirm 

over 97% of CNV calls. The in silico and experimental validation showed the methods 

presented here are valid and can be very useful for future research.  
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FUTURE DIRECTIONS 

The work presented here has provided several solutions to the current research challenges, 

but it also has prompted a need to investigate further.   

 

As more and more genome wide association studies are completed, imputation will 

become more popular, and meta-analysis based on imputation may become a routine 

procedure. As a result, over-estimation of the quality of imputation due to chance 

agreement will be more common. Based on our method, a database can be constructed to 

document poorly-imputed SNPs and used to remove false positive associations. We 

envision this as a dynamic database to be updated when new datasets include subjects 

genotyped on multiple platforms. The future database will include, but will not be limited 

to, IQS scores for the following imputations: (1) from Affymetrix 6.0 to Illumina 1M, (2) 

from Illumina 1M to Affymetrix 6.0, (3) from Illumina 300K to Affymetrix 6.0 plus 

Illumina 1M, (4) from Illumina 550K to Affymetrix 6.0 plus Illumina 1M, and (5) from 

Affymetrix 5.0 to Affymetrix 6.0 plus Illumina 1M. We expected that this database can 

greatly help decrease the amount of false positive findings, making follow up of positive 

associations practical. In order to successfully build up and maintain a database proposed 

here, we anticipate a server with great computation capability and a team with good 

programming skills.  

 

The methods that we introduced in Chapter 3 are a short-cut to evaluate CNV calling 

accuracy in a large scale. We concluded that the positive predictive rate increases with 

number of probes and the size of CNVs and that CNVs reported by multiple programs 
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have a higher reliability. We believed that our general conclusion can hold true 

concerning other studies, but we also noticed some variations among different platforms. 

We expect that it will be more useful if we can provide a user-friendly program to 

different researchers so that they can evaluate the performance of CNV calling in the 

platform they have chosen.     

 

Our finding of genome-wide association between alcohol dependence and the CNVs at 

6q14.1 and 5q13.2 is encouraging.  These two regions were previously shown to be 

associated with neurological disorders. But like most genome wide association studies, 

replication in an independent dataset is necessary. Unfortunately, no datasets with both 

appropriate genotyping and alcohol dependence measures are currently available. We are 

looking forward to new studies that can be used to validate our findings.  

 

SAGE also includes a large number of addiction-related covariates. These covariates may 

be interesting to many researchers, for example, height, weight, BMI, the number of 

cigarettes and drinks per day, pre-term birth and age at menarche etc. It can be extremely 

rewarding to study the connection between these covariates and genetic variants. 

Particularly, we can further investigate the relationship between CNVs and these different 

traits by using the methods described in Chapter 3 & 4.   SAGE also has genotypes for 

African Americans. We expect that it will be equally rewarding to compare and contrast 

our findings between European Americans and African Americans [114].  
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We discussed our combinational approach to increase power for rare variants in Chapter 

5. But we also noticed that the power gain is obtained at the cost of power for some other 

genes.  Further study is required. Particularly, we expected an improved method that 

gives different weight to SNPs in the collapsing process based on SNP function. Several 

function prediction algorithms are available, for example, SIFT and PolyPhen-2 [110, 

111]. We believed that the use of prediction algorithms for function will be helpful. In 

conjunction with association testing, linkage can identify regions of interest. Sequencing 

may only need to target regions that are discovered by linkage. In addition, the selection 

of the most informative families may further reduce the total genotyping cost. The use of 

extremes of a phenotypic distribution may further provide additional information [112].  

Moreover, with the help of imputation, we may only need to do sequencing on a limited 

number of family members to obtain the whole genome sequencing data for all members 

of a family. All of these directions are promising and have the potential to make an 

impact in this field, but it takes time and effort to complete.   

 

The work presented here is in parallel with the current development of genetic research 

and provides a blueprint for the future. At the present stage, we still know little about 

human disease and human gene. Even though hundreds of genome-wide association 

studies turned up thousands of genetic variants, they did very little to predict disease risk 

[115].  More research still needs to be done in order to better appreciate the relationship 

between gene and disease. But since the human genome only has 3 billion base pairs of 

DNA, compared to other disciplines without known boundaries, we should feel fortunate, 

because in the end we are searching in a finite universe.  
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