Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-92-35

1992-08-01

Gesture System for a Graph Editor

Burak Muammer Taysi

This thesis investigates a process of designing a gesture system for a simple graphical editor
on a pen-based computer. The graphical editor, named Box and Arrow Editor, was developed to
test the designed gestures. The results of the testing and the evaluation of the principles used
to formulate the gestures are presented. The design process covers issues of application of
principles to gesture design, elimination of all menus, user evaluations and recognition
problems.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Taysi, Burak Muammer, "Gesture System for a Graph Editor" Report Number: WUCS-92-35 (1992). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/598

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/598?utm_source=openscholarship.wustl.edu%2Fcse_research%2F598&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Gesture System for a Graph Editor

Burak M. Taysi

WUCS-92-35

August 1992

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130-4899

A thesis presented to the Sever Institute of Washington University in partial
Julfillment of the requirements for the degree of Master of Science.

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

GESTURE SYSTEM FOR A GRAPH EDITOR

by

Burak M. Taysi

Prepared under the direction of Professor T. D. Kimura

A thesis presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of
MASTER OF SCIENCE

August, 1992

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY

ABSTRACT

GESTURE SYSTEM FOR A GRAPH EDITOR

by Burak Muammer Taysi

ADVISOR: Professor T.D. Kimura

August, 1992

Saint Louis, Missouri

This thesis investigates a process of designing a gesture system for a simple
graphical editor on a pen-based computer. The graphical editor, named Box and Arrow
Editor, was developed to test the designed gestures. The results of the testing and the
evaluation of the principles used to formulate the gestures are presented. The design
process covers issues of application of principles to gesture design, elimination of all

menus, user evaluations and recognition problems.

TABLE OF CONTENTS

CHAPTERS

1. INTRODUCTION

2. BACKGROUND

3. BOX AND ARROW EDITOR
4. GESTURE SYSTEM FOR BAE
5. IMPLEMENTATION

6. EVALUATION

7. CONCLUSION

8. ACKNOWLEDGEMENTS

9. BIBLIOGRAPHY

10. VITA

i

Page

14
17
42
33
62
64
65
71

LIST OF FIGURES

FIGURES Page
1. The Move Gesture 2
2. Deleting in GEdit a) individual b) group 9
3. Different Gesture Sets used in GDP 10
4. Pen Windows Gestures 12
5. PenPoint Gestures 13
6. Sample Box-graph 15
7. BAE Commands and Gestures 20
8. Open Command Window 24
9. SaveAs Command Window 26
10. Close Command Window (with Save) 26
11. Close Command Window (without Save) 26
12. The Duplicate Command 28
13. Grid Cornmand Window 31
14. Align Left Command 33
15. Align Horizontal Command 34
16. Lombard-NeXT Hardware Connection 43
17. Software Architecture 44
18. Screen Layout for BAE 47
19, Recognition Process ‘ 48
20. Sample Gesture (Paste) 48
21. Grid Features 50
22. Energy Features 50
23. Gestures Inputted by Kids 56
24. The ’box’ gesture entered by a Child 56
25. The ’paste’ gesture entered by a Child 57

26. The °2 Headed Arrow’ (normal) gesture inputted by a Child 57

iii

TABLES
1. Description of Types
2. Draw Commands

3. Test Results

LIST OF TABLES
Page
14
45
54

iv

Short Title: Gesture System for Graph Editor Taysi, M.S. 1992

1. Introduction

The research on pen based computing began in the mid 1960’s with the
development of Rand and Sylvania tablets [1,2], and has seen significant development
in the late 1980’s into 1990’s. Referred to as both the Paper-Like Interface [3]! and
Silicon Paper Technology [4], the advantages and possible uses for this type of
computing have been under investigation for some time. The pen computer brings with
it a new way of interacting with the computer, namely handwriting and gestures. A
gesture is a motion which conveys meaning; examples are conducting music, sign
language and sports signals, such as the ones in baseball [44]. An example of a gesture
system in a two dimensional form would be proof-readers marks which are used to

convey commands to the writer about needed changes.

This research concentrates on the use of ’gestures’ as inputs to computers
(specifically pen computers) to represent a specific command. "’ Gesture’ refers to both
the resulting visual form and the temporal characteristics of the drawing process" [9].
The growing interest in pen computers has brought the study of gestures to the forefront

as an effective means to express commands to the computer.

Gestures have the power to specify the operand and the operation simultaneously
with a single stroke, replacing the multiple step selection and execution of a command
by the mouse in the window/menu based traditional user interface. A stroke is defined
to be the pen input from pen down to pen up. Here the terms ’pen up’ and *pen down’
signify the status of the pen with the tablet; if in contact then the pen is *down’;
otherwise the pen is ’up’, and the pen input is the coordinates of the pen on the tablet

when the pen is down.

The move’ gesture for a graph editor, shown in Figure 1 [39], is a good example of
this powerful interaction technique. With a single stroke the user is able to identify the

object and then specify the new target location with the end point. When a point in a

Ithe Paper-Like Interface is a trademark of IBM Corporation.

gesture, like the end point of the *move’ gesture, carries a special meaning, it is said to
be a hot point. Hot points are one of the special features of gestures that makes it both a

powerful user interface and difficult to recognize.

Hot Point

Figure 1. The Move Gesture

Any research that deals with communications between humans and computers fall
under the category of User Interface research. Gestures are means of communication
between humans and computer, and a study of gestures is a part of a new research area
of what we call Pen User Interface. As the use of gestures becomes more common, we
expect to see more complex gesture systems. With the increase in complexity, the
design of such systems becomes more difficult. As a user interface tool, gestures should
be easy to remember for humans, and easy to be recognized by computers. The designer
needs to address both the needs of the user and the incorporation of recognizer’s

strengths into the gesture design.

This problem brings up some important research issues in dealing with gestures.
One of them is formulating design principles for gesture systems. There are common
sense guidelines that are used to generate gestures, like ease of use, rememberability and
simplicity. However, there has not been any investigation into application of these
principles to a pen computer gesture system. In this thesis we conducted this
investigation. We show how each of these principles were applied in the gesture design

phase, and report, in the evaluation section, on what changes needed to be made to

3

effectively use these principles. We report on the problems encountered and how they
were dealt with., If an effective principle for designing gestures for pen computers is
formulated, then it could be applied to many new pen computer applications. Two such

applications are discussed below.

A specific area that will be effected with this new user interface will be the area of
visual programming languages [36]. Since pen-based computers represent a new
dimension in computer and user interaction, the visual languages that are designed for
such systems have to be aware of the difference in the interface characteristics [35] of
the pen-based computers. Visual languages for pen computers, such as Hyperflow [34],
will be using gestures as the main tool of interaction between the programmer and the
computer. Hyperflow is an extension of a visual programming language, Show and Tell
[12], which is based on the mouse/windows user interface. As in Show and Tell,
Hyperflow syntax will be based on the use of boxes and arrows, boxes representing

processes, and arrows representing data flow between processes.

Another use of this method will be to obtain gestures as a user interface for children
on a pen-based computer. Kumon Machine [45] is a prototype pen-based computer, that
will be used to teach mathematics to children between pre-school and 12th grade. The
interface between the Kumon machine and the children will involve the use of gestures,

handwriting, drawing and keyboarding.

We conducted a preliminary investigation into designing gesture systems for pen-
based applications, by implementing a simple graph editor, called Box and Arrow
Editor, whose commands are represented by gestures instead of menu items. The
investigation involved building a taxonomy from the existing gesture systems, a study of
the gesture recognizer, designing of the gestures, and finally evaluating the designed

gestures,

Chapter 2 provides a background for this area of research. It highlights some of the
current gesture systems being used and tested. It also looks at some of the work that has

been performed in the area of gesture recognition.

Chapter 3 introduces the Box and Arrow Editor (BAE). The purpose of the Editor
is outlined, along with formal definitions of the objects and operations supported by

BAE. Finally the problem of designing a gesture syntax for this system is stated.

Chapter 4 explains the requirement specifications for gesture design. The gesture

syntax is then developed using these specifications.

Chapter 5 reports the implementation of BAE. It covers hardware and software
architecture, a description of the gesture recognizer used, along with information on

gesture data collection and training.

Chapter 6 evaluates the system. The results of the tests are given. It reports on how
the gestures satisfied the requirements specifications for gestures. The results of the
investigation are summarized, We also give an explanation of the recognizer’s strengths
and weaknesses in its recognition of gestures, and describe better techniques of

reporting the average recognition rate for a better analysis of recognizers.

Finally Chapter 7 gives the conclusion including possible future work.

2. Background
2.1, Earlier Studies

With the latest surge of technical improvements in tablets and increased interest in
pen-based computers, the research into the feasibility of gestures as an effective human
computer interface has also increased. Earlier studies on gestures confirmed that there
has been a high inter-user consistency with the use of gestures for a particular operation
[5,6,7,8], especially in the area of editing. Other studies that dealt with direct
manipulation, defined in [9], also saw the plausibleness of gestures as a good technique
for direct manipulation [10]. These and other research such as [11,12] showed the
potential of gestures over keyboard and mouse as an effective interaction tool. The
power of the gesture is more realized when dealing with tasks that use a combination of

both text and graphics.

Earlier studies also established the terminology to describe gestures. The functional
elements of gestures were stated by [13] as being operations, scopes, targets, literals,
and modifiers. The act of selecting one or more objects to be manipulated is called
scoping. Target indication simply refers to the specification of location of interest.
Operations are the actions that the gestures perform. Literals and modifiers are
handwriting used to add or replace text and used as parameters to operations,
respectively. For example if a month is crossed out and the new month written over it,
the writing is a literal, but if text is selected and the letter ’u’ is written for upper casing
the selection, then the 'u’ is a modifier. The same paper also details how a single stroke
of a gesture has many functional elements, and the difficulty this presents to the
recognizers. The issues of contextual help and problems with determining closure were
also brought up. Closure represents an event which signifies the end of a command.
The return or enter key is an explicit closure event for many applications that use a
keyboard interface. The problem with closure arises when there are multiple commands

that are identical except that one has an additional final event, like an additional stroke.

2.2. Recognition

An important issue when dealing with gestures are their recognition. Character and
gesture recognition need different approaches. Gestures use hot points, changing sizes
and changing shapes to convey meaning. The approaches taken in character
recognition, described in the next section, do not address these special issues effectively.
Even though some principles of character recognition can be used to design a gesture
recognizer, it has to be different from character recognizer. Some of the latest gesture

recognizers are detailed later.
2.2.1, Character Recognition

Many studies have been made for character recognition. In handwriting, elastic
matching has had good success [14,15,16]. Even with all the improvements in the tablet
technology, studies confirm that surface difference and the parallax problem (the
appearance of electronic ink away from the tip of the stylus) are still contributing to
badly written inputs and causing problems for recognition systems [17,18]. These
studies conclude that more hardware support is needed to improve the recognizers.
Other studies improved on elastic matching, by using different techniques, such as
recognize-then-segment recognition [19]. The recognize-then-segment recognition first
classifies the strokes as they are inputted, generates character hypotheses, then uses
these hypotheses to estimate the optimal character sequence for each word. Another
technique is recognizers that decompose a character-match distance into the sum of
stroke-match distances and stroke-relationship terms [20]. Character-match distance
refers to the difference between the character and the prototype. Stroke-match distances
refers to the difference in strokes in character and strokes in the prototypes. Stroke
relationship refers to the ordering of the strokes in characters. For example, A’ would
be made up of three strokes °/° "\’ and ’-’, in that order. There have even been studies
that help teach the users the weaknesses of the recognizers so that the users adopt their

writing for better recognition]21].

In the application program MEADOW, which is designed to help with math
problem solutions, new issues about pen-based computing were discovered when the
system was tested with children ranging from 6 to 11 years old [24]. This study pointed
out that with children stroke-based recognition algorithms were not reliable since
children this young had not yet developed a consistent method for writing characters.
There has been no research into how these latest recognizers are doing with children as

their targeted user.

The use of the neural networks as a new character recognition technique is also
getting good results. With the initial success of backpropagation learning [4,25], more
research has started in this neural network approach. Although not much has been done
in the use of this technique toward recognition of gestures, some limited results can be

seen in this thesis,

There are other approaches to character recognition, like adaptive recognizers.
Adaptive recognizers refer to a class of recognizers that are able to update their
prototypes in order to recognize new inputs. Such systems suffer from a stability-
plasticity dilemma formulated by [46], which pointed out that when Neural Networks
learn new things, they forget what they had learned before. Two current studies that try
to solve this problem are Supervised Competitive Learning systems. One uses
Backpropagation Networks for its learning modules [37] , discussed in detail later, and
the other Fuzzy Sets as its learning modules [47]. The early results of this new system

are encouraging.
2.2.2. Gesture Recognition

The above mentioned systems do well in character recognition, cursive script
recognition and character-like gestures [22]. However, other recognition methods are
needed for non-character-like gestures, such as delete gesture that can differ in size,
rotation and stroke order. One such method was discussed in [23], which used

directions and change of directions to recognize previously unrecognizable gestures.

The latest recognizer by IBM uses a new approach to gesture recognition,
Lipscomb’s recognizer [31], uses a combination of angle filtering with multi-scale
recognition. The multiple scales are the different angles set for the filtering. The input
gestures first goes through an input filter to smooth and reduce the number of points.
The results of the input filter go through the angle filter, then are tested against the
prototypes for a match. If there is no match, the angle filtering and matching is tried
with a larger angle. This is repeated up to five times to find a match. If no match is
found, a new prototype is created. The results of the recognizer are promising for
angular gestures like
the summation sign () but takes considerable training for curvy gestures like the g-clef

ES

2.3. Related Applications

Researchers at IBM [26] investigated the use of pen-based computer (a tablet and
stylus attached to a PC) in education. They used the computer to teach children how to
write and had a cross word puzzle game. The same group at IBM later added a few
more applications to test gestures and their use. The latest applications being a
spreadsheet program, a simple sketching program, a mathematical formatter and a music
score creator[3]. Their results showed that people found gestures easier and more
natural than the mouse and keyboard. Another gesture application was a medical
charting application [27] designed to help nurses with charting, which showed that there
is a place for gestic interfaces as a user friendly and easy to learn system. Artkit [28] is
a toolkit that provides gestures as a class of interaction technique along with dragging
and snapping. All these applications used a limited number of gestures with very simple
applications, and no information about the gestures themselves were provided. All of

these early works, simply report that gestures are a successful interaction technique.

Another recent gesture system is GEdit [29,30,39], where the single purpose of

using gestures is for creating and manipulating simple objects. This application has

9

three objects, the circle, the box and the triangle. The creation of each is achieved by
drawing a line on the screen. The system provides the user with a subdivided circular
menu when the pen is pressed down for a short interval of time. The direction of the
line is used to determine which object is created. The system has three gestures for
‘move’, "copy’ and ’delete’ to be used on individual objects or a group of objects.
Figure 2 shows the deletion of a single and a group of objects. The *'move’ command is
shown in Figure 1, and the copy is achieved by completing the move gesture by drawing
a’c’ at the end. GEdit is one of the few applications that is trying to learn more about
the human computer interaction by studying different interaction techniques including
the use of gestures. However, the small number of gestures used (three) will not give as

good an indication as this thesis hopes to report with a fully gesture driven system.

O
O A\

a) individual b) group

Figure 2. Deleting in GEdit

There are also trainable recognizers made specifically for gestures, e.g. Lipscomb’s
gesture recognizer [32] and Rubine’s gesture recognizer [33], explained below.
Lipscomb’s recognizer is used on IBM’s test pen computer platform with a spreadsheet
application. The recognizer allows the training of the gestures to be done interactively
using the stylus, but the hot point specification is still done using the keyboard
commands. The system is stated to be adequate for system builders, but still in too early
stages of development to be trained and used by end-users. IBM’s recognizer looks to
be a good recognizer, with good concepts at gesture recognition. However, because it is

still in its development stage, the effects of this recognizer with a large set of gestures is

10

not stated. The reports, for now, concentrate on the recognizers ability, rather than the
issues of gesture design and gesture evaluation. This recognizer, might be another good

alternate recognizer to test the gestures on in future studies.

Rubine’s recognizer, named GRANDMA, is used in an example application named
GDP, a gesture-based drawing program. Some of the GDP’s gestures are seen in Figure
3. The emphasis is on the recognition capability. The system is able to recognize 10-13
gestures at a time. There is no explanation on how the gestures in Figure 3 were
developed, or what guidelines were used. The system is implemented on X-windows
with the user using the mouse to simulate the pen. The left mouse button is used for
pen/down, pen/up command. This approach of using the mouse and the limited number
of gestures that can be tested simultaneously limits the testing of such a complex system
as we tested in this thesis, using GRANDMA as the recognizer. The draw application
GDP was mainly used to show the effective recognition capabilities of the recognizer
rather than testing out the usability and human interaction issues of the gestures

designed.

N

delete “insert ¢ gwapa \

' | spacesn
spacen . ol down
. jein move l\"‘p—/\
bigdelete swapB
oneé. two three four five

six seven eight nine zero

Figure 3. Different Gesture Sets used in GDP

The two commercially available pen computers employ gestures. They are the 286

based GO? prototype Computer (a.k.a. Lombard) by the GO Corporation [40], and

2GO is a trademark of GO Corporation.

11

PenWindows3 [41] software application by Microsoft* running under Windows on a
tablet. The gestures in PenWindows are few in number which helps in remembering,
but the recognition capability varies from very good in ’delete’ gesture to very bad for
’insert space’ gesture. The small number of gestures in PenWindows also implies that
the menu paradigm is still the main interaction tool for PenWindows. The gestures used

by PenWindows is shown in Figure 4.

The operating system, PenPoint, on the Lombard supports the use of gestures.
Most gestures in PenPoint represent the menu functions available on the system. See
Figure 5 for the PenPoint gestures. Some of them are based on the proofreaders marks
and are used to manipulate the text. The recognizer depends on stroke order and stroke
direction, along with positioning with respect to the base line and relative size to
surrounding text. Some of the gestures resemble each other, like *check’ and ’new
paragraph’, and some are not intuitive such as the "circle’ and the ’insert space’. The

large number of gestures makes them hard to remember [44].

Overall, neither one of the two commercial systems explained how they designed
their gestures. Both systems are concentrating on simplicity of the gestures but not
necessarily on intuitiveness of the gestures. As with the other applications mentioned
before, these two systems do not report how the gestures are accepted by the users, or
what principles were used to create them. In this thesis, we will not only go through the
process of how each gesture was designed, but also report on how the users responded to

each gesture.

3windows is a trademark of Microsoft Corporation.
4Microsoft is a trademark of Microsoft Corporation.
SPenPoint is a trademark of GO Corporation.

PEN WINDOWS BASIC GESTURES

Place lnsertion polat where you tap the pea Gp, This assumes you are not
entering text. (See pediod below.)

Select the information under the gesture,

Cut selected text and place i ofi the Clipboand.

Copy selected toxt and place it on the Clipboard.

Paste the Clipbeard’s contents at the top point of the gesture.

X1 2] R

Undo the previous action,

Delete and select information under the gesture,

Extend selection to Include information betwesn the botom point of the
gesture and the previous selection.

v’ Correct word and display i1 in the writing window.

L. Insert space w the right of the gesture,

— Insert new line after the gesture.,

r Insert tab to the right of the gesture,

1 Delete character o the Ieft of the starting point of the gesture.,

O Insert period While entering text, bat before recognition, 2 tap (doty Is s

petiod. A dot with 2 circle arcund it inserts a solitary period at the insertion

«or circle dot, point. -

Figure 4. Pen Windows Gestures

12

Bracket left or righe sclects a word
" to its fight or &t A second
3548 bracker oends the selection.

i Caret opens 3 writing pad or

creates 1 document.

S Check displays options for

¥ selected text or objects.

% Circle opens an edit pad.

: % Cross our deletes selected wexcor
k. abjeces.

39 Flick up, down |, lefi—, or

W right — scrolls a line to the
comesponding edge of the screen.
Double flick{ in any direction 1o
scroll as far as you can.

" Insert space adds a blank space in
¥ textor boxed pads.

3 Pigrail deletes 2 characrer in text
or boxed pads.

& Press scts an insertion poine or

* gets text or an object ready o
move. Diag the marquee to the
new location; it foats in case you

need to tum pages.

Tap selects tor or chooses menus
- and options.

. Tap press gets text or an objec

b ready to be copied. Drag the
double marques to the new
location; it floats in case you need
{0 urn pages.

©3981 GO Corportion. AL rghti racved,

Gestures

Gcstur%é}fin the
Title. Wl ine
s, Borders hides the document's

» borders and menus. To show
them again, check mp o in the
documenr and use the Acoess
option sheet.

i Cork margin shows or hides the
> cork margin,

:. Double t2p floars a document.
243 Toalso works en bs and page
numbers in the Table of Coneents.

3% Find scarches fora specific word
. ina document or sclection, and
llows you to replace it.

k ! Flick up or dowm vo 200m or
reduce che page view, if that
prefercnoe is sct.

Menu shows or hides the
document’s menu line.

Tab 2dds or deletes a documnent's

Noecbook cab,

Caret tap opens large
t embedded writing pad.

* Cirdle tap creates 2 hyperdink
- bugon.

. Doauble t2p selecs 2 word.
Triple tap ;¥ selecrs 2 sentenee.

: Insert character opens 2 box for
% adding a single leczer,

- % Line through deleres charzarers in
2 edic 2nd writing pads.

New paragraph insers 2
- panagraph break.

. ofaword.

X ﬂ‘_ Spell checks the spelling of 2
*. document or selection.

v Upper case formars tom as all

)

il
Dogiiiment

Bold makes words or selocred texx
bold.

Italics X inalicizes chem,
Undedine U underines them.
Normal N makes them plain.

Double caret creates an
embedded document.

Quadruple tap i sclocs a
pargraph.

Proof displays aftemate spellings

Serarch out deletes words. I abso
warks in writing and edic pads,
and in fields.

capits.

Initial caps — capitalizes words.
Lower case — formats text
without capitals.

POEV#H4-00007

Figure 5. PenPoint Gestures

14

3. Box and Arrow Editor (BAE)

BAE was designed as a test-bed for a preliminary investigation into designing
gesture systems for pen computer applications. The Editor serves no practical purpose,
except that it provides us the insights and experiences of developing a box-arrow based

visual programming language for pen computers, such as Hyperflow.

Through this editor, one creates and manipulates box-graphs. A box-graph is a two
dimensional, single page display on a computer screen that contains boxes and arrows.

The user can save into and later retrieve these box-graphs from a file.

3.1. Objects

The box is a rectangle of any size. There are three types of boxes with outlines of
different widths and patterns. See Table 1 for the types. The arrow is defined as a
straight line of any length. The arrow, like the box, has the same three types of outline.
The arrow can also have one, two, or no arrow heads to define directionality. The arrow
head is defined as a fixed sized, solid triangle, pointing in the same direction as the axis
of the arrow. Since this editor is specifically designed as a test bed for gesture design
and has no practical use, it has no semantic content, except for the ’duplicate’ command,
which examines the enclosed area of the targeted box for any arrow end points. Any
size and any placement of boxes and arrows are allowed. Figure 6 shows a sample box-

graph. The choice of objects to be included in BAE is motivated by the design of

Hyperflow.
Table 1. Description of Object Types
Type Box Arrow
Normal —’
Thick 1 | —
Dashed E':::j s '>

15

Boves and Amows

"""”"”’
’

i
[}

/

&"’lll’ll"’

L O O g g O g o & 3 & W J

/
/
¢

[/
[} /
/ !
’ /
’ #
’ #
] f
) f

P B O & W 0 g |’

Figure 6. Sample box-graph

3.3. BAE Commands

BAE users manipulate box-graphs through a sequence of commands. Each
command is represented by a gesture. BAE’s 43 commands can be separated into five
groups; documentation, editing, formatting, tools, and miscellanecous. A detailed
explanation of each command is given in Chapter 4 when their gestures are described.

A brief description of each group follows:

16

Documentation commands enable the user to open and save the box-graphs into

files. In addition, he/she can create new box-graph files and close the existing file.

Editing commands perform the standard edit functions, such as cut, duplicate, copy,
paste, and move, on the selected objects. Another command from the editing group, is
the ability to select objects. The user can select or deselect objects one at a time or all of

them at once.

Formatting commands deal with the manipulation of selected objects. From
resizing objects to alignment on the screen. The formatting command allows the user to
turn on the grid for more precise resizing. The rest of the formatting commands deal
with the displaying of the Grid Panel, showing and hiding of the grid on the screen.
Using the Grid Panel the user can change the width and height of the grids spacing. The
alignment commands are: align top, align bottom, align left, align right align vertical,

and align horizontal.
Tools commands are used for the creating the boxes and the arrows.

Miscellaneous commands are ’quit’, to exit the program, and ’help’, which gives

the user a list of all commands available, along with their respective gestures.

17

4. Gesture System for BAE

There are some common sense guidelines for designing gestures. Here we will state
them as Requirement Specifications for Gesture Design. The requirements are
simplicity, drawability, complexity, rememberability, and intuitiveness. Simplicity,
usually, refers to the number of strokes in the gesture, with one being ideal. Some of
these requirements are related to each other. If the design is simple, it usually is easy to
draw. Most easy to draw gestures are also easy to remember. By complexity we mean
both the gesture itself (the physical attributes) and its hot point placement. Hot points
that are placed at the beginning or ending or at the very middle help with complexity
and rememberability. The intuitiveness of the gesture is the most important gesture
quality. Intuitiveness helps rememberability and complexity of the gestures. If a
gesture is not intuitive, no matter how simple and easy to draw it is, it will not be

remembered easily.

In our system, because we concentrated in designing the gestures, we did not
develope a recognizer, but used an available character recognizer with some code added
to deal with special characteristics of gestures. This approach to implementation
however brought a very important problem to the surface. Because we used a
recognizer which was originally designed for characters, the recognition was performed
using features important in characters, but not necessarily important in gestures. In fact
the results of the recognition testing clearly showed this problem, discussed further in

chapter 6.

In view of such an approach, the designer needs to consider the recognition
problem, i.e. the designer needs to know beforehand how the recognizer works.
Knowing the strengths and weaknesses of the recognizer will contribute significantly to
the design of each gesture. Other important features that the designer needs to address
about the recognition process is how and where to deal with hot point and closure

problems.

18

The BAE gesture syntax must satisfy these requirements for each gesture we design.

A detailed explanation for the gestures of each command is given later in this chapter.

The first requirement we needed to face was simplicity. Easiest way to achieve this
is to make sure all the gestures used are single stoke gestures. However, not all single
stroke gestures are necessarily intuitive. Because of this, we placed a greater
importance in making gestures intuitive rather than enforcing the single stroke

requirement.

Secondly, some of the commands need more information to be fully executed, such
as the file management commands. In this study we concentrated on the top most layer
of interaction with the user. The second layers that gather more information from the
user are still entered with the commonly seen menuing methods. In a fully gesture
driven system such second layers would also be converted to operate with gestures.
Examples of these secondary layers are the Open, SaveAs and Grid Panel Commands

which produce input windows to gather information.

There are thirty one gestures in BAE listed in Figure 7, ranging from lower case
letters used for documentation functions to using *T” in different rotations to indicate

alignment of the object.

The reasoning for having so many gestures, is to test if it is possible to create a
drawing application software that would totally avoid the use of menus, by replacing all
commands with gestures. The selection process started by examining drawing
applications, like Draw [42], and TopDraw[43] to generate a list of common commands

for such applications. From this list the 43 commands were selected.

During the design of these gestures, we separated the gestures into three groups,
based on origin. We termed the first group as Alphabet Oriented Gestures. These

gestures are the first letter of the command name we use to execute, in our case, the

19

document commands. This is to test if there is a mental connection between certain
letters of words and with the specific operation. Like ’0’ for open when performing an

open box-graph command, or ’s’ for save when saving a box-graph.

Commands within working window

X

C
\O
N

—| [T]|L

==

Cut/Grid Off - if on an object deleles
it. If grid is visible, turns grid off.

Copy/iClose - Places a copy of the object
in o the buffer, or close the working
window,

Duplicate - Produces another object
having the same characteristics as
the source object.

Paste - Places a copy of the object
in the buffer to the specified location.

Grid Panel - Displays the grid scaling
window,

Align Right - Aligns the objaect selected
on the right border

Align Lefl - Aligns the object selected
on the left border.

Align Top - Aligns the object selected
o the top border.

Align Botlom - Aligns the object
selected on the bottom border.

Align Vertical - Aligns the object
salected in the middle between top
and bottom berders,

Align Horizontal - Aligns the object
selected in the middie belween
right and left borders.

Normal Box - Creates a box with
regular line width,

Thick Box - Creales a box with
thick line width

Dotled Box - Creates a box with
dashes as is outline.

Normal Line - Creates a [ine with

regular width.
2 Norrr)al_ Lef_t!ﬂighl Arrow - Creates

a unidirectional arrow.
ﬁ

Normal 2-headed Arrow - Creales
4___7 a bidirectional arrow.

Dotied Line - Creates a line with
— = | dashed lines.
. Dotted Lefl/Right Arrow - Creates

- a unidirectional arrow with dashed

i lines.

Dotted 2-headed Arrow - Creates
2 a bidirectional arrow wilh dashed

- lines

Thick Line - Creates a fine with
—te a thick width.

Thick Left/Right Arrow - Creates
Lz a unidirectional arrow with a
— thick lina.

Thick 2-headed Arrow - Creates
&__, a bidirectional arrow with a

thick line.

Quit - Quils the program, with a
q warning if not saved.

cordaining a list of gestures and

Q Help - Displays a help window
H simple explainations,

Commands onTitle Area

Open - Brings Up a Menu
O for file selactions

saves or brings up menu

S Save/Save As/Show Grid - Either
for new file name

New - Opens up a blank
n working window

Figure 7. BAE Commands and Gestures

20

21

X

The second group of gestures are the standard proof reading marks, like for

A

delete and for insert (for draw its paste). The feasibility of such familiar

commands to be used as gestures have been thoroughly investigated [11]. These
investigations found good results with the use of these markings in editing text. We

wanted to see if such editing marks could also be used to edit graphical objects.

The third group of gestures, are Artificial Gestures. These are gestures that have no
previous syntax or semantics associated with them. These are used for some of the

formatting commands and for the tools commands.
4.1. Formatting Command Group

The alignment commands for right, left, top and bottom are artificial gestures that
look like a capital T at different orientations. The idea for this came from using a line
to represent the different sides of the document. We wanted to have a horizontal line to
represent both the right and left alignment. A simple way to distinguish which was

which, was to place a line in the middle of the horizontal line on the side that the objects

1._

used to obtain similar gestures for the remaining three alignment commands. The two

would be aligned on. gesture then represent a left alignment. The same idea

was

special alignments, horizontal and vertical, also got their shapes from the same idea.
Each was obtained by combining the two alignments related to it. For example,
horizontal align is aligning between right and left edges, thus combine both left align
and right align to get two vertical lines and a horizontal in between. Thus the vertical

gestures is obtained by combining the top and bottom align gestures.

22

4.2, Tools Command Group

The tools command group is the tools gestures used to create the boxes and the

L

arrows. First the use of the for the box. This had two reasons for it, the ability

to

define the size of the box with the user entering the height and width, and its simplicity.
Itis a one stroke gesture and only takes half the distance and time than drawing a box
with all four sides. The arrow gestures were developed by trial and error on a piece of
paper. Trying to see what possible ways are there to reducing this two stroke gesture "-
>" into one stroke and still be intuitive. The secondary part of both arrows and boxes
gestures are what defines their type. If the user just draws the gesture then the object is
solid. If the gesture is followed by a tap, then the object is dashed and finally if the
gesture has a retrace on the ending part of it than the gesture is of type thick. Again this
was obtained by trial and error, examining how to make thick lines with a pencil (a lot
of retracing over the line) thus the idea of doing a partial retrace on the ending of the
gesture. The dashed objects was a little harder, since the more intuitive way was to do
the gesture in dashes, but this defeated the single stroke, simple stroke concept. The end

result was to add a second stroke but make it very simple one, like a lone tap.

The same frial and error method was used to derive the rest of the gesture for the
BAE. Followingis the complete gesture list, along with a description of each gesture

syntax and its semantics.

23

The following format will be followed for each command.

Gesture Command Name Picture of Gesture

Gesture Definition -

Syntax -A presentation of syntactic properties is given, such as rotation, size, stroke
order, stroke direction, stroke number, physical attributes necessary for successful
recognition, and hot point of the gesture.

Semantics -Then meaning of the gesture is described

Note: If the input starts within or on a selected object (box or arrow), the Editor will not

recognize this input as a gesture but will interpret it as the move or resize command.

Some gestures must be entered in a specific part of the screen. The screen will be
separated into three different regions, the working window, the title region, and the
document commands region. All commands that work on the title region also work in
the document region. The screen layout of BAE is shown in Figure 18 in Chapter 5,

along with a more detailed explanation.

Document Commands
Open, New, Save, SaveAs and Close make up the document commands. These

commands are used to manipulate the box-graph files from with the BAE application.

start

Open
Syntax - Scribe an "Q" anywhere in the title region of screen to execute this command.
It is a single stroke gesture, drawn in a counter-clockwise circle without a hot point.
The end points should be connected for better recognition results. The document
command region is also available for this gesture.

Semantics - If there are no box-graph files with .bae specification in the current NeXT
directory, the command creates a working file with UNTITLED.bae as the default title.

24

If at least one file exists, then the user is presented with a window containing the list of
graphical file names (presented 5 at a time) appearing on the lower part of the screen. If
more than that are in the directory then page "up” and page "down” buttons become
available. The window also contains the buttons for "cancel”, "open" and "new". A
single tap with the stylus within the box containing a name selects that file. If open
command is performed, with an already existing box-graph, then the user is given a
chance to save the current box-graph before the open command window (see Figure 8)
is displayed. Any one of the three commands cancel’, *open’, and 'new’, appearing on
the right of the window will cause the window to be erased and the command executed.
A gesture driven alternative would have been to only display the file names and let the
user use gestures for cancel (maybe a cut gesture), open {(double tap on file) and up and

down lines for scrolling the other file names.

FILE1.BAE CANCEL
FILE2.BAE
OPEN
NEW
up
[| DOWN

Figure 8. Open Command Window

start

9

end

New

Syntax - Scribe an "n" anywhere in the title region of the screen to execute this
command. Itis a single stroke gesture without a hot point, that should be drawn fairly
straight up, i.e. it should be rotation sensitive. Stroke should start upper left go down to
lower left then going up, then to the right and then down. The document command
region is also available for this gesture,

Semantics - Creates a working box-graph with UNTITLED.bae as the default title if no

25

changes since last save, else a window similar to Figure 11 is displayed on the lower
part of the screen with "cancel", "save and new", "don’t save but new" options. The

user can then save the present box-graph before opening the new box-graph or just open

t
end

Syntax - To save a file, one uses a single downward gesture, to scribe an upright "S"

a new box-graph.

Save

either in the title region of box-graph - except where the box-graph title is, or in the
document command region.

Semantics - Saves the working box-graph with the given name to the current directory.
Box-graph files are saved with ".bae" ending. If the box-graph was new and Save As
was not invoked, then its saved with the default name of "UNTITLED.BAE".

t
end

Syntax - To use the saveas command, follow the same directions as in the save gesture,

SaveAs

with the starting point within a very close vicinity of the box-graph title in the title
region.

Semantics - The user is presented with a window containing the default name (Figure 9).
The window also contains letters A-Z and 0-9 and a few more punctuation marks for the
user to make up their own graphical file name by tapping it out. The graphical files are
saved with .bae ending. There is a 16 character limit to the box-graph title. Again an
alternate, all gesture solution would have been to use a character recognizer, and have

the user write the name of the file and scribe an ’s’ to save.

26

| CANCEL | | CLEAR | | SAVE |

ABICIDIE|IFIGH|I |J
KILIMN|OP|QIR|S|T
UVWXIY|Z|-|-|_|#
112|3]415|617{8/9|0

Figure 9. SaveAs Command Window

start

end

Close

Syntax - Close command can be achieved with a single downward gesture to scribe a
"C" anywhere in the title region of screen or document command region. It has no hot
points, with the end points not near each other.

Semantics - A window is displayed with either the commands "cancel" and "close"
(Figure 10) or if no changes since last save, options to close with or without saving the

box-graph (Figure 11).

CANCEL CLOSE

Figure 10. Close Command Window (with Save)

CANCEL SAVE AND CLOSE

DONT SAVE BUT CLOSE CLOSE

Figure 11. Close Command Window (without Save)

27

Edit Commands
The edit commands are, cut, duplicate, copy, paste, select and move.

start start .
Hot point
end end
Cut

Syntax - To delete an object, simply cross (X) out the object. The object containing the
intersection point of the two lines (the hot point) forming the x will be deleted. Stroke
order and stroke direction do not matter in its recognition.

Semantics - The object is deleted from the box-graph and a copy of the object is placed
in the cut-paste buffer. The copy in the buffer is only the object selected, none of the
connections (if any) are saved. Connections(arrows) are simply lines that have an end
point within the selected box. If cut command is used with multiple objects selected,

then the items are deleted but no object is placed in the buffer,

start

end

Syntax - Draw a line to the location of the new object, starting within the object to be

Duplicate

duplicated and ending the line with a semi-circle. The new object will be centered
around the hot point, the end point of the gesture. A single stroke gesture. The line
should start upper left and go lower right, then start the half circle in the end going
counter clock wise.

Semantics - A new object is created with exactly the same specifications as the original.
If the object is a box, the new object will also be connected in exactly the same manner
to all other boxes as the original was. See Figure 12 for this special case duplicate.
Note that using duplicate, the new duplicated boxes will be connected in the same

manner as the original.

28

Figure 12. The Duplicate Command

start

erncd

Copy
Syntax - To copy an object into the buffer, use a single downward gesture to scribe the

character *C’ within the object. The hot point is the starting point of "C", which must
start within the object chosen to be copied.

Semantics - A copy of the object is placed in the buffer. Just like cut function, this
function only saves a copy of the object - this does not include any of the connections it

might have with other objects. This command does not work with selected objects.

Hot point

/\

start end

Paste
Syntax - Available after either a copy or a cut command has been used, which

determines the object in the buffer. The gesture is the carat (*) or upside down v - with
the stroke starting at lower left going to the right and up, then to the right and down.
The tip of the carrot is the hot point determining the location of the new object (centered

around the hot point).

29

Semantics - A new object is created which is exactly the same as the object in the buffer.
This does not include connections. Note that the only way to create objects with their

connections is to perform a duplicate.

Select 6
Syntax - There are two ways to enter the select command.

First method. A double tap, a successive touching of item by pen within a short interval,
within or on the object of interest. Currently the second tap must follow within a half
second.

Second method. Hold down the pen for a pre defined amount of time within or on the
object to be selected, currently set at 1.5 seconds.

Semantics - The purpose is to bring to the front an object to be manipulated on. After
the selection of the object, the knobs will appear, highlighting that object, verifying its

selection.

Incremental Select

Syntax - Select the first item with a double tap. A single tap within or on an unselected

object will select that object.

Incremental Deselect

Syntax - The tap within or on the object acts like a toggle, thus to deselect a selected

object just tap within or on it.

6This notation for taps is the meta language used by GO Corporation.

30

Select All
Syntax - A double tap, within the title region of the screen.
Semantics - When this command is performed, all the objects within the working box-

graph become highlighted - i.e. the manipulation knobs appear on all the objects.

o y
Deselect All

Syntax - A single tap anywhere in the box-graph not containing a object will perform a

deselect all.
Semantics - This command simply removes the manipulation knobs from all the

selected objects, i.e. it deselects all the objects.

Y, al| Hot point
= ml"/}

Syntax - There are two ways to move an object.
First method. Select the object first. Starting within or on the object selected drag to the

Move

new place. The hot point of this gesture is the end point of the dragging. A single
stroke gesture after the determination of the object.

Second method. Starting with in, or on the object, hold the pen for a predefined amount
of time (thus selecting the object), then drag to the new location. The hot point is again
the end point of the dragging.

Semantics - The object is in the new position now. Move only moves a single object.

31

Format Commands

start start
start end
start end
Grid Panel end end
Syntax - It is the pound sign drawn within the working window region. It should be free

of rotation or size, and the stroke order or direction should not matter. The four
intersections are necessary for better recognition. The two set of parallel lines need not
be perfectly perpendicular but should check for close parallelism.

Semantics - The execution of this command brings to the foreground a window that
shows the current spacing settings for the grid system (expressed in pixels). The user
can then change and set the spacing to new dimension. The spacing is limited to be
between 10 and 100 pixels. See Figure 13. Again, an alternate solution would have

been to use a character recognizer and have the user write the spacing.

SPACING

Horizontal | 30
Vertical 30 ST

CANCEL

112183141567 {8|9]0

Figure 13. Grid Command Window

tart
* Xsmr ' Hot point
. end end
Turn Grid off

Syntax - When the grid is visible on the box-graph then a cut gesture "X" anywhere

32

within the working window region (not over an object) will turn the grid off. A word of
caution: with the grid on it is not possible to select multiple objects and perform a cut
operation to delete them. With the grid on, the cut gesture not on an object will be

interpreted as turn grid off.
Semantics - This command is in effect when the grid panel is visible. This command

L
end
Show Grid

Syntax - Scribing an "S" on the working window region of the screen displays the grid

effectively makes the grid invisible.

on the box-graph. Placement of the "S" is unimportant.

Semantics - The grid is made visible.

Irs, Hl Hot point
1= JE—P‘/}
Align to Grid

Syntax - This is the same as the *move’ gesture. The object to be aligned has to be

selected. Once the object is selected, the move gesture is used to snap the object on to
the grid.

Semantics - Once the grid is visible the manipulation of the knobs are interpreted as
snap onto grid commands. The direction of the drag of a knob determines which edge

or edges are snapped onto the grid.

start

start end

Left edge Align end
Syntax - First select the object(s) to be aligned. Then enter the gesture. The gesture

looks like a capital "T" on its side. However, its stroke order and stroke direction are

very specific to clearly distinguish it from horizontal or vertical align commands, which

33

look similar. The vertical stroke is performed first, going from top to bottom, then the
horizontal stroke, going from left to right, with the two lines intersecting for better
recognition. The angle between the two strokes should be within a predefined margin of
ninety degrees, i.e. as close to perpendicular as possible. The horizontal stroke should
not start too far left of the vertical stroke as to make the stroke look like a "+" or a "t".
The intersection of the stroke should be in the middle section of the vertical line.

Semantics - The selected objects are redrawn with the left most points flush with the left
most point of the left most object selected. Flush against the left wall of working box-

graph if only a single object is selected. See Figure 14.

[] []

m----0
[
/
]
[

]
'
E
s
[1; PP |

L[

Figure 14. Align Left Function

5—

start

start end

Right edge Align end

Syntax Semantics - Exactly the same as left edge command, but alignment to right most

point, or to right wall.

start

start end

Bottom edge Align end

Syntax Semantics - Exactly the same as left edge command, but alignment to bottom

most point, or to bottom wall.

34

start
start end

end

Top edge Align

Syntax Semantics - Exactly the same as left edge command, but alignment to top most

point, or to top wall.

start start
start end
Horizontal center Align end erd

Syntax - Select the object to be centered, then using three strokes, scribe a capital "H".
The lines should intersect for better recognition.

Semantics - The selected object(s) is redrawn with the left most point being the same
distance away from the left edge of the working box-graph as the right most point is
from the right edge of the working box-graph. See Figure 15.

= o

Figure 15. Align Horizontal Command

35

start
start end

start end
end

Vertical center Align
Syntax - Select the object to be centered, then using three strokes, scribe a capital "I".
The lines should intersect for better recognition.
Semantics - The selected object(s) is redrawn with the top most point being the same
distance away from the top edge of the working box-graph as the bottom edge point is
from the bottom edge of the working box-graph.

Hot point
i oy)

Smaller Box

Syntax - Select the box, then use the knobs for resizing.
Semantics - The object is first selected, then the knobs are manipulated in the desired

direction(s) to achieve the desired size.

Larger Box

Syntax Semantics - Similar to Smaller Box command

Longer Arrow

Syntax Semantics - Similar to Smaller Box command

Shorter Arrow

Syntax Semantics - Similar to Smaller Box command.

36

= H Hot point
[3 o R, '
Size to Grid

Syntax - The object to resize is selected. Then the knobs are moved to correctly snap
the object on to the grid.

Semantics - The object selected can be made to size to grid by snapping the knobs onto
the grid, by simple drags of the corner knobs.

37

Tool commands
There are two different kinds of objects in this editor, boxes and arrows. The

creation of both are described in detail below. Manipulation of these objects are
explained in the Format Commands section above. Figure 6 shows all the possible
objects within BAE.

start
Hot point

end

Normal Boxes

Syntax - This is a single stroke gesture, with the stroke going from top to bottom, then to
the right forming a "L" shape. Notice the only difference between this gesture and the
thick box is the third section of the stroke with going over the horizontal section, The
hot points are the first point of contact, and the last point of contact, defining the
opposite corners of the box.

Semantics - This will create a box with normal lines

start
i Hot point

end

Thick Boxes
Syntax - The ’L’ shape of the normal box gesture is drawn, then without lifting the pen,

go back over (at least a third) of the horizontal section, just drawn. Notice the only
difference between this gesture and the normal box is the third section of the stroke with
going over the horizontal section. The hot points are the first point of contact, and the
farthest right point established with the horizontal strokes, defining the opposite corners
of the box.

Semantics - This will create a box with thick lines,

38

start

\\7’- Hot point
wes e
Dashed Boxes

Syntax - This gesture is identical as the normal box gesture, with the addition of a single

tap within a specific amount of time of ending the "L" gesture. The tap should be within
the near vicinity of the end point of the "L" stroke. The hot points are the first point of
contact, and the last point of contact of the first stroke, defining the opposite corners of
the box.

Semantics - This will create a box with dashed lines.

Hot point

start _!“?-Eimw)
W

Syntax - This gesture is simply a straight line. To add the type of arrow,i.e. thick,

No-headed Arrows

normal or dashed see appropriate directions below.

Semantics - This will create a line between the first and last point of contact.

start
end

ot point
start _7
end

One-headed Arrows

Syntax - These are a single gestures. If the arrow head is to be drawn first (the left
arrow), then the line starts to the right and above the intended tip of the arrow, then
drawn to the tip and then complete the arrow body. The angle created in the stroke
should be between 30 to 60 degrees, to clearly look like an arrow head. Again, to add
the type of arrow see directions below.

Semantics - This will create either a left or a right arrow, depending on when the arrow

head was drawn.

39

start f.ﬂ‘ Hot point

end

Two-headed Arrows

Syntax - This gesture start the same way as the single headed arrow (the left arrow), but
rather than stopping upon ending the arrow body, the line is continued away from the
arrow body forming an angle between 30 to 60 degrees(like the ending of the right
arrow). The ending stroke should not be too short to avoid looking like a "hook™.

Again, to add the type of arrow see directions below.

Normal Arrows
Syntax - If nothing is done after the main arrow gesture, then a normal arrow will be
created.

Semantics - The arrow produced is of normal type.

Thick Arrows
st o1d start Hot point
Eot point ‘ end
end Hot point | |start d
SLOTE —i eny

Syntax - So far the gesture only specifies the directionality, to add the thickness
complete the arrow gesture by going back over the last drawn segment.

Semantics - A thick arrow is created.

40

Dashed Arrows

start .
Hot point

Hot point /Eiaﬂ M,,..-j

start _7
il el ¢ ol
T €Tl

Syntax - The dashed arrow is achieved by first drawing the main arrow gesture for the

1

desired arrow (as described above), followed by a single tap, within the vicinity of the
end point of the arrow gesture.

Semantics - A dashed arrow is created,

41

Miscellaneous Commands

start P

en'd

Help
Syntax - Scribe a "7" on the title region of screen. A single stroke gesture is sufficient,
however adding the period assures a higher recognition. The stroke direction is from
upper left, circling up and to the right then down. There are no hot points in this
gesture.

Semantics - This command will pop up a window that contains the list of all available
commands with a small description of each, and the gesture that performs that

command.

start

Quit end
Syntax - Scribing a "q" anywhere on the screen will quit the program. It is an upright

gesture without any hot points.
Semantics - This command effectively quits the program. This command will pop up a
window just to make sure the user did intend to quit and the command was not done in

error. See Figures 10 and 11.

42

5. Implementation

In order to evaluate the quality (effectiveness) of the gesture designed for BAE, a

version of BAE was implemented on the NeXT’-Lombard8 system.
5.1. BAE System Setup

The editor is implemented on the NeXT Workstation connected to the Lombard
prototype machine. The NeXT Workstation has a 68040 CPU, a 105 MB hard disk and
8 MB RAM, and runs NeXT Software Version 2.0. Lombard is a 286 based pen
computer with an 8 MB RAM running DR version of PenPoint SDK? Operating
System.

The two machines are connected via a serial line as shown in Figure 16. The
Lombard is responsible for capturing all the pen data (pen status of ’down/up’ and
coordinates of pen location when the pen is down), and for inking when the pen is
down, and erasing the ink when the pen is lifted. The Lombard also displays all objects.
The NeXT receives the pen data (gesture information), and interprets the gesture
commands. It keeps track of the data structures representing a box-graph. The NeXT
sends draw commands (Table 2) to the Lombard to draw and erase all objects and to

display all other information on the Lombard.

TNeXT is a trademark of NeXT Computer, Inc.
8 ombard is a trademark of GO Corporation
9PenPoint SDK is a trademark of GO Corporation

43

BAE Commands

/(gestures)
q———————— Pen Data

| | Lombard

Draw Commands ————D

NeXT

Figure 16. Lombard NeXT Hardware Connection

The software on the Lombard was written in Pen Point Operating system10. The
software on the NeXT was written in C on the NeXT platform. GNU C compiler was
used to compile and link all the files for BAE and the recognizer written in Objective-C
on the NeXT platform. The Lombard code is approximately 1000 lines of C code
producing a 36K sized executable. The Editor code (without the recognizer) is 5500
lines of C code producing a 123K sized executable. The gesture recognizer is 450 lines
of C code producing a 5407 byte .o file which is linked with the Editor’s .o files to
produce the 123K sized executable. Serial port runs at 9600 Baud. The Lombard screen
size, used for scanning BAE gestures, is limited to 590x380 of (640x400). The digitizer
on the Lombard scans 100 points/second, which it then transmits over the serial port to
the NeXT.

Figure 17 shows the software architecture for BAE. Descriptions of each unit is

stated below,

5.2. NeXT Software

The software units besides the Gesture Recognizer were needed since not all the

operations were trained to be recognized by the Recognizer. The Move, Resize,

10The software on the Lombard was wrilten by Dale Frye.

44

Selection Deselection operations are handled separately. The First Point Detector
checks in its data structures to see if the initial point is on or within a selected object.
The Tap detector checks all the points of the input to see if it satisfies a tap. The
Selector/Deselector, depending on the tap being outside or inside of object, selects or
deselects one or all the objects. The Move/Resize perform the move and the resize
operations on the selected object, whenever a none tap within a selected object is
detected. The Gesture Recognizer is the trained Neural Network that recognizes the
input and gives the result to the Editor to process. The algorithm that the Gesture
Recognizer uses is described in section 5.4, The Editor processes all the recognized
gestures along with printing messages to the Display and performing hot point detection

and closure.

The BAE program runs on the NeXT computer, reading the pen data collected by
the Lombard from the serial line. The NeXT software processes all the points and sends
commands back to the Lombard on the serial line, instructing it with which primitives

need to be executed. The NeXT software uses simple linked list structure to keep track

of all the objects.
NeXT Lombard
No — Tap Detector _Y_e<s 1st Point —-4-' Pen Digitizer
; Detector. &
Yes N Serial Serial
Move/ Yes [T ; 2 In —4— Out <
Resize | W ap Detector
W No |Serial) Serial
Out In]
v Selector/ Gesture Interpreter
Deselector | | Recognizer
v v Y
Editor ‘ Display
h 4
Display

Figure 17. Software Architecture

45

5.3. Lombard Software

The software on the Lombard system is responsible for all the drawing needs on the
Lombard machine. The Interpreter converts the draw commands from the NeXT into
actions on the Lombard screen. It acts as the manager for these commands, such as
drawing and erasing boxes and lines of different sizes, shapes and boundaries, erasing of
regions and printing text. A two-tone bell was also made available as a command.

The Pen Digitizer handled scanning for all inputted pen values and inking. See
Table 2 for a complete listing of draw commands developed on the Lombard system for
BAE.

Table 2. Draw Commands

Command Name Command | LineType | Coordinates String
Rectangle R Yes 2 No
Line L Yes 2 No
One-Headed Arrow 0 Yes 4 No
Two-Headed Arrow T Yes 6 No
Erase Arca E No 2 No
Grid G No 2 No
Clear Screen C No No No
Beep High BH No No No
Beep Low BL No No No
String S No 2 Yes

A typical command from NeXT to Lombard is:"R 1 100 100 200 200" - to display a
rectangle with lower left coordinates of 100,100 and upper right coordinate of 200,200.
Table 2 shows that commands like Beep High consists of only the command byte, since

no other information is needed. For example, the two-headed arrow required 6 sets of

46

coordinates: 2 coordinates indicating the starting and ending points of the arrow, while
the other sets of 2 coordinate pairs define the triangle for the arrow head, giving a total
of 15 bytes including null bytes used for spacing. The string command passed the
starting coordinate of the string, then the string itself.

5.4. Screen Layout

The Screen Layout of BAE on Lombard is shown in Figure 18. It consists of three
regions: Title region, working window and document gesture region. The working
window shows the complete box-graph. The creation and manipulation of objects takes
place in this region. The different regions also account for region sensitive gestures.
The document gestures are not executed within the working window. The SaveAs
gesture must be made over the box-graph name in the title region. The
Save/SaveAs/Show Grid gestures are one and the same gesture, the region in which it is
drawn determines which command is executed. The same is true with Close/Copy

command gesture and Cut/Grid Off command gesture.

Title Region {
/

Bozxes

Working window,/

\

ATTOWS messrudun SN

Document Gesture
Area

Box-graph Title

'N oy,

’
’ I —

’ ’

/’

#

/

/ A
/ 3

PR I A |

Figure 18. Screen Layout for BAE

48

5.5. Gesture Recognizer

The implementation of BAE used the algorithm called Supervised Competitive
Learning with Backpropagation Networks(SCL/BP) [37], as its recognizer for the input
gestures. We will discuss the software implementation of SCL/BP, data collection, and
the training of the neural network based recognizer. More information on Neural
Networks is found in [38]. This is the detailed explanation of the Gesture Recognizer

Box in Figure 17.

Paste

Feature
- . s SCL/BP i Gesture

Abstraction

Figure 19. Recognition Process

5.5.1. Recognizer Software

The gesture recognizer, used in BAE was originally developed for character
recognition. It consists of two parts; a feature abstraction and SCL/BP classifier. The
feature abstraction is used to represent each gesture by a fixed number of attribute
values to be used for classification by the neural network. Each gesture is converted
into 57 float features, explained below. Figure 20 shows a sample gesture as it is

scanned (points) and what the USET Sees (connected) The 57 features of this gesture are:
T 5 o sy i

552 %x&s‘%‘«%ﬁ@x&

F1gure 20. A Sample Gcsture (Paste)

49

Number of Strokes

feature(0)=1.000000

Grid Features

feature(1)=0.00000 feature(2)=0.15000 feature(3)=0.00000 feature(4)=0.00000
feature(5)=0.00000 feature(6)=0.00000 feature(7)=0.12500 feature(8)=0.12500
feature(9)=0.00000 feature(10)=0.00000 feature(11)=0.00000 feature(12)=0.00000
feature(13)=0.00000 feature(14)=0.00000 feature(15)=0.15000 feature(16)=0.00000
feature(17)=0.00000 feature(18)=0.00000 feature(19)=0.07500 feature(20)=0.00000
feature(21)=0.00000 feature(22)=0.00000 feature(23)=0.00000 feature(24)=0.00000
feature(25)=0.02500 feature(26)=0.00000 feature(27)=0.10000 feature(28)=0.00000
feature(29)=0.00000 feature(30)=0.00000 feature(31)=0.10000 feature(32)=0.00000
feature(33)=0.00000 feature(34)=0.00000 feature(35)=0.00000 feature(36)=0.15000
Energy Features

feature(37)=0.714286 feature(38)=1.071429 feature(39)=0.714286
feature(40)=0.714286 feature(41)=1.071429

feature(42)=0.214286 feature(43)=0.642857 feature(44)=-0.214286
feature(45)=-0.571429 feature(46)=-0.214286

feature(47)=0.000000 feature(48)=-0.064103 feature(49)=0.064103
feature(50)=0.000000 feature(51)=0.000000

feature(52)=0.320513 feature(53)=-0.256410 feature(54)=-0.256410
feature(55)=0.000000 feature(56)=0.128205

The features are in three groups, the first being a single number representing the
number of strokes of the gesture. The second group, 36 in number, represents the grid
features, and the last group of 20 are the energy-related features. The grid features are
determined by sectioning the grid into nine sections and within each section looking at
the orientations of the gesture stroke. The orientations are vertical, horizontal, positive
slope and negative slope (Figure 21 shows the grid and the angles used to determine
orientation). The energy features (shown in Figure 22) are the x and y velocities and
accelerations, divided into five sections each. A detailed discussion of the feature

abstraction algorithm used in the BAE gesture recognizer is given in [48].

50

R A e AT ST BN

SR

e
,éf, S S
S 5

b :

S e

TR
R e

e

Figure 22. Energy Features (5X4)

51

SCL/BP is an adaptive learning system that uses Backpropagation Artificial Neural
Networks for its learning modules. The SCL system uses a set of prototype units to
identify all the inputs of a particular gesture type. Each prototype unit outputs a value
that represents the certainty of the input gesture belonging to the gesture type of that
prototype. When a gesture is received, it is tested against these prototypes to see if there
is a winner, determined by the highest certainty value above a set threshold. If there is
no winner then an unused prototype is assigned to the new input, with the correct
gesture type assigned to it. If there are no unused prototypes then the prototype with the
least frequently used prototype is reassigned to the new input. Then the winning unit is
positively trained to achieve a certainty value above a high confidence value, and the
losing prototype units (not the same gesture type as the winner), are negatively trained
to achieve a certainty value below a low confidence value. An implementation of

SCL/BP on the NeXT computer was used as a part of gesture recognition in BAE!L,
3.5.2. Data Collection

The gesture data used to train and test the SCL/BP were collected using Lombard
with a special data collection software12, The data is represented as a collection of pen
points and each collection is given both a tag number and an id number. The tag
numbers are used to separate all the collected gestures, and the id number specifies
which gesture type this data belongs to, i.e. cut or help. Both adults and children were
used to enter the gesture data. 5460 gestures were collected, representing 34 gestures
(three of them were not used in the project - although the system is trained to recognize
them). Most of the children were from a Kumon Center, and most of the adults were

Kumon Research Group members.

5.5.3. Data Training
The recognizer is trained with the collected data. The system was trained for 34

gestures using 3120 gestures for training and the remaining 2340 for testing. The

UThe SCL/BP software was written by Tom Fuller,
12The data collection software was written by Dale Frye.

52

Backpropagation Neural Network has two hidden layers and 57 input features for each
gesture. The trained network generated from 80 to 147 prototypes. The model used in
BAE has 101 prototypes and was trained until it achieved 85% average accuracy on the
testing gestures. This accuracy is average over the 2340 testing gestures and did not

reflect the actual accuracy of the system which is discussed in the next chapter.

53

6. Evaluation

6.1. Gesture Testing and Recognition

The following test was conducted with four adult members of the Kumon Project
Group. Participants were shown the BAE system. They were given a sheet containing a
list of all the commands available along with their gestures. They were then told to
draw a set of predefined objects and operations. This was done to familiarize the users
with the system, and help them with understanding the new interface. In the event of
misrecognition, the user was told to try again, until the input was successfully
recognized. However, the users were told to keep the recognition aspect of the gesture
apart when making their judgements on the gesture syntax. The users were then allowed

to experiment on their own.

The users were asked to comment on each of the commands - specifying ease of
use, ease of remembrance. We also asked for any suggestions to help improve the

gestures. We also observed the recognition for the gestures entered.

Table 4 shows the result of this experiment. It shows the gesture, the response of
the user in performing the gesture (the syntax), the response of the user in remembering,
and the recognition by the recognizer. An analysis of the recognition is given in section
6.6. The participants rated the system using ’easy’, "ok’, and hard’. In tabulating the
results, the gestures that had a mixed response were entered with both the answers. The
recognition rating is made from observation. The ’good’ rating are given to those
gestures that have recognition rate in high 90% range. The ok’ rating is used for 75%

to 95% range and everything below 75% is given a bad rating.

Table 4. Test Results

54

Gesture Drawability | Rememberability Recognition
Open Easy Easy Ok
Save/

gﬁ:VAgﬁ d Easy Easy Good
New Easy Easy Ok
Close/

Copy Easy Easy-Ok Ok
gﬂ o Easy Basy Bad
Duplicate Hard Ok Good
Paste Easy Ok Good
Grid Panel Easy Easy Good
Align Right Easy Easy Ok
Align Left Easy Easy Ok
Align Top Easy Easy Ok
Align Bottom Easy _Easy Ok
Align Vertical Easy Easy-Ok Good
Align Horizontal Easy Easy-0k Ok
Normal Box Ok Easy Ok
Thick Box Easy-Ok Easy-Ok Good
Dashed Box Easy-Ok Ok Good
Normal Line Eagy Easy Bad
Thick Line Easy Ok Good
Dashed Line Easy Easy Good
Normal left Arrow Easy Easy-Ok Good
Normal right Arrow Eagy Easy-Ok Good
Thick left Amrow Ok-Hard Ok-Hard Ok
Thick right Arrow Ok-Hard Ok-Hard Good
Dashed left Arrow Ok-Hard Ok Good
Dashed right Arrow Ok-Hard Ok Good
Nor, 2-headed Arrow Easy Easy-Ok Good
Thick 2-headed Arrow Ok Ok-Hard Good
Das. 2-headed Arrow Ok Ok-Hard Good
Help Easy-Ok Easy Good
Quit Ok Easy Good

55

As seen from the table, most of the gestures were found to be good gestures, at least
from the user’s point of view. The single gesture found to be bad was the duplicate’,
which was not a simple gesture to draw, and it was not very intuitive, which explains
why it did not do well with the users. The other gestures that did not do well with the
users were the “thick’ command gestures. At this time, we do not fully understand why.
There are two possible explanations. First, users might be responding to these gestures
negatively because they are truly not intuitive and not simple to draw. However, they
could also be responding negatively, because this particular gesture was not properly
introduced. Since the users were given pictures of the gesture with the retrace line not
overlapping the original, but drawn slightly above it. An example is the lower left

gesture picture in Figure 23 (Thick Box Gesture).

Table 4 might indicate on average a high gesture recognition rate. However, this
does not reflect the real usage of the gestures. Although the recognizer was trained to
achieve 85% accuracy, the users were very frustrated with the recognition, because the
two most frequently used gestures, the ’simple’ line and the ’delete’ gesture were not
successfully recognized. A better measurement of recognition rate would be to use

weighted average based on frequency.
6.2. Data Collection

Some of the gesture data used to train the Backpropagation Neural Networks were
collected from children. Ten different gestures were collected from twenty three
students between the ages of eight and fourteen. See Figure 23 for the gestures asked to
be drawn by the children. Figures 24,25, and 26 show some of the gestures drawn by
the children.

The most serious problem noted during the collection was the unfamiliarity of the
children using a special pen and writing on a glassy surface. Similar problems were
reported on earlier experiments with children [7]. The other problem, in collecting data

from children, deals with children younger than eight years. Their attention span was

56

very short and their careful attention to detail might have been their own undoing, since
this caused them to be too careful and too slow leading to a faster loss of attention and
more mistakes. The recognizer as it stands today tries to gather as much information on
the scribbles as possible in trying to identify it. This however causes problems when
children in their attempts to make sure everything looks okay, tend to touch up their
drawings, leading to multiple stroke gestures when the recognizer is looking for a single
stroke. An example of this is Figure 25, the "paste’ gesture is “touched up’ to look just
like the example picture. A combination of the previous two problems can be seen in
Figure 26. The child entered the first half of the gesture, forgot what the shape looked
like so stopped to look at the picture, then came back and added the second stroke to

finish the gesture.

X | A L
L |~{|—=||~]||?

Figure 23. Gestures Asked to be drawn by Children

S

Figure 24. The *box’ gesture entered by a Child

Figure 26. The 2 Headed Arrow’ (normal) gesture inputted by a Child

6.3. Implementation

The implementation still has some problems to be worked out, but as far as the
ability to test the gestures, it works fine. However, for a better evaluation of the
gestures more semantic information needed to be added to the editor. The evaluation of
such a system would be a more appropriate test-bed for the Hyperflow gesture system

design.

58

6.4. Choice of Test-bed

The choice of the test-bed for this project was limited. The problems with the
NeXT tablet interface, which was not yet completed, did not allow us to use a tablet for
the input/output device. The Kumon Machine, a pen computer for children, which
would have been the ideal choice, was not yet available. And the lack of knowledge of
the PenPoint Operating system and how to develop programs with it, ruled out the

possibility of developing BAE on the Lombard alone.

The only solution that allowed the least amount of training time, was to program in
C on the NeXT computer and have simple primitives on the Lombard to support the

BAE system. This is the implementation that is described in this thesis.

6.5. Use of Menus

Although we set out to design a gesture system such that gestures were the only
means of interaction between the user and the computer, this was not completely
satisfled. Some of the commands, like Open and SaveAs, uses a menu in this
implementation. We decided to concentrate on the first level of editor’s commands as
the target of our gesture design, for manageability. We simply used menus and window
boxes to do the remaining commands. In a fully gesture driven system, this would not
be acceptable. For example, the boxes used to input the alphabet and numbers would be

replaced with a character recognizer.

6.6. Observation

(1) The recognition system, imported from the character recognition application, was
one of the drawbacks. The number of prototypes needed to successfully identify such
closely linked gestures made it difficult to get good recognition results. It is important

to learn the capabilities and incapabilities of the recognizer chosen to use. In BAE’s

59

case the recognizer really needed to have distinct differences between the gestures, any

similarity would cause problems. Such as the ’line’ gesture, , the ’dashed line’

— m——li

gesture, , and the ’thick line’ gesture . In this case, the ’dashed line’

gesture and the thick line’ gesture were correctly recognized a great majority of the
time, but the line gesture’s recognition rate was in the 60%-70% range. The system had
a very high recognition (almost 100%) when dealing with complex gestures (this with
the added premise that the gestures were drawn correctly in the first place!!). This is a
direct result of the feature abstraction, originally designed for character recognition.
The ’dashed line’ and the ’thick line’ gestures have more information to clearly

distinguish them. A similar recognition problem was seen with the combinations of the

Lmis
— 7
"thick left’ arrow gesture (top) with the 'normal 2-headed arrow’ gesture
o P
’ ot 1 1 . 2 . r _-7
and the ’thick line’ gesture with the ’normal right arrow’ gesture

(bottom). These gestures are very similar to each other, the angle of the ending segment
is very important. If the angle is clear, then it is a normal type with a right arrow. If
there is no angle, i.e. its a retrace over the last section, then this is specifying the ’thick’

type on the arrow.

In choosing the SCL/BP, which was designed for character recognition, we believed
that we would overcame the recognition problems with the addition of tap detector and
hot point detector. The results of the testing, however, showed that this approach did
not work. The feature abstraction used for characters did not properly work for gestures.
The next recognizer needs to have feature abstraction that is specifically designed for
recognizing gestures. These results do not necessarily rule out the use of Neural

Network for gesture recognition, however the feature abstraction needs to be changed.

(2) The second issue was the simplicity of a gesture. We had to differentiate between
the three types of the same box and arrow. Qur solution was to change the ending of

each gesture such that the ending specified the type. This turned out to be a correct

60

decision from the results of the box gesture. The arrows were more complex since they
also had direction information, i.e. the arrow heads. When we combined both the
different kinds and different types of arrows and tried to create gestures to deal with
both at the same time, the gestures became too hard to perform and too hard to
remember. There was also no connection between any gesture, every part was fixed, so
if the gesture was recognized wrongly either the kind of arrow or the type, the whole
gesture had to be deleted and started over again, until the recognizer correctly
recognized. This showed that there has to be a method of changing the type of each
object once it has been created on the screen, saving time on attempts to delete and
create again. This also would have had its drawbacks in the sense that there would have
been more gestures to perform to obtain the object, or more gestures to remember to

correct the mistakes.

(3) Last issue is the use of overloading. Three of the gestures were overloaded,
’copy’/’close’, *save’/ saveas’/’show grid’ and ’cut’/’turn off grid’/’multiple cut’. This
had mixed results. The overloading of the save and saveas were very intuitive and
proved not to be a problem, but show grid ’s’ was not a very intuitive answer. So it was
not a problem of overloading but just a bad initial design of having unintuitive gestures

for commands.

6.7. Design Process.

In this section I discuss the evaluation of the design principles: simplicity,
drawability, complexity, rememberability, and intnitiveness. Of all these complexity
was the least involved since none of the gestures had a hot point placement that was
difficult to remember or perform. The simplicity of using single stroke gestures was not
fully tested in this thesis, although I believe it would have strong effects in recognition
and rememberability. Drawability was also not much of a factor, since almost all
gestures were simple one and two stroke gestures. Rememberability has a lot to do with

intuitiveness, simplicity and experience. The more the users used the gestures, the

61

easier it was to remember them. The simpler gestures were remembered faster, and
those gestures that were not intuitive, no matter how simple, were not easily
remembered. The major issue was intuitiveness. As I found out, what was intuitive to

me was not at all intuitive to others.

In terms of the process, these design principles are very good place to start in
designing the gestures, but a thorough user testing is a must to deal with the subtle

differences that arise in the process.

62

7. Conclusion

In this thesis we developed a test-bed application to gain insight into designing
gesture systems for pen based computers. This work is a preliminary study for gesture
systems being designed for the visual programming language Hyperflow, and as a user

interface tool for the Kumon Machine,

This study confirmed the usefulness of the requirements for gesture design, and in
conclusion stressed the importance of careful study and incorporation of recognizer

strengths and weaknesses in the design process of gestures.

The results of the recognition showed that more needs to be done in helping the user
deal with misrecognitions. An ’undo’ command is a must, and maybe a user controlled
second guess at times of misrecognition will help with speedy recovery from

misrecognitions.

Problems in dealing with the retrace concept, leads us to conclude that a two
dimensional representation of the gestures might not be the correct way to introduce the
gestures to the users. A better alternative would be to have the system demo the
drawing of the gestures to the users. This way the user will see the time component and

will actually get a better visual input for each gesture.

The next step, in terms of a recognizer, should be to test the recognition capabilities
of SCL/FZ, mentioned in chapter 1. With the results it is obtaining with character and

digit recognition, it might have a better recognition rate than SCL/BP.

For the test-bed, it should be on a single platform. Either it should be converted to
be on the Lombard or NeXT with a tablet attachment. This would allow the use of more

complex drawing primitives to help with the speed up of drawing.

63

For the BAE system itself, the Editor should incorporate more semantics. To be a
better test-bed for Hyperflow gesture design, the editor should incorporate some of the

semantics associated with the boxes and arrows in the Hyperflow design.

64

8. Acknowledgements

I would like to thank Dr. Takayuki Dan Kimura for his comments and help in
writing this thesis. I would like to thank Tom Fuller for providing SCL/BP recognizer,
Dale Frye for writing the draw primitives on the Lombard system and Ed Hutchins for

his coding advise and List code. I would also like to thank the many contributers of

Graphics Gem and Graphics Gem II for their very helpful code.

I also would like to thank Dr. Kenneth Goldman and Dr. Anne Johnstone for their

comments and suggestions.
Figure 2 Printed with permission from William Buxton and Gordon Kurtenbach
Figure 3 Printed with permission from Dean Rubine.

Figure 5 Printed with permission from GO Corporation.

65

9. BIBLIOGRAPHY

(1] Davis, M. R. and Ellis, T. O., "The Rand Tablet: A Man-Machine Graphical
Communication Device", AFIPS Conference Proceedings 1964 FICC,no 26, pp 325-
331, 1964.

[2] Teixeira, J.K. and Sallen, R.P., "The Sylvania data tablet: a new approach to graphic
data input.”, Proceedings of the Spring Joint Computer Conference, pp 315-321, 1968.

[3] Wolf, C. G., Rhyne, J. R. and Ellozy, H. A., "The Paper-Like Interface," Designing
and Using Human-Computer Interfaces and Knowledge Based Systems, IBM T. J.
Watson Research Center, Yorktown Heights NY 1989 pp 494-501.

[4] Kimura, T. D., "Silicon Paper and A Visual Interface for Neural Networks,"
Proceedings of 1990 IEEE Workshop on Visual Languages, Chicago, IL October 1990,
pp 241-246,

[5] Rhyne, James R. and Wolf, Catherine G., "Gestural Interface for Information
Processing Applications”, Research Report 12179 (#54544) 9/2/86, T.J.Watson
Research Center, IBM Corporation, P.O.Box 218, Yorktown Heights, NY 10598,
September 29th, 1986

[6] Wolf, C. G., "Can people use gesture commands?”, SIGCHI Bulletin, 18, pp 73-74.
Also IBM Research Report 11867.

7] Shepard, S. R., "Gesture Analysis for the manipulation of graphic objects”,
Technical Report NSF/ISI-87113, Sensor Frame Incorporated, 4516 Henry Street, Suite
505, Pittsburgh, PA 15213, Sept. 1987.

66

[8] Wolf, Catherine G. and Morrel-Samuels, Palmer, "The use of hand-drawn gesture
for text editing”, Int. J. Man. Machine Studies, Vol. 27, pp 91-102, 1987.

[9] Shneiderman, B., "The future of interactive systems and the emergence of direct

manipulation”, Behavior and Information Technology,1,pp 237-256, 1982.

[10] Wolf, Catherine G. and Rhyne, James R., "A Taxonomic Approach to
Understanding Direct Manipulation", Research Report 13104 (#58210) 9/4/87, T. J.
Watson Research Center, IBM Corporation, Yorktown Heights, N.Y. 10598, September
1987.

[11] Wolf, Catherine G., "A Comparative Study of Gestural and Keyboard Interfaces”,
Research Report 13906 (#62477) 8/5/88, T.J. Watson Research Center, IBM
Corporation, Yorktown Heights, N.Y. 10598, August 1988.

[12] Kimura, T.D., Choi, J.W. and Mack, J.M., "A Visual Language for Keyboardless
Programming,” Technical Report WUCS-86-6, Department of Computer Science,
Washington University, ST. Louis, MO, June 1986.

[13] Rhyne, Jim, "Dialogue Management for Gestural Interfaces”, Computer Graphics,
Vol. 21, No.2, April 1987, pp. 137-142.Also IBM Research Report RC 12244, 1986.

[14] Tappert, C.C., "Cursive Script Recognition by Elastic Matching”, IBM J. Res.
Develop. Vol. 26, No. 6, November 1982

[15] Kao, H.S., Van Galen, G. and Hoosain, R.,eds., "An Adaptive System for
Handwriting Recognition”, Graphonomics: Contemporary Research in Handwriting,
Elsevier Science Publishers B.V. (North-Holland) 1986.

67

[16]Tappert, C.C., "Speed, Accuracy, Flexibility Trade-Offs in On-Line Character
Recognition", Research Report 13228 (#59158) 10/28/87, IBM Research Center, T. J.
Watson Research Center, Yorktown Heights, N. Y. 10598, 1987.

[17] Kankaanpaa, A., "FIDS - A Flat Panel Interactive Display system”, IEEE Computer
Graph and Appl., No. 8, p 71-82, March 1988.

[18] Tappert, C., Fox, A., Kim, J, Levy, S. and Zimmerman, L., "Handwriting
Recognition on Transparent Tablet over Flat Display", Proceedings of SID, Vol 28, No.
1,1987.

[19] Fujisaki, T., T. E. Chefalas, J. Kim and C. C. Tappert, "Online Recognizer for
Runon Handprinted Characters”, Proceedings of the tenth International Conference on

Pattern Recognition, Atlantic City, New Jersey, June 16-21, 1990. pp 450 -454.

[20] Tappert, C. C., "Online Character Recognition by Decomposition Matching”,
Research Report RC 15478(#68849) 2/9/90, IBM Research Division, T. J. Watson
Research Center, Yorktown Heights, NY 10598, 2/5/90.

[21] Wolf, Catherine, G., "Understanding Handwriting Recognition from the User’s
Perspective”, Research Report RC 15958(#70552) 6/21/90, IBM Research Division, T.
J. Watson Research Center, Yorktown Heights, NY 10598, June 1990.

[22] Tappert, Charles C., Ching Y. Suen and Toru Wakahara, "The State of the Art in
On-line handwriting Recognition",IJEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 12, No. 8, August 1990, pp.787-808.

[23] Kim, Joonki, "On-line Gesture Recognition by Feature Analysis", Proceedings of
Vision Interface ’88, June 6-10, 1988, pp 51-55.

68

[24] Burns, L. M., D. Orth, S. Perkins and H. Ginsburg, "Meadow: Mathematical Errors
and Automatic Debugging of Written Input", 10/31/1990.

[25] Martin, Gale L. and Pittman, James A., "Recognizing Hand-Printed Letters and
Digits Using Backpropagation Learning",Neural Computation, No. 2, 1991, pp. 258-
267.

[26] Chow, Doris, and Kim, Joonki, "Paper Like Interface for Educational
Applications”, National Educational Computing Conference, Boston, Massachusetts,
June 20-22, 1989, p 337-344.

[27] Andreshak, J. C., S. Lumelsky, I. F. Chang, T. P. Mears, A. A. Stone and W. W.
Stead, "Medication Charting via Computer Gesture Recognition", Research Report RC
16024 (#69114) 3/5/90, IBM Research Division, T. J. Watson Research Center,
Yorktown Heights, NY, 10598, 3/5/90.

[28] Henry, T.R., Hudson, S.E. and Newell, G.L., "Integrating gesture and snapping into
a user interface toolkit", in UIST "0, pp 112-122, ACM, 1990.

[29] Buxton, W. A. S., and Kurtenback, G., "Editing by contiguous gestures: a toy test
bed", ACM CHI 87 Poster, 1-5, 1987.

[30] Kurtenback, Gordon and Buxton, William, "Issues in combining marking and direct
manipulation techniques", UIST 91, pp 137-144, ACM, 1991.

[31] Lipscomp, James S., "A Trainable Gesture Recognizer", Pattern Recognition, Vol.
24, No. 9, 1991, pp. 895-907.

[32] Rubine, Dean, "Specifying Gestures by Example", Technical Report, Information
Technology Center, Carnegie Mellon University, Pittsburgh, PA, 1991.

69

[33] Rubine, Dean, "Integrating Gesture Recognition and Direct Manipulation", Usenix

Technical Proceedings. summer 1991.

[34] Kimura, T. D., "Hyperflow: A Visual Programming Language for Pen Computers”,
submitted to 1992 IEEE Workshop on Visual Languages.

[35] Selker, T., Woif, C. and Koved, L., "A Framework for comparing systems with
visual interfaces”, Human-Computer Interaction- INTERACT ’87, Elsevier Science
Publishers B.V. (North-Holland), 1987.

[36] Raeder, G., "A survey of current graphical programming Techniques", LE.E.E.
Computer, Vol. 18, No. 8, August 1985, pp 11-25.

[37] Kimura, T. D. and Fuller, T. H., "Supervised Competitive Learning Part I: SCL
with Backpropagation Networks", submitted to ANNIE’92 (Artificial Neural Networks

in Engineering).

[38] Schalkoff, Robert, Pattern Recognition: Statistical, Structural and Neural
Approaches, New York: John Wiley & Sons, Inc., 1992, Ch. 1, Ch. 10-13.

[39] Kurtenback, G. and Buxton, W., "GEdit: A test bed for editing by contiguous
gestures.”, SIGCHI Bulletin, Vol. 23, No. 2, pp 22-26, ACM, 1991.

[40] Carr, R. and Shafer, D., The Power of Penpoint, Massachusetts:Addison-Wesley,
1991.

[41] Pen Windows, Microsoft Pen Windows Programmers Manual, Microsoft, 1991.

[42] Draw, Draw Application Program by Steve 1987.

70

[43] TopDraw, TopDraw User Manual , TopDraw Version 1.0d, Media Logic
Incorporated, 1990.

[44] Bartow, T. S., "Gesture: Present Systems and Philosophy", Kumon Project Memo,
Washington University, July 1,1991.

[45] Kimura, T.D., "Learning Math with Silicon Paper," Technical Report WUCS-92-
12, Department of Computer Science, Washington University, St. Louis, MO February
1992,

[46] Grossberg, S. "Competitive Learning: From Interactive Activation to Adaptive

Resonance"”, Cognitive Science, No 11. pp. 23-63, 1986.

[47] Kimura, T. D. and Wang, C., "Supervised Competitive Learning Part II: SCL with
Fuzzy Logic", submitted to ANNIE’92 (Artificial Neural Networks in Engineering).

[48] Fuller, T. Jr., "Energy-related Feature Abstraction for Handwritten Digit
Recognition”, submitted to Fourth Midwest Artificial Intelligence and Cognitive
Science Conference, May 1992.

Date of Birth:

Place of Birth:

Undergraduate Study:

Graduate Study:

Professional Societies:

Honors/Awards:

Professional Experience:

71

Burak M. Tavsi

VITA
3/20/68
Philadelphia, Pennsylvania
Washington University,
St.Louis, Missouri
B.S., 1992
Washington University,
St. Louis, Missouri, 1990-Present
M.S., 1992

A.CM, LEEE.

Eta Kappa Nu
CS Department Service Award 1991

Consultant/Grader, Washington University,
1960-1992

August 1992

	Gesture System for a Graph Editor
	Recommended Citation

	tmp.1454425567.pdf.aq3sj

