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ABSTRACT OF THE THESIS

Low-Impact Profiling of Streaming,

Heterogeneous Applications

by

Joseph Marion Lancaster

Doctor of Philosophy in Computer Engineering

Washington University in St. Louis, 2011

Research Advisor: Roger D. Chamberlain

Computer engineers are continually faced with the task of translating improvements in

fabrication process technology (i.e., Moore’s Law) into architectures that allow computer

scientists to accelerate application performance. As feature-size continues to shrink, ar-

chitects of commodity processors are designing increasingly more cores on a chip. While

additional cores can operate independently with some tasks (e.g. the OS and user tasks),

many applications see little to no improvement from adding more processor cores alone.

For many applications, heterogeneous systems offer a path toward higher performance. Sig-

nificant performance and power gains have been realized by combining specialized processors

(e.g., Field-Programmable Gate Arrays, Graphics Processing Units) with general purpose

multi-core processors. Heterogeneous applications need to be programmed differently than

traditional software. One approach, stream processing, fits these systems particularly well

because of the segmented memories and explicit expression of parallelism. Unfortunately,

debugging and performance tools that support streaming, heterogeneous applications do

not exist.
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This dissertation presents TimeTrial, a performance measurement system that enables per-

formance optimization of streaming applications by profiling the application deployed on a

heterogeneous system. TimeTrial performs low-impact measurements by dedicating com-

puting resources to monitoring and by aggressively compressing performance traces into

statistical summaries guided by user specification of the performance queries of interest.
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Chapter 1

Introduction

In recent years, we have seen the emergence of a number of specialized computing tech-

nologies available for use in commodity platforms. Single-processor systems have yielded

the mainstream to homogeneous multi-core chips, and commodity computers with 64-cores

(using 4 sockets) are scheduled to be released soon. Graphics processing units (GPUs) from

both major manufacturers, Nvidia and AMD, now have reasonably mature language and

runtime support for general purpose computation, opening up vast amounts of computa-

tional resources to a programmer. Field-programmable gate arrays (FPGAs) have contin-

ued to increase in capability and are particularly useful for some applications. Important

problems have been accelerated by incorporating specialized architectures with multi-core

processors. Recently described examples include computational biology [32, 50], computa-

tional chemistry [116], and high-performance signal processing [110].

Computer systems can be constructed from a variety of computational resources, such

as the ones above, to form systems that have strengths in different application domains.

A system builder can then tailor the mix of technologies to best meet the needs of the

application domains of interest. These platforms enable a developer to exploit the strengths

of each individual architecture to create higher-performing applications when compared

to computer systems that use multi-core processors alone. We refer to computer systems

constructed using a variety of the above technologies as “heterogeneous computing systems”

or “heterogeneous systems” for short. Similarly, applications that are deployed on more than

one technology are dubbed “heterogeneous applications.”

Each of the above technologies has its own architecture, memory subsystem, language for

authoring applications, performance capabilities and limitations, algorithmic strengths and

weaknesses, and communities of proponents and detractors. The potential for higher per-

formance in a heterogeneous application can be challenging to realize. An interesting open

problem is how to effectively harness the power of such systems. Researchers currently rely

1



on ad hoc methods to build applications on such systems, and these methods lack many

staples of traditional computing platforms such as robust debugging and performance anal-

ysis tools. The combination of increased complexity from using multiple programming

paradigms and the lack of tools that support heterogeneous applications deployed onto

them leads to unacceptably long design cycles.

The success of future designs for large, complex heterogeneous systems is contingent on

improvements in developer tools. Tools that effectively measure the performance of an

application as it is running are essential for creating high-performance applications, and

tools that substantially degrade the performance of the applications they are monitoring

are of marginal benefit. Low-impact performance monitoring is needed.

The domain of this dissertation is performance analysis of streaming heterogeneous appli-

cations. The techniques developed are embodied in our performance measurement system,

TimeTrial, which enables an application developer to better understand the performance of

streaming heterogeneous applications. Providing relevant performance feedback was a pri-

mary goal in the design of TimeTrial so minimizing the impact on the measured application

was emphasized. TimeTrial constructs performance profiles by measuring the performance

of salient aspects of the application during runtime, summarizing the measurements into

statistics periodically during execution, and presenting the results to the developer in a

concise manner that directly correspond to metrics of interest.

1.1 Utility of Heterogeneous Computing Systems

Heterogeneous systems have been successful in accelerating applications in a wide vari-

ety of computing domains. As the name suggests, each heterogeneous system may be

constructed differently, choosing from a mix of accelerators such as traditional multi-core

processors, graphics processing units (GPUs), field-programmable gate arrays (FPGAs),

and custom heterogeneous integrated circuits (ASICs). FPGAs are a popular component in

many heterogeneous systems due to the high degree of parallelism available and flexibility

to reconfigure the architecture for each application.

With the stalling of clock rate increases for processor cores, the high performance comput-

ing community has relied more and more on parallelism to achieve performance increases

at the application level. This has recently expanded to the investigation of application

accelerators, or non-traditional computing components, as part of the solution to the need

for performance. Heterogeneous systems have received significant attention by the research
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community. The promise of reconfigurable logic is described in [36]. The use of graphics

engines is shown in [18], and both technologies are used together in [23] and [109].

Figure 1.1 shows an example of a heterogeneous system similar to the prototyping platform

used for the work in this dissertation. It is constructed using multi-core AMD Opterons,

an off-the-shelf graphics card connected via a PCIe bus, and an dual-chip FPGA card

connected via a PCI-X bus.

FPGA

CMP

corecore

HT

PCI-X

CMP

corecore

GPU

HT

PCIe

HT

DRAM DRAM

DRAM

DRAM
SRAM

Figure 1.1: Example of a heterogeneous computing system.

While Figure 1.1 illustrates a multiple chip design, system-on-chip designs share many

similarities, especially when considering the FPGA portion of the design. For instance,

many SoC designs utilize FPGAs to prototype circuits which will eventually become an

ASIC. Our techniques can be employed as part of the prototype implementation for a

system-on-chip design as well, enabling performance characterization on large data sets.

1.2 Programming Heterogeneous Computing Systems

Multi-core processors alone enable a coarse-grain approach to improving application perfor-

mance and the number of cores on a die is expected to increase proportionally with Moore’s

Law. While this trend helps with some tasks (e.g., the OS and user tasks can operate

more independently), many applications see little to no improvement from this architec-

tural trend since they were written with very little thread-level parallelism. It is likely that

future applications will be designed to take advantage of multiple cores, however, it is an

open research question as to whether a thread-based programming model is the best way

to program parallelism.
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Effectively utilizing heterogeneous systems to create a high-performance application is a

challenging task. Application designers must contend with multiple programming styles,

non-standard communication between resources, a high-dimensional design space, and a

lack of developer tools. These challenges significantly increase the complexity inherent in

the design of an heterogeneous system relative to that of a traditional multi-core platform.

As heterogeneous system designs become ever larger and more complex, the challenges

become ever more acute.

In order to ease the programmers’ burden, both the research community and industry

have been focusing on the design of concurrency platforms. A concurrency platform is

an abstraction layer that coordinates, schedules and manages resources, and provides an

interface for programmers to write parallel programs. A concurrency platform typically

supports one or more parallel programming paradigms and may consist of a compiler, a

runtime system, support tools (e.g., performance monitor), etc.

The streaming data computing paradigm, sometimes referred to as course-grained data-

flow computing, has been touted as a clear improvement over traditional thread-based

concurrency platforms and its associated locks, mutual exclusion, and race conditions [69].

While shared-memory programming is available for heterogeneous systems (e.g., see [4])

and message-passing has been implemented for some systems (e.g., see [3]), our focus is on

stream computing in this work.

An important class of applications that can exploit the capabilities of heterogeneous systems

can be expressed using a stream processing paradigm. Applications expressed in streaming

semantics fit these systems particularly well because of the segmented memories and explicit

expression of communication and both wide and deep parallelism. Generally, streaming ap-

plications can be thought of as coarse-grained dataflow computations in which computation

blocks, or kernels, are interconnected by arcs over which data is communicated.

An example application topology is illustrated in Figure 1.2. The output data stream from

block A is delivered as an input stream to block B, etc. Inside each block, data is consumed

from the input arc(s), some computation is performed, and the results are sent along the

outgoing arc(s).

In this paradigm, data to be processed are streamed into the computer system (typically

from a disk, network or sensor), a variety of pipelined and parallel computations are per-

formed on the data, and the results are streamed out of the system. Applications expressed

in streaming semantics fit heterogeneous systems particularly well because of the segmented

memories and explicit expression of both wide and deep parallelism. Wide parallelism refers
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Figure 1.2: Sample streaming application.

to data-parallel tasks, similar to the MIMD model of computation. Deep parallelism refers

to pipelining, either coarse or fine-grained. Examples of application domains that are easily

mapped to a streaming model are sensor-based signal processing, audio and video process-

ing, and many data-intensive scientific applications.

In most streaming languages (e.g., Brook [18], StreamIt [106]), the computation within the

blocks and their interconnections are all expressed in a common language. In the Auto-Pipe

environment [40], block computations are expressed in the native language of the computa-

tional resource(s) onto which the block is allocated. Examples of concurrency platforms that

support the streaming data paradigm include Auto-Pipe [23], Brook [18], StreamIt [106],

Wavescript [84], and Streamware [47] (see [101] for a survey of older streaming languages).

A more concrete streaming application is illustrated in Figure 1.3. This application performs

a Monte Carlo simulation that computes a numerical solution to Laplace’s equation. In this

application, pseudo-random numbers are are generated in the RNG block. The Split block

divides the random number stream into two data streams. The two streams are fed to the

two Walk blocks that each perform the Monte Carlo based solution to Laplace’s equation.

The results of these walks are then passed downstream to the Avg block which averages the

results. Finally, the Print block displays the results of the simulation.

RNG Split

Walk

Walk

Avg Print

Figure 1.3: An example streaming implementation of a Monte Carlo solution to Laplace’s
equation. Computation is performed within each block, communication is one-way along

edges.

Figure 1.4 shows an example of a signal-processing streaming application with three major

stages. In stage 1, a sensor (e.g., a gamma ray telescope [117]) produces data that is split up
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and sent to parallel processing pipelines in stage 2. Each pipeline performs some functions

on the data, which is merged in stage 3. Finally, the results are all compared and stored

to disk. Tyson et al. [110] describe the implementation of this application using FPGAs to

execute the computationally expensive stage 2 and multi-core processors for stages 1 and 3.

Figure 1.4: An example streaming application from computational astrophysics [110].
Computation is performed within each kernel, communication is one-way along edges.

There are several benefits to authoring applications using this approach [24]: (1) it is

possible to build a library of blocks that can be re-used; (2) the concurrency platform

provides for the data movement and associated synchronization; (3) the explicit knowledge

of algorithm decomposition available to the system supports flexible mapping of blocks to

compute resources; and (4) reasoning about the correctness of streaming data applications

is fairly straightforward (approximately on a par with sequential codes).

We have experienced success with a particular streaming environment, Auto-Pipe, and

language, X, that is tailored explicitly to these platforms [23, 25, 40]. Using X and Auto-

Pipe allows one to describe both wide and deep parallelism by coordinating dataflow at

the system level, while taking advantage of the efficiency that can be gained by authoring

segments of applications in the component’s native language.

1.3 Difficulties in Profiling Heterogeneous Applications

Authoring applications for heterogeneous systems is difficult for a number of reasons. First,

the various co-processors have their own unique languages (e.g., Verilog or VHDL for FP-

GAs, CUDA or OpenCL for GPUs) and development environments. Second, significant

developer effort is typically required to ensure that an algorithm deployed on a co-processor

actually does perform well. Third, the application must be decomposed into components

that execute across the heterogeneous platform. This requires a great deal of attention to

address both correctness and performance issues. Finally, the tools available to developers

are very limited at present. Speaking directly to the issue of FPGA co-processors, Under-

wood et al. [111] list 12 essential elements for acceptance in the high-performance computing
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community. Developer tools of various forms (specifically including performance analysis

tools) comprise two of their twelve elements.

Even basic performance information is challenging to obtain for heterogeneous applications

with current tools. Without a profiler for the FPGA, a question like “Which block is the

throughput limiter?” may be difficult to answer. Many designers result to manual instru-

mentation using ad hoc systems to get an answer to this specific question. For streaming

applications that just use multi-core processors, answering the above question about a

highly-concurrent application is also not straightforward to answer with current tools.

Obtaining peak performance from a heterogeneous system is essential to obtain an adequate

return on the increased effort needed to design such a system. Unfortunately, because

non-traditional architectures, particularly FPGAs, often offer limited visibility into the

executing application, designers are often left without even the most basic performance

information about these components of their designs. Traditional software tools such as

gprof [45], Valgrind [83], and TAU [98] tend to be of marginal benefit because they

are processor-centric and do not support meaningful metrics for architecturally diverse

platforms (e.g., CPU → FPGA communication). FPGAs do not offer native support for

performance assessment other than through simulation, which is too slow to be helpful

for complex designs that process lots of data. Functional debugging tools like Xilinx’s

ChipScope, Altera’s SignalTap, and Synopsys’s Identify can support limited performance

logging. However, the hardware designer must manually design in the evaluation logic for

each performance metric. Adding such logic is frequently an afterthought at best, resulting

in minimal performance visibility and brittle, error-prone solutions.

1.4 Research Questions

We address the following specific research questions in this dissertation:

1. How can the performance of a distributed, streaming application be measured? What

aspects of the application should be measured?

2. How can the performance of a streaming application that is distributed across FPGA

accelerators and processor cores be measured?

3. What data needs to be collected in order to answer the above questions? Can this data

be collected in a low-impact manner and still satisfactorily answer those questions?

What techniques should be used?
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4. How does one build a profile of resources that have little inherent visibility (e.g. system

I/O buses)?

5. How does one use the collected performance data to calibrate or validate performance

models?

We will return to these questions Chapter 8.

1.5 Summary of our Approach

Performance measurement is the act of tracking the performance of a computer system or

application during execution or simulation of one or more programs. A profile is a summary

of those measurements which is typically presented to a developer for use in tuning the

performance of an application.

A profile of a streaming data application is necessarily different than a profile of a sequen-

tial program (e.g., no universal program counter). Like profiles of parallel MPI programs,

streaming application profiles should indicate the performance-limiting sections of the ap-

plication in terms of both communication and computation (i.e., what is the performance

bottleneck). For example, referring back to Figure 1.3, a stream profile should include

answers to questions of the following type:

• At what rate is data moving across the link that connects the RNG block to the Split

block?

• What is the occupancy of the queues between each block?

• What portion of the pipeline is limiting the throughput bottleneck?

We provide a broad set of measurements and enable the developer to ask performance

questions directly. A simple, domain-specific language has been developed to provide stream

profiles tailored to specific developer queries of application performance.

We present a method of performance monitoring that enables precise performance charac-

terization and the flexibility to trade-off the frequency of reporting for higher precision per-

formance metrics. These methods are implemented in a new performance measurement tool,

TimeTrial, which enables wholesale collection of performance profiles of FPGA-accelerated
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streaming data applications. TimeTrial is a runtime performance monitor that supports

whole-application monitoring on heterogeneous systems comprised of processors and FP-

GAs while aggressively minimizing the impact that it has on the executing application.

With any runtime performance measurement system, there is a risk of interfering with the

application being measured. To mitigate this potential interference, TimeTrial monitors

applications by aggregating data online, supporting selective developer-directed profiles, and

dedicating computational resources to the runtime monitoring tasks. These practices enable

performance measurements over long executions and real-world data sets. In contrast,

simulation permits observation of execution on only small data sets, increasing the likelihood

that events of importance to performance will be missed or under-sampled.

This dissertation presents TimeTrial as incorporated with the Auto-Pipe [23] concurrency

platform. TimeTrial fills a gap in available tools for performance monitoring, enabling users

to profile their streaming data applications on a real heterogeneous platform.

1.6 Contributions

The following is a detailed list of my contributions:

• Developed techniques to measure heterogeneous streaming applications and designed

and implemented these techniques into a measurement system named TimeTrial.

– Enabled measurement of the performance of heterogeneous streaming applica-

tions, observing 100% of the execution time (not sampling) for both software and

FPGA portions of an application.

– Enabled wholesale communication profiling of complex streaming applications,

measuring the performance independent of the implementation language of a

kernel or block.

– Designed and implemented a monitoring agent for an FPGA, explicitly focusing

on low resource utilization, high clock frequency and minimal interference with

the application being measured.

– Designed and implemented a software performance monitoring agent which mon-

itors the software portions of the application and logs FPGA performance results.

– Designed a extensible domain-specific measurement specification language which

allows developers to articulate a wide variety of measurements and aggregations.
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Developer specification of what to measure and how to aggregate enables Time-

Trial to discard the traces while still retaining the desired measurement.

– Designed several lossy compression techniques that still capture important per-

formance events while reducing communication overhead by several orders of

magnitude.

– Designed techniques to monitor and provide performance profiles of communica-

tion paths that cross the CPU to FPGA or FPGA to CPU boundary, referred

to here as “virtual queues”.

• Evaluated the effects of the measurement process on the performance of the applica-

tion being measured.

• Integrated TimeTrial into the Auto-Pipe system to enable automated compiler-based

instrumentation of heterogeneous applications deployed on traditional processors and

FPGAs.

• We developed techniques and demonstrated these techniques to calibrate and validate

performance models.

• We used TimeTrial to measure and tune the performance of several streaming appli-

cations.

– We profiled the performance of a parallel implementation of a Laplace equation

solver.

– We debugged the performance of several iterations of a heterogeneous applica-

tion, Mercury BLASTN, using TimeTrial.

– We used TimeTrial to measure the overhead of deadlock avoidance algorithms

implemented in Mercury BLASTN.

1.7 Outline

We now introduce the organization of the rest of the dissertation. Chapter 2 gives an

overview of the information necessary to understand the motivation and direction of the

work followed by descriptions of research relevant to the work in this dissertation. Chapter 3

describes the approach taken to enable performance measurements of streaming applica-

tions and techniques used to enable an optimized implementation. Chapter 4 describes

the overall architecture of TimeTrial and how it was implemented and integrated into the
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Auto-Pipe system. Chapter 5 details our strategy to provide visibility into opaque system

buses, followed by the evaluation of this strategy for a PCI-X bus. Chapter 6 explores

the use of TimeTrial to measure real streaming applications and presents the results and

impact of those measurements. Chapter 7 describes our approach to using TimeTrial to

support performance modeling. Finally, Chapter 8 summarizes the results presented in this

dissertation and describes potential extensions of this work.
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Chapter 2

Background and Related Work

In this chapter we introduce the background material that is useful for understanding the

techniques and terminology employed in this dissertation. This is followed by a description

of related work in the field.

2.1 Profiling Application Performance

Application profiling is the act of determining the aspects of an application that negatively

impact the execution time or limit the throughput. Profiling has long been utilized to

identify “hot” regions of a software application so that developers can appropriately focus

their efforts on optimizing them. Profiling is critical to the understanding of many complex

sequential applications, and is even more important when concurrent processing is used.

The term “profiler” is general and can refer to a variety of techniques to collect performance

data. One can classify profilers into tools that simulate the instruction set to varying de-

grees of fidelity or those that monitor execution on deployed hardware. Instruction set

simulation offers the most potential for detail and accuracy by trading off execution speed.

Profiling through simulation is popular with computer architects to determine the benefits

or drawbacks of particular architectural features on a set of benchmark applications. Un-

fortunately, it is not uncommon for instruction set simulations to be more than 10, 000×
slower than native execution. A more common case for application development is the use

of a runtime profiler to collect data by using hardware performance counters provided on a

particular platform.

One challenge when building a runtime profiling system lies in gathering raw data, another

with efficiently storing or summarizing this data while the program is executing. A runtime

profiler that provides a trace of execution must deal with large volumes of performance
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meta-data that needs to be stored with minimal impact. The resulting trace can then

be used to drive a simulation. Typically these traces are compressed out of necessity due

to the size of reasonable datasets. An ideal trace compression technique is lossless (i.e.

does not lose information in the compression process), has a high compression ratio, and is

easily decompressed for simulation [78]. The particular compression technique used depends

on the type of information that is collected. There is a large body of trace compression

techniques covered in the literature and a concise summary is presented in [78].

Runtime profilers may add instrumentation to the binary to count the execution frequencies

of subroutines, loops, or even blocks of code. These counts provide a statistical summary (i.e.

“lossy compression”) of the application performance. The profiling techniques employed in

TimeTrial fall in to this category. In addition, sampling may be used to lower the overhead of

monitoring and the resulting impact on the application. For sequential code, edge profiling

is a useful way to show a graph of the frequency of subroutine calls within a program. These

techniques are employed in e.g. gprof [45]. Edge profiling can identify which subroutines

are most frequently called but does not show the context from which that routine was

called. Context is useful to determine the executed control flow of a program if dynamic

program behavior causes an edge to be traversed from multiple sources. Extending edge

profiling, Ball-Larus path profiling keeps track of each unique sequence of subroutine calls,

counting the frequency that each acyclic, intraprocedural path executes [10]. Path profiling

typically incurs a larger overhead (e.g. ranging from 31% on average for SPEC95 but as

high as 97% for gcc) than edge profiling (e.g. 16% on average for SPEC95) but provides

more specific information to the developer. Path and edge profiling have been extended

to lower the overheads significantly by combining both instrumentation and sampling to

provide efficient profiles of programs, reducing runtime impact to approximately 1.2% with

94% edge profile accuracy [16]. These techniques provide useful insight into single-threaded

programs, however, they do not support multi-threaded programs.

The techniques used to profile parallel programs depends on the paradigm used to express

parallelism. For the threaded model on a single machine, instrumenting compilers with

support for specific languages and threading libraries can support profiling of threaded

programs. The TAU Performance System [98] provides a compiler for limited automated

monitoring of multi-threaded applications implemented in C++. In addition, TAU supports

a measurement API that allows the developer to add more detailed measurements through

manual instrumentation.

Larger-scale applications where threads in contexts in different nodes communicate using

message passing libraries (e.g. MPI) need yet another set of techniques and tools. A popular
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approach is to use the above techniques to profile within a particular node in an MPI system.

This can be augmented with MPI communication profiling techniques to locate the source

of bottlenecks, whether they be compute or communication limited [11, 87].

2.2 Stream Processing

We begin with a brief history to introduce the context of the stream processing approach

we utilize in this dissertation much of which is given in more detail in [101]. Conceptually,

stream processing has a long history, spanning at least five decades. The earliest reference

to the term stream that the author knows of is attributed to P. J. Landin created during

the development of operation semantics as part of his work on the relationship between

ALGOL 60 and λ-calculus [20]. This was a very different use of the the word stream than is

generally used today, referring to models of histories of loop variables. Next came the term

“dataflow systems” in the late 1960s, referring to “data flow analysis” [2] used to evaluate

the potential amount of concurrency inherent in computations. Afterwords in 1974, the

first dataflow language, Lucid, was developed [114]. In the same year, G. Khan published

his famous paper describing what is now known as Kahn Process Networks (KPNs) [60].

While not completely general, programs written as KPNs have formally provable properties

regarding termination, non-termination, and composability.

The next big advance in stream processing came with the development of synchronous

dataflow [68]. Synchronous dataflow was developed to directly answer some of the drawbacks

of KPNs, mainly anomalous behavior under certain conditions and propensity to deadlock.

By restricting the behavior of a block to a set of well-defined input/output relationships,

deadlock can be avoided and scheduling can be optimized. Unfortunately, this constraint

is fairly restrictive for large, important classes of applications (e.g. stochastic filters).

In this dissertation, we refer to stream processing applications as streaming applications.

We use a less strict semantic model of stream applications than synchronous dataflow.

Stream applications are course-grained dataflow computations that orchestrate communi-

cation between asynchronous, atomic computation units called blocks. These blocks are

interconnected unidirectionally over edges, the only mechanism over which data is commu-

nicated. This is a generalization of the restrictions of synchronous dataflow above to allow

any design unit within a block, even if the relationship of output to input is unknown. An

example of an application topology is illustrated in Figure 2.1. Block A is a data source,

the output data stream from block A is delivered as an input stream to block B, etc.
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Figure 2.1: Sample application dataflow graph.

In most modern streaming languages (e.g., Brook [18], StreamIt [106]), the computation

within the blocks and the interconnections of the blocks are all expressed in a common

language. In the Auto-Pipe environment [23, 40], block computations are expressed in a

language suited to the computational resource(s) onto which the block may be allocated. For

example, blocks that may be allocated to traditional processor cores are coded in C/C++

while blocks that may be allocated to FPGAs are coded in VHDL or Verilog. The inter-

connections between blocks are expressed in a domain-specific language (DSL), X, which is

independent of the block expression language(s) [40]. We refer to such languages as coor-

dination languages. Another example is the S-Net language and runtime environment [90].

Separating the computation from communication is generally desirable but rarely achieved

in many programming paradigms. Using a coordination language forces the designer to

adhere to this paradigm and explicitly separates processing from communication which we

believe to be beneficial especially for heterogeneous computing systems.

Streaming applications are well-suited to execution on heterogeneous architectures, in part

because heterogeneous systems frequently have distributed memory infrastructures, and the

explicit expression of required data movement inherent in streaming languages enables the

memory to be effectively utilized.

2.3 The X Coordination Language

A coordination language is distinct from a traditional programming language in the sense

that one does not express the entirety of the application within the coordination language.

A coordination language is used to express the interactions between computing elements,

but not the internal computations within those computing elements. A simple example

application is shown in Figure 2.2. Here, a sensor of some form provides a stream of data

that is filtered, accumulated, and written to a file.

The X language specification for the example application is given in Figure 2.3. In the

terminology of X, the computational kernels are called blocks. The data into and out of
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Sensor LPF Accumulate WriteFile

a b c

Stream

Figure 2.2: Example DSP streaming application.

each block is specified in X, but the functionality of the block itself is not. There can be one

or more implementations of each block, each expressed in a different language, targeting a

distinct type of computational resources. For example, a C/C++ implementation would

target a processor core while a VHDL implementation would target reconfigurable logic.

block Sensor {

output unsigned16 y; // port declaration

}

block LPF {

input unsigned16 x; // port declarations

output unsigned16 y;

}

block Accumulate {

input unsigned16 x; // port declarations

output unsigned32 y;

}

block WriteFile {

input unsigned32 x; // port declaration

config string filename;

}

(a) Sensor, low-pass filter (LPF), Accumulate, and WriteFile block definitions. On all
blocks, the input port is named x and the output port is named y.

block Stream {

Sensor acquire; // block declarations

LPF filter;

Accumulate total;

WriteFile report (filename="out.txt");

a: acquire -> filter; // topology

b: filter -> total;

c: total -> report;

}

(b) Application topology for Stream. As part of topology specification, edges are given
labels a, b, and c.

Figure 2.3: X language specification for example application Stream. Note that block
definitions only specify I/O and configuration, not function.
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At the lowest level within X, the typed input and output ports of each block are specified.

Blocks can then be composed into higher level blocks, which form the complete application.

Also specified (but not shown in the figures) are: (1) the implementations that are available

for each lowest level block, (2) the set of computation and communications resources used

for application deployment, and (3) the desired mapping of blocks to resources. It is this

separation between the application topology specification in a coordination language and

the block function specification in other languages, point (1) above, that defines what it

means to be a coordination language.

The benefits of separating the overall application into a coordination of lower-level compo-

nents include the following:

• Re-use of code blocks. With a clear distinction between the language that specifies

what individual blocks do and how they are composed, there is a greater tendency

for the application developer to think first in terms of using blocks that already exist,

rather than building new blocks. To be effective, this does require the existence of a

rich block library, but once that library exists, the language separation will promote

its use.

• Data movement is handled by the system, not the application developer. There are

two benefits that accrue from the system handling the data movement. First, the

application developer need not actually author the code required for data movement

(e.g., DMA engines and the like). With less code to write, the application developer’s

time is saved. Second, there are fewer errors introduced since the application developer

is working at a higher abstraction level.

• The application decomposition is known to the system. This facilitates the system

being capable of parallel execution while being cognizant of the required data depen-

dencies. It also facilitates the system specifying the mapping of compute kernels to

computational resources.

• The application is less error-prone. Memory races don’t exist. Locks are unnecessary.

Reasoning about the correctness of a pipelined application is very similar to reasoning

about a sequential application.

Prior to actual deployment on the heterogeneous system, the X-Sim federated simulation

tool [42], which is part of the Auto-Pipe environment, provides a simulation model of

the streaming application as mapped to the various devices in the heterogeneous system.

Figure 2.4 shows the timestamp trace files collected by X-Sim for the simple application
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in Figure 2.1. At an out-bound arc departing a device, the times that data elements are

available are recorded in the file labeled Tout. Associated with in-bound arcs are timestamp

files that record the time data elements are available, Tavl, and the time data elements are

consumed, Tin.
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Figure 2.4: Data traces collected with X-Sim[42].

X-Sim can be used to verify both functional correctness and performance characteristics

of the application by examining the trace files created as part of the simulation execution.

Essentially, the simulator provides complete observability into the communication arcs of

the streaming application. (Note that while the example illustration only shows traces

being created for inter-device communication, there are mechanisms available for tracing

interior arcs as well [42].) Once the application developer is happy with what can be

learned from simulation, the task moves to actual deployment, executing the streaming

application directly on the heterogeneous system. In the Auto-Pipe system, the developer

specifies which application blocks are to be mapped to which devices in the heterogeneous

system, and Auto-Pipe provides the appropriate communications infrastructure to effect

the necessary data movement. In the example above, data from a processor core to the

FPGA was moved across the PCI-X bus. Data delivery between two processor cores uses

the native shared memory, data to/from the graphics engine uses PCIe, etc.

While the Auto-Pipe system ensures the data is delivered correctly, it is not uncommon

for an actual deployment to have performance characteristics that differ in some way from

the simulation model. This might be due to lack of complete fidelity in the models of the

computing devices, the interconnection networks, or possibly their interactions. Whatever

the reason, to support the developer’s understanding of the actual performance realized

on the deployed system, observability of runtime, dynamic performance characteristics is

beneficial.

An ideal performance monitoring system would provide traces of the entire execution with

full coverage of the application, similar to the trace files produced by X-Sim. However, these

traces would be generated not by models of the system but by observing the application’s

runtime behavior through instrumentation. A significant challenge to developing such a

system is how to generate and extract the trace data without perturbing the execution to
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the point that the trace results are not representative of the original application. While in

some cases full instrumentation may be feasible, the volume of data required and overhead to

collect such data to monitor most interesting applications is prohibitive. Instead, this work

focuses on extracting just enough information from an application running on a deployed

system such that the user gets similar benefit to having the full trace.

2.4 Heterogeneous Computing Systems

We define an heterogeneous computing system as a set of heterogeneous computing com-

ponents connected together to create a larger computational resource, typically (but not

necessarily) packaged within a single enclosure. Heterogeneous systems are frequently used

in high-performance embedded computing (HPEC) applications (e.g., medical instrumen-

tation, military signal processing) where there are often stringent size, weight, or power

constraints on the system. Also, as is common with traditional general-purpose processors,

large collections of heterogeneous “nodes” can be networked together to form a cluster,

thereby obtaining significant advantages in the high-performance computing (HPC) arena.

For many compute-intensive applications, a heterogeneous system can perform significantly

faster than a cluster of similar size that is constructed exclusively with general-purpose

processors. Another approach to utilizing heterogeneous computing systems is to reduce

the size of the cluster required to compute a given task, thereby reaping the benefits of

greatly reduced power and maintainability obligations. Recent large-scale HPC clusters

have demonstrated a trend towards heterogeneous computing systems as with Roadrun-

ner1, which is a Cell and Opteron based heterogeneous architecture. We will now survey

the types of computing components used in heterogeneous systems.

Today, it is fairly straightforward to physically construct a heterogeneous system. Figure 2.5

shows an example of a heterogeneous system constructed using dual-core AMD Opterons,

an off-the-shelf graphics card connected to HyperTransport (HT) via a PCIe bus, and an

FPGA card connected via a PCI-X bus. Note that while the DRAM memory on the

processors is generally accessible by all of the GPP cores, the memories associated with the

GPU and the FPGA are segregated (both from the main memory and each other).

1See http://www-03.ibm.com/press/us/en/pressrelease/20210.wss.
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Figure 2.5: Example heterogeneous system that reflects the type we utilize in this
dissertation. Two chip multiprocessors (CMP) are interconnected with a HyperTransport

(HT) link. Additional HT links are used to connect to an FPGA through a PCI-X bus
and a graphics processing unit (GPU) via a PCIe bus.

2.4.1 Traditional Architectures

Homogeneous multi-core processors are still the most common computing components used

in both the HPEC and HPC worlds, and virtually all heterogeneous systems still maintain

a healthy quantity as computing components. For a given generation of these processors,

improved performance is provided via coarse-grained parallelism, and massively parallel

HPC clusters have been constructed consisting of network-connected collections of single-

processor nodes. As symmetric multiprocessor (SMP) systems became available, cluster

nodes were expanded to include additional processors (scaling up until the local intercon-

nect, typically a bus, was saturated). From one generation to the next, clock frequency

increases and the resulting per processor performance gains had a dramatic impact sustain-

ing this general approach to achieving high performance. Rather than invest in alternative

architectural approaches, one could realize dramatic computational capacity increases sim-

ply by buying and installing the latest generation of GPPs. Recently, performance gains

due to increased ILP and clock frequency have diminished and architects are exploring al-

ternate paths to increased performance. Figure 2.6 shows the clock frequency trends of

recent Intel Xeon server processors. After consistent significant increases in clock frequency

for several years, the current trend is clearly toward larger numbers of on-chip processors,

each running at similar (or even lower) clock rates.
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Figure 2.6: Operating frequencies of Intel Xeon processors and Xilinx Virtex series FPGAs
over time. FPGA performance is for a 16-bit addition on the Virtex through Virtex-5.

HPC clusters still take similar forms today. With the arrival of homogeneous chip multipro-

cessors (CMPs), the core density within an SMP node is rapidly increasing. While GPPs

offer many advantages in terms of flexibility and programmability, increases in per-core

performance are dwindling while power requirements are soaring. The trend is therefore

toward more cores on a chip, typically running at a slower clock frequency than single core

processors.

While considerable research has been undertaken [12, 13, 26, 27, 54, 55, 61, 75, 97, 112, 119]

into how best to construct these chips (e.g., determining an appropriate cache organization)

as well as program these chips (current practice is to view them as similar to SMP systems

and use memory-based synchronization), there is no clear consensus yet as to appropriate

solutions to these issues. The issues are complicated further by the advent of heterogeneous

CMPs (e.g., the Cell). Here, not only does one have to re-address the scheduling problem

due to the heterogeneous nature of the chip, but in addition the memory model for the

different processors within the chip is distinct.
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2.4.2 Specialized Computing Architectures

When the performance of multi-core processors is not sufficient, further performance gains

must come from alternative approaches. Special-purpose hardware is becoming an increas-

ingly popular alternative to algorithm acceleration. By exploiting the parallelism available

in algorithms, computer scientists have realized several fold speed-ups over general-purpose

processors.

Reconfigurable logic, in the form of field-programmable gate arrays (FPGAs), is popular as a

computing component. Historically relegated to the task of providing simple “glue logic” in

custom hardware designs, FPGAs have recently enjoyed tremendous growth in capacity to

the point that entire applications can effectively deployed on them. Manufacturers are also

tailoring FPGAs to the needs of different application areas, including optional embedded

processor cores, multiply-accumulate units, specialized I/O functionality, etc. FPGAs can

achieve better performance than that of a GPP by exploiting the fine-grained parallelism

present in an application to a large degree. To exploit this parallelism, an FPGA provides a

large quantity of configurable logic with which calculations can be performed. By controlling

this logic precisely, many calculations can be performed concurrently. In addition, FPGAs

have extremely large amounts of on-chip memory bandwidth available to support the data

needs inherent to this degree of parallelism. Carefully architecting an FPGA circuit can lead

to a large speedup over a GPP in many non-trivial applications [1, 8, 9, 28, 48, 49, 59, 70, 95,

108, 115, 121]. El-Ghazawi et al. [36] recently published a comprehensive discussion of the

applicability of FPGAs to high-performance computing applications. Even though FPGAs

tend to run at much lower clock frequencies than GPPs, the clock frequency gap between

the two is actually decreasing for the first time as modern GPPs scale back clock frequency

in favor of more cores on a chip (see Figure 2.6). Unfortunately, not all applications are

suitable for deployment to an FPGA. FPGAs generally run at lower clock speeds than GPPs,

do not have native support for floating point units, rely on board designers to incorporate

external components (external I/O, memory), and require significantly larger design cycles

than that of software. In spite of these drawbacks, FPGAs are increasingly being used to

accelerate computations in performance critical applications.

Graphics processing units (GPUs) are also a recent addition to the general computing

component toolbox [18, 38, 41, 44, 52, 88]. Both major GPU manufacturers have provided

the ability to utilize at least a subset of the processing elements for computations other

than graphics applications. Most recently, there has been a move toward a unified stream

processor architecture [86], greatly increasing their worth as a general computation resource.
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Offering many programmable units running in parallel at high speeds, GPUs are well suited

for deployment of data-parallel, floating-point applications.

Digital signal processors (DSPs) have long been, and still remain, the most popular choice

for many signal processing applications. DSPs operate much like GPPs with the notable

exception that their ISA and resulting micro-architecture have been carefully tailored to

perform tasks in the signal processing domain (e.g., multiply-accumulate instructions, par-

allel address register computations).

Application specific instruction-set processors (ASIPs) are also a candidate for heteroge-

neous system deployment. Commercial examples of these systems, such as the PhysX from

NVIDIA (implemented on a GPU), custom instruction-set processors from Tensilica [104],

and the floating-point processor from ClearSpeed [29], promise performance and power

benefits if the application can effectively exploit their capabilities.

2.4.3 The Viability of Heterogeneous Systems

There are a number of heterogeneous systems in existence, both in the research community

and commercially available. The simplest to construct machines are based upon commer-

cially available motherboards containing GPPs that are then expanded with one or more

heterogeneous computing components. Several manufacturers make FPGA boards, includ-

ing I/O bus-based boards from Annapolis Microsystems [7] and Nallatech [81]; and Hyper-

Transport boards from XtremeData [120]. Nallatech and XtremeData have both recently

announced boards that will connect via the Intel front side bus. GPUs are traditionally

connected via PCIe slots on the motherboard. The ASIP from ClearSpeed can also attach

via an I/O bus.

To avoid the limitations of standard motherboards, a number of companies have built het-

erogeneous systems that include higher performance interconnects between the computing

components. Examples here include the SGI Altix line [96] (which uses their proprietary

NUMAlink interconnect); a whole family of machines from Mercury [77] (which support

GPPs, FPGAs, DSPs, Cells, etc.); and SRC systems [99]. Of these companies, SGI is fo-

cused more toward the HPC community while more of Mercury’s and SRC’s business is in

the HPEC community.

Unfortunately, heterogeneous computing systems are not without drawbacks. Developing

and deploying an application on a heterogeneous system is more challenging than traditional

GPP clusters due to the heterogeneous nature of the system. Considerable research has
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already been devoted to this task for GPP/FPGA systems [6, 14, 46, 63, 93, 103, 105]. The

model of the computer taken when developing applications for GPP systems is often resource

agnostic. Many applications are developed with a mostly unrestricted view of memory,

which creates problems porting code to components with restricted available memory. The

interconnect between the GPP and the non-traditional component(s) may be high latency

or low bandwidth, which may cause bottlenecks not present on a homogeneous cluster

of traditional processors. The number of computational units sharing an interconnect is

greatly increased in some cases, which can also lead to link saturation. Finally, some

computing components, such as FPGAs, require more explicit description of the fine- and

coarse-grain parallelism. All of these issues transform a complex development task into

a formidable Gordian knot of deployment. Understanding the runtime performance of a

deployed application is an important component of the unraveling of this knot.

2.5 Related Work

In this section, we describe work that is related to TimeTrial.

2.5.1 Performance Profiling and Monitoring

Profiling tools are used to measure the performance of a computer application or system

based on the time it takes execute certain tasks. They can help detect performance bot-

tlenecks such as cache misses, pipeline stalls and measure other performance metrics in a

software system. There are a large number of tools available for profiling software systems,

a few that profile FPGA-based systems, and even fewer that profile applications deployed

on both hardware and software.

Existing software profilers offer a wide variety of techniques to collect performance data of

code running on a target processor and support different programming languages. Multiple

strategies can be used to collect a diverse set of performance measurements as well as

different techniques to invoke them during runtime. Since there is a wide set of tools

available, we utilize the classification system proposed by Tong et al. [107].

Profilers can be broken down into software-based, hardware-counter based, and FPGA-

based tools. Software-based profiling tools are the most common, measuring performance

either through binary instrumentation or simulation. Hardware-counter based profiling

tools utilize special counters that are exposed on modern processors. FPGA-based profilers

24



measure the performance of an application running on an FPGA, where that application

can range from a soft-core microprocessor to an arbitrary FPGA design. We now describe

some important profiling tools and how they relate to TimeTrial.

Software-Based Profilers

The most detailed profiles usually result from executing an application in an instruction set

simulator. The trace of the simulation events can then be used to analyze the performance

over time. The SimpleScalar tool set is one such tool which simulates application binaries

executing on the SimpleScalar computer architecture [21]. An advantage of using simulation

is that the designer has access to the entire set of data flow down to the microarchitecture

registers and cache behavior. This level of detail is helpful for creating highly-optimized

code without impacting the performance. Simulation is extremely slow compared to native

execution or other profiling methods which makes profiling long-running programs time

consuming. Simulation can lead to inaccurate profiling when the model of the architecture

does not match reality, which is often the case when a simpler architecture model is used

to get a faster simulation time.

GNU’s gprof is a profiling tool that is used to profile C and C++ application code. gprof

focuses on logging function execution time and frequency. The result can be presented as

a flat profile or a call graph. A flat profile is a report that shows the execution time of the

application broken down by the time spent in each function along with the number of times

each function was called. The call graph is an edge profile described above that displays

each function in the program, its parent function (i.e. the function that called it) and its

children (i.e. the functions it calls). Instrumentation is added by calling the GNU compiler

with appropriate flags. The instrumentation records execution times of each function by

sampling the program counter periodically. The program counter determines which function

the program was in when it was sampled the statistics are then updated. Sampling is a

common technique used in software-based profilers to help reduce the run-time impact on

the program being monitored. Regardless, this can lead to reduced accuracy in the resulting

measurements.

Another approach to software profiling is memory profiling. Memory profiling focuses on

detecting memory leaks, cache misses and memory allocation frequency per function. Prob-

ably the most well-known tool that uses this technique is Valgrind [83]. Valgrind can check

function calls for read and writes to memory as well as for allocating and freeing memory

for certain memory allocation methods (e.g. C++ new and delete). A major advantage
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of Valgrind over tools such as gprof is the ability to determine cache behavior, showing

cache hits and misses for each portion of the program being monitored. The cache profile

is determined by simulating a virtual processor and the accuracy of the results depends on

how well the virtual processor models the real processor. For large programs, this technique

impacts the measured program significantly.

Hardware-Counter Based Software Profilers

Hardware-counter based software profilers utilize the performance counters exposed on mod-

ern microprocessors to measure performance. These hardware counters can be configured

to measure specific performance events such as memory accesses, cache misses or spills,

pipeline stalls, etc. Profiling in this manner requires very little instrumentation in the

source code since the counters are dedicated to collecting this information. To access the

values in these counters, the developer must issue specific machine instructions to the pro-

cessor. Since most developers do not wish to operate at this level, nor do they want to

change the source code for each type of microprocessor, a popular approach is to use the

Performance Advanced Programming Interface (PAPI) [17]. PAPI provides high-level ac-

cess to these counters that is accessed in a common way regardless of which microprocessor

the applications is executed on. A commercial example from Intel is VTune which works on

Pentium-based processors [56]. Other tools, such as TAU [98] can reduce the overhead of

profiling by throttling and instrumenting a subset of functions. Manual instrumentation can

also be used to measure custom performance events selectively during execution with low

overhead. These results can be very accurate but require a developer to manually modify

the source.

TimeTrial shares techniques with both software-based profilers and hardware-counter based

profilers. However, none of the above tools natively support streaming programs. For the

software portions of a heterogeneous application, TimeTrial provides the capability to pro-

file the stream communication between blocks. The measurements are then summarized,

according to the user’s specification, during runtime. In this way, communication bottle-

necks can be located by inspecting aggressively summarized profiles. TimeTrial uses the

hardware performance counters to determine time between events, where the events are

software-based.
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FPGA-Based Profilers

While commercial CAD tools such as Synopsys Identify and Xilinx ChipScope and Altera

SignalTap do provide visibility into FPGA designs, they are focused primarily on the de-

bugging task (providing detailed views near a trigger event) rather than determining the

overall performance properties of an application. Performance monitoring, in contrast to

functional debugging, focuses less on individual occurrences of events and more on collect-

ing and aggregating information to characterize the performance of an application on a

particular system.

In [64], Koehler et al. discuss a pair of trade-offs associated with performance monitoring

in reconfigurable systems. First, they describe the inherent trade off between impact and

fidelity, and second, they also describe the trade off between adaptability and convenience.

The impact vs. fidelity trade off positions a monitor in the space between trying to minimize

the perturbation of the system being monitored and trying to maximize the total amount of

performance data being collected. The adaptability vs. convenience trade off describes the

ability of the user to observe a desired signal relative to the ease of use of the monitoring

system as a whole.

Koehler et al. then continue with a description of a system they have constructed for mon-

itoring of FPGA-based applications authored in VHDL. While both systems allow the user

to adjust the fidelity of the data collection (and thereby implicitly adjust the potential im-

pact), we compare TimeTrial with theirs by contrasting the approach each system has taken

with respect to the second trade off, adaptability vs. convenience. The system described

in [64] can monitor arbitrary interior details within an FPGA design. It instruments the

design at the language level, and allows for monitoring (either via profiling or tracing) of

any signals, variables, or component ports available in the HDL source files. Our system,

on the other hand, constrains itself to the data streams between blocks in a streaming pro-

gramming paradigm. As such, it is language-agnostic and does not require near the detailed

setup as their system. In short, their system aims for greater adaptability at the expense

of convenience, while our system aims for convenience at the expense of adaptability.

The system of Koehler et al. has recently been extended by Curreri et al. [31] to support

FPGA designs that have been specified in high-level languages (e.g., Impulse C) rather than

hardware description languages such as VHDL. Earlier work by DeVille et al.[33] explored

the design of hardware probes for performance monitoring purposes in FPGA-deployed

applications.

27



A performance profiler has also been developed for the FPGA-based TMD machine devel-

oped at the Univ. of Toronto [85]. This profiler focuses on logging both MPI communication

calls as well as user-defined computation states. It is designed explicitly to profile MPI-style

communication and computation, sampling events to reduce trace size. TimeTrial instead

uses online metric computation to reduce performance meta-data volume.

Other FPGA monitors restrict measurement to soft-core processors. Shannon developed a

performance profiler, SnoopP, to measure applications executing on a soft-core processor

deployed on an FPGA. Using a MicroBlaze processor, the program counter is monitored and

segment counters are loaded with ranges of PC values. For each cycle, the code segment

counter is updated if the PC is within its range giving a cycle-accurate function profile.

Hough et al. [53] provide a statistics module that counts performance events when the PC

is in particular code regions of applications executing on an instrumented Leon 2 soft core.

Performance events may observe taps into the processor architecture, measuring statistics

that are not available to software.

Another approach is to provide a framework to monitor communication between processing

cores by providing a standardized on-chip interconnect with instrumentation. Schumacher

et al. do this within their system, the IMORC [94] framework, which consists of intercon-

nects implemented as FIFOs or buses. In addition to bit-width conversion, IMORC also

adds a set of simple performance counters for profiling communication. These counters

are restricted to ‘full’ and ‘empty’ events on a FIFO which are periodically summed in a

monitoring core. This is the most similar to the technique that TimeTrial uses in that

is monitoring communication between cores. However, TimeTrial is more flexible in the

range of measurements supported and uses the standard FPGA bus to communicate results

between the FPGAs and the associated processors.

Analyzing and understanding the performance of a heterogeneous, streaming application

requires a different approach than current tools use. Traditional software tools have no

knowledge of accelerators. FPGA-based tools have no support for software. At best, tools

such as gprof or Valgrind might be able to pinpoint the bottleneck to the accelerator by log-

ging many samples of the software function that sends data to a particular accelerator board.

There is a need for a performance tool with the capability to profile applications with sup-

port for accelerators. TimeTrial accomplishes this by monitoring focused, application-level

events, aggressively reducing traces to aggregate performance events online and providing

agents to monitor each accelerator platform.

28



2.5.2 Trace Compression

Trace compression is widely used in software simulations to reduce the data set size for

quantifying evaluation of new architectural ideas and design prototypes. Compression is

necessary to deal with large event streams resulting from both simulation and runtime

monitoring. Consequently, much effort has been put into improving the methods for effective

trace compression [79]. Simulations tend toward lossless compression techniques which do

not lose any information in the compression process. Lossless compression techniques for

runtime profilers tend to be highly impacting, clobbering the performance of the application

being measured. Runtime profilers tend to employ “lossy” compression, summarizing the

event stream by aggregating events into a set performance metrics. The software-based

and hardware-counter based tools discussed above do precisely this, each tool focusing on

particular aspects of the system and aggregating events into counts and time. The meaning

of these counts depends on the tool and how it was configured.

None of these approaches adequately support streaming as a concurrency platform. As

a result, the compression techniques used provide metrics of little interest for streaming

programs. TimeTrial employs lossy compression; however, the types of measurements sup-

ported and its compression techniques result in metrics that directly support streaming

semantics. Note that lossless compression could be added to TimeTrial but it would not

have as low of an overhead and impact that lossy compression offers.

2.5.3 Performance Debugging Languages

TimeTrial provides a simple domain-specific language (DSL) to provide a framework for

the developer to specify where, what and how to profile the communication of a streaming

application. Performance related DSLs are helpful to reduce impact and overhead by em-

powering the developer with the capability of defining the scope and type of measurements.

Relevant DSLs fall into two categories: query languages and constraint languages. The

TimeTrial language supports both querying of the performance as well as verifying that

constraints are met. Here we cover the relationship to other DSLs that deal with specifying

some aspects of application performance.

Vetter et al. describe a performance assertion language for code segments written in C++ [113].

A function is called right before the segment of code to be instrumented. This function call

has the assertion expression as a parameter to the call. The end function is similarly inserted

at the end of the code segment to be measured. The expression is then evaluated at the end
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of the measured segment and an error is thrown if it fails. The language supports a number

of useful variables such as the number of instructions, cycles, and architecture-dependent

constants such as peak IPC.

A user-driven query language, Metric Description Language (MDL), is presented by Hollingsworth

et al. [51]. MDL is part of the Paradyn Parallel Performance Tools for performance debug-

ging of HPC systems [80]. The purpose of this language is to specify what data to collect

about a running program in an platform-independent manner. It also provides a method to

constrain performance collection to particular resources such as objects, procedures, nodes

or files. MDL provides two basic performance constructs: instances of counters and timers.

Custom metrics can be defined to compute an online metric of choice. While MDL does

help take some of the book keeping off the burden of the program, high-level analysis such

as inter-process communication can not be measured.

SelfTalk, a performance query language for measurement of multi-tier systems is described

by Ghanbari et al. [43]. SelfTalk is designed to allow a developer to express their under-

standing of what the performance should be at a high level. SelfTalk takes performance

expectations in the form of performance hypotheses. The parameters for these hypotheses

can be derived from manual measurements or models and contexts can be defined using

qualifiers. SelfTalk is mostly useful for validating performance after detailed modeling or

measurements have been made. SelfTalk hypothesis statements are a more general (and

complex) form of the TimeTrial language assert statements.

Another language used to specify measurements is from the CoSMoS performance moni-

toring system [100]. Measurements are specified similar to a function call in C++ but are

tagged with a special leading character for the instrumentation system to recognize them

when parsing. The language itself is not described formally; measurements are meant to be

specified using the CoSMoS source code browser GUI. This approach is less general than

the previous two in that it is designed for instrumenting single lines of code with counters.
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Chapter 3

Profiling the Performance of

Streaming Applications

In this chapter we begin by describing our approach to building profiles of streaming ap-

plications. Next we discuss our strategy to reduce the volume of raw measurement data

needed to build such a profile. We then describe framing, our strategy for capturing pro-

files through time. Finally, the TimeTrial measurement language is given, its capabilities

are described, and examples of its use are given. Note that here we limit our description

to the design of TimeTrial’s approach, functions and capabilities. The architecture and

implementation details are described in Chapter 4.

3.1 Profiling a Streaming Application

A profile of a streaming data application is somewhat different than a profile of a sequen-

tial program. Like profiles of parallel MPI programs, streaming application profiles should

indicate the performance-limiting sections of the application in terms of both communica-

tion and computation (i.e., what is the performance bottleneck). Furthermore, measuring

a reasonable global view of a distributed application’s performance is not straightforward.

Distributed applications do not typically share storage, nor is there a universal program

counter that accurately reflects the state of the application. For example, given the appli-

cation in Figure 3.1, a stream profile should answer questions of the type:

• At what rate is data moving across the link that connects “Convert” to “FFT”?

• How long does it take data to travel through stage 2?

• What is the utilization of the “FFT” kernel? The “Measure” kernel?
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• What is the occupancy of the queues between each block?

• What fraction of the time is back-pressure being asserted from stage 3 to stage 2?

• What portion of the pipeline is limiting the achievable throughput?

• If that bottleneck were resolved, what would be the next bottleneck?

Figure 3.1: An example streaming application from computational astrophysics [110].
Computation is performed within each kernel, communication is one-way along edges.

An effective profile provides useful summaries of performance metrics. A performance metric

is a measurement of a system used as a quantitative criterion for judging perturbations of

an application. The most widely used metric is execution time of a program. By comparing

the execution time of an instance of a program, the effects various optimization efforts can

be quantified. Execution time is a useful metric to determine changes in runtime; however,

it gives little insight into why the program is performing that way.

A common technique when debugging application performance issues is to locate the sections

of the program that are contributing negatively to the overall performance. For parallel

streaming programs, a developer is likely interested in metrics that enable her to narrow

down the bottleneck to a block or edge. Then, the cause of this performance can further

investigated. We provide performance metrics in TimeTrial that help with the first step:

locating the bottleneck block or edge. Metrics that are helpful with this task include

throughput of an edge, utilization of an edge or block, or latency from one block to another.

3.2 Online Aggregation of Performance Events

Complete performance profiles of streaming data applications would provide a full trace of

timestamps for every event in the entire program, regardless of the computational resource,

over the entire execution of the program. An event could be either data-movement from one

block to another or aspects of execution within a stream block. This trace could then be

used to analyze the execution and compute any metric the user desires offline. Practically,

full trace collection is infeasible for most real-world applications.
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One approach to gathering a profile is employed in X-Sim [42], a federated simulation en-

vironment associated with the Auto-Pipe system, targeted toward streaming applications.

X-Sim logs traces for heterogeneous applications by limiting the scope of collection to com-

munication events. The result of X-Sim logging is a sequence of data transfer timestamps

for each edge. This approach allows for lower overhead than full trace collection while

providing the necessary information to debug both functional and performance aspects of

the program, deployed across processor cores and FPGAs. While an improvement over full

trace collection, X-Sim style simulations are most useful for monitoring short executions

since it still executes much slower than native execution.

TimeTrial’s approach is to calculate performance metrics along side the execution of the

program, aggressively reducing the storage and communication requirements compared to

trace collection. The performance metrics supported are chosen to be both informative,

low-impact, and for their ability to be calculated on both FPGAs and processors. Per-

formance metrics are generated by monitoring performance events in the application and

updating the values online. TimeTrial requires that there be available unused resources on

each computational resource to implement the measurements. The computational resources

used to implement the TimeTrial monitoring agents are dedicated resources (i.e., resources

not shared with the application). On an FPGA, this is accomplished by allocating area

for a monitor. In software, one or more processor cores are dedicated for monitoring. An

advantage of using metrics that can be reduced to a small set of values is that the com-

munication of these metrics off the FPGA for storage can use the same I/O paths as the

application with minimal impact on the throughput. Sharing the I/O path allows TimeTrial

to be easily ported to future heterogeneous systems.

3.3 Framing: Measuring Performance Through Time

Runtime monitors aim to measure performance during execution of the program. In an

ideal scenario, the monitoring system should log timestamps and state information for ev-

ery event, like full simulations systems offer but operating at native application speed.

Additionally, this information should come at no overhead or interference cost to the ap-

plication being monitored. Achieving this ideal is impossible on most real systems as the

bandwidth and storage constraints are limiting factors. Our solution to this issue is data

aggregation.

Aggregating performance measurements all the way down to a single result for the entire

run may not be optimal for applications with long execution times. This runs the risk of
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“averaging out” deviant performance situations (good or bad) that might be of interest to

the user. Note, however, that as heterogeneous applications push the performance envelope

of a system, it is increasingly more important to be able to correlate application performance

with application behavior. Being overly aggressive with aggregations limits the developers

ability to observe this cause and effect to find the root cause of a performance anomaly.

Hence, an effective performance measurement system needs to have the ability to throw

away a multiplicity of information while capturing application-dependent aspects which

have high value for performance debugging.

To enable the user to control this trade off, TimeTrial automatically breaks up the execu-

tion into non-overlapping segments called frames, then computes and stores the requested

metrics over each frame. We support two types of frames: time frames and data frames. If

time frames are requested, TimeTrial will measure for the given time period and report a

result. For example, assume that the developer is interested in the mean ingest rate of a

block and the application under test executes for 1000 seconds. If he or she chooses a frame

period of 100 seconds, TimeTrial will report 10 mean rates measured on that run. In the

second mode, the user can specify the size of data frames in data elements (or bytes) instead

of time. Data frames are useful for measuring variability in applications where performance

is dependent on the content of the data, allowing for a dynamic frame period.

Statistics are initialized each time a new frame is encountered and the results are reported

at the end of a frame. In this way, the system provides an ordered set of frames, each

containing its measured performance metrics, from which he/she can reason about the

behavior of the application. The cardinality of the set is determined by the frame size.

The set of frames, or a subset of frames, can optionally be further aggregated to provide

performance information about the entire run if the user so desires.

In TimeTrial, setting the frame size smaller than the execution time will split the execution

into more than one non-overlapping segment retaining 100% coverage of the run. In an

ideal environment (without resource constraints), the user could specify a frame size of one

datum, since this provides the most information about the execution of the application.

Realistically, the frame size should be chosen to provide a sampling frequency that exceeds

the Nyquist frequency of the signal of interest in order to capture high-frequency or rare

performance events. Note that in many cases, even this basic condition may not be feasible.

Choosing too low a frame size may have a large impact with the execution of the application

itself. Collecting performance information in frames aggregates only the data within the

frame instead of the data over the entire run.
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Figure 3.2 shows an example execution with different frame periods. Choosing the frame

period enables the developer to explicitly control how much time resolution remains in

the aggregated performance meta-data versus the overhead TimeTrial will incur making

measurements. A large frame period will be low overhead but likely to ‘average-out’ any

rare performance events. In this example, a mean rate of 30 MB/s is recorded. Successively

smaller frame sizes reveal that there are portions of the execution that perform well and

other portions that perform poorly. This might be cause to investigate the circumstances

around the poorly executing region(s). Note that reducing the frame period results in a

larger number of frames that must be handled by TimeTrial and logged to disk. Setting the

frame period based on event count (instead of time) is helpful for correlating data-dependent

performance events as they flow through the application.

Figure 3.2: Illustration of measuring with varying frame periods. Each frame results in
one aggregated metric.

Even small time or data periods will yield some benefit over storing raw traces. Consider

an execution where the developer simply wants to know the occupancy of a FIFO presented

as a histogram. A trace-based approach would record a stream of enqueue and dequeue

events over the run and post-process them into a histogram. Let’s assume that there were

109 elements that flowed through the FIFO, and that each time stamp could be stored in

four bytes. Computing the histogram offline would require eight gigabytes of performance

meta-data to be communicated and stored for post-processing. Computing the same metric

online using 512 bins with eight bytes for the count in each bin requires only 4096 bytes of

storage. Note that this is the case for a frame period equal to the entire execution time.

Each additional frame adds another 4096 byte storage requirement for our system.

3.4 The TimeTrial Performance Query Language

TimeTrial implements performance profiling by first analyzing the X language source code

for performance query expressions and then instrumenting the resulting binaries with mea-

surement code to collect runtime statistics. These performance query expressions, in the
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form of TimeTrial statements, are designed to be user friendly (i.e., straightforward in their

meaning) while enabling the compiler to automatically implement low-impact, full-execution

runtime instrumentation.

In order to minimize the measurement impact, TimeTrial selectively profiles only the por-

tions of the application that the developer is interested in. TimeTrial constrains its view of

the application to the communication edges as a way to provide a simple mechanism for rea-

soning about performance and staying agnostic to the underlying implementation language

used to build blocks. Targeting communication allows TimeTrial to identify bottlenecks at

the block level. That is, TimeTrial is designed to efficiently identify one or more blocks that

are performance-limiting during a run. The developer can then focus on optimizing those

blocks and then re-execute the application.

To introduce the TimeTrial language, we begin with two example performance queries of

the application of Figure 3.3, “What is the throughput of edge a?” and “How long does each

datum spend in edge b?” These queries can be stated as measurements in the TimeTrial

language as:

m1: measure rate at Stream.a

m2: measure mean latency at Stream.b

The first performance expression begins with a label, m1 followed by the keyword measure.

The keyword rate specifies the type of measurement, followed by at and the edge Stream.a,

the target of the measurement. The second performance expression, m2, again uses the

keyword measure. rate and occupancy specify the “metric type,” which tells the compiler

which performance metric to implement. Following the at keyword is the “edge label,” the

target communication edge to observe. The second statement has the optional “aggregation

function” hist which tells the compiler the type of statistical aggregation to perform on

the trace data during runtime. In this case, hist implements a histogram function on the

data, resulting in a histogram of queue occupancy for that edge. Figure 3.3 depicts the

logical insertion of these measurements into the application Stream.

The target of a measurement is restricted to an edge, as defined in the streaming application

language. Each edge declares the location(s) within the application that the performance

expressions observe.

Currently, the TimeTrial language supports these metric types (units are given in paren-

thesis):
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Figure 3.3: Stream application instrumented with measurements m1 and m2. Dotted lines
and blocks represent the performance monitoring instrumentation.

• rate: The throughput at which data elements are transiting an edge queue. (transfers

per second)

• util: The utilization of a communication edge (a normalized rate). (fraction)

• backpressure: The amount of time spent blocking on an insertion into a queue.

(fraction)

• latency: The amount of time a data element spends in a queue. (time)

• occupancy: The number of elements in a queue. (count)

• value: The value of the data elements inserted in a queue. This is enables func-

tional stream debugging when combined with the trace aggregation function. (varies,

depending on target edge data type)

The aggregation function is important to the efficiency of the TimeTrial system since it

specifies the degree of data compression that is to be performed. Instead of the tradi-

tional method of generating a trace for each event on a target and aggregating data offline,

TimeTrial compiles the aggregation function into runtime code that compresses (in a lossy

manner) the event stream it is observing. This is effective since performance monitoring,

when contrasted with functional debugging, is generally much more concerned with ag-

gregated metrics as opposed to individual element values. Since the developer is able to

specify the precise metric and the mechanism to summarize that metric, the compiler can

implement highly optimized, low-impact monitoring.

The following aggregation functions are supported on metric types:

• min, max: minimum, maximum of metric values

• mean: arithmetic mean of metric values
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• hist: histogram of metric values

• sum: sum of metric values

• trace: a log of each metric value

The aggregation function combined with the metric type and target completely specify

where the compiler needs to place instrumentation into the system.

The TimeTrial language is intended to augment streaming languages with the ability to

articulate performance statements about the application at the level of block interactions,

regardless of which computations resource is targeted (e.g. FPGA vs. CPU). Understanding

the performance at the block level is useful for locating bottlenecks to particular blocks,

or a set of blocks, in a streaming application. By not attempting to query internal to a

block, TimeTrial can stay agnostic with respect to what language is used to specify the

functionality within a block. It can stay focused on the block interfaces and interactions.

Performance measurements operate on a multiplicity of events on taps and aggregate these

into one or more statistical measures per execution. As each segment flows across a tap

on a streaming application, the performance is summarized within that frame. TimeTrial

allows the developer to choose the frame size at runtime to suit.

Some of these measurements have only one logical value per data frame (e.g., rate, utiliza-

tion), whereas others are multi-valued during the frame (e.g., occupancy, value). Hence, the

aggregation performed can depend on both the type of measurement and the developer’s

desire for detail.

In addition to performance measurements, the TimeTrial language also provides a construct

for specifying performance assertions through the assert statement. Assert statements let

a developer specify high-level performance requirements of the application, such as, “The

throughput of edge a should always be at least 100 mega-transfers per second.” Assertions

are useful for designs that are nearing the final stage of development to ensure performance

hypotheses are not broken on a wide variety of data sets execute within the performance

specifications. Writing this example in TimeTrial looks like:

a1: assert m1 >= 100 Mtps

Thus far, we have introduced the use of two TimeTrial performance expressions, measure

and assert. These expressions form the basis for TimeTrial language statements. However,
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the TimeTrial language provides the ability to articulate more powerful expressions as well.

Here we introduce the notion of conditionals and Boolean expressions followed by their use

within the context of measure and assert expressions.

A conditional in TimeTrial is used to express a propositional logic predicate. Conditionals

are specified as a measurement, a relational operator (e.g. >, <=), a value, and a units

specification or another measurement. This should look familiar, since we used a conditional

(albeit a simple one) when writing the assert a1. The conditional is everything that follows

the keyword assert. The units can be chosen from a list of time units (s, ms, us, ns)

or rate units (tps, ktps, Mtps, Gtps), which represent data transfers per second. Unit

specification is optional and appropriate default units are inferred from the measurement

type (e.g., time for a latency measurement, unit-less for a utilization measurement). Note

that in the case of a measurement type that returns a Boolean value (e.g. backpressure),

the relational operator and what follows is omitted.

Conditionals are evaluated for each instance under which the underlying measurement can

hold a distinct value. As such, if a data aggregation is specified the conditional is only

evaluated once per data frame. The default aggregation for a conditional is trace aggregation

(i.e., the conditional is evaluated for each instance).

Complex Boolean logic expressions can be formed. These Boolean expressions are formed

by combining any number of conditionals with and, or, and not (&, |, !) operators. The

simplest Boolean expression is a single conditional statement, as in a1. Boolean expressions

are used to qualify an assert statement, or are used to restrict the scope of a measure

statement by using the when keyword. The when keyword is added to the end of a measure-

ment statement to specify that a measurement statistics are to be collected only when the

Boolean expression evaluates to true.

To illustrate the expressiveness of Boolean expressions, we provide two example TimeTrial

performance statements shown below that utilize Boolean expressions to qualify the scope

of the statement.

m3: measure mean occupancy at Stream.b

m4: measure m1 when (m3 >= 1 & !backpressure at acc_out)

a2: assert (m1 < m4) | (util at acc_in < 0.5)
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The measure statement m4 above directs TimeTrial to measure the throughput into total

when there is data available in its input queue and no backpressure from it output. This

enables the developer to measure the achievable throughput of total (i.e., when it is not

hindered by its environment). The assertion instructs the compiler to test whether the

unqualified rate measure m1 is lower than m4 or whether the utilization of total is fairly

low (below 0.5). If both of these expressions are false, the assertion fails. Expressions such

as these allow for articulation of very specific performance statements that enable reasoning

about the performance of an application in different contexts.

Currently, the TimeTrial compiler can generate software and hardware instrumentation for

measure statements without Boolean expressions. All of the above statistic types and mea-

sure types described above can be automatically generated as well. Some assert statements

are supported by checking them offline as a post-processing step.

The decision to develop a new domain-specific language is not a something that should

be done without extensive analysis. For TimeTrial, the decision was made because of my

desire to enable a developer to direct performance analysis in the most straightforward way

possible with high correlation to the application under test. The set of features available

in the TimeTrial language were targeted to support a wide variety of performance queries

while gently steering the user toward light weight measurements. As heterogeneous systems

continue to evolve, new measurements and statistics can easily be added to TimeTrial

by adding the corresponding keywords to the language grammar and implementing the

resulting statements in the TimeTrial compiler.

3.4.1 Formal Language Definition

Here we articulate the formal grammar of the TimeTrial language. The language grammar

is described in Extended Backus Naur Form (EBNF) [118]. To be clear, here are notes on

the EBNF syntax we use. Figure 3.4 gives the formal syntax of TimeTrial.

• A symbol on the left-hand side of ::= is defined by its substitution on the right.

• Symbols in boldface are non-terminal symbols, and begin with upper-case.

• Symbols in plainface and those found in single-quotes (‘’) are terminal symbols.

• The pipe character (|) delineates substitution choices.

• Parenthesis (()) group a set of symbols into one logical symbol.
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PerfStmts ::= (AssertStmt | MeasureStmt)+

AssertStmt ::= [Identifier:] assert BooleanExp

MeasureStmt ::= [Identifier:] measure [StatType] MeasureType at TargetType
[when BooleanExp]

BooleanExp ::= !BooleanExp | Conditional & BooleanExp |

Conditional ‘|’ BooleanExp | Conditional

Conditional ::= CondOperand [RelOp CondOperand]

CondOperand ::= MeasureType at TargetType | Number [Unit]

StatType ::= (min | max | mean | sum | hist | trace) [‘(’ParamList‘)’]

MeasureType ::= rate | util | occupancy | latency | backpressure | value

RelOp ::= > | >= | < | <= | == | !=

Unit ::= s | ms | us | ns | tps | ktps | Mtps | Gtps

TargetType ::= PortLabel | EdgeLabel

Figure 3.4: EBNF for TimeTrial. Non-terminals that are not explicitly defined in the
grammar either come from the target streaming language (e.g., PortLabel and

EdgeLabel are identifiers of ports and edges, respectively) or follow common usage (e.g.,
Number, Identifier and ParamList). While not explicitly included above, parentheses

are also supported in Boolean expressions for the purpose of describing operator
precedence.
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• Square brackets ([]) group a set of optional symbols into one logical symbol.

• An asterisk (*) follows a symbol that may be replicated zero or more times.

• A plus sign (+) follows a symbol that may be replicated one or more times.

• White space is ignored.

3.4.2 Examples of Use

We now illustrate the language by expressing the questions we posed above as TimeTrial

language statements. These questions are of the type we want a good profile of a streaming

application to be able to answer. The questions are repeated, equivalent TimeTrial language

statements given and discussed where explanation is required.

• At what rate is data moving across the link that connects “Convert” to “FFT”?

measure rate at Convert.out -> FFT.in

• How long does it take data to travel through stage 2?

Currently the TimeTrial language does not support this measurement directly. Once

support for specifying a path through the application has been added, the following

could express this query:

measure mean latency at <Path Spec>

• What is the utilization of the “FFT” kernel? The “Measure” kernel?

measure util at FFT.in

measure util at Measure.in

• What is the occupancy of the queues between each block?

measure hist occupancy at ReadEvent.out -> Split.in

measure hist occupancy at Split.out =< Convert.in

measure hist occupancy at Convert.out -> FFI.in

etc.

• What fraction of the time is back-pressure being asserted from stage 3 to stage 2?
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measure mean backpressure at Measure.in

• What portion of the pipeline is limiting the achievable throughput?

This query requires profiling edges from the end of the application back towards the

front until the bottleneck is found. The most straightforward way to express this is

by asking for queue occupancies.

measure hist occupancy at CalcMoment.out -> StoreResult.in

measure hist occupancy at Merge.out -> CalcMoment.in

measure hist occupancy at Measure.out => Merge.in

etc.

• If that bottleneck were resolved, what would be the next bottleneck? In some situa-

tions, it might be clear where the next bottleneck will lie. This could be the case if

the occupancies of two queues in tandem were both high. Resolving one would likely

throw the bottleneck onto the other. In other situations the next bottleneck might

not be easily determined. Utilization measurements are a lightweight way to get some

insight into the remaining capacity of the links:

measure util of Measure.in

measure util of IFFT.in

measure util of Deconvolve.in

The TimeTrial language was designed to be a simple way to query the performance of

an application and as the above examples show, the statements lend toward performance

questions a developer would like to ask about an application. The details of how the compiler

interprets the language and implements the measurements are described in Section 4.5.

3.5 Chapter Summary

In this chapter, we described the design approach used in TimeTrial to measure the perfor-

mance of a streaming application. We articulated the appropriate types of measurements

we feel are useful to a developer. We then introduced the TimeTrial query language as

the interface for a developer to choose what portions of the to application to profile. The

chapter concluded with example performance queries stated in our query language.
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Chapter 4

Architecture and Implementation

of TimeTrial

This chapter begins with an overview of the design goals when implementing TimeTrial and

is followed by a description of the architecture of the TimeTrial measurement system. The

instrumenting compiler is then described as integrated with the Auto-Pipe development

environment and the X language. The chapter concludes with descriptions of the runtime

measurement agents along with an evaluation of the limits of their performance.

4.1 Overview

TimeTrial was designed to expose performance characteristics at the level of block inter-

actions; that is, it treats blocks as black box objects and instruments their ports and the

communication links between them. While many streaming languages (e.g., Brook [18],

StreamIt [106]) express block functionality in the same language as the application topol-

ogy, it is frequently advantageous to distinguish between block implementation languages

(chosen to be appropriate for the target computational resource) and the coordination lan-

guage that expresses the application’s streaming topology (e.g., X/Auto-Pipe [40]). By

focusing on the application topology rather than block internals, the TimeTrial compiler is

able to automatically instrument the communication edges as they are deployed. This pro-

vides a mechanism for TimeTrial to instrument the application at a reasonable level of detail

without needing support for a large menu of languages. Note that, focusing on monitoring

the edges connecting blocks does not preclude the use of TimeTrial for intra-block measure-

ments. Monitoring can occur within a block if the block developer sends the information to

be monitored to an (potentially newly created) output port just for measurement.
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TimeTrial measures the performance of a streaming application by implementing directives

from the developer specified in the TimeTrial language that are combined with the speci-

fication of the topology and mapping. These performance directives specify the what and

where of the measurements. TimeTrial then analyzes these directives and instruments the

application to collect runtime performance measurements. This approach has the advan-

tage of very high specificity, measuring only the behaviors that interest the developer. Also,

knowing up front what is important to the developer exposes more opportunities to optimize

the runtime instrumentation for minimal perturbation of the application.

The TimeTrial system is made up of three major parts: the TimeTrial language, instrument-

ing compiler, and the measurement agents. Statements in the TimeTrial language instruct

the compiler “what and where” to measure, the compiler instruments the streaming appli-

cation (including processor cores and FPGAs, if necessary) with measurement taps, and

the agents collect runtime statistics, logging them to disk.

One major challenge when monitoring FPGAs is that the memory capacity available to

hold performance meta-data is more constrained than in software. Additionally, the com-

munication link(s) between the accelerator(s) and CPUs might already be saturated by the

application. Simply logging event traces in available memory leads to unacceptable inter-

ference due to the overhead of communicating these traces off the accelerator. To mitigate

these effects, TimeTrial performs aggressive data reduction operations, chosen based on

the developer’s desired measurements. TimeTrial uses developer input to target exactly

the portions of the application of interest (e.g. potential hot spots), regardless of what

computational resource that portion executes on, in a minimally invasive manner. Here we

describe TimeTrial in the context of heterogeneous nodes comprised of multi-core CPUs

and FPGAs.

Consider the following generic streaming application, a tandem pipeline shown in Figure 4.1.

The blocks in the application are labeled “A” through “E”. The X code fragment that

describes this simple topology is below.

A -> B -> C -> D -> E;

Blocks denoted with a circle have been mapped to a processor core, and blocks denoted

with a square have been mapped to an FPGA. Associated with each edge is a queue, which

buffers data generated by the upstream block for the downstream block. These queues, and

the associated runtime infrastructure that performs the data movement between blocks,

are the responsibility of Auto-Pipe. For example, from block A to block B Auto-Pipe will

45



C D
application

blocks

mapping
proc.

core

proc.

core

proc.

core
FPGA FPGA

A B E

Figure 4.1: Example application topology (A → B → C → D → E) and its mapping to
processor cores and FPGA.

instantiate a shared-memory buffer, while from block B to block C Auto-Pipe will invoke

the appropriate low-level mechanisms (DMA engine, kernel buffers, etc.) to move data from

software to the FPGA hardware.

On each computational resource, a TimeTrial agent is deployed that monitors the portions

of the application deployed on that resource. The TimeTrial compiler inserts taps into the

communication segments to be monitored, and event streams are sent to the agent local to

that resource to aggregate the results during the run. The FPGA agent sends its aggregated

data to the software agent, which is responsible for combining results from the software taps

as well as the FPGA monitor.

Figure 4.2 shows TimeTrial instrumenting the streaming application of Figure 4.1, portions

of which are deployed in software and other portions on an FPGA. For each accelerator, a

TimeTrial monitoring agent is added to the application to collect and communicate perfor-

mance meta-data to the TimeTrial server thread. Taps are inserted into the communication

links, which contain FIFOs. When data flows in and out of a link, and event occurs on the

respective tap and the event is processed by the FPGA performance monitor agent. In Fig-

ure 4.2, note the multiplexer that supports the sharing of the link from the FPGA between

application data and performance meta-data. The use of aggressive data reduction within

the FPGA performance monitor agent helps mitigate the impact of this resource sharing.

The performance meta-data from the FPGA agent is communicated to the software perfor-

mance monitor periodically during the execution at frame boundaries. In software, similar

instrumentation is inserted in the form of software taps that send data events to the soft-

ware agent. On a multi-core processor, the software agent is implemented as a separate

process that gets schedule to an un- or under-utilized core. Software events are combined

with other agent’s results to perform further aggregation of the performance data.
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Figure 4.2: Example application from Figure 4.1 deployed on an heterogeneous platform
comprised of processor cores and an FPGA. The dotted lines and boxes illustrate the

runtime instrumentation of the application via TimeTrial.

4.2 TimeTrial Compiler

The TimeTrial compiler analyzes measure statements to determine where to insert taps

on the queues which make up the edges between blocks of the streaming application. The

compiler is capable of instrumenting three types of edges: edges contained entirely in soft-

ware, edges contained entirely on an FPGA, and edges from an FPGA to software or from

software to an FPGA. To facilitate data collection and aggregation, the compiler generates

code to send the information gathered from the taps to the software TimeTrial agent.

For edges between software blocks, the compiler generates code to tap the edges and send

the necessary signals to the software TimeTrial agent. To allow communication between the

software process running the block and the agent, the compiler inserts initialization code

that opens a communication channel to the agent and sends the agent start up messages

to inform it which metrics to track and the data aggregation function to use. Depending

on the metric type, the compiler will instrument the enqueue signal, the dequeue signal,

the full signal, and/or the value enqueued. For example, to measure the rate of an edge,

the enqueue event is tapped. Since the compiler emits C++ code to instantiate the blocks,

the tap takes the form of a function call immediately before the monitored operation. This

function call sends a message containing the type of event and a time stamp to the software

TimeTrial agent.

Software blocks are often mapped to separate processes. The queues for edges between these

processes are implemented using shared memory or network sockets. For some metric types,

only one of the processes need communicate with the software TimeTrial agent. However,

for metrics such as queue occupancy, where both the enqueue and dequeue signals are

required, both processes must communicate with the agent. Thus, the software TimeTrial
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agent is contained in a separate process and the Auto-Pipe processes communicate with the

agent using shared memory queues.

The compiler instruments queues contained on an FPGA using the FPGA TimeTrial agent.

To use the FPGA TimeTrial agent, the TimeTrial compiler generates VHDL code which

instantiates the agent and taps the necessary queue signals. The compiler then generates

code for the C++ process that controls the FPGA device to communicate the aggregated

statistics from the FPGA TimeTrial agent to the software agent.

Data delivery between the software subsystem and the FPGA subsystem deserves additional

explanation. In Figure 4.2, the communication between application blocks B and C is shown

to include a software FIFO, the physical link to the FPGA, and a second FIFO on the FPGA.

Note that there are taps at the beginning of the path (in software) and at the end of the

path (on the FPGA), but no instrumentation between these two paths. As is often the case,

the low-level DMA engines, etc., that deliver the data across the physical link are opaque

and inaccessible for monitoring. We address this issue by considering the entire path to be a

virtual queue. Similarly, a virtual queue is present in the application edge connecting block

D to block E, this time from the FPGA to software. TimeTrial’s approach to monitoring

virtual queues is described in Chapter 5.

4.3 Architecture of the FPGA Agent

The TimeTrial compiler instantiates an FPGA agent on each FPGA device where mea-

surements are to be taken. Figure 4.3 shows an overview of the architecture of the FPGA

agent. The operation of the monitor is controlled by a set of commands under processor

control. Commands trigger operations such as resetting the monitor, enabling and disabling

individual tap monitors, setting the reporting frame period, and triggering an additional

report from one or more tap monitors.

FPGAs only have a small amount (∼1-2 MBytes) of on-chip memory, making it impracti-

cal to save full traces of monitor meta-data. Traces could be stored if external memory is

dedicated to monitoring, but such memory is not available for all FPGA boards and appli-

cations. To mitigate this constraint, runtime data aggregation is used to reduce the volume

of meta-data. TimeTrial instruments the design with runtime logic that monitors a set of

locations in the application and computes a reduction function on the values. The interme-

diate results for each run are then stored in limited temporary storage and communicated

to the software performance monitor opportunistically.
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Figure 4.3: Detailed view of the TimeTrial agent for the FPGA shown with for tap
monitors. The FPGA agent is a high-speed, parametrized circuit designed to aggregate
measurements on the FPGA. Data paths are shown as dark lines, control paths are grey

lines.

The tap monitors, on a cycle-by-cycle basis, observe the event streams on taps and per-

form the requested aggregation function over each frame. Currently, there are four different

types of tap monitors supported: activity monitors, latency monitors, queue monitors and

histogram monitors. Activity monitors count the number of cycles a signal or wire is active

combined with period or size of the frame (whether clock cycles or event occurrences). Ac-

tivity monitors are typically used to measure control signals for the communication channel,

giving utilization, rate, and backpressure on a link. Latency monitors take a time stamp

of two events and aggregate the differences over a frame. Queue monitors measure a queue

occupancy by observing the stream of enqueue and dequeue events on a target FPGA com-

munication FIFO. This monitor is invoked when queue occupancy is requested. Histogram

monitors aggregate target data into a histogram of those data values. This is used for both

queue monitors and when a data value histogram is requested. The architecture is designed

to be easily extensible for additional tap monitors as new language features are added.

Since each tap monitor may, in general, operate concurrently, there are two levels of mul-

tiplexing necessary to send data out. First, the output arbiter chooses which tap monitor

is allowed to send a report. After each frame, the FPGA agent returns the data it has

collected over the past frame to software where it is forwarded to the software TimeTrial

agent. Then the report is inserted into the data stream via the multiplexer in Figure 4.2.
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The FPGA agent is a full duplex module; it can monitor the application while simulta-

neously reporting the summary of the previous frame back to the software agent. This is

implemented by double-buffering the meta-data storage blocks. Currently, on-chip mem-

ories (either Block RAMs or distributed memories) are used to implement the meta-data

storage system, however, other storage options could easily be supported by providing an

interface to the external memory. Some boards have SRAMs or SDRAMs that might be

utilized by this TimeTrial agent.

Large FPGA designs often utilize more than one clock domain. The performance monitor

supports monitoring these designs by operating each tap monitor at the clock speed of

the application being monitored. The rest of the performance monitor is operating at a

nominal clock frequency appropriate for reporting results. The clock for the storage module

is multiplexed back into the domain of the performance monitor for reporting. If the user

wishes to measure signals from different clock domains within a single tap, either a simple

double D flip-flop synchronizer is used for a single-bit signal or an asynchronous FIFO is

provided for buses. The monitor operates at the fastest clock frequency of all the tapped

signals’ clocks.

4.4 Architecture of the Software Agent

The software TimeTrial agent is a separate process with which the application processes

communicate using shared memory queues. Figure 4.4 shows an overview of the architecture

of the software agent. When the software agent starts, it creates a queue in shared memory

for each application process. The agent then polls from these queues in a round-robin

fashion. When each application process starts, the application process places start up

messages in the shared memory queue for each measurement at an edge originating from

that process. These start up messages contain the metric types and aggregation functions

to use as well as a unique index for the measurement. After sending the start up messages,

the application process sends events to the agent associated with Auto-Pipe edges. These

events contain the index of the measurement, a time stamp, and the event type.

Using the metric type and aggregation function, the software TimeTrial agent is able to

derive the requested information about edge queue events. The metric type informs the

software agent how to interpret the events. For example, the queue occupancy metric

type tells the agent to sort enqueue and dequeue events by time to determine the queue

occupancy after each event. For queue occupancy, the sort is necessary since the enqueue

and dequeue events may come from different processes. However, once an enqueue event is
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Figure 4.4: Overview of the software TimeTrial agent. In addition to aggregating event
streams online, the software agent is responsible for logging results from the FPGA agents

to disk.

matched with a dequeue event, the agent will discard the events keeping only the updated

queue occupancy. Metric types which only tap one side of the queue (e.g., rates) do not

need to sort incoming events.

The output of the metric function is then fed to the necessary aggregation functions. For

example, if the “mean” aggregation function were requested for the occupancy of a queue,

the agent would compute the mean of the stream of numbers returned from the metric

function. The mean is tracked for each frame and reported at the end of the frame. The

histogram aggregation function, on the other hand, uses the stream of numbers from the

metric function as the bin number and accumulates time duration in the bin. For occupancy,

this gives the amount of time that was spent at each queue occupancy. The histogram is

reported at the end of a frame.

The software TimeTrial agent is also responsible for recording measurements from the FPGA

agent. To do this, the process controlling the FPGA device communicates start messages

to the software agent as is done for software queues. However, rather than communicating

individual events as is done for software, the FPGA agent sends a message to the controlling

process at the end of each frame. The controlling process then forwards the message to

the software agent. Since the FPGA agent handles the data aggregation, the software

agent simply records the data returned from the FPGA agent. The output of the software

TimeTrial agent is a file containing the aggregated data. Once the software TimeTrial agent
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has recorded the data to disk, the results can be read into the user’s graphing software of

choice.

Software taps are inserted at places in the application topology where a developer wishes to

monitor performance events. As in the FPGA agent, taps can be inserted to measure general

performance statistics such as FIFO enqueue/dequeue events, blocking probability, and/or

communication throughput. Software taps are implemented as a standardized function call

which generates a time stamp, event type, and relevant meta-data values that are used to

calculate a specific performance metric. The function is written to be as lightweight as

possible so as to lessen interference with the block where the tap originates. The output of

a tap is written into a shared-memory FIFO, the other side of which is read by the software

performance monitor agent.

4.5 Implementing the TimeTrial Language

The compiler has the task of interpreting TimeTrial Language statements, building the

appropriate hooks into the underlying application (whether that be HDL or software) and

instantiating the agents to monitor the performance accordingly. Given the complexity of

the underlying architecture, this is a non-trivial task. Here we describe the mechanism that

TimeTrial employs to translate from developer queries to a functioning runtime measure-

ment system. Recall that each measurement statement is made up of three major semantic

parts: statistic type, measure type, and target of the measurement.

The target of the measurement is any edge in the application. These edges may reside

between two or more software blocks, two or more hardware blocks, or between hardware

and software. In the case of a software to software edge, the compiler instruments the edge

by generating function calls (i.e. taps) directly in the IPC channel that implements the edge.

These function calls use an additional TimeTrial IPC channel to communicate events to the

software agent. For fully FPGA-based edges, additional HDL signals are pulled from the

data channel between blocks to monitor edge events. These signals are connected directly

to the FPGA agent for processing into metrics. The number of taps and constitution of

an event depends on the measurement type. Edges that cross architecture boundaries are

discussed in Chapter 5.

The measurement type dictates what metric the agent is to compute during execution. The

allowed measurement types generate one tap per edge with the exception of occupancy

and latency. An occupancy measure taps the head and the tail of a queue and the agent,
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whether software or hardware, computes the current state of the queue occupancy based on

ingress and egress events. Currently, since only latency through a queue is implemented, the

latency measure uses the same taps with a different computation. The remaining measure

types, rate, util, backpressure, value, all look at one event type on the insertion side

of the queue. The actual meaning of the event depends on the measure type and have

subtle differences depending on whether the underlying edge is software or FPGA based.

For instance, util tends to have a very well defined meaning for FPGA designs since the

bandwidth of most buses is explicitly defined. However, in software, the capacity of an

IPC channel may not be known as concretely. In this case we use an estimate of the upper

bound for the channel throughput when calculating utilization. In contrast, rate has a

very concrete definition for both software and FPGA portions of the application: amount

of data transferred per frame. latency looks at insertion and removal events on an edge and

calculates the time each element spent in the queue. For software, backpressure is the time

an edge is unable to accept incoming data when there is data to be written. In the FPGA,

this is the total number of cycles a channel sets a control signal high indicating it is unable to

accept more data. value is simply each data value written into the queue. Note that without

aggregation, many of these measurements would significantly impact the performance of

the application being measured. The compiler also optimizes the measurements by not

duplicating communication channels if multiple measure statements ask for the same tap.

In this case only one tap is created and is read by multiple aggregation functions in the

agent.

The statistic type indicates what to do with all the events for each measure type. The

TimeTrial compiler generates the appropriate channels to communicate events to the various

agents. For software, there is are additional control signals to indicate the type of measure

for a set of taps and what statistic to perform. Each software measure statement gets its

own aggregation function. The compiler also adds parameters into the tap instrumentation

to further instruct the agents aggregation. For the FPGA portions, the compiler directly

generates the parametrized FPGA agent HDL code tailored to the desired measurements.

The FPGA agent is then synthesized at the top level with the rest of the FPGA design.

Each measure statement gets its own tap monitor block as well as a aggregation block to

perform online aggregation. Note that some combinations of statistics with measurement

types have questionable semantic meaning. Consider the following TimeTrial statement:

measure sum util at B.out -> C.in

Since util is defined as a single-valued metric over a frame, the min, max, mean, and sum

would all be identical and probably not what a developer would expect. Table 4.1 shows
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the meaningful combinations of statistic types and measurement types. The measurements

fall into two types: those that are single-valued within a frame and those that have multiple

values. For the former, the optional statistic type is left from the statement and this defaults

to trace.

Table 4.1: Compatibility between statistic types and measurement types in a TimeTrial
language statement.

min max mean sum hist trace

rate 7 7 7 7 7 X
util 7 7 7 7 7 X

backpressure 7 7 7 7 7 X
occupancy X X X X X X

latency X X X X X X
value X X X X X X

4.6 Cross-platform issues: Timezones and Virtual Time

Given that the various computational resources in a heterogeneous system may not all run

from a common clock, it is often required to transform time stamps recorded on distinct

compute resources (known in TimeTrial as distinct timezones) into a common frame of

reference, called virtual time. Using an appropriate system call, processor time (denoted tP )

is available to executing software with a known resolution. TimeTrial provides the FPGA

time (denoted tF ) using a cycle counter in the reconfigurable logic design. TimeTrial’s

ability to convert both processor and FPGA time stamps into virtual time stamps enables

reasoning about the performance of application events independently of the resource on

which these events occur.

When an application is deployed on multiple computing resources, it is frequently the case

that time is measured differently on one or more of the resources. A clear example of this

is a processor core versus an FPGA. On a processor core, system calls return the current

time at nanosecond resolution. On an FPGA, a counter can measure relative time with

the resolution of the clock period, which is often application specific. Here, we describe our

approach to resolving time across multiple distinct computing resources, each in their own

time domain (which we call a timezone), in the TimeTrial performance monitor.

While the approach below generalizes to more than two computing resources, for brevity

we will constrain the discussion to a particular circumstance containing only two resources,
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a processor core and an FPGA. Using an appropriate system call, processor time (denoted

tP ) is available to executing software with a known resolution. TimeTrial provides the

FPGA time (denoted tF ) using a cycle counter in the reconfigurable logic design with the

resolution of the FPGA clock period.

With knowledge of the relative rates of the two available timestamps, tP and tF , one can

define a global timestamp (which we call virtual time and denote tV ) and relate the various

resource timestamps to virtual time via a set of linear transformations, i.e.,

tV = sP · tP + bP (4.1)

and

tV = sF · tF + bF . (4.2)

where sP and sF encode the clock rate differences between the two platforms, and bP and

bF represent the different time offsets. As an example, consider a processor clocked at

1 GHz, an FPGA clock running at 250 MHz (4 ns resolution), and a desired virtual time

with 1 ns resolution. In this case, sP = 1, sF = 4, one of the offsets (say, bP ) can be set to

an arbitrary value, and we need to discover (experimentally) the last remaining offset, bF .

TimeTrial estimates the unknown offset bF by performing a timezone calibration that

records sets of three values: tP,1, tF,2, and tP,3. Short messages are sent from the pro-

cessor to the TimeTrial agent on the FPGA to retrieve the FPGA cycle counter. The value

of tP,1 is recorded immediately before sending the message by querying the processor cycle

counter. Similarly, tP,3 is recorded on the receipt of the response from the TimeTrial FPGA

agent. The response message contains the FPGA cycle counter, tF,2, as its payload. A

typical calibration task sends one thousand of these messages and a suitable subset of those

with minimum round trip times are used for calibration.

Given experimental values for tP,1, tF,2, and tP,3 and the known values of sP , sF we can

now reason about the value of bF . Given causality, we know that

tV,1 < tV,2 < tV,3 (4.3)

substituting for tV ,

sP tP,1 + bP < sF tF,2 + bF < sP tP,3 + bP (4.4)

yields the following:

bF > sP tP,1 + bP − sF tF,2 (4.5)
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and

bF < sP tP,3 + bP − sF tF,2. (4.6)

These are the bounds on the true value of bF . Setting bP to zero, this further simplifies to:

bF > sptP,1 − sF tF,2 (4.7)

and

bF < sptP,3 − sF tF,2. (4.8)

It is convenient to assume that the virtual timestamp tV,2 is midway between tV,1 and tV,3

(i.e., this makes the assumption that the communication between the processor and FPGA

is symmetric in delay). Under this assumption, tV,2 is the midpoint between tV,1 and tV,3:

tV,2 = (tV,1 + tV,3)/2 (4.9)

and bF can be computed from (2):

bF = tV,2 − sF tF,2. (4.10)

In practice, our knowledge of sF is not perfect, so a least mean squares curve fit is performed

on the set of calibration points to estimate both sF and bF .

Given the above, TimeTrial is able to convert both processor timestamps and FPGA times-

tamps into virtual timestamps. This enables reasoning about performance of an application

as a whole independent of the resource on which individual events occur.

4.7 TimeTrial Performance: Overhead and Impact

In this dissertation, we define overhead as the additional resources that were utilized by the

TimeTrial system to profile the performance. We define impact as the change in runtime

or throughput that is caused by adding TimeTrial instrumentation. This is the most im-

portant metric of a profiler since it measures the change in application performance due to

monitoring. Overhead gives the developer insight into the extra resources that are neces-

sary to measure in a low-impact manner. In this section we assess the performance limits

of both the FPGA agent and the software agent.
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4.7.1 Performance of the FPGA Agent

The performance of the monitoring circuit can be characterized by the maximum operating

frequency of the circuit, the fraction of the total execution that can be monitored, as well

as the resource overhead required to implement it. To determine the operating frequency

of the performance monitor, the monitor circuit was instantiated on a simple adder block

as the user application. The number and type of monitoring operations was varied to

quantify the effects on the operating frequency. The circuit was synthesized using Synplify

Premier DP v9.6.2 and placed and routed using Xilinx ISE v10.1i, targeting a Virtex 4

LX100 FPGA. Table 4.2 shows the results. The maximum operating frequency stays almost

constant throughout the range implying that the monitor is scalable. We anticipate that

these numbers will be hard to achieve on FPGA designs that utilize near 100% of the chip.

In these cases manual placement might be necessary if high clock frequencies are required.

Currently, the critical path is limited by an addition to update the value in the histogram

table. If 18 bits are used instead of the current 36, a single queue monitor can run faster

than 330 MHz.

Table 4.2: Maximum achievable clock frequencies (rounded to the nearest integer) for
three configurations of the performance monitor. The results are shown for a Xilinx

Virtex 4 LX100 speed grade 12 FPGA.

Configuration fmax (MHz)

1: 1 queue monitor 256

2: 4 queue monitors 255

3: 8 queue monitors 252
and 16 averagers

The FPGA agent is capable of 100% duty cycle operation, able to capture performance

information across the entire execution of a program. In addition, the performance monitor

is capable of monitoring while reporting results from the previous frame.

In order to assess the overhead of utilizing the FPGA agent, several designs were built using

the same monitoring set up as in Table 4.2. Table 4.3 shows the available resources required

to implement the different monitor configurations. The resource utilization increases mostly

linearly as more monitoring components are added. Even in the most aggressive case (con-

figuration #3), our total resource utilization is less than 10% in all categories which we deem

acceptable for development purposes. Also note that Block RAM usage can be traded for

LUTs if a design is resource constrained in that category.
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Table 4.3: Performance monitor resource overhead for the same three configurations in
Table 4.2. Numbers in parenthesis below the resource type show the total number of each

resource available on the LX100 FPGA.

Config. # LUTs FFs RAMB16s
(98,304) (98,304) (240)

1 1655 (1.7%) 1260 (1.3%) 2 (0.83%)

2 3732 (3.8%) 2466 (2.5%) 8 (3.3%)

3 8584 (8.7%) 4776 (4.9%) 16 (6.6%)

4.7.2 Performance of the Software Agent

To assess the overhead and impact that the software agent has on the software portion of

an application, a micro-benchmark was developed in the form of a chained Auto-Pipe ap-

plication. In this benchmark application, the Src block generates data, forwards it through

a chain of 9 blocks, and the Sink block discards the data. The purpose of this applica-

tion is to benchmark TimeTrial’s ability to measure multiple edges that communicate very

rapidly. Figure 4.5 shows the topology of the application. Each block gets mapped to a

single processor core. The application uses 11 cores of a 12-core AMD Opteron machine.

The 12th core is reserved for the TimeTrial SW agent, shown as TTA in the diagram. Each

edge is tapped (shown as dashed lines in Figure 4.5) and two different measurements were

calculated on all 10 taps.

Figure 4.5: Software agent micro-benchmark application. The source generates data and
each block consumes and forwards the data as fast as it is able. Each block has its affinity

set to a unique processor core.

To measure both the impact and the overhead, the micro-benchmark was run for 30 iter-

ations with two different transfer sizes. Each transfer is a bulk transfer of either a 2048

element 8-byte array or an 8192 element 8-byte array. These sizes were chosen since they

are efficient array sizes for transferring data in the Auto-Pipe system. The frame size was

set to 1 second. Four experiments were performed for each. The first was a baseline with
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no instrumentation added. The second measured the mean rate on each edge. The third

calculated a histogram of the queue occupancy on each edge. The final experiment cal-

culates both the rate and the occupancy (20 total measurements). Figure 4.6 shows the

overhead measurement results with respect to utilization of the software TimeTrial agent.

For the array size of 2048, just measuring the rate is a relatively low burden on the agent.

Gathering a histogram of queue occupancy is a much more compute intensive task. Both

measurements push the utilization up around 70%. For an array size of 8192, the utiliza-

tion is much lower, topping out around 20%. We consider these acceptable overheads for

detailed measurements.
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Figure 4.6: Overhead of the measurements for the software agent measured by utilization
of one processor core for two array transfer sizes. Error bars show one standard deviation.

To measure the impact, the same set of experiments were run and the throughput was

logged for both transfer sizes. The results are shown in Figure 4.7. For a transfer size of

8192, there is almost no impact on the application performance. The smaller transfer size

does have some impact, a maximum 3.7% reduction in throughput when measuring both

rates and occupancy of all 10 edges in the application.

4.8 Chapter Summary

In this chapter we described ways that TimeTrial is able to measure the performance of

a distributed application with low impact. This is accomplished by deploying agents on

each resource to measure the application and aggregation of event streams to performance

metrics online.
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Figure 4.7: Impact on the throughput of the micro-benchmark by the software agent.
Error bars show one standard deviation.

Taps were described as a way to gather information about the performance. The TimeTrial

language was integrated with the Auto-Pipe compiler to enable automated insertion of taps

and connection of these taps to the measurements agents. The software agent is responsible

for collecting results from all the FPGA agents and combining them into a profile per frame.

Both the software and FPGA agents are able to measure substantial applications with very

little impact on the execution. Dedicating resources is essential the measurement task.
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Chapter 5

Monitoring Virtual Queues

In this chapter, we describe TimeTrial’s approach to measuring virtual queues, while at-

tempting to preserve the low-impact nature of the performance monitoring. This approach

involves using a simple discrete event simulation model for measurements on a single re-

source. Then, a more sophisticated model is presented that handles crossing a system I/O

bus. Next, we show example measurements of virtual queues using our approach and com-

pare them to ground truth (precise knowledge of the quantity being measured) collected

from a micro-benchmark application. Finally, we discuss the circumstances where the ap-

proach described here is inappropriate, and how users of TimeTrial might understand when

the approach is or is not applicable.

The previous chapter described the approach to automated monitoring of regular queues,

that is communication channels that begin and end within a single compute resource. More

challenges arise when the communication channel crosses resource boundaries, such as the

link from an FPGA to the a processor. In this case, a portion of the queue is on the

FPGA, a portion of the queue is comprised of buffers associated with whatever low-level

communication mechanism(s) are used to move data between the FPGA and the processor

(e.g., a PCIe bus or something similar), and a portion of the queue is in the processor’s

memory.

We refer to the queues on such edges as virtual queues. Measuring the occupancy of virtual

queues is not simply a matter of instrumenting the enqueue and dequeue operations. To

perform the aggregation function(s), both enqueue and dequeue events must be known on

a common platform, which necessitates moving either the enqueue events from the FPGA

to the processor or the dequeue events from the processor to the FPGA. Neither of these

options is attractive, since a large number of events implies a large volume of performance

meta-data must share the processor-FPGA interconnect (such as the PCIe bus example

above).
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As stated above, the direct measurement of communication channels (and their associated

queues) that cross platform boundaries is incompatible with the notion of low-impact mon-

itoring. While some metrics of interest, such as rate, can be effectively measured at one end

of the channel or the other, other metrics, such as queue occupancy, require information

from both the head and the tail of the queue.

TimeTrial’s approach to virtual queue monitoring is to instrument what it can and use

a performance model of the underlying system to infer what it cannot directly measure,

estimating the information that is missing. As such, it is important not only to provide the

performance quantities that were estimated, but also to provide guidance as to the quality

of the estimates.

Here we focus on querying the occupancy of virtual queues. It is anticipated that the same

techniques will be similarly effective for other metrics that require detailed event information

across platform boundaries (e.g., latency through virtual queues); however, this is left for

confirmation in future work. It is clearly true for some aggregated metrics such as mean

latency, which is directly related to mean occupancy via Little’s Law[74].

As defined here, virtual queues are comprised of several constituent components, all chained

together to comprise the communications channel between two compute blocks. For a

channel that moves data between a multicore processor and an FPGA, the components will

include buffers in user space on the processor, kernel buffers on the processor, a physical bus

that transfers the data to the FPGA (e.g., PCIe), buffers in the DMA engine on the FPGA

card, and application buffers deployed (by the Auto-Pipe runtime system) on the FPGA.

While many of these constituent components of the communications channel are opaque

(i.e., they cannot be directly monitored by TimeTrial), the two components at either end

of the chain (comprising the head of the queue and the tail of the queue) are visible to

TimeTrial and can be therefore be monitored. Whenever a user requests the occupancy of

a virtual queue, TimeTrial deploys monitors for the head and tail sub-queues for which it

has visibility.

5.1 Approach to Virtual Queue Occupancy

To measure the occupancy of a queue over time, one can record a series of insertion and

removal time stamps at the head and tail of a queue, respectively. The queue can then be

“replayed” using a simple simulation based on this event trace. Practically, this approach

is useful for queues that have small volumes of data moving through them. However, the
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amount of trace data that needs to be stored quickly becomes burdensome as the data

volume approaches TimeTrial’s ability to store the event trace. This problem becomes

particularly acute on FPGA platforms, since there is very limited buffering on the FPGA

to store events.

For regular queues (i.e., those that reside entirely on a single compute resource), TimeTrial

monitors the insertion and removal events and aggregates these to a histogram or mean value

of queue occupancy on-line to lower the impact of monitoring. For virtual queues, access to

the insertion or removal event trace is impractical since they must be communicated across

platform boundaries. This would likely overwhelm the communication bus between these

resources for many applications causing unwanted performance impact.

Instead, TimeTrial recreates the queue occupancy through an empirically-driven, stochastic,

discrete-event simulation [39]. TimeTrial measures the time between each insertion into the

queue and removal from the queue. Both streams of delta time values are then aggregated

on-line into an inter-insertion time histogram and an inter-removal time histogram. These

histograms are then used to model an arrival process and a departure process from the

virtual queue. By sampling from the histograms, a stochastic discrete-event simulation is

performed which samples from these distributions to “replay” the virtual queues over time.

TimeTrial performs aggregations over a frame. This produces one set of inter-transfer time

histograms per frame. Having more than one histogram allows for the stochastic simulation

to be non-stationary, that is, the shape of the distributions change over time. Hence,

the measurements enable the stochastic simulation to reflect changes in the application

performance over the course of its execution.

There are two modeling assumptions that are present in the stochastic simulation that

warrant consideration. First, when replaying the virtual queue dynamics the stochastic

simulator is assuming that the virtual queue acts as an ideal queue (e.g., insertions at some

time t are immediately available for removal at time t). This assumption presumes there

is no inherent latency present in the underlying implementation of the communications

channel.

Second, the stochastic simulation makes the assumption that the insertion and removal

processes are independent and identically distributed (iid). Significant auto-correlation in

either process, or cross-correlation between the insertion and removal processes are another

potential source for error.
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If one or more of these modeling assumptions is untrue for the application being executed,

there is a reasonable chance that the stochastic simulation predictions for the occupancy

of the virtual queue will diverge from the measured occupancy of the sub-queues at the

head and the tail of the virtual queue. This suggests an approach for performing a sanity

check on the model’s predictions. If the predicted queue occupancies do not align with the

measured occupancies of the visible sub-queues, the model is not to be trusted. Note that if

the model predictions and the measured sub-queue results do match, that is no proof that

the model predictions are correct across the board. When there is not a match, it is clear

that the models predictions cannot be trusted. However, TimeTrial can sill provide useful

information about the performance of the virtual queue. When the model fails, there is still

direct measurement results for the individual sub-queues on either end of the virtual queue.

In summary, the procedure for responding to a query that asks for the occupancy of a

virtual queue is as follows:

1. Instrument the ingress point (tail) of the queue and its associated sub-queue (that

is visible to TimeTrial) on the source computational resource and the egress point

(head) of the queue and its associated sub-queue (that is visible) on the destination

computational resource.

2. Execute the application, recording a histogram of the inter-insertion times at the tail

of the queue and a histogram of the inter-departure times at the head of the queue.

Also record occupancy histograms of the sub-queues at the head and tail.

3. Using the inter-insertion time and inter-departure time histograms to drive the pseudo-

random number generator distribution, perform a stochastic discrete-event simulation,

predicting the occupancy of the entire virtual queue.

4. Compare the stochastic simulation predictions with the measured sub-queue occu-

pancy distributions.

5. If the comparison of step 4 succeeds, report the occupancy of the virtual queue to the

user.

6. If the comparison of step 4 fails, one or more of the stochastic simulation model

assumptions are not true for the application, and the stochastic simulation’s predic-

tions should not be trusted. In this case, rely on sub-queue measurements alone for

performance debugging.
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5.2 Assessment of Modeling Technique

We assess the above described approach to understanding the dynamics of a virtual queue

through the use of several micro-benchmark applications. These applications are designed

to either: (1) have a known queue occupancy by construction; or (2) effectively record the

queue occupancy during execution. Either way, we know ground truth and can therefore

effectively assess the model.

The family of micro-benchmarks that are used are designed to emulate the queue activity

in a traditional queue-server combination (i.e., queueing station) from classic queueing

theory [62]. Figure 5.1 illustrates a single-stage queueing station that includes an arrival

process from the left (that delivers “jobs” into the system with mean arrival rate λ), a FIFO

queue, and a service process on the right (that services “jobs” from the queue with mean

service rate µ).

λ μ

Figure 5.1: Single-stage queueing station.

For our purposes, a “job” will be represented by a single data element (8 bytes in size), and

the distribution of the arrival process and the service process will either be Markovian (i.e.,

exponential inter-arrival and/or service times) or deterministic (i.e., constant inter-arrival

and/or service times).

The first micro-benchmark emulates the queue activity in a classic M/M/1 queueing sta-

tion [62]. In this notation, the first M denotes a Markovian arrival process, the second M

denotes a Markovian service process, and the 1 denotes a single server. Figure 5.2 shows

the Auto-Pipe micro-benchmark application, where the source block is acting as the ar-

rival process (with pseudo-random numbers drawn from an exponential distribution, mean

1/λ, provided by the left-most PRNG block). The server block is acting as the server (with

pseudo-random numbers drawn from an exponential distribution, mean 1/µ, provided by

the second PRNG block). The queue shown on the edge between source and server is the

queue of Figure 5.1. Note that there do exist queues on the other application edges as well,

they are simply not drawn in the figure.

To enable playback of true queue occupancy, the data value delivered from source to server

contains the inter-insertion time between two insertion events on the queue. The data values

delivered from the server block to the record block include both the above inter-insertion
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Figure 5.2: Micro-benchmark application that mimics queue activity of the single-stage
queueing station.

time and the inter-dequeue time experienced at the server block. This stream of data

enables us to recreate the actual dynamics of the queue via a trace-driven simulation after

the run has completed. This trace-driven simulation provides our best understanding of

ground truth (i.e., what really happened in the queue).
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Figure 5.15: Software sub-queue occupancy in correlated micro-benchmark with
hardware-to-software virtual queue.
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It is clear from the figures that the sub-queue occupancies measured at the head and the

tail of the virtual queue do not agree with the overall queue occupancy predicted by the

stochastic simulation model. While for this particular instance the reason for the lack of

agreement is well understood (a non-iid source), in general the use of the head and tail

sub-queue occupancies serves as a check on the appropriateness of the stochastic simulation

model, but does not necessarily give a reason when there isn’t agreement.

5.4 Chapter Summary

This chapter has presented TimeTrial’s approach to monitoring virtual queues, those queues

that cross the boundaries of the computing platforms executing the application. For those

measurements that require data collection at both the head and the tail of the queue,

histograms of inter-insertion times and inter-departure times are collected at each end of

the queue, and a stochastic discrete-event simulation model is used to recreate the dynamics

of the virtual queue in question.

As a partial verification of the appropriateness of the stochastic simulation model, the

portions of the virtual queue that are visible to TimeTrial are also monitored, and if the

stochastic simulation results are not consistent with the measurements of the sub-queues

at the head and the tail of the virtual queue, the stochastic simulation model is deemed

incorrect and is discarded. In this way, TimeTrial works to not only model the activity

within the virtual queue, but also helps to verify whether or not its internal model is

appropriate.
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Chapter 6

Measuring Performance with

TimeTrial

This chapter demonstrates the use of TimeTrial to profile two streaming, heterogeneous

applications. We start with an application that solves Laplace’s equation using a Monte

Carlo approach. Several different mappings are explored and TimeTrial is able to show the

bottlenecks in each. Next, a streaming implementation of Basic Local Alignment Search

Tool (BLAST) is profiled. TimeTrial provides guidance on queue provisioning, bottleneck

locations, queue occupancy and the overhead of deadlock avoidance techniques. For both

applications, TimeTrial provides illuminating feedback that would have been painstaking

to gather otherwise.

6.1 Monte Carlo Solution to Laplace’s Equation

Here we will illustrate the use of TimeTrial with an example application, a Monte Carlo

solver for Laplace’s equation. Laplace’s equation is a second-order partial differential equa-

tion (PDE) [102] that has several uses, including modeling stationary diffusion (such as

heat) and Brownian motion. For heat, given the temperature at the boundaries of an

object, solutions to Laplace’s equation provide the interior temperatures at equilibrium.

∂2u

∂x2
+
∂2u

∂y2
= 0

The ease of solving Laplace’s equation depends on the nature of the boundary conditions.

An analytic solution exists for simple boundary conditions, however, for many boundary

conditions, no analytic solution exists and numerical solutions are needed [37]. There are

several approaches for numerical solutions. One approach is Gauss-Seidel iterations [102].
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This method converges quickly, but it requires that the complete grid be stored in memory.

Another method is Monte Carlo simulation. This technique is provably correct [92], but

converges slowly. Nevertheless, this method is useful if a small number of interior points

are needed. This is because the Monte Carlo method does not require storing the entire

grid, since the grid is implicit, and only those points that are of interest need be computed.

Figure 6.1 shows an application topology of an Auto-Pipe implementation of a Monte Carlo

solver for Laplace’s equation. The labels within the blocks indicate the block function, and

the labels above identify the individual blocks. Edge labels are also shown in the figure for

reference below.

RNG Split

Walk

Walk

Avg Print

mt s1

w1

w2

a1 out
e1

e21

e22

e31

e32

e4

Figure 6.1: Topology of Monte Carlo solver for Laplace’s equation using two independent
walk blocks. Block instances names are given above each block, edge labels above each

edge.

The application works as follows. Pseudo-random numbers are generated (using the Mersenne

twister algorithm [76]) in block mt. Block s1 splits the stream of pseudo-random numbers

for use by two copies of a Walk block (called w1 and w2) that perform a random walk exe-

cuting the Monte Carlo solution [92]. Results from blocks w1 and w2 are combined in the

Avg block a1 and written to disk in block out. Greater or fewer Walk blocks are straight-

forwardly deployed with larger or smaller Split and Avg trees (e.g., Figure 6.2 illustrates

4 Walk blocks).

RNG Split

Split

Walk

w4

Walk

w3

Walk

w2

Walk

w1

Split Avg

Avg

Avg Print

mt outs1 a2

a11

a12

s21

s22

Figure 6.2: Topology using four independent random walks. Edges are labeled using a
similar naming scheme as in Figure 6.1 but not shown for clarity.
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For the example executions used here, a 2-D grid was fixed at size 100×100 and the boundary

conditions were set to a square containing the grid. The temperature at the boundary was

set to 0 for three sides (top, right, and bottom) and 100 for the fourth side (left). One

thousand random walks were performed at each grid coordinate, evenly divided across the

Walk blocks. The output of the application gives a 100× 100 grid of temperatures. A plot

of the output using colors to represent temperatures (blue being 0 and red being 100) yields

the image of Figure 6.3.

Figure 6.3: Output from example 2-D temperature surface.

We now reconsider the performance questions posed in the introduction. This question

and the ones that follow are helpful for comparing the performance a developer expects

given their knowledge of the design with reality and illustrate a way a user might query the

performance using TimeTrial. The first question was:

At what rate is data moving across the link that connects the RNG block to the
Split block?

TimeTrial can answer this question via a straightforward measure statement:

measure rate at e1;

77



which generates the output shown in Figure 6.4. The figure provides a box-and-whisker

plot of the data transfer rate for each frame (the frame period is 1 second for all of the

example runs in this section). The median bar in the box is labeled on the graph (here,

2.4 Mtransfers/s), the 1st and 3rd quartiles are the top and bottom of the box, the whiskers

indicate minimum to maximum (excluding outliers), and any outliers (defined as beyond

1.5× the inter-quartile range) are indicated by points on the graph.
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Figure 6.4: Box-Whisker plot of mean data rate per frame across edge e1.

The second question posed in the introduction was:

Are the data rates balanced between the upper and lower branches of the appli-
cation topology?

To answer this question, we ask for the data rates into the two Walk blocks:

measure rate at e21;

measure rate at e22;

These queries generate output of the same form as Figure 6.4, from which we can confirm

that the data rates are reasonably balanced at 1.2 Mtransfers/s. (Note that to conserve

space we will not reproduce the graphs generated by all of the example measure statements

that are described.)

The third and fourth questions:

What is the occupancy of the queues between each block?
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What fraction of the time is backpressure being asserted from the Print block to
the Avg block?

are both directly supported by measure statements in the language:

measure hist occupancy at e1;

measure hist occupancy at e21;

measure hist occupancy at e22;

measure hist occupancy at e31;

measure hist occupancy at e32;

measure hist occupancy at e4;

measure backpressure at e4;

and the histogram queries yield the graphs in Figure 6.5. The average backpressure at e4

is always 0, so we do not show that graph.

These queue occupancy histograms enable us to answer question five:

What portion of the pipeline is limiting the achievable throughput?

by observing that all of the queues downstream of the Split block are empty almost all of

the time while the queue upstream of of the Split block is full almost all of the time. This

is a strong indication that the Split block is the rate limiting element in the pipeline.

Our suspicions are confirmed when we replace the original implementation of the Split

block with a new implementation that is more efficient. The efficiency is increased by moving

data through the block in larger chunks. With this new Split block, the median rate has

increased to 8.6 Mtransfers/s across edge e1 and the histograms of queue occupancies on

edges e1, e21, and e22 are shown in Figure 6.6. The histograms for edges e31, e32, and e4

did not appreciably change and they are not replotted.

These plots both confirm the hypothesis that the Split block was the initial throughput

bottleneck in the pipeline (since replacing it with a faster implementation provided a greater

than 3× performance gain) and enable us to answer question six:

If that bottleneck were resolved, what would be the next bottleneck?
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Figure 6.5: Histograms of queue occupancies for the topology shown in Figure 6.2.
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Figure 6.6: Histograms of selected queue occupancies for Figure 6.2 after replacing s1

with a more efficient implementation.
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Now, the queues into the Walk blocks are non-empty and the queues out of the Walk blocks

are empty. This implies that the random walks are now the throughput limiting elements

(i.e., the next bottleneck).

We can explore the dynamics of the queue leading into Walk block w1 by plotting the

queue occupancy histogram as a function of time. This is shown in Figure 6.7. In the

perspective presented in the figure, time (indicated by frame) progresses into the page. At

the early portion of the run the queue is full, and as the run progresses the occupancy

falls off (although never becoming empty). This time line illustrates how the Split block

maintains constant data rate at its two outputs, even if the consumption by the two Walk

blocks isn’t completely balanced, leading to a decrease in queue occupancy over time for

Walk block w1.

Figure 6.7: Histogram of queue occupancy over time for edge e21 (input to block w1).

Given that the Walk blocks have been shown to be the current throughput bottleneck, we can

explore further performance improvement by both altering the application’s topology and

exploiting the available architectural diversity in the execution platform. The execution

platform has 12 cores and an FPGA co-processor, so the next implementation we will

explore uses 8 cores for 8 Walk blocks, 2 cores for Split blocks, 1 core for the Avg and

Print blocks, and reserves one core for the TimeTrial software agent. In addition, the RNG

block is deployed on the FPGA. This illustrates the flexibility enabled by the Auto-Pipe

development environment. If an FPGA implementation is available for a block, deploying

the block on the FPGA only requires altering the mapping statements in the X language

specification of the application.
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The throughput rate coming out of the RNG block into the first Split block is now 33 Mtrans-

fers/s, a 3.8-fold performance improvement over the previous execution, which had only two

Walk blocks. The queue occupancies of this edge (both on the hardware side of the bus and

the software side of the bus) are shown in Figure 6.8. The fact that they are both contin-

ually at capacity indicates that the RNG block is not limiting the pipeline throughput, and

causes us to pose the question as to whether the FPGA co-processor is actually benefiting

the application performance.
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Figure 6.8: Histograms of hardware and software queue occupancies for edge e1 (output of
the RNG block).

We can explore the above question by mapping the RNG block to one core and assigning all

of the Split blocks to a single core. Figure 6.9 shows the throughput rate and the queue

occupancy out of the RNG block for this run. As can be seen in the graphs, the throughput is

virtually the same and the queue occupancy is still quite high (indicating that the software

RNG block has sufficient performance to keep up with the rest of the pipeline (i.e., the FPGA

does not benefit the application’s performance)).
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(a) Box-Whisker Plot of mean rate per frame.
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(b) Histogram of accumulated queue occupancy.

Figure 6.9: Performance measurements for edge e1 (output of the RNGblock).

For this run, the Split blocks are once again the performance bottleneck. This is confirmed

by the information presented in Figure 6.10. Here, the queue occupancy histograms for all

of the edges going into the eight Walk blocks are shown, and all eight queues have significant

time during which they are empty.

While in this case the use of architectural diversity does not improve the performance of

the application, this fact was not clear prior to the execution and measurement of perfor-

mance. As with any empirical measurement, one must have access to the artifact being

measured, and the Auto-Pipe environment facilitates quick transitions between block to

compute resource mappings, greatly simplifying the task of understanding the performance

implications of a wide variety of deployment options.

6.1.1 Virtual Queues

Here we illustrate the ability of TimeTrial to monitor temporal properties of an application,

including over virtual queues. We set TimeTrial’s frame period to 1 second and asked for

the mean queue occupancy for the queue from PRNG to the first Split and also for the queue

from the last Avg to Print. The application runs for 60 seconds. For this execution, all of

the blocks except Print have been assigned to the FPGA and Print has been assigned to

a processor core. As a result, the first monitored queue is entirely on the FPGA and the

second monitored queue is a virtual queue, moving data from the FPGA to the processor

core.

Figure 6.11 shows the mean queue occupancy over time for the queue immediately down-

stream of the PRNG block. The capacity of this queue is 128, and as is readily apparent
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Figure 6.10: Occupancies for the input queues to the walk blocks
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from the graph, within the first second of execution this queue is full and stays full for the

duration of the run.
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Figure 6.11: Mean queue occupancy out of PRNG block in Monte Carlo solution to
Laplace’s equation. This is a hardware-to-hardware queue, entirely within the FPGA.

Figure 6.12 shows the mean queue occupancy over time for the queue upstream of the Print

block. Here, the effect of bulk transfers across the bus is clearly apparent. Data destined

for the Print block is buffered, waiting to be transferred across the PCI-X bus, until the

very end of the application’s execution, at which point the buffers are flushed and all of the

results are delivered to the Print block. Note that if the latency of individual data elements

moving from Avg to Print is an important performance metric for this application, simply

monitoring the average rate across the edge is not sufficient to discover the true nature of

this virtual queue’s activity.

Further monitoring using TimeTrial (not shown here) demonstrates that the Walk blocks

are the current performance bottleneck, and increasing the parallelism to greater than 8

Walk blocks is an important step in improving the overall application performance.

6.2 Biosequence Search using BLASTN

In this section, we demonstrate our measurement infrastructure by characterizing the per-

formance of Mercury BLASTN, a streaming, FPGA-based implementation of the NCBI

BLASTN tool for DNA similarity search. TimeTrial is used to characterize many different
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Figure 6.12: Mean queue occupancy into Print block in Monte Carlo solution to Laplace’s
equation. This is a hardware-to-software virtual queue, moving data from the FPGA to a

processor core.

aspects of Mercury BLASTN. We show that TimeTrial can extract performance measure-

ments from this application with low overhead and can discover the causes of bottlenecks

that were previously unknown.

6.2.1 The BLASTN Application

BLAST, the Basic Local Alignment Search Tool [5], is widely used by molecular biologists to

discover relationships among biological (DNA, RNA, and protein) sequences. The BLAST

application compares a query sequence q to a database D of other sequences, identifying all

subject sequences d ∈ D such that q and d have small edit distance between them. The edit

distance is weighted to reflect the frequency with which different mutations, or sequence

changes, occur over evolutionary time. The BLASTN variant of BLAST expects both query

and database to contain DNA sequences, which are strings composed of the four bases A,

C, G, and T .

The BLAST application is a critical part of many computational analyses in molecular biol-

ogy, including recognition of genes in a genome, assignment of biological functions to newly

discovered sequences, and clustering large groups of sequences into families of evolutionarily

related variants. The last decade of advances in high-throughput DNA sequencing have led
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to exponential increases in the sizes of databases, such as NCBI GenBank [82], used in these

analysis, and in the volume of novel DNA sequence data to be analyzed.

BLASTN is conceptually a streaming application, composed of a linear 3-stage pipeline of

increasingly expensive but increasingly accurate search operations performed on a database

stream (see Figure 6.13). In stage 1, “seed matching,” BLASTN detects short exact sub-

strings, or words, that are common to both the query and a database sequence, using a

hash table of all words in the query. In stage 2, “ungapped extension,” the region sur-

rounding each word is searched to detect pairs of longer substrings that differ by just a few

base mismatches. Finally, the small fraction of words that generate such an “ungapped”

pair are passed to stage 3, “gapped extension,” which searches the region around them for

pairs of substrings with small edit distance, allowing for base substitutions, insertions, and

deletions. Only matches that pass this final stage, called “gapped alignments,” are reported

to the user.

ungapped

matching

seed

extension extension

gapped

stage 1 stage 2 stage 3

sequences alignments

gappedungapped

alignments

database seed

matches

Figure 6.13: BLASTN functional pipeline.

A typical execution of BLASTN includes a number of queries, each of which is compared to

a large genomic database (several Gbases in size). Measurements of end-to-end execution

time show significant variation depending on the contents of the query and the database.

We illustrate the use of TimeTrial to investigate these execution time variations. We set the

TimeTrial data frame size equal to a single pass of a database through the pipeline for an

individual query. Multiple passes (each with a distinct query) then comprise the complete

execution run.

6.2.2 Mercury BLASTN

Mercury BLASTN [65, 67] accelerates the BLASTN algorithm using a heterogeneous system

consisting of both FPGAs and general-purpose CPUs. Figure 6.14 shows the mapping to

a heterogeneous platform. The FPGA is used for the first two stages of the BLASTN

computation, which dominate the running time, while the last stage is assigned to a set

of processor cores. On the FPGA, stage 1 is divided into two parts: stage 1b implements

the BLASTN query hash table in SRAM attached to the FPGA, while stage 1a hashes the

same query words into a Bloom filter [15], a “lossy” lookup table that can be implemented

88



efficiently internally to the FPGA. Stage 1a proves that most words in the database do

not occur in the query, passing only a few percent of the database’s words through to the

SRAM lookup of stage 1b. Stage 2a further filters the results by expanding the context

around around the seed using a one dimensional dynamic programming algorithm.

matching

word

prefilter prefilter

extension
matching

word

extension extension

stage 1a stage 1b stage 2a stage 2b stage 3

processor

SRAM

FPGA

ungapped
gappeddatabase alignmentsungapped

Figure 6.14: Overview of Mercury BLASTN deployment.

6.2.3 Provisioning FPGA Queue Sizes

The original implementation of Mercury BLASTN was designed to carefully balance the

loads on the various stages so that no one stage was too great a bottleneck. A deep

understanding of its performance was achieved by studying a near-cycle-accurate simulator

of the implementation written in C. However, the original design has since been ported

to a new, more modern FPGA hardware platform that changes the clock speeds of most

components and greatly alters the properties (latency, bandwidth, etc.) of the attached

SRAM. Rather than resurrect and modify the old simulator, we opt to use TimeTrial to

directly measure the performance of the new implementation.

Mercury BLASTN contains over 20 queues. These queues can consume significant resources

if they are over-provisioned. The first goal is to appropriately size a queue by directly

measuring the occupancies. One potential performance issue with Mercury BLASTN is a

high latency SRAM might require a large buffer for high throughput operation. There is a

queue, we’ll call it the SRAM queue, in front of the SRAM to buffer words from stage 1a

while the SRAM is processing older words. Our goal is to size this queue so that it handles

the majority (e.g., > 95%) of the cases without over-utilizing resources.

Mercury BLASTN was tested using the NCBI mammalian RefSeqs2 as the database, with

queries sampled from non-mammalian RefSeqs3. The hardware platform consists of 2 quad-

core AMD Opteron CPUs running at 2.4 GHz, 16 GB of system RAM, running CentOS 5.3

2
ftp://ftp.ncbi.nih.gov/refseq/release/vertebrate_mammalian/

3
ftp://ftp.ncbi.nih.gov/refseq/release/vertebrate_other/
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operating system. The FPGA card contains an Xilinx Virtex 4 LX100 speed grade 12 part

and communicates with the processors via PCI-X bus running at 133 MHz.

We begin this investigation with the SRAM queue potentially over-provisioned to hold 512

elements, based on our understanding of the application. Due to the latency of the SRAM,

up to 28 more entries might fill the queue after it asserts back pressure. This effectively

makes the queue size 484, with 28 slots being reserved for in-flight SRAM responses and 484

slots for smoothing out bursty application behavior. This queue was then instrumented to

record a cycle-accurate histogram of the queue occupancy over the entire experiment listed

above.

Figure 6.15 shows the results. From this data, we concluded that we may be able to

significantly reduce the size with nominal performance loss since the majority of the time

the queue occupancy is much less than 484.

Figure 6.15: Measurement results from measuring the SRAM queue of total size 512. The
top graph shows the normalized histogram of the counts of queue occupancy over the

entire execution. The bottom graph shows the cumulative fraction of the queue occupancy.

The total number of cycles to execute the run was 8.6176 × 1010, which was obtained

by summing the number of cycles in every frame. From Figure 6.15, we can estimate

that decreasing the queue to 128 (an effective length of 100) we will increase the runtime

by approximately 2%, while utilizing 1/4 the amount of resources. To verify this, we

repeated the experiment with the SRAM queue size set to 128. This configuration took

8.6788×1010 cycles to finish, a decrease in performance of 0.7%, even better than expected.
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This experiment helped us free up 4 Block RAMs that can be utilized in other parts of the

design.

6.2.4 Profiling Mercury BLASTN

In a more extensive investigation, we instrumented Mercury BLASTN in a detailed manner,

executed two different large genomic data sets, and analyzed the performance results from

TimeTrial. Since Mercury BLASTN is known to have performance characteristics that

depends on the data sets that are executed, the focus of this investigation is to determine

how executing different genomic data sets affects its performance. TimeTrial accomplishes

this by measuring the utilization of communication edges and the distribution of the queue

occupancies in the application.

TimeTrial instrumentation was added to every top-level block in Mercury BLASTN. Fig-

ure 6.16 shows the functional pipeline of Mercury BLASTN in more detail, highlighting

the points where the TimeTrial performance monitor is tapping signals of interest. The

application consists of multiple copies of each stage executing in parallel. Stages 1a, 1b,

and 2 are deployed on FPGAs (there are two FPGAs utilized in this configuration), and

stage 3 is deployed on a collection of processors. Ahead of stage 1a is a pair of software

threads that manage delivery of the queries and database to the hardware pipelines, and

between stages 2 and 3 is a set of software threads (one per FPGA pipeline) that collect

ungapped alignments from the hardware and enqueue them for stage 3 processing.
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Figure 6.16: BLASTN functional pipeline detail. Taps in the software subsystem are
labeled ts and taps in the hardware subsystem are labeled th. Virtual queues A through D

cross the HW/SW boundary.

Since the BLAST application employs filtering as part of its basic operation, the entries

in each queue vary as one moves down the pipeline. At the far left, individual queries

are prepared for delivery to the FPGA, and queue entries for the leftmost queue represent

91



these queries. In virtual queues A and B, the database is being streamed into the FPGA, so

queue entries represent database characters. The individual queues within the FPGA and

virtual queues C and D coming out of the FPGA each store entries that are represented

by an ordered pair of (query position, database position). Finally, the enqueue software

functions aggregate the ungapped alignments out of stage 2 and package them by query,

thereby making the entries in the last queue again equal to individual queries.

Due to the existence of one common queue between the set of FPGA-deployed pipelines and

the set of stage 3 threads, the number of stage 3 threads can be altered to accommodate a

lower or higher computational load in stage 3. This is indicated in the figure by software

threads labeled 5 through N , where N is settable at execution time.

In the pure software queues, enqueue and dequeue event traces are processed into histograms

of queue occupancies. However, as was mentioned earlier, queues that cross the HW/SW

boundary are combined into one virtual queue. To determine the occupancies of these

queues, we measure the event trace on the software side and measure the mean throughput

on the FPGA side. The queue occupancy is then simulated based on the event trace in

software combined with an exponentially distributed inter-dequeue time parametrized by

the empirically obtained mean. The occupancies of the queues residing entirely on the

FPGAs are measured on chip by the FPGA monitoring agent and communicated to the

software monitor.

To profile the performance of Mercury BLASTN, two sets of sequences were compared and

TimeTrial collected runtime statistics at native application speeds. The data sets used in

the experiments is as follows:

• Experiment 1: The first data set consists of a recombinant viral DNA (sequenced

in-house at Washington University in St. Louis, 293 × 106 bases) against the 19th

assembly of the human genome4 (3 × 109 bases). The viral DNA was split up into

65,400 size queries, each of which Mercury BLASTN compared to the entire human

genome.

• Experiment 2: The second data set consists of the non-mammalian RefSeqs5 (302×106

bases) as the query. The NCBI mammalian RefSeqs6 (788 × 106 bases) are used as

the database. Again, the non-mammalian RefSeqs are split up into smaller segments

(48,000 bases) and compared to the entire mammalian RefSeq data set.

4
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/

5
ftp://ftp.ncbi.nih.gov/refseq/release/vertebrate_other/

6
ftp://ftp.ncbi.nih.gov/refseq/release/vertebrate_mammalian/
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Mercury BLASTN splits the query sequence into smaller, overlapping sequences with 5%

overlap. Then, the database is streamed through once for each query to complete the

entire comparison. The hardware platform consists of 2 quad-core AMD Opteron processors

running at 2.4 GHz, 16 GB of system RAM, running the CentOS 5.3 operating system. The

FPGA board contains a Xilinx Virtex 4 LX100 speed grade 12 part and communicates with

the processors via a PCI-X bus running at 133 MHz.

Even though Mercury BLASTN is not currently implemented within the Auto-Pipe frame-

work, the measurements can be expressed in the TimeTrial language. TimeTrial measure-

ment statements for Mercury BLASTN application example are shown in Figure 6.17. We

measure the average utilization at 4 taps within each FPGA, and the queue occupancy

of several queues in software, hardware, and those crossing the boundaries. TimeTrial is

configured to aggregate statistics over each pass of the database, one for each query. This

corresponds to a data frame set to the size of the database for each of the two experiments

(e.g. frame size is 3× 106 bases for Experiment 1).

TimeTrial’s profile results for the accelerated BLASTN are shown in Figure 6.18. Software

processes/threads are shown as circles, while FPGA modules are shown as squares. The

two FPGAs are aggregated into one set of measurements for clear presentation. The solid

lines between stages represent the communication links that transfer data from one stage

to the next. The dashed lines are back-pressure signals, a control signal which, when active,

indicates that a stage is busy and no data should be sent. Data is summarized through

box-whisker plots and histograms of queue occupancy. The box-whisker plots show the

variability of each measurement averaged over a single pass of the database (the data frame

size is set to one pass of the database). In other words, TimeTrial records one value (e.g.

mean throughput at a point) for each pass, and these values are combined into a box-

whisker plot containing the median and quartiles. Similarly, each pass over the database

results in a queue occupancy histogram for each instrumented queue. Each measurement

is then accumulated to form an aggregate view of the occupancy over the entire execution.

The upper left-hand side of the pipeline shows the ingest rate of the FPGA, while the results

below show the percent utilization of the communication links between FPGA stages. The

utilization of the egress link is also shown at the output of stage 2. The right-hand side

shows queue occupancy histograms for major software and hardware queues. In addition,

back-pressure signal utilization is measured within the FPGA and is shown as horizontal

box plots.

Studying Figure 6.18, we find that in both cases, the software portion of BLASTN is non-

limiting. We draw this conclusion from the full queue at the ingress of the FPGA and
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// edge labels (X language)

queryq: prepquery.out -> readdb.in

vqA: readdb.out -> FPGA1.BLASTstage1a.in

vqB: readdb.out -> FPGA2.BLASTstage1a.in

hw1q1b: FPGA1.BLASTstage1a.out -> FPGA1.BLASTstage1b.in

hw2q1b: FPGA2.BLASTstage1a.out -> FPGA2.BLASTstage1b.in

resultsq: enqueue.out -> BLASTstage3.in

// measure utilization on FPGA1

measure mean util at FPGA1.BLASTstage1a.in

measure mean util at FPGA1.BLASTstage1b.in

measure mean util at FPGA1.BLASTstage2.in

measure mean util at FPGA1.BLASTstage2.out

// measure utilization on FPGA2

measure mean util at FPGA2.BLASTstage1a.in

measure mean util at FPGA2.BLASTstage1b.in

measure mean util at FPGA2.BLASTstage2.in

measure mean util at FPGA2.BLASTstage2.out

// measure histograms of queues

measure hist occupancy at queryq

measure hist occupancy at vqA

measure hist occupancy at vqB

measure hist occupancy at hw1q1b

measure hist occupancy at hw2q1b

measure hist occupancy at resultsq

Figure 6.17: Equivalent TimeTrial language statements for BLASTN application runs.
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(a) Experiment 1 profile (b) Experiment 2 profile

Figure 6.18: TimeTrial measurement results from running BLASTN on two large genetic
data sets.
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the empty queue at its egress. However, there is some burstiness in stage 3 processing for

Experiment 1: about 20% of the results from the FPGA over-run the available processors

and start to fill the queue. Experiment 2 never has more than one element in this queue.

The hardware shows a different story between the two experiments. Experiment 1 has a

much higher and less variable throughput compared to Experiment 2. In both experiments,

when the throughput is less than the maximum possible line rate (∼875 MB/sec), the

slowdown is caused by stage 1B asserting back-pressure. Experiment 2 exhibits much higher

back-pressure at stage 1B, indicating that this stage is a bottleneck. This observation is

corroborated by the high occupancy of the stage’s input queue. In both experiments, blocks

downstream of stage 1B have plenty of capacity and almost never assert back-pressure. We

conclude that Experiment 1 stresses stage 1B in about half of the passes over the database,

but that the buffering upstream tends to ameliorate this. In Experiment 2, stage 1B is more

severely stressed, filling the upstream buffers and causing lower ingest rates.

In these examples, TimeTrial paints a clear profile of the application performance and al-

lows the developer to efficiently locate bottlenecks. Figure 6.18 shows a high-level analysis

of the performance. To determine what is causing the poor performance inside stage 1B,

we instrumented BLASTN with additional taps that monitor signals and state inside the

stage. Using these taps, a number of inefficiencies were discovered that contributed to the

performance loss; the biggest insight was gained from tracking the FSM that controls reads

and writes to the SRAM. We discovered that the hash table caused collisions, and hence

multiple SRAM probes, for more than half of all initial accesses to the SRAM. Unfortu-

nately, this condition results in the most inefficient use of the SRAM for this design, since

performance of sequential lookups is limited by the SRAM’s round-trip latency. To correct

this issue, the hash table size should be increased to use more of the available SRAM ca-

pacity on the board. As a result, hash table collisions will be greatly reduced and stage 1B

will utilize the SRAM more efficiently.

Figure 6.18 refers to a deadlock-free version of Mercury BLASTN that has been through

many iterations of tuning with TimeTrial. Even though Mercury BLASTN is typically

drawn as a linear pipeline the implementation actually uses a separate channel for the

database from stage 1a to stage 2a, bypassing stage 1b. This structure is actually a fork-

join structure and is susceptible to deadlock if the two streams get far enough apart. Since

BLASTN stages act a filters, the streams can diverge due to stage 1a and 1b processing

potentially large amounts of input without creating output and stage 2a having a finite

buffer size to hold the database. To avoid deadlock, stages 1a and 1b both create null

messages at certain intervals during periods of no real output to indicate to stage 2a that
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portions of the database can be discarded. In what follows we show more detailed results

from a previous version of Mercury BLASTN that was susceptible to deadlock because the

null message rate was set too low.

Figure 6.19 shows the measured results of each of the utilization of the communication chan-

nels. For each experiment, the box-whisker plots represent the variability of the measured

average utilizations for each frame. In both experiments, FPGA 1 and FPGA 2 have very

similar utilization profiles and the utilization of the stage2.out edge is very low and hence

unlikely to be the pipeline bottleneck. There is a significant difference in the utilization of

all three edges for experiment 1 relative to experiment 2. Compared to the deadlock-free

version of Mercury BLASTN above, the utilization of the edges following 1a are lower for

experiment 1. This is due to a lower rate of null messages being sent from stage 1a to stage

1b and from stage 1b to stage 2a. Note that in both the deadlock-free and this version, the

ingest rate is nearly identical indicating that the deadlock-avoidance algorithm has little

effect on the overall performance.
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(d) FPGA 2, experiment 2

Figure 6.19: Communication link utilization broken down by FPGA.

Figures 6.20 and 6.21 show histograms of the occupancies of all the instrumented queues for

each experiment over all database passes. Similar to the utilization graphs described above,

columns of plots correspond to a single experiment. The effects of the different data sets
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on the queue occupancies can be observed by comparing across rows. The virtual queue

occupancies are obtained by simulating the queue for five random database passes.

The occupancies of the queue in the first row of Figure 6.20 are significantly different. This

row represents queues that have been prepared and are ready to send to the FPGAs (the

queue between SW thread one and two in Figure 6.16). Recall that Mercury BLASTN

compares each query to the entire database. The lower queue occupancy can be explained

by looking at the relative size of a the databases in the two experiments. Since experiment

1 has a much smaller database, there is less time to prepare each query per database

pass. This was an unexpected source of performance limitation in the Mercury BLASTN

architecture. If smaller database sizes are needed, the performance of the system can be

improved by optimizing this task or adding an additional query preparation thread.

The second and third rows show the calculated occupancies for the virtual queues A and B.

Since the workload is fairly evenly divided between FPGAs, the occupancies of A and B are

similar for all experiments. The virtual queues histograms all have a flat nature since the

enqueue rate is very high (e.g. copying from user-space into kernel buffers) and are drained

at a much slower but relatively consistent rate within the FPGA.

The bottom row of Figure 6.20 shows the occupancy of the results queue. The occupancy

of this queue is determined by the volume of results coming out of the FPGA as well as the

rate at which the software servers are able to process this data. While experiment 1 still

has a relatively low mean, there is a considerable tail on this histogram. This tail is due

to some queries of the experiment producing a very large number of ungapped alignments,

temporarily overwhelming the software server capacities. In other words, the output from

the FPGAs is much more bursty than in experiment 2. This burstiness is in no small part

due to the differences in base composition between a subset of the queries and the database.

High commonality in base composition can yield an increase in match rate out of the filter

stages (i.e., stages 1a, 1b, and 2).

Observing the queue inside the FPGA, the queue only backs up significantly on experiment

1, where it stays full most of the time. The utilization of stage1a.in in Figures 6.19(b)

and 6.19(d) confirm that the utilization of the input stream is lower that the other experi-

ments due to the FPGA servers slowing. This is due to data-dependent filtering behavior of

the algorithms executed in the servers filtering less data and filling the capacities of the on-

chip queues. Similar to the software queues, the two FPGAs have very similar occupancies

for each experiment.
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Figure 6.20: Software-only and virtual queue occupancy histograms.
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Figure 6.21: FPGA-only stage 1a to stage 1b queue occupancy histograms.

Overheads and Impact

Using TimeTrial to profile an application incurs some unavoidable overhead. We define

overhead as the amount of extra resources and communication that is utilized by the Time-

Trial system. Impact is the observable difference in runtime due to instrumentation. In

what follows, we quantify the the overhead and impact on Experiment 2.

The TimeTrial software instrumentation adds 100 MB (of 16 GB) of main memory overhead

to the FIFOs and aggregation functions in the agent. The agent utilizes 27% of one CPU

for Experiment 1 and 35% of one CPU for Experiment 2. Communication overhead is

primarily due to the software taps sending 46,912 enqueue and dequeue events to the agent.

Each event is 64 bytes leading to a total performance meta-data communication overhead

of 2.86 MB.

Table 6.1 shows the performance impact both in terms of elapsed wall clock time. Both ex-

periments show negligible percentage perturbation due to TimeTrial instrumentation. The

largest increase in run time was seen in Experiment 1, a marginal increase of approximately

4.16 minutes for a 3 hour experiment. All these results are considered an acceptable trade

off given the quality and amount of measured results.

The resource overhead of the FPGA agent is shown in Table 6.2. The utilizations for all

resource types are single-digit percentages for calculating 30 different application measure-

ments. This is acceptable as long as the application leaves enough free resources for the

agent to fit. The instrumentation has no effect on the clock rate for applications clocked
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Table 6.1: Performance impact of instrumenting Mercury BLASTN with TimeTrial.

Experiment Elapsed Time Elapsed Time % Diff.
Number no Instr. (sec) w/Instr. (sec)

1 11244 11494 2.2

2 3464 3517 1.5

under ∼275 MHz. The FPGA agent sends a record 11,056 bytes long containing all of its

performance measurements at the end of each frame. There are 11,728 frames resulting in

an extra ∼124 MB of data crossing the PCI-X bus (out of 4.2 TB over the course of the

run).

Table 6.2: FPGA agent resource utilization.

Resource Type Flip Flop LUT BRAM DSP48 fmax

Available 98,304 98,304 240 96 ∼300 MHz

Used 5,164 6,980 2 1 275 MHz

Utilization (%) 5.3 7.1 0.8 1.0 N/A

We quantify the impact of instrumenting BLASTN by first running an experiment without

instrumentation followed by the same experiment with instrumentation. We record the

percent difference in user time, system time, wall clock time using the Linux time command.

User time increased by 3.1%, system time by 8.1% and wall clock time (total run time) by

0.2%. The increases in user and system time reflect the processor cycles dedicated to

monitoring, while the very modest increase in total run time reflects the minimal impact

that TimeTrial imposes on the application.

Trying to decipher the dynamic performance behavior of Mercury BLASTN without Time-

Trial is a very challenging task. Ad ad hoc performance monitoring approaches attempted

before TimeTrial yielded very limited insight into the performance at best and completely

ambiguous results in many other cases. TimeTrial enabled whole-application performance

profiling of Mercury BLASTN, providing precisely the information the developer needs on

multi-terabyte data sets in an automated fashion.
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6.2.5 Measuring Latency in Mercury BLASTN

To illustrate the capabilities of TimeTrial to measure latencies, we instrumented Mercury

BLASTN with different taps, some deployed on the FPGA and others on the processors.

Figure 6.22 shows the deployment of the application.

SW Thread 1 SW Thread 2FPGA

Timezone 1 Timezone 1Timezone 2

Figure 6.22: Deployment of Mercury BLASTN on a diverse computer. Dashed lines and
circles represent the locations of TimeTrial instrumentation taps.

Mercury BLASTN has several timezones. On the processor portion of the application, there

is one timezone per processor core. However, we utilize the cycle-counter synchronization

feature of modern Linux kernels which synchronizes the cycle counters across multiple cores

and multiple chips. This leaves us with effectively one timezone (+/- 1000 processor cycles)

on the processor portion of Mercury BLASTN. The FPGA portion of Mercury BLASTN is

currently configured so that all the stages run in the same clock domain. When Mercury

BLASTN is configured with multiple clock domains, TimeTrial provides one cycle counter

per domain. In our configuration, however, this leaves us with two distinct timezones.

When data is transferred between timezones, TimeTrial must employ its notion of virtual

time to normalize the performance results.

In Mercury BLASTN, the virtual queues to and from the FPGA previously had unknown

latency characteristics for data flowing through the application. The two virtual queues are

shown in Figure 6.16 as single queues going to and from the FPGA. Using TimeTrial, four

different latencies of interest were measured for each pass of the database. First, the latency

for sending the first DNA base from the processor to the FPGA was recorded. Referring

to Figure 6.16, this corresponds to the latency of the first datum from T1 to T2. One

would expect this to be the minimum latency scenario since the queueing delay should be

minimized due to empty queues. The latency from T1 to T2 of the last DNA base in the

database stream from processor to FPGA was also measured. In a similar manner, the

latency of the first result returned from the FPGA to the processor (i.e., from T3 to T4)

was also measured. Finally, the latency of the end of stream marker from T3 to T4 was
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measured. All four of these measurements require crossing timezones into a common virtual

time.

The timezone properties of the experimental system are as follows. AMD Opteron processors

running at 2.311 GHz are used as for all the cores. The processor cycle counts are converted

to virtual time (i.e. nanoseconds) using a 0.43253 ns/cycle scale factor. FPGA cycle counts

also need to be transformed from a 133 MHz clock rate. As a result, sP = 0.43253 ns/-

cycle and sF = 7.5 ns/cycle. The value of bF was experimentally determined using the

methodology presented in Chapter 4.

Figure 6.23 shows box-whisker plots of the above described latency measurements to com-

pare each of 1000 48 kilo-base sequences against a 900 mega-base sequence. The latency

profiles vary significantly between the four measurements. The first measurement has con-

sistently low latency due to the virtual queue being empty when the first datum is sent.

The second measurement has much higher latency because of the added delay from the

filled virtual queues. The data-dependent flow throttling from the FPGA application adds

to the spread in the latencies. The third measurement has the most variability of any of the

measurements because the filtering nature of Mercury BLASTN which frequently does not

produce hits for a large portion of the stream. The last datum returned from the FPGA

has consistently low latency in large part because there is never significant data volume

returning to the processor from the FPGA for this data set. As a result, this virtual queue

is never full and the end of data marker that follows the last datum ensures that all the

buffers in the path are immediately flushed.

First datum 
T1->T2

Last datum 
T1->T2

First datum 
T3->T4

Last datum 
T3->T4
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Figure 6.23: Four latency measurements across virtual queues in Mercury BLASTN. The
box-whisker plots indicate quartiles (within 1.5 inter-quartile range) and outliers.
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6.2.6 Deadlock Avoidance in Mercury BLASTN

In yet another context, TimeTrial was used to evaluate the impact of different algorithms

for avoiding deadlock. The algorithms were implemented in Mercury BLASTN and the

additional communication overheads were measured and compared to predicted values.

While the high-level picture of the Mercury BLASTN pipeline is a simple tandem sequence

(see Figure 6.14), the actual topology has a split-join structure. Li et al. [71] analyzed

application topologies of this class that include filtering in one or more compute nodes (as

is the case for Mercury BLASTN) and showed conditions under which these applications

can deadlock if the buffers between compute nodes are bounded. They also provided three

algorithms that provably avoid deadlock through the use of dummy messages, messages

that do not have a data payload, but are used exclusively for deadlock avoidance purposes.

This work was extended in [72], using TimeTrial to measure the required dummy message

counts for Mercury BLASTN for all three algorithms for a variety of assigned buffer sizes.

Figure 6.24 illustrates the split-join topology that is present in Mercury BLASTN. Table 6.3

shows the dramatic implications for dummy message counts required to avoid deadlock as a

function of the algorithm chosen and the total buffer size. Over seven orders of magnitude

variation are seen in the message counts.

1a

1b

2

seed
matches

database

w-mers

Figure 6.24: The first two stages of Mercury BLASTN [72].

Table 6.3: Measured dummy message counts from stage 1a for Mercury BLASTN.

Dummy message count

Total buffer size (msgs) 32 256 2048

Algorithm 1 787× 109 787× 109 787× 109

Algorithm 2 25× 109 3× 109 0.4× 109

Algorithm 3 36× 109 36× 106 72, 000
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6.3 Chapter Summary

In this chapter we utilized TimeTrial to measure the performance of two applications.

The first application, a Monte Carlo based solver for Laplace’s equation was configured in

two different topologies. The fist had two independent walk blocks operating in parallel.

Measurements were made and the bottleneck was determined to be in the Split block. The

implementation of this block was optimized and a performance gain was realized. The next

bottleneck was determined to be in the Walk blocks. A new topology was generated that

used 8 Walk blocks. This application was instrumented and achieves a 13.75× speed up

over the original implementation. TimeTrial now shows the bottleneck to once again be in

the Split block.

The second application described was Mercury BLASTN. First, TimeTrial was used to

provision an FPGA queue. Then taps were inserted into every stage of the pipeline, queues

occupancies were measured, and the bottleneck was shown to lie in stage 1b. Two different

experiments were measured, showing unique performance profiles for each. In experiment

1, the bottleneck lies in the I/O bus transferring data to the FPGAs. In experiment 2, the

bottleneck is shown to be stage 1b. The exact cause of this bottleneck was determined by

exposing finite state machine state signals to the top level port and profiling the time spent

in each state. We learned that the next step to higher performance is to increase the size

of the hash tables in the SRAM to better utilize the resources on the FPGA board. The

overheads and impact of instrumentation were shown to be low. Note that this is but one

iteration of the optimization process; TimeTrial has been used to illuminate bottlenecks in

6 other instances not described here. To demonstrate capabilities to measure latency, the

latency of two virtual queues were measured and presented. Since Mercury BLASTN has

highly data-dependent performance behavior, significant variation in the wait times in the

queue were observed. Finally, TimeTrial was used to evaluate the overheads of different

deadlock avoidance technique, quantifying their impact on the application performance.

Overall, TimeTrial has proved extremely helpful for performance debugging of heteroge-

neous applications even in the cases where the instrumentation taps were added manually.

Currently, the manual instrumentation method has only been used by one developer (i.e.

me) to measure the performance of Mercury BLASTN as described previously. In this mode,

TimeTrial collects wholesale metrics after the initial taps are inserted (i.e. the only manual

part is adding taps for instrumentation) providing the same performance measurements

with a larger user overhead for adding new measurements. However, TimeTrial combined

with Auto-Pipe has been employed by several members of our research group on a large

number of heterogeneous applications. In each case, the user was able to successfully employ
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TimeTrial and interpret the results armed with only the documentation of the language and

a simple set of instructions. TimeTrial can also be used to empirically parametrize ana-

lytic models, providing a framework to explore the effects of candidate optimizations of an

application to determine future bottlenecks. Combined with Auto-Pipe, TimeTrial greatly

reduces the burden on the developer by providing an automated, straightforward path to

measure any number of performance aspects of an application.
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Chapter 7

Calibrating and Validating

Performance Models

Queuing theory has been used to model many systems, from simple single-server queu-

ing stations such as a bank teller to complex distributed software systems such as web

servers [22]. Here, we are interested in the use of TimeTrial to support model develop-

ment and use. We explore this question by investigating a Jacksonian queuing network

model of Mercury BLASTN deployed on a combination of CPUs and FPGAs. We com-

pare performance predictions from the model to empirical measurements from the executing

application.

The TimeTrial performance monitor is used to both calibrate and validate the performance

model. We calibrate the model by measuring the input arrival rate, the service rates for

each queuing server, and the branching probabilities in the queuing network topology. We

validate the model by predicting server utilizations and queue occupancies and comparing

the predictions to empirical measurements on two distinct input data sets. The material in

this chapter is published in [35] and reflects a collaboration between the co-authors.

7.1 Performance Models for Streaming Applications

Figure 7.1 shows an example streaming application with two stages. If two compute re-

sources are available, the two stages can be mapped to distinct resources and pipelining can

be exploited to achieve parallel execution.

There are two commonly used approaches to modeling the performance of applications of

this type: mean value models and queuing models. In a mean value model, the performance

of each stage (e.g., achievable throughput, execution time for each input data element,
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Figure 7.1: Streaming data application with two pipelined stages.

etc.) is characterized by its mean. Assuming the stages have been characterized by their

individual throughput (inverting the per-input execution time if that is what is provided),

the modeled throughput achievable by the entire pipeline is simply the minimum throughput

achievable by each stage.

In a queuing model, the characterization of stage performance is expanded to include not

only a mean but also a distribution. In this case, the “service rate” of the stage is mod-

eled stochastically (commonly with a parametrized distribution) and the queuing of data

elements in front of each stage is also included in the model. Figure 7.2 illustrates a 2-stage

queuing network model of the 2-stage pipelined example application above. In the standard

notation of queuing networks, λ represents the mean input arrival rate, µ1 represents the

mean service rate for stage 1, and µ2 represents the mean service rate for stage 2.

λ μ1 μ2

Figure 7.2: Queuing network model of pipelined application.

Inputs to a queuing model might include the mean service rates for each stage, and the

queuing model then could be used to predict the queue occupancies and/or server utiliza-

tions for a range of possible input arrival rates. Queuing models of this type have been

used to describe web servers [22], cyclic SPMD (single program, multiple data) applications

executing on MIMD platforms [30], a long-lived transaction processing system for database

management systems [73], stream-based sorting [89], as well as Mercury BLAST [34, 35].

Our purpose in this chapter is to investigate the use of TimeTrial for calibrating and val-

idating models of this type. By calibration, we mean the extraction of model parameters

that can be input into the performance model. In the example above, the input arrival rate

and the two service rates would be considered model input parameters. We wish to measure

them using TimeTrial so they can be provided as inputs to the performance model. The

user can query these values from TimeTrial with queries of the form:

measure mean rate at Stage1.in
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measure mean rate at Stage1.in when

(occupancy at Stage1.in > 0 & !backpressure at Stage1.out)

measure mean rate at Stage2.in when

(occupancy at Stage2.in > 0 & !backpressure at Stage2.out)

The first measure statement yields λ and the second two yield µ1 and µ2.

By validation, we mean the comparison of some prediction made by the model with mea-

surements made by TimeTrial. This enables the model user to gather empirical evidence to

assess the quality of the model. In our example, the queue occupancies and utilizations are

readily monitored by TimeTrial:

measure mean occupancy at Stage1.in

measure mean occupancy at Stage2.in

measure mean util at Stage1.in

measure mean util at Stage2.in

While the above statements ask for the mean values of the queue occupancies, the user could

alternatively ask for the histograms of the queue occupancies. In many queuing models,

the full distribution of queue occupancy is predictable in the theory, and a Q-Q plot or

Chi-square test could be used to compare the empirical histogram collected by TimeTrial

with the theoretical distribution predicted by the queuing model.

The above concepts are next made more concrete by calibrating and validating a queuing

model of the Mercury BLASTN application.

7.2 Modeling Mercury BLASTN

Here we focus on modeling Mercury BLASTN [19, 65], the accelerated BLASTN used in the

previous chapter. Mercury BLASTN’s three-stage pipeline is repeated in Figure 7.3 and a

brief review is given here. In the first FPGA stage, BLASTN detects seed matches, which

are exact substring matches of length 11 between the query and the database. Mercury

BLASTN divides this stage’s work into two parts: stage 1a, in which each database word

is checked against on-chip Bloom filters [15] built from the query to eliminate most non-

matching words, and stage 1b, in which the locations of matching query and database words,

if any, are identified using an SRAM-based hash table.
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Figure 7.3: Mercury BLASTN.

Seed matches are forwarded to the second FPGA stage, ungapped extension. This stage

checks whether each seed match is part of a larger ungapped alignment, i.e. a region in

which the query and database differ by a small number of character substitutions. Ungapped

alignments passing this stage are forwarded to the third stage, gapped extension, which runs

in software. Gapped extension determines whether each seed match is part of an even larger

region with small edit distance, this time permitting character substitutions, insertions, and

deletions. Regions that pass this final test represent strong gapped alignments between query

and database, which are reported to the user.

7.3 Queuing Theory Performance Model

Figure 7.4 shows a queuing network used to model Mercury BLASTN. The queuing network

is Jacksonian [57, 58], meaning that the individual queuing stations are Markovian (Poisson

arrival process with rate λ, exponentially distributed service times with rate µ) and the

queues are assumed to have infinite capacity (an M/M/1 queuing model). It is worth

pointing out here that the actual application exhibits none of these properties. Arrivals are

not Poisson, service times are not exponential, and the physical queues are finite in capacity.

Whether or not the distributions are crucial is one of the relevant questions addressed in

this chapter.

Figure 7.4: Queuing model for Mercury BLASTN.

The model is nominally composed of 5 queuing stations: the PCI-X bus that interconnects

the processor and the FPGA, as well as BLASTN stages 1a, 1b, 2, and 3. Our true focus is

on the portions of the application that are executed on the FPGA, so we will concentrate

our attention on the servers modeling BLASTN stages 1a, 1b, and 2.
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Starting from the left, λin is the rate at which DNA sequence bases are consumed. They

are queued for delivery across the PCI-X bus and then delivered to stage 1a. As a result,

λ1a = λin. Stage 1a filters the stream of incoming bases into hits that are passed to stage 1b

(with probability p1a1b) or dropped (with probability (1− p1a1b)). Stage 1b generates seeds

that are passed to stage 2 (with probability p1b2) or dropped (with probability (1− p1b2)).
Stage 2 subsequently generates alignments that are either passed to stage 3 via the PCI-X

bus (with probability p23) or dropped (with probability (1 − p23)). The above relates the

set of λs by the following system of equations:

λ1a = λin

λ1b = p1a1bλ1a

λ2 = p1b2λ1b

λ2out = p23λ2

λ3 = λ2out.

Using classic results from queuing theory [62], the utilization for each server i is

ρi = λi/µi,

the mean queue occupancy for queue i is

NQ,i = ρ2i /(1− ρi),

and the probability of n or more elements in station i is

Pi[N ≥ n] = ρni .

7.4 Model Calibration and Validation

We use the TimeTrial performance monitor to make empirical measurements on the execut-

ing system. To calibrate the queuing model, we use TimeTrial to measure the input arrival

rate (λin), the service rates of stages 1a, 1b, and 2 (µ1a, µ1b, and µ2), and the branching

probabilities (p1a1b, p1b2, and p23). To validate the queuing model, we use TimeTrial to

measure the server utilizations of stages 1a, 1b, and 2 (ρ1a, ρ1b, and ρ2) and the queue
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occupancies of the queues into stages 1b and 2 (NQ,1b and NQ,2). To complete the valida-

tion, we compare the empirically measured server utilizations and queue occupancies to the

predictions made by the model.

Each of the above measurements is made for 2 distinct test cases. The runs are as follows:

• Run 1: The first data set is the human chromosome 22 (from build 19 of the human

genome) divided into 1,134 65,400-base segments as the query. The database consists

of the 9th build of the mouse genome (2.7 GBases).

• Run 2: The second data set consists of comparing all the non-mammal vertebrate

mRNA split into 8,608 65,400-base segments as the query. The queries were searched

against all the mammal mRNA in the NCBI RefSeq repository (791 Mbases) as the

database.

Table 7.1 gives the model inputs, while Table 7.2 provides a comparison between model

predictions and empirical measurements. Note that the units for the service rates vary as

one moves down the pipeline. Where needed, appropriate units conversions are incorporated

into the model (e.g., DNA bases are encoded as 4 bits per base, so one byte of data transfer

across the PCI-X bus delivers 2 bases to the input of stage 1a). In addition, the service

rate for stage 1b is a non-linear function of whether or not the external memory port is

saturated. Additional details of the model are described by Dor in [34].

Table 7.1: Input parameters to queuing model.

Parameter Value for Value for
Run 1 Run 2

λin 900 MB/s 720 MB/s

µPCI 1 GB/s 1 GB/s

µ1a 2.1 Gbases/s 2.1 Gbases/s

µ1b 130 Mseeds/s 50 Mseeds/s

µ2 133 Maligns/s 133 Maligns/s

p1a1b 0.018 0.035

p1b2 0.88 0.76

p23 0.0002 0.0004

Starting with the server utilization results, we observe that there is a close match in virtually

every case between the model predictions and the empirical measurements. This is not

surprising, as the server utilizations are generally based primarily on mean job flow rates and

are fairly insensitive to the distributions. This implies that the distributional assumptions

present in the M/M/1 queuing models will not inordinately impact the quality of the model.
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Table 7.2: Model predictions vs. empirical measurements.

Parameter Model Empirical Error
Prediction Measurement

Run 1

ρ1a 0.84 0.85 0.01

ρ1b 0.25 0.23 0.02

ρ2 0.21 0.21 0

NQ,1b 0.08 approx. 0 0.07

NQ,2 0.06 1.2 1.1

Run 2

ρ1a 0.68 0.68 0

ρ1b 0.999 0.93 0.07

ρ2 .29 .29 0

NQ,1b 7500 580 6900

NQ,2 0.12 1.7 1.6

Turning to the queue occupancies, for 3 of 4 cases we again have a very close match between

the model predictions and the empirical measurements. The one significant discrepancy is

for the queue associated with stage 1b in run 2. Here, the high server utilization indicates

that this server is the performance limiting bottleneck in the application. The physical

queue is of length 600 entries, so the empirical queue occupancy cannot grow larger than

that. The model predicts a much larger queue occupancy. Both the model and the empirical

results are indicating that the queue will fill; however, the infinite queue capacity in the

model is not capped by the length of the physical queue.

7.5 Chapter Summary

Here we have illustrated the use of straightforward queuing models to describe the perfor-

mance of high performance streaming data applications and used TimeTrial to calibrate

and validate this model. In general, they do surprisingly well at predicting the performance

properties of the real application. Where there are discrepancies, the model can assist in

understanding those discrepancies. For example, in the actual system, there is backpressure

being asserted upstream of stage 1b due to the fact that the queue is full. While the notion

of backpressure doesn’t exist explicitly in the current queuing model, we can estimate it by

asking the model for the probability that the queue occupancy is greater than the actual
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capacity of the queue. For run 2 this gives us P1b[N ≥ 600] = 0.92, a likely event. Addi-

tional details on this proposed paradigm as well as its suitability for an M/M/1/K queuing

model can be found in [34].
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Chapter 8

Conclusions and Future Research

In this dissertation we have enabled developers to measure the performance of streaming,

heterogeneous systems through the design and implementation our performance debug-

ging tool, TimeTrial. We showed how TimeTrial can enable low-impact measurements

across FPGA and multi-core processors. The TimeTrial measurement language provides

a straightforward mechanism for developers to specify which aspects of a program are to

be monitored and in what way they are to be monitored. Through integration with the

Auto-Pipe system, developers can specify desired measurements and these measurements

are automatically added to the resulting program. TimeTrial was demonstrated measur-

ing two applications and providing helpful guidance where optimization efforts should be

focused.

We now return to the research questions posed in Chapter 1 and describe how the work pre-

sented in this dissertation addresses those questions. Questions 1 and 2 asked the following:

How can the performance of a distributed, streaming application be measured?
What aspects of performance should be measured?

How can the performance of an streaming application distributed across different
FPGA accelerators and processor cores be measured?

TimeTrial’s profiles of streaming applications focus on performance metrics that enable

a developer to find the location of the bottleneck in the system. These metrics include

throughput, latency or utilization. TimeTrial in its current form is able to measure proper-

ties of communication links and ports. Instead of deciding the specifics of what data should

be collected for the developer, TimeTrial enables the developer to choose from a broad

class of measurements to be included in the profile. To support heterogeneous application

measurements, TimeTrial deploys a monitoring agent that is responsible for collecting data

on each computation resource. The FPGA agents communicate the measurements back

115



to the software agent where a profile of the whole application is developed. Techniques to

measure the performance of such an application deployed on FPGAs and processor cores

were presented in Chapter 3.

Question 3 related to the ability to collect the desired information:

What data needs to be collected in order to answer the above questions? Can
this data be collected in a low-impact manner and still satisfactorily answer
those questions? What techniques should be used?

TimeTrial monitors events on communication channels. By time-stamping and counting

these events, the TimeTrial agents are able to transform these event streams into perfor-

mance metrics. TimeTrial supports metrics that are both relevant to performance and

relatively easy to compute. To further reduce impact, the developer can choose which met-

rics, how they are summarized and what portions of the application to measure. By letting

the developer select the metrics of interest, overhead and impact can be reduced compared

to measuring all metrics all the time. The results from profiling micro-benchmarks and real

heterogeneous applications show that this approach has minimal impact on the executing

application.

Dealing with pieces of the system that are not directly measurable, question 4 asked:

How does one build a profile of resources that have limited inherent visibility
(e.g. system buses)?

A specific example of such a resource, a PCI-X bus, was shown to be able to be profiled with

TimeTrial. The approach taken was to measure the pieces of the system that were available,

measure properties of the traffic on the ingest and egress of the bus, and use a stochastic

simulation of the bus to recreate the queue occupancy. This technique was validated against

a micro-benchmark that allowed the true queue occupancy to be replayed. This approach

proved to give good qualitative insight into the performance of that resource. Finally, a

mechanism was described that allowed the developer to test when the model assumptions

had failed and the simulation result should be discarded.

The final question relates to whether TimeTrial can be used to support modeling:

How does one use the collected performance data to calibrate or validate per-
formance models?
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We addressed this question by developing a strategy to use TimeTrial to calibrate a per-

formance model and then validate its performance on an application. We illustrated its

effectiveness validating a straightforward queueing model. More robust models could be

handled in a similar manner.

In conclusion, TimeTrial provides an automated measurement system for understanding the

runtime performance of streaming, heterogeneous applications with little impact on those

applications.

8.1 Future Research

A number of challenges remain to be addressed and we list some of the more interesting

ones here.

Extend support to GPUs. Supporting GPUs would allow measurement of applications

that utilize FPGAs, GPUs and multi-core processors together. The design approach in

TimeTrial makes it relatively easy to address GPUs. A new TimeTrial agent would have

to be written to support the new architecture. Then, the agent could be deployed on each

GPU in a similar manner to the software or FPGA agents and metrics could be computed

online using a subset of GPU cores.

Implement conditionals in the TimeTrial compiler. An extension of the current

implementation is enabling the Auto-Pipe compiler to support conditional measurement as

well as assert statements. Doing so would open up opportunities for more optimizations

when adding instrumentation. For instance, adding online support for assertion checking

would allow the TimeTrial system to further lower its impact since less data would have

to be logged and communicated between computational resources. In addition, conditional

measurements could be used to calibrate a performance model more precisely and assertions

could validate the model under different circumstances.

Improve fidelity of virtual queue measurements. For more detailed virtual queue

profiling, one might develop a state-space Markovian model of Figure 5.7’s tandem queueing

network with a bounded capacity queue between the two servers. This has the potential to

provide an analytic solution, which might obviate the need to perform stochastic simulation.

Even if a closed-form solution to the analytic model is unavailable, a numeric solution can be

less expensive than a stochastic discrete-event simulation run. Alternatively, approximate

solution methods for the bounded capacity queue with upstream blocking do exist (see,
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e.g., [66] and [91]), which can also be less expensive to compute than simulation. Further

extensions might include automated queue modeling and validation of the model through

TimeTrial measurements.

Automate performance model generation. An interesting open research area is auto-

matically generating lightweight, empirically-parametrized performance models. TimeTrial

can already collect much of the relevant parameters. By integrating it with a model genera-

tor, developers could spend less time developing their own models and more time analyzing

the model and optimizing the application.

Automate bottleneck detection. Extending TimeTrial to automatically find the per-

formance limiting segments of the application could be useful. One could approach this by

implementing some techniques described in the research literature.

Extend automated profiling targets. Currently, TimeTrial focuses on profiling an

application through its communication. With a non-trivial amount of implementation effort,

it could be extended to measure the performance within blocks. This is non-trivial since

the vision of using a co-ordination language is to use the designers preferred language for

block implementations. Hence, many languages would have to be parsed and instrumented

for this to become a reality. Another approach for software (and potentially GPU) blocks

is to integrate the analysis from available tools (e.g. TAU) into TimeTrial’s performance

profile.
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technique utilizing instruction streams. ACM Trans. Model. Comput. Simul., 17, January

2007.
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