
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Effects of the aquatic to terrestrial habitat ratio on an amphibian Effects of the aquatic to terrestrial habitat ratio on an amphibian 

predator and its prey predator and its prey 

Amber Kramer 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Kramer, Amber, "Effects of the aquatic to terrestrial habitat ratio on an amphibian predator and its prey" 
(2011). All Theses and Dissertations (ETDs). 602. 
https://openscholarship.wustl.edu/etd/602 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/602?utm_source=openscholarship.wustl.edu%2Fetd%2F602&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

WASHINGTON UNIVERSITY 

Division of Biology and Biomedical Sciences 

Evolution, Ecology, and Population Biology 

 

 

Dissertation Examination Committee: 

Tiffany Knight, Chair 

Allan Larson 

Kenneth Olsen 

Barbara Schaal 

Kevin G. Smith 

Alan Templeton 

 

 

 

 

EFFECTS OF THE AQUATIC TO TERRESTRIAL HABITAT RATIO ON AN 

AMPHIBIAN PREDATOR AND ITS PREY 

By 

Amber Burgett Kramer 

 

 

 

 

A dissertation presented to the  

Graduate School of Arts and Sciences  

of Washington University in  

partial fulfillment of the  

requirements for the degree  

of Doctor of Philosophy 

 

 

 

 

December 2011 

Saint Louis, Missouri 



ii 

 

ABSTRACT OF THE DISSERTATION 

Effects of the aquatic to terrestrial habitat ratio on an amphibian predator and its prey 

by 

Amber Burgett Kramer 

Doctor of Philosophy in Evolution, Ecology and Population Biology 

Washington University in St. Louis, 2011 

Professor Tiffany Knight, Chairperson 

 

This dissertation explores the effects of varying the composition of aquatic and terrestrial 

habitats in a landscape (the aquatic to terrestrial ratio) on amphibians that use both the 

aquatic and terrestrial habitats during their lives. In Chapter 1, I first used meta-analysis 

and simulations to demonstrate that as the longevity of an amphibian increases, the 

elasticity of the population growth rate to perturbations in the aquatic (larval) habitat 

decreases.  In Chapter 2, I examined the abundance of larvae of a long-lived amphibian, 

Ambystoma maculatum, across landscapes that varied in their aquatic to terrestrial ratios 

and found that larvae of this species were more dense in landscapes where aquatic habitat 

was scarce relative to terrestrial habitat. Because larval A. maculatum are top predators, 

they had more dramatic effects on the community composition of their prey in these 

isolated habitats, suggesting a result opposite to traditional metacommunity theory. In 

Chapter 3, I monitored the population level response of two common prey species, 

tadpoles of grey tree frogs (Hyla versicolor) and Blandchard‘s cricket frogs (Acris 

crepitans) to the presence and absence of predatory laval A. maculatum in large-scale 

experimental ponds.  These prey species have very different longevities, and therefore 
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differential use of the aquatic and terrestrial habitats. Population-level results suggest 

that, as expected, A. maculatum had a larger influence on the population dynamics of the 

shorter-lived A. crepitans than on H. versicolor. Finally, in Chapter 4, I found that the 

abundance of aquatic habitat in an area influences the ability of A. maculatum females to 

discern between oviposition sites of varying qualities. Studies of declining populations of 

amphibians typically focus on aquatic habitat and factors that affect larval survivorship 

and growth therein. However, this dissertation highlights the importance of both the 

aquatic and terrestrial habitats, and the ratio between the two, to overall population 

dynamics of amphibian species.  These results will become more important as 

anthropogenic habitat destruction not only leads to an absolute loss of habitat, but also 

potentially alters the ratio of aquatic to terrestrial habitats on which amphibians depend.  
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Introduction: 

Many scientists consider habitat destruction the single greatest threat to global 

biodiversity (Hoekstra et al. 2005, Brooks et al. 2006).  Loss of habitat can change the 

shape and isolation among remaining habitats, and thus can have dramatic consequences 

on community dynamics (Gibbs 2000, Fahrig 2003). Less appreciated, however, is that 

habitat alterations may change the ratio of distinct habitat types available in a landscape. 

For example, when wetlands are drained, this not only decreases the amount of aquatic 

habitat in an area, but also decreases the ratio of aquatic to terrestrial habitats. For 

organisms with ontogenetic habitat shifts, in which two distinct habitats are required 

during the life cycle (Wilbur 1980, Werner and Gilliam 1984), the ratio of distinct habitat 

types within a landscape may have dramatic consequences for population dynamics as 

well as for community interactions in either habitat type.  

Most amphibians exhibit a classic complex life cycle in which most larvae grow 

and develop in aquatic habitats and metamorphose to spend their juvenile and adult life 

stages in terrestrial habitats (Wilbur 1980). As a result, amphibians may be particularly 

vulnerable to anthropogenic perturbations such as habitat destruction, due to their 

reliance on both aquatic and terrestrial habitats (Beebee and Griffiths 2005), and this may 

contribute to the rapid declines that have been observed over the past several decades 

(reviewed in: Collins and Storfer 2003, Stuart et al. 2004). Additionally, amphibians 

occupy a wide range of trophic positions within both aquatic and terrestrial food webs, 

ranging from primary consumers to top predators (e.g.: Holomuzuki et al. 1994, Wellborn 

et al. 1996, Altig et al. 2007), and thus habitat perturbations may have large consequences 
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not only for amphibian population dynamics but for aquatic and terrestrial communities 

as well (Hamer and McDonnell 2008, Vaugh 2010).  

The overall goals of this dissertation are explicitly to examine the role of complex 

life-cycles on amphibian populations, their responses to changes in habitat ratios, and 

their influences on and within food webs.  As a first step, in Chapter One, I sought to 

identify the population-level responses of amphibian species with varying longevities to  

aquatic and terrestrial habitats. As has been shown by meta-analysis of numerous other 

taxa (Silvertown et al. 1996, Heppel 1998, Sæther and Bakke 2000, Heppel et al. 2000, 

Forbis and Doak 2004), I found that as the longevity of an organism increases, the 

population growth rate (λ) becomes less sensitive to vital rates of early life stages (e.g., 

larvae in the aquatic habitat) and more sensitive to survivorship in later life stages (e.g., 

juveniles and adults in the terrestrial habitat). This pattern may be particularly useful in 

developing conservation plans for declining or threatened populations because it can 

focus conservation efforts on the habitat that is most critical for population growth of the 

species. 

Based on the pattern presented in Chapter One, I predicted that changes in the 

number of aquatic habitats (e.g., breeding ponds) relative to terrestrial habitats would 

have little influence on the population growth of long-lived amphibian species.  Instead, 

as the ratio of aquatic habitat goes down, the density of long-lived species breeding in 

those habitats should increase. I tested this prediction in Chapter Two by examining how 

the availability of aquatic and terrestrial habitats in a landscape influences the abundance 

of a long-lived amphibian, the spotted salamander (Ambystoma maculatum), in breeding 

ponds, as well as the consequences of varying densities of this aquatic predator on the 
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rest of the food web. In 2007-2008, I surveyed 39 ponds throughout eastern Missouri and 

found that isolated ponds with low aquatic: terrestrial habitat ratios (ATR) had higher 

densities of A. maculatum larvae than ponds that were more connected (high ATR), a 

pattern opposite to that expected from most metapopulation/metacommunity expectations 

(see Background Information: Principles of metacommunity theory section below). 

Furthermore, high densities of predatory larval A. maculatum reduced the species 

richness of the aquatic community in ponds with low ATR. 

Many other aquatic species, including several of A. maculatum’s preferred prey, 

have a complex life cycle (e.g., many insects and other amphibians). Larval A. 

maculatum often prey upon tadpoles of the grey treefrog (Hyla versicolor) and 

Blandchard‘s cricket frog (Acris crepitans) in Missouri due to the phenological overlap 

between tadpole size/vulnerability and larval A. maculatum development. However, these 

two species differ in their life history strategies: Acris crepitans lives for approximately 

one year and could be considered an annual species (McCallum et al. 2011), whereas H. 

versicolor can live for up to 7 years, with multiple opportunities for reproduction over the 

course of its life (Snider and Bowler 1992, Wright and Wright 1995). In Chapter Three, I 

empirically examined the effects of larval A. maculatum predation on the population 

dynamics of H. versicolor and A. crepitans. I projected the population dynamics of both 

species in 12 experimental ponds at Tyson Research Center in response to the presence or 

absence of larval A. maculatum using capture-mark-recapture techniques and matrix 

population models. As expected, predation is projected to decrease population growth 

rate of both species.  This suggests that predation in the aquatic habitat is an important 

driver in population dynamics of both species.  In addition, two unexpected results 



5 

 

emerged.  First, I expected that A. crepitans populations would be more affected by 

predation than H. versicolor due to its shorter lifespan and higher elasticity to tadpole 

survivorship.  However, decreases in population growth rate due to predation were 

similar for the species, likely because H. versicolor tadpoles experienced higher 

predation rates. Second, changes in population size observed across the sampling interval 

did not match matrix projections.  This is likely because vital rate estimates for matrix 

population models overestimated predation effects or because of the low power to detect 

differences between treatments in population size.  

The longevity of amphibian species may also interact with the ratio of habitat 

availability across landscapes to influence female use of aquatic habitats for oviposition. 

Female amphibians often select oviposition sites based on the presence or absence of 

conspecifics, predators, and resources in addition to abiotic factors such as hydroperiod 

or soil characteristics (Resetarits and Wilbur 1989, Kats and Sih 1992, Kiesecker and 

Skelly 2000). However, one main assumption of most oviposition site selection studies is 

that females have abundant aquatic habitats to choose from and are able to make 

oviposition decisions based on the variability of the aquatic habitat (Spieler and 

Linsenmair 1996, Rudolf and Rodel 2005).  In Chapter Four, I examined the use of 

marginal aquatic habitats (aquatic habitats that did not allow the successful 

metamorphosis before drying completely) by female A. maculatum in landscapes with a 

range of aquatic habitat availabilities. When aquatic habitat was scarce, A. maculatum 

oviposited more frequently in marginal aquatic habitats relative to when aquatic habitat 

was widely available at a site  
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Overall, the body of research in this dissertation highlights the important 

implications of variation in the ratios of habitat types across a landscape. Studies of 

declining amphibian populations typically focus on factors that affect larval survivorship 

and growth in the aquatic habitat. Yet, there is increasing evidence of the importance of 

terrestrial habitat for amphibians (e.g., Biek et al. 2002, Semlitsch 2002, Vonesh and de 

la Cruz 2004). Understanding how amphibians will respond to different types of habitat 

destruction (e.g., deforestation, draining of wetlands) requires considering the entire life-

cycle of amphibians and the ratio of aquatic and terrestrial habitats in landscapes within 

which amphibian populations are embedded. Further, variation in landscape context can 

cascade to influence other members of the community. 

Background information 

Demographic matrix modeling 

 A central focus of this dissertation examines how populations respond to habitat 

ratios differently. I used demographic matrix modeling in chapters 1 and 3 (and 

application of these models in chapters 2 and 4), to determine the impacts of 

perturbations to amphibian populations both through simulations and experimental 

manipulations. Demographic matrix models take the form:  

Nt+1=A(Nt) 

Where Nt  is a vector representing the abundance of individuals in each stage class of the 

population at time t, while Nt+1 is a vector indicating the abundance of individuals in each 

stage class the next year. A is a matrix containing elements (aij), which indicate the 

survival rates of particular stage classes of individuals and their transition rates between 

stages, in addition to the fecundity of reproductive stage classes (Caswell 2001). 
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Properties of the demographic matrix A are useful for determining how populations 

might respond to perturbations. For instance, the dominant eigenvalue of A, λ, represents 

the population growth rate, where λ >1 means the population is increasing and λ<1 

indicates a declining population. Additionally, elasticity analysis of the demographic 

matrix is a useful tool in determining how small perturbations in particular life stages can 

influence the population growth rate, λ. The elasticities of particular vital rates (eij) can be 

calculated using the equation (de Kroon et al. 1986): 

 
   

   

 
 

  
    

 
       
         

 

Demographic matrix modeling is thus a useful tool for exploring the potential population 

level impacts of particular perturbations on amphibian populations and is therefore a 

critical tool used throughout my dissertation.  

Principles of metacommunity theory 

A metacommunity is a network of local communities that are linked through the 

dispersal of organisms (Wilson 1992, Leibold et al. 2004). Often, metacommunities are 

thought to represent a series of habitat patches, in which the area between patches is 

considered matrix habitat and is inhospitable for individuals, therefore organisms only 

disperse through the matrix habitat, but do not spend any length of time in the matrix. 

There are four main theoretical frameworks of metacommunity theory that look to 

explain the mechanistic processes that lead to patterns of species distributions within a 

metacommunity. They are patch dynamics, species sorting, source-sink, and neutral 

model frameworks (Leibold et al. 2004). Although these frameworks lead to many 

explanations for how species are distributed within a metacommunity, there are a several 
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patterns that emerge in regards to predator and prey species richness, which are 

particularly relevant to this dissertation. 

Metacommunity theory predicts that increases in the isolation of habitats within a 

metacommunity will typically alter patterns of biodiversity and composition (reviewed in 

Saunders et al. 1991, Cadotte 2006). Isolation of a habitat generally reduces the overall 

species richness and diversity of that patch, while highly connected patches within the 

metacommunity often have higher species richness and diversity (Cadotte 2006).  

However, predators are thought to be more sensitive to habitat isolation than their prey 

(Terborgh et al. 2001, Holt and Hoopes 2005, Holt 2009, Chase et al. 2010). This is often 

attributed to several common features of predator species, in particular their lower 

population sizes, which increases the likelihood of local extinctions. In habitats that are 

isolated within the metacommunity, it is more difficult for predators to thus re-colonize 

isolated habitats once extinctions occur, leading to the observed pattern of decreased 

predator diversity of isolated habitats (Holt and Hoopes 2005). Consequently, it has been 

shown that a reduction in predator diversity and abundance in isolated habitats can lead to 

increases in particular prey species abundance and richness (Chase et al. 2010).  

However, one of the main tenets of metacommunity theory centers on species that 

live in distinct habitat patches and disperse amongst patches through an inhospitable 

matrix (Leibold et al. 2004). This general assumption of metacommunity theory may lead 

to predictions of predator and prey species distributions which are not necessarily 

accurate if the predator or prey do not respond to isolation in a similar way. Habitats that 

may be considered isolated by traditional metacommunity standards could actually be 

irrelevant if species are using both the patch habitat as well as the matrix habitat. For 
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instance, amphibians use both the terrestrial and aquatic habitat extensively throughout 

their life. Therefore, both the patch habitat and the matrix habitat are required by these 

species. When a predator species uses the ―matrix‖ habitat to a greater degree than the 

actual patch habitat, the ratio of these habitats could influence their density and thus food 

web interactions in each habitat, leading to inaccurate predictions of predator and prey 

interactions based on traditional metacommunity theory. In this dissertation, I develop 

and use a new framework for exploring the distribution of predators and prey within a 

metacommunity, which relies not on patch isolation but rather on ratios of habitat types 

within a landscape. Instead of classifying patches or habitats as isolated or connected as 

is done in traditional metacommunity studies, the ratio of available habitats would reflect 

not only the isolation of a habitat (with a skewed ratio towards the matrix habitat), but 

also the abundance of that habitat (additionally capturing the proportion of matrix habitat 

to patch habitat). Thus the new framework could provide a more accurate measure of 

―connectivity‖ for organisms that spend a proportion of their life in multiple habitats.  
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Abstract 

Given the rapid decline of amphibian species across the globe, matrix population models 

provide an important tool in understanding the relationship between environmental 

factors and population growth and identifying priorities for conservation.  Elasticity 

analysis can identify key life stages for which changes would be expected to produce the 

largest change in the population growth rate of a species. General patterns between the 

longevity of a species and it‘s elasticity to vital rates occurring in early vs. late life stages 

has been shown in numerous other taxa, but have not yet been demonstrated in 

amphibians. Further, since most amphibians spend early life stages in aquatic ecosystems 

and later life stages in terrestrial ecosystems, determining which vital rates most directly 

affect the population growth rate would allow habitat conservation priorities to be set. 

Here, we review 27 matrix population models for amphibians and show that as the 

longevity of an amphibian increased, population growth rates were less sensitive to 

changes in vital rates associated with the aquatic relative to the terrestrial habitat. In 

simulations that considered larger perturbations in vital rates, we found that over a range 

of increasing larval mortalities (using a realistic range found in studies that manipulate 

concentrations of the insecticide, carbaryl), the expected change in population growth 

rate was higher in species that were shorter-lived.  Similarly, with increasing levels of 

adult mortality (terrestrial perturbation), the expected population growth rate was lower 

in species that were longer-lived. When both aquatic and terrestrial perturbations occur, 

this pattern is more complicated for long-lived amphibian species, and depends on the 

intensity of mortality, as well as the ratio of available habitat types. Adding density 
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dependence in the larval stage did not qualitatively alter our predictions for short-lived 

amphibians, but it can lead to more unpredictable population-level responses of long-

lived species to habitat perturbations. The relationship between the longevity of an 

organismal amphibian species and the elasticity of its population growth rate to the 

aquatic or terrestrial habitat will be useful in situations where collecting demographic 

data is difficult.  
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Introduction  

Matrix population models are an important tool for population viability analyses 

(PVA) in conservation biology (Beissinger and McCullough 2002, Morris and Doak 

2002).  These models can be designed to capture key aspects of a population‘s biology, 

including stage- or age-structure, environmental stochasticity, and density dependence 

(Caswell 2001).  Matrix projections, such as the long-term rate of population growth (λ) 

and elasticity analysis are particularly useful in a conservation context.  For example, 

projections of population growth rates are often used to compare the relative health of 

different populations and different management scenarios, enabling more efficient 

conservation planning (Silvertown et al. 1996, Caswell 2001).  Elasticity analyses 

quantify how small changes in a vital rate would alter the population growth rate, and can 

focus conservation efforts on improving survivorship, growth and fecundity at stages in 

the life cycle that would most benefit the population (Mills et al. 1999, de Kroon et al. 

2000). 

Further, because standard methodology is typically employed to create and to 

parameterize matrix models, synthetic reviews are available for many taxa, providing a 

more general understanding of population dynamics of species and how these might be 

influenced by environmental perturbations (Silvertown et al. 1996, Heppel 1998, Seather 

and Bakke 2000, Heppel et al. 2000, Forbis and Doak 2004).  For example, 

comprehensive meta-analyses on birds (Seather and Bakke 2000, Stahl and Oli 2006), 

mammals (Heppel et al. 2000, Oli and Dobson 2003), fish (Mangel et al. 2006) turtles 

(Heppel 1998), and perennial plants (Forbis and Doak 2004) demonstrate that as the 

longevity of a species increases, the influence of fecundity and juvenile survivorship 
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decreases relative to adult survivorship. This relationship can be useful for informing 

conservation decisions when data on specific species may be limited. For example, in the 

absence of a more detailed demographic study, it might be reasonable to prioritize 

conservation efforts that increase adult survivorship for species that are extremely long-

lived. 

Over the last 20-30 years, amphibians have been declining at an unprecedented 

rate across the planet (Collins and Storfer 2003, Stuart et al. 2004). Several factors have 

been identified as possible agents of this decline including disease, climate change, UV-B 

radiation, agricultural run-off and pollution, and habitat destruction (e.g., Biek et al. 

2002, Collins and Storfer 2003, Blaustein et al. 2003, Beebee and Griffiths 2005, 

Cushman 2006). All of these agents have been found to have large effects on 

demographic vital rates; however, to date, their effects on amphibian population 

dynamics are largely unknown because studies typically do not measure vital rates across 

the entire life cycle.  It is possible that the same environmental perturbations will have 

large effects on some species and small effects on others if the population dynamics of 

the species differ in their sensitivity to changes in the vital rate that is perturbed (Biek et 

al. 2002, Vonesh and De la Cruz 2004). Given the concern for global amphibian decline, 

and the limited data available on amphibian population dynamics, a framework for 

understanding which types of species are most likely to be affected by which types of 

environmental perturbations is paramount.  

The elusive nature of adult amphibians makes demographic data on the adult life 

stages challenging to collect (Storfer 2003); however, there are demographic data 

available across the entire life cycle for 27 amphibian species (see Methods), allowing the 
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potential for a synthetic review of this taxon. If there are general patterns in the 

demography of amphibians with different longevities, as might be expected from studies 

on other taxa, then it may be possible to make synthetic statements about which 

environmental perturbations are likely to have the largest influence on the population 

dynamics of an amphibian species based on its longevity.   

 Unlike most other organisms that have been the subject of quantitative reviews, 

amphibians have a complex life cycle, which restricts larval life stages to aquatic habitats 

and juvenile and adult life stages to the terrestrial habitat. Therefore, it is possible to 

determine the elasticity of the population growth rate to perturbations in a particular 

habitat by summing the elasticity values for all life stages that occur in that habitat. This 

should help set conservation priorities for amphibian species for which limited 

demographic data is available by focusing efforts on the particular habitat that will have 

the biggest impact on overall population growth.  

The extreme variability seen in vital rate estimates for amphibian species creates 

an additional complication to establishing actual patterns between the longevity of a 

species and habitat elasticities. If the elusive nature of juvenile and adult amphibians 

leads to estimates in survivorship that vary substantially from actual adult survivorships, 

than the longevity of the species may be either over- or under-estimated when calculated 

using the matrix model (Forbis and Doak 2004). Therefore, independent estimates of 

species longevities obtained through skeletal-chronology, captive individuals, or mark 

recapture studies could allow for a comparison between actual age of amphibians and that 

obtained through the matrix model. If variations within vital rate estimates artificially 

inflated longevities that were calculated by the matrix model, we might predict that the 



20 

 

patterns observed between the longevity of species and habitat elasticities would not 

withstand such variation in vital rates. 

Although patterns of habitat elasticities and longevity of amphibian species have 

the potential to inform conservation decisions, elasticity analyses focus on how small 

perturbations in a particular habitat influence λ. However, factors suspected of 

contributing to global amphibian population declines are causing large reductions in vital 

rates. For example, adult habitats can be destroyed through fragmentation and loss of 

forested terrestrial habitats causing large reductions in juvenile and adult survivorship, 

while agricultural practices create chemical contamination that threatens larval amphibian 

survivorship (Blaustein et al. 2003, Hayes et al. 2006, Boone and Bridges-Britton 2006). 

Thus, it is useful to examine the population-level responses of amphibian species that 

differ in longevity to large perturbations in vital rates. Furthermore, many anthropogenic 

factors that cause large reductions in vital rates in a particular habitat are not the only 

perturbation facing amphibian species, with many factors occurring simultaneously (e.g., 

terrestrial habitat reduction due to agricultural lands paired with chemical contamination 

from runoff) (Collins and Storfer 2003, Sih et al. 2004). A modeling approach that 

examines how larger perturbations and multiple types of perturbations acting 

synchronously would provide a framework to examine how realistic anthropogenic 

effects may influence the population dynamics of amphibian species with different 

longevities.   

Many amphibian species have been shown to demonstrate strong density 

dependent larval survival in the aquatic habitat. Synthetic reviews of other taxa typically 

include only density-independent matrix models and do not examine whether density-
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dependence influences the relationship between longevity and elasticities to early life 

stages (but see Mangel et al. 2006). Through simulation modeling of an aquatic or 

terrestrial perturbation, we can examine how the relationship between longevity and 

habitat elasticity is affected by density dependence.  For example, density-independent 

models might predict that for short-lived species, aquatic perturbations would have the 

greatest effect on population dynamics. However, strong density dependent survivorship 

of individuals in the aquatic habitat could temper the importance of aquatic perturbations 

on population dynamics. Depending on the strength of density-dependence and aquatic 

perturbations, elasticity patterns and longevity may not show the same relationship for 

density-independent and density-dependent populations.  

The aim of this study is to conduct a synthetic review of amphibian matrix 

population models in order to achieve the following goals: (1) determine the relationship 

between amphibian longevity and elasticity of the population growth rate to changes in 

each demographic vital rate, and to all vital rates associated with the aquatic vs. terrestrial 

habitat; and (2) examine how robust this relationship is to larger vital rate perturbations 

and adding density-dependent larval survivorship. Finally, we address the utility of these 

findings for amphibian populations for which few demographic data are available, and 

the role of future studies on amphibian population dynamics.  

Methods 

We exhaustively searched the literature for studies containing amphibian matrix 

population models or studies that contained sufficient demographic data for us to 

construct a matrix population model. To do so, we used ISI Web of Science in 

combination with Google scholar, searching the following key words: amphibian matrix 
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model, amphibian population viability analysis, amphibian demography, amphibian 

modeling. We partitioned search results into papers that presented a full matrix model for 

an amphibian species, and those that contained sufficient demographic data for us to 

create a matrix model. Several amphibian species (n=6) had more than one matrix model 

present in the literature.  For three of those six species, Ambystoma jeffersonianum, Bufo 

calamita, and Rana catesbeiana, the studies used demographic rates drawn from similar 

sources [A. jeffersonianum: Mullin and Klueh (2009) used estimates of adult and juvenile 

survivorship from Williams (1973), while Rubbo et al. (2006) calculated most parameters 

within the context of the study;  B. calamita: Stevens and Baguette 2008 used Beebee et 

al. 1996 and others for parameterization of their model,; R. catesbeiana: Doubledee et al. 

(2003) used estimates of survivorships from Raney (1940) and Bury and Whelan (1984), 

while Govindarajulu et al. (2005) obtained estimates of survivorship ―from the 

literature‖], and thus the models behaved qualitatively similarly; in these cases, one 

model was randomly selected to represent the species within our meta-analysis. Two 

species (Bufo boreas and Rana aurora) had two models present in the literature, but the 

populations had very different population growth rates; here, both were left as separate 

populations in the meta-analysis. For the sixth species (Bufo marinus), both a native and 

an invasive population were studied, showing large discrepancies between population 

growth rates and stage-specific elasticities; these matrices were also kept separate for 

analyses. Density-dependent matrix models were presented for several species (Lampo 

and De Leo 1999, Trenham and Shaffer 2005, Vonesh and De la Cruz 2004), but since 

the majority of models in the meta-analysis were linear, we removed density-dependent 

functions for the first analyses synthesizing the relationship between longevity and 
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elasticities. To do so, we used the mean larval survivorship rate instead of the negative 

power function presented in Trenham and Shaffer (2005) and Lampo and De Leo (1999), 

and by setting the larval coefficient of density-dependence equal to zero for the species 

from Vonesh and De la Cruz (2004). Two additional studies (Pellet et al. 2006 and 

Sutherland et al. 2000) present results from matrix population models for amphibians, but 

do not contain data sufficient to recreate the matrix models; therefore we were unable to 

include these two species (Hyla arborea and Ascaphus truei) in the meta-analysis.  

For each species, we calculated the population growth rate (λ) and elasticity 

matrix using Matlab (Version R2009B) and standard methods described in Caswell 

(2001). We summed elasticity values for all life stages that occurred in the aquatic habitat 

(typically egg and larval survivorship) to determine one elasticity value for each species 

in the aquatic habitat. Likewise, we summed elasticity values for all life stages that 

occurred in the terrestrial habitat (usually juvenile and adult survivorship) to produce one 

elasticity value for the terrestrial habitat. Two species in the meta-analysis (Geocrina 

alba and G. vitellina) have a shortened aquatic stage which occurs in small puddles of 

water located in bromeliad leaves, however it can still be considered as a distinct habitat 

from that of adult frogs.  

We determined the longevity of each species from the density-independent 

matrices using methods described in Forbis and Doak (2004). For each species, we set the 

reproductive rates to zero and estimated the number of years it would take one individual 

in the first juvenile stage class to reach 0.001 individuals. Since these age estimates are 

dependent on population specific vital rates, there is the potential for circularity between 

habitat elasticity values, also calculated from population specific vital rates, and age 



24 

 

estimates. To address this, we obtained independent age estimates from the literature 

(when available) for each species, using species name and age, longevity, or skeletal-

chronology as key words. We compared the estimates of longevity for each species 

calculated through the matrix to those where independent estimates were found in the 

literature, and found a significant correlation (linear regression: r
2
= 0.7173, F=10.855 

p<0.0001).  As a result, below we only present estimates of age calculated from the 

matrix model. We used linear regression (using Systat version 12.0) to analyze the 

relationship between amphibian longevity and the elasticity of the population growth rate 

to matrix elements in either the aquatic or terrestrial habitats. Furthermore, to determine 

whether variability in species-specific vital rates contributed to the overall outcome of the 

relationship between longevity and habitat elasticities, we examined the correlation 

between independent estimates of longevity and species specific vital rates in the most 

error-prone life stages; adult and juvenile survivorship using linear regression in Systat 

(version 12.0). 

Simulating larger scale perturbations 

 From the group of species, we chose six (Ambystoma jeffersonianum, A. 

maculatum, A. tigrinum, Bufo boreas, Rana temporaria, and Pseudacris triseriata) that 

differ widely in their longevities (between two and eleven years, with three species 

classified as short-lived, and three species classified as long-lived; see Table 1), but have 

similar rates of density-independent population growth (between 1.201 and 1.401). 

Elasticity values are a function of the population growth rate (Silvertown et al. 1996) and 

therefore other species within our meta-analysis with highly divergent λ‘s would not 

necessarily be comparable to each other.  
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 We simulated the effects of two factors that have been shown to cause large 

decreases in amphibian vital rates: carbaryl contamination in the aquatic habitat, and 

terrestrial habitat destruction. Carbaryl is the most widely used pesticide in the United 

States and has been shown to have adverse effects on the survivorship of larval 

amphibians (Peterson et al. 1994, Relyea 2003). We searched the literature (key words: 

amphibian, carbaryl, survival) for studies (n=23) that documented larval mortality rates 

of amphibians due to carbaryl at ecologically relevant concentrations (approximately 3.5 

mg/L, Peterson et al. 1994). From this, we varied larval mortality due to carbaryl from 

0% to 60% representing the range of responses found within the literature search. For 

each of the six species, we varied larval mortality in 5% increments and calculated a new 

λ. Likewise, to explore the effects of terrestrial habitat loss, we simulated a reduction in 

terrestrial habitat that increased adult mortality from 0% to 75%. The ubiquitous nature of 

terrestrial habitat loss for amphibians produced a wide range of values within the 

literature (keywords: amphibian, terrestrial habitat, reductions) ranging between 0 and 

almost complete loss of terrestrial habitat (summarized in: Cushman 2006). Therefore, 

we restricted our simulations to values less than 75%, which might be likely if habitat 

destruction maintains a small buffer zone around aquatic habitats (Semlitsch 2002). For 

all six species, we only applied a decrease in survivorship to the adult, but not the 

juvenile, stages for consistency between species, which had varying numbers of juvenile 

stages.   

 We plotted the incremental change in λ over the range of increased mortalities for 

both the addition of carbaryl and increased terrestrial habitat destruction to obtain the 

slope of the relationship for each species. We used linear regression in Systat (Version 
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12.0) to regress this slope with the species‘ longevity to determine how dramatically their 

population growth rate was affected by an aquatic or terrestrial perturbation. 

To examine the interactive effects of both a terrestrial and aquatic environmental 

perturbation, we simulated the simultaneous reductions in survivorship that could be 

caused by both carbaryl and habitat destruction on the same six species used previously. 

We first quantified the expected change in λ for each species between natural and 

simulated terrestrial habitat loss using the same methods as above.  We considered four 

levels of adult mortality due to terrestrial habitat loss: 10%, 25%, 50% and 75%. We also 

quantified the expected change in λ for each species between natural and simulated 

mortality due to carbaryl in the aquatic habitat.  Here, we consider one level of carbaryl-

induced larval mortality: 50%. If the simultaneous effects of mortality at the aquatic and 

terrestrial stages are additive, we would expect that the change in λ for each species 

would be equal to the change in λ due to elevated tadpole mortality (i.e., similar to 

mortality that could be caused by carbaryl contamination) plus the change in λ due to 

elevated adult mortality (i.e., similar to mortality levels that could be caused by terrestrial 

habitat loss). Therefore, we summed the simulated decrease in λ at 50% larval mortality, 

which is likely at moderate levels of carbaryl contamination, with the decreases in λ 

expected at 10%, 25%, 50%, and 75% reductions in adult survivorship, which would be 

likely if terrestrial habitat was destroyed and plotted this as the expected line. We 

obtained observed estimates of the change in λ at 50% carbaryl contamination over the 

same range in reductions of terrestrial habitat by re-running matrix models with the 

incorporated perturbations in Matlab (Version R2009B), obtaining new estimates of λ 

and calculating the change in λ from the original model. We plotted the expected and 



27 

 

observed changes in λ for the three long-lived and three short-lived species to determine 

the interactive effects of both an aquatic and terrestrial perturbation on amphibians. 

Similar to the previous simulations, we calculated the difference between the slope of the 

observed line and the slope of the expected line for each species due to simultaneous 

aquatic and terrestrial perturbations. We used a student‘s t-test to examine the difference 

between the observed and expected slopes between short-lived and long-lived species 

(Systat, version 12.0).  

Density-Dependent Simulations: 

 To explore the relationship between longevity and the elasticity of the population 

growth rate to perturbations while incorporating density-dependence, we simulated the 

effects of reductions in adult and larval survivorship on the equilibrium population sizes 

of 14 species. We chose these 14 species due to the availability of density-dependent data 

in the larval stage (presented either in the original study or elsewhere in the literature; see 

Table 1).  Using values of larval survivorship at varying densities, we fit a negative 

power function, to a minimum of three data points. We chose a negative power function 

because it is one common function applied to the density dependent relationship of larval 

amphibian survivorship (Wilbur 1976, Vonesh and De la Cruz 2002, Trenham and 

Shaffer 2005) and is also a more conservative approach than a negative linear 

relationship might be given the lack of data often obtained for some species (only 3 

survivorship estimates at different densities). Occasionally, a lack of larval survivorship 

data at low densities produced a Y-intercept greater than 1, indicating survivorship over 

100%. In these cases, we set low-density survivorship to the maximum larval 

survivorship documented in the study. For all species, we started the population with one 
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individual in each stage class, and calculated the average equilibrium density after 100 

years. We simulated a decrease in terrestrial habitat availability by decreasing the adult 

survivorship by 75% and obtaining a new equilibrium density estimate. When species 

had more than one stage in the terrestrial habitat, we only applied the decrease in 

survivorship to the adult stage to standardize our simulations across species. We 

simulated reductions in larval survivorship by 50%; this is a realistic perturbation since 

studies have documented this drop in survivorship for larval amphibians in the presence 

of carbaryl contamination. To simulate a decrease in larval survivorship by 50%, we 

reduced larval survivorship for each of the three larval densities used to create the 

density-dependent functions by 50% and then created a new density dependent function 

at the reduced larval survivorship by re-fitting a new negative power function to the data. 

For species that included density-dependence within the original matrix model, we 

reduced the overall maximum larval survivorship by 50%.  

 Due to the wide variability in the strength of density-dependence and in the mean 

vital rates across species, there is wide variation in equilibrium population sizes across 

species. To compare the magnitude by which aquatic vs. terrestrial perturbations 

influence equilibrium population sizes across species, we can calculate a percent change 

in the equilibrium population size due to either aquatic or terrestrial perturbations.  As 

above, we separated species into either long-lived (7-11 years) or short-lived (1-6 years) 

categories. Within short-lived species, we conducted a paired t-test to examine the 

relationship between the percent decreases in equilibrium density due to aquatic or 

terrestrial perturbations. Likewise, we conducted a second paired t-test within the long-

lived species group to see if the aquatic or terrestrial perturbation had a larger effect on 
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equilibrium density. Although the strength of the aquatic and terrestrial perturbations 

were not equal (50% reduction in larval survivorship vs. a 75% reduction in adult 

survivorship), these estimates mirror realistic differences in the strengths of perturbations 

within the aquatic and terrestrial habitats. Thus, we might predict that the 75% reduction 

in adult survivorship (simulating terrestrial habitat disturbance) should have a larger 

impact on equilibrium density than the smaller 50% reduction in larval survivorship if 

species respond to either habitat equally.   

Results 

We obtained a total of 27 matrix population models that were presented in the 

literature, or were created from demographic data available in published studies. The 

longevity of species‘ ranged from 2 to 30 years with a median age of 6 years. 

Independent estimates of longevity that were obtained from the literature (from 

skeletochronology, mark-recapture studies, captive individuals) were highly correlated 

with adult survivorship, despite the large variation in accuracy within this vital rate 

(Linear regression, r
2
=0.33547, f=11.1061, p=0.003). The elasticity of  to vital rates 

associated with the aquatic habitat and to fecundity declined with increasing longevity 

(Figure 1.1a; R
2
= 0.4443, F=19.402, p<0.0001; R

2
=0.486, F=23.623, p<0.0001, 

respectively), while the elasticity of  to vital rates associated with the terrestrial habitat 

increased with increasing longevity (Figure 1.1b; R
2
=0.640, F=44.500, p<0.0001).  

Simulating larger scale perturbations 

 For the six species for which we conducted density-independent simulations of 

large perturbations in survivorship, we found that as the longevity of a species increased, 

the effect of aquatic perturbations decreased (Figure 1.2a and b: R
2
=0.962, F=100.923, 
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p<0.0001) whereas the effect of terrestrial perturbations increased (Figure 1.2c and d: 

R
2
=0.850, F=22.621, p=0.009). However, when survivorship rates in both the aquatic and 

terrestrial habitat were altered, long-lived species showed non-additive effects of these 

perturbations on population growth rate.  Specifically, as terrestrial habitat was reduced, 

long-lived species experienced a greater decrease in population growth rate due to the 

aquatic perturbation than shorter-lived species (Figure 1.3, t-Test, n=3, p=0.0208).   

Density-Dependent Simulations: 

Simulation results using density dependent models were congruent with those of 

density independent models.  In the density-dependent models, aquatic perturbations 

reduced the equilibrium density more than terrestrial perturbations for short-lived species 

(Figure 1.4: n=7, T-test: aquatic mean: 0.616, terrestrial mean: 0.113, p<0.0001). 

Terrestrial and aquatic perturbations did not differentially influence on the equilibrium 

population density of long-lived species (Figure 1.4; n=7, T-test p=0.454).  

Discussion 

Our quantitative synthesis showed that the population growth rate of shorter-lived 

amphibians is more sensitive to small changes in the vital rates associated with younger 

life-stages (e.g., fecundity, larval survivorship), whereas longer-lived species are more 

sensitive to small changes in adult survivorship and growth.  Additionally, our 

simulations of larger perturbations in vital rates demonstrate that amphibian longevity 

was an important predictor in understanding which types of perturbations would have the 

largest influence on their population dynamics.  Specifically, short-lived species are more 

strongly influenced by perturbations to vital rates in the aquatic (larval) habitat, whereas 

long-lived species were most strongly influenced by perturbations to vital rates in the 
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terrestrial (adult) habitat. However, when both aquatic and terrestrial vital rates were 

altered simultaneously, the susceptibility of longer-lived species to aquatic vital rate 

perturbations increased when the availability of terrestrial habitat decreased (e.g., as 

would be expected with habitat destruction). Finally, incorporating density-dependence 

into these simulations did not change the overall qualitative patterns for short-lived 

species; however, it complicated predictions for long-lived species.  

Meta-analyses on other taxa have revealed that the elasticity of vital rates in 

younger stage classes declines as the longevity of a species increases (e.g.: Silvertown et 

al. 1996, Heppel 1998, Seather and Bakke 2000, Heppel et al. 2000, Forbis and Doak 

2004, Stahl and Oli 2006); our study confirms this pattern in amphibians. To 

demographers and population ecologist these results will not necessarily be surprising; 

despite the unique qualities of amphibians such as their complex life cycles and larval 

density dependence, the same general patterns between life history and population 

elasticity apply. However, these results provide insights about agents that have previously 

been implicated in amphibian population declines.  Previously, most researchers studying 

amphibian declines have focused on a few particular vital rates that are dramatically 

affected by environmental perturbations and they have concluded that these factors must 

contribute to amphibian population declines. However, here we show that large 

reductions in particular vital rates do not necessarily lead to changes in the population 

dynamics of species. Similarly, small reductions in particular vital rates may lead to large 

changes in population growth rates if the population dynamics are particularly sensitive 

to that life stage and have high elasticity values. Therefore, although the apparent 

relationship between longevity and elasticity to particular life stages is neither surprising 
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nor unique to amphibians, it draws attention to an often-neglected aspect of amphibian 

conservation in which large changes in specific vital rates do not always produce changes 

in population dynamics of species.  

Although the observed relationship between longevity and habitat sensitivity can 

inform conservation and restoration decisions, it does not alleviate the need for more, and 

more accurate, demographic matrix models for amphibian species. Knowledge of the 

longevity of a species can provide a critical first step towards focusing conservation 

efforts. For example, in commercially harvested rock fishes, is it known that these species 

are extremely long-lived, thus, management aimed at reducing harvest-induced mortality 

of the largest stage classes would appear to be most important to improving population 

growth.  However, with more detailed demographic study of rougheye rockfish, Mangel 

et al. (2006) found that the elasticity of λ to changes in the juvenile stage was four times 

higher than that of the adult stage. Conservation recommendations aimed at maximizing 

juvenile survivorship would provide the greatest increase in population growth rates. 

Unfortunately, this is a harder stage to place restrictions on because it is not the stage that 

commercial fishing focuses on. If conservation actions aimed at reducing adult harvests 

could increase the survivorship of adult stages four times as much as they could juvenile 

stages, then the same increase in the population growth rate would be obtained with 

easier management techniques (Mangel et al. 2006). Therefore, although patterns 

between longevity (or life history strategy) and habitat elasticity can help inform 

conservation priorities when data or resources are limited, it does not alleviate the need 

for species-specific demographic models. Furthermore, habitat importance based on 

longevity and habitat elasticity values alone should not be misconstrued to mean that only 
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one particular habitat is crucial for population persistence. Although λ may not be as 

sensitive to perturbations in one habitat, elimination of or large disturbances within that 

habitat are still able to reduce population persistence.  

One common cause of terrestrial habitat loss comes from the conversion of upland 

terrestrial habitats to agriculture. As a result, amphibian populations that experience 

terrestrial habitat loss also likely experience contamination in their aquatic habitats from 

common agricultural practices (Collins and Storfer 2003).  When we simulated a 

reduction in survivorships that might be expected if terrestrial habitat availability were 

reduced and if aquatic habitats were contaminated with carbaryl, we found an interactive 

effect on long-lived species.  Specifically, although long-lived species tended to not be 

sensitive at the population level to aquatic perturbations alone, they can become so when 

terrestrial habitat availability is also reduced. This effect arises because reductions in 

terrestrial habitat cause a decrease in adult survivorship, effectively shortening the life 

span of those previously long-lived species. As mortality rates in the terrestrial habitat 

increase (decreasing longevity), λ becomes more sensitive to vital rates occurring in the 

aquatic habitat. Therefore, instead of an additive effect between carbaryl contamination 

and terrestrial habitat destruction for long-lived amphibians, the increase in aquatic 

habitat elasticity leads to a non-additive decrease in λ. Thus, an important lesson here is 

that the entire landscape of a species‘ population must be considered in order to fully 

elucidate the influence of various anthropogenic stressors.  

When we incorporated density-dependence into the models, we found similar 

results to the density-independent models for short-lived but not for long-lived species. 

For all species, we would expect that reductions in larval survivorship would have little 
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effect on population growth rate, up to a point, since larval survivorship is density 

dependent. As expected, for most species, small decreases in larval survivorship led to 

little change (or an increase) in λ as a result of increased survivorship for remaining 

larvae. However, when reductions in larval survival become substantial (in this case, 50% 

reduction for most species), then λ decreased for short-lived species. Perturbations in the 

aquatic habitat always had a stronger influence on the equilibrium population density 

than perturbations in the terrestrial habitat for short-lived species, which is congruent 

with our density-independent simulations. However, we note that we incorporated a 

reduction in larval survivorship (simulating carbaryl‘s effects) by decreasing the 

survivorship of each estimate at each density by 50% and recalculating the negative 

power function that describes the density dependence. In reality, carbaryl might change 

the shape of the density dependent function. Therefore, more work explicitly examining 

how aquatic perturbations impact density-dependent survivorship and how that translates 

to the population dynamics of the species would be useful.  

For density-dependent long-lived amphibians, decreases in adult survivorship 

(due to terrestrial perturbations) did not necessarily decrease equilibrium densities more 

than decreases in larval survivorship (simulating carbaryl contamination). Indeed, 

decreases in adult survivorship (due to terrestrial perturbations) led to increases in 

equilibrium population size for several species. This occurred because the smaller 

number of breeding adults led to fewer eggs and larvae, and higher larval survivorship 

(Vonesh and de la Cruz 2004). Interestingly, one might predict that declining or 

threatened amphibian populations may not experience much density dependence in the 

larval stage as a result of declining numbers of individuals in the population (Holmes 
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2001). Although density dependence complicates predictions of habitat susceptibility and 

longevity of amphibians, in instances where rapid action is needed to prevent declines in 

amphibian populations, density dependence may not be as strong of a contributing factor.  

There are substantially fewer demographic matrix models on amphibians relative 

to other species, and this is largely due to the challenges associated with collecting 

demographic parameters for the adult and juvenile stages of amphibians. Consequently, 

our knowledge of the terrestrial life-stage for many amphibians is lacking, hindering our 

comprehension of how anthropogenic changes influence their populations. The majority 

(n=20) of matrix models for species included in this study did not explicitly determine 

adult and juvenile survivorship rates, the vital rates to which λ is most sensitive for long-

lived species, but rather acquired estimates of these vital rates from the literature or from 

related species (exceptions: Hels and Nachman 2002, Conroy and Brook 2003, Funk and 

Mills 2003, Beebee and Griffiths 2005, Zambrano et al. 2007, and McCaffery and Maxell 

2010).  Mark-recapture studies are the most common way to determine adult and juvenile 

survivorship of amphibians, although they tend to underestimate survival rates due to 

detection probabilities (Jung et al. 2000, Storfer 2003). If the actual rates of survivorship 

are higher than those included in our analyses, then we expect that the elasticity values 

for adult survivorship would increase for all species; however the pattern that longer-

lived species have higher elasticities for these terrestrial vital rates than shorter-lived 

species should not change. 

Additionally, the quality of the demographic data we obtained for adult and 

juvenile survivorship was highly variable, with several of the matrix models 

incorporating vital rates from multiple populations, over variable times, and occasionally 
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from closely related but different species (e.g., Lampo and DeLeo 1998, Rustigian et al. 

2003, Vonesh and de La Cruz 2004, Karracker et al. 2008). Independent estimates of 

longevity that were obtained from the literature (from skeletochronology, mark-recapture 

studies, captive individuals) were highly correlated with adult survivorship, despite the 

large variation in accuracy within this vital rate (Linear regression, r
2
=0.33547, 

f=11.1061, p=0.003). Had the pattern between longevity and habitat elasticity been 

purely a product of inaccuracy in vital rate estimation, then independent age estimates 

would not correlate strongly with adult survivorship. Therefore, the pattern we observed 

between the longevity of a species and the elasticity of λ to aquatic or terrestrial 

perturbations is robust to the large variation in species-specific vital rates seen in 

amphibian matrix models. 

An additional limitation of this study arises from the manner in which we 

calculated habitat elasticities. In order to determine the elasticity for both the aquatic and 

terrestrial habotat of each species, we assumed that the adult and juvenile stage for all 

species used the terrestrial habitat only. However, for some species, such as R. 

catesbeiana, juveniles and adults may actually use the aquatic habitat to a greater degree 

than the terrestrial habitat. In these cases, although they are a relatively long-lived 

species, aquatic habitat perturbations may have a larger impact on λ than longevity alone 

would predict. Therefore, it is important to consider the specific habitat requirements of 

the species of concern when the life history does not conform to a basic structure of 

aquatic larvae and terrestrial adults.  

To date, no amphibian matrix model has included density-dependence in the 

terrestrial stage, although studies have illustrated the importance of terrestrial density 
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dependence in amphibians (Altwegg 2003, Harper and Semlitsch 2007). We might expect 

that as terrestrial habitat is destroyed, juvenile and adult amphibians would have to 

compete for limited space in higher densities, leading to decreases in survivorship. Our 

simulations provide a simplistic view of how terrestrial habitat destruction might affect 

amphibian population growth rates and equilibrium population sizes.  Further studies are 

needed to determine the importance of density dependence in the terrestrial habitat, and 

how the shape of density dependent vital rate functions varies with habitat alterations. 

The rapid decline of amphibian populations across the globe necessitates further 

investigation into not only the causes of these declines, but ways to prevent or reverse the 

trends. The connection between amphibian longevity and sensitivity towards survivorship 

in particular habitat-types provides an important first step to understanding potential 

causes and solutions for declining amphibian populations. For example, matrix 

population model projections for the threatened long-lived California tiger salamander, 

Ambystoma californiens, revealed that conservation efforts should focus on the critical 

terrestrial habitat around natal ponds (Trenham and Shaffer 2005). Our quantitative 

synthesis suggests that similar recommendations are likely for other long-lived 

amphibians. When demographic data are not available for a rapidly declining species, a 

good rule of thumb for conservation can be gained by understanding the relationship 

between longevity and habitat sensitivity. Rapid assessment of the habitats most critical 

for protection or restoration based on the longevity of the species may help to slow the 

decline of the species while buying time to collect demographic data and construct more 

detailed population viability analysis models.  
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Table 1.1: Species included in our study, their source, longevity, and whether density 

dependence was included, or where the data to create density dependent functions was 

obtained. * indicate studies not used in meta-analysis (see Methods). For those species 

with ―Common‖ listed under the density dependence column, it is known that density 

dependence is common in larval life stages, however species specific estimates of density 

dependent larval survival were insufficient in the literature to create density-dependent 

larval survivorship functions.  ―Not Found‖ in the density dependence column means that 

we were unable to locate any studies in the literature that addressed the presence or 

absence of density dependence for that species.   
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Species Study Matrix 

longevity 
Independent 

longevity 

Independent longevity 

source 

Density dependence 

Ambystoma 

californiense 

Trenham and Shaffer 

2005 

10 Max: 11, Average:6  Trenham et al. 2000 Included in model 

Ambystoma 

jeffersonianum 

Rubbo et al. 2006 11   Brodman 1996 

Ambystoma 

jeffersonianum 

Mullin and Klueh 

2009* 

11   N/A 

Ambystoma 

macrodactylum 

Vonesh and De la Cruz 

2002 

10 Max:10, Average: 6 Russell et al. 1996 Included in model 

Ambystoma maculatum Karracker et al. 2008 9 Max: 32,  Average: 

11 

Flageole and Leclair 1992 Brodman 1996 

Ambystoma opacum Taylor and Scott 1997 8 Average: 11.3 Snider and Bowler 1992 Included in model 

Ambystoma tigrinum Rustigian 2003 10 Max: 25,  Average: 

16 

Snider and Bowler 1992 Petranka 1989* 

Bufo americanus Rustigian 2003 5 Average: 5 Bowler 1975, Zug 1993 Brockelman 1969* 

Bufo boreas Biek et al. 2002 5 Average: 6 Bowler 1975 Common  

Bufo boreas Vonesh and de la Cruz 

2002 

4 Average: 6 Bowler 1975 Included in model (for B. 

americanus) 

Bufo marinus native Lampo and De Leo 

1998 

4 Max: 15 average: 5 Tyler 1999 Calculated from data given 

Bufo marinus invasive Lampo and De Leo 

1998 

3 Max: 15 average: 5 Tyler 1999 Calculated from data given 

Bufo calamita Beebee et al. 1996 6 Average: 7 Korky and Webb 1999 Tejado and Reques 1992* 

Bufo calamita Stevens and Bagguette 

2008* 

6 Average: 7 Korky and Webb 1999 N/A 

Bufo houstonensis Hatfield et al. 2004 2 Max: 4  Snider and Bowler 1992 Not found 

Colostethus stepheni Funk and Mills 2003 28   Not found 

Geocrinia alba Conroy and Brook 2003 5   Not found 

Geocrinia vitellina Conroy and Brook 2003 5   Not found 

Hemisus marmoratus Grafe et al. 2004 4   Calculated from data given* 

Hyla versicolor Rustigian 2003 4 Max: 7 Snider and Bowler 1992 Resetarits et al. 2004 

Leiopelma hamiltoni Tocher et al. 2006 30 Max: 30 Tocher et al. 2006 No estimates available 

Pelobates fuscus Hels and Nachman 2002 6 Max: 11  Goin et al. 1978 Common 

Pseudacris triseriata Rustigian 2003 2 Max: 4 average: 3 Whiting 2004 Smith 1990 

Rana catesbeiana Doubledee et al. 2003 9 Average: 10 Zug 1993 Common 

Rana catesbeiana Govidarajulu et al. 

2005* 

9 Average: 10 Zug 1993 N/A 

Rana luteiventris McCaffery and Maxell 12 Max: 7 Average: 6 Reaser 2000 Not found 
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2010 

Rana muscosa Briggs et al. 2005 17 Average: 14 Matthews and Miaud 2007 Common 

Rana sylvatica Karracker et al. 2008 6 Average: 4 Sagor et al. 1998 Berven 1990 and Wilbur 

1976 

Rana temporaria Biek et al. 2002 4 Average: 5 Guarino et al. 2008 Riis 1991 (appendix) 

Rana aurora draytonii Doubledee et al. 2003 8 Average: 9 Jennings and Hayes 1990 Calef 1973 

Rana aurora draytonii Biek et al. 2002 8 Average: 9 Jennings and Hayes 1990 Calef 1973* 

Triturus cristatus Griffiths  2004 9 Max: 14 Average: 5 Francillon-Vieillot et al. 1990 Not found 
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Figure 1.1: a) Results of elasticity analyses of density independent matrix population 

models.  The elasticity of population growth rate to vital rates associated with the aquatic 

habitat decreases with the longevity of the species.  The relationship remains significant 

even when the longest-lived species is removed. b) Relationship between the longevity of 

amphibian species and the elasticity of the population growth rate to changes in vital rates 

associated with the terrestrial habitat.  



52 

 

 
  



53 

 

Figure 1.2: a) Change in λ over a range of % decreases in larval mortality that might be 

expected from carbaryl contamination in the aquatic habitat b) Relationship between the 

rate at which the population growth rate of each species decreases over a range of larval 

mortality (slope from each species in a) and the longevity of the species. c) Change in λ 

over a range in % decreases in adult mortality that might be expected from terrestrial 

habitat loss d) Relationship between the rate at which the population growth rate of each 

species decreases over a range of adult mortality (slope from each species in c) and the 

longevity of the species. Numbers in parentheses after each species indicates the 

longevity in years. 
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Figure 1.3: Results of simulations on simultaneous exposure to mortality in both the 

aquatic and terrestrial habitats. Dashed lines and open symbols represent an expected 

change in λ if simultaneous effects of increasing larval and adult mortalities are additive. 

Closed symbols and solid lines represent the observed change in λ when matrix models 

were re-analyzed including both perturbations. P. triseriata (longevity=2 years) and R. 

temporaria (longevity=4 years) are representative of short-lived amphibians, while A. 

tigrinum (longevity=10 years) and A. maculatum (longevity=9 years) are representative 

of long-lived species. 
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Figure 1.4: The percent change in equilibrium density for density-dependent short-lived 

(n=7) and long-lived species (n=7) experiencing a 50% decrease in adult (terrestrial) or 

larval (aquatic) survivorship (these decreases would be expected to result from to 

terrestrial habitat loss and carbaryl contamination respectively).  ***denotes significant 

difference in mean values between aquatic and terrestrial perturbations. Error bars 

represent standard deviation. 
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Chapter 2 

 

 

The ratio of aquatic to terrestrial habitat alters the role of a top-

predatory salamander in pond food webs 
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Chapter 2 currently submitted for publication and is under review. 

Abstract 

A wide variety of species use distinct habitat types throughout their life-cycle, switching 

among them through a process known as an Ontogenetic Niche Shift (ONS). Standard 

metacommunity theory is inadequate for capturing the complexities of community 

interactions for ONS species by only considering spatial connections among one habitat.  

We suggest using the ratios of habitat types as a predictor variable for species with ONS 

to examine the influence of landscape structure on those species‘ abundances and 

interspecific interactions.  We surveyed Ambystoma maculatum, a salamander with 

predaceous aquatic larvae and terrestrial adults, as well as the species richness of their 

prey, in ponds embedded within landscapes of different Aquatic to Terrestrial Ratios 

(ATRs).  Structural equation modeling revealed that landscapes with higher ATRs had 

fewer larval A. maculatum, and that aquatic species richness was not directly influenced 

by ATR; richness was instead indirectly influenced through the ATR‘s direct effect on A. 

maculatum.  In contrast to standard metacommunity expectations, this predator had a 

stronger influence on prey richness in ponds in more isolated (low ATR) landscapes. This 

study also highlights an important consequence of landscape changes by altering the 

ratios of habitat types, which can disrupt the interactions of species with ONS. 
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Introduction 

Landscapes are inherently heterogeneous, comprising resources distributed 

unevenly among several habitat types (Risser et al. 1984, Turner 1989, Danielson 1991).  

Most efforts to examine the influence of spatial processes on species interactions 

implicitly or explicitly assume that species in communities interact within relatively 

homogeneous discrete patches that are interconnected by dispersal (i.e., a 

metacommunity) (Leibold et al. 2004). However, interactions among species within a 

given landscape are often not confined to just one habitat type (Polis et al. 1997). When 

species require the use of multiple distinct habitat types, both regional 

processes(dispersal) and local processes(trophic interactions, environmental variables) 

are influenced by the juxtaposition of habitats within the landscape. As a result, when 

species that utilize multiple habitat types are common, the assumptions of standard 

metacommunity theory may inadequately capture the complexities of community 

interactions at the landscape level (Knight et al. 2005, McCoy et al. 2009). 

 Species with ontogenetic niche shifts (ONS) often require two (or more) distinct 

habitat types during their life-history (Wilbur 1980). For example, many species of 

insects (e.g., Lepidoptera, Coleoptera, Diptera, Odonata), amphibians, and fishes, among 

others, utilize one habitat type for larval growth and then transition (e.g., via 

metamorphosis) into a separate habitat for continued growth, dispersal, and reproduction. 

Species with ONS may occupy different trophic roles in each habitat/life-stage they 

occupy (e.g., herbivore in larval habitat, predator in adult habitat), however, growth and 

survival in each habitat differentially contribute to the overall population dynamics of the 

species (Wilbur 1980). Consequently, the abundance of individuals in one habitat 
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depends upon the availability of both essential habitat types (Chase and Leibold 2003). 

Examining the influence of spatial processes on species with an ONS thus requires 

consideration of both habitats they require. Furthermore, the proportional availability of 

either habitat type may shift patterns of abundance of the ONS species, altering their 

interactions with other species in the food web.  

We propose an approach that explicitly estimates the ratio of essential habitat 

types required by the species within a landscape to capture the effects of spatial processes 

on the dynamics of species with ONS. Because species with an ONS require different 

habitats for larval and adult growth, the population growth of the species is influenced by 

both the availability of larval habitat (Hl) and adult habitat (Ha) in the landscape, and the 

survival of individuals within those habitats (Wilbur 1980). Thus, if one habitat is 

particularly limiting, this will restrict the abundance of individuals of a species with ONS 

in the other habitat the species occupies, limiting the overall population size. Importantly, 

the limiting habitat type for a population is not necessarily the habitat with the lowest 

abundance in the landscape. The population growth rate (λ) of the species depends upon 

survivorship and growth of individuals in both Hl and Ha, and the elasticity (i.e., relative 

importance) of a given life stage to overall λ (Caswell 2001). Therefore, the limiting 

habitat for the population depends on Hl:Ha ratio as well as the importance of each habitat 

to overall population growth rate. 

To estimate the relative contribution of survivorship in each habitat type—the 

‗habitat elasticity‘—to λ we can sum all the elasticities of stages that occur in Hl (e.g., 

egg survivorship+ larval survivorship = El) and all the elasticities of stages that occur in 

Ha (e.g., juvenile survivorship + adult survivorship = Ea). Consequently, the ratio of the 
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two habitats, Hl and Ha, can have differential influences on species with ONS depending 

upon the values of El and Ea.  When species have an ONS, classifying patches according 

to their degree of isolation from one another as is typically done in metacommunity 

theory (Leibold et al. 2004), may not provide the complete story.  If a species has a 

considerably higher Ea than El, its abundance in Hl will be more a function of the 

availability of Ha than any feature of Hl.  As a result, the interactions of that species with 

other species in Hl (e.g., competition, predation) will be strongly influenced by the Ha:Hl 

ratio, rather than more traditionally considered metacommunity features such as patch 

isolation.  

Here, we examine the effects of a top predator with an ONS on the structure of 

food webs in small freshwater ponds that vary in the ratio of habitat availability.  The top 

predators in small ponds without fish include larvae of long-lived salamanders 

(Holomuzki et al. 1994, Davic and Welsh 2004) and odonates (McPeek 1990, Batzer and 

Wissinger 1996), which often spend a significant part of their lives as adults in the 

terrestrial habitat.  If survivorship in the terrestrial habitat represents a significant 

contribution to the populations of these top predators (high Ea), species interactions 

within the ponds may be more strongly influenced by adjacent terrestrial habitats than the 

distribution of the ponds themselves. Although previous studies have shown that the 

species richness of invertebrates and amphibians in ponds depends to some extent on the 

degree of isolation within a metacommunity (McCauley 2006, Howeth and Leibold 2008) 

and the interaction between dispersal and predator dynamics (Chase et al. 2009, Chase et 

al. 2010), here, we suggest that top predator species with ONS are expected to respond 
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differently to processes of habitat isolation, such that patterns might not conform to the 

expectations from traditional metacommunity theory.   

 In east-central Missouri (USA), we examined the influence of larval and adult 

habitat availability (aquatic to terrestrial habitat ratios; ATR) on a wide-spread, long-

lived salamander, Ambystoma maculatum (Caudata: Ambystomatidae), which spends its 

short larval stage in small temporary ponds, and its long-lived adult stage in the 

surrounding terrestrial matrix.  Larval A. maculatum remain in fishless ponds for 4-6 

months, where they are typically top predators, exerting strong pressure on the abundance 

and diversity of other amphibians and invertebrates in the food web (Freda 1983, Nyman 

1991).  However, because A. maculatum are long-lived as adults (average life-span 7-15 

years; Flageole and Leclair 1992), they likely have large Ea to the terrestrial habitat (e.g., 

Biek et al. 2002, Vonesh and De LaCruz 2002, Burgett et al. unpublished manuscript). 

Therefore, we hypothesized that the abundance of A. maculatum at focal ponds would 

increase in landscapes with abundant terrestrial relative to aquatic habitat (low ATR). We 

quantified the ATR surrounding 42 focal ponds, and examined the relationships between 

the ATR, the abundance of A. maculatum, and the richness of other amphibians and 

invertebrate prey at focal ponds. We used structural equation modeling to disentangle the 

direct and indirect effects of the landscape on aquatic species richness.  

Methods  

Pond selection and ATR 

We identified 42 focal ponds in eastern Missouri that were fishless, of moderate 

size (between 50m
2
 and 275m

2
), with at least 15% tree canopy cover over the pond, and 

which maintained permanent standing water during most years. For each focal pond, 
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there was at least 40% forested habitat [preferred habitat for adult A. maculatum 

(Petranka 1998)] within a 500m radius around each focal pond (determined using ARC 

GIS software and land cover data from Missouri Spatial Data Information Service 

[MSDIS]). In our choice of focal ponds, we minimized abiotic differences such as canopy 

cover, size, and water chemistry.   

 For each focal pond, we calculated the aquatic to terrestrial ratio (ATR) to 

examine the relationship between landscape structure, A. maculatum abundance in focal 

ponds, and the richness of the aquatic invertebrate community. We classified the 

terrestrial habitat within 500m of the focal pond by using a combination of ground-

truthing, and Arc GIS land cover data from MSDIS. The land cover data identified 15 

categories of ground cover ranging from impervious urban streets to deciduous forest. 

For this study, we considered the available terrestrial habitat as deciduous forest, 

deciduous woody herbaceous, and evergreen forest (Vasconsuelos and Calhoun 2004). 

Aquatic habitat within the 500m radius of the focal pond was largely determined by 

ground truthing, as most small ponds did not appear in the land cover data.  

The average dispersal distance of A. maculatum has been shown in several studies 

to be less than approximately 400 m (Phillips 1989, Smith and Green 2005) with a 

maximum dispersal of 756m away from a focal pond (Madison 1997). Therefore we 

calculated the ATR within a 500m radius around each focal pond as a reasonable estimate 

of the ATR a population of salamanders would experience.  For analyses presented in this 

paper, we restricted our definition of terrestrial and aquatic habitat to only those habitats 

that A. maculatum would typically utilize, excluding agricultural, urban, and open 

grassland for the terrestrial habitat, and ponds, lakes, and rivers with fish for the aquatic 
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habitat. However, the results from this study are robust to changes in the definition of 

ATR; the results are qualitatively the same when we relaxed the definition of ATR to 

include all aquatic habitats (Burgett and Chase unpublished data). Given the relatively 

small amount of aquatic habitat compared to the amount of terrestrial habitat surrounding 

focal ponds, terrestrial habitat availability drives the ATR values in this study. However, 

we advocate for the use of the habitat ratios approach regardless of Ha or Hl availability 

within a landscape, since ONS species may respond differently depending upon its Ea or 

El.  

Pond Surveys 

in late February to early March in Missouri, A. maculatum lay conspicuous egg 

masses, which remain intact for approximately 3 to 4 weeks prior to hatching (depending 

upon water temperatures) (Sexton et al. 1990).  We conducted egg mass surveys 

following standard methods (Crouch and Patton 2000) in 30 ponds in early March 2007 

and an additional 12 ponds in early March of 2008. We assured that all adult A. 

maculatum had left the pond for at least a week prior to our surveys to ensure accurate 

egg mass counts.  

 The aquatic community was sampled twice (mid-May and late-June) to capture 

phenological differences among species. To sample macro-invertebrates and amphibian 

larvae, we used standard box sampling methods (Turner and Trexler 1997) by deploying 

a 500 cm diameter cylinder thrust into the soil.  The contents of the cylinder were 

exhaustively sampled with a net (0.33mm mesh size) until 10 sweeps turned up no 

organisms.  This process was repeated three times, stratified across each pond.  In each 

cylinder, amphibian larvae were collected, identified, sorted into size categories, counted 
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and released.  Macroinvertebrates were stored in 70% ethanol and later identified in the 

lab, using a dissecting microscope and appropriate keys when necessary.  Zooplankton 

(including cladocerans, copepods, and rotifers) were sampled by collecting 1L of water at 

5 random locations and depths from each pond, filtered through a 80 μm mesh 

zooplankton net, and preserved in acid Lugol‘s solution for later identification and 

enumeration under a dissecting microscope. 

Statistical analysis 

To examine the direct effect of ATR on A. maculatum egg mass abundance (an 

indicator of both their breeding adult and larval abundance), we square root transformed 

ATR and egg mass data to comply with assumptions of normality and used linear 

regression analysis in SYSTAT version 12.0. We also examined the relationship between 

A. maculatum egg mass abundance and ATR on macro-invertebrate species richness 

using linear regressions in SYSTAT version 12.0. To partition the direct and indirect 

effects of ATR and A. maculatum egg mass abundance on macro-invertebrate species 

richness, we used structural equation modeling (SEM) in AMOS 5.0.1 (Amos 

Development Corp. 2003). The accuracy of the model was examined using χ
2
 values as 

well as AIC and BIC indices (Akaike's information criterion, Bayesian information 

criterion). Path coefficients were evaluated using z tests. Given our particular interest in 

spatial processes influencing A. maculatum abundance and their potential effects on prey 

species richness, we focused on a simple model including A. maculatum egg mass 

density, the ATR, and prey species richness. We present other models that include the 

effects of abiotic factors on prey species richness and A. maculatum egg mass density in 

the Appendix. 
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Results 

The number of Ambystoma maculatum egg masses in focal ponds significantly 

increased as the ATR of the focal pond decreased (Fig. 2.1a, linear regression, R
2
=0.23, 

P=0.002, F=8.03). Macro-invertebrate species richness significantly decreased as A. 

maculatum egg mass abundance increased (Fig. 2.1b, linear regression, R
2
=0.15; 

P=0.02). Macro-invertebrate species richness was not influenced by ATR (R
2
=0.02; 

P=0.37). Our base-line SEM (structural equation modeling) excluded the path between 

ATR and macro-invertebrate species richness, due to the non-significant relationship 

between the two endogenous variables. The model yielded a 
2
 = 0.77 (Fig. 2, df=1, 

P=0.38) and AIC and BIC values suggesting adequate model fit (default model 

AIC=10.78 and BIC=19.09). The indirect effect of the aquatic to terrestrial ratio (ATR) 

on species richness yielded R
2
 = 0.12. The 

2 
did not improve with the addition of a path 

between ATR and macro-invertebrate species richness (saturated model: AIC=12.00, 

BIC=21.98), thus confirming that the original model was the most parsimonious. Abiotic 

factors such as pond size, canopy cover, and pH influenced species richness in the aquatic 

habitat and yielded adequate models, but inclusion of these variables into the model did 

not reduce the 
2
 further (Online Resource 1). The R

2
 value of overall aquatic species 

richness in the system improved to 0.37 with the addition of pH and canopy cover into 

the model, however, none of the adequate models containing abiotic factors included a 

direct effect of ATR on aquatic species richness.  

Discussion 

Overall, our results show that the abundance of Ambystoma maculatum present at 

a focal pond was lower as the aquatic to terrestrial ratio (ATR) of a site decreased.  
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Furthermore, the increased abundance of larval A. maculatum at ponds with a low ATR 

was negatively related to the richness of species in the aquatic food web, suggesting their 

strong control over the food web.  In all, the species richness of other amphibians, macro-

invertebrates, and zooplankton appeared to be indirectly influenced by the effect of ATR 

on A. maculatum, but not directly by ATR itself.   

The increased abundance of larval A. maculatum in isolated ponds is most likely 

explained by their complex life cycle and strong dependence on the terrestrial habitat as 

long-lived adults.  Population growth rates of long-lived species are typically less 

sensitive to juvenile life-stages (Heppell et al. 2000, Seather and Bakke 2000, Forbis and 

Doak 2004). For long-lived amphibians which only utilize aquatic habitats for a brief  

larval stage, their populations should be relatively less sensitive to larval than adult 

survivorship (Biek et al. 2002,Vonesh and De la Cruz 2002), and as a result most limited 

by the availability of terrestrial relative to aquatic habitats. Indeed, we used the 

demographic matrix model presented in Karracker et al. (2008) to calculate El (0.275) 

and Ea (0.587) values for A. maculatum, and we found that processes in the terrestrial 

habitat (Ea) have a larger proportional effect on λ than processes in the aquatic habitat 

(El).  As a consequence, we suggest that landscapes with higher ATR, and thus higher 

availability of larval (pond) habitat, will have a negligible influence on overall population 

size of A. maculatum.  Instead, in lower ATR landscapes, with higher inter-pond 

isolation, a similar density of adult A. maculatum oviposit in fewer ponds, concentrating 

larval A. maculatum relative to higher ATR landscapes.  

 The increase in larval A. maculatum in ponds with a low ATR likely led to a 

significant decrease in macro-invertebrate species richness in those ponds. Larval A. 
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maculatum are typically top predators in these ponds, consuming a wide range of prey 

species throughout their larval development (Freda 1983). Thus, higher densities of larval 

A. maculatum reduce the overall species richness of ponds in low ATR landscapes.  

While traditional metacommunity theory would predict similar results of lower species 

richness in habitats that are more isolated (reviewed in Cadotte 2006), when predation is 

strong, species richness of prey can be higher in more isolated habitats (Sheffer et al. 

2006, Chase et al. 2010).  Here, we find that isolated habitats have higher predation and 

resulting lower prey species richness, most likely a result of the ONS of the top predator 

and its extensive reliance on the terrestrial habitat. 

Although our study demonstrates one specific example of when the availability of 

different habitats can influence the abundance of a species and the strength of its‘ 

interactions in a metacommunity, there are many examples where the ratios of habitat 

availability may play a critical role in trophic interactions of other species with ONS. For 

example, many lepidopterans (butterflies and moths) use host-plants in one habitat type 

for larval development, and other resources in a separate habitat for adult persistence.  

The well-studied metacommunity interactions among the Glanville fritillary butterfly, 

Melitaea cinxia, might provide an exemplary system to explore this question, as it 

requires larval host-plants (Plantago lanceolata and Veronica spicata) which occur in 

restricted meadows (van Nouhuys and Hanski 2002, van Nouhuys et al. 2003), while 

adult resources are concentrated in adjacent woodland flowering plants (van Nouhuys 

and Hanski 2002). If adult survivorship is important to the overall population dynamics 

of this species, we might expect that  M. cinxia larvae will be more concentrated, and 

exert greater damage, on the host plants in landscapes where the availability of larval host 
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plants are less abundant.  Another example of where this effect might influence the 

strength of food web interactions is in the well-studied case of bluegill sunfish (Lepomis 

macrochirus), which require both lentic and lotic habitat in lakes (Osenberg et al. 1988, 

Werner and Hall 1988); the influence of bluegill on prey in each habitat type could 

depend critically on the bathymetry of the lake and the resulting proportional availability 

of lentic:lotic habitat.  

By explicitly considering the ratios of habitat availability for species with ONS, 

we can make more specific predictions about the influence of landscape structure on 

species abundances and the strengths of their interspecific interactions.  In this paper, we 

focus on a top-predator with an ONS, and its influence on its prey community.  

Importantly, however, there are often many species with ONS that co-occur, and thus will 

be variably influenced by the ratios of available habitat.  In the pond communities we 

studied here, many of the species of prey also have ONS and utilize terrestrial habitats in 

their adult stage (e.g., several insects and anurans). Therefore, the influence of predation 

in the aquatic habitat on the populations of these prey species with ONS will depend on 

the relative importance of their survivorship in aquatic and terrestrial habitats.  For 

example, we might expect that the influence of predation by larval A. maculatum would 

have a larger influence on ONS species whose population dynamics are more limited by 

aquatic habitats (e.g., short-lived species) than on species with an ONS whose population 

dynamics are more limited by terrestrial habitats (e.g., longer-lived species). 

 The alterations of habitats by humans, most notably habitat loss and the resulting 

fragmentation, have become one of the greatest threats to global biodiversity (Fahrig 

2003, Foley et al. 2005, Fisher and Lindenmayer 2007).  Our study emphasizes an 
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important, but underappreciated, consequence of habitat destruction; potentially altering 

the ratios of qualitatively distinct habitat types.  For example, the draining of wetlands 

and conversion of forests to agricultural or urban land can dramatically alter the ratios of 

aquatic to terrestrial habitats in a landscape, which in turn can alter the relative 

abundance of species and the strengths of their interactions with other species in the food 

web.  Progress in understanding the ultimate consequences of habitat alterations will 

necessitate ecologists to embrace, rather than avoid, the heterogeneities observed in 

ecological systems, and to break down the barriers of studying different types of 

ecosystems, such as aquatic versus terrestrial ecosystems, without considering their 

interconnections (Knight et al. 2005, McCoy et al. 2009)  
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Figure 2.1: a) The relationship between the ratio of aquatic to terrestrial habitats of focal 

ponds and the abundance of Ambystoma maculatum egg masses m
-2

. (both variables are 

square root transformed to improve normality, n=42). b) The relationship between A. 

maculautm density and the species richness of other amphibians, macro-invertebrates, 

and zooplankton in focal ponds (n=42).  
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Fig. 2.2: SEM model showing the indirect effect of aquatic to terrestrial ratio on species 

richness. Path coefficients are standardized values. r
2
 values represent the proportion of 

variance explained by upstream factors. 
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Apendix: 

 

Table 2.1: Table 1: Models that included abiotic variables. The simple model is nested 

within these models.  An X indicates that the model includes an arrow from the factor 

going to either species richness or A. maculatum. An * indicates an adequate model fit to 

the data.  
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Variable 

Affecting 

Spp 

richness 

Affecting  

A. mac χ
2
 DF 

Probability 

level AIC BIC CAIC 

pH* X   1 3 0.801 15 26.645 33.645 

pH* X X 0.905 2 0.636 16.905 30.213 38.213 

Canopy cover* X   5.322 3 0.15 19.322 30.967 37.967 

canopy cover* X X 3.1 2 0.215 19.076 32.385 40.385 

pond size X   14.4 6 0.025 32.44 47.416 56.416 

pond size X X 6.196 2 .045 22.196 35.505 43.505 

Chlorophyll A* X   1.8 3 0.618 15.788 27.433 34.433 

canopy cover + pH* X X 9.1 5 0.104 29.125 45.761 55.761 

pH + chlor  pHX CH X 

 

15.171 6 .019 33.171 48.143 57.143 

Canopy cover+ chlor * CC X CHX CCX  4.544 5 .474 24.544 41.179 51.179 

All variable model X X 39.6 13 0 69.595 94.549 109.549 
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Appendix Discussion: Canopy cover, pH, and Chlorophyll A had a significant effect on 

overall aquatic species richness (R
2
=.359, p>.0001; R

2
=.107, p=.042; R

2
=.001, p=.864 

respectively).  Although adding these abiotic explanatory variables into the model yielded 

significant models that adequately fit the data, they did not lower the χ
2 

value of the 

original simplified model significantly. Most importantly, none of the models that 

included a direct effect of ATR on species richness were supported, further 

demonstrating the importance of salamander predation in this system.  Abiotic factors do 

help to explain an additional  25% of the variation in aquatic species richness yielding an 

overall R
2
=0.37 for this observational study. 
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Chapter 3 

 

Population-level response of two anurans (Hyla versicolor and 

Acris crepitans) to an aquatic predator 
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Abstract 

 Interspecific interactions (ie: predation) shape the structure of communities and 

can influence the population dynamics of the species involved. For stage-structured 

organisms, the influence of one species on the population dynamics of another depends 

on which stage class the interaction influences, the magnitude of the effect on the 

survivorship, growth or fecundity of that stage class, and the relative sensitivity of the 

population growth rate to changes in those vital rates. For amphibians, most studies have 

focused only on the interactions between species in the aquatic habitat and their 

subsequent effects on larval survivorship. To understand the population-level influence of 

an aquatic predator on amphibian larvae, their effect on survivorship in the larval 

(aquatic) habitat must be combined with demographic information across the rest of the 

life cycle. In this study, we followed the population-level effects of an aquatic predator 

(Ambystoma maculatum) on two species of Hylidae frogs with different longevities (Hyla 

versicolor and Acris crepitans). My quantitative synthesis in Chapter One suggests that 

the population growth rate of longer-lived species tends to be less sensitive to fecundity 

and juvenile life stages, leading to the hypothesis that an aquatic predator would likely 

have larger population level impacts on the shorter-lived species (A. crepitans). We found 

that the population growth rate of A. crepitans had a higher elasticity to the aquatic stage 

than the longer-lived species, H. versicolor. The presence of predatory A. maculatum 

larvae decreased the projected population growth rate of both species. However, over the 

three study-years, we found no significant effect of predator presence on overall 

population size of either species.  The discrepancy between model projections and actual 

changes in population size likely resulted from overestimation of larval A. maculatum 
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impacts on larval survivorship, and climatic variation between years that was not 

reflected in the demographic matrix models. Although interspecific interactions between 

larval A. maculatum and its prey H. versicolor and A. crepitans led to large decreases in 

larval survivorship, this did not translate into differences in population size at 

experimental ponds. Therefore, to fully understand the impacts of interspecific 

interactions on the population dynamics of amphibians, one must consider the entire life 

cycle of the species.  
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Introduction 

 The relationship between a predator and its prey is a fundamental ecological 

interaction that shapes the structure of communities (May 1973, Paine 1980). Often, the 

relationship between predators and their prey can drive the population regulation of either 

or both species causing cyclical dynamics in abundances (e.g.: lynx and hare, MacLulich 

1937, voles and lemmings, Elton 1942), increases in predator abundances (Gause 1934), 

and/or decreases and even extinction of prey species (Huffaker and Kennett 1956, Estes 

and Palmisano 1974 ). Countless studies on community interactions document the effects 

of a predator on prey species, and are especially common in aquatic and amphibian 

community studies (e.g: Morin 1985, Morin 1986, Wilbur and Fauth 1990, Welborn et al. 

1996). 

 Understanding how predation shapes population dynamics is complicated for 

amphibians, since they occupy many different trophic positions in aquatic systems from 

primary consumer to top predator (Welborn et al. 1996, Altig et al. 2007). Additionally, 

most amphibians have a complex life cycle in which they use the aquatic habitat for 

larval growth and development and then metamorphose to spend their juvenile and adult 

stages in the terrestrial habitat (Wilbur 1980). Therefore, strong interspecific interactions 

in the aquatic habitat may not necessarily translate into dramatic consequences for the 

population dynamics of either predator or prey species (Wilbur 1980, Burgett chapter 1).  

Although the effects of aquatic predators on larval amphibians has been well documented 

(e.g.: Brodie and Formanowicz 1983, Morin 1983), to my knowledge, no studies to date 

have examined the influence of an interspecific interaction on the population-level 

responses of amphibians with complex life cycles. 
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 Matrix population models integrate the effects of environmental factors (e.g., 

presence/absence of a predator) on vital rates across the life cycle of an organism, and 

can be used to project population growth (Caswell 2001). Amphibian populations are 

typically stage-structured, making matrix population models ideal for studying the 

potential population level effects of interspecific interactions on particular species. In 

addition to stage-structure and environmental factors, matrix population models can 

include a variety of other biological features, such as temporal variation and density 

dependence.  It is typically thought that density-independent models that explicitly 

incorporate environmental factors provide a meaningful way to integrate vital rates and 

assess the relative importance of environmental factors on populations. However, this 

assumption is rarely tested (Crone et al. 2011).  In this study, we examine the validity of 

our models by comparing matrix projections (deterministic population growth rate) to 

observed changes in population size during the same time interval in which the model 

parameters were estimated.  If these do not match, then it suggests that the model is too 

simplistic or the parameters were poorly estimated.  

 Elasticity analysis can be used to examine how small changes in vital rates (ie: 

larval survivorship) influence the overall population growth rate (λ) of the species 

(deKroon et al. 1986, Caswell 2001). A wide variety of species, including amphibians, 

demonstrate a similar pattern: as the longevity of a species increases, the population 

growth rate becomes less sensitive to perturbations in early life stages (Burgett, Chapter 

1, Seather and Bakke 2000, Heppell et al. 2000, Forbis and Doak 2004). Thus, 

amphibians that are short-lived may be particularly vulnerable to threats that occur on the 

larval stage in the aquatic habitat, while longer-lived amphibians may experience more 
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pronounced population declines in response to perturbations in the terrestrial habitat 

(Burgett, Chapter 1). Therefore, we expect that predation on larvae will have more 

dramatic effects on populations of shorter-lived amphibians.  

 In this study, our primary objective is to examine the effects of an aquatic 

predator, Ambystoma maculatum, on the population dynamics of two anurans with 

disparate life histories. Throughout much of eastern and Midwestern North America, 

larval spotted salamanders (Ambystoma maculatum) and other related species are often 

top predators in fishless aquatic habitats such as ponds or wetlands (Freda 1983, Nyman 

1991). Larval A. maculatum can reach relatively high densities (Burgett, Chapter 2), and 

prey upon the larvae of two species of anurans in the family Hylidae: Grey treefrogs 

(Hyla versicolor) and Blanchard‘s cricket frog (Acris crepitans blanchardi) (Burgett, 

unpublished data). Large-scale surveys of fishless ponds throughout eastern Missouri 

revealed a decrease in H. versicolor and A. crepitans larval abundance in isolated ponds 

with dense A. maculatum larvae, although night call surveys indicated the presence of 

substantial numbers of breeding adult H. versicolor at those ponds (Burgett, unpublished 

data). 

 Hyla versicolor has a larval period of three to four months, can live between 

seven and nine years as adults, and utilizes the terrestrial habitat extensively (Snider and 

Bowler 1992, Wright and Wright 1995). A. crepitans also has a larval period of 

approximately four months, but a much shorter adult stage (~eight months) (Burkett 

1984, McCallum et al. 2011). Given the disparate life history strategies of H. versicolor 

and A. crepitans, we hypothesize that the increase in predation by larval A. maculatum 

will have a larger effect on the population dynamics of A. crepitans relative to H. 
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versicolor. Alternatively, if predation rates are relatively low, or if predation is less 

important than other environmental factors, then the presence of a predator might have 

little effect on population growth rates of these species. 

To examine the population level response of H. versicolor and A. crepitans to 

larval A. maculatum predation, we constructed 12 experimental ponds at Washington 

University‘s Tyson Research Center (TRC) and introduced high densities of larval A. 

maculatum to half of the ponds. Using mark recapture techniques, we monitored stage-

specific vital rates for both species as well as overall population size to determine the 

effects of this aquatic predator on the overall population dynamics of H. versicolor and A. 

crepitans. We test our model by independently measuring observed population size over 

the study interval.   

Methods  

Experimental set-up 

 We created 12 experimental ponds (6m diameter, 1m deep) at Tyson Research 

Center during the winter of 2008. Experimental ponds were located within an oak-

hickory forest and were separated by at least 500m from each other and from any existing 

water bodies at Tyson Research Center, creating isolated ponds with reduced likelihood 

of migration between populations (Semlitsch 2002). Given the constraints of spacing 

within TRC, ten of the 12 ponds were located on ridgetops, while two of the 12 ponds 

were located along a valley bottom. One of the ponds located within the valley became 

too close to other water bodies and experienced a large influx of migration by Acris 

crepitans following the flooding events of the nearby Meramec river in 2009 and 2010.  

We removed this pond (a predator-present pond) from analyses since the influx of 
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individuals could potentially inflate population sizes of both A. crepitans and H. 

versicolor.   

After ponds were excavated, we smoothed and contoured the banks of the ponds, 

lined them with two inches of gravel, geotextile fabric, and a polyethylene liner to ensure 

their permanence (PPL-30, BTL Liners Inc.). On the berm above each pond, we dug a 

two-foot wide trench and secured the edges of the liner into the trench to prevent the liner 

from slipping during filling.  We then spread two inches of topsoil over the liner to allow 

for submergent plant growth.  We filled all ponds by 21 March 2008, with well water 

from Tyson Research Center using a water hauling truck. We inoculated the experimental 

ponds with concentrated densities of phytoplankton and zooplankton collected from five 

ponds at TRC. Both submerged (n=6 species) and emergent macrophytes (n=10 species) 

were added to all ponds over the course of two years. We allowed macroinvertebrates to 

naturally colonize ponds. Throughout the spring and summer of 2008, we introduced 

large numbers of egg masses, larvae, and breeding adults of eight common species of 

anurans (Hyla versicolor, Acris crepitans, Pseudacris crucifer, P. triseriata, Rana 

sphenocephala, R. clamitans, R. sylvatica, and Bufo americanus) from existing ponds 

located at TRC to establish anuran populations. 

We randomly assigned one of two treatments to each pond (predator presence or 

absence) and added Ambystoma maculatum egg masses to predator-present ponds on 8 

April 2008. In order to achieve the high density of A. maculatum egg masses/m
2
 observed 

in isolated ponds in Missouri, we added 75 egg masses to each of the six predator-present 

ponds. Given the longevity and age to sexual maturity of A. maculatum (Flageole and 

Leclair 1992), we did not expect these populations to breed during the time-span of the 



94 

 

project, and thus maintained this treatment by adding 75 egg masses each spring. 

Although the ponds were designed to be isolated from natural ponds, eight of the 12 

ponds received some natural recruitment by A. maculatum by 2011. To maintain the 

treatments, we searched all predator-absent ponds from late February to early April each 

year and removed any A. maculatum egg masses located. We also searched predator-

present treatments prior to the addition of egg masses but after female oviposition was 

complete for the season, and subtracted the number of naturally recruited egg masses into 

the pond from the 75 added to maintain the treatment density.  

Demographic data collection 

 We collected demographic data for both H. versicolor and A. creptians in the 

presence and absence of larval A. maculatum to parameterize matrix population models. 

Although larval amphibians commonly show density-dependent survivorship (e.g. Van 

Buskirk and Smith 1991, Altwegg 2003, Trenham and Shaeffer 2005), the overall density 

of tadpoles of both species was substantially lower in the experimental ponds (average 

density of H. versicolor 0.488/m
2  

in 2010 in predator-absent ponds, A. crepitans were 

extremely rare in dip net sweeps and chimney sampling of ponds, with only one 

individual ever detected during pond sampling throughout 2009-2011) than that found in 

established ponds both at Tyson Research Center and elsewhere in Missouri (average 

density of H. versicolor 1.36/m
2
, of A. crepitans 0.7878/m

2
). The low abundance of both 

species in experimental ponds indicates that density-dependence is likely not a factor 

affecting the larval survivorship rates of either species during the time span of our data 

collection (Burgett and Lueder, unpublished data). Because populations of both H. 

versicolor and A. crepitans were recently established at the experimental ponds, 
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populations were likely still in the exponential growth phase. Therefore, we present only 

density-independent population models for each species with and without predators. 

Clutch size 

Clutch size was determined by collecting amplectant pairs of both species from 

experimental ponds, placing them overnight in terrariums (which contained a small 

container of water for oviposition) located within the lab at Tyson Research Center, and 

counting the total number of eggs laid the following morning. Egg masses and adult frogs 

were returned to their respective ponds the following day. In 2010, we obtained a total of 

12 H. versicolor amplectant pairs from predator free ponds and 13 amplectant pairs from 

A. maculatum present ponds. Amplectant pairs of A. crepitans were more difficult to 

collect due to their rarity within experimental ponds (average number of males was 3.8 at 

experimental ponds) and we were only able to obtain four amplectant pairs at predator-

absent ponds, with only two of these pairs laying eggs in captivity. However, estimates of 

clutch size for the two pairs was concordant with estimates of clutch size for the species 

found in the literature (Livezey 1950).  Finally, the average clutch size for each species 

was determined by taking the mean number of eggs/egg mass for ponds with or without 

A. maculatum (for A. crepitans, we averaged the number of eggs/egg mass for the two 

clutches laid in capitivity and used this estimate for both predator-present and absent 

ponds). We incorporated an even sex ratio of 50% for egg masses within our female-

based matrix models.  

Egg survivorship 

We determined overall egg survivorship of H. versicolor in the laboratory using 

egg masses collected from non-experimental ponds at TRC. We counted the number of 
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eggs within each mass, placed them in 10 gallon aquariums filled with well-water and 

either the presence or absence of larval A. maculatum (n=15 per treatment), and counted 

surviving tadpoles just after hatching (2 days later, approximately Gosner stage 20). 

Contamination of egg masses by bacteria or fungi within natural and experimental ponds 

can cause reductions in egg survivorship as well as water quality characteristics (Bugg 

and Trenham 2003). Additionally, A. maculatum larvae target tadpoles just as they are 

about to hatch, once embryos begin to elongate and move (Gosner stage 15), which can 

cause decreases in egg survivorship prior to actual hatching of eggs (Burgett and Lueder, 

unpublished data). Therefore, we determined a separate egg survivorship rate for both 

predator present and predator absent ponds by averaging survivorship rates for all 15 

replicates. Unfortunately, we were unable to collect enough amplectant pairs of A. 

crepitans to conduct 15 replicates of egg survivorship experiments under the presence 

and absence of A. maculatum, however we were able to obtain estimates for egg 

survivorship from two replicates each of predator present and predator absent treatments.  

Larval survivorship 

We used three in situ cages (1m
2
 x 1m deep with 1 mm mesh screening; e.g., 

Skelly 1995) in each experimental pond to determine larval survivorship of both H. 

versicolor and A. crepitans; cages in the predator-present ponds were stocked with 

ambient densities of larval A. maculatum.  Zooplankton were able to pass through the 

mesh of the cages and cages were open at the top to allow for colonization of 

macroinvertebrates at the start of the experiment. We stocked ten H. versicolor tadpoles 

and 5 A. crepitans tadpoles into each cage approximately one week after hatching 

(approximately Gosner stage 22), when they could be handled without causing additional 
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stress or mortality in tadpoles. The density of tadpoles was chosen because it 

approximates the naturally occurring densities of both species in the experimental ponds 

(for A. crepitans this was the density seen in predator free ponds). We removed tadpoles 

from the cages when their back legs emerged. A mesh lid was placed over the cages after 

two weeks to prevent any metamorphosed tadpoles from escaping the cages before being 

counted.  

Adult survivorship and growth 

To determine adult survivorship, we collected adult frogs of both species and used 

a mark recapture technique. We visited experimental ponds at night during peak activity 

times for H. versicolor and A. crepitans (humid or rainy nights, above    10°C, with little 

wind) and collected all individuals present at the ponds. Most individuals collected were 

males, given the ease in locating these individuals, however females were often captured 

in or around the ponds edge through visual scanning.  Additionally, in the spring of 2009, 

10 PVC pipe refugia (Boughton et al. 2000) were placed around the ponds to aid in 

locating adults during the day. The PVC pipe samplers were readily colonized by H. 

versicolor .  

When a frog was captured, it was placed individually into a sandwich size Ziploc 

bag and received a cohort and pond specific Visible Implant Elastomer (VIE) mark 

(Northwest Marine Technologies Inc.) beginning in the spring of 2009. In 2010 and 2011 

we scanned all captured individuals for existing VIE tags using the purple wavelength 

detection light. If an individual was marked in a previous year, we recorded the VIE tag 

pattern and the individual received an additional specific mark to denote that it had been 

recaptured that year. Using the total number of individuals  that were marked in year t, 
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we determined a survivorship rate for adults based on the number of individuals that were 

recaptured in year t+1. Therefore, we calculated an estimate of survivorship for each 

species when predators were present or absent between 2009 and 2010, and 2010 and 

2011. 

We used the mean adult H. versicolor survivorship rate from all predator-present 

treatments and both years to parameterize the H. versicolor predator-present model, and 

used the mean rate from predator-absent ponds to parameterize the H. versicolor control 

matrix. Given the large-scale nature of monitoring and marking individual frogs of two 

species at 12 experimental ponds, we were unable to individually mark each frog and 

instead used cohort and pond specific tags. This limited our ability to incorporate 

detection probabilities into our survivorship rates using traditional methods. One way to 

account for detection probabilities, would be to penalize adult survivorship (A) by the 

proportion of individuals that went undetected in a given year (ie: proportion of 

individuals that were marked in 2009, not recaptured in 2010, but were recaptured in 

2011). In our study, no individuals went undetected.  That is, all adults recaptured in 

2011 that were originally marked in 2009 were also marked in 2010. However, since we 

had a low sample size available to quantify detection probability, we increased overall 

adult H. versicolor survivorship by 5%, simulating a more conservative approach than 

our perfect detection probability from recapture data. 

Hyla versicolor adults that were two years of age or older showed different 

patterns of survivorship than first year adults, so an additional second year adult (A2) 

stage was added for this species. Because we had low sample size, we calculated the 
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survivorship rate for the A2 stage across both predator present and absent ponds 

(proportion of adults captured in 2010 that were recaptured again in 2011). 

From 2009 to 2011, we captured and marked 653 adult H. versicolor, and 84 adult 

A. crepitans. We recaptured no adult A. crepitans individuals. We recaptured a total of 54 

previously marked adult H. versicolor in 2010 and 2011. All of the recaptures occurred at 

the ponds where the individuals were originally marked, indicating limited dispersal 

between ponds. 

Juvenile survivorship 

The small size of VIE tags allowed us to mark recently metamorphosed juveniles 

of each species during the summer and fall of each season in order to estimate juvenile 

survivorship rates in a similar fashion to that of adult survivorship rates. Recently 

metamorphosed juveniles were collected from experimental ponds using visual surveys 

of pond edges in addition to dip net sweeps through the experimental ponds to obtain any 

individuals that had all four legs, but had not yet reabsorbed their tails. We limited the 

placement of VIE tags in juveniles to the back legs in order to reduce the potential 

damage to smaller front limbs. We marked 719 H. versicolor metamorphs and 88 A. 

crepitans metamorphs between 2009 and 2010  For A. crepitans, juvenile survivorship is 

based on recaptures in 2010 plus 5% to account for detection probabilities. The recapture 

rate of juvenile H. versicolor was extremely low (1 out of 719 marked juveniles < 0.001 

survivorship), and thus we used estimates of juvenile survivorship from other studies of 

H. versicolor and similar species to set a more realistic, yet still very low, juvenile 

survivorship of 0.01 (Rustigian et al. 2003).  

Demographic matrix models 
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Using the estimated parameters of tadpole, adult, and juvenile survivorship, clutch 

size and egg survivorship, we parameterized a basic two-stage demographic matrix model 

for A. crepitans with and without predators and a three-stage model for H. versicolor with 

and without predators (Figure 2.1). Matrix models were based on females, however adult 

survivorship rates were biased towards males given the propensity to collect more males 

than females. This provides a more conservative estimate of adult survivorship since 

male anurans tend to have higher mortality rates than females (Berven 1990). The 

fecundity term in all four matrix models is the product of clutch size, sex ratio, egg 

survivorship, and tadpole survivorship. Both H. versicolor and A. crepitans complete the 

larval life stage and metamorphose into juveniles within the first year, and thus we 

limited our matrix models to include just the juvenile and adult stage with the spring 

breeding season as time t and the following spring breeding season one year later as time 

t+1.   

We calculated the population growth rate (λ) and elasticity matrix for each model 

following the methods outlined in Caswell (2001). We then compared the population 

growth rate of each species with and without predators for each species. Additionally, we 

calculated a habitat-specific elasticity value for both the aquatic and terrestrial habitat by 

summing the elasticities of vital rates that occurred in the aquatic habitat (egg and larval 

survivorship) and the terrestrial habitat (Juvenile and adult survivorships, clutch size) 

respectively. Egg and larval survivorship both occur in the aquatic habitat, however it is 

embedded within the fecundity term in our matrix model.  Clutch size is often a product 

of resources available in the terrestrial habitat, therefore part of the fecundity term occurs 

in the terrestrial habitat, while part occurs in the aquatic habitat. Consequently, to obtain 
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a habitat specific elasticity value for the aquatic habitat, we separated elasticity values for 

each individual vital rate instead of each stage. The total elasticity value for the vital rates 

was then greater than 1 (whereas the total elasticity value for all stages is = 1). In order to 

determine the proportionate effect of that habitat on population growth, we divided the 

habitat specific total elasticity value by the total elasticity value of all vital rates 

combined.   

Overall population size 

Using the total number of individuals marked in a given year at predator present 

or absent ponds, we were able to obtain total population size estimates for both species in 

2009, 2010, and 2011. We tested whether species, year, predator treatment or their 

interactions affected the population sizes of H. versicolor and A. crepitans from 2009 to 

2011 using repeated measures ANOVA in Systat (version 11).  Overall population sizes 

(count data) for each species were square root transformed to meet assumptions of 

normality. 

Results 

Population growth rates differed between species and treatments.  Hyla versicolor 

populations are projected to grow faster than A. crepitans.  Both species have higher 

projected rates of population growth in ponds with predators absent compared to those 

with A. maculatum (Figure 3.3). The population growth rate of Acris crepitans was more 

sensitive to changes in occurring in the aquatic stage than H. versicolor (Figure 3.4).  

Overall population sizes were much smaller for A. crepitans than for H. versicolor 

(repeated measures ANOVA: Table 3.1). There was no overall affect of treatment on 

total population size (Table 3.1), although A. crepitans did show a non-significant trend 
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of lower population size at predator present compared to predator absent ponds (Figure 

3.2).  Overall population sizes varied significantly from 2009 to 2011 (Table 3.1), 

increasing between 2009 and 2010, and remaining stable or slightly decreasing between 

2010 and 2011. 

Discussion 

 Our matrix population models project that the presence of larval A. maculatum at 

high densities decreases the overall population growth rate (λ) of both species. 

Interestingly, H. versicolor populations are still projected to persist in the presence of 

predators with λ > 1 despite high levels of larval mortality that result from A. maculatum 

presence. In contrast, A. crepitans populations are projected to decline at predator-present 

ponds (λ < 1). Elasticity analysis of the demographic matrix models differed between 

species as expected, with the population growth rate of shorter-lived A. crepitans having 

a higher elasticity to perturbations that occurred in the aquatic habitat than did longer-

lived H. versicolor (Figure 3.4). Thus, we would have expected predators in the aquatic 

habitat to have a more dramatic effect on A. crepitans population growth than on H. 

versicolor. However, A. maculatum decreased the population growth rate of both species 

similarly (Figure 3.3, A. crepitans no predator: λ=1.3663, predator λ=0.7009; H. 

versicolor no predator λ=1.8017, predator λ=1.0259). This discrepancy between the 

elasticity values and the actual effect on population growth rates likely arises from 

differences between species in the magnitude of predation that occurred within the 

experimental ponds.  Hyla versicolor showed increased activity levels when A. 

maculatum were present relative to A. crepitans (Lueder and Burgett, unpublished data). 

This may have allowed A. maculatum to preferentially prey upon H. versicolor, leading 



103 

 

to much larger effects on larval mortality (H. versicolor larval survivorship without 

predators= 0.52, H. versicolor survivorship with predators=0.21; A. crepitans larval 

survivorship without predators=0.31,  A. crepitans larval survivorship with 

predators=0.25; Lueder and Burgett, unpublished data).  

To test our matrix population models, we compare model projections to real 

changes in population size over the sampling period.  Model projections and population 

size estimates concur that H. versicolor populations grow faster than A. crepitans 

populations.  However, our model projects that Ambystoma maculatum presence will 

influence growth rate of populations of both species, and we find no overall effect of the 

predator treatment on either species (although there was a trend for predators to decrease 

the population sizes of A. crepitans (Figure 3.2)). The faster growth rate and higher 

population sizes observed in H. versicolor as compared to A. crepitans likely comes from 

differences in life history strategies between the two species.  A. crepitans has a smaller 

body size in comparison to H. versicolor, which likely contributes to differences in mean 

clutch size between the two species (197 eggs/clutch in A. crepitans compared to 1720 

eggs/clutch in H. versicolor). Additionally, H. versicolor has a slightly higher larval 

survivorship rate. The reduced clutch size of A. crepitans and lower larval survival in the 

absence of predators prevents populations from achieving higher population growth rates 

and thus higher population sizes in experimental ponds.  

Demographic matrix modeling reveals a decrease in population growth rate for 

both species at predator-present ponds, however, the presence of predators did not 

influence the overall population size of either species over the course of this experiment. 

Several factors likely affected this inconsistency. First, our demographic models may 
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have overestimated of larval mortality due to predators. We used standard methodology 

to quantify the effects of predation on larval mortality (Skelly1995).  Specifically, we 

used in situ enclosures that provided alternative prey resources for larval A. maculatum 

and refugia for tadpoles.  Despite this, mortality was likely increased in comparison to 

what tadpoles would experience within the larger experimental pond. Submerged 

vegetation was quite abundant in experimental ponds, providing increased heterogeneity 

than experienced within the experimental cages (Lewis and Eby 2002, Kopp et al. 2006). 

Second, our population size estimates for each pond were relatively low for both species, 

and there was high variation across ponds in population size.  Thus, we had low statistical 

power to detect effects of predation on population sizes of either species.  Finally, our 

population size estimates might have been more affected by poor abiotic environmental 

conditions that were present in 2011 than our vital rate estimates.  

In 2011, there was a particularly cold winter and spring and a very hot summer, 

which decreased overall capture probabilities and the number of calling males at 

experimental ponds compared to 2010. Indeed, the abundances of H. versicolor at ponds 

decreased between 2010 and 2011; this could reflect an actual decrease in population 

size, or could be indicative of adults skipping the breeding season due to reduced 

resources or variable weather patterns that prevented them from returning to ponds to 

breed that year (Penchman et al. 1991). Vital rate estimates for the matrix population 

models were averaged across years, and were therefore less influenced by 2011 weather 

than population size estimates. Therefore, predator effects on population size might have 

been overshadowed by poor abiotic conditions in 2011.  It is possible that additional 
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years of data collection will reveal significant effects of predation on population size, and 

a greater congruence between model projections and population size estimates.  

An important assumption of demographic matrix modeling is that populations are 

at equilibrium (Caswell 2001). In this study, we are likely capturing the exponential 

growth phase of both species as they begin, or try to begin to establish populations under 

the presence and absence of larval A. maculatum. Overall population size estimates 

increased dramatically between 2009 and 2010 and then remained somewhat stable (or 

decreasing) between 2010 and 2011 due to climatic variation in 2011. This suggests that 

these populations are likely still experiencing population growth. Although both species 

are likely experiencing rapid population growth, the limited size of the experimental 

ponds indicates that the population will eventually reach a point where density-

dependence in the larval stage will become important. Therefore, it will be interesting to 

follow these populations as they begin to reach an equilibrium population size and to 

parameterize density-dependent matrix models to capture how predation then influences 

population dynamics of both species.  

This study highlights the importance of examining how interspecific interactions 

in the larval life stage can alter the overall population dynamics of an amphibian species. 

Although many studies suggest that interspecific interactions in the larval stage of 

amphibians can cause dramatic decreases in survivorship (e.g.: Brockelman 1969, Skelly 

1992, Werner and McPeek 1994), this does not necessarily lead to population declines 

within the species if the population growth rate is not particularly sensitive to that life 

stage (Burgett, Chapter 1). The structure of aquatic communities is thus not only 

dependent upon the interactions of species within it, but the dynamics that are occurring 
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in the terrestrial habitat as well. This study highlights the importance of examining 

interspecific interactions at a population scale when one or more of the species has a 

complex life cycle and is the first study to examine how interspecific interactions in the 

aquatic habitat scales up to influence the population dynamics of the species.  
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Table 3.1: Repeated measures ANOVA comparing overall population size between H. 

versicolor and A. crepitans under the presence or absence of an aquatic predator between 

2009 and 2011. 
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Between subjects 

Source SS Df MS F P   

Species 145.207 1 145.207 56.977 0.0001   

Treatment 6.198 1 6.198 2.432 0.135   

Treatment*Species 67.056 1 67.056 0.939 0.345   

Error 50.971 20 2.549     

Within Subjects 

Source SS Df MS F P G-G H-F 

Year 30.235 2 15.118 13.420 0.0001 0.0001 0.0001 

Year*Species 13.913 2 6.957 6.176 0.005 0.005 0.005 

Year*Treatment 1.796 2 0.898 0.797 0.458 0.452 0.458 

Year*Tmt*Spps 29.731 2 14.866 0.222 0.802 0.802 0.802 

Error 45.059 40 1.126     
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Figure 3.1: General matrix model for Acris crepitans, (solid lines) and H. versicolor, 

solid lines and dashed lines, where J= juvenile stage, , A=adult stage and A2 = second 

year adult stage. Vital rates are represented by lower case letters where j=juvenile 

survivorship a=adult survivorship (a=0 for A. crepitans since does not live more than 1 

year) a2= second year adult survivorship, and f= fecundity (clutch size*sex ratio*larval 

survivorship).  
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Figure 3.2: Mean population size and standard deviation of H. versicolor and A. crepitans 

at predator present and absent ponds from 2009 to 2011.  
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Figure 3.3: The projected population growth rate of H. versicolor and A. crepitans in 

predator present and absent ponds from matrix population models.  
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Figure 3.4: Elasticity of the population growth rate to perturbations in vital rates 

associated with the aquatic (egg and larval survivorship which is incorporated into the f 

term) or terrestrial habitat (j and a from Figure 1 and clutch size which is incorporated in 

the f term). 
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Chapter 4  
 

 

Aquatic habitat availability influences oviposition in marginal 

habitats by the spotted salamander (Ambystoma maculatum) 
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Abstract 

 

Many amphibians choose habitats in which to lay their eggs based on the characteristics 

of the aquatic habitat.  For example, the presence of predators or suboptimal abiotic 

characteristics has been shown in numerous species to influence where a female will 

deposit her eggs.  Although less studied, the characteristics of the landscape surrounding 

breeding ponds can also influence the oviposition site selection of breeding females. In 

this study, I examined the oviposition site-selection of a long-lived salamander, 

Ambystoma maculatum, into marginal breeding habitats: those that are highly ephemeral 

and thus likely to dry out before larvae are able to metamorphose. I specifically tested the 

null hypothesis that the oviposition of A. maculatum in marginal habitats would be 

proportional across landscape contexts relative to two alternatives: (1) females may 

increase their use of marginal habitats in landscapes where aquatic habitat is scarce and 

intraspecific competition in the few breeding ponds is intense, or (2) females may 

become more philopatric when aquatic habitat is limited and decrease their use of 

marginal habitats.  I surveyed 19 marginal habitats in landscapes of varying contexts, and 

found evidence for the hypothesis that A. maculatum oviposited more in marginal aquatic 

habitats when their preferred breeding habitat was scarce.  This study highlights the 

importance of knowing both the landscape context and life-history strategy of the species 

in question when understanding the context of oviposition habitat selection.  
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Introduction 

 

 Many species have a complex life cycle in which they use one distinct habitat for 

larval growth and development and a second habitat for adult dispersal and reproduction 

(Wilbur 1980). For these species, oviposition site selection by females is critical for the 

success of offspring (Resetarits and Wilbur 1989).  For example, most of these species 

are unable to disperse long distances in the larval stage, if at all, such that oviposition site 

selection shapes the spatial structure of populations and can be critical to overall 

population dynamics of the species (Pearman and Wilbur 1990). Additionally, 

oviposition site selection by females can influence a species‘ interactions (e.g., 

competition, predation) in the community in which they reside (Morris 2003). 

Consequently, selection for the ability of females to discriminate between high and low 

quality habitats for oviposition is strong (Clausnitzer 1992, Bjorkman et al. 1997, 

Edgerley et al. 1998, Resetarits 1996).  

Among amphibians, several studies have shown that females can discriminate between 

oviposition sites of high and low quality reflecting both biotic and abiotic factors (Figel 

and Semlitsch 1995, Reich and Downes 2003, Blaustein et al. 2004). For example, 

presence of predators, conspecific individuals, and parasites can deter female oviposition 

(Resetarits and Wilbur 1989, Kats and Sih 1992, Laurila and Aho 1997, Kiesecker and 

Skelly 2000), and amphibians tend to oviposit more frequently in ponds with shorter 

hydroperiods, warmer water temperatures, and specific soil compositions (Seal 1982, 

Reich and Downs 2003). While there have been numerous studies on amphibian 

oviposition site selection, they have focused either on the factors of the aquatic habitats 

(e.g., Resetarits and Wilbur 1989, Hopey and Petranka 1994, Kiesecker and Skelly 2000, 
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Rudolf and Rodel 2005), or on the immediate surrounding terrestrial habitat  (Hocking 

and Semlitsch 2007), and have neglected the broader landscape context in which 

amphibian populations occur (but see Segev et al. 2011). 

Long-lived species with complex life-cycles, including many amphibian species, 

may rely critically on the ratios of available habitats (aquatic to terrestrial) in making 

their oviposition habitat selection decisions.  For example, I have shown that densities of 

the long-lived salamander, Ambystoma maculatum, at breeding ponds depends critically 

on the landscape context in which they live; their densities are higher in areas with fewer 

ponds (Burgett, Chapter 2) and this likely occurs because their populations are less 

sensitive to aquatic parameters relative to terrestrial parameters (Burgett Chapter 1).  

In this study, I examined whether oviposition site selection of female A. 

maculatum in marginal aquatic habitats (non-ideal breeding habitats that are likely to dry 

before development completion) was influenced by landscape context (e.g., the ratios of 

aquatic to terrestrial habitat). If female A. maculatum use marginal aquatic habitats in 

similar proportions regardless of the habitat context (e.g.: if they are unable to distinguish 

between high and low quality habitats or are not making oviposition site choices) I would 

predict the null hypothesis that oviposition in marginal habitats is proportional to that in 

preferred habitats as the abundance of preferred aquatic habitats across the landscape 

changes (dashed line in Figure 4.1). If, however, A. maculatum oviposition behavior 

varies in response to habitat context, one of two alternative hypotheses are possible. First, 

the high densities of conspecifics found in preferred aquatic habitats within landscapes 

where aquatic habitat is scarce (Burgett Chapter 2) may deter female A. maculatum from 

ovipositing in those habitats (Rosenzweig 1991, Egan and Paton 2004). This could drive 
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females to oviposit more in marginal habitats when the landscape has lower abundance of 

aquatic habitat (HA1 in Figure 4.1; dotted line). Alternatively, amphibian breeding and 

migrations to breeding habitats can change depending on various environmental factors, 

specifically climate variables during a given season (reviewed in Semlitsch 2008). 

Therefore, A. maculatum females could respond to the decrease in aquatic habitat 

abundance by either not breeding in a given season or by minimizing risk associated with 

finding alternative breeding sites, and ovipositing primarily in the limited preferred 

breeding habitat available (Gamble et al. 2007) (HA2 in Figure 4.1; dot-dash line).  In this 

study, I tested these hypotheses using surveys of marginal aquatic habitats and the 

abundance of A. maculatum egg masses in reference to the overall landscape structure of 

habitats throughout eastern Missouri. 

Methods 

Study system  

The availability of aquatic habitats for breeding amphibians can be extremely 

variable across landscapes (Semlitsch 2002) and ranges from ephemeral wetlands, 

fishless ponds, streams, lakes and rivers all of which vary in their spatial distribution 

within landscapes. In particular, Missouri is rather limited in natural ponds and wetlands, 

and most current amphibian aquatic habitat was man-made to serve as either ―wildlife 

watering holes‖ (Missouri Department of Conservation ―Woodland Resource Guide‖), 

agricultural ponds, or stocked fishing ponds (Perry, MDC: ―Missouri Pond Handbook‖). 

The juxtaposition of these aquatic habitats across the landscape is also extremely variable 

with some areas containing high densities of aquatic habitat, and other areas containing 

few ponds that are widely spaced. This variability in aquatic habitat distribution provided 
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us with an opportunity to examine how landscape variation in aquatic habitat availability 

may influence the oviposition site selection of A. maculatum.   

Ambystoma maculatum spend approximately four months as larvae in fishless 

aquatic habitats before they metamorphose into the terrestrial habitat as juveniles 

(Flageole and Leclair 1992). Like many other Ambystoma, this species is considered 

philopatric, returning to natal ponds each spring to breed (Phillips 1989, Patrick et al. 

2008). They preferentially oviposit in permanent, semi-permanent, and ephemeral aquatic 

habitats (Welborn et al. 1996, Johnson 2005), and avoid ovipositing in ponds with 

abundant predators or high densities of conspecifics (Kats and Sih 1992). In this study, I 

classified preferred breeding habitat for A. maculatum as fishless ponds, with varying 

hydroperiods, but which held water long enough for larvae to complete their development 

(e.g., at least until mid-June in most years). Despite their philopatry and oviposition site 

selection abilities, A. maculatum egg masses are sometimes observed in marginal aquatic 

habitats such as tire ruts, roadside ditches, and fishponds (Burgett and Chase, pers. obvs). 

These marginal habitats are typically smaller than 15m
2
, very shallow, and hold water for 

less than 30 d at a time; thus it is unlikely that they would not support the completion of 

the larval stage of A. maculatum in most years.  

Site selection and data collection 

I used a database of existing ponds located within private and public lands in 

Missouri to look for natural areas that had a range in aquatic habitat availability and 

established A. maculatum populations, allowing me to narrow the search to seven areas. 

Each natural area had established breeding populations of A. maculatum in preferred 

aquatic habitats (fishless semi-permanent to permanent ponds), had marginal aquatic 
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habitats (aquatic habitats with a hydroperiod of less than 30 days) present in early spring, 

and had variable numbers of permanent and/or semi-permanent ponds, so that the regions 

varied in their overall landscape context.  

In the first week of March 2009 and 2010, I visited each area and extensively 

searched for any marginal ephemeral habitats such as puddles, roadside ditches, tire ruts, 

and holes underneath treefalls. However, given the area of most of these natural areas 

(mean size: 996 hectares), I was unable to exhaustively search each landscape for all 

marginal habitats present. Instead, I focused searches along hiking trails and roads, as 

well as the area surrounding breeding ponds to identify any potential marginal habitats 

that may have been used for amphibian oviposition.  

 For each marginal habitat, I quantified the number of A. maculatum egg masses 

visually (Crouch and Paton 2000) and the area of the marginal habitat. I used Google 

Earth and extensive ground truthing to find and measure the area of all preferred aquatic 

habitats within a 500m radius of each marginal habitat.  For each marginal habitat, I 

calculated the average density of A. maculatum egg masses (number of egg masses/m
2
) 

and the area of preferred habitat within a 500m radius.  I averaged these values to have 

one estimate of each for each natural area. For each preferred aquatic habitat, I calculated 

the area of all other preferred aquatic habitats within a 500m radius.  Burgett (Chapter 2) 

contains data on the density of A. maculatum egg masses in each preferred aquatic 

habitat. For each natural area, I averaged across these preferred habitats to obtain one 

estimate of the area of preferred aquatic habitat within a 500m radius and one estimate of 

egg mass density. The use of a 500m radius to calculate area of surrounding preferred 

habitat around each focal habitat is better than using a single estimate for each natural 
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area at a broader spatial scale because this approach more accurately detects the 

abundance of aquatic habitat within a site that A. maculatum females are likely able to 

perceive given their dispersal abilities.  

To test the null hypothesis that A. maculatum egg mass density in marginal 

aquatic habitats is proportional to A. maculatum egg mass density in preferred aquatic 

habitats, I used an ANCOVA to detect a difference in the slopes between marginal and 

preferred aquatic habitat egg mass density (square root transformed to meet assumptions 

of normality) over the range in aquatic habitat abundances (Systat, Version 11).   

Results 

 I identified 19 marginal aquatic habitats between 2009 and 2010 that were filled 

with water during the time of female A. maculatum oviposition. Overall, I observed 95 A. 

maculatum egg masses that were laid in marginal aquatic habitats. All of the marginal 

aquatic habitats dried prior to the successful completion of the larval stage of A. 

maculatum (by mid-June) in both years.  

Marginal aquatic habitats were embedded within a wide range of landscape 

contexts, including several that had no other nearby aquatic habitats and others with as 

many as 11 ponds with breeding populations of A. maculatum within a 500m radius. I 

found that as the amount of aquatic habitat in an area decreased, the density of A. 

maculatum egg masses in marginal aquatic habitats increased (Figure 4.2, Linear 

regression: R
2
= 0.668, P=0.025, F= 10.045), but did so differently from the relationship 

expected from A. maculatum density in preferred aquatic habitats (Figure 4.2: ANCOVA: 

df=1, P=0.046, F=4.880).  

  Discussion: 
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Several studies have shown that female amphibians can discriminate between 

oviposition sites of high and low quality due to biotic factors such as predators, 

conspecifics, and parasites (Resetarits and Wilbur 1989, Kats and Sih 1992, Laurila and 

Aho 1997, Kiesecker and Skelly 2000) and abiotic factors such as hydoperiod, water 

chemistry, and temperature (Seal 1982, Reich and Downs 2003, Segev 2011).  However, 

thus far, studies have only focused on factors of the aquatic habitat that influence female 

oviposition choice, neglecting the broader landscape context in which amphibian 

populations occur. In this study, I examined how the landscape context might affect 

female oviposition into marginal aquatic habitats, finding that the landscape surrounding 

marginal aquatic habitats influenced the rate at which A. maculatum chose low quality 

marginal habitats.  This supported my first alternative hypothesis (Fig. 1 HA1) that A. 

maculatum use of marginal breeding habitats increased as the density of preferred 

habitats decreased.  

One possible reason for the observed increase in marginal habitat use when 

aquatic habitat is scarce would be if female A. maculatum detected the increased density 

of conspecifics in isolated breeding ponds, and chose to oviposit in marginal aquatic 

habitats to increase the chance of their offspring‘s survival (Rowe and Dunson 1995, 

Rudolf and Rodel 2005). Landscapes with numerous aquatic breeding habitats, on the 

other hand, had lower conspecific densities in breeding ponds, which potentially 

minimized the relative benefits an individual might gain by using marginal habitats where 

the chances of survival are risky, but possible in particularly wet years. 

Ambystoma maculatum has an average life span of approximately 25 years 

(Flageole and Leclair 1992), and the population dynamics of such long-lived species are 
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considerably less sensitive to perturbations in the aquatic relative to the terrestrial habitat 

(Burgett, Chapter 1). Therefore, the complete loss of fecundity within a given breeding 

season might not affect the overall population size of A. maculatum (Burgett Chapter 1) 

in an area. 

Interestingly, some marginal aquatic habitats were located more than 500m from 

any existing preferred breeding habitats for A. maculatum, indicating that females either 

travel extreme distances to oviposit in marginal habitats, or are philopatric to these 

marginal habitats.  This indicates the possibility that the A. maculatum may form 

persistent populations that use only marginal habitats for breeding. The occasional wet 

year, in which water could remain in marginal habitats long enough for A. maculatum 

larvae to successfully metamorphose, could be enough to maintain populations where 

preferred aquatic habitats is non-existent.  

Other amphibian species may respond differently to the landscape context 

depending on their life history strategy and in particular, their longevity. Several other 

amphibian species, including spring peepers (Psuedacris crucifer), chorus frogs (P. 

triseriata), leopard frogs (Rana sphenocephala), American toads (Bufo americanus) and 

grey tree frogs (Hyla versicolor) oviposited in the marginal aquatic habitats within this 

study. Short-lived amphibian species have limited opportunities for reproduction and 

depend more critically on larval survivorship in aquatic habitats (Burgett Chapter 1).  As 

such, their oviposition into marginal habitats would likely have greater repercussions for 

their population dynamics than for longer-lived species (Burgett Chapter 1).   

Although oviposition into marginal aquatic habitats might not have significant 

effects on the population dynamics of A. maculatum, larval A. maculatum can 
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significantly alter the dynamics of prey communities in those habitats (Freda 1983, 

Nyman 1991). Ephemeral pools serve as essential habitats for many invertebrates 

(Wellborn et al. 1996), and are often used as refugia for prey species to escape predation 

in more permanent ponds (Jefferies and Lawton 1985). These habitats also house a 

unique suite of habitat specialists and are of particular conservation concern in many 

areas (Colburn 2004). Thus, in landscapes where preferred aquatic habitats for A. 

maculatum are limited, ephemeral pond specialists may be particularly vulnerable to 

predation due to the increased use of these ephemeral habitats by A. maculatum.  

In conclusion, I have shown that the landscape in which an amphibian population 

resides can influence the oviposition site-selection by females. Specifically, a long-lived 

amphibian increases its use of marginal habitats when aquatic breeding habitats are 

scarce. This study is one of the first to demonstrate how landscape context (the amount of 

aquatic habitat in a landscape) influences the oviposition site selection of a species (see 

also Segev 2011). As anthropogenic processes change the availability of aquatic habitats 

across a landscape (such as wetland draining), female oviposition decisions based on the 

amount of breeding habitat in an area may lead to not only population level effects for 

amphibian species, but consequences for both the aquatic and terrestrial communities in 

which they reside.   
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Figure 4.1: Conceptual figure outlining the relationship between the abundance of aquatic 

habitat in a landscape (m
2
) and the density of A. maculatum egg masses. The actual 

relationship between density of A. maculatum egg masses in preferred aquatic habitats 

decreases as the abundance of aquatic habitat within a landscape increases (Burgett, 

Chapter 2, solid line). The three other lines are possible relationships between the density 

of A. maculatum egg masses in marginal habitats and the abundance of aquatic habitat 

within a landscape: (1) The null hypothesis predicts that the abundance of preferred 

breeding habitat in a landscape will not change the use of marginal aquatic habitats by A. 

maculatum for oviposition (the relationship will be proportionate to their use of preferred 

aquatic habitat). (2) HA1 shows the alternative hypothesis that A. maculatum may use 

marginal habitats more than would be expected when preferred aquatic habitat is scarce. 

(3) HA2 outlines the expected result if A. maculatum use marginal habitats less than 

expected when preferred aquatic habitat is scarce.   
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Figure 4.2: Effects of landscape context (amount of aquatic habitat within a 500m radius 

of focal marginal or preferred habitat) on the abundance of Ambystoma maculatum egg 

masses/m
2
 (square root transformed) in marginal and preferred habitats.  
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Dissertation Conclusions



145 

 

Conclusions: 

 

 The overall goal of this research was to determine how landscape characteristics 

interact with the longevity of amphibian species to influence their population and 

community dynamics. I combined a meta-analytical and simulation modeling approach 

with both observational and manipulative empirical experiments on a long-lived 

amphibian, Ambystoma maculatum and its prey to demonstrate that the ratio of aquatic to 

terrestrial habitats in a landscape alters the abundance and oviposition site selection of A. 

maculatum, decreases prey species richness, and can change the population dynamics of 

two anuran prey species.  

 Through meta-analysis and simulation of 27 amphibian species, I first established 

that as the longevity of a species increases, the population growth rate becomes less 

sensitive to perturbations in the aquatic habitat and more sensitive to perturbations in the 

terrestrial habitat. This pattern, although previously demonstrated in other taxa, had yet to 

be established in species with complex life cycles and where density-dependence in the 

larval stage is common. Understanding the relationship between amphibian longevity and 

habitat elasticity provides a useful tool for conservation planning of declining or 

threatened amphibian species where data is often limited and timely conservation actions 

are critical. Given the widespread decline of amphibian species across the planet, rapid 

conservation actions are often required and the pattern between longevity and habitat 

elasticity provides a useful first step for establishing the habitat in which to focus 

conservation efforts.  

 The results of the meta-analysis in chapter one allowed me to establish hypotheses 

about the abundance of a long-lived salamander, Ambystoma maculatum in aquatic 
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habitats that were embedded in landscapes with different proportions of aquatic and 

terrestrial habitats. In chapter two, I present the results from a large-scale survey of A. 

maculatum and the aquatic community at 39 ponds throughout Eastern Missouri. I found 

that as the aquatic to terrestrial ratio (ATR) of a habitat increased (more aquatic habitats 

available across the landscape), the density of A. maculatum in individual ponds 

decreased.. This was likely because decreases in aquatic habitat within a landscape have a 

relatively small effect on A. maculatum population dynamics, and thus the young 

individuals in the population were condensed into the limited aquatic habitats available, 

increasing their localized density. Furthermore, because larval A. maculatum are strong 

predators, prey species richness was decreased in isolated ponds (those with low ATR). 

Metacommunity theory predicts that reductions in species richness in isolated habitats 

results both due to decreased dispersal abilities as well as reductions in predator densities. 

However, this chapter highlights that in aquatic habitats where many species have 

complex life cycles, the ratio between aquatic and terrestrial habitats can strongly 

influence the community dynamics.  

 Two of the prey species that showed reductions in abundance due to A. 

maculatum predation in isolated ponds in chapter two also have complex life cycles. Hyla 

versicolor is a moderately long-lived anuran while Acris crepitans lives on average for 

only one year. I predicted that reduced larval survival in the aquatic habitat due to A. 

maculatum predation would have a larger effect on the population dynamics of the 

shorter-lived A. crepitans than on H. versicolor. In chapter 3, I found that although A. 

maculatum larvae preferentially consumed H. versicolor, A. crepitans was unable to 

establish populations at ponds with predatory A. maculatum, whereas despite large 
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reductions in larval survival, H. versicolor was able to maintain increasing populations 

both in the presence and absence of larval A. maculatum.  

In chapter two and three, I showed the effects of the aquatic: terrestrial ratio 

(ATR) on the community interactions between A. maculatum and its prey within aquatic 

habitats. However, the ATR of a landscape also influences the ability of female A. 

maculatum to discern between oviposition site choices, which can have implications for 

prey species that specialize on ephemeral habitats to avoid predation. Several studies on 

amphibians have shown that females use both biotic and abiotic cues to select the habitat 

for their offspring‘s survival. In chapter four, I demonstrate that the ATR of a landscape 

also influenced female A. maculatum oviposition site selection. When preferred aquatic 

habitats were scarce, A. maculatum oviposited more frequently in marginal aquatic 

habitats.  

In all, this dissertation draws attention to previously ignored aspects of both 

metacommunity dynamics and amphibian population declines; that of landscape context 

and the ATR. The population dynamics of organisms with ontogenetic habitat shifts, such 

as amphibians, depend on the availability and ratio of both habitat types within a 

landscape. While a majority of studies of amphibians have focused primarily on their 

interactions in their aquatic (larval) habitats, owing primarily to their ease of study, my 

work highlights that the insights gained from this work can be limited, particularly for 

long-lived species that utilize terrestrial habitats for a majority of their lives. The rapid 

decline of amphibians worldwide highlights the need for consideration of demography 

information across the entire life cycle of the organism and consideration of the overall 
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landscape context in which populations are embedded in order to curb or prevent future 

declines.  

In addition to the implications for studying amphibian populations, this research 

has implications for other taxa and for metacommunity theory.  Organisms with stage-

structured life cycles and those that move long distances or use different ecosystem types 

during their life cycle will require studies similar to this one in order to fully understand 

how changes to the environment will affect population dynamics.  This is important since 

ecological research typically is not conducted across the entire life cycle and at landscape 

scales for these organisms.  Metacommunity theory predicts that isolated habitats should 

contain fewer predators and weaker tropic interactions, since predators tend to have 

higher extinction rates than prey species owing to their larger body sizes, higher 

metabolic needs and smaller population sizes.  This thesis shows the opposite result.  

Predator densities were highest in isolated aquatic habitats because population dynamics 

of these long-lived predators are driven by demography in the terrestrial habitat, and 

isolated aquatic habitats have stronger tropic interactions.  The disconnect between this 

thesis and the existing theory results from the simple population dynamics assumed in the 

theory.  A broader understanding of how habitat isolation will influence trophic 

interactions requires expanding metacommunity theory to include stage-structured 

population dynamics of both predators and prey.     
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