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ABSTRACT OF THE DISSERTATION 

Evolution and Reproductive Ecology of Oenothera (Onagraceae)  

 

by 

Kyra N. Krakos 

Doctor of Philosophy 
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Program in Evolution, Ecology, and Population Biology 

Washington University, St. Louis 2011 

 

This dissertation describes the role of pollination in the floral diversification of 

Oenothera with an integration of both ecological and phylogenetic approaches. 

Oenothera (Onagraceae) is a model system for studying plant reproductive biology. It 

provides excellent examples of shifts in reproductive traits such as pollination and 

breeding system, features that have been important in angiosperm diversification. These 

systems are evolutionarily labile; they easily shift between different states. These 

different reproductive traits may shift in a concerted fashion; therefore, a more 

comprehensive approach to understanding the evolution of these plant systems 

simultaneously addresses shifts in pollination and breeding system. Using 54 species of 

Oenothera, I first collected detailed data describing the pollination systems, breeding 

systems, and floral traits associated with pollinator rewards; and second I determined the 
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phylogenetic structure, evolutionary history and relationships among these species. 

Finally, in that phylogenetic context, I examined the timing and position of transitions in 

reproductive traits and consider how these traits are associated with pollination and 

breeding systems.  

My results offer new insights regarding the specialization of pollination systems 

and the predictive power of pollination syndromes. I find that specialization in pollination 

is not accurately characterized by visitation rates alone, and that considering functional 

groups of visitors to the flowers provides the most informative characterization of 

pollination systems. I also find that pollination syndromes do not sufficiently or 

accurately describe these pollination systems. My results also clarify phylogenetic 

relationships in the genus Oenothera, determine that there have been 13 independent 

transitions to  self-compatibity, and provide the first phylogenetic tree for subsection 

Kneiffia. I find that pollination and breeding system do not correlate consistently with 

floral traits, and do not show an association with each other. Finally, I find that the 

transitions in the reproductive traits reveal a complex and diverse pattern in which shifts 

in floral traits occur prior and post a transition in pollination system. I also document an 

example of a rare transition from a generalized pollination system to a specialized 

pollination system. The placement of floral trait transitions with regards to pollinator 

shifts suggests selective pressures in floral traits that are predictable and follow 

transitions to novel dominant pollinator groups, rather than changes in pollination system. 
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Plant-pollinator interactions have long been used to examine broad themes of co-

evolution and diversification. The field of pollination biology has moved from  

descriptive natural history to a hypothesis-driven field that helps explain the early 

radiation of angiosperms (Vamosi and Vamosi, 2010).  Traditionally, there have been 

phylogenetic studies that examine patterns of pollinator- mediated angiosperm evolution, 

and ecological studies that focus on plant-pollinator interactions at a species or 

community level. Studies that combine the ecological and evolutionary approaches offer 

a better understanding of plant-pollinator interactions (Mitchell et al., 2009).  

Two major evolutionary transitions in plant reproductive systems are in breeding 

system, the evolution of selfing from outcrossing, and the evolution of animal pollination 

(Barrett, 2010a). Pollination and breeding system, which are clearly correlated, have been 

important in angiosperm evolution, yet they are too often addressed separately (Fenster 

and Marten-Rodriguez, 2007). These systems are evolutionarily labile, easily shifting 

between different states. The different reproductive traits may shift in a concerted 

fashion; therefore a more comprehensive approach simultaneously addresses shifts in 

pollination and breeding system.  

 My objectives are to examine the role of shifts in reproductive biology in the 

evolution of Oenothera (Onagraceae).  I use detailed plant-pollinator data to accurately 

define the degree of specialization of the pollination system. I develop a phylogenetic 

context and identify the placement and directionality of shifts in reproductive traits, and 

in doing so, assess the timing and pattern of floral trait evolution for this group. My 

results have broad implications for how plant-pollinator interactions are measured and 
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interpreted, especially with regards to the appropriate use of pollination syndromes and 

pollinator functional groups in studies of floral evolution.  

Onagraceae, the evening primrose family, has long served as a model system for 

analyzing the role of reproductive biology in the evolutionary history of flowering plants. 

The genus Oenothera is widespread across western North America with some taxa 

extending to central Mexico and South America (Wagner et al., 2007). Recent 

phylogenetic analyses (Hoggard et al., 2004; Levin et al., 2004; Levin et al., 2003) 

resulted in a dramatic clarification of the relationships within Oenothera. Specifically, the 

formerly recognized genera Gaura, Calylophus, and Stenisiphon are now understood to 

be best viewed as elements within a more comprehensive but still monophyletic 

Oenothera (Wagner et al., 2007). The 45 taxa in subsections Gauropsis, Hartmannia, 

Xanthocoryne, Leucocoryne, Kneiffia, Megapterium, Peniophyllum, Paradoxus and 

Gaura encompass a broad array of floral form, including a transition from yellow, 

actinomorphic flowers to white, zygomorphic flowers. These Oenothera taxa have a 

diversity of pollination and breeding systems, and these systems have had repeated shifts 

in character state.  

This dissertation has five chapters that present new data and analyses. Chapters 2 

through 5 provide data that are ultimately united in the broader analyses of Chapter 6; 

however, each chapter addresses unique questions. Each chapter contains an introduction 

to the topic on which it focuses, as well as separate figures, tables, and literature-cited 

sections. Chapter 2 examines the question of generalization and specialization in 

pollination systems, and provides detailed descriptions of the pollination ecology for the 

Oenothera species considered. Chapter 3 addresses the use of pollination syndromes as a 
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predictive tool and how this concept relates to pollination ecology. Chapter 4 describes 

the phylogenetic relationships of these Oenothera taxa and the evolution of breeding 

system in this clade. Chapter 5 focuses on subsection Kneiffia, providing the first 

phylogeny based on molecular data for these taxa, and describing their reproductive 

biology.  Together, Chapters 4 and 5 define the breeding system for these Oenothera 

taxa. Finally, Chapter 6 examines the transitions in Oenothera reproductive ecology in a 

phylogenetic context. I identify correlations and transitions in the breeding system, 

pollination system, and floral traits, and discuss key transitions in the evolution of the 

reproductive biology of these Oenothera taxa.  

The use of Oenothera for a broad comparative study relies on detailed ecological 

data being placed in a phylogenetic context to examine floral evolution.  This study 

would not have been possible if not for the decades of work already conducted on the 

reproductive biology of Onagraceae. The intensive studies of this family performed in the 

sixties by Peter Raven and David Gregory helped to establish Onagraceae as a model 

family for research in plant reproductive biology.  It is upon that foundation that this 

dissertation builds. 
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Introduction 

The rapid rise of the angiosperms in the early Cretaceous is traditionally 

explained by the co-evolution of plants with their insect pollinators (Crane et al., 1995; 

De Bodt et al., 2005; Grimaldi, 1999; Solds et al., 2008; Soltis et al., 2008). Because 

plant-pollinator interactions have played such an important role in the evolution and 

ecology of plant species, defining these interactions has a long history dating back to 

Darwin (Darwin, 1862) and his study of orchids. Early studies focused on the tightly 

coupled relationships of a plant and its pollinator (Faegri and Pijl, 1966; Grant and Grant, 

1965; Stebbins, 1970) and depicted these interactions as highly specialized, meaning that 

a given plant species relied on a small number of pollinator species. Beginning in the 

1990’s, pollination biology research expanded rapidly, challenging these traditional ideas 

and debating the specialization of pollination systems (Bascompte et al., 2003; Fenster et 

al., 2004; Johnson and Steiner, 2000; Mitchell et al., 2009; Ollerton, 1996; Sahli and 

Conner, 2006; Tripp and Manos, 2008; Waser et al., 1996). 

Although generalists and specialists are often discussed as alternative states, the 

biological reality may be better viewed as a continuum of generalization to specialization 

(Johnson and Steiner, 2000). A major impediment to understanding the apparent paradox 

of specialized plants with generalized pollination systems is the lack of a standardized 

method for measuring pollination system specialization (Ne'eman et al.). Traditionally, 

one counted the number of pollinator taxa visiting a plant species (Waser et al., 1996). 

This method may be misleading in the case of a “generalist” plant species that is visited 

by multiple pollinator species if all of the pollinators belong to a functional group defined 

by a single morphology or foraging behavior. The use of pollinator functional groups, 
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which are defined as multiple taxa that share features (such as body size or tongue length) 

that determine their functionality as pollinators, provides a more accurate characterization 

of a plant’s pollination biology (Fenster et al., 2004) and can drastically alter the 

perceived degree of specialization. For instance, Waser (1996) analyzed Robertson’s 

(1928) pollinator survey and reported that 91% of 375 native plants in Illinois were 

visited by more than one insect species and therefore were generalist. Reanalysis of the 

same data indicated that when the insects were grouped into functional groups, 75% of 

the flowering plants only used one pollinator type and could therefore be considered 

specialized by that criterion (Fenster et al., 2004).  

 Calculating the degree of pollination specialization based solely on visitation, 

meaning the animals that land on the plant, can also be misleading because not all plant 

visitors are pollinators. A plant may be visited by dozens of potential pollinators, but 

critical pollen transfer may be accomplished by a single pollinator. In addition, a frequent 

visitor may carry a small pollen load, while a less frequent visitor may carry a large 

pollen load (Mayfield, Waser and Price 2001). In Oenothera cinerea, when both 

visitation and pollen load were examined, Clinebell et al. (2004) found a high degree of 

specialization to a few major pollinators: of 45 species of floral visitor, only 5 carried 

major pollen loads, and 32 carried little or no pollen. However, few studies evaluate 

pollination based on both visitation and pollen load, and failure to account for pollen load 

can lead to inaccurate assumptions regarding the number of pollinators with which a 

plant species actually interacts.  

 In addition, many angiosperm traits, including pollination system, are shared due 

to common ancestry, and results from comparative studies can be biased by phylogenetic 
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constraint and niche conservatism (Sanderson and Donoghue 1996, Sakai et al. 1997, 

Freckleton 2000, Vamosi et al. 2003, Machado and Lopes 2004). A well-resolved 

phylogeny can provide a framework for comparing pollination systems while controlling 

for shared evolutionary history (Nosil and Mooers, 2005).  

Onagraceae, specifically the genus Oenothera, has long served as a model system 

for the evolution of flowering plant reproductive biology (Clinebell et al., 2004; Hoch et 

al., 1993; Raven, 1979; Raven, 1988). The diversity of pollination systems within 

Oenothera make it ideal for testing hypotheses of pollination system specialization. 

Recent molecular phylogenetic studies have clarified phylogenetic relationships within 

Oenothera (Hoggard et al., 2004; Levin et al., 2004; Levin et al., 2003; Wagner et al., 

2007), notably, the once segregate genera Gaura, Calylophus and Stenisiphon now 

appear within a monophyletic Oenothera (Raven, 1988; Raven and Gregory, 1972). We 

focused on 26 species in sections Kneiffia, Megapterium, Peniophyllum, Paradoxus and 

Gaura, hereafter referred to as the “Gaura clade.”  The 26 species of the Gaura clade are 

widely-distributed in North America and Mexico (Raven, 1979; Raven and Gregory, 

1972; Straley, 1977), and they exhibit a broad array of floral form, both diurnal and 

nocturnal flowering, and diverse pollinators, including noctuid moth, antlion, bee, fly, 

wasp, butterfly, and hawkmoth (Clinebell et al., 2004; Moody-Weis and Heywood, 2001; 

Nonnenmacher, 1999; Raven, 1979; Raven and Gregory, 1972; Straley, 1977). 

This Gaura- clade provides a system in which we can make a more rigorous assessment 

of Oenothera pollination systems to clarify the degree of specialization while controlling 

for similarity due to shared ancestry. We examined the pollination systems of 26 species 

of taxa in the Gaura- clade of Oenothera. First, we describe the current measures of 
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specialization utilized in contemporary pollination studies. Second, we use the 26 focal 

species of Oenothera to test the hypothesis that visitation is sufficient to characterize 

pollination system specialization. Finally, we test the hypothesis that most flower species 

have generalized pollination systems by examining the distribution of the pollination 

system of these 26 Oenothera. We expect that defining pollination systems using 

pollinator functional groups will result in a distribution that shows that most pollination 

systems for these Oenothera are specialized, and that functional groups will be 

informative about which pollinator group a plant interacts with the most often. We 

predict that considering specialization in terms of morphological adaptations to 

pollinators, functional groups are a better metric than counting the number of pollinator 

species.  

Materials/Methods 

Study System 

We studied 26 species of Oenothera in sites throughout the Northeast and 

Midwest of the United States. Fieldwork was conducted from April 2007 to August 2010. 

For each population, we conducted pollination observations and collected insects for later 

pollen load analyses. Vouchers of the Oenothera species were collected from each site 

and deposited with the Missouri Botanical Garden herbarium (MO).  

The focal population for O. macrocarpa was located in Franklin Co., MO at Shaw 

Nature Reserve (38° 27’ 58.69” N, 90° 49’ 13.45” W). The three focal populations of O. 

filiformis were in Franklin Co., MO on private lands in Gray Summit, MO (38° 28.395N, 

91° 6.035W, 38° 32’ 04”, 90° 20’ 25” W and 38° 39’ 43” N, 90° 18’ 59”W). The two 

focal populations of O. linifolia were located on the same private lands in Gray Summit, 
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MO (38° 32’ 04”, 90° 20’ 25” W) and in Clinton Co., IL (38° 29’ 18.39” N, 89° 33’ 

52.6” W).  Oenothera triangulata and O. patriceae were growing in a sympatric 

population in Tulsa Co., OK within the city limits of Tulsa, OK (36° 10’ 35.67” N, 90° 

49’ 13.45”W). Oenothera sinuosa was located in Murray Co., OK along Interstate 35 

(34° 22’ 56.26” N, 95° 48’ 44.64” W). The focal population for O. suffulta ssp. suffulta 

was in Murray Co., OK along Interstate 35 near Davis, OK (34° 25’ 34.32” N, 97° 8’ 

41.6” W). The focal population for O. demareii was in McCurtain Co., on the outskirts of 

Broken Bow, OK (34° 1’ 44.8”N, 94° 43’ 6.28”). The focal population for O. gaura was 

located in Hampshire Co., MA within the city of Belchertown (42° 17’ 16” N, 72° 24’ 

24” W). The focal populations for O. suffulta ssp. neallyi, O. havardii and O. arida were 

located in Brewster Co., TX.  Oenothera havardii and O. arida were in a sympatric 

population at the outskirts of Alpine, TX (30° 22’ 27.46” N, 103° 39’ 39.69” W). 

Oenothera  suffulta ssp. neallyi was found within the city limits of Alpine, TX at multiple 

locations (30° 21’ 28.21” N, 103° 39’ 14.4” W and 30° 22’ 0.54” N, 103° 39’ 39.85” W). 

The focal population for O. coloradoensis. ssp. neomexicana was located in Rio Arriba 

Co., NM on private lands 4 miles east of Cloudcroft, NM (32° 57’ 53” N, 105° 41’ 23” 

W). The focal population for O. xenogaura was located in Starr Co., TX along Hwy 1430 

4 miles east of Rio Grande City, TX (26° 20’10.79” N, 98° 43’ 56.9” W). The focal 

populations for O. simulans were located in New Hanover Co., NC along the roadside 

near Island Creek (N 34° 22’ 02”, W 77° 48’ 54”) and in Pender Co., NC on Sloop Point 

Rd, Surf City, NC (34° 26’ 4.21” N, 77° 37’ 51.03”W). The focal populations of O. 

pilosella were located in SE Washington Co. IL, 3 miles south of Posen, IL (38° 15’ 

33.08”N, 89° 18’ 12.85”W), and Jefferson Co., IL along Co. Hwy 9 (38 ° 15’ 53.82” N, 
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89° 2’ 23.6”W). The focal population of O. perennis was located in Middlesex Co, MA at 

the Great Meadows National Wildlife Refuge (42°23’32.6 N, 71° 22’ 55.1 W). Our focal 

populations of O. sessilis were located in Prairie Co., AR at Downs Praire Natural Area 

(34° 46’ 43” N, 91° 21’ 44” W) and Railroad Prairie Natural Area (34° 46’ 59” N, 91° 

29’ 44” W). Our focal populations of O. riparia were located in New Hanover Co., NC 

on the banks of  Island Creek (N 34° 22’ 02”, W 77° 48’ 54”), Pender Co., NC (34° 14’ 

40” N,  78° 00’ 59” W), and New Hanover Co., NC along the banks of Upper Smith 

Creek (34° 15’44 N, 77° 53’ 15” W). The focal population for O. curtiflora was located 

in Woodward Co., OK at the Selman Living Laboratory (36° 42’ 46.227” N, 99° 15’ 

28.1” W).  

The pollination system data for O. cinerea ssp. cinerea, O. hexandra ssp. 

hexandra, O. glaucifolia, O. suffrutescens, O. lindheimeri, and O. anomala were 

conducted by the late R. Clinebell of the Missouri Botanical Garden. His data and 

collections were used in this study to determine the pollination rates and pollen load for 

these species. His collection methods were consistent with those studies conducted on the 

Oenothera listed above. In addition, some pollination data were included from collections 

of  P. Raven and D. Gregory, which are stored at the Missouri Botanical Garden.  

Oenothera cinerea ssp. cinerea was studied during the flowering seasons of July 

1999, Sept 2000, Sept 2001, and July 2003. Focal populations were located in Morton 

Co., KS at Cimmaron National Grasslands (37° 7’ 16”N, 101° 53’ 40” W), and Union 

Co., NM at Kiowa National Grasslands near Carrizo Creek. Oenothera cinerea ssp. 

cinerea was also studied in June 1966 at a focal population in Crane Co., TX 13 miles 

west of Monahan on route 1053. Oenothera lindheimeri was studied during the flowering 
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seasons of June 1964 and 1965 at focal populations in Chambers Co., TX 6.5 miles N of 

High Island, Liberty Co., TX, and Fort Bend Co., TX. O. anomala was studied during the 

flowering seasons of July-September of 2000 and 2001, and June-September of 1966. 

The focal populations were located in Durango, Mexico (23° 47’ 34” N, 104° 45’ 40” W 

and 23° 48; 04” N, 104° 46’ 00” W) and at a population 28 miles west of Durango on 

Mex 40. Oenothera hexandra ssp. hexandra was studied during the flowering season of 

July 2000 at a focal population in Durango, Mexico (23° 56’ 13.7” N, 104° 52’ 1.4” W) 

and a population near Llano Grande, Mexico (23° 52’ 1.6” N, 105° 12’ 52.7” W). O. 

glaucifolia was studied during the flowering seasons of July-Sept 2002, 2003, and 2004 

at a focal population in McClain Co., OK at Kessler’s Farm. Oenothera suffrutescens was 

studied during the flowering seasons of May-August 1964, 1966, and 1998 at focal 

populations in Clark Co., NV at Five State Park, Boaca Co., CO near Comance National 

Grasslands, 16 miles East of San Luis Potosi, Mexico, Oaxaca, Mexico, 5 miles north of 

Nochixtian, Reeves Co., TX, and Larimer Co., CO on the roadsides of Ft. Collins.  

Characterization of pollination system in contemporary published studies 

Using the Boolean search terms “pollination AND ecology”, we searched in Web 

of Science (Thomas Reuters 2010) for all publications from the 2004 to 2009. We 

examined the main questions of 425 records and found that 144 of these records 

measured pollination systems as part of their research goals (Supplementary Table 2-2). 

For these 144 records, we read the methods and determined whether the number of 

animal visitors alone was used to characterize the pollination systems, or whether both 

visitation and pollen load were used to determine the pollination system.  

Measuring Pollination 
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Pollination system was determined based on both visitation rates and pollen load 

analysis. For each population of Oenothera we conducted 20 min observations of 

multiple randomly chosen inflorescences and recorded the total number of visits, type of 

visitor, and behavior of visitors. We recorded observations of physical contact between 

an insect and the receptive stigma. These observations were conducted four times during 

each species flowering season, and took place at peak pollinator activity times of the day 

or night. The numbers of observations performed per species and the number of insect 

visitors collected are recorded in Table 2-1. 

Average pollen load was determined from a collected sample of insect visitors 

that made stigma contact. The insect visitors to the flower were collected using a net and 

a killing jar charged with ethyl acetate. Insects were pinned and taken to the lab to 

quantify the amount and location of pollen carried. To assess the identity and number of 

pollen grains carried by each visitor to an Oenothera species we made a library of pollen 

grains from flowering plants at each study site.  Dehiscent stamens were placed on glass 

slides.  The pollen was teased out with probes, stained with 1-2 drops of Calbera’s fluid 

to make a semi-permanent mount (Bernhardt et al., 2003; Goldblatt et al., 1998b) and 

labeled to species for future reference. Each euthanized insect collected on the Oenothera 

species was placed on a separate glass slide and washed in a few drops of 70% EtOH. 

The insect specimen was removed from the slide and the slide was allowed to air dry.  

Washed insect specimens were then dried, pinned, and saved for identification by 

regional entomologists. The pollen on the slide was stained with one or two drops of 

Calbera’s fluid (Goldblatt et al., 1998b) and a cover slip was applied to the surface of the 
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drop. All pollen identified under light microscopy was compared to the pollen library.  

The type and amount of pollen on the legs, thorax, and proboscis was recorded.  

Earlier collections of insect visitors collected off various Oenothera species are 

stored at the Missouri Botanical Garden. These include collections by R. Clinebell, P. 

Raven, and D. Gregory. I conducted the pollen load analysis on these insect collections. 

Visitation rates for these visitors are found in records kept at the Missouri Botanical 

Garden (unpublished data). 

Quantifying specialization: “S-score” and “F-score” 

 The degree of pollinator specialization of a plant species, which I have termed the 

S-score, is defined as the number of taxa that account for 95% of the pollen flow. Pollen 

flow was calculated by combining visitation rate and pollen load to correct for the 

disparity between frequency and efficacy of pollinators. To calculate this S-score, we 

combine the visitation rate (visits/inflorescence/20min) with the pollen load (number of 

pollen grains carried by an animal visitor) summed across visitor species. Where:  

Pollen Flow = ∑ (Visitation Ratespx * PollenLoadspx).  

We then determined the number of animal visitors that accounted for 95% of the total 

pollen flow, and designated that as the “S-score” for that specific Oenothera taxa. We 

also measured pollination by placing the visitors into functional groups based on taxa and 

size. For example, all noctuid moths of a similar size that visited during the same time 

period were considered as one functional group. These data are summarized in Table 2-1. 

We then determined the number of functional groups that accounted for 95% of the total 

pollen flow and designated that as the “F-Score”.  

 Analyses 
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To test whether visitation alone was sufficient to characterize pollination systems, 

we compared the number of total visitors with the number of pollinators, defined as those 

visitors that carried the plant species pollen and made stigma contact. We log-

transformed the data [ln (x +1)] for normalization, and then used a paired t-test to test for 

differences in these two ways of characterizing pollination systems. We also performed a 

Wilcoxon Sign Rank test to check for differences between visitation and pollination, and 

between S-scores and F-scores.  

To determine how specialized Oenothera pollination systems are when defined by 

pollinators, not just visitors, we used regression on the log-transformed data [ln (x +1)] 

for S-scores.  

Results 

Characterization of pollination systems in contemporary published studies 

Of the 144 records examined, 62.5% used only observed visitation rates of insects 

or birds to plants as a method to characterize pollination (Suppl. Table 2-1).  

Pollination System 

 Of the 26 Oenothera species examined, O. curtiflora, O. sessilis, and O. simulans 

were completely autogamous.  Oenothera simulans and O. sessilis had visitors, but none 

that carried any pollen and contacted a stigma. Oenothera macrocarpa, O. suffulta ssp. 

nealleyi, O. filiformis, O. coloradoensis ssp. neomexicana, and O. gaura all used both 

night and day pollinators.  Oenothera linifolia, O. pilosella, O. perennis, O. riparia, O. 

glaucifolia, O. demareei and O. lindheimeri were all day pollinated. Oenothera patriciae, 

O. triangulata, O. xenogaura, O. suffulta ssp. suffulta, O. sinuosa, O. cinerea ssp. 
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cinerea, O. hexandra ssp. hexandra, O. havardii, O. arida, O. anomala, and O. 

suffrutescens were all exclusively night pollinated.  

 The main pollinator groups and F and S scores for all 26 species are listed in 

Table 2-1. The full list of taxa pollinating these Oenothera species is listed in 

Supplemental data Table 2-3. 

Visitation vs. Pollination 

 For 3 of the Oenothera species, the number of visitors equaled the number of 

pollinators. In all other species, visitation alone was not sufficient to accurately describe 

the pollination system. There was a statistical difference between visitation and S-score 

(P = 0.000002) The Wilcoxon Sign-Rank test showed a statistical difference between 

visitation and S-score (Prob |z| < .00001). In addition, visitation was not proportional to 

S-score, in other words a high number of visitors did not equal a high number of 

pollinators. (Fig. 2-1) 

 Taxa vs. Functional Groups 

 The regression analysis using the S-score shows a pattern of more Oenothera 

species having specialized rather than generalized pollination systems (R2= 0.640, P= 

0.000198) (Fig 2-2). Regression analysis using the F-score also show that Oenothera 

pollination systems are more specialized (R2= 0.682, P= 0.000081). There is a significant 

difference between how specialized the pollination systems are when calculated using 

taxa (S-score) and when using functional groups (F-score) (P= 0.000089). The Wilcoxon 

Sign-Rank test also shows a significant difference between the S-score and F-score (Prob 

|z| = 0.0001) (Fig. 2-3). 

Discussion 
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The present study, integrating new datawith previous results, can help us 

understand the pollination system of Oenothera, and it provides insight into how 

specialization of pollination systems is measured. The pollination systems of Oenothera 

have been studied for several decades and serve as a model system for studying plant 

reproduction (Raven, 1979; Raven, 1988; Raven and Gregory, 1972; Wagner et al., 

2007). Oenothera species have a broadly diverse number of pollination systems. Bee-

pollination is most likely the ancestral state, with hawkmoth pollination as a derived state 

that has arisen multiple times (Raven and Gregory 1972; Raven 1979). In this study, we 

looked at the pollination systems of 26 taxa of Oenothera and focused on how to most 

accurately define the degree of specialization of these pollination systems. We found that 

these species attract a wide range of main pollinator groups including fly, bee, moth, 

hawkmoth, wasp, and antlion. These species cover a broad range of pollination system 

types, both in temporal and spatial variation, and are a good representation of North 

American pollination.  

Understanding the degree of specialization of pollination systems is important 

when making inferences about a plant’s evolutionary history. Pollinators are not the only 

factor in the adaptation of floral forms. For example, life history, breeding system, 

successional status, and abundance  all play a role, but pollinators are described as a 

dominant influence in the evolution of floral specialization (Crane et al., 1995; De Bodt 

et al., 2005; Endress, 1994; Soltis et al., 2008). How specialized a pollination system is 

also plays a critical role when making conservation decisions for plant species (Ashworth 

et al., 2009; Bascompte, 2009; Biesmeijer et al., 2006; Johnson and Steiner, 2000; 

Winfree, 2008). Concluding that a plant has a generalized pollination system, when it 



19 
 

may be highly specialized, could lead to poor management decisions and result in a loss 

of plant diversity.  

For several of the species, we have multiple years of pollination data, but with 

such a broad study, this was not available with all the taxa. This is a potential limitation 

of the study. To gauge the degree of pollination visitation variability from year to year, 

we compared pollination data between two years for O. filiformis and O. macrocarpa. 

We found that although the taxa or functional group of pollinator differed, the total 

number of pollinator species or functional groups active in a single year did not change. 

This is in agreement with recent pollination network studies that show while the type of 

species interacting may change from year to year, the overall number of interactions 

tends to remain constant (Memmott et al., 2004; Petanidou et al., 2008). Therefore, we 

determined that a ‘snapshot’ approach, involving a single season of detailed pollination 

data, is sufficient for the broad scale comparison of this project. When looking at 

functional groups, a snapshot approach can be sufficient to characterize a pollination 

system in terms of how specialized it may be (Alarcon et al., 2008).  

Measuring how specialized a pollination system is has important implications 

when looking at the evolution of a lineage. If pollinators are a selective pressure that has 

led to such a diversity of floral form, then plant- pollinator interactions are expected to be 

highly specialized, and a specialized pollination systems would be seen for a majority of 

flowering species (Ollerton, 1996). One reason that pollination systems are often seen as 

generalized is because they are defined only using visitation rate of a potential pollinator 

to a plant. In this study, we found that the majority of pollination studies in the last five 

years only used visitation rate to characterize a pollination system. However, we found 
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that visitation rate highly over-estimates the number of taxa pollinating a plant species. 

Insects visit flowers for a variety of reasons (Buchmann and Nabhan, 1996). The flower 

may be a mating site or a source of food or shelter and all of the insects’ interactions with 

the flower may not involve stigma contact. In this study, we only collected potential 

pollinators which were observed making regular stigma contact. Of the 26 Oenothera 

species we studied, for only 3 of those species did the number of visitors equal the 

number of pollinators.  When pollen load and stigma contact are measured as well, the 

number of actual pollinators is significantly lower than the number of visitors for the 

other 20 Oenothera species (3 species were completely autogamous). In contrast to 

Waser (1996), we find that Oenothera pollination systems, as representative of North 

American pollination systems, are more specialized than generalized.   

It has been suggested that visitation is still an accurate way to measure 

specialization of pollination systems because the number of visitors is proportional to the 

number of actual pollinators (Cayenne Engel and Irwin, 2003), and so one could make 

relative comparisons between plant species based on just visitation. However, in this 

study, we find that there is not a correlation between the number of visitors and the 

number of pollinators (Fig. 2-1). For example, O. cinerea ssp. cinerea has the highest 

number of visitors, 73, but an S-score of 9; while Oenothera macrocarpa uses the highest 

number of pollinators, with an S-score of 13, but only has 18 species of visitors. We 

conclude that not only does visitation highly over-estimate the number of pollinators, but 

it is also not a sufficiently accurate measurement of specialization of pollination systems 

in a proportional or comparative way either.  
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Pollination system is most often measured as the number of taxa involved in the 

plant-pollinator interaction.  However, the use of functional groups, in which the visiting 

taxa are grouped by some morphological characteristic that afffects how pollen load is 

delivered to a plant species, is perhaps a more informative way to examine pollination 

systems. A pollination system is considered specialized when a single functional group is 

responsible for greater than 75% of the pollination visits (Fenster et al., 2004). In this 

study, when we grouped the insect visitors by major taxon groups and size, we found that 

the Oenothera pollination systems are more specialist than generalist. By the definition of 

Fenster et al. (2004), 17 of the Oenothera species have specialist pollination systems. Of 

the remaining species, 8 use only 2 functional groups of pollinators to reach 75% of the 

pollination visits, and only one species, O. gaura, uses 3 functional groups. We decided 

to measure pollination specialization in a way that would show the continuous nature of 

pollination systems. We calculated for each Oenothera species an “F-score,” which 

placed them along a continuum. The majority of the Oenothera species were toward the 

specialist end of the continuum (Fig. 2-2). The highest F-score was a 5, which means it 

took 5 functional groups to account for 95% of the pollen flow, and only two species, O. 

macrocarpa and O. glaucifolia, had this score.  

Placing pollinators into functional groups is not just creating a subset of 

pollinators measured by the number of visiting taxa. The number of functional groups is 

not always just a proportionally smaller set of the pollinators (Fig. 2-3). Of the 26 

Oenothera pollination systems we studied, 8 species had the same number of pollinating 

taxa as they did functional groups. Functional groups can also give more information as 

to which species are actually the important pollinators. Some taxa do not contribute 



22 
 

sufficiently to the pollen flow to be included in the S-score; however, when the taxa are 

grouped by functional groups, they can become the dominant contributor to the pollen 

flow. For example, O. cinerea ssp. cinerea is pollinated by several species of small 

halictid bees, bumble bees and noctuid moths. If the data are examined looking only at S-

score values, two halictid bees appear to be the dominant pollinators. But when the taxa 

are grouped into functional groups, the 14 taxa of noctuid moths collectively become the 

second most important group contributing to pollen flow. When only assessed by taxa, 

the noctuid moths are not seen as important pollinators because each species only carries 

a small pollen load, and there are many species involved.  Overall, we find that the use of 

functional groups gives the most accurate representation of how specialized these 

Oenothera pollination systems are, with respect to morphological specialization to a 

specific type of pollinator.  

One difficulty in applying these results to other floral systems is that Oenothera 

pollen are large compared to other flowering species. The size of the pollen would be a 

trait that would limit the number of pollinators that could manipulate and carry pollen. 

This could possibly filter out smaller visitors that would be pollinators if the pollen were 

smaller. It may be that in a different floral system with smaller pollen, there would be 

more species with more generalized pollination systems. In addition, the viscine threads 

that hold together Oenothera pollen could possibly affect the size of pollen load carried 

by a pollinator. Future studies should look at a comparison of specialization of pollination 

systems between different floral systems.  

In conclusion, we find that for Oenothera, the number of visitors alone highly 

overestimates the number of pollinators and is inadequate for determining pollination 
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system specialization. When both pollen load and visitation rate were used to calculate 

specialization, we found that the pollination systems were distributed across a continuum 

from highly specialized to generalized, with the majority of the pollination systems being 

specialized. In addition, we find that functional groups provide the most informative 

characterization of pollination systems, especially when determining which pollinator 

group a plant interacts with the most often. These results are important when making 

broad conclusions regarding the evolution of this group, as well as for making 

conservation and management decisions. Finally, this study serves as an example of how 

to determine pollinators for future studies that consider specialization of pollination 

systems.  
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Table 2-1. The total number of insect taxa visiting each species of Oenothera. F and S scores for the 26 Gaura-clade members of 

Oenothera, as based on the visitor observations and pollen load data. The main pollinator functional groups are listed.   

Species Visitor observations (n) Insect Pollen 
Loads (n) S-score F-score Pollinator Functional Groups 

O. anomala 176 71 4 2 Hawkmoth/antion 

O. arida 63 25 1 1 Noctuid moth 

O. cinerea s. cinerea 904 330 9 3 Night-moth/Day-bee, bumble bee 

O. coloradoensis s. neomexicana 308 66 2 2 Day-small bee/Night-moth 

O. curtiflora 400 0 0 0 Autogamous 

O. demareei 311 132 3 2 bee/bumble bee 

O. filiformis 1110 212 10 2 Night-moth/Day-bee 

O. gaura 241 126 6 4 moth/fly/wasp/bee 

O. glaucifolia 228 182 11 4 bee/wasp/fly/small bees 

O. harvardii 125 30 1 1 Hawkmoth 

O. hexandra s. hexandra 236 108 8 3 moth/bee/fly 

O. lindheimeri 180 72 5 2 bee/wasp  

O. linifolia 152 52 2 2 Fly/Small halictid bee 

O. macrocarpa s. macrocarpa 331 155 13 5 Night-moth, hawkmoth/Day-bee, wasp, small bee 

O. patriciae 228 29 1 1 Noctuid moth 

O. perennis 236 56 4 3 small bee/bee/bumble bee 

O. pilosella s. pilosella 185 69 3 2 bee/small bee 

O. riparia 285 41 3 3 bee/small bee/bumble bee 

O. sessilis 137 0 0 0 Autogamous 

O. simulans 290 19 0 0 Autogamous 

O. sinuosa 330 50 1 1 Noctuid moth 
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O. suffrutescens 373 100 9 4 moth/bee/small bee/bumble bee 

O. suffulta s. nealleyi 296 46 2 2 Night-moth/Day-bee 

O. suffulta s. suffulta 133 109 3 2 Noctuid moth 

O. triangulata 155 19 2 1 Noctuid moth 

O. xenogaura 349 41 3 1 Noctuid moth 
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Figure  2-1 A comparison of number of insect visitors, which is often used as a substitute 

for number of pollinators, and the S-score, which is based on visitation rate and pollen 

load carried by insect, shows a statistical difference (P = 0.000002).  Visitation is not 

proportional to pollination rate. Each pair of bars is for one of the 26 Oenothera taxa. The 

letter below each data pair corresponds to the Oenothera taxa indicated in the chart 

below. 
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j O. pilosella s. pilosella 
k O. anomala 
l O. riparia 

m O. xenogaura 
n O. lindheimeri 
o O. gaura 
p O. triangulata 
q O. patriciae 
r O. perennis 
s O. suffulta s. suffulta 
t O. simulans 
u O. linifolia 
v O. harvardii 
w O. sessilis 
x O. arida 
y O. sinuosa 
z O. curtiflora 
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Figure  2-2 Regression analysis on the S-score (log transformed data) show a pattern of 

more Oenothera having specialized rather than generalized pollination systems (R2= 

0.640, P = 0.000198).  
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Figure  2-3 A comparison of the S-score and F-score for all 26 Oenothera. There is a 

significant difference between how specialized the pollination systems are when 

calculated using taxa (S-score) than when using functional groups (F-score) (P= 

0.000089).  
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n O. lindheimeri 
o O. gaura 
p O. triangulata 
q O. patriciae 
r O. perennis 
s O. suffulta s. suffulta 
t O. simulans 
u O. linifolia 
v O. harvardii 
w O. sessilis 
x O. arida 
y O. sinuosa 
z O. curtiflora 

 

  



31 
 

Literature Cited 

Alarcon, R., N. M. Waser, AND J. Ollerton. 2008. Year-to-year variation in the topology 

of a plant-pollinator interaction network. Oikos 117: 1796-1807. 

Ashworth, L., M. Quesada, A. Casas, R. Aguilar, AND K. Oyama. 2009. Pollinator-

dependent food production in Mexico. Biological Conservation 142: 1050-1057. 

Bascompte, J. 2009. Mutualistic networks. Frontiers in Ecology and the Environment 7: 

429-436. 

Bascompte, J., P. Jordano, C. J. Melian, AND J. M. Olesen. 2003. The nested assembly 

of plant-animal mutualistic networks. Proceedings of the National Academy of 

Sciences of the United States of America 100: 9383-9387. 

Bernhardt, P., T. Sage, P. Weston, H. Azuma, M. Lam, L. B. Thien, AND J. Bruhl. 2003. 

The pollination of Trimenia moorei (Trimeniaceae): Floral volatiles, insect/wind 

pollen vectors and stigmatic self-incompatibility in a basal angiosperm. Annals of 

Botany 92: 445-458. 

Biesmeijer, J. C., S. P. M. Roberts, M. Reemer, R. Ohlemuller, M. Edwards, T. Peeters, 

A. P. Schaffers, S. G. Potts, R. Kleukers, C. D. Thomas, J. Settele, AND W. E. 

Kunin. 2006. Parallel declines in pollinators and insect-pollinated plants in Britain 

and the Netherlands. Science 313: 351-354. 

Buchmann, S. L., AND F. P. Nabhan. 1996. The forgotten pollinators. Shearwater Books, 

Washington D.C. 

Cayenne Engel, E., AND R. E. Irwin. 2003. Linking pollinator visitation rate and pollen 

receipt. Am. J. Bot. 90: 1612-1618. 



32 
 

Clinebell, R. R., A. Crowe, D. P. Gregory, AND P. C. Hoch. 2004. Pollination ecology of 

Gaura and Calylophus (Onagraceae, Tribe Onagreae) in western Texas, USA. 

Annals of the Missouri Botanical Garden 91: 369-400. 

Crane, P. R., E. M. Friis, AND K. R. Pedersen. 1995. The origin and early diversification 

of Angiosperms. Nature 374: 27-33. 

Darwin, C. R. 1862. On the various contrivances by which orchids are fertilized by 

insects. John Murray, London, UK. 

De Bodt, S., S. Maere, AND Y. Van de Peer. 2005. Genome duplication and the origin of 

angiosperms. Trends in Ecology & Evolution 20: 591-597. 

Endress, P. K. 1994. Floral structure and evolution of primitive angiosperms - recent 

advances. Plant Systematics and Evolution 192: 79-97. 

Faegri, K., AND L. v. d. Pijl. 1966. The principles of pollination ecology. Pergamon, 

Oxford, UK. 

Fenster, C. B., W. S. Armbruster, P. Wilson, M. R. Dudash, AND J. D. Thomson. 2004. 

Pollination syndromes and floral specialization. Annual Review of Ecology 

Evolution and Systematics 35: 375-403. 

Goldblatt, P., J. C. Manning, AND P. Bernhardt. 1998. Adaptive radiation of bee-

pollinated Gladiolus species (Iridaceae) in southern Africa. Annals of the 

Missouri Botanical Garden 85: 492-517. 

Grant, V., AND K. A. Grant. 1965. Flower pollination in the Phlox family. Columbia 

University Press, New York, NY. 

Grimaldi, D. 1999. The co-radiations of pollinating insects and angiosperms in the 

Cretaceous. Annals of the Missouri Botanical Garden 86: 373-406. 



33 
 

Hoch, P. C., J. V. Crisci, H. Tobe, AND P. E. Berry. 1993. A cladistic-analysis of the 

plant family Onagraceae. Systematic Botany 18: 31-47. 

Hoggard, G. D., P. J. Kores, M. Molvray, AND R. K. Hoggard. 2004. The phylogeny of 

Gaura (Onagraceae) based on ITS, ETS, and trnl-F sequence data. American 

Journal of Botany 91: 139-148. 

Johnson, S. D., AND K. E. Steiner. 2000. Generalization versus specialization in plant 

pollination systems. Trends in Ecology & Evolution 15: 140-143. 

Levin, R. A., W. L. Wagner, P. C. Hoch, M. Nepokroeff, J. C. Pires, E. A. Zimmer, AND 

K. J. Sytsma. 2003. Family-level relationships of Onagraceae based on 

chloroplast rbcL and ndhF data. American Journal of Botany 90: 107-115. 

Levin, R. A., W. L. Wagner, P. C. Hoch, W. J. Hahn, A. Rodriguez, D. A. Baum, L. 

Katinas, E. A. Zimmer, AND K. J. Sytsma. 2004. Paraphyly in tribe onagreae: 

Insights into phylogenetic relationships of Onagraceae based on nuclear and 

chloroplast sequence data. Systematic Botany 29: 147-164. 

Memmott, J., N. M. Waser, AND M. V. Price. 2004. Tolerance of pollination networks to 

species extinctions. Proceedings of the Royal Society of London Series B-

Biological Sciences 271: 2605-2611. 

Mitchell, R. J., R. E. Irwin, R. J. Flanagan, AND J. D. Karron. 2009. Ecology and 

evolution of plant-pollinator interactions. Annals of Botany 103: 1355-1363. 

Moody-Weis, J. M., AND J. S. Heywood. 2001. Pollination limitation to reproductive 

success in the Missouri evening primrose, Oenothera macrocarpa (Onagraceae). 

American Journal of Botany 88: 1615-1622. 



34 
 

Ne'eman, G., A. Jurgens, L. Newstrom-Lloyd, S. G. Potts, AND A. Dafni. A framework 

for comparing pollinator performance: effectiveness and efficiency. Biological 

Reviews 85: 435-451. 

Nonnenmacher, H. F. 1999. The comparative floral ecology of vernal and autumnal 

Onagraceae in and near Konza Prairie Research Natural Area, Kansas, St. Louis 

University, St. Louis. 

Nosil, P., AND A. O. Mooers. 2005. Testing hypotheses about ecological specialization 

using phylogenetic trees. Evolution 59: 2256-2263. 

Ollerton, J. 1996. Reconciling ecological processes with phylogenetic patterns: The 

apparent paradox of plant-pollinator systems. Journal of Ecology 84: 767-769. 

Petanidou, T., A. S. Kallimanis, J. Tzanopoulos, S. P. Sgardelis, AND J. D. Pantis. 2008. 

Long-term observation of a pollination network: fluctuation in species and 

interactions, relative invariance of network structure and implications for 

estimates of specialization. Ecology Letters 11: 564-575. 

Raven, P. H. 1979. A survey of reproductive biology in Onagraceae. New Zealand 

Journal of Botany 17: 575-593. 

______. 1988. Onagraceae as a model of plant evolution. Chapman and Hall, New York 

London. 

Raven, P. H., AND D. P. Gregory. 1972. A revision of the genus Gaura (Onagraceae). 

Memoirs of the Torrey Botany Club 23: 1-96. 

Sahli, H. F., AND J. K. Conner. 2006. Characterizing ecological generalization in plant-

pollination systems. Oecologia 148: 365-372. 



35 
 

Soltis, D. E., C. D. Bell, S. Kim, AND P. S. Soltis. 2008. Origin and early evolution of 

angiosperms. Ann N Y Acad Sci 1133: 3-25. 

Stebbins, G. L. 1970. Adaptive Radiation of Reproductive Characteristics in 

Angiosperms, I: Pollination Mechanisms. Annual Review of Ecology and 

Systematics 1: 307-326. 

Straley, G. B. 1977. Systematics of Oenothera sect. Kneiffia (Onagraceae). Annals of the 

Missouri Botanical Garden 64: 381-424. 

Tripp, E. A., AND P. S. Manos. 2008. Is floral specialization an evolutionary dead-end? 

Pollination system transitions in Ruellia (Acanthaceae). Evolution 62: 1712-1736. 

Wagner, W. L., P. C. Hoch, AND P. H. Raven. 2007. Revised classification of the 

Onagraceae. Systematic Botany Monographs 83: 1-240. 

Waser, N. M., L. Chittka, M. V. Price, N. M. Williams, AND J. Ollerton. 1996. 

Generalization in pollination systems, and why it matters. Ecology 77: 1043-1060. 

Winfree, R. 2008. Pollinator-dependent crops: an increasingly risky business. Current 

Biology 18: R968-R969. 

 

 

 

 

 

 

 

 

 



36 
 

 

 

 

CHAPTER 3 

PAGES 36-66 

 

TESTING POLLINATION SYNDROMES IN OENOTHERA (ONAGRACEAE) 

 

 

  



37 
 

Introduction 

A pollination system is the interaction between a plant and its pollinator(s). 

Pollination biologists have always looked for a way to explain the floral diversity in 

angiosperm evolution and to predict the pollination system for a specific plant, and this 

led to the idea of “pollination syndromes.” Pollination syndromes are groups of floral 

traits that correspond to specific type of pollinator or pollinator group. Darwin discussed 

how pollinators were the major selective agent for floral trait evolution (Darwin, 1877). 

This concept was developed in the late 1800’s by scholars such as Herman Muller, 

Federico Delphino, and Paul Knuth, who made long lists of plant features and 

corresponding pollinator traits (Ollerton et al., 2009). These groupings were used as a 

way to organize and understand floral diversity. In 1954, Stefan Vogel coined the term 

“Pollination Syndrome” (Ollerton et al., 2009; Waser and Ollerton, 2006), and later, the 

seminal work of Faegri and van der Pilj outlined 11 pollination syndromes that became 

the standard in pollination biology studies (Faegri and Pijl, 1966; Faegri and van der Pilj, 

1979). These 11 pollination syndromes described specific floral characteristics, mainly 

associated with reproduction, which were associated with groups of pollinator types.   

The concept of pollination syndromes has played a central role in plant-pollinator 

studies. First, it has been used as a way of understanding the evolution of groups of floral 

traits, and is a classic example of convergent evolution (Fenster et al., 2004; Stebbins, 

1970). Across distantly related taxa, there is a correlation between the floral traits and 

ecology, which provides evidence that there has been selection by specific types of 

pollinators.  Many comparative studies showed that suites of floral traits do correspond to 

different pollinators (Fenster et al., 2004; Ollerton et al., 2009; Wilson et al., 2004; Wolfe 
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and Sowell, 2006), and broadly agreed with Stebbins (1970) “Most Effective Pollinator” 

principle which state that plants will specialize to the pollinator that is most responsible 

for pollen transfer (Ne'eman et al. 2010; Stebbins, 1974).  

Second, pollination syndromes have been used to predict the plant-pollinator 

relationship. However, the use of pollination syndromes as a predictor of pollination 

system has several problems. Pollination syndromes are potentially too limited an 

explanation of the complex relationships between a plant and a visitor. There are multiple 

reasons a visitor might interact with a plant other than pollination, and these interactions 

can affect the evolution of floral traits (Ashman and Majetic, 2006; Chittka et al., 1999; 

Yang and Guo, 2005). Second, inherent to the concept of pollination syndromes is the 

idea that most plant-pollination interactions are highly specialized (Fenster et al., 2004; 

Ollerton et al., 2009; Reynolds et al., 2009); however, most interactions appear more 

generalized (Mitchell et al., 2009; Waser et al., 1996; Waser and Ollerton, 2006). Despite 

this discrepancy between the predicted pollinator and the current pollinator, pollination 

syndromes as a predictive tool have rarely been tested directly (but see (Hingston and Mc 

Quillan, 2000; Muchhala, 2006; Ollerton et al., 2009). More studies that use detailed 

pollination data to evaluate the degree to which pollination syndromes are useful for 

predicting plant pollinators are needed (Fenster et al., 2004; Waser et al., 1996).  

A final concern is that many studies that use pollination syndromes as a tool to 

infer a plant’s pollinator, often define that syndrome by a suite of floral characters that 

consist of morphological measurements (DeWitt Smith, 2010; Smith et al., 2008b; Tripp 

and Manos, 2008; Whittall and Hodges, 2007).  These quantitative floral trait 

measurements do not always overlap with the discrete floral traits that traditionally define 
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a pollination syndrome as described by Faegri and van der Pilj (1979). Thus, the use of 

quantitative floral trait measurements to infer a pollination system could lead to incorrect 

conclusions.  

Onagraceae, the evening primrose family, is one of the major plant radiations in 

western North America (Raven, 1979; Raven and Gregory, 1972; Straley, 1977). The 

genus Oenothera is a model system for studying plant reproductive biology and floral 

evolution (Raven, 1988). Oenothera encompass a wide range of pollination systems 

including bee, bird, butterfly, wasp, moth, antlion, fly, and hawkmoth (Clinebell et al., 

2004; Moody-Weis and Heywood, 2001; Nonnenmacher, 1999; Raven, 1979; Raven and 

Gregory, 1972; Straley, 1977). Recent studies have provided detailed empirical data on 

the pollination systems of sister taxa of Oenothera that also show diverse floral forms 

(Chapter 2).  This provides an opportunity to rigorously test hypotheses about pollination 

syndromes.  

Here, I ask how accurate pollination syndromes are at predicting current 

pollination systems. I evaluate the correspondence between morphology and pollinators 

by creating a phenotypic space using the traditional floral traits that define pollination 

syndromes. I then compare the pollination syndromes predicted for the 54 Oenothera 

species to the current pollination systems as defined by visitation and pollen deposition 

data. I also assessed the predictive power of current methodologies that use pollination 

syndromes as a way of defining pollination systems. I then ask the following questions: 1. 

Do most Oenothera species fit into traditional pollination syndromes?  2. Do these 

pollination syndromes accurately predict the dominant pollinator for each species? 3. 
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When using quantitative floral trait measurements, do Oenothera species form groups 

that correspond to their main pollinators?  

Methods/Materials 

Pollinator Data and Floral Traits 

 I used the 54 species of Oenothera in Subclade B (Levin et al., 2004) for this 

study. This clade has a diversity of floral forms and uses multiple pollinator types.  A 

previous study gives detailed pollination data, including visitation, pollen load, and 

stigma contact of visitors, for 26 of these species (Chapter 2). The main pollinator group 

for the remainder of these species comes from other published pollination studies and 

unpublished data at the Missouri Botanical Garden. All pollination systems were 

determined using both visitation and pollen load data, and main pollinators were 

considered those that contributed to 95% of the total pollen flow. These pollinators were 

then grouped into functional groups (Fenster et al., 2004) of similar species and sizes.  

 I conducted the quanititative floral measurements on 10-15 flowers of each 

species of Oenothera. I measured floral tube length, floral tube mouth width, corolla 

span, stamen length, and style length. For O. deserticola, O. canescens, O. rosea, O. 

speciosa, O. texensis, O. epilobiifolia, O. multicaulis, O. seifrizii, O. dissecta, O. 

kunthiana, O. orizabae, O. tetraptera, O. brachycarpa, O. coryi, O. howardii, O. 

spachiana, O. anomala, O. boquillensis, O. cinerea ssp. parksii, O. filipes, and O. 

mckelveyae, I used herbarium sheets from the Missouri Botanical Garden to make these 

measurements. All other measurements were taken from the plant populations used for 
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pollinator data collection (Chapter 2) or with greenhouse populations. The average 

measurement of each trait for 15 individuals was used to represent each species. 

Analyses 

To evaluate the predictive power of pollination syndromes, I first created a 

phenotypic space using discrete floral traits that characterize each of the 11 pollination 

syndromes described by Faegri and van der Pijl (1979). Because the traits for hawkmoth 

and moth have been found to be indistinguishable (Ollerton et al., 2009), I also combined 

them and used 10 syndromes, bat, bee, beetle, bird, butterfly, fly, moth, carrion fly, small 

non-flying mammal, and wasp.  This matrix of idealized pollination syndrome traits is a 

modified version of Ollerton et al (2009), which gives multiple different versions of each 

idealized pollination syndrome (e.g. Bee 1, Bee 2, etc). This creates a broader, more 

realistic definition of the pollination syndromes and captures the variability of the floral 

traits associated with a syndrome. For example, a “bee” flower can be white or yellow. I 

used their multiple trait vector approach of 537 vectors across 10 syndromes, with each 

trait scored as present (score of 1) or absent (score of 0). However, I modified how the 

syndromes were characterized and used the following 9 floral traits: color at anthesis 

(yellow, white, red, pink, green, purple, brown, blue, orange), scent (sweet, fruity, fresh, 

musty, sour, decay, none), flower shape (dish, bell/funnel, trumpet, tube), symmetry 

(actinomorphic, zygomorphic), orientation (pendant, upright, horizontal), brightness 

(dull, vivid), anthesis time (day, night), nectar presence, and nectar location (hidden, 

accessible) (see Supplementary Data Table 3-1 for full matrix). I then used these 10 

pollination syndrome traits to score the 54 Oenothera species such that each species was 
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described by a vector of 35 ones and zeroes (see Supplementary Data Table 3-2 for full 

matrix). All analyses were carried out in PC-ORD (McCune and Mefford, 2006). 

To determine whether the different vectors for each of the 10 syndromes grouped 

into discrete groups, I used formal ordinations using non-metric multidimensional scaling 

(NMDS), which is appropriate for binary data (McCune and Grace, 2002; Ollerton et al., 

2009). I used a Sorensen’s index (Bray-Curtis) to express the distance relationships 

between the idealized pollination syndromes described by the binary data set. NMDS was 

used to find the best dimensional representation of the distance matrix. The NMDS 

analyses started with 250 runs of real data, which were then compared with a Monte 

Carlo test with 250 ordinations of randomized data. Mean stress did not decline after 3 

dimensions, and so a 3-dimensional space was selected for the analyses (McCune and 

Grace, 2002). I then ran the final solution and assessed the stability of this solution by 

examining a Scree plot (final stress vs. the number of dimensions), and the final stability 

reported from the NMDS output. I assessed the final stress from the NMDS using 

Kruskal’s stress formula and Clarke’s rule of thumb (McCune and Grace, 2002). 

This ordination of the idealized pollination syndromes created a three-

dimensional space with each pollination syndrome represented by a cluster of the 

multiple traits combinations. Using these results and the matrix that scored the floral 

traits of the 54 Oenothera species, I used NMS Scores algorithm in PC-ORD 5.14 to 

calculate co-ordinates for the Oenothera species in that pollination syndrome space. 

Then, I calculated the Euclidean distance between each Oenothera species and the center 

of the nearest pollination syndrome cluster. I also calculated the second closest syndrome. 

An alternative method, discriminate function analysis (DFA) conducted in PC-ORD 
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(McCune and Mefford, 2006) did not yield different results. To determine how accurately 

the idealized pollination syndromes predicted the actual pollination systems, I compared 

the pollinator system predicted from these analyses to the pollination system as 

determined from the ecological pollination system data for each plant species.  

 It may be that the morphological measurements of a flower are better predictors 

of pollinator type than the traditional pollination syndrome floral traits. To determine 

whether Oenothera species form groups based on quantitative floral traits that correspond 

to their main pollinators, I used the methods most commonly employed by studies that 

infer pollination syndromes in this way (Tripp and Manos, 2008; Whittall and Hodges, 

2007), which is principle component analyses (PCA). The PCA variables were the five 

floral measurements listed above. I log transformed the data and conducted a PCA using 

JMP, Version 8.0 (2009).  

Results 

Idealized syndromes and real flowers in phenotypic space 

Ordination using NMDS of the traditional pollination syndromes produced a well-

resolved 3-dimensional phenotypic space that accounted for nearly 75% of the variance 

of the among-syndrome variation (axis 1 R2 = 0.16, axis 2 R2 = 0.28, axis 3 R2 = 29, 

cumulative R2 = 0.74). After 279 iterations the instability was 0.00, and the final stress 

for the 3-dimensional solution was 15.31. Most ecological community data sets have 

solutions with stress between 10 and 20, and this data set falls within this range (Clarke, 

1993), I deem this value acceptable. In agreement with the results for the idealized 

pollination syndromes used by Ollerton et al. (2009), I also find that the traditional 
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syndromes, which had multiple versions for each type, group into discrete areas of the 

multivariate space without overlap (Fig. 3-1). For example, all of the “bee” syndrome 

vectors group together, while all of the “moth” syndrome vectors group together and do 

not overlap with the “bee” syndrome. However, some syndrome groups are closer 

together, for example, non-flying mammal and bat.  

If the Oenothera species conform to a specific pollination syndrome, and if the 

floral trait combination for a given species is similar to one of the defined traditional 

syndromes, I would expect the Oenothera species to fall within the cluster of a traditional 

syndrome. These results show that these 54 Oenothera species do not fall within any of 

the phenotypic spaces that represent traditional pollination syndromes (Fig. 3-2). There is 

no grouping in the phenotypic space between the subsections of Oenothera that reflects 

the phylogenetic relatedness. Subsections that are sister to one another are not near each 

other in the phenotypic space. However, the Oenothera do show some clustering within 

the subsections of the genus (Fig. 3-3). For instance, 24 of the 26 species in subsection 

Gaura cluster together and the 4 species in subsection Megapterium occupy the same 

phenotypic space exactly. 

Predictions by traditional pollination syndromes compared to pollinator data 

When I calculated the nearest traditional pollination syndrome for each Oenothera 

species, and compared that to current ecological pollinator data, I found that the 

pollinator syndromes accurately predicted the pollinator for only 48.2% of the 

species(Table 3-1). When I expanded this to look at the second closest pollination 

syndrome vectors, the pollination syndrome accurately predicted the pollinator for 72.2% 
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of the Oenothera species. Many of the species had equal Euclidean distance values from 

multiple pollination syndrome vectors. For instance, O. gaura was equally close to two 

“moth” traditional syndromes. For O. glaucifolia, O. sinuosa, and O. cinerea ssp. cinerea 

the nearest pollination syndrome vectors included both day and night pollinators, and did 

not provide sufficient predictive resolution. For O. epilobiifolia ssp. epilobiifolia and O. 

multicaulis multiple vectors were equally close; however, the accurate pollinator was not 

the dominant pollinator predicted (e. g. 2 “bird” and 9 “fly”, but the actual pollinator is a 

bird). When I included the second closest pollination syndrome vectors, this could 

include up to six pollinator syndromes, which does not give enough resolution for a 

prediction. These results are summarized in Table 3-1.  

The predictability of the pollination syndromes varied. Moth-pollinated plants 

(69.7%) and butterfly-pollinated plants (66.7%) were the most accurately predicted. Bird-

pollinated plants were accurately predicted 33.3% of the time, while bee-pollinated plants 

were accurately predicted 26.7% of the time. Fly-pollinated and beetle-pollinated plants 

were never accurately predicted. The remaining syndromes were never accurately 

predicted.  

The prediction of pollinators was more successful for some subsections of 

Oenothera had than others. In subsection Megapterium, 3 of the 4 taxa were accurately 

predicted by the traditional pollination syndromes, and 18 of the 28 taxa in subsection 

Gaura were accurately predicted by the traditional pollination syndromes. The one 

species in subsection Paradoxus had its pollination system accurately predicted. The 

pollination syndromes for subsections Kneiffia, Gauropsis, and Peniophyllum were never 

predicted accurately and only 1 of 5 species in section Hartmannia had their pollination 
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system accurately predicted. 1 in 4 taxa of subsection Xanthocoryne and 2 in 5 taxa of 

subsection Leucocoryne had accurately predicted pollination systems.  

Principle Component Analysis with Floral Measurements 

For all 54 Oenothera species examined, the floral trait measurement data (floral 

tube length, floral tube mouth width, corolla span, stamen length, and style length) used 

in the PCA analyses are given in Table 3-2.  The first two PCA axes explained 78.87% 

and 10.87% of the variance in the data (Fig. 3-4). Although approximately 90% of the 

data is explained with the first two axes, the PCA is unable to give sufficient resolution to 

discern any grouping of the Oenothera species that might correspond to a pollination 

syndrome. The eigenvector coefficients of axis 1 are all positive, which suggests an 

allometric relationship among the variables.  The correlations of variables on PCA axes 

are given in Table 3. Axis 1 shows some differentiation between species with long floral 

tubes and those without. The species that separate out are in subsection Megapterium, 

which are taxa that all have much longer floral tubes than the other Oenothera. Most of 

the variance for Axis 2 is explained by “corolla throat,” however, there is no discernable 

grouping of species by corolla throat size.  

Discussion 

 The main goal of this study was to assess how accurate pollination syndromes are 

at predicting pollination systems of Oenothera. I defined the pollination syndromes as 

closely as possible to the traditional floral traits set forth by Faegri and van der Pijl 

(1979). The idealized syndromes segregated into discernable clusters in the multivariate 

space. However, the 54 Oenothera species did not fall within or near the idealized 
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syndrome clusters. This is in agreement with recent studies that have also found that real 

plant species did not fall within pollination syndrome clusters in the phenotypic space 

(Ollerton et al., 2009). Therefore, I assessed how accurate the predicted pollination 

syndrome was based on the pollination system nearest to the Oenothera species in the 

multivariate space, and compared that with ecological pollination data collected for each 

species. I found that less than half the time the predicted pollination syndrome matched 

the actual dominant pollinator for that species. This is slightly more successful compared 

to Ollerton et al. (2009), who found that the primary pollinator was successfully predicted 

by the nearest pollination syndrome one-third of the time. One reason for the higher 

predictability success with this data set may be that the pollination data were based on 

both visitation and pollen load; whereas the Ollerton et al. (2009) study used only floral 

visitor observations to determine pollinators. Visitor observations alone can highly 

overestimate the number of actual pollinators (Chapter 2), and the more generalized 

pollination systems are difficult to accurately predict with pollination syndromes. 

However, both results suggest that pollination syndromes are not a reliable tool to predict 

a plant’s pollination system. 

The pollination syndromes differed in predictability. For the Oenothera species 

examined here, butterfly and moth syndromes were predicted most accurately, while fly 

and beetle were never predicted accurately. The syndromes that were predicted accurately 

most often differed from Ollerton et al. (2009) who found that bee and fly pollination 

systems were most predictable, and moth pollination was one of the syndromes that were 

least often predicted accurately. This difference might be simply a result of the most 

common pollination syndrome of the species involved in each study. Moth pollinators are 
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the dominant pollinator for 33 of the 61 Oenothera species, and Oenothera in general 

have many floral traits associated with moth syndromes, so it is not surprising that this is 

the most successfully predicted syndrome. What the pollination syndromes are not 

capturing is the variability in the pollinators for Oenothera that do not use moths, but still 

have many classic moth-pollinated Oenothera floral traits. For instance, several 

Oenothera species have traits that suggest adaptations for night pollinators, but in 

actuality, these species have a dual pollination system, wherein they utilize both day and 

night pollinators. Oenothera species with more generalized pollination systems were the 

ones most often predicted inaccurately. This inaccuracy was retained even when I 

evaluated the pollination syndrome by just looking at the species dominant pollinator 

type. This finding highlights the problem that pollination syndromes infer a high amount 

of specialization between plant and pollinator (Fenster et al., 2004). Because so many 

plant species use multiple pollinators, and because pollination syndromes predict only 

one type of pollinator, syndromes fail to capture this information. 

Some of the subsections of Oenothera had higher predictability by the pollination 

syndromes, namely Paradoxus, Megapterium, and Gaura. This finding is not surprising 

because each of these subsections have very distinctive floral traits that are also traits 

used to define traditional pollination syndromes. The taxa in Paradoxus and 

Megapterium flower at night and have notably long floral tubes that are associated with 

moth pollination. These taxa are moth pollinated; however, O. macrocarpa is also 

pollinated in the day by bees, and was inaccurately predicted as butterfly pollinated. 

Subsection Gaura taxa have distinctive morphological traits such that they form a 

recognizable cluster in the phenotypic space, and many of the species are moth 
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pollinated. The predictive pollination systems were wrong for those Gaura species that 

had the most generalized pollination systems. The least predictable subsections were 

those that have many floral traits of Oenothera, which suggest moth pollination, but that 

are pollinated by a different dominant pollinator. For instance, the taxa in subsection 

Kneiffia have many floral traits that suggest classic Oenothera moth pollination 

syndrome; however, they open in the morning and the predicted pollination syndrome 

was butterfly, which falls closer in the phenotypic space to moth syndrome. In actuality 

Kneiffia are all predominately pollinated by bees. This pattern highlights the problem that 

pollination syndromes infer a pollinator based on a suite of traits, even though it may be a 

single trait that is determining the dominant pollinator.  The floral traits that match up to 

the inaccurate pollinator syndrome effectively swamp out this information.  

Comparing the predictive power of NMDS to PCA 

 I used non-metric multidimensional scaling (NMDS) as an analysis tool because it 

makes no assumptions about the distribution of variables and creates multivariate space 

in which similar objects are close to each other (McCune and Mefford, 2006). However, 

many studies use the ordination technique of principle component analyses (PCA) to 

determine pollination syndromes (DeWitt Smith, 2010; Smith et al., 2008b; Tripp and 

Manos, 2008; Whittall and Hodges, 2007). While this is common technique, there are 

concerns associated with it. The first is that PCA is generally performed with quantitative 

measurements of floral parts, whereas traditional pollination syndromes are based on 

floral traits that are categorical (Faegri and van der Pilj, 1979). The second concern is that 

assigning pollinator syndromes to groups of taxa that show clustering in PCA results may 

not give enough resolution to accurately capture the variability in actual pollination 
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systems. Finally, inferring pollinators using PCA based on floral part measurements, and 

then using these results to discuss the evolution of floral traits and pollinator relationships 

could be circular.  

To address the potential problem with PCA, I compared the two ordination 

techniques using quantitative floral trait measurements and the commonly used PCA and 

the traditional pollination syndromes and NMDS. For NMDS, when the subsections of 

Oenothera have all the same or nearly same floral traits that were used to define the 

pollination syndromes, they would obviously form close to a tight cluster or singular 

point in the phenotypic space; however, they also have to be distinctive enough from 

other subsections in order to identify them as a separate group. For example, subsection 

Megapterium all cluster very tightly together, and due to the long floral tube, they are 

separated from all other subsections. Subsection Gaura taxa have a zygomorphic floral 

shape that is different from the more classic Oenothera flower, and it is not surprising 

that they form a recognizable cluster in the phenotypic space. However, given the wide 

range on pollination systems in subsection Gaura, they cannot be assigned to one 

pollination syndrome.  

Unlike the NMDS results, which showed some discernable clustering of the 

Oenothera species, the PCA showed no clustering of species into groups. There was a 

possible trend for the subsection Megapterium. This is not surprising, given that the 

species in subsection Megapterium have very long floral tubes compared to their sister 

taxa. Broadly, long floral tube plants are pollinated by hawkmoths, and one could assign 

a pollinator syndrome to this cluster of species; but hawkmoths also pollinate many of the 

taxa in subsection Gaura, which have very short floral tubes. Overall, the PCA does not 
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provide resolution sufficient to discern groupings of taxa that correspond to pollinator 

syndromes, and therefore it is not useful as a tool to predict pollinator system.   

 Although many studies use PCA to group species and then assign pollination 

syndromes to those groups, this approach would not work for Oenothera.  PCA results 

based on quantitative trait measurement data do not take into account traits such as 

temporal variation that can discern between species with different pollinators. For 

instance, O. suffulta ssp. suffulta and O. suffulta ssp. nealleyi are sister taxa that are 

morphologically the same, however O. suffulta ssp. nealleyi is open and pollinated both 

day and night. The dominant pollinator of O. suffulta ssp. suffulta is moths, and the 

dominant pollinator of O. suffulta ssp. nealleyi is bees.  

 For both PCA and NMDS there is some grouping of taxa by subsection and 

appearance, but it is not sufficient to accurately infer the dominant pollinator group. 

NMDS gives better resolution, but is still limited in its predictive power. With either of 

these ordination techniques, pollination syndromes are not useful as a predictive tool for 

pollination system.  

Conclusions 

Overall, we find that pollination syndromes are not appropriate for inferring the 

current pollination system for a given species of Oenothera, and this may also apply to 

other taxonomic groups. . However, pollination syndromes are very important for our 

understanding and discussion of the broad trends in angiosperm evolution.  While 

pollinators are important selection forces that influence the development of floral form, 

there are also multiple factors that have also influenced floral form, such as multiple 
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dominant pollinator groups, antagonistic interactions, and pleiotropic effects on other 

plant traits (Reynolds et al., 2009; Strauss and Irwin, 2004). Pollination syndromes are a 

useful concept for guiding research questions and hypothesis development. They provide 

a clear example of convergent evolution of floral form due to pollinator mediated 

selection. Pollination syndromes can help us understand the functional significance of 

floral trait combinations. However, to determine the current pollination system for a 

species, direct observation and data collection are still necessary.  
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Table 3-1.  A comparison of the predicted pollinator and the main pollinators for the 54 

Oenothera species. Predicted pollinators are determined by the closest idealized 

pollination syndrome to the Oenothera species in the multivariate space. The main 

pollinators are determined by ecological data.  

Section Species Predicted Pollinator Main Pollinator 
Gauropsis O. canescens bird moth/hawkmoth 
Hartmannia O. deserticola butterfly bee 
Hartmannia O. platanorum bird bee 
Hartmannia O. rosea butterfly bee 
Hartmannia O. speciosa moth moth/hawkmoth 
Hartmannia O. texensis bird bee 
Xanthocoryne O. epilobiifolia s. epilobiifolia fly bird 
Xanthocoryne O. epilobiifolia s. cuphrea bird bird 
Xanthocoryne O. multicaulis fly bird 
Xanthocoryne O. seifrizii fly bird 
Leucocoryne O. dissecta moth moth/hawkmoth 
Leucocoryne O. kunthiana beetle moth/hawkmoth 
Leucocoryne O. luciae-julianae moth moth/hawkmoth 
Leucocoryne O. orizabae beetle moth/hawkmoth 
Leucocoryne O. tetraptera beetle moth/hawkmoth 
Paradoxus O. havardii moth moth/hawkmoth 
Megapterium O. brachycarpa moth moth/hawkmoth 
Megapterium O. coryi moth moth/hawkmoth 
Megapterium O. howardii moth moth/hawkmoth 
Megapterium O. macrocarpa s. macrocarpa bird moth/hawkmoth 
Peniophyllum O. linifolia bird none/fly/bee 
Kneiffia O. fruticosa s. fruticosa butterfly bee 
Kneiffia O. fruticosa s. glauca butterfly bee 
Kneiffia O. riparia butterfly bee 
Kneiffia O. perennis bird bee 
Kneiffia O. pilosella s. pilosella butterfly bee 
Kneiffia O. pilosella s. sessilis butterfly none 
Kneiffia O. spachiana bird none 
Gaura O. anomala moth moth/hawkmoth 
Gaura O. glaucifolia fly bee/fly/beetle 
Gaura O. curtiflora beetle none 
Gaura O. arida beetle moth/hawkmoth 
Gaura O. suffrutescens moth moth/hawkmoth 
Gaura O. boquillensis moth moth/hawkmoth 
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Gaura O. cinerea s. cinera moth/beetle moth/hawkmoth 
Gaura O. cinerea s. parksii moth none 
Gaura O. calcicola moth moth/hawkmoth 
Gaura O. filipes moth moth/hawkmoth 
Gaura O. mckelveyae moth moth/hawkmoth 
Gaura O. sinuosa bee/moth moth/hawkmoth 
Gaura O. xenogaura moth moth/hawkmoth 
Gaura O. coloradoensis s. coloradoensis moth moth/hawkmoth 
Gaura O. coloradoensis s. neomexicana moth moth/hawkmoth 
Gaura O. demareei bee bee 
Gaura O. filiformis moth moth/hawkmoth/bee 
Gaura O. gaura moth moth/hawkmoth 
Gaura O. lindheimeri bee bee/butterfly 
Gaura O. hexandra s. hexandra moth moth/hawkmoth 
Gaura O. hexandra s. gracilis moth moth/hawkmoth 
Gaura O. patriciae moth moth/hawkmoth 
Gaura O. simulans beetle moth/hawkmoth 
Gaura O. suffulta s. suffulta moth moth/hawkmoth 
Gaura O. suffulta s. nealleyi moth moth/hawkmoth/bee 
Gaura O. triangulata beetle moth/hawkmoth 
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Table 3-2. Mean measurement of flower morphology (in mm) for 54 species of 

Oenothera. 

Species 
Floral Tube 

Length 
Floral Tube 

Mouth Width 
Corolla 

Span 
Stamen 
Length  

Style 
Length 

O. canescens 12.5 2 17 24.5 7 
O. deserticola 7.75 2 25.5 16.5 6.75 
O. platanorum 11.5 2.25 23 15.5 6.5 
O. rosea 6 2 14 10.25 5 
O. speciosa 18.5 4 60 37.5 16 
O. texensis 18 3.5 33 28 11 
O. epilobiifolia s. epilobiifolia 11 5.25 14.5 10.25 2.25 
O. epilobiifolia s. cuphrea 11 5.25 14.5 10.25 2.25 
O. multicaulis 5.75 2.75 10.5 7.25 3.25 
O. seifrizii 13 4.75 20 18 5.75 
O. dissecta 38.5 4.5 60 58.5 13.5 
O. kunthiana 19.5 4 26 23 10 
O. luciae-julianae 16.5 4 42 25 8.5 
O. orizabae 12 4 40 24 5 
O. tetraptera 34 4.75 50 43 11.5 
O. havardii 52.5 3.85 51 75.5 16.5 
O. brachycarpa 165 7.5 103 155 26 
O. coryi 87.5 6.5 78 120 21 
O. howardii 85 7 100 127.5 31.5 
O. macrocarpa s. macrocarpa 105 8 115 147.5 35 
O. linifolia 1.5 0.1 8 1.5 1.5 
O. fruticosa s. fruticosa 10 1 40 15 10 
O. fruticosa s. glauca 12.5 1 35 16 10 
O. riparia 13.72 1.95 31.96 13.3 11.08 
O. perennis 6.5 1 15 3.5 3.5 
O. pilosella s. pilosella 17.5 1 45 15 11 
O. pilosella s. sessilis 12.5 1 29.23 11 8 
O. spachiana 7 1 19 5 5 
O. anomala 3.4 0.5 37 5.25 11.5 
O. glaucifolia 9.5 0.1 10 6.5 6.5 
O. curtiflora 3.25 0.1 5.5 6 2.25 
O. arida 11 0.25 15 20 4 
O. suffrutescens 7.5 1 10 15.5 4.75 
O. boquillensis 5.75 0.25 14 10.75 3.25 
O. cinerea s. cinera 3.5 0.25 21.5 14.25 8 
O. cinerea s. parksii 2.75 1 19 12.5 6.75 
O. calcicola 6 1 17.5 14.25 5 
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O. filipes 4.25 0.5 15 13.75 5.75 
O. mckelveyae 2.75 0.25 17.5 12.5 7 
O. sinuosa 3.75 1.671 21.5 15.25 8 
O. xenogaura 9 1 16 19 6.25 
O. coloradoensis s. coloradoensis 8 1 20.5 22 7.75 
O. coloradoensis s. neomexicana 8 1 24.3 25 7.75 
O. demareei 8.5 1 28 24.5 12.5 
O. filiformis 8.75 1 21.5 22.75 9 
O. gaura 9.25 1.95 18.5 13.5 7.5 
O. lindheimeri 6.5 0.25 25.5 21.25 9.75 
O. hexandra s. hexandra 6 0.25 11.5 11.75 2.9 
O. hexandra s. gracilis 8 1.7 15 15 5 
O. patriciae 9.25 0.25 20.5 19.5 6.5 
O. simulans 5.5 0.8 12.5 13.25 4.25 
O. suffulta s. suffulta 10.25 2 10 24 7.5 
O. suffulta s. nealleyi 15 2 13 29 10.5 
O. triangulata 4.75 0.25 8.5 9.5 2.75 
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Table 3-3.  Eigenvector coefficients for the morphological characters used in the PCA 

analysis. 

 

Floral Trait  Axis 1 Axis 2 
Floral tube length 0.467 0.158 
Floral tube opening width  0.392 0.801 
Corolla Span  0.461 -0.253 
Length of Stigma 0.465 -0.093 
Length of Stamen 0.448 -0.510 
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Figure 3-1. Non-metric multidimensional scaling (NMDS) ordination of the 537 idealized 

pollination syndromes utilizing a modified matrix of traits by Ollerton et al. 2009.  Each 

syndrome has multiple alternatives that group together in a cluster of points that define 

each of the 10 pollination syndromes phenotypic multivariate space.  
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Figure 3-2. The 54 Oenothera species mapped in the phenotypic multivariate space of the 

idealized pollination syndromes. 

 

  

Oenothera species
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Figure 3-3. NMDS ordination of the 54 Oenothera species based on the same 9 floral 

traits defined by 35 vectors as the previous analyses. Results are color-coded by 

subsection.  
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Figure 3-4. Floral morphology of 54 species of Oenothera plotted in the two dimensional 

space defined by principle component analysis (PCA) of 5 floral measurements.  
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Introduction 

The rapid radiation of angiosperms is due in part to their adaptive relationship 

with pollinators (Crane et al., 1995; Crepet et al., 2004; De Bodt et al., 2005), which has 

resulted in an amazing pattern of floral diversity. An important contributor to the origin 

of this diversity is the repeated evolution of self-compatible breeding systems, because 

they provide a mechanism of rapid reproductive isolation (Baker, 1955; Barrett, 2002a; 

Barrett et al., 1996). Although self-compatibility can be detrimental due to the negative 

impacts of inbreeding, it can also provide advantages such as reproductive assurance 

during periods of low pollinator availability (Barrett, 2002a; Goodwillie, 1999; Kaliz, 

1999; Moeller, 2006; Waser and Ollerton, 2006). The transition from self-incompatibility 

to self-compatibility is a well-established evolutionary transition in angiosperms 

(Charlesworth, 2006; Grant, 1981; Igic and Kohn, 2006; Stebbins, 1974).  

Here we investigate the phylogenetic history of Oenothera, which represents part 

of a major radiation of tribe Onagreae from Mexico into North America (Katinas et al., 

2004). Oenothera provides a model system for understanding the evolution of plant 

reproductive systems (Artz et al., 2010; Clinebell et al., 2004; Evans et al., 2005; Hoch et 

al., 1993; Hoggard et al., 2004; Johnson, 2010; Johnson et al., 2009a; Moody-Weis and 

Heywood, 2001; Raguso et al., 2007; Raven, 1988; Theiss et al., 2010; Vilela et al., 

2008).  Breeding system is thought to have played a key role in the diversification of 

Onagraceae (Raven, 1979; Raven, 1988). A great diversity of breeding and pollination 

systems have evolved within Oenothera, even among closely related species, but it is not 

clear whether these differences are due to shared evolutionary history (Freckleton, 2000; 
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Sanderson and Donoghue, 1996) or reflect repeated independent adaptations to varying 

ecological conditions.  

Recent molecular phylogenetic analyses have clarified relationships within 

Onagraceae (Levin et al. 2003; Hoggard et al. 2004; Levin et al. 2004) and have provided 

the basis for  a new classification for the family (Hoggard et al., 2004; Levin et al., 2004; 

Levin et al., 2003; Wagner et al., 2007). These studies have delimited two well-supported 

major lineages within Oenothera (Levin et al., 2004; Wagner et al., 2007): Subclade A 

(88% BS), which comprises sections Oenothera, Kleinia, Anogra, Ravenia, Eremia, 

Contortae, and Pachylophus; and Subclade B (100% BS), which includes sections 

Megapterium, Kneiffia, Paradoxus, Peniophyllum, Hartmannia, Gauropsis, Leucocoryne, 

Xanthocoryne, and Gaura. This paper focuses on the reproductive evolution of Subclade 

B.  

Subclade B encompasses considerable floral diversity in terms of morphology, 

breeding system, and pollination systems. Whereas species of Subclade A typically have 

yellow actinomorphic flowers of varying sizes; those of Subclade B have white, yellow, 

pink, red, or purple flowers even more variable in size, and the flowers of sect. Gaura are 

zygomorphic, with all of the petals arranged in the upper half of the floral plane and the 

pistil and stamens in the lower half, a distinctive character state unique to this lineage 

(Raven and Gregory 1972; Carr et al. 1990). The zygomorphic flowers of sect. Gaura, 

coupled with its indehiscent, mostly stipate fruits containing a reduced number of seeds, 

led to classifications that consistently placed this group apart from Oenothera from the 

time it was described by Linnaeus in 1753 until 2007 (Wagner et al. 2007).  
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The recent molecular analyses revealed that not only is sect. Gaura nested within 

Oenothera, but the formerly segregate genus Stenosiphon is nested within sect. Gaura as 

is O. glaucifolia (Hoggard et al. 2004; Levin et al. 2004). Levin et al. (2004) also placed 

O. fruticosa (sect. Kneiffia) sister to sect. Gaura with weak support, but they found that 

O. linifolia (sect. Kneiffia according to Straley 1977) did not form a clade with O. 

fruticosa and now is segregated as sect. Peniophyllum (Wagner et al. 2007); they did not 

further test the monophyly of sect. Kneiffia. In fact, Levin et al. (2004) sampled only one 

or two taxa in all sections in Subclade B, thus, in order to adequately to assess the 

reproductive evolution of this group, we need a phylogeny based on more comprehensive 

sampling of the entire clade. In Chapter 5 I  report separately on the molecular 

phylogenetics of sect. Kneiffia, but we include those results in the overall analysis here. 

In this study, we used the nuclear sequences ITS and ETS and the chloroplast 

markers rps16, ndhF, trnL-F, and rbcL to estimate the phylogeny of 45 species of 

Oenothera Subclade B. ITS, ETS, rps16, and trnL-F have proved useful in clarifying 

specific and generic relationships in Onagraceae (Hoggard et al., 2004; Johnson et al., 

2009b; Levin et al., 2004), and rbcL and ndhF in showing deeper node relationships in 

the Onagraceae (Conti et al., 1993; Hoch et al., 1993; Levin et al., 2003). We use all six 

markers on a more thorough sampling to taxa to evaluate phylogenetic relationships of 

Oenothera Subclade B.  

Our specific objectives were to evaluate the monophyly of the sections 

Hartmannia, Leucocoryne, Xanthocoryne, Megapterium, Kneiffia, and Gaura, to verify 

the relationships within Subclade B hypothesized by Levin et al. (2004), and to map 
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breeding system onto the phylogeny and test for multiple origins of self-compatibility in 

Oenothera.  

Materials/Methods 

Taxon Sampling 

The tissue used in this study comprises 45 of the 50 species of Oenothera in 

subclade B; we were unable to obtain seed or tissue for the remaining five species (Table 

4-1). We used tissue samples from herbarium sheets at the Missouri Botanical Garden 

Herbarium for two populations each of O. spachiana, O. howardii, and O. coryi. Rachel 

Levin (Amherst College) provided the sequence data for O. canescens, O. rosea, O. 

speciosa, O. multicaulis, O. tetraptera, O. brachycarpa, and O. fruticosa, which is also 

available on GenBank (Levin et al., 2004; Levin et al., 2003). Sequence data for all six 

species of section Kneiffia are reported separately (Chapter 5). Sequence data for O. 

boquillensis, O. mckelveyae, O. filiformis, and O. gaura were all provided by Gloria and 

Ron Hoggard (University of Oklahoma) (Hoggard et al., 2004), and is also available on 

GenBank. For the remaining Oenothera species, fresh tissue was obtained from the study 

sites listed in Table 2. At each site, leaves and floral buds were collected and dried in 

silica. We used the following taxa as outgroups: Calylophus lavandulifolius, Calylophus 

serrulata, O. psammophila, O. lacinata, O. heterophylla, and O. albacaulis. Levin et al. 

(2003, 2004) and Hoggard et al. (2004) determined these taxa as appropriate outgroups 

for Subclade B in Oenothera. The sequences were provided by Gloria and Rod Hoggard 

(Hoggard et al., 2004) and Rachel Levin (Levin et al., 2004; Levin et al., 2003), and are 

available on GenBank.  

Breeding Systems 
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The breeding systems for many of the species of Subclade B have been previously 

described (Raven and Gregory, 1972; Straley, 1977; Wagner et al., 2007), and are 

summarized in Table 4-3. To determine and verify the breeding system of the remaining 

21 Oenothera species, we conducted hand-pollination experiments. These experiments 

were conducted in the greenhouse for O. platanorum. For the other 20 Oenothera species, 

these experiments took place at the described field sites during peak flowering season. 

The evening or day (depending on flowering time for the species) prior to the experiment 

we randomly chose ten flowering plants, and placed bags of bridal veil netting over a pair 

of mature buds on each plant (Lipow et al., 2002). When each flower opened, we 

pollinated it with either its own or outcrossed-pollen. For the outcrossed flowers, the bag 

was lifted and the flower’s stamens were removed. The stigma was then coated with 

pollen from a single flower from another plant in the population. Following treatments, 

the bags were replaced over the flowers for the duration of flowering time. These same 

protocols were followed for the greenhouse populations of Oenothera.  

After twenty-four hours, all tested flowers were collected and fixed in a solution 

of 3:1 95% ethanol:glacial acetic acid for 2 hours. The flowers were then transferred to 

70% ethanol for storage and transport. To determine the number of pollen grains on the 

stigma, and the number of pollen tubes reaching the ovary, the pistil and ovary were 

dissected from each flower. These tissues were placed in a beaker, covered with a 10% 

solution of sodium sulfide and heated to 65° C to soften the tissue. They were then 

washed in de-ionized water and cooled for 15 minutes. Each pistil and ovary was placed 

on a glass slide, and ovaries were sliced in half and placed face up. Three to five drops of 

decolorized aniline blue was added to each slide, and the sample was then covered with a 
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glass coverslip. The softened pistil and ovary tissue was spread by pressing the coverslip 

in a gentle tapping motion. The completed and labeled slides were refrigerated for a 

minimum of 24 hours. A Zeiss Univeral microscope with a 100 watt mercury bulb to 

provide fluorescent light was used to view the pollen tubes.  

We recorded the number of pollen grains on the stigma, the number of pollen 

tubes in the style, and the number of pollen tubes that reached the ovary as a measure of 

pollination success (Lipow et al., 2002). We performed paired t-tests, assuming equal 

variance, comparing the selfed vs outcrossed treatment groups for percentage of pollen 

tubes that reached the ovary. A species was considered self-compatible if there was no 

significant difference between the two groups.  

DNA Isolation, Amplification and Sequencing 

DNA was extracted from each species using the Viogene plant DNA isolation kits 

(www.viogene.com). We amplified 604 bp of the nuclear internal transcribed spacer 

region (ITS), and 1803 bp of the nuclear external transcribed spacer region (ETS). We 

also amplified four cholorplast markers; 966 bp of trnL-F, 867 bp of rps16, 1054 bp of 

ndhF, and 1268 bp of rbcL. PCR reactions contained 25 μL reactions of Promega 

(www.promega.com) 5x buffer, 2.5 μL of 25 mM MgCl2, 2.5 μL of 0.2 μM dNTPs, 2.5 

μL of 0.2 μM of each primer, 0.125 μL (1 unit) of Promega GoTAq DNA polymerase, 

and 2 μL of template DNA at approximately 5 ng/μL. The PCR program for 

amplification was 95°C for 3 min, followed by 35 cycles of 95°C for 1 min, annealing 

temperature for 40 s, and 72°C for 45 s, with a final elongation at 72°C for 7 min. The 

annealing temperatures and primers are listed in Table 4-4. We used electrophoresis gel 

techniques to visually examine the PCR results. All PCR products were purified using 

http://www.viogene.com/�
http://www.promega.com/�
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Viogene gel purification kits (www.viogene.com). All gene regions were sequenced in 

both forward and reverse directions on an ABI 3330 at the Washington University 

Genome Sequencing Center. We manually edited the DNA sequences using 

SEQUENCHER 4.8 (Ann Arbor, MI) and aligned by hand in GENEDOC.  

Phylogenetic Reconstruction 

We conducted separate Bayesian analyses for each nuclear gene and for a 

concatenated dataset of chloroplast genes in MrBayes v3.1.2 (Huelsenbeck et al., 2001; 

Ronquist and Huelsenbeck, 2003). The cholorplast genes were concatenated because 

these organelle genes are often inherited as a unit without recombination (Birky, 2001; 

Reboud and Zeyl, 1994). The models of nucleotide evolution for each of the six gene 

regions were estimated independently in jModeltest (Posada 2008) by the AIC method. 

We unlinked parameters across chloroplast loci to allow for independent evolution. The 

Markov chain Monte Carlo (MCMC) search algorithm of MrBayes was used to 

reconstruct the evolutionary history of the 45 taxa in Subclade B of Oenothera in all three 

trees (ETS, ITS, concatenated chloroplast genes). Each search was run on four chains, 3 

cold and 1 hot, for 10 million generations with a sampling frequency of 200 generations. 

When the standard deviation between the log-likelihood scores of two replicate runs was 

<0.0001, we concluded convergence. Tracer was used to evaluate the convergence of 

parameters estimated during the analysis, such that each of the 17 model parameters had 

Effective Sample Sizes (ESS) > 500 and the log–likelihood of the model had reached a 

plateau. The first 25% of the resulting trees were discarded as “burn-in” after an 

inspection of the likelihood plots. A majority rule consensus tree was computed using the 

sumt command in MrBayes and posterior probabilities were averaged across runs.  

http://www.viogene.com/�
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We compared the individual gene trees from our six data sets using an SH-test 

(Shimodaira and Hasegawa, 1999) in PAUP* (Swofford, 1999). When all gene tree 

topologies were deemed compatible (see Results), we concatenated all genes, retained 

unique models of evolution and unlinked parameters for a final run with the above 

parameters and 30 million generations.  

Independent Origins of Self-Compatibility 

We tested the strength of the phylogenetic signal for breeding system (SC or SI) 

using parsimony in Mesquite (Maddison and Maddison 2004).  

The transition from self-incompatibility to self-compatibility is considered the 

only direction possible in flowering plants, because this transition represents the loss of a 

complex function (Charlesworth, 2006). Because transition rates between breeding 

system traits are not equal, ancestral state reconstructions can lead to incorrect 

conclusions about the evolutionary history of dichotomous traits (Igic et al., 2006; Igic 

and Kohn, 2006). Accordingly, every SC species was considered to represent an 

independent origin of selfing unless it was sister to another SC species, in which case the 

largest clade of 100% SC species was inferred to represent a single origin of self-

compatibility. We observed a single instance where there was not enough resolution in 

the phylogenetic reconstruction to differentiate between 1 and 2 transitions in the clade 

containing O. patriciae (SC), O. triangulata (SC), and O. suffulta ssp. suffulta (SI). We 

use topological hypothesis-testing to resolve this ambiguity by comparing the majority 

rule consensus topology to a topology constrained to keep the two SC species 

monophyletic. We used BayesFactors (Kass and Raftery, 1995) and a Likelihood ratio 
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tests to show that the consensus tree is significantly more likely than the 500 trees 

sampled from the posterior distribution of the topologically constrained trees. 

Results 

Breeding System 

For species that were SC or SI and receiving outcross pollen, pollen grains 

germinated and pollen tubes entered the style within 24 hours. None of the species tested 

showed any evidence of late acting self-incompatibility; pollen tubes were either present 

and reaching the ovary, or did not penetrate the style. The percentage of pollen tubes to 

successfully reach the ovary for each Oenothera species is presented in Table 4-5. Of the 

21 species we tested, 12 were SI and 9 were SC. A complete list of all the taxa in 

Subclade B and their breeding systems is found in Table 4-3.  

Phylogenetic Reconstruction 

The aligned sequence matrix for both the chloroplast and nuclear regions 

consisted of 6562 characters. The phylogenetic reconstructions resulted in the consensus 

tree shown in Fig 4-1. Figure 4-2 is a closer view to show the subsections of section 

Gaura. We refer to all nodes with posterior probabilities above 0.95 as strongly 

supported. After 30 million generations, the MrBayes analyses reached stationarity 

between the two runs and all parameters were resolved with ESS values above 500. The 

nexus file, with the evolutionary models of nucleotide evolution inferred from 

MrModelTest and the AIC, and the tree file are deposited on TreeBase.org. GeneBank 

accession numbers are in Table 4-1. 

ITS  provides support for the monophyly of the major sections in Oenothera 

Subclade B, as well as giving greater resolution for clades in sections Hartmannia, 
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Kneiffia, and Megapterium. In addition, ITS results in greater tip resolution for the clades 

in section Gaura. ETS also contributes greater resolution of the clades in section Gaura, 

and it provides support for the clade containing sections Leucocoryne and Xanthocoryne. 

The chloroplast genes rps16 and trnL-F support the monophyly of sections Gaura and 

Kneiffia, as well as providing resolution at the species level for sections Hartmannia, 

Leucocoryne, Xanthocoryne, and Megapterium. The chloroplast genes ndhF and rbcL 

sequence data give deeper node support and clarify the position of species in section 

Kneiffia, Peniophyllum, and Paradoxus. The individual nuclear trees and chloroplast 

trees are shown in Supplemental Fig. 4-1.  

Neither of the nuclear gene trees differ significantly from the concatenated 

chloroplast gene tree (ITS, P= 0.190; ETS, P= 0.382); however, the ETS and ITS 

individual gene trees are significantly different from each other (Suppl. Fig. 4-1). This 

disagreement is due to resolution in section Gaura, where there are alternative 

placements for O. xenogaura. Oenothera xenogaura is of hybrid origin from two species 

in widely separate lineages, and these alternative placements are consistent with other 

studies of Gaura (Hoggard et al., 2004). Therefore, we exclude the ITS region for O. 

xenogaura in the combined analysis. After excluding this species, none of the pairwise S-

H tests among regions differed, ensuring that concatenating genes was appropriate for 

estimating a species tree from a multilocus gene tree.  

Independent Origins of Self-Compatibility 

 There is strong phylogenetic signal for the character of breeding system (P = 

0.0001, 95% CI 15-22 steps, unordered steps=14). We defined each transition to SC as 

the most inclusive monophyletic grouping of only SC species. Using this metric, we infer 
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12 transitions with strong topological support from SI to SC in Oenothera Subclade B. A 

thirteenth and possibly fourteenth transition is inferred for the clade containing O. 

patriciae, O. triangulata, and O. suffulta ssp. suffulta. Our topological tests for support of 

monophyly of the SC species, O. patriciae and O. triangulata, were inconclusive. The 

harmonic mean of the two replicate runs for the unconstrained tree was -15285.2 and 

resulted in separate transitions for O. triangulata and O. patriciae, which makes our total 

number of transitions 14. However, when we constrain these two species to be sister to 

one another, the resulting phylogeny has a harmonic mean -15284.7. Neither 

BayesFactors nor a log-likelihood ratio test identifies this difference as significant. At 

present, we are unable to distinguish between 13 and 14 transitions.  

Discussion 

Phylogenetic structure of Oenothera 

The consensus tree of Oenothera Subclade B (Fig 4-1) encompasses 45 species 

and contains all but five species in these sections. Our phylogenetic tree is consistent with 

(Levin et al., 2004; Wagner et al., 2007) that also show support for the nine sections 

circumscribed in Subclade B. The additional 26 taxa and 3 markers did not alter the basic 

structure or weaken support for Subclade B and the sections in it. This new phylogeny 

does provide greater insight and clarity to the relationships of these Oenothera.  

 Section Gauropsis (comprising only O. canescens) is strongly supported as sister 

to section Hartmannia, and the clade of those two sections as sister to the rest of 

Subclade B. In section Hartmannia, O. platanorum is strongly supported as sister to O. 

rosea, and those species in turn sister to O. speciosa. The monophyly of sect. Hartmannia 
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cannot be fully tested until the two missing taxa (O. deserticola and O. texensis) can be 

included.   

 The taxa in sect. Leucocoryne and Xanthocoryne were included in sect. 

Hartmannia (Munz, 1965; Raven and Parnell, 1970), but recent studies have placed them 

in their own sections (Wagner et al., 2007). Levin et al. (2004) placed sects. Leucocoryne 

and Xanthocoryne in a strongly supported clade (100% BS), but they included only one 

taxon of each section. Morphological characters, including floral, leaf, and capsule 

characters, were used to delineate the species into the two sections (Wagner et al., 2007). 

Our study includes two of the three species in sect. Xanthocoryne and three of the five in 

sect. Leucocoryne. We find strong support for a clade with sect. Xanthocoryne and 

Leucocoryne; however, within the clade, the taxa sort into the two sections but with 

inconclusively weak support . We do find that O. kunthiana and O. tetraptera form a 

well-resolved clade within sect. Leucocoryne. 

 Section Megapterium is strongly supported as monophyletic, with complete 

sampling of all four taxa. Previous analysis used only a single taxon to represent this 

section. Within this section, O. coryi and O. macrocarpa form a strongly supported clade, 

but relationships with and between O. brachycarpa and O. howardii are not resolved.  

These ambiguities may be the result of high levels of polyploidy among these taxa: O. 

brachycarpa and O. macrocarpa are diploid (n = 7,), O. coryi hexaploid (n = 21), and O. 

howardii tetraploid, hexaploid, and octoploid (n = 14, 21, 28) (Wagner et al., 2007).  

Additional population sampling and possibly additional gene sequences will be needed to 

clarify these relationships in sect. Megapterium.  
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 The monotypic sections Peniophyllum and Paradoxus form a weakly supported 

clade that is sister to either sect. Megapterium or sect. Kneiffia, and there are as yet no 

morphological synapomorphies that would clarify these relationships (Wagner et al., 

2007). Section Peniophyllum consists of only O. linifolia, a self-compatible annual 

formerly placed in sect. Kneiffia (Straley, 1977). Section Paradoxus consists of only O. 

havardii, a self-incompatible perennial restricted to the Chihuahuan desert in Texas, 

Arizona and northern Mexico (Wagner et al., 2007). (Wagner et al., 2007) suggested that 

O. havardii might be the sister group to sect. Gaura, based on morphological similarities, 

but our results do not support such a relationship. Further work is needed to clarify these 

broader relationships between these sections.  

Our phylogenetic reconstruction strongly supports section Kneiffia as a clade (see 

also Chapter 4) that is moderately supported as the sister to sect. Gaura. Our results 

support O. sessilis as specifically distinct from O. pilosella (Chapter 4). Our results also 

support the specific recognition of O. riparia, which forms a strongly supported clade 

with O. perennis.  

 In agreement with other recent molecular studies (Hoggard et al., 2004; Levin et 

al., 2004), we find strong support for the monophyly of sect. Gaura (Fig. 1). Of the eight 

recognized subsections, five are monotypic (Gauridium, Stenisiphon, Schizocarya, 

Xerogaura, and Xenogaura) (Fig. 2). There is strong support for O. anomala (subsect. 

Gauridium) as the sister branch of sect. Gaura (Raven & Gregory 1972), and for the 

strongly supported clade of O. glaucifolia (subsect. Stenosiphon) and O. curtiflora 

(subsect. Schizocarya) as sister to the rest of the section. Oenothera arida (subsect. 
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Xerogaura) is weakly supported as sister to the remainder of the section, which is a 

strongly supported clade. 

The recently re-circumscribed subsect. Campogaura (O. boquillensis and O. 

suffrutescens; 100% BS; Hoggard et al. 2004) is equally strongly supported in our tree, 

and sister to a strongly supported clade of subsections Gaura, Xenogaura and Stipogaura.   

In subsection Stipogaura, our results clarify that O. calcicola and O. cinera form 

a clade with strong posterior probability support that is sister to a weakly supported clade 

of. O. filipes and O. sinuosa. Hoggard et al. (2004) found that these four species formed a 

clade (BS 74%) that was sister to O. mckelveyae. Our results agree with this hypothesis, 

with stronger support (posterior probability.99).  

Oenothera xenogaura (subsect. Xenogaura) was hypothesized to be of hybrid 

origin, probably between O. mckelveyae (subsect. Stipogaura) and O. suffrutescens 

(subsect. Campogaura), according to Raven & Gregory (1972) or between O. mckelveyae 

and a species in subsect. Gaura related to O. coloradoensis or O. lindheimeri (Hoggard et 

al., 2004). Because of this, different markers place O. xenogaura in different places on 

our trees. In our study, we found a consensus for the position of O. xenogaura among all 

the markers except ITS, and so we restricted ITS for O. xenogaura in our final tree. Our 

results place O. xenogaura in subsect. Gaura as part of a polytomy, but with strong 

posterior probability support. This placement is subjective with regards to marker 

inclusion, and a whole genome analysis might be necessary to clarify the position of 

subsect. Xenogaura.   

Subsection Gaura forms a clade of 10 species (12 taxa) and combines two 

previously recognized subsections, Gaura and Pterogaura (Raven and Gregory, 1972; 
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Wagner et al., 2007). Within subsect. Gaura our results show strong support for the six 

species that were previously delimited as subsect. Gaura. The relationships of these six 

species agree with earlier studies, and our data strengthen the support for these 

placements. For instance, Hoggard et al. (2004) found that O. demareei and O. 

lindheimeri formed a clade with BS of 61%; whereas we find that these two taxa, which 

are the day blooming and bee pollinated species of sect. Gaura, form a strongly 

supported clade. This finding provides strong support for the hypothesis that O. demareei 

arose following a hybridization between O. filiformis and O. lindheimeri (Carr et al., 

1990; Wagner et al., 2007) The clade sister to this clade consists of O. simulans, O. 

filiformis, and O. gaura, which Hoggard et al. (2004) reported with weak support. 

However, our results show that O. gaura and O. simulans are sister taxa with O. filiformis 

sister to them.  

The other seven taxa in subsect. Gaura, formerly treated as subsect. Pterogaura, 

are markedly paraphyletic. With the exception of O. xenogaura, these results are 

comparable to Hoggard et al. (2004). We also find that O. patriciae, O. suffulta ssp. 

suffulta, and O. triangulata form a clade (BS 89%; (Hoggard et al., 2004) and with 

stronger support (1.0 PP). All three species have overlapping ranges. In sympatric 

populations of O. triangulata and O. patriciae, intermediate individuals have been noted, 

which suggests that suggest these two species can hybridize (personal comm. G. and R. 

Hoggard, personal comm. P. Raven, personal observations) Therefore, we suggest that O. 

triangulata and O. patriciae are sister taxa, and that the total number of transitions to SC 

in Oenothera Subclade B is 13.  
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Oenothera hexandra ssp. hexandra, O. hexandra ssp. gracilis, and O. suffulta ssp. 

nealleyi remain unresolved, and form a polytomy in subsect. Gaura. These results are 

consistent with Hoggard et al. (2004); however, that study did not include the subspecies 

O. suffulta ssp. nealleyi or O. hexandra ssp. gracilis. It does not appear that O. suffulta 

ssp. nealleyi is closely related to O. suffulta ssp. suffulta, given the placement in the 

phylogeny, and the difference in scent profiles for these two taxa. Oenothera suffulta ssp. 

nealleyi has a strong sweet scent, characterized by benzaldehyde (almond), 

cinnamaldehyde, cinnamic alcohol (cinnamon), methyl salicylate and its methyl ether 

(wintergreen), neral and geranial (citronella), and nerol and geraniol (lemon) (R. Raguso, 

personal comm.), whereas O. suffulta ssp. suffulta does not have a discernable scent. This 

difference in scent could play a key role in the pollination syndromes for these species. 

Further work, with sampling across the ranges of both taxa is needed to clarify whether 

these taxa are truly distinct.  

In conclusion, we find that sections Megapterium, Kneiffia, and Gaura are 

monophyletic with all species included (100% support). Section Hartmannia is 

monophyletic, but several taxa are not sampled for this study. Sections Xanthocoryne and 

Leucocoryne form a monophyletic group together, but within this clade, the species sort 

only weakly into the two sections; not all species were sampled for these two sections. 

Sections Gauropsis, Paradoxus and Peniophyllum all contain one species and are, by 

definition, monophyletic. The relationships of sect. Gauropsis are strongly supported, but 

those of sects. Paradoxus and Peniophyllum need further clarification. Our results show 

that sect. Kneiffia is strongly supported (1.0 PP) as sister to sect. Gaura.  

Breeding System Transitions 
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 We find multiple transitions from SI to SC in Subclade B of sect. Oenothera. Our 

results confirm 12 transitions, but our topological tests were unable to clarify whether 

there are a total of 13 or 14 transitions. This ambiguity is due to the unresolved topology 

in subsect. Gaura of the self-compatible O. patriciae and O. triangulata and the self-

incompatible O. suffulta ssp. suffulta. Given the overlapping ranges of these species, and 

the possibility of hybridization between O. patriciae and O. triangulata, we make the 

conservative conclusion that there was only one transition to SC in this clade. A total of 

13 transitions to SC in Subclade B, which has 45 species, suggests that breeding system 

is a highly labile trait. In accordance with previous studies of Oenothera (Raven, 1979; 

Raven, 1988), we also find that sister taxa can differ in breeding system.  This kind of 

lability in breeding system may play a key role in the diversification of Oenothera 

(Raven, 1979).  This result concurs with the idea that transitions to SC in breeding system 

are associated with higher rates of speciation in plants (Barrett, 2010a) .  
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Table 4-1. Species of Onagraceae included in the phylogenetic analyses. This sampling includes 45 Oenothera species and 6 

outgroups from Onagraceae. For each gene we indicate the source of the data with either the GenBank accession number or as a 

species newly sequenced in this study (*). Data not obtained is indicated (-).  

Section/ Subsection Species ITS trnL-F rps16 ETS rbcl ndhF 
Gauropsis O. canescens AY271576 AY264565 AY2674438 − − − 

Hartmannia O. platanorum * − * − * * 

 
O. rosea AY271578 AY264566 AY267440 − − − 

 
O. speciosa AY271577 AY264565 AY267439 AJ620789 AB516355 − 

Xanthocoryne O. epilobiifolia s. epilobiifolia * − − * − * 

 
O. multicaulis AY271580 AY264568 AY267442 − − − 

Leucocoryne O. kunthiana * * * − − * 

 
O. luciae-julianae − * * * * * 

 
O. tetraptera AY271579 AY264567 AY267441 − − − 

Paradoxus O. havardii * * * − * * 
Megapterium O. brachycarpa AY271572 AY264560 AY267435 − AF495770 AF495793 

 
O. coryi − − * − − − 

 
O. howardii * − * − − * 

 
O. macrocarpa s. macrocarpa * * * * * * 

Peniophyllum O. linifolia * * * − * * 
Kneiffia O. fruticosa  AY271581 AY264569 AY267443 − AF495771 AF495794 

 
O. riparia * * * * * * 

 
O. perennis * * * − * * 

 
O pilosella  * * * − * * 

 
O. sessilis * * * − * * 

 
O. spachiana − * * * * * 
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Gaura/ Gauridium O. anomala * * * * * * 
Gaura/ Stenisiphon O. glaucifolia * * * * * * 
Gaura/ Schizocarya O. curtiflora * * * * * * 
Gaura/ Xerogaura O. arida * * * * * * 
Gaura/ Campogaura O. suffrutescens * * * * * * 

 
O. boquillensis AJ620518 AJ620587 AY267453 AJ620765 − − 

Gaura/ Stipogaura O. cinerea s. cinera * * * * − * 

 
O. calcicola * − * * * * 

 
O. filipes * * * * − − 

 
O. mckelveyae AJ620529 − − AJ620776 − − 

 
O. sinuosa * * * * * * 

Gaura/ Xenogaura O. xenogaura − * * * * * 
Gaura/Gaura O. coloradoensis s. neomexicana * * * * − * 

 
O. demareei * * * * − − 

 
O. filiformis AJ620527 AJ620595 − AJ620774 − − 

 
O. gaura AJ620517 AJ620586 − AJ620764 − − 

 
O. lindheimeri AJ620526 AJ620594 − AJ620773 AM235669 AM235436 

 
O. hexandra s. hexandra * * * * * * 

 
O. hexandra s. gracilis * * * * * * 

 
O. patriciae * * * * * * 

 
O. simulans * * * * * * 

 
O. suffulta s. suffulta * * * * − * 

 
O. suffulta s. nealleyi * * * − * * 

 
O. triangulata * * * * * * 

Outgroups Calylophus lavandulifolius AJ620543 AJ620603 − AJ620790 − − 

 
Calylophus serrulata * * − − − − 

 
O. psammophila AY271571 AY264559 AY267434 * − − 
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O. lacinata AY271561 AY264549 AY267424 AJ620787 − − 

 
O. heterophylla AY271560 AY264548 AY26423 AJ620786 − − 

  O. albicaulis AJ620536 AJ620604 − AJ620784 − − 
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Table 4-2. The taxa, vouchers, and localities for new sequences analyzed in this study. Vouchers are filed at the Missouri Botanical 

Garden.  

Section Taxon Location Voucher/Citation 

Hartmannia O. platanorum Sonora, Mexico van Devender 2004-563 
Xanthocoryne O. epilobiifolia s. epilobiifolia Merida, Venezuela van der Werff and Ortiz 5963 
Leucocoryne O. kunthiana Sonora, Mexico vanDevender 2005-23A 

 O. luciae-julianae El Salto, Durango, Mexico LM Valenzuela 3-25 
Paradoxus O. havardii Brewster Co., TX, USA Krakos 0913 
Megapterium O. coryi Crosby Co., TX, USA Wagner and Butley 3632 

 O. howardii Kane Co., UT, USA Warren Wagner det. 4506 

 O. macrocarpa s. macrocarpa Gray Summit Co., MO, USA Krakos 0701 
Peniophyllum O. linifolia Gray Summit Co., MO, USA Krakos 0903 
Kneiffia O. riparia Pendleton Co., NC, USA Krakos 1017 

 O. perennis Middlesex Co., MA, USA Krakos 1010 

 O pilosella  SE Washington Co., IL, USA Krakos 0821 

 O. sessilis Prairie Co., AR, USA Krakos 1006 

 O. spachiana Bienville Co., LA, USA Thomas and Moreland 49150 
Gaura/ Gauridium O. anomala Durango, Mexico Clinebell 3172 

Gaura/ Stenisiphon O. glaucifolia Woodward Co., OK, USA Krakos 0815 

Gaura/ Schizocarya O. curtiflora Woodward Co., OK, USA Krakos 0816 

Gaura/ Xerogaura O. arida Brewster Co., TX, USA Krakos 0935 

Gaura/ Campogaura O. suffrutescens Brewster Co., TX, USA Krakos 0918 

Gaura/ Stipogaura O. cinerea s. cinerea Union Co., NM, USA Clinebell 2052 

 
O. calcicola Brewster Co., TX, USA Krakos 0920 

 
O. filipes Richland Co., SC, USA AB Pittman 09059612 

 
O. sinuosa Cleveland Co., OK, USA Krakos 0904 

Gaura/ Xenogaura O. xenogaura Starr Co., TX, USA Krakos 0908 
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Gaura/Gaura O. coloradoensis s. neomexicana Otero Co., NM, USA Krakos 0926 

 
O. demareei McCurtain Co., OK, USA Krakos 0814 

 
O. hexandra s. hexandra Durango, Mexico Clinebell 3031 

 
O. hexandra s. gracilis Brewster Co., TX, USA Clinebell 2023 

 
O. patriciae Rogers Co., OK, USA Krakos 0801 

 
O. simulans New Hanover Co., NC, USA Krakos 1016 

 
O. suffulta s. suffulta Cleveland Co., OK, USA Krakos 0803 

 
O. suffulta s. nealleyi Brewster Co., TX, USA Krakos 0922 

  O. triangulata Rogers Co., OK, USA Krakos 0802 
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Table 4-3. Summary of all breeding systems of Oenothera in Subclade B.  

Section/ Subsection Species Breeding System Data Source 

Gauropsis O. canescens SC Wagner, W. L., P. C. Hoch, et al. (2007) 

Hartmannia O. platanorum SC current study 

 O. rosea SC Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. speciosa SC Wagner, W. L., P. C. Hoch, et al. (2007) 

Xanthocoryne O. epilobiifolia s. epilobiifolia SC Raven, P. H.  (1979) 

 O. multicaulis SC Wagner, W. L., P. C. Hoch, et al. (2007) 

Leucocoryne O. kunthiana SC Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. luciae-julianae SC Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. tetraptera SC Wagner, W. L., P. C. Hoch, et al. (2007) 

Paradoxus O. havardii SI current study 

Megapterium O. brachycarpa SI Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. coryi SI Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. howardii SI Wagner, W. L., P. C. Hoch, et al. (2007) 

 O. macrocarpa s. macrocarpa SI current study 

Peniophyllum O. linifolia SC current study 

Kneiffia O. fruticosa  SI Straley, G. B. (1977).  

 O. riparia SI Krakos et al. in review 

 O. perennis SC Krakos et al. in review 

 O. sessilis SC Krakos et al. in review 

 O pilosella  SI Krakos et al. in review 

 O. spachiana SC Straley, G. B. (1977).  

Gaura/ Gauridium O. anomala SC Raven, P. H. and D. P. Gregory (1972) 

Gaura/ Stenisiphon O. glaucifolia SC current study 

Gaura/ Schizocarya O. curtiflora SC Raven, P. H. and D. P. Gregory (1972) 

Gaura/ Xerogaura O. arida SI current study 

Gaura/ Campogaura O. suffrutescens SI current study 



91 
 

 O. boquillensis SI Raven, P. H. and D. P. Gregory (1972) 

Gaura/ Stipogaura O. cinerea s. cinerea SI Raven, P. H. and D. P. Gregory (1972) 

 O. calcicola SI current study 

 O. filipes SI Raven, P. H. and D. P. Gregory (1972) 

 O. mckelveyae SI Raven, P. H. and D. P. Gregory (1972) 

 O. sinuosa SI current study 

Gaura/ Xenogaura O. xenogaura SI current study 

Gaura/Gaura O. coloradoensis s. neomexicana SC current study 

 O. demareei SI current study 

 O. filiformis SI current study 

 O. gaura SC current study 

 O. lindheimeri SI current study 

 O. hexandra s. hexandra SC Raven, P. H. and D. P. Gregory (1972) 

 O. hexandra s. gracilis SC current study 

 O. patriciae SC current study 

 O. simulans SC current study 

 O. suffulta s. suffulta SI current study 

 O. suffulta s. nealleyi SI current study 

  O. triangulata SC current study 
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Table 4-4. Primers and annealing temperatures used for six molecular markers.  

 
Locus Primer name Primer Sequence 5’ to 3’ Annealing Temperature Citation 

ITS ITS4 TCC TCC GCT TAT TGA TAT GC 47° C (Levin et al., 2004) 

 ITS5HP GGA AGG AGA AGT CGT AAC AAG G 47°  C (Levin et al., 2004) 

trnL trnLf ATT TGA ACT GGT GAC ACG AG 50° C (Levin et al., 2004) 

 trnLc CGA AAT CGG TAG ACG CTA CG 50° C (Levin et al., 2004) 

rps16 P1839 TCG GGA TCG CAC ATC AAT TGC AAC 55° C (Levin et al., 2004) 

 P1840 GTG GTA AAA AGC AAC GCG CGA CTT  55° C (Levin et al., 2004) 

ETS ETS R2 AGA AGT CGG GGT TTG TTG C 50° C (Hoggard et al., 2004) 

 ETS F2 ACG ATC GGA TTC GTG ACC TA 50° C (Hoggard et al., 2004) 

rbcL P1630 ATG TCA CCA CAA ACA GAG ACT AAA GC 53° C (Levin et al., 2003) 

 P1782 ATA CTT CAC AAG CAG CAG CTA GTT CC 53° C (Levin et al., 2003) 

ndhF P1786 CCC CGA AAT ATT TGA GAC TTT CT 47°  C (Levin et al., 2003) 

 P1785 GTC TCA ACT GGG TTA TAT GAT G 47°  C (Levin et al., 2003) 
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Table 4-5. Comparative rates of breeding system parameters for Oenothera species in hand pollination studies.  

Species Treatment n (number 
of flowers) 

Number of pollen 
grains on stigma 

Number of pollen 
tubes reaching ovary 

Percent of pollen tubes to 
reach plant ovary 

O. platanorum Self 8 737.50 (±227.96) 5.0 (±6.0) 50.29 (±.35) 

 Cross 8 703.88 (±279.91) 4.0 (±5.32) 38.82 (±.27) 

O. havardii Self 7 109.29 (±70.14) 0 0 

 Cross 7 149.0 (±90.81) 2.71 (±2.14) 35.88 (±.31) 

O. macrocarpa  Self 12 187.08 (±130.08) 0 0 

 Cross 12 142.08 (±123.54) 2.67 (±3.11) 28.44 (±.30) 

O. linifolia Self 7 81.86 (± 84.23) 3.29 (±2.93) 38.43 (±.35) 

 Cross 7 85.86 (±96.65) 3.00 (±2.24) 38.33 (±.23) 

O. glaucifolia Self 8 111.38 (±34.80) 1.00 (±1.31) 31.62 (±.36) 

 Cross 8 104.25 (±50.75) 1.25 (±1.28) 48.59 (±.67) 

O. arida Self 5 86.0 (±28.15) 0 0 

 Cross 5 92.8 (±51.88) 2.4 (±1.82) 30.0 (±.18) 

O. suffrutescens Self 8 71.38 (±49.81) 0 0 

 Cross 8 91.38 (±56.13) 2.75 (±1.67) 47.60 (±.28) 

O. calcicola Self 8 112.75 (±47.02) 0 0 

 Cross 8 127.63 (±46.93) 1.88 (±1.81) 25.45 (±.20) 

O. sinuosa Self 9 108.13 (±123.83) 0 0 

 Cross 9 193.75 (±69.89) 3.13 (±1.36) 13.54 (±.26) 

O. xenogaura Self 9 65.0 (±65.89) 0 0 

 Cross 9 88.22 (±51.72) 2.38 (±2.50) 37.73 (±.39) 

O. coloradoensis s. neomexicana Self 11 63.64 (±41.03) 2.73 (±2.90) 30.79 (±.31) 

 Cross 11 73.0 (±27.23) 6.09 (±3.30) 49.70 (± .17) 

O. demareei Self 9 126.56 (±67.29) 0 0 

 Cross 9 115.56 (±65.45) 3.33 (±1.80) 68.55 (±.32) 
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O. filiformis Self 21 164.71 (±89.51) 0 0 

 Cross 19 124.79 (±89.60) 1.63 (±1.86) 19.41 (±.24) 

O. gaura Self 10 207.90 (±197.44) 1.60 (±1.17) 45.95 (±.38) 

 Cross 10 236.20 (±229.10) 2.30 (±1.70) 61.17 (±.35) 

O. lindheimeri Self 6 53.0 (±26.24) 0 0 

 Cross 6 53.67 (±25.84) .83 (±.98) 17.26 (±.21) 

O. hexandra s. gracilis Self 8 144.86 (±93.14) 1.0 (±1.36) 36.84 (±.38) 

 Cross 9 156.0 (±104.70) 1.67 (±2.12) 21.16 (±.29) 

O. patriciae Self 10 381.9 (±225.28) 3.7 (±1.16) 48.0 (±.12) 

 Cross 10 488.2 (±67.20) 4.4 (±.84) 60.01 (±.15) 

O. simulans Self 10 51.7 (±35.93) 2.0 (±1.33) 45.83 (±.25) 

 Cross 10 31.4 (±17.58) 2.0 (±1.16) 34.25 (±.22) 

O. suffulta s. suffulta Self 17 180.53 (±129.19) 0 0 

 Cross 10 101.0 (±52.59) 1.5 (±1.27) 0.6 (±.4295) 

O. suffulta s. nealleyi Self 10 198.2 (±152.16) 0 0 

 Cross 10 103.5 (± 37.78) 3.0 (±1.56) .4658 (±.2526) 

O. triangulata Self 10 227.6 (±204.03) 1.8 (±1.23) .3724 (±.2764) 

 Cross 10 193.0 (±40.57) 5.7 (±2.16) .6598 (±.1456) 
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Figure 4-1. Bayesian phylogenetic reconstructions from concatenated mixed model data 

set for genes ITS, ETS, rps16, trnL-F, rbcL, and nadH. 30 million runs, SD of .005586, 

45 Oenothera species. Self-incompatible species are in bold, self-compatible species with 

an asterisk. Numbers above nodes indicate Bayesian posterior probability values. 

Subclade B is noted. 

 

 

 

 

 

Subclade B
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Figure  4-2. The subsections of section Gaura.      
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Introduction 

Molecular phylogenetics is a powerful tool for understanding the evolutionary 

relationships among plant species (Savolainen and Chase, 2003). Traditional taxonomy 

classified plant species primarily based on shared morphology, with a strong focus on 

reproductive traits. In combination with neutral molecular markers, phylogenetic 

reconstructions have revised taxonomies and altered many hypotheses about plant species 

relationships. For instance, flowering plants were long classified as Dicots and Monocots; 

however, molecular phylogenetic studies resulted in a dramatic change in plant 

classification, where monocots are now grouped with the basal Dicots, and Eudicots as 

sister to that clade (Bremer et al., 1998; Soltis et al., 1999).  

Pollination system is one of several important and potentially interacting aspects 

of floral reproduction driving angiosperm diversification (Crane et al., 1995; Crepet et al., 

2004; De Bodt et al., 2005; Fenster et al., 2004). Breeding system describes whether a 

plant is self-compatible (SC) or self-incompatible (SI), and is also thought to play a major 

role in the diversification of plants (Baker, 1955; Barrett et al., 1996). Angiosperms show  

repeated transitions from SI to SC  (Barrett, 2002a), but a lack of reversals back to SI, 

across diverse taxonomic groups (Charlesworth, 2006; Foxe et al., 2009; Goodwillie, 

1999; Schoen et al., 1996). Self-compatibility can provide advantages that outweigh the 

deleterious effects of inbreeding, such as reproductive assurance when pollinator service 

is inconsistent (Barrett, 2002a; Kalisz et al., 2004; Moeller, 2006; Waser and Ollerton, 

2006). Self-compatibility has been associated with pollen limitation, because a decreased 

reliance on pollinators to achieve full seed set may be a pre-requisite for the transition to 

selfing (Larson and Barrett, 2000). A high frequency and/or intensity of pollen limitation 
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could be a selective force favoring transitions from SI to SC (Weber and Goodwillie, 

2009).  

There can be great diversity of breeding systems within plant groups, and closely-

related species may differ in the level of self-compatibility (Brauner and Gottlieb, 1987; 

Macnair et al., 1989; Weller and Sakai, 1999). When closely-related species differ in 

breeding system, those differences may result from adaptations to environmental 

conditions (e.g., pollen limitation), or simply reflect shared evolutionary history. We can 

distinguish between these hypotheses by 1) identifying repeated transitions to SC, and 2) 

phylogenetically controlled associations between breeding system shifts and pollen 

limitation (Freckleton, 2000; Machado and Lopes, 2004; Sanderson and Donoghue, 1996; 

Vamosi et al., 2003).  

Onagraceae, specifically the genus Oenothera, has long served as a model system 

for the evolution of flowering plant reproductive biology (Clinebell et al., 2004; Hoch et 

al., 1993; Raven, 1979; Raven, 1988). The repeated evolution of SC in this group is 

thought to play a key role in the diversification of Onagraceae as a mechanism of rapid 

reproductive isolation (Raven, 1979). Recent molecular phylogenetic studies have 

clarified phylogenetic relationships within Oenothera (Hoggard et al., 2004; Levin et al., 

2004; Levin et al., 2003; Wagner et al., 2007), placing the once segregate genera Gaura, 

Calylophus and Stenisiphon now within a monophyletic Oenothera (Carr et al., 1990; 

Raven, 1988; Raven and Gregory, 1972). These sections form a clade with sections 

Kneiffia, Megapterium, Peniophyllum, Paradoxus and Gaura. These recent studies used 

one species, Oenothera fruticosa, as representative of section Kneiffia which has six 

species. The new phylogenies also show that Oenothera linifolia, previously included in 
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section Kneiffia, is now in section Peniophyllum (Levin et al. 2004).  In Straley’s 1977 

treatment of section Kneiffia, a hypothesis of the evolutionary relationships is given 

based on morphological and cytological data. The 1977 treatment studied some of the 

Kneiffia breeding systems and gave preliminary pollination observations. Since that 

study, section Kneiffia has not been surveyed. In addition, a molecular phylogenetic study 

has never been conducted for the full species set of section Kneiffia, and so relationships 

among these species are unknown.  

 Species within Oenothera section Kneiffia are widely-distributed in eastern North 

America (Straley, 1977). They have bright yellow flowers that vary in size and are 

predominately bee pollinated. There are both annual and perennial species, and both SC 

and SI species. In this study, we recognize six species of Oenothera in sect. Kneiffia. 

Oenothera sessilis, previously known as O. pilosella spp. sessilis (Krakos et al. in 

review), is a rare species restricted to prairie remnants primarily in eastern Arkansas. 

Oenothera riparia is also a rare species found only in the riparian habitats of the 

Carolinas. Both of these rare Kneiffia taxa were not recognized at the species status by 

Straley (1977). A molecular phylogeny establishing the species level for these rare taxa 

will help in conservation efforts and in understanding the evolution of reproductive traits 

in this group.  

In this study we present the first phylogenetic reconstruction for section Kneiffia 

that includes all taxa. We examine the reproductive biology of these species and use this 

phylogeny to test the following hypotheses: 1) Current generic and species level 

taxonomies reflect evolutionary history; 2) Self-compatibility has evolved once in section 

Kneiffia; 3) Two self-compatible species in section Kneiffia exhibit less pollen limitation 
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than two self-incompatible species. This study establishes relationships among Kneiffia 

species, identifies transitions to self-compatibility, and examines pollen limitation as a 

potential force affecting those transitions. 

Materials/Methods 

Study Sites 

To assess levels of pollen limitation in SI and SC species, we conducted field 

studies on four species of section Kneiffia in sites throughout the Midwest and North East 

areas of North America. Fieldwork was carried out from April 2007 to August 2010 and 

included pollination studies, tissue collection, and breeding system experiments. 

Oenothera pilosella is a native perennial found blooming along the roadsides and in the 

prairie remnants of Illinois in early June. This species typically blooms for only 2-3 

weeks. Our focal populations of O. pilosella were located in SE Washington Co. IL, 3 

miles south of Posen, IL (38° 15.508 N, 89° 18.214 W), and Jefferson Co., IL along Rt. 

15 (38 ° 15.849 N, 89° 02.396 W). Oenothera perennis is a native perennial common 

across the eastern US and blooms from mid-July through August. Our focal population 

was located in Middlesex Co, MA at the Great Meadows National Wildlife Refuge 

(42°23’32.6 N, 71° 22’ 55.1 W). Oenothera sessilis is a native annual found in prairie 

remnants of Arkansas that blooms May-June. Our focal populations were located in 

Prairie Co., AR at Downs Prairie Natural Area (34° 46’ 43” N, 91° 21’ 44” W) and 

Railroad Prairie Natural Area (34° 46’ 59” N, 91° 29’ 44” W). Oenothera riparia is a 

native perennial endemic to the riparian habitats of North and South Carolina and blooms 

mid-June through July. Our focal populations were located in New Hanover Co., NC on 

the banks of  Island Creek (N 34° 22’ 02”, W 77° 48’ 54”), Pender Co., NC (34° 14’ 40” 



108 
 

N,  78° 00’ 59” W), and New Hanover Co., NC along the banks of Upper Smith Creek 

(34° 15’44 N, 77° 53’ 15” W).  

Tissue Collections 

The tissue used in this study comprises all six species of Oenothera in section 

Kneiffia. We used fresh tissue for the species O. sessilis, O. riparia, O. pilosella, and O. 

perennis from the study sites listed above. We used tissue samples from two locations 

from herbarium sheets at the Missouri Botanical Garden Herbarium for O. spachiana. We 

used published GenBank sequence data for O. fruticosa. Because the species status of O. 

riparia and O. sessilis were suspect, we used two samples of each species, each from a 

separate locality (see above). We report on a single sequence in the phylogeny because 

intraspecific variation (e.g., the number of nucleotide differences) was universally less 

than interspecific variation. All information on the origin of material, voucher specimens, 

and GenBank accession numbers are listed in Table 5-1.  

DNA Isolation, Amplification and Sequencing 

We isolated DNA using Viogene plant DNA isolation kits (www.viogene.com) 

according to the manufacture’s protocols. We amplified 604 bp of the chloroplast internal 

transcribed region (ITS), 966 bp of chloroplast marker trnL, 1803 bp of the nuclear 

external transcribed region (ETS), 867 bp of chloroplast marker rps16, 1054 bp of 

chloroplast marker ndhF, and 1268 bp of chloroplast marker rbcL. Primer combinations 

and annealing temperatures are listed in Table 5-2. Polymerase chain reactions (PCR) 

were performed in 25 μL reactions of Promega (www.promega.com) 5x buffer, 2.5 μL of 

25 mM MgCl2, 2.5 μL of 0.2 μM dNTPs, 2.5 μL of 0.2 μM of each primer, 0.125 μL (1 

unit) of Promega GoTAq DNA polymerase, and 2 μL of template DNA at approximately 

http://www.viogene.com/�
http://www.promega.com/�
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5 ng/μL. The PCR thermal profile included 95°C for 3 min, followed by 35 cycles of 

95°C for 1 min, annealing temperature for 40 s, and 72°C for 45 s, with a final elongation 

at 72°C for 7 min. PCR products were visualized through agarose-gel electrophoresis and 

purified using Viogene gel purification kits (www.viogene.com). Sequences were 

generated at the Washington University Genome Sequencing Center on an ABI 3330. All 

gene regions were sequenced in both the forward and the reverse directions. DNA 

sequences were manually edited using SEQUENCHER 4.8 (Ann Arbor, MI) and aligned 

by hand in GENEDOC.  

Phylogenetic Reconstruction 

We estimated models of nucleotide evolution for each of the six gene regions 

independently in jmodeltest (Posada, 2008). We generated a phylogenetic tree from a 

concatenated data set of the four chloroplast genes, and compared this to separate 

phylogenetic trees generated for each nuclear marker. These phylogenetic trees largely 

agreed, and so all six markers were concatenated and used to generate a single 

phylogenetic tree. The evolutionary history of the six taxa was reconstructed using 

Bayesian Markov-Chain Monte-Carlo search algorithm of MrBayes (Ronquist and 

Huelsenbeck, 2003). We used thirty million generations with a sampling frequency of 

200 generations and the standard 3 cold and 1 hot chain. Each partition was given the 

model of evolution determined by the AIC method in jmodeltest and we unlinked all 

parameters across loci to allow them to evolve independently. Convergence in two 

replicate analyses was determined when the standard deviation between the log-

likelihood scores of the two runs was < 0.0001. Parameters estimated during the analysis 

were evaluated for parameter estimate convergence using Tracer (Rambaut and 

http://www.viogene.com/�
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Drummond, 2007), wherein each of the 17 model parameters had Effective Samples 

Sizes (ESS) > 500 and the log-likelihood of the model had reached a plateau. We 

discarded 25% of the resulting trees as a burn-in and computed a consensus tree using the 

sumt command in MrBayes. We rooted our trees using four outgroup species, Oenothera 

macrocarpa, Oenothera brachycarpa, Calylophus lavandulifolius, and Calylophus 

serrulata.   

Determining Breeding System and Pollen Limitation 

The breeding system and pollination data for O. spachiana and O. fruticosa have 

been previously described (Straley, 1977), and we did not test these two species. To 

determine and verify the breeding system of the other four Kneiffia species, we conducted 

hand-manipulated experiments in both the field and in the greenhouse. For each study 

site, during peak flowering season, we randomly chose ten flowering plants. The evening 

prior to the experiment, we chose pairs of mature buds on each plant and bagged them in 

bridal veil netting following Lipow et al. (2002) protocols. When the flower opened the 

next morning it received one of two treatments. For group one, the Self-Pollen treatment, 

when the flower opened in the morning, the bag was removed and pollen from the 

flowers own stamens was applied to the stigma. The bag was then placed back over the 

flower for the duration of flowering time. For group two, the Cross-pollen treatment, 

when the flower opened, the bag was removed and all stamens were removed. The stigma 

was then manually pollinated with the pollen from a single flower from a distant plant in 

the population. Pollen was applied with a paintbrush until the stigmatic surface was 

coated. The bag was then placed back over the flower for the duration of the experiment. 

These same protocols were repeated with greenhouse populations to verify the breeding 
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system of all four Kneiffia species without any potential confounding variables such as 

pollinator contamination. In the greenhouse we grew between 20 and 30 plants of each 

species, representing all populations.  

Twenty-four hours after each treatment, all pairs of inflorescences were collected 

and fixed in a 3:1 EtOH: glacial acetic acid mixture for 2 hours. They were then 

transferred to a 70% EtOH solution and stored. To count the number of pollen tubes 

present and reaching the ovary, the pistil and ovary were dissected from each flower and 

placed in a small beaker. The specimens were covered with a 10% solution of sodium 

sulfide and incubated at 65 degrees until the tissue was soft. The specimens were then 

covered with de-ionized water for 15 minutes. Each pistil and ovary was placed on a 

separate glass slide, covered in 3-5 drops of decolorized aniline blue, and covered with a 

cover slip. The softened tissue was spread by tapping the coverslip with a probe. Ovaries 

were sliced in half and placed face up prior to tissue spreading. The labeled slides were 

refrigerated for a minimum of 24 hours. A Zeiss Universal microscope with a 100 watt 

mercury bulb to give fluorescent light was used to view the pollen tubes. The number of 

pollen grains on the stigma, the number of pollen tubes in the style, and the number of 

pollen tubes that reached the ovary were all counted to determine successful rates of 

pollination (see Lipow et al. 2002).  

To determine if the species was self-compatible, we performed a paired t-test, 

assuming equal variance, comparing Self vs. Cross percentage of pollen tubes that 

reached the ovary. No statistical difference between the pairs indicates that the species is 

self-compatible.  
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To assess whether self-incompatible Kneiffia species exhibit greater pollen 

limitation than SC species, we performed supplementary pollination experiments in the 

study populations of all four species. In each population we chose 10 random flowering 

plants. Before the onset of flowering (predawn), we marked two inflorescences per plant 

with yarn tied at the base of the inflorescence and assigned each to a treatment group. 

Group one, the control, were left open to natural pollinators throughout the flowering 

period (one day). Group two, the supplementation treatment, were left open to natural 

pollinators and in addition were manually pollinated with a mixture of pollen from five 

distant plants in the population. Pollen was applied to the stigma with a paintbrush three 

times during the period of stigma receptivity. After 24 hours, all pairs of inflorescences 

were collected, fixed, and pollen tube counts obtained by the same methods described 

above for the breeding system experiments.  

For each pollen supplementation and control pair, the degree of pollen limitation, 

L, was calculated by:  𝐿 = 1 − 𝑇𝑐
𝑇𝑠

 , where Ts is the number of pollen tubes that reached the 

ovary in the supplementation treatment, and Tc is the number of tubes that reached the 

ovary in the control treatment. L ≈ 0 indicates that there is no pollen limitation for that 

population of the species. (Larson and Barrett 2000). Therefore, if a species has a positive 

L value, and the 95% CI does not include 0, it is to be considered pollen limited. We used 

restricted maximum likelihood (REML) to estimate the variance. We followed this 

analysis with a post-hoc test (Tukey-Kramer HSD) to determine whether L differed 

significantly among the species. We also conducted a phylogenetic ANOVA (Garland et 

al., 1993) using the Geiger module in R (Harmon et al., 2008) to test for significant 

associations pollen limitation (L) and species or breeding system.  
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Determining Pollination System 

Pollination system was determined by measuring visitation by animals, pollen 

load, and stigma contact. For each population of Oenothera, we conducted 20 min 

observations of multiple randomly chosen inflorescences and recorded the total number 

of visits, type of visitor, and behavior of visitors. We recorded observation of physical 

contact between an insect and the receptive stigma, as well as duration of visit, and which 

plant species the insect visited next. Observations began in the second week of flowering 

for each population and continued for 2 weeks. They were conducted during times of 

peak pollinator activity, which began pre-dawn and continued until early afternoon.  

Insect visitors to the flower were collected using a net and a killing jar charged 

with ethyl acetate. Insects were pinned and taken to the lab to quantify the amount and 

location of pollen carried. To assess the identity and number of pollen grains carried by 

each visitor to Oenothera we made a library of pollen grains from flowering plants at 

each study site. Dehiscent stamens were placed on glass slides. The pollen was teased out 

with probes, stained with 1-2 drops of Calbera’s fluid to make a semi-permanent mount 

(Bernhardt et al., 2003; Goldblatt et al., 1998a), and labeled to species for future 

reference known as a “pollen library.” 

We counted and identified the pollen carried by the insect visitors. Each 

euthanized insect collected on the Oenothera species was placed on a separate glass slide 

and washed in a few drops of ethyl acetate. The insect specimen was removed from the 

slide and the slide was allowed to air dry. Washed insect specimens were then dried, 

pinned, and saved for identification by regional entomologists. Insects were identified 

and grouped into one of five functional groups based on major genera, type and size. 
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These groups were bumble bees (Bombus), carpenter bees (Xylocopa), megachilid bees 

(Megachile), and small and medium halictid bees (Lassioglossum). The pollen on the 

slide was stained with one-two drops of Calbera’s fluid (Goldblatt et al., 1998a) and a 

cover slip was applied to the surface of the drop. All pollen identified under light 

microscopy was compared to the pollen library. The type and amount of pollen on the 

legs, thorax, and proboscis was recorded.  

The pollen flow, P, was calculated for each Oenothera species by 

 ∑ (VRx * PLx) 

where VR is the frequency of an insect visitor, x, and PL is the average pollen load 

carried by that insect species. All insect visitors and their % contribution to total pollen 

flow were recorded and the main pollinator systems for each plant species was 

determined as the pollinator functional groups that accounted for 95% of the total pollen 

flow.  

Independent Origins of Self-Compatibility 

We identified three self-compatible species. The consensus tree of our 

concatenated dataset will identify whether or not these three species represent a single or 

multiple transitions to self-compatibility. However, the consensus topologies may only be 

negligibly more likely than alternative topologies. We used topological hypothesis testing 

to identify the number of origins of self-compatibility. Given three SC species (see 

Results), there are five possible topologies: all three form a clade (single origin of SC), 

three configurations of two origins of SC, or three separate origins of SC. We compared 

our unconstrained topology of three independent origins to four constrained topological 

alternatives: all three SC species form a clade, and three additional constraints 
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representing all possible alternative configurations of two independent origins of SC 

(e.g., 1,2 and 3; 1,3 and 2; and 2,3 and 1), and used a likelihood ratio test and Bayes 

Factors (Kass and Raftery, 1995) to test whether the consensus tree of the unconstrained 

analysis with three independent origins is significantly more likely than 500 trees 

sampled from the posterior distributions of the four topologically constrained trees.  

Results 

Phylogenetic Reconstruction 

The consensus tree resulting from our phylogenetic reconstruction is shown in 

Figure 5-1. The duplicate analyses in MrBayes converged after 10 million generations, 

and all of 17 parameters were resolved with ESS values above 500. The tree file has been 

deposited on TreeBase.org and genbank accession numbers are in Table 5-1. The nexus 

file is also available on TreeBase and contains evolutionary models of nucleotide 

evolution inferred from jmodeltest and the AIC.  

Breeding System, Pollination System, and Pollen Limitation 

Within 24 hours of pollination, pollen tubes growing from the SC flowers or the 

SI flowers that received outcross pollen had entered the style. There was no obvious 

evidence of late-acting self-incompatibility mechanisms such as pollen tubes that extend 

down the style, but then turn and grow upward, or swollen pollen tube tips. Breeding 

system and pollination system differed among species (Table 5-3. and Fig. 5-2.). The 

Oenothera species all had morning bee pollination systems, but varied with regards to 

what percentage of the pollen flow different pollinator functional groups were 

responsible for (Fig. 5-2). A full set of pollinator species and their average visitation rate 

and pollen load are listed in Table 5-5. Oenothera species did not differ significantly in 
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their degree of pollen limitation, L (F = 1.146, P = 0.34) and there was no association 

between breeding system and pollen limitation (F = 1.42, P = 0.24).  

For O. riparia, in both field and greenhouse experiments (n = 22 pairs), no pollen 

tubes germinated from self-pollen, and 50% of the pollen tubes from cross-pollen reached 

the ovary. We determined that O. riparia has a self-incompatible breeding system and is 

pollinated by large bees (82% of pollen flow) and megachilids (13%) in 185 

observations. Oenothera riparia had an L value of 0.371 ± 0.116 (n = 14 pairs), 

indicating that it is not pollen limited in these populations. 

In both field and greenhouse experiments of O. sessilis (n = 20 pairs), there was 

no significant difference between the number of pollen tubes reaching the ovary for cross 

or self-pollen (P = 0.17 for field experiments, P = 0.23 for greenhouse experiments). 

Therefore, O. sessilis has a self-compatible breeding system. This species is not visited 

by pollinators (n = 137 observations), and is designated as autogamous. We calculated an 

L value of 0.3208 ± 0.137 (n = 10 pairs), indicating that these populations are not pollen 

limited.  

For O. perennis, in both field and greenhouse experiments (n = 18 pairs), there 

was no significant difference between the number of tubes reaching the ovary for cross 

vs. self pollen (P = 0.34 for field experiments, P = 0.28 for greenhouse experiments), 

indicating that it has a self-compatible breeding system. Oenothera perennis (n = 236 

observations) is pollinated by small halictid bees (76% of pollen flow), bumble bees 

(16%), and medium bees (8%). All six insect pollinator species are listed in Supplemental 

Table 5-5. Oenothera perennis has an L value of 0.0465 ± 0.145 (n = 9 pairs), indicating 

that these populations are not pollen limited.  
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For O. pilosella, in both field and greenhouse experiments (n=19 pairs), no pollen 

tubes germinated from self-pollen, and 42% of the pollen tubes from the cross-pollen 

reached the ovary. This pattern indicates that Oenothera pilosella has a self-incompatible 

breeding system. Through 185 observations we determined that O. pilosella is pollinated 

by medium bees (53% of pollen flow), megachilids (36.7%), and small halictids (8.9%). 

All seven species of pollinator are listed in Supplemental Table 1. Oenothera pilosella 

has an L value of 0.3167 ± 0.099 (n = 11 pairs), indicating that it is not pollen limited.  

Oenothera spachiana is already known to be autogamous (Straley, 1977). 

Oenothera fruticosa has a self-incompatible breeding system and is described as having a 

bee pollination system and is most likely very similar to O. pilosella (Straley, 1977). 

Independent Origins of Self-Compatibility 

 The phylogenetic reconstruction depicted in Figure 5-1 is highly resolved and 

shows three independent origins of SC. There are five potential patterns in the evolution 

of self-compatibility in this clade, and the consensus tree clearly supports three 

independent origins. Topological hypothesis testing provides the statistical framework for 

evaluating this hypothesis by refuting all possible topological configurations that are 

different from the consensus tree pattern of three independent origins. All four alternative 

topologies were refuted (Table 5-4) according to a log-likelihood ratio test at an α = 0.05, 

and according to Bayes Factors with values greater than 50 in favor of three independent 

origins over all possible alternatives (values of greater than 10 are considered decisive).  

 

Discussion 

Phylogenetic structure of Oenothera sect. Kneiffia 
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  Our study examined all six species of Oenothera in section Kneiffia (Fig. 5-4). 

The Oenothera section Kneiffia consensus tree (Fig. 5-1) is the first phylogenetic tree 

based on molecular data that includes all species in this section. The relationships among 

these Oenothera species were previously based on morphological and cytological data. 

This study clarifies the evolutionary relationships within section Kneiffia, and has several 

striking changes from previous assumptions and work.  Straley (1977) presented a 

hypothetical tree based on morphology and cytological data.  He recognized two major 

subsections in Kneiffia, one containing the small flowered annual O. linifolia, and a 

second subsection that contained O. pilosella, O. perennis, O. fruticosa, and O. 

spachiana, all of which are perennials with larger yellow flowers. Although Straley 

(1977) included the species O. linifolia as a basal species in Kneiffia, molecular 

phylogenetic studies in Oenothera showed it to be outside of section Kneiffia in a closely-

related section Peniophyllum (Levin et al., 2004). Our analyses agree with Levin (2004), 

and place O. linifolia outside of section Kneiffia (Chapter 4). Our study agrees with 

Straley and places the self-compatible annual O. spachiana as basal in section Kneiffia.  

Within the second subsection, Straley grouped the self-incompatible O. fruticosa 

and O. pilosella together, and as sister to O. perennis. He does not include the self-

incompatible O. riparia, which Straley described as a subspecies of O. fruticosa (Straley, 

1982), but was recognized as a species in later studies (Wagner et al., 2007). It is a 

reasonable assumption to group all the self-incompatible species together a single 

transition to self-compatibility. However, with the inclusion of O. riparia and O. sessilis, 

the self-incompatible species no longer form a monophyletic group. We find a strong 
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posterior probability support (1.0) for a sister clade to the O. fruticosa and O. pilosella 

clade that contains the self-incompatible O. riparia and the self-compatible O. perennis.  

 Oenothera sessilis is a day flowering yellow perennial Oenothera hypothesized 

by Straley (1977) to be a subspecies of O. pilosella based on cytological and 

morphological data. Previously it was recognized and described as a species by Munz 

1965, called Oenothera sessilis, and earlier by Pennell 1919 as Kneiffia sessilis. Straley 

does recognize the distinct morphological differences in height and flower size between 

the two taxa, however, based on the same chromosome count (n = 28) and an incorrect 

determination that both taxa were self-incompatible; Straley placed O. sessilis as a 

subspecies of O. pilosella. However, our data show that in fact O. sessilis is not self-

incompatible. Our breeding system experiments confirm that O. sessilis is self-

compatible and may in fact be entirely autogamous. Our pollination studies did not 

document any insect visitors during the peak flowering season, yet O. sessilis achieved 

full seed set. Potential pollinators were present and active on other prairie species co-

blooming with O. sessilis. Based on these current field studies, breeding experiments, and 

molecular phylogenetic data, there has been a revision of the nomenclature and O. sessilis 

(previously O. pilosella ssp. sessilis) is now recognized at the species level (personal 

communication P. Raven). Our phylogenetic reconstruction supports O. sessilis as sister 

to the clade containing O. riparia and O. perennis as sister taxa, and O. fruticosa and O. 

pilosella as sister taxa (Figure 5-1).  

The classification of sect. Kneiffia is still unclear with regards to the subspecies of 

O. fruticosa. This species has been subject to numerous revisions and regrouping of taxa 

due to the wide range and morphological variation of this species. Wagner et al. (2007) 
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agree with the conservative approach taken by Straley (1977) and delineating two 

subspecies, O. fruticosa ssp. glauca and O. fruticosa ssp. fruticosa. In this study, we used 

O. fruticosa ssp. fruticosa and we did not address this issue. Further work is needed to 

determine the proper species status and placement of these taxa based on molecular data.  

Pollination Systems and Pollen Limitation 

 The Oenothera species we studied that used out-cross pollen were all bee and 

small fly pollinated, as has been previously noted for this section (Straley, 1977). 

However, this is the first study that closely examined the pollination systems of these 

species with details such as visitation rates, pollen loads, and stigma contact. We show 

that while all three use similar functional groups, the percentage of pollination due to 

each functional group varies among species. While the pollination systems of section 

Kneiffia are broadly similar, at a functional group and genus level, they are more 

specialized. We also show that O. perennis, previously described as autogamous, actually 

has a pollination system that consists of small and medium bees of the family Halictidae 

and the genus Bombus.  

A long-held hypothesis is that pollen limitation leads to the evolution of self-

compatible breeding systems in plants (Lloyd, 1979), and is reflected in the tendency for 

plant species that have reduced reproductive traits such as smaller flowers to be 

autogamous (Stebbins, 1974). Alternatively, plants that are SC may evolve reduced 

reproductive traits and tend to be pollen limited. However, we find in section Kneiffia of 

Oenothera, that there is no statistical correlation between breeding system and pollen 

limitation. None of the species we studied experienced significant pollen limitation, 

regardless of the breeding system (Fig. 5-3). While floral traits may correlate with 
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breeding system for the Oenothera, the functional pollination systems do not. Both of the 

self-compatible species have the smaller flowers and reduced size associated with self-

compatibility; however O. sessilis is completely autogamous, while O. perennis utilizes 

pollinators to set seed. The addition of cross pollen did have a larger effect on the two 

self-incompatible species, O. riparia and O. pilosella, but with such a small number of 

species being examined this result is only a trend. Broader sampling is needed to 

determine if the impact of pollen addition has a larger effect on self-incompatible species 

than self-compatible species.  

Breeding Systems and Transitions to Self-compatibility 

Our study verified the breeding system of O. pilosella as self-incompatible and O. 

perennis as self-compatible. We corrected previous incorrect assumptions and show O. 

sessilis to be self-compatible. We clarified that the breeding system of O. riparia is self-

incompatible. The topological tests clearly demonstrate exactly three transitions to self-

compatibility within section Kneiffia.  

 

  



122 
 

Table 5-1. Species, locations of samples, voucher numbers and accessions for DNA sequence data for the six species examined in this 

study. For each gene we indicate the source of the data with either the Genback accession number or as a species newly sequenced in 

this study (*). Data not obtained is indicated (-).  

 

Taxon Location Voucher ITS trnL-F rps16 ETS rbcl ndhF 

O. fruticosa Dane Co, WI WIS5025 AY271581 AY264569 AY267443 - AF495771 AF495794 

O. riparia Pendleton Co. NC Krakos 1017 * * * * * * 

O. perennis Middlesex Co., MA Krakos1010 * * * - * * 

O pilosella SE Washington Co. IL Krakos0821 * * * - * * 

O. spachiana Bienville Co., LA Thomas and Moreland 49150 - * * * * * 

O. sessilis Prairie Co., AR Krakos 1006 * * * - * * 
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Table 5-2. Primers used for six molecular markers. 

Locus Primer name Primer Sequence 5’ to 3’ Annealing Temperature Citation 

ITS ITS4 TCC TCC GCT TAT TGA TAT GC 47° C (Levin et al., 2004) 

 ITS5HP GGA AGG AGA AGT CGT AAC AAG G 47°  C  

trnL trnLf ATT TGA ACT GGT GAC ACG AG 50° C (Levin et al., 2004) 

 trnLc CGA AAT CGG TAG ACG CTA CG 50° C  

rps16 P1839 TCG GGA TCG CAC ATC AAT TGC AAC 55° C (Levin et al., 2004) 

 P1840 GTG GTA AAA AGC AAC GCG CGA CTT  55° C  

ETS ETS R2 AGA AGT CGG GGT TTG TTG C 50° C (Hoggard et al., 2004) 

 ETS F2 ACG ATC GGA TTC GTG ACC TA 50° C  

rbcL P1630 ATG TCA CCA CAA ACA GAG ACT AAA GC 53° C (Levin et al., 2003) 

 P1782 ATA CTT CAC AAG CAG CAG CTA GTT CC 53° C  

ndhF P1786 CCC CGA AAT ATT TGA GAC TTT CT 47°  C (Levin et al., 2003) 

 P1785 GTC TCA ACT GGG TTA TAT GAT G 47°  C  
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Table 5-3. Comparative rates of breeding system parameters for Oenothera species in hand pollination studies. Because there was no 

significant difference between the greenhouse and field population experiments, results from these locations are pooled for each 

species.  

 
Species Treatment Number of 

flowers 
Number of pollen 
grains on stigma 

Number of pollen tubes 
reaching ovary 

Percent of pollen tubes 
to reach plant ovary 

O. riparia Self 13 390.0 (± 256.44) 0 0 

 
Cross 16 452.0 (±370.57) 12.64 (±11.70) 33.52 (±24.01) 

O. pilosella Self 8 800.0 (±392.79) 0 0 

 
Cross 10 890.0 (±272.64) 8.1 (±4.65) 41.5 (±13.4) 

O. sessilis Self 20 279.65 (±189.92) 2.5 (± 2.76) 26.03 (± 29.22) 

 
Cross 20 325.7 (±165.66) 3.4 (±3.15) 39.79 (±33.07) 

O. perennis Self 9 477.78 (±83.33) 6.44 (±4.19) 26.31 (±19.87) 

 
Cross 9 522.22 (±84.22) 7.56 (±3.40) 36.35 (±23.61) 
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Table 5-4. Results of the topological hypothesis testing of the number of origins of self-

compatibility in section Kneiffia. The topology is listed as a single origin with all three 

SC species forming a clade, and the following two-origin scenarios in standard Newick 

format: Two Origins1: ((O. sessilis. O. perennis), O. spachiana); Two Origins2: ((O. 

perennis, O. spachiana), O. sessilis); Two Origins3: ((O. sessilis, O. spachiana), O. 

perennis). The results of the Bayes Factor tests are given (values greater than 10 are 

considered decisive) based on the harmonic Mean of the log-likelihoods of the two 

independent MrBayes runs, and the D-value for the log-likelihood ratio test are given 

based on the arithmetic mean of the log-likelihoods of the two runs (LnL), with asterisks 

denoting significance at an α = 0.001. The consensus topology without any topological 

constraints (†) represents three independent origins of SC, and is favored over all other 

alternative topologies. 

 

Topology LnL Harmonic Mean Bayes Factors D 

Single Origin  -9247 -9290 144 118* 

Two Origins1 -9211 -9239 42 46* 

Two Origins2 -9230 -9273 110 84* 

Two Origins3 -9219 -9264 92 62* 

Three Origins† -9188 -9218 - - 
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Table. 5-5. The visitation rate and average pollen load of pollinators to the Oenothera species. 

Species Insect Species Visitation Rate (visits/flower/20 min) Average Pollen Load 
O. riparia Bombus pennsylvanicus DeGeer (female) 0.089 120.00 

 
Xylocopa virginica Linn. (female) 0.098 108.50 

 
Megachile xylocopoides Say (female) 0.223 15.00 

 
Lassioglossum ssp.  0.062 14.00 

 
brown moth 0.054 6.00 

 
black moth 0.036 6.00 

O. pilosella Agapostemon virescens Fab. (female) 0.532 458.33 

 
Megachile montivaga Cresson (female) 0.389 418.33 

 
Lasioglossum versatum Robertson (female) 0.663 17.75 

 
Augochlorella purae  Smith. (female) 0.856 11.00 

 
Apis mellifera Linn. (female) 0.011 500.00 

 
dull brown moth 0.011 25.00 

 
Syrphidae sp.  0.151 1.25 

O. sessilis none na na 
O. perrenis Augochlorella aurata Smith. (female) 0.146 500.00 

 
Lasioglossum versatum Robertson (male) 0.250 268.18 

 
Bombus impatiens Cresson (female) 0.056 500.00 

 
Agapostemon virescens Fab. (female) 0.031 500.00 

 
Lasioglossum oceanicum CK II. (female) 0.031 5.00 

 
Syrphidae ssp. 0.170 0.10 
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Figure 5-1. Bayesian phylogenetic reconstructions from concatenated mixed model data 

set for genes ITS, ETS, rps16, trnL-F, rbcL, and nhdF. Self-incompatible species in bold, 

self-compatible species with an asterisk.  O. macrocarpa, O. brachycarpa, C. 

lavandulifolius, and C. serrulata are the outgroup species to section Kneiffia. 
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Figure 5-2. The major pollinator functional groups that account for 95% of pollen flow 

for Oenothera species. Oenothera sessilis is not listed because no pollinators were 

observed (see Results). 
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Figure 5-3. The mean degree of pollen limitation, L, ±SE for the Oenothera species based 

on supplement and control treatments tested at field sites. There are no significant 

differences either by species or by breeding system.  
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Figure 5-4. Photos of flowering Oenothera species: a. O. riparia b. O. sessilis c. O. 

spachiana d. O. perennis e. O. fruticosa f. O. pilosella. Photo credit: a.,b.,d.,f. K. N. 

Krakos; c. Charles Llewallen; e. G. L. Deeproot 
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Introduction 

"The rapid development as far as we can judge of all the higher plants within recent geological times is an 

abominable mystery."  

  ---Darwin, C.R., Letter to J.D. Hooker, July 22nd 1879. (Darwin and Seward, 1903) 

The angiosperms arose in the early Cretaceous, approximately 125 million years 

ago, and showed rapid diversification, such that every major flowering plant lineage is 

present in the fossil record within 10-12 million years thereafter (Crane et al., 1995; De 

Bodt et al., 2005). The origin and radiation of angiosperms is traditionally attributed in 

large part to co-evolutionary relationships between plants and their pollinators (Crepet et 

al., 2004; De Bodt et al., 2005; Grimaldi, 1999; Sapir and Armbruster, 2010), specifically 

the idea that reproductive specialization has repeatedly lead to speciation. However, 

previous studies have yielded conflicting results (Armbruster and Baldwin, 1998; 

Goldblatt et al., 1995) regarding the association between diverisification and pollinator 

specialization (citations). These conflicting results may be in part due to the inaccurate 

metrics of reproductive specialization. Two main reproductive traits involved are the 

pollination system, which includes both biotic and abiotic interactions (Waser et al., 

1996); and breeding system, which determines whether a plant species is self-compatible 

(SC) or self-incompatible (SI) (Baker, 1955; Barrett, 1998; Barrett, 2002a). These two 

systems, breeding and pollination, are assumed to correlate such that they promote 

outcrossing, while still maintaining reproductive assurance when necessary (Barrett, 

2002a; Barrett, 2003).However, the assumption that specialized pollination systems are a 

trait strongly associated with SI is not always supported (Barrett, 2003; Fenster and 

Marten-Rodriguez, 2007; Perez et al., 2009). For example, the radiation of Dalechampia 
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is attributed to pollination system shifts between resin collecting and pollen collecting 

bees. These are both very specialized pollination systems, and it would be expected that 

plants with these very specialized pollination systems would also be self-incompatible 

(SI). However, many species of Dalechampia with these specialized pollination systems 

are self-compatible (SC). (Armbruster, 1988; Armbruster, 1994). 

Pollination and breeding systems are evolutionarily labile and lineages frequently 

shift between character states (Fenster et al., 2004; Grant and Grant, 1965; Smith et al., 

2008b; Weller and Sakai, 1999; Whittall and Hodges, 2007). Shifts in reproductive traits 

may be a first step in reproductive isolation and subsequent speciation of a plant lineage 

(Fenster et al., 2004; Kay and Sargent, 2009b; Smith et al., 2008a; Van der Niet et al., 

2006; Weller and Sakai, 1999). Plant breeding systems shift uni-directionally from being 

SI to a state of being SC, and then may become autogamous or remain highly to 

moderately outcrossing (Charlesworth, 2006; Igic et al., 2006; Igic and Kohn, 2006), and 

are associated with speciation (Foxe et al., 2009; Theiss et al.; Theiss et al., 2010). 

Reversals from SC back to SI are thought to be impossible (Barrett, 2003; Igic and Kohn, 

2006) because of the genetic complexity of the SI systems. The most common transition 

for pollination systems is from specialist (a plant species with 1 or 2 pollinator species) to 

generalist (a plant species with 3 or more major pollinator species) or between alternative 

specialized pollinator groups (Armbruster and Baldwin, 1998; Fenster et al., 2004; 

Marten-Rodriguez et al., 2010; Tripp and Manos, 2008); however, a few studies 

document a shift from a generalized pollination system to a specialized one (Marten-

Rodriguez et al., 2010). Shifts in pollination systems can impact angiosperm speciation 

(Alcantara and Lohmann, 2010; Cozzolino and Widmer, 2005; Kay and Sargent, 2009b; 
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Sanderson and Donoghue, 1996). Grant and Grant (1965) hypothesized that repeated 

shifts in pollination system were key to the floral radiation of Polemoniaceae. Shifts in 

breeding system and/or pollination system are also associated with floral evolution 

(Anderson et al., 2002; Armbruster and Muchhala, 2009; Foxe et al., 2009; Perez et al., 

2009; Van der Niet et al., 2006; Whittall and Hodges, 2007).  

Floral reward traits, such as nectar and scent composition, play a key role in 

promoting specialization and may be indicative of specialized pollination systems 

(Raguso et al., 2007). These reproductive traits of angiosperms both promote out-crossing 

via pollinator-mediated selection (Goldblatt et al., 2001; Grimaldi, 1999; Stebbins, 1970), 

and limit self pollination to avoid the deleterious consequences of inbreeding (Barrett, 

2002b; Darwin, 1876; Holsinger, 1996; Yang and Hodges, 2010). For instance, flower 

size in Amsinckia correlates with the degree of outcrossing; the predominantly selfing A. 

vernicosa is very small-flowered compared to its sister taxon, A. furcata, which is large-

flowered and outcrossing (Schoen et al., 1996). Similarly, two autogamous species of 

Oenothera exhibited reduced investment in floral display, nectar, and scent, when 

compared to outcrossing congeneric species (Raguso et al., 2007). Conversely, the 

elaborate floral traits of Tacca chantrieri suggest a substantial investment in outcrossing 

by flies, yet the species is highly selfing (Zhang et al., 2005). The lack of precise 

correlation between floral traits and breeding system is a puzzle that perplexed Darwin 

(Darwin, 1877) and many others (Barrett, 2003; Barrett et al., 1996; Theiss et al., 2010; 

Yang and Hodges, 2010).  

To investigate the associations between pollination and breeding systems and 

floral traits, reproductive characters must be clearly defined. Pollination system must be 
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determined from detailed pollination ecology data, and not inferred from pollination 

syndromes, which do not have sufficient predictive power (Knapp, 2010; Mitchell et al., 

2009; Wilson et al., 2004). Correlations among the reproductive traits (pollination 

system, breeding system, and floral traits) may simply reflect the shared evolutionary 

history of a group and are not necessarily the product of selective forces. Therefore, a 

well-resolved phylogenetic tree is needed for comparative studies that can control for any 

shared evolutionary history (Freckleton, 2000; Machado and Lopes, 2004; Nosil and 

Mooers, 2005; Sanderson and Donoghue, 1996; Vamosi et al., 2003).  

Identifying transitions in floral traits allows us to determine when evolutionary 

changes took place in relation to the transitions in pollination and breeding system 

(Alcantara and Lohmann, 2010; Armbruster and Baldwin, 1998; DeWitt Smith, 2010). 

Previous studies in the evening primroses (genus Oenothera) suggested that shifts in 

reproductive traits played a key role in floral diversification and increased species 

richness (Raven, 1979). Here, we identify the phylogenetic placement and directionality 

of shifts in the reproductive traits (pollination system, breeding system, and floral reward 

traits) for 45 of the 50 species within a well-supported clade of Oenothera that includes 

sections Kneiffia, Paradoxus, Megapterium, Peniophyllum, and Gaura.  This allows us to 

address the following hypotheses: (1) Reproductive floral traits, breeding system and 

pollination system evolve independently of the evolutionary history in these Oenothera 

species; and (2) Floral traits, breeding system, and pollination system show strong 

patterns of correlated trait evolution. Finally, we discuss the possible association between 

reproductive trait lability and species richness.  

Methods/Materials 
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Study System 

 Onagraceae, specifically the genus Oenothera, is a model system for studying the 

evolution of flowering plant reproductive biology (Artz et al., 2010; Clinebell et al., 

2004; Evans et al., 2005; Hoch et al., 1993; Johnson, 2010; Moody-Weis and Heywood, 

2001; Raven, 1979; Raven, 1988; Theiss et al., 2010; Vilela et al., 2008; Wagner et al., 

2007). Our understanding of the phylogenetic relationships within section Oenothera has 

advanced due to recent molecular phylogenetic studies (Hoggard et al., 2004; Levin et al., 

2004; Levin et al., 2003; Wagner et al., 2007). The most notable change is that the once 

segregate genera Gaura, Calylophus and Stenisiphon now appear within a monophyletic 

Oenothera (Carr et al., 1990; Raven, 1988; Raven and Gregory, 1972). Furthermore, the 

diversity of pollination and breeding systems within Oenothera make it ideal for 

examining hypotheses regarding their character-state evolution and their effects on 

diversification. This study uses 45 of the 50 species in sections Kneiffia, Megapterium, 

Peniophyllum, Paradoxus and Gaura, which comprise a single well-supported clade 

within the genus Oenothera.  

The species of this clade have a broad geographic distribution throughout North 

America and Mexico in diverse habitats that range from sand dunes, prairie remnants and 

riparian areas (Raven, 1979; Raven and Gregory, 1972; Straley, 1977; Wagner et al., 

2007). These species exhibit a diversity of floral form that includes both diurnal and 

nocturnal flowering times, as well as a broad array of pollinators including the traditional 

pollinator associated with Oenothera, the hawkmoth. Oenothera also have species with 

pollination systems that include noctuid moth, antlion, bee, fly, wasp, butterfly (Raven 

and Gregory 1972, Straley 1977, Raven 1979, Nonnenmacher 1999, Moody-Weis 2001, 
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Clinebell et al. 2004, Krakos unpubl.). Twenty-three of the species sampled are SC, and 

at least three are fully autogamous. Bee-pollination is most likely the ancestral state to the 

family of Onagraceae, with hawkmoth pollination as a derived state that has arisen 

multiple times (Raven, 1979; Raven and Gregory, 1972) and is ancestral to section 

Oenothera. The subsections Gaura and Kneiffia are hypothesized to have clades with 

independent transitions back to bee-pollination (Raven, 1979; Raven and Gregory, 1972). 

Raven (1979) suggested repeated shifts to obligate selfing from bee, fly, noctuid and 

hawkmoth pollinated species. 

Phylogeny 

A well-supported phylogeny for these 45 Oenothera species recently clarified 

several relationships in this monophyletic group (Chapter 4), and we use this phylogeny 

for our comparative analyses. This phylogeny uses 2 nuclear gene regions, ITS and ETS, 

and 4 chloroplast genes, rps16, rbcL, ndhF, and trnL-F. We use the Bayesian 50% 

majority-rule consensus tree of 45 taxa for the analyses in this study (Fig. 6-1). In 

addition, we pruned the tree to the 26 taxa for which we have pollination specialization 

scores (Fig. 6-2). This second tree was used in analyses that included measurements 

pertaining to the level of specialization in a pollination system.  

Pollination Systems, Breeding Systems, and Floral Reward Traits 

Details of the level of pollination system specialization and the main pollinating 

functional groups were obtained from field studies as described in Chapter 2 and data on 

Oenothera pollination that has been collected and stored at the Missouri Botanical 

Garden, specifically the collections of R. Clinebell and D. Gregory and P. Raven. The 
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breeding systems for these Oenothera species are described in Chapter 3 and 4. For this 

study we described the following floral traits: shape, nectar presence, scent presence, 

floral tube length, corolla type, anthesis time, brightness, color, and if a species was a 

complex heterozygote (PTH, or permanent translocation heterozygote) (see Table 6-1). 

These traits were described in detail in Chapter 3. These data were compiled from 

greenhouse and field study measurements and from published records. The PTH species 

were determined from the literature and personal comm. with M. Johnson (Johnson et al., 

2009).  

Analyses 

Phylogenetic reconstruction using Bayesian methods were conducted in MrBayes 

v3.04 (Huelsenbeck et al., 2001; Ronquist and Huelsenbeck, 2003). We are interested in 

understanding the evolutionary history of breeding system, pollination system and floral 

trait characters, and any evidence for non-random combinations of characters. Examining 

character evolution without accounting for correlations among characters based on shared 

evolutionary history can introduce known biases (Felsenstein, 1985). Accordingly, we 

estimated the degree to which evolutionary history affected the distribution of pollination 

system and floral characters by estimating phylogenetic signal for each of the five 

characters listed in Table 6-2. We estimated lambda (λ) (Pagel, 1999) which is an 

estimate of phylogenetic signal where a λ of 0 means no phylogenetic signal and a λ of 1 

means strong phylogenetic signal. We estimated λ using the fitContinuous command in 

the Geiger module (Harmon et al., 2008) of R (R Core Development Team, 2009). We 

compared AICc scores to demonstrate that the estimate of lambda obtained was a better 

fit by comparing the AICc score of our estimate of lambda to the AICc score for a 



146 
 

lambda of 0, where a ΔAICc of greater than 4 is considered support for one model over 

another (Burnham and Anderson, 2002).  

Most characters showed strong phylogenetic signal, and thus we needed to 

account for phylogenetic history when estimating correlations among characters. 

Ancestral states for breeding system were inferred using the phylogeny generated above, 

where ancestral states at nodes were assumed to be SI unless that node comprised a clade 

of 100% SC species. This is necessary because breeding systems shift unidirectionally 

from SI to SC. We reconstructed ancestral states for discrete characters of pollination 

systems and the floral traits in Oenothera to identify the topological placement of 

transitions between states. The traits and their states are given in Table 6-1. We estimated 

ancestral states using stochastic character mapping as implemented in the program 

SIMMAP 1.5 (Bollback, 2006). The stochastic character mapping analyses were based on 

500 post burn-in trees sampled from the posterior distributions estimated in MrBayes 

(Chapter 4). This approach accounts for phylogenetic uncertainty in the reconstruction 

process. We conducted 20 realizations per tree for a total of 10,000 simulated character 

histories. Stochastic character mapping estimates ancestral states stochastically along 

branches based on given terminal states, a transition rate prior that for our purposes was 

based on rescaled branch lengths, and a bias parameter that was a flat prior. This method 

allows for mid-branch transitions rather than restricting transitions between states of a 

character to occur only at nodes. However, the ancestral state at a given node was 

determined by compiling 10,000 stochastic character maps and interpreting the 

proportion of maps for which a node was inferred to be in a given state. We recorded the 

states for nodes when the probability was above 0.75. Most of the nodes had values 
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above 0.90. This method also allows for investigation of the mean number and 

directionality of trait shifts, as well as the mean transition rate for all possible character 

changes summed across all stochastic reconstructions (Bollback, 2006; DeWitt Smith, 

2010; Huelsenbeck et al., 2003; Marten-Rodriguez et al., 2010).  We reconstructed the 

ancestral states for both a complete phylogeny of 45 taxa and the characters: pollination 

system, breeding system, and 9 floral traits, and again for subset of taxa corresponding to 

26 species and the following characters: specialized vs. generalized pollination systems 

and the 9 floral traits (Table 6-1). We used the smaller tree for investigating the 

relationship of generalist vs. specialist pollination systems to floral traits because we have 

detailed pollination data that included both visitation rate and pollen load analysis for 

these 26 taxa. We ensured that reconstructions for the pruned tree of 26 species did not 

differ in any way from states estimated for the full 45 species tree with respect to 

breeding system and pollination system and 9 floral traits (these are the characters for 

which data was available for all species). 

Stochastic character mapping was also used to estimate correlation among floral 

traits, pollination system, and breeding system. This approach uses the posterior 

probabilities from the stochastic mapping and samples the character histories across the 

trees to create a distribution that accounts for phylogenetic relatedness (Bollback, 2006). 

The association of two characters is the product of the frequency of those two characters. 

This approach has the benefit of being able to detect associations between characters 

even if an evolutionary transition is rare (Bollback, 2006; DeWitt Smith, 2010; 

Huelsenbeck et al., 2003; Marten-Rodriguez et al., 2010).  

Results 
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Phylogenetic Reconstructions 

Our results suggest that pollination system and floral traits are not independent of 

evolutionary history. The λ value for each of the floral traits showed statistically 

significant phylogenetic signal (Table 6-2). For some traits, flower shape, color, floral 

tube, orientation, and anthesis time, the signal was very strong. For the other traits, the 

signal was weaker, but still present. Breeding system is a trait that only shifts from SI to 

SC and therefore, each origin of SC is independent. The presence of a phylogenetic signal 

means that our further analyses need to account for phylogenetic history.  

Associated Character Evolution 

 Significant statistical associations between the dominant pollinator of the 

pollination system and the pollination traits are summarized in Table 6-3.  The D statistic 

is reported for all associations that were statistically significant (P < 0.05). Yellow flower 

color, long floral tubes, an upright orientation, and an actinomorphic floral shape were all 

significantly associated with hawkmoth pollination. White flower color, short floral 

tubes, a horizontal orientation, night anthesis, the presence of scent, the presence of 

nectar, a zygomorphic shape, and not being PTH are all significantly associated with 

moth pollination. The significant statistical associations between the pollination traits and 

whether a pollination system was generalist, specialist or not dependent on pollinators are 

summarized in Table 6-4. We find that a specialized pollination system is significantly 

associated with long floral tubes, an upright orientation, and zygomorphic floral shape. A 

generalized pollination system is significantly associated with white flower color, short 

floral tubes, a horizontal orientation, and an actinomorphic floral shape. Having no 



149 
 

pollinators or having a generalized pollination system both show a significant negative 

association with moth pollination.   

Evolution of floral characters and pollination systems 

For the full tree of 45 Oenothera species, we find for pollination system, the 

dominant pollinator group that is the ancestral state for the entire clade is hawkmoths 

(Fig. 6-3). Within this section, we find that the dominant pollinator group is a labile trait 

that transitions directionally away from hawkmoth pollination. Posterior transition 

expectations (mean) for pollination system transitions were: hawkmoth to moth (1.17), 

hawkmoth to bee (1.52), hawkmoth to no pollinators (1.12), and hawkmoth to bird (1.40). 

The posterior expectations for transitions between the more derived state pollination 

systems were: moth to bee (1.95), and moth to no pollinator (2.19). All other transitions 

between major pollinator groups had posterior expectations below 1.0. These results 

suggest that directional shifts away from hawkmoth pollination most commonly follow a 

pattern of hawkmoth to moth to bee, but that transitions also occur directly from 

hawkmoth to bee, to bird, to fly, or to no pollinator. The most common transition is moth-

pollinated to autogamy. The ancestral state for dominant pollinator at the base of 

subsection Gaura is moth pollination, with both bee pollination and autogamy as derived 

states within the clade. The ancestral state for dominant pollinator for subsection Kneiffia 

is autogamy, with bee pollination as a derived state developing within the subsection 

(Fig. 6-3). Bird pollination is the ancestral state for subsection Xanthocoryne.  

Breeding system is a highly labile trait that only transitions directionally from 

self-incompatible to self-compatible. By definition, the ancestral state for breeding 



150 
 

system is self-incompatibility with 13 transitions to self-compatibility within this clade 

(Chapter 4). These transitions do not occur in a concerted fashion with the transitions in 

pollination system, which shows a total of 10 transitions (Fig. 6-3). 

Our analyses show a high lability in the floral traits color, brightness, scent, floral 

tube length, and nectar (Table 6-5).  We combined the results for color and brightness 

because they showed a perfect correlation. Ancestral reconstructions for these traits 

indicate that the ancestral phenotype for this clade was a vivid yellow flower, with a short 

floral tube that had nectar but no scent. For color the posterior transition expectations 

(mean) were: yellow to white (1.99), yellow to pink (1.13), and white to pink (2.26). All 

other transitions had posterior expectations below 1.0. Ancestral trait reconstructions do 

show that one transition from yellow to red occurs at the base of subsection 

Xanthocoryne, but this is not a common transition. The ancestral flower at the base of 

subsection Gaura is yellow, with transitions to white and pink as derived states within the 

clade (Fig. 4). Posterior transition expectations (mean) for floral tube transitions were: 

short floral tube to long floral tube (6.8) and long floral tube to short floral tube (4.12). 

The transitions in floral tube did not occur consistently with transitions in any other trait.  

Posterior transition expectations (mean) for scent were: no scent to scent (11.54) and 

scent to no scent (9.68). Posterior transition expectations for nectar were: no nectar to 

nectar (5.10) and nectar to no nectar (12.3). These results indicate that the most common 

transitions are to gain scent and lose the presence of nectar (Table 6-5). These transitions 

did not correlate to transitions in pollinator type, breeding system, or other floral traits. 

For the floral traits orientation, anthesis, and shape our results show high lability, 

but that the shifts are directional in that they always shift from one specific state to 



151 
 

another, without reversals (Table 6-5). Ancestral reconstructions for these traits indicate 

that the ancestral flower for this clade was upright, actinomorphic and opened at night. 

Posterior transition expectations for these traits were: upright to horizontal (2.09), night 

opening to day-opening (9.83), and actinomorphic to zygomorphic (2.12). The floral 

traits of orientation and shape each had only one shift in the phylogenetic tree. The 

transition to horizontal flowers is basal to subsection Gaura, while the transition to 

zygomorphic flowers occurs within subsection Gaura (Fig. 6-4). There are four 

transitions to day-opening flowers, one is basal to subsection Kneiffia, and the second is 

in subsection Gaura, as the ancestral state of the taxa O. demareei and O. lindheimeri. 

The third transition to day anthesis subtends a clade that contains the subsections 

Hartmannia and Gauropsis. The final transition is O. linifolia, which is a single species 

shift to day anthesis.  The transitions in orientation, anthesis, and shape did not occur in a 

concerted fashion with pollination system, breeding system or other floral traits.  

For the tree of 26 Oenothera species, stochastic mapping of specialization of 

pollination systems indicated a high lability for this trait (Table 6-5). Posterior 

expectations (mean) for specialization were: generalist to specialist (4.10), specialist to 

generalist (7.41), generalist to no pollinators (3.03), and specialist to no pollinators 

(4.54). While the most common transition was from specialist to generalist pollination 

systems, we do see a reversal back to a specialist pollination system within subsection 

Gaura (Fig. 6-5) at the base of the clade that includes O. demareei, O. lindheimeri, and 

O. coloradoensis. ssp. neomexicana. The transitions in specialization do not occur in 

concert with breeding system, pollinator group, or the other floral traits. 
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For the full tree of 45 species, ancestral trait reconstruction was not clear on the 

dominant pollinator for the clade consisting of both subsections Gaura and Kneiffia. The 

ancestral state for the pollination system of these two subsections was either moth 

pollination or autogamy; however this ambiguity does not impact the total number of 

transitions in the phylogenetic tree. If the ancestral state was moth, then a transition to 

autogamy happened on the branch to subsection Kneiffia, and if the ancestral state was 

autogamy, then the transition to moth pollination happened on the branch Gaura. Either 

scenario results in a total of 10 transitions in pollination system for this clade.  

For the tree of 26 species, ancestral trait reconstructions were not clear for 

dominant pollinator and specialization of pollination system for the clade that 

encompasses O. curtiflora and O. glaucifolia (Fig. 6-5). The ancestral state of the 

dominant pollinator group for this clade was either bee or no pollinator, and with an 

ancestral state of fly or moth at the node immediately preceding this clade. Likewise, for 

specialization the ancestral state for this clade is either generalist or specialist, and the 

immediate ancestor for these two Oenothera is either generalist pollinated or has no 

pollinator. In both cases, the state of the trait does not alter the overall number of 

transitions.  

Overall, our results to do not show that transitions in any floral traits are 

consistently occurring in a concerted fashion.  However, our results do show the order of 

the transitions and thus reveal which floral traits occurred prior and post a transition in 

pollination system (Fig. 6-4). Flowers had short floral tubes and scent prior to the 

transition to moth pollination; however the shift from yellow to white flowers happened 

after this transition. The transition from actinomorphic shape to zygomorphic flowers 
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also occurs after the transition to moth pollination. In subsection Gaura, the shift to bee 

pollination occurs in concert with a shift to pink, day opening flowers, but not in tandem 

with a shift in scent. While in subsection Kneiffia, the transition to day opening occurs 

with a transition to no pollinators, and a later transition to bee pollination occurs in 

tandem with a transition to having scent. There is no transition in color for subsection 

Kneiffia. A transition to bee pollination in subsection Hartmannia does not occur in 

concert with a shift in any floral trait, but is preceded by a transition to day opening and 

long floral tubes for the clade that encompasses both Hartmannia and Gauropsis. The 

transition to bird pollination in subsection Xanthocoryne happens concurrent with a shift 

to short tubes, but the transition to red colored flowers occurs at an earlier ancestral node 

that encompasses the subsections Xanthocoryne and Leucocoryne and is not associated 

with a pollinator shift. O. linifolia transitions to fly pollination and day opening at the 

same time.  

In the tree with 26 Oenothera species, we see 9 transitions in specialization of 

pollination system and 8 transitions in dominant pollinator group; however these 

transitions are not correlated. The transitions in specialization do not correlate to breeding 

system or other floral traits. A transition back to specialist pollination occurs prior to the 

transition to bee pollination in subsection Gaura, however this transition in specialist 

pollination is not seen as an exclusive precursor to other bee pollination transitions (Fig. 

6-5).  

Discussion 
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In a very general way, we can identify two morphological “types” of flowers in 

this phylogeny (Fig. 6-6). The first is the traditional “Oenothera-type” flower, which is 

most commonly yellow and actinomorphic. The second is what we refer to as the 

“Gaura-type”, which has a white, zygomorphic flower. Until the most recent 

phylogenetic hypotheses for these species, subsection Gaura was recognized at the genus 

level (Levin et al., 2004; Wagner et al., 2007).  The distinct Gaura-type inflorescence 

shape is easily recognized. Oenothera anomala, which is the basal species in subsection 

Gaura, is clearly a transitional species between the two types, with its yellow color, but 

the beginnings of the Gaura-type shape. It is dominantly moth pollinated; however, hawk 

moths have been seen occasionally visiting the flower (personal comm. P. Raven). This is 

consistent with its place as a transitional species between the traditional actinomorphic 

Oenothera-type flower and the derived zygomorphic, white “Gaura-type” flower. This 

very distinctive transition in flower type within section Oenothera prompted the 

questions for this study.  

Breeding and Pollination systems  

We first focused on whether breeding system and pollination system traits were 

correlated in the phylogenetic tree. Breeding system and pollination system have usually 

been studied separately, despite the relationship between these two aspects of plant 

reproductive biology (but see Fenster and Marten-Rodriguez, 2007; Perez et al., 2009). 

The need for studies of plant reproductive studies to address these two systems 

simultaneously has been emphasized (Barrett, 2003; Fenster and Marten-Rodriguez, 

2007; Holsinger, 1996). Our results showed no association between these two systems. In 

addition, ancestral trait reconstructions show that these two systems do not transition in a 
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concerted fashion. These results provide strong statistical support that the evolutionary 

correlation between breeding system and pollination system may be under different and 

unlinked selective forces (Armbruster, 1994; Fenster and Marten-Rodriguez, 2007).  

Evolution of floral characters and pollination systems 

 The correlation between a suite of floral traits and a pollinator has been tested by 

numerous studies assessing the pollinator syndrome concept (Consiglio and Bourne, 

2001; Fenster et al., 2004; Hingston and Mc Quillan, 2000; Ley and Classen-Bockhoff, 

2009; Muchhala, 2006; Ollerton et al., 2009; Reynolds et al., 2009). When assessing this 

relationship, there are two important factors that could lead to erroneous conclusions. 

First, the pollination system must be assessed from detailed pollination ecology data that 

takes into account not only visitation, but also pollen flow (Chapter 2). This is to ensure 

correct identification of the major pollinators, and not mistake visitors as pollinators, and 

is a need that has been recently discussed (Fenster et al., 2004; Johnson and Steiner, 

2000; Tripp and Manos, 2008). In this study, we determined the pollination system from 

detailed pollination ecology that was collected for these Oenothera species (Chapter 2). 

Second, these correlations may need to be addressed in a phylogenetic context (Smith, 

2010). A test for phylogenetic signal of a trait can elucidate whether this context is 

necessary to avoid misinterpretation of the data. If a strong signal is present, and 

correlations are conducted without controlling for phylogenetic history, the results could 

be skewed, and erroneously suggest that a tight correlation exists between certain traits, 

when in reality, the correlation is entirely due to ancestry. This could also lead to 

improper conclusions about pollination syndromes. In our study we tested for 

phylogenetic signal in the floral traits being addressed. Our results found a phylogenetic 
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signal, ranging from weak to very strong, for all of the traits (Table 6-2). Therefore, we 

tested for associations between these floral traits and the pollination systems in a 

phylogenetic context. When evolutionary history was taken into account, we found that 

the associations between pollinator and floral traits do not give sufficient information to 

support the presence of clear pollination syndromes (Table 6-3). Bee, Bird, and Fly 

pollinator groups do not have significant associations with enough traits to be 

meaningful.  Moth pollination is associated with zygomorphic, white flowers with short 

tubes and hawkmoth with actinomorphic, yellow flowers with long tubes, but these traits 

are not exclusive to these pollination groups. For instance, all the taxa in section Kneiffia 

have yellow, actinomorphic flowers, but none of them are pollinated by hawkmoths.  

A specific floral trait repeatedly evolving across a phylogeny in a correlated 

fashion with a pollination system is used as evidence for adaptation (Pagel, 1999). 

Several studies have looked at how changes in a specific floral trait play a key role in the 

diversification process (Kadereit and von Hagen, 2003; Smith et al., 2008b; von Hagen, 

2007; von Hagen and Kadereit, 2003; Whittall and Hodges, 2007), as an example of the 

idea of “key innovations,” which is a morphological character that is responsible for 

higher diversification rates (Maynard and Szathmary, 1995). The ancestral state 

reconstructions of the pollination systems and reproductive reward traits in Oenothera 

give a much more detailed picture of the evolutionary history and possible selective 

pressures involved (Fig. 6-4). The identification of when specific shifts took place in 

pollination system, breeding system, and floral traits allows us to establish an order for 

significant evolutionary changes. 
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For many species, color seems to be a major selective pressure on the interaction 

of a plant with its pollinator. For example, in Ruellia, authors found that a shift from red 

to purple flowers was concurrent with a switch from hummingbird pollination to bee and 

butterfly pollination and that a shift from purple to white coincided with a shift to moth 

pollination (Tripp and Manos, 2008).  In Iochroma (Solanaceae), authors found that a 

shift in flower color was a preadaptation for subsequent pollinator system shifts (Smith et 

al., 2008b). In this study, we find that floral color is not always correlated with a 

pollination system. The major transition from hawkmoth pollination to moth pollination 

occurs prior to the shift from yellow to white flowers (Fig. 4). However, the shift to bird 

pollination in section Xanthocoryne happens in a concerted fashion with a shift to red 

flowers. The shift to bee pollination in section Kneiffia is not associated with any shift in 

color, but the shift to bee pollination in section Gaura coincides with a shift to pink 

flowers. Therefore, we cannot make a judgment that color is a selective pressure (Baum 

and Larson, 1991).   

Floral traits that relate to a pollinator’s ability to reach a reward such as nectar 

have also been focused on as a driving reason for pollinator shifts and floral 

diversification (Johnson et al., 1998). For example, in Dianthus, butterflies with shorter 

proboscides correlated to shifts in the floral tube length (Bloch and Erhardt, 2008). And 

Whittall and Hodges (2007) found that shifts towards pollinators with longer tongues 

were correlated to increased nectar spur length in Aquilegia.  Our results indicate that a 

shift to longer floral tubes occurs after the transition to hawkmoth pollination, which 

gives evidence that pollinators are a selective pressure for longer floral tubes. Subsequent 

reversals back to short tubes, such as in O. linifolia, correlate with a transition to fly or 



158 
 

small bee pollination.  This same concerted shift in pollination and floral tube length is 

seen in subsection Hartmannia where a shift to bird pollination is concurrent with a shift 

to short floral tubes. However, the major transition from hawkmoth pollination system to 

moth pollination occurs without a transition in floral tube length. This finding indicates 

that hawkmoths select for long floral tubes, but moths do not necessarily select for short 

or long floral tubes.  

Specialization and Pollination systems 

The role of specialization in pollination systems and angiosperm evolution has 

been the subject of many recent studies (Fenster et al., 2004; Johnson and Steiner, 2000; 

Larsson, 2005; Marten-Rodriguez et al., 2010; Muchhala, 2006; Nosil and Mooers, 2005; 

Tripp and Manos, 2008; Weller and Sakai, 1999). Our study included detailed pollination 

ecology data, based on visitation rate and pollen load analysis, in order to accurately 

characterize the specialization of the pollination systems. The use of functional groups 

(Fenster et al., 2004), provides a more accurate measurement of specialization of the 

pollination systems. We were specifically testing for associations between pollinator 

specialization and breeding system, dominant pollination group, and specific floral traits. 

Historically, the association of specialization in pollination system with breeding system 

has not been found to have a clear pattern (Fenster and Marten-Rodriguez, 2007). Here 

we evaluate this problem by simultaneously taking into account evolutionary history and 

precise measurements of pollination biology. Our results also do not find a clear 

association between specialization of pollination system and breeding system. With 

regards to an association between specialization and dominant pollinator group, for all of 

the pollinator groups, except moth, our results do not show an association. For example, 
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bee pollination in subsection Kneiffia does appear to correlate to specialist pollination; 

however, the transition to specialist pollination happened much earlier in the clade and 

encompasses both moth and hawkmoth pollination systems (Fig. 6-5). In addition, O. 

glaucifolia is bee-pollinated, but has a generalist pollination system. There is a negative 

correlation between generalist pollination and moth pollination, which suggests that 

species that are predominantly pollinated by moths are not generalist pollinated. This 

makes sense because although multiple species of moth visit Oenothera, they are usually 

grouped as one functional group defined by size and tongue length.  

Pollination syndromes, or the concept that floral traits, or suites of floral traits 

correspond to a specific pollinator (Faegri and van der Pilj, 1979), are inherent to the idea 

of specialization in pollination systems. There are many differing opinions and results 

regarding the pollination syndrome concept, and its reality in nature (Fenster et al., 2004). 

Our results do not show a clear association of a suite of floral traits with specialist or 

generalist pollination systems (Table 6-4). However, for these Oenothera species, we do 

see an association between generalist pollination and flowers that are white, horizontal, 

actinomorphic, and with short floral tubes.  In addition, we see an association between 

specialist pollination systems and upright, zygomorphic flowers with long floral tubes. 

Long floral tubes are a trait that excludes most pollinator groups, and is expected to be 

associated with specialization. Zygomorphy is a floral trait that has been associated with 

specialization of pollination systems in other species (Fenster et al., 2004; Fenster and 

Marten-Rodriguez, 2007).  

Transitions in pollination system have occurred most often between specialist 

systems (Kay and Sargent, 2009a; Whittall and Hodges, 2007; Wilson et al., 2007), and 
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from generalist to specialist (Thomson and Wilson, 2008; Tripp and Manos, 2008), with 

limited examples of reversals back to a specialized pollination system from a generalized 

pollination system (Marten-Rodriguez et al., 2010). Our data most often show a transition 

towards specialization, or that the level of specialization is maintained when a transition 

to a new dominant pollinator occurs. However, we do add another example of a shift to 

generalist pollination followed by a reversal back to a specialist pollination system (Fig. 

6-5). What is striking is that the clade in which the reversal to specialist pollination 

occurs contains two transitions to two different pollinator groups. This is in agreement 

with our result that finds no association between a specific pollinator group and having a 

specialist pollination system.  

It is not well understood what prompts a shift in pollination system (Campbell, 

2008), but one compelling argument is that transitions happen when the plant habitat 

alters in a way that affects pollinator service (Kay and Sargent, 2009b). Shifts between 

pollinators or use of multiple pollinator taxa can provide reproductive assurance for a 

plant species. The floral traits of a plant species may reflect adaptation for a particular 

type of pollinator, yet the plant species may still utilize multiple pollinator taxa as a bet-

hedging strategy. For instance, the evening-opening, hawkmoth pollinated Oenothera 

macrocarpa is also pollinated by bees in the early morning (Moody-Weis and Heywood, 

2001; Nonnenmacher, 1999).  

Breeding System Lability and Species Richness 

The role of pollinators is central to the radiation of angiosperms (Brown, 2002; 

Solds et al., 2008), and recent studies have focused specifically on how transitions in 
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pollination systems influence plant diversification (Campbell, 2008; DeWitt Smith, 2010; 

Kay and Sargent, 2009b). The shifts in pollination systems are thought to affect rates of 

angiosperm speciation (Cozzolino and Widmer, 2005; Sanderson and Donoghue, 1996; 

Smith et al., 2011). Transitions toward more specialized pollination systems have been 

shown to correlate with increased species richness (Armbruster and Muchhala, 2009; 

Schiestl and Schlater, 2009). While we did not test the effect of pollination system 

directly on diversification rate, our results do not show a correlation between a 

pollination system, specialization, or a specific floral trait, but do suggest that the high 

lability of a trait is associated with higher species richness in Oenothera evolution. 

However, it is most likely the lability of breeding system that influences species richness 

the most. We look at the example of the high number of annual species to illustrate this 

concept. 

The hypothesis that breeding system and life history are associated predicts that a 

high number of annual plants would be self-compatible (Barrett et al., 1996), because 

annuals have only one season of reproduction, and SC would provide reproductive 

assurance. Although it is an expected pattern seen in other species (Barrett, 2010b), these 

45 Oenothera species show no association between breeding system and life history. 

Many of these Oenothera are annual species that can be either SC or SI, and several of 

the perennial species are SC.  However, this Oenothera clade does have a high number of 

transitions to SC, and breeding system is one of the key traits of annual plants that is 

associated with their high rate of speciation (Barrett, 2010b). Clades with numerous 

transitions to SC, are by definition highly labile for this trait, because it is a directional 

transition without the ability to transition back to SI (Igic et al., 2006). Therefore, annual 
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plants have highly labile breeding systems and transition with more frequency to SC than 

perennial plants. Perennial plants have a higher association with SI breeding systems, and 

this is considered one of the reasons for the disparity in species numbers between the two 

groups (Barrett, 2010b; Barrett et al., 1996). The higher number of species in the annual 

plants, compared to the perennials is driven by the lability of breeding system. In this 

Oenothera clade, the high lability of breeding system could lead to increased rates of 

diversification. In comparison to other lineages of the same age and distribution, but that 

are not associated with as many transitions to SC, we would expect to see fewer number 

of species. As more studies define the breeding system of species with well-resolved 

phylogenies, this can be tested further. It might not be the specific state of a trait that is 

important to diversification, but rather, the ability to transition between different states.  

Conclusions 

In conclusion, stochastic mapping of multiple floral traits and pollination system 

show that even within this clade of 45 species, the interactions between plants and their 

pollinators are complex and diverse. The set of circumstances that lead to shifts in 

pollination system, breeding system and morphological diversification vary for each 

clade. There is no one trait exerting selective pressure on the plant or the pollinators that 

is responsible for the evolutionary patterns and transitions in these Oenothera. The 

placement of floral trait transitions with regards to pollinator shifts suggests selective 

pressures in floral traits that are predictable and follow transitions to novel dominant 

pollinator groups, rather than a change in pollination system. We speculate that the 

lability of breeding system, rather than the frequency of specific breeding system traits, is 

consistent with higher levels of lineage diversification of these Oenothera. Our next step 
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will be to test for an association between specialization and diversification rates in this 

phylogenetic tree. An analysis that simultaneously addresses diversification rates and 

character evolution (e.g, Binary State Speciation and Extinction models:(Maddison et al., 

2007; Smith, 2010), could be used to test the effect of floral traits, breeding system and 

pollination system on diversification rates (Kay and Sargent, 2009b; Smith, 2010).  
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Tables 

Table 6-1. The nine floral traits, and the reproductive systems, and the character states for 

each that were used in the phylogenetic analyses for both the full phylogenetic tree of all 

45 Oenothera species and the trimmed tree of 26 Oenothera species.  

Reproductive Systems and Floral Traits 

Major Pollinator Group Breeding System 
       Moth        Self-compatible 
       Bee        Self-incompatible 
       Bird Specialization  
       Fly        Generalist 
       Hawkmoth        Specialist 
       None        No Pollinators 
Color at Anthesis Time of Anthesis 
       Yellow        Day 
       White        Night 
       Red Scent 
       Pink        Present 
 Brightness        Absent 
       Vivid Shape 
       Drab        Actinomorphic 
Floral Tube        Zygomorphic 
       Short Nectar 
       Long        Present 
Orientation        Absent 
       Upright PTH 
       Horizontal        Present 
         Absent 
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Table 6-2. Estimation of the phylogenetic signal (λ) conducted in SIMMAP 1.0 

(Bollback, 2006) for all reproductive systems and floral traits.  

Character Signal Estimate of Signal (λ) 
 Breeding System No* na 
 Major Pollinator Yes 0.998 
 Dual Pollination Yes 0.472 
 Color Yes 1 
 Brightness Yes 1 
 Scent Yes 0.974 
 Floral Tube Yes 1 
 Orientation Yes 1 
 Anthesis Yes 1 
 Shape Yes 1 
 Nectar Yes 0.995 
 PTH Yes 0.579 
 * Breeding system is excluded from these results because a 

distribution of the two character states is is not possible given the 
rules of directional transitions for self-compatibility in plants. 
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Table 6-3. The statistic D for tests of association between the main pollinator functional 

groups and the floral traits generated by SIMMAP 1.0 (Bollback, 2006). Associations for 

all P-values less than 0.05 are reported. Negative associations are indicated by a minus 

sign, ns means there is no significant association between the two groups.  

  D-value 
  Hawkmoth Moth Bee Bird Fly None 
Color 

           Yellow 0.045 -0.072 ns ns ns ns 
     White -0.068 0.117 ns ns ns -0.013 
     Red ns ns ns ns ns ns 
     Pink ns -0.03 ns ns ns ns 
Floral Tube 

    
ns ns 

     Short -0.071 0.052 ns ns ns ns 
     Long 0.071 -0.052 ns ns ns ns 
Orientation 

           Upright 0.1 -0.142 ns ns 0.01 0.01 
     Horizontal -0.1 0.142 ns ns -0.01 -0.01 
Anthesis 

           Day ns -0.062 0.039 0.02 ns ns 
     Night ns 0.062 -0.039 -0.02 ns ns 
Scent 

           Present ns 0.038 ns ns ns ns 
     Absent ns -0.038 ns ns ns ns 
Shape 

           Actinomorphic 0.066 -0.108 ns ns ns ns 
     Zygomorphic -0.066 0.108 ns ns ns ns 
Nectar 

           Present ns 0.041 ns ns ns ns 
     Absent ns -0.041 ns ns ns ns 
PTH 

           Present ns -0.027 ns ns ns ns 
     Absent ns 0.027 ns ns ns ns 
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Table  6-4. The statistic D for tests of association between the pollination system 

specialization state and the dominant pollinator or the floral traits conducted in SIMMAP 

1.0 (Bollback, 2006). Associations for all P-values less than 0.05are reported. Negative 

associations are indicated by a minus sign, ns means there is no significant association 

between the two groups.  

  D- value 
  Specialist Generalist None 
Color 

        Yellow ns -0.022 ns 
     White ns 0.021 ns 
     Pink ns ns ns 
Floral Tube 

        Short ns 0.033 ns 
     Long 0.025 ns ns 
Orientation 

        Upright 0.011 -0.019 ns 
     Horizontal -0.011 0.019 ns 
Shape 

        Actinomorphic -0.022 0.021 ns 
     Zygomorphic 0.022 -0.021 ns 
Main Pollinator 

        Hawkmoth ns ns ns 
     Moth ns -0.019 -0.011 
     Bee ns ns ns 
     Bird ns ns ns 
     Fly ns ns ns 
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Table 6-5. A summary of the key reproductive trait character state transitions as generated in SIMMAP 1.0 (Bollback, 2006).   

Trait Lability Pattern 
Transition Rate  

(Posterior Expectations) 
Major Pollinator directional Hawkmoth > Moth > Bee 2.91 
Breeding System na SI > SC 16.09 
Pollination Specialization high Specialist > Generalist 7.41 

  
Generalist > Specialist 4.1 

  
Specialist > No Pollinator 4.54 

  
Generalist > No Pollinator 3.03 

Color high Yellow > White  1.99 

  
White > Pink 2.66 

  
Yellow > Pink 1.13 

Scent high No scent > Scent 11.54 

  
Scent > No Scent 9.68 

Floral Tube high Short > Long 6.8 

  
Long > Short 4.12 

Orientation directional Upright > Horizontal 2.09 
Anthesis directional Night > Day 9.83 
Shape directional Actinomorphic > Zygomorphic 2.12 
Nectar high Nectar > No nectar 12.3 

  
No nectar > Nectar 5.1 

PTH na No PTH > PTH 8.9 
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Figures 

Figure  6-1. Bayesian phylogenetic reconstructions of 45 Oenothera species from 

concatenated mixed model data set for genes ITS, ETS, rps16, trnL-F, rbcL, and ndhF 

(Chapter 4).  Numbers above the branches indicate posterior probabilities for branch 

support.  
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Figure  6-2. Bayesian phylogenetic reconstructions from concatenated mixed model data 

set for genes ITS, ETS, rps16, trnL-F, rbcL, and ndhF, 26 Oenothera species. 
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Figure  6-3. A comparison of the evolution of the pollination and breeding systems of 45 Oenothera species under Bayesian stochastic 

character mapping. On the left is pollination system and on the right is breeding system. Transitions between character states are 

indicated by black vertical bars.  
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Figure 6-4.  A summary of the evolution of the timing of key points of transition for 

reproductive traits as determined by stochastic character mapping. Pollination system is 

indicated by color changes along the branches. The character states in the box are those 

of the ancestor of the clade as determined by the stochastic character mapping. The point 

of transition for the floral traits, as inferred from the ancestral trait reconstructions are 

indicated with arrows and labels. 
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Figure 6-5. A comparison of the evolution of timing of transitions in pollination system 
and level of specialization under Bayesian stochastic character mapping using the 26 
Oenothera taxa phylogenetic tree. On the right is the specialization of the pollination 
system and on the left in the main pollinator group. Transitions between character states 
are indicated black vertical bars. 
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Figure 6-6.  Representative taxa of the two morphologically distinct types of Oenothera 

within the clade. A. The “Gaura” type is represented by O. demareei. B. The traditional 

“Oenothera” type is represented by O. pilosella photo credits: K. N. Krakos. 

 

 

Figure 6-7. Taxa showing transitional floral traits between the two types of Oenothera 

within the clade. A. O. anomala photo credits: W. Wagner B. O. arida photo credits: K. 

N. Krakos 
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The goal of this work is to describe the relationship between pollination and 

breeding system in Oenothera, with an integration of both ecological and phylogenetic 

approaches. First, I collected detailed data describing the pollination systems, breeding 

systems, and floral traits associated with pollinator rewards; and second I determined the 

phylogenetic structure, evolutionary history and relationships among these species. 

Finally, in that phylogenetic context, I examined the timing and position of transitions in 

the reproductive traits and how these traits are associated with pollination and breeding 

systems. My results confirm that plant-pollinator interactions play an important role in 

the diversification of floral form, but also offer new insights regarding the specialization 

of pollination systems, the predictive power of pollination syndromes, and how the 

lability of pollination and breeding systems impacts the evolution of Oenothera. My 

results also clarified phylogenetic relationships in the genus Oenothera, and provided the 

first phylogenetic tree for subsection Kneiffia.  

One of the major themes in pollination biology is generalization and 

specialization in pollination systems (Waser and Ollerton, 2006). Floral trait evolution 

has long been attributed to the co-evolution of plants with their animal pollinators (Kay 

and Sargent, 2009). This evolutionary history suggests that plant-pollinator interactions 

are highly specialized (Fenster et al., 2004); however, in the last two decades research has 

shown that the pollination ecology of most plants is highly generalized (Ollerton and 

Coulthard, 2009; Waser et al., 1996). My goal was to address this apparent paradox by 

using detailed measurements of the Oenothera plant-pollinator interactions to show that 

visitation alone does not accurately describe the specialization of a pollination system. 

My results did show that visitation alone highly overestimated the number of pollinators, 
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but it also highlighted that visitation and pollination are not necessarily correlated. This 

was an unexpected result and highly relevant to how future studies interpret and draw 

inferences from visitation data. My pollination ecology work also agreed with the work 

of Fenster (Fenster et al., 2004), who also found that when pollinators were placed into 

functional groups, most pollination systems used only one or two pollinator groups.  

Another major approach in understanding the role of specialization in pollination 

systems is to re-examine the concept of ”pollination syndromes” and look at how these 

interactions are affecting broader evolutionary patterns. My goal was to evaluate the 

predictive power of pollination syndromes by comparing the predicted pollinators with 

the observed pollinators. My results agreed with recent work by Ollerton (2009), in that I 

also found pollination syndromes were not a reliable substitute for determining a plant’s 

pollination system. In addition, I evaluated the accuracy of the current methods of 

determining pollination syndromes, and found that these methods were inadequate for 

these Oenothera. While floral measurements alone may be enough to delineate 

pollination groups for some species, this work highlights the need to address that 

assumption carefully.  

One of the primary taxonomic revisions resulting from this work relates to the 

subsection Kneiffia. These results provide the first phylogenetic tree for subsection 

Kneiffia, and clarifies relationships of these species, which have not been directly 

addressed since the work by Straley (Straley, 1977). My work found two new results 

pertaining to this group. First, based on molecular data and the new information about its 

reproductive biology, the taxon known currently as Oenothera pilosella subsp. sessilis 

(Pennell) Straley is in the process of being reclassified as a separate species, Oenothera 
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sessilis (Pennell) Munz (Munz, 1965). Second, the phylogenetic data showed a hundred 

percent support for O. riparia and O. perennis as sister taxa, and for O. fruticosa and O. 

pilosella as sister taxa. This is in contrast to Straley’s hypothesis that the self –

incompatible species would all group together. My results show at least two independent 

transitions to self-compatibility.  

The new phylogeny provides greater insights and clarity to the relationships of 

these 45 Oenothera in Subclade B.  Many of the relationships among taxa that are 

suggested by earlier studies (Hoggard et al., 2004; Levin et al., 2004), now, with this 

broader taxonomic sampling, are stronger. Sections Megapterium, Kneiffia, and Gaura 

are all monophyletic, with all species included. Although section Hartmannia was not 

fully sampled, the taxa included did form a strongly supported clade.  Within subsection 

Gaura, O. suffulta and O. hexandra both consist of two subspecies that fail to group 

together in the phylogeny. Our results suggest that O. suffulta ssp. nealleyi and O. 

hexandra ssp gracilis, based on both molecular data and reproductive traits, need to be 

taxonomically reassessed. The breeding system data verified the compatibility of several 

of the Oenothera, and gave new information for several species. The results demonstrate 

the lability of breeding system in this clade, and in accordance with previous studies 

(Raven, 1979; Raven, 1988), also shows that sister taxa can differ in breeding system. 

Finally, this work examined the patterns of correlated trait evolution among the 

pollination systems, breeding systems, and floral traits within this clade of 45 Oenothera 

species. Breeding system and pollination system were not associated for these taxa, and 

did not transition between character states in a concerted fashion. In addition, no one 

floral trait was responsible for the transitions in pollination system; rather, the 
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interactions between the plant species and their pollinators are complex. Floral trait 

transitions within these Oenothera are sometimes in response to a pollinator group, and 

sometimes unaffected by a transition in pollinator system. The floral traits that shift after 

a transition in pollination system are most likely experiencing selective pressure to a new 

dominant pollinator group, rather than selective pressure to shift to a different pollination 

system. These results highlight the importance of order and timing of transitions in floral 

traits and pollination system to understanding the evolutionary history of these 

Oenothera.  

Future Work 

My pollination ecology work was a “snapshot” approach, in that we usually had 

only one blooming season per species, and certainly multiple seasons would give a more 

complete picture of the stochasticity of the pollination systems. Future work will now 

look at the pollination systems across a species range and for multiple years in order to 

assess the variation of the pollination systems in time and space. I would also suggest that 

future pollination ecology studies focus on subsection Hartmannia. These taxa have not 

had as focused a pollination study as other Oenothera species, and our understanding of 

the evolutionary history of their floral traits is incomplete.  

A more complete sampling of sections Hartmannia, Leucocoryne, and 

Xanthocoryne is still needed to clarify the relationships of these clades. In this clade, 

there are many subspecies that we did not include in this study. The six markers used for 

the phylogenetic reconstructions yielded strong results; however, new markers should be 

developed. This would be especially useful in clarifying the subspecies’ evolutionary 
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relationships within this clade. In particular, the many subspecies of O. fruticosa and O. 

macrocarpa need to be included in a phylogenetic study, as well as an assessment of the 

subspecies range. It is unclear which of the subspecies for these two species should still 

be recognized. However, O. hexandra ssp. hexandra and O. hexandra ssp. gracilis, most 

likely will not group together, even with additional markers, and are potentially an 

example of convergent evolution on trimery.  

I suggest the next step is to test for an association between specialization and 

diversification rates in this phylogenetic tree. A BiSSE analysis (Binary State Speciation 

and Extinction models:(Maddison et al., 2007; Smith, 2010), which describes the 

association of a trait with rates of diversification, could be used to test the effect of floral 

traits, breeding system and pollination system on diversification rates (Kay and Sargent, 

2009; Smith, 2010).  
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APPENDIX A: SUPPLEMENTARY MATERIAL 

Tables 

Supplemental Table 2-1. A summary of the 144 records from the literature search that 

were used to characterize pollination data collection. (see electronic file) 

Supplemental Table 2-2. A summary of all the pollinator taxa for each of the 26 

Oenothera.  (see electronic file) 

Supplemental Table 3-1. Matrix for 10 Idealized Pollination Syndromes defined by 37 

floral traits for Oenothera (see electronic file) 

Supplemental Table 3-2. A matrix of the 37 floral traits x 10 idealized syndrome 

combinations used to generate the idealized syndrome phenotype space. (see electronic 

file) 

Supplemental Table 6-1. The ancestral trait reconstructions for all 45 Oenothera species 

conducted in SIMMAP. Sites are as follows: 1. Breeding system, 2. Major pollinator 

group, 3. Dual pollination, 4. Color, 5. Brightness, 6. Scent, 7. Floral tube length, 8. 

Orientation, 9. Time of anthesis, 10. Flower shape, 11. Nectar, 12. PTH. The character 

states for each trait are listed in the first column. (see electronic file) 

Supplemental Table 6-2. The ancestral trait reconstructions for the 26 Oenothera species 

in the smaller phylogenetic tree conducted in SIMMAP. Sites are as follows: 1. 

Specialization in the pollination system, 2. Breeding system, 3. Major pollinator group, 4. 

Dual pollination, 5. Color, 6. Brightness, 7. Scent, 8. Floral tube length, 9. Orientation, 
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10.  Time of anthesis, 11. Shape, 12. Nectar, 13. PTH. The character states for each trait 

are listed in the first column. (see electronic file) 

Supplemental. Table 6-3. Transition rates for all reproductive traits generated in 

SIMMAP for both the full phylogenetic tree and the smaller 26 taxa phylogenetic tree. 

(see electronic file) 
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Figures 

Supplemental Figure 4-1. Bayesian phylogenetic reconstructions for genes ITS, ETS, 

rps16, trnL-F, rbcL, and nadH. Bayesian phylogenetic reconstruction for all four 

cholorplast genes concatenated. Numbers above nodes indicate Bayesian posterior 

probability values. a. ITS, b. ETS, c. rps16, d. trnL-F, e. rbcL, f. ndhF, e. Chloroplast 

phylogenetic tree. 

 

a. ITS 
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b. ETS 
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c. rps16 
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d. trnL-F 
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e. rbcL 
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f. ndhF 
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g. Concatenated chloroplast gene tree (rps16, rbcL, trnL-F, ndhF) 
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