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Abstract

As critical computer systems continue 10 grow in complexity, the task of demonstrating that they are correct, that is,
guaranteed to operate without failure, becomes more difficult. For this reason, research in software engineering has
turned to formal methods, i.e., rigorous approaches to demonstrating the correciness of software sysiems,
Unfortunately, the formal methods currently used for concurrent systems do not provide a mechanism for expressing
and manipulating non-functional constraints formally. In this paper, we show that one class of non-lunctional con-
straints, the target architecture, can be expressed using a formal notation (the UNITY proof logic). We then use a
mixture of specification and program refinements to derive a program which is demonstrably correct, both function-

ally and in its appropriateness for implementation on a specific machine.
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1. Introduction

Increasingly, computers are used to control and monitor critical systems where failures are unacceptable. In
many such systems, it is necessary to provide strong gnarantees that each software component will function cor-
rectly. Because these systems are large, complex, and involve multiple compuiers, mere testing is not sufficient for
demonstrating that the software is free of errors. Consequently, research in software engineering has been forced to
consider more rigorous approaches to the specification, analysis, and construction of programs. Program derivation
is a promising formal approach to constructing correct programs in which a program is created by mathematically
manipulating formal specifications of the problem to be solved. An initial, abstract specification is gradually refined
until it becomes sufficiently concrete as to suggest a direct realization in lerms ol some available programming lan-

guage. The correcmess of the final program is guaranieed by its construction,

Initial research on program derivation dealt exclusively with sequential programs and relied upon Lhe weak-
est-precondition calculus [10]. Two general program construction strategics emerged from this work: algorithm re-
finement [1, 9, 14, 19, 20, 26] which is concerned with procedural abstractions and data refinement (15, 18, 21]
which is concerned with data representations. As interest shifted into the realm of concurrent systems, it became

necessary to consider new program derivation strategies.

Althoungh this field is relatively new, several promising approaches (o deriving concurrent systems have sur-
faced in recent years. Back and Sere, in their work on action systems [2], advocate a program refinement approach in
which a series of correctness-preserving transformations are applied for the purpose of changing an initially large-
grained (possibly sequential) program into a fine-grained, highly-concurrent one. Similar program-transformation
ideas have been explored by several other researchers [11, 12, 13, 17], mainly in the context of the CSP model. In
contrast, Chandy and Misra, in their work on UNITY [6], build on the legacy of algorithm and data refinement,
working largely within the realm of specifications, deferring the writing of a program until the very end of the re-

firement process.

The UNITY proof logic combines the expressive power of the linear-time logics with the conceptual sim-

plicity of Hoare-style predicates over a program’s state. An initial specification consisting ol assertions about both



the safety and the progress properties of the desired program is gradually refined until the construction of a correct
program becomes straightforward. Both the data and the algorithm are refined along the way. To date there has been
a great deal of program derivation work within the UNITY framework [7, 16]; Staskauskas, 1983 #712.
Furthermore, the UNITY model has been extended by Roman and Cunningham {8, 23, 24] to accommodate increased
levels of dynamism as well as additional programming paradigms, such as rule-based programming and dynamic syn-
chrony. This extended model, Swarm, has been used to provide, for the first time, a formal framework for deriving
parallel production systems [25]—it is worth noting that the resulting program derivation methodology combines el-

ements of both specification and program refinement, an idea to which we will return Iater in this paper,

One significant shortcoming common to all of these approaches is that they exclude considerations regard-
ing the target architecture from the formal framework while, at the same time, they make use of informal characteri-
zations of the target architecture to justify individual refinements and to guide the derivation process toward and cffi-
cient solution. These architectural constraints have a significant impact on the direction laken by the refinement
process; clearly, a proper solution to a given problem given a shared memory muliiprocessor will be differcnt than
that for a message-passing network. However, because architectural corzst‘raints are stated informally, they cannot be
factored (formally) into the derivation process and no one atlempls to prove that the resulting program can actually

be executed on the desired archifecture.

While many designers may view the notion of formalizing architectural constraints with some skeplicism—
established formal derivation methods are yet to prove themselves in an industrial setting—the idea has important in-
tellectual and practical implications. First, eventual tool support for design activities becomes possible only if they
acquire a formal underpinning. Second, applications involving high degrees of reliability often reguire high perfor-
mance levels achievable only through the utilization of specialized devices and novel architectures. The combination
of reliability and performance is likely to render inadequate any ad-hoc reasoning about architectural constraints and (o

limit the applicability of current formal derivation methods.

The main contribution of this paper is to show that architectural constraints can be expressed formally us-
ing the same notational and logical system employed to specifly behavior. Further, we show that the architeciural

constrainis can be nsed to guide the process of constructing a program appropriate for the desired architecture. Qur



approach starts with a formal specification of the program behavior, written using safety and liveness assertions over
an abstract (global) state of the program. This specification is refined to produce an initial program which, while
correct, does not necessarily map well onto the desired architecture. At this point formal specifications of the con-
straints imposed by the target architecture are added to the specification and used 1o guide a program refinement pro-

cess leading to an architecture-specific program.

In the remainder of this paper, we elaborate on this methedology for deriving concurrent systems, with an
example taken from distributed simulation. Section 2 outlines the design methodology in grealer detail. Section 3
describes the Swarm notational system employed in this paper. In section 4, the example problem is described, and
an initial, high-level specification is given. Section 5 traces the refinement of the specification 1o an initial abstract
program. Section 6 illustrates the process of adding architectural constraints to the specification. For this purpose,
two example architectures are selected: (1)} a bus-based, message-passing architecture with specialized hardware for
sharing information, and (2) a simple, unidirectional ring. Finally, sections 7 and 8 draw some conclusions.

2. Design Methodology

Our approach 1o the specification and design of concurrent systems is unique in its integration of architec-
tural issues into the derivation process. The methodology is two-phased. Specification refinement is employed 1o
construct a first program which is correct but architecture-independent. The specification method, refinement sirat-
egy, and notation are essentially those of UNITY. Program refinement is used to transform this program into an-
other which satisfies the behavior specification as well as formally stated architectural constraints ignored during the
specification refinement phase. The compatibility between the program and the target architecture is guaranteed by
construction. Despite superficial similarities with techniques involving changes in the atomicity of program ac-
tions, the program refinement process presented here is new. The program transformations are not part of a standard,
restricted repertoire. They are creative steps motivated by violations of the architectural consiraints and may trigger
limited re-verification of certain behavioral assertions. The amount of re-verification is kept small by carefully mon-
itoring the relation between program actions and the assertions whose validity they may impact. A technique for

formal specification and verification of architectural constraints is an integral part of this approach.



Initial specification. Like in UNITY, a program specification consists of safely and progress proper-
ties of the desired program. These safety assertions constrain the range of possible state transitions in which the
program may engage; the progress assertions define state transitions that are required to take place. The specifica-
tion is concerned only with the program behavior and makes no references to any non-functional constraints the pro-
gram may have to meet {e.g., response time, reliability, cost, etc.). Furthermore, all assertions are stated in lerms of
a highly abstract state representation of the program. This is accomplished by substituting references to concrete
data representations by predicates whose truth values are properly constrained and whose interpretation is given in-
formally. For example, we can express the notion that some action ¢ is executed at time ¢ at node P by the predi-

cate
action(P,t,0).
Safety properties are specified using the unless relation as in
p unless q

which asserts that if the program reaches a state in which the predicate p holds, p will continue 10 hold at least as

long as ¢ does not, which may be forever. Given the unless relation, one can easily introduce the notion of stabil-
ity

stable p = (p uniess faise)
which states that once p holds, it will continue to hold forever; and the concept of invariant

inv. p = (INIT = p A stable p)

which asserts that p holds initially and throughout the execution of the program. /NIT characterizes the inilial state
of the program. Most often, the program initialization is not given explicitly but it is implied by the invariant

properties.

Progress properties are specified using the ensures and leads-to (written “—™) relations. The assertion



P ensures g

requires that if the program reaches a state in which p holds, there is one specific action of the program which will
be executed and will establish q while all other program actions either preserve the validity of p or are free o estab-

lish g. The assertion

p—=q

simply states that if the program reaches a state in which p holds, it will eventually reach a state in which g holds.
Unlike in the ensures relation, p is not required to hold until ¢ is established, nor must there be one specific state-

ment which establishes ¢q. The until relation, defined as

puntilg= (P> Q) A (p unless q)

is used to describe progress when p is required to hold until g is established, but no one specific statement is guaran-

teed to establish ¢ atomically.

Architecture-independent specification refinement. Typical specifications tend to include many
safety properties and relatively few progress properties. The former place constraints on the solution space and, for
reasons of completeness, are rather detailed and numerous. The latier require that particular goal states must be
reached but leave the details of how this is to be accomplished undefined. The purpose of specification refinement is
to add sufficient detail on how progress is to be accomplished so as to make the writing of an appropriate correct
program a trivial exercise. This means that relatively broad progress properties must be replaced by increasingly
more specific ones. Changes in state representation often accompany these refinements and lead to more detailed
formulations of the safety properties. Coupling invariants serve 1o relate predicates given in terms of one stale rep-
resentation to those given in terms of another, more concrete, representation. When the state representation and the
progress properties match directly to data structures and statements in the target language, respectively, the transition

from a specification to a program takes place.

Each specification refinement is a creative step motivated by design insights and carried out in a highly dis-

ciplined fashion. Although the syntactic form of a particular assertion may suggest a certain type of refinement,



such heuristics—which could ultimately lead to some form of automaton—play only a secondary role in (he refine-
ment process today. In principle, the specification refinement could be biased towards a very specific architecture at
the expense of rendering all other architectures inappropriate. In our methodology, however, the emphasis is on a
general, architecture-independent solution. While this approach could be taken even in the absence of formal archi-
tectural consraints, it is rather the case that methodologies which treat architectural constraints informally need the
target architecture to become the principal motivating factor behind the specification refinement, making an archilec-
ture-independent solution infeasible. As a result, each new architecture one might consider requires a new specifica-
tion refinement. By attempting to generate first an architecture-independent program, our methodology makes it
possible to perform the specification refinement once and then to use the same initial program as the basis for deriv-

ing multiple architecture-specific programs.

Architectural specification. It is a generally accepted fact that knowledge about the underlying archi-
tecture is required in order to construct an efficient or reliable program. It is also true that for applications that in-
volve specialized hardware or network topologies, understanding the architecture is needed simply Lo write a program
that can be executed, regardless of its performance. We define an architectural constraint (o be any property a pro-
gram must satisfy in crder to execute on a given architecture. The absence of global data is one such constraing char-
acterizing a distributed network. Each constraint defines a class of acceptable programs. An architectural specifica-

tion consists of a number of constraints which must be satisfied simultaneously.

Formal specification of architectural constraints—not to be confused with hardware specification lan-
guages—is made difficult by the fact that one must define an entire class of programs having unknown behaviors.
The task is further complicated by our desire to specify architectural constraints in the same assertional style and no-
tation being employed in dealing with behavior specifications—simply called program specifications. The usc of a
single common notation for both program specifications and architectural constraints is motivated by our ultimate

goal of integrating architectural considerations in the program derivation process.

The specification technique we describe in this paper relies on the introduction of auxiliary variables whose

purpose is to capture certain salient relationships between a program and the architecture on which it is cxecuted.



Architectural constraints are specified as assertions involving the auxiliary variables. The absence of globally shared

data could be stated as

inv, access(i,k) = i=k

where the predicate access(i,k) is to be interpreted to mean a statement on processor { accessed data on processor k.
Such a fact may be stated without having the program at hand. Once the program is known, however, its statements
may be angmented with auxiliary variables in accordance with a pre-defined set of rules and the invariant above can
be in fact proven to hold for the particular program. The augmentation rules can be defined formally but those we
use in this paper are simple enough to be described informally without undermining the rigorous nature of the pre-

sentation,

Architecture-driven program refinement. Because of its generality, the program generaled at the
conclusion of the specification refinement is unlikely 1o satisfy the architectural constraints that may be involved in
the problem at hand. Detected violations of the architectural constraints are then used to guide the program reline-
ment. In the simplest terms, our approach requires one to keep a checklist of constraints which are not satisficd by
the program in its current form, to pick one from the list and fix it, updating the list accordingly. The process is
complete when all the constraints are met. Because the entire process is performed within the formal framework,
with proofs when necessary, the final program is known to be both correct and implementable on the target architce-

ture,

Program refinements may involve changes in data representation, in the granularity of program statements,
and in the allocation of statements and data to architectural compenents. Each refinement may trigger re-verification
against both the program specification and the architectural constraints. In practice, modular design and careful stag-
ing of the program refinements can limit to a significant degree the extent of such re-verifications.

3. Notation

In this paper, we will be using Swarm [23], an extension to UNITY to reason about and write programs,
Swarm belongs to a class of languages and models that use tuple-based communication. Other languages and models

in this class are Linda [4], Associons [22], and GAMMA [3]. Two features of Swarm that are of particular impor-



tance for this paper are (1) its UNITY-like proof logic, and (2) the ease with which it can accommodate a variety of
programming paradigms (e.g., shared variables, message passing, rule-based) and architectures (e.g., synchronous,
asynchronous, reconfigurable, etc.). This section briefly describes the Swarm notation and proof logic. For a more
complete discussion, the reader is referred to [8, 23, 24].

3.1, The Swarm Programming Notation

The primary means for communication among the concurrent components of a Swarm program is a
common, content-addressable data structure called a shared dataspace. Elements of the dataspace may be examined,
ingerted, or deleted by programs. The model partitions the dataspace into three subsets: TPS, the auple space (a fi-
nite set of data tuples), TRS, the transaction space (a finite set of transactions), and SC, the synchrony relation (a
symmetric relation on the set of all possible transactions). A Swarm (ransaction denotes an atomic transformation

of the dataspace. Instances of transactions may be created dynamically by an executing program,

A Swarm program begins execution from a specified initial dataspace. On each execution step, a transac-
tion is chosen nondeterministically from the transaction space and executed atomically. This selection is fair in the
sense that every transaction in the transaction space will eventually be chosen. An executing transaction examines
the dataspace and then, depending upon the results of the examination, can delete tuples (but not transactions) {rom
the dataspace and insert new tuples and transactions into the dataspace. Unless a transaction explicitly reinserts itsel{
into the dataspace, it is deleted as a by-product of its execution. Program execution continues until there are no

transactions remaining in the dataspace.

The synchrony relation is a relation over the set of possible transaction instances. This relation may be ex-
amined and modified by programs in the same manner as the tuple and transaction spaces. The synchrony rclation af-
fects program execution as follows: whenever a transaction is chosen for execution, all transactions in the ransaction
space which are related to the chosen transaction by (the transitive closure of) the synchrony relation are also chosen;
all of the transactions that make up this set, called a synchronic group, are executed as if they comprised a single

ransaction.



Next we illustrate the Swarm programming notation using a toy example, & program in which at most N
timers are incremented in lockstep fashion. Each timer { is incremented modulo some overflow value ovr{i). A
timer may be brought on line any time during the computation, but eventually all timers mark time in step with
each other. To accomplish this, all timers are reset to zero whenever any one of them is resct to zero. As a result,

all active timers count modulo m=(min i : I i <N A active(i) :: ovr(i} ).

Construct a timer. We begin by first considering the case of a simple timer with identifier i. We can
represent the current state of this timer as a tuple time(i, v), where v is the timer's current value. The transaction
which increments and resets the imer is Timer(i,ovr(i)). A timer is activated by inserling in the dalaspace (initiatly

or during the computation) the corresponding data tuple and transaction.

Define the timer's behavior. A transaction stored in the dataspace is simply a name for an atomic
transformation of the dataspace. The transaction’s behavior is defined separately as the composition of one or more
subtransactions. A subtransaction consists of a dataspace query, which binds some set of existentially quantified lo-
cal variables whose scope extends over the entire subtransaction, followed by an action which modifies the conients
of the dataspace by inserting or removing entries if the query succeeds. (Notationally, the query and action arc sepa-
rated by “—”, we use the comma for logical and (~), and sub-transactions are separated by “Il”.) By definition, dele-
tions are performed before insertions. The query can be any arbitrary predicate over the dataspace, similar 1o a Prolog
goal, and may check for the presence (or absence) of specific entities in the dataspace. The semantics of ransaction
execution are similar to those for a single subtransaction, except that the queries for all subtransactions are evaluated
in parallel, followed by the deletions and then the insertions appearing in the actions of those sub-transactions whose

gueries succeeded,

In our example, we can specify the behavior of an individual timer by introducing the following transaction
type definition (the reason for dividing the first two transactions will be made clear later):

Timer(id, MAX) =
t: tmefid, t), t = MAX — skip
I t:OR, time(id, ) — time(d, O, time(id, 0)
I t:NOR, time(id, t) — time(id, 1), time(id, +1)
i TRUE — Timer(id, MAX)



The first subtransaction consists of a regular query (a query which does not use any special predicates?)
which checks whether or not the timer needs to be reset and has a null action {skip). The variable ¢, which is local
to this subtransaction, is bound by finding in the dataspace a tuple of type time whose first component coniains the
constant id. The success of the first subtransaction is communicated to the second subtransaction via the special
predicate OR, which succeeds whenever any regular query executed in parallel evaluates to true. As a rosult, the sec-
ond subtransaction resets the timer by deleting the tuple timef(id.t), independently found by its own query, and by in-
serting the tuple time(id,0). Similarly, the third subtrangaction uses NOR (i.e., not OR) to determine if the timer
can be incremented by one unit. Finally, the fourth subtransaction recreates the timer (which otherwise would be
implicitly deleted). The special predicate TRUE (which always succeeds) ensures that the query associated with this

subtransaction becomes a special query and is therefore not considered when OR and NOR are evaluated.

Establish lockstep execution. The requirement for lockstep execution can be expressed in Swarm us-
ing the third type of dataspace entity, the synchrony relation. Two timers { andj can be made part of the same syn-

chronic group by inserting into the dataspace the following synchrony relation entry:3

Timer(i,ovr(i))~Timer(j,ovr(j)

Recall that a set of transactions present in the dataspace and closed under the reflexive transitive closure of the syn-
chrony relation is called a synchronic group, and that whenever a transaction is selected for execution, the entire syn-
chronic group to which it belongs is executed, and all the subtransactions f{or all transactions in the group are exe-
cuted together as if they were part of a single larger transaction. An interesting consequence of these semantics is
that the special predicates are now evaluated with respect to the regular queries of the entire synchronic group—we
had this in mind when we decided to use special queries in the definition of Timer above. Consequently, the special
predicate OR evaluates to true whenever the query of the first subtransaction in either Timer(i,ovr(i}) or
Timer(j,ovr(j)) succeeds, indicating that both timers must be reset.

3.2. The Swarm Proof Logic

Properties in the Swarm logic are expressed in terms of predicates over the global system state. Safety

properties are given in terms of unless, and progress in terms of ensures (for atomic transitions), and w> (read

10



leads-to) for ransitions of a larger grain. Other concepts, such as invariance, can be expressed in terms of these
basic properties. Figure 1 summarizes the properties which we will use in this paper. The main difference between
the UNITY and Swarm logics is the addition of dynamic control constructs; whereas in UNITY the set of statements
in a program is fixed, the transactions in a Swarm program are drawn from a (possibly) infinite set, and the collec-
tion of transactions currently instantiated can changes during program execution. Similarly, the synchrony relation
provides for dynamically changing the size of the atomic actions within a program by changing the form of the rela-
tion. These differences show up only in the formal execution model and in the definitions of the basic relations
(unless, ensures, and leads-to), the theorems proven within the UNITY model continue to hold for Swarm. It
should be clear to the reader that the Swarm inference rules reduce to those of UNITY when the synchrony relation is

empty and the set of instantiated transactions remaing constant,

11



{pls{q}

Given predicates p and ¢ and a synchronic group s, this assertion (also called a “Hoare triple™) holds if in
every state satisfying the precondition p, the execution of s results in a state satisfying the postcondition

q.

. punless ¢

If p is true at some point in the computation and g is not, then executing any synchronic group either
maintaing p or establishes g, i.e.,

{(pr—qls{pvye}
unless constrains the valid set of state transitions within a program,

. inv, p = {INIT = p) A (p unless faise)

The property p is frue at all points in the computation, i.e., invariant.

.pensuresg=punlessga(3s:5€e 8Gu{pa—gls{pvgl})

If p A —q is true, there exists a transaction ¢ such that every synchronic group s containing 7 will estab-
lish ¢ when executed. The fairness assumption guarantees that s will eventually be selecied.

- P g

This, read p leads to ¢, means that once p becomes true, ¢ will eventually become true, but p is not
guaranteed to remain frue until ¢ becomes frue. Note that — is transitive, whereas ensures is not.

.puntilg= > g} A (p unless q)

p until g is a special case of the leads-to relation, which requires that p continue to hold as long as ¢
does not hold. Unlike ensures, there is no requirement that the transition from p to ¢ take place in one
atomic step.

.pdetectsg=(p=>g}A (g p)

Property p can be used to determine that some, typically more complex, property g has been satisfied.

Figure 1: Notation used in the Swarm proof logic.

=

tributed simulation [5]. Consider a network of sequential nodes which can exchange messages over communication
links. Each node executes a sequence of actions. Each action consists of the retrieval of pending messages from
other nodes, the updating of some local data and the sending of messages 10 other nodes over the links, We assume
that the links are error-free. We wish to specify and design a distributed program which will simulate this system.

To avoid any confusion, we will limit the use of the terms “network” and “node” 1o refer to the simulated syslem,

. Initial Specification

To illustrate our methodology, we will be using an example that was inspired by previous work on dis-

and reserve the term “program” for the simulator.

12




4.1. State Representation

For specification purposes, it is convenient to assume an absolute global time. The predicate gelock(T) is
used to denote the fact that the current time is 7. The network’s state can be characterized in terms of the aciions
which are to be executed, the messages which are to be delivered, and the local stafe of each node. The following
predicates are used to represent this information:

state(P,G) The current data state of node P is o.

action(P,T,0) Action o will be executed at time 7at node P, We define the special action L to

be the halt action, i.¢., when action(P,t,L) is true, processor 7 is terminated.
Messages for a terminated process may not remain undelivered.

message(P.Q,T.u) A message from P to Q with content g will be delivered at time .

The predicates introduced so far define an abstract state representation for the program. Since not all staics
are acceplable, several invarianis are introduced which serve 1o constrain the state space in a reasonable way {all free

variables are assumed to be universally quantified):

FI: There is exactly one gclock value
mv.{XT:gelock(T) z1)=1

F2: Each process has a unigue state
inv. (X o:state(P,o):1)=1

F3: Each node executes one action at a time
inv. (¥ 1,0 : action{P7,0):: 1) =1

E4. Actions are never "in the past”
inv. action(P,1,00 A 00 # L A gelock(T) = T<1

Fs5: Message values are unique across the network
inv. message(P,Q,T,) A message(®. Q7' 1) = (PR =P eop=p)

F6: Messages are never "in the past”
inv. message(P,Q.7.10) A gelock(T) = T<t
An alternate, but equivalent, reformulation of F4 and F6 is useful:
F4' inv. action(P,t,a} A o # L A gelock(T) = T < (min P70 @ action(P' 7o) Aol 2 L i 1')

Fo': inv. message(P,Q,7,a) A gelock(T) = T < {min P,Q,7,0' : message(P',Q' v, 11 1)
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‘We say that an action is enabled when the system clock has reached the action activation time, and there are

no messages to be delivered at the current time. A processor is kalred if its action is L. Formally,

enabled(P,t,0) = action(P,1,00) A gelock(t) A { ¥V Q,u :: —message(Q.P Tl d A o % L

halted®) = {3 1 :; action{P,t,1) )

Since many details of the network’s computation are not refevant to the simulation program, we encapsu-

late themn using several functions assumed to be available (o the program:

u(P,o,1)

e(P,1,G6,0)

a(P,c,0)

c(P,Q,0,00)

1P,Q,1,0,00)

v({P,Q,0.00)

s(P,G,0)

returns the state of node P to when the absorption of a message 4 is absorbed in
state .

returns the ime when the action immediately following o will be exccuted given
that ¢ is executed on node P at time 7 in state ¢. The function e is strictly mono-
tonic with respect to the argument 7.

returns the name of the action which will be executed at node P subsequent 1o the
completion of the action & in state o.

is true if node P sends a message to node ( as a result of executing the action & in
state o.

returns the delivery lime for a message sent by node P 16 node Q as a result of exe-
cuting action ¢ in state 0. Because a message is sent at the completion of the ini-
tiating action, i(P,Q,1,0,0) must exceed e(P,1,0,0).

returns the contents of the message sent 1o node 0 by node P when executing the
action ¢ in state ¢.

returns the new state of node P resulting from executing the action ¢ in state o.

We now tumn our attention to the problem of describing the assumptions we make about the behavior ex-

hibited by the network to be simulated. As a means of organizing ourselves, we discuss valid changes (o the differ-

ent components of the network state separately. Properties involving several state components are discussed when

first encountered.
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4.2, Time

In the real world, time advances one unit at a time. If we impose this constraint in our specification, we
will make it impossible for the program to advance time in larger increments whenever there is no network activity
at any node. To avoid this unnecessarily strong condition, we will simply restrict time from moving backwards,

leaving the increment unspecified:

F7: gclock({t) unless {3 t': 7' = ©+1 :: gelock(t) )

This formulation also allows the movement of time [0 cease (because it is a safety property and not a liveness prop-
erty) when the simulation is “finished.”

4.3. Messages

Upon being created as a result of executing an action, a message travels through the network in some un-
specified manner untl its delivery timne (F9). Messages are delivered in arbitrary order (we consider a message deliv-
ered when it is deleted by the receiving processor), and the delivery of a message results in an alomic update of the
state of the recipient (F10). Messages can be created only by executing an action (F§, Fi1).

F8: Messages are only created by executing actions

action(P,7T,0) A { set Q,t".L : message(P,QT' ) sy =M
unless

—action(P,z,00) v { set Q,7',1L : message(P,Q T ) s nya M

F9: Messages exist until their delivery time
message(P,Q,7 1) unless message(P,Q,7.1) A gelock(t)

F10:  Messages are absorbed at the time of their delivery
message(P,Q,T,l) A gelock(t) unless —message(P,Q,t,11) A gclock(t)

F11:  Messages are not created at the current lime
—message(P,Q,7.1) A gelock(t) unless —gclock(t)

F12:  Messages exist until incorporated into the state of the receiving node
state{P,a) A gelock(t) A (set QL : message(QPL Wt wd=M A M = {}
unless
(3 {set Q' : message{Q.P.T,u) s ') = M-{p]) :: state(P,u(P,c,10)

4.4. Actions

Although it is simpler to think of actions as being atomic and instantaneous, they in fact have a duration

which should be modeled in the simulation. A simple way to capture this is to disallow the subsequent action from
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executing until the first is completed. This allows us to view an action as waiting for its execution time (F13,
F14). We require terminated nodes to remain so forever (F16) — and assume that messages whose delivery time co-
incides with the execution time of an action are absorbed before the action executes.

F13:  Anaction continues to exist until it is time to execute it
action(P,7,00) A ot # L unless action(P,t,a) A o= L A gelock(t)

Fl14:  Anaction continues to exist until it is enabled
action(P,7,0) A o= L A gclock(t)
unless
action(P,1,0) A ot # L A gclock(t) A {(V QUL :: —mmessage(Q.P.t,10) )
Fi15:  Anenabled action continues to exist until executed atomically
state(P,q) A enabled(P,7,00)
unless
action(P.e(P,c.00),a(P.c,00) A
state(P,s(P,o,0)) A
{V Q:c(P.Qu,0) i message(P,Q.I(P,Q,7.5,0),v(P,Q.5,00) )

Fl16: A terminated node remains terminated
stable halt(P)

4.5. State

The only events which can change the state of a processor are the delivery of a message or the execution of
an action. Note that these transitions have already been described (F12 and F15). All that remains is to forbid any
other changes to the state.

F17:  The state does not change in the absence of work to do
state(P,o) unless staie(P,0) A (3 Q,1,0.,1t : gelock(t) 2 enabled(P,t,0) v message(Q,P,T.11) )

4.6. Progress

The final section of the initial specification contains the liveness properties which describe the state transi-
tions which are required by the system. Only two progress properties are needed o describe the required state transi-
tions, messages must be delivered, and actions must be executed:

F18:  Messages must be delivered
message(P,Q,T,11) —» —message(P,Q,1.10)

F19:  Actions must be executed
action(P,T,a) A o # L+ —action(P,1,0)

16



Other aspects of the network’s behavior (such as moving time forward) are implied by combining these
progress properties with the earlier stated safety properties. For example, if an action has an execution time in the

future, then the clock must eventually move forward by properties F13 and F19.

This completes the specification of the network behavior. By carefully abstracting away irrelevant delails,
we are able to generate a specification which is both concise and clear.

5. Specification Refinement

In this section we refine the behavior specification up to the point where program generation becomes triv-
ial. No architectural constraints are considered at this point. The refinement process is guided by the need to dis-
cover a series of simple state transitions that realize the progress conditions. More specifically, most of the refine-
ments are involved with generating a precise specification of when and how the simulation clock should be incre-
mented. The steps used here are not generic but specific to the problem. We view program derivation as a creative

step, and not a mechanical substitute for design.

We use the notation

phkgq

to mean “g can be proves from the specification which results from replace ¢ with p.”

5.1. Add specificity to the processing of messages and actions.

The first refinement is suggested by properties F9-F10 and F13-F15, which characterize the life-cycle of
messages and actions into a series of state transitions. By combining this information with the progress properties
F18 and F19, it is clear that (1) messages must be held und! the time of delivery and no further; and (2) actions must
be held until all messages having delivery time equal to the start of the action have been processed, and the effect of

the action must be atomic.

Refinement. F18§ is replaced by
F18.1: message(P,Q,T,1) — message(P,Q,1,1L) A gelock(t)

F18.2: message(P,Q,7.1) A gelock(t) — —~message(P,Q,T.1) A gclock(t)

17



which are analogous to F9 and F10; F19 is replaced by
F19.1: action{P,T,00 A o # L — action(P,1,0} A 0. # L A gclock(t)

F19.2: action{P,7,0) A o = L A gclock(t)
H
action(P,7,00 A ct ¥ £ A gelock(t) A (V¥ Q, |L :: ~message{Q,P,7,1t) )

F19.3:  enabled(P,t,00) A state(P,q)

=

action{P,e(P,c,00),a{P,g,0)) A
state(P,s(P,G,00)) A
{(V Q:cP,Q.0,0) :: message®,Q,l(P,Q.7,5,0),v(P.Q,5,00) )

which are analogous to F13-F15.

Proof Obligations. We are required to show:
F18.1, F18.2 —F18

F19.1 A F19.2 A F19.3 t~ F19

The proof follows from the transitivity of the leads-to relation.

Refined Specification.

Safety:  F1-F17

Progress: F18.1, F18.2, F19.1, F19.2, F19.3

5.2. Decouple time movement from message and action processing.

The movement of time is required only by the presence of messages to be delivered and actions 1o be exe-
cuted. Properties F18.1 and F19.1 indicate this, but they couple the movement of time with the continued presence
of messages or actions. These two concerns may be decoupled very easily in light of the fact that F9 and F13 are

still part of this specification.

Refinement. F18.1 and F19.1 are replaced by:
F18.1.1: message(P,Q,T,1) > gclock(t)

F19.1.1: action(P,t,0}) A 0 # L > gclock(t)
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Proof_Obligations.
F18.1.1 —Fi8.1

F19.1.1 —F19.1
The proof is immediate from the application of the progress-safety-progress (PSP) rule [6).
Refin ification.

Safety:  F1-F17

Progress: F18.1.1, F18.2, F19.1.1, F19.2, F19.3

5.3. Place lower bound on time increment interval

There are two constraints on the mechanism by which simulation time is moved forward, and neither is re-
flected in F18.1.1 or F19.1.1. First, time must move forward in steps of at least one unit (by F7), and it cannot
move beyond the earliest time in which a message exists to be delivered (by F4), or an action 1o be executed (by F6).
The refinement is in two steps: in the first, we fold the lower bound into the progress properties. The second re-

finement, which adds the upper bound, is deferred until later, when the proof of its correctness is easier.

Refinement. Properties F18.1.1 and F19.1.1 are replaced by:
F18.1.1.1: message(P,Q,T.1) A gelock(T) AT < T~ (3 T : T' = T+1 :: gelock(T? )

F19.1.1.1: action(P,r,0) A 0t # LA gelock(T) AT < T { I T': T' 2 T+1 = gelock(T) )

F18.1.1.1 + F18.1.1
Proof outline. We can prove the following lemma using PSP with F9 and F18.1.1.1.
L1: message(P,Q,T.1t) A gelock(T) AT <1

[ 4
message(P.Q,T ) A (3T : T' = T+1 = gelock(T) ) v gelock(t))

Using invariant F§ with L1, we can prove L2:
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L2: message(P,Q,T.u) A gclock(T) A T < 1
H
message(P,Q, T ) A {3 T 12T 2 T+1 :: gelock(T) ) v gelock(D))
This is precisely the left-hand side of the induction principle for leads-to [6], where the well-founded metric is the

difference between the delivery time of a message and the current gelock. Thus, we have:

L3: message(P,Q,1.1) A gelock(T) A T < 171> message(P,Q,7.11) A gelock(t)

and

message(P,Q.t.1) A gelock(T) A T=1 = gelock(t)
from which we conclude F18.1.1. The proof for F19.1.1 is similar, (I
Refined Specification.

Safety:  FI1-F17

Progress: F18.1.1.1, F18.2, F19.1.1.1, F19.2, F19.3

5.4. Unify clock control

The similarity in the forms of properties F18.1.1.1 and F19.1.1.1 (and F4 and F6), suggests that messages
and actions play identical roles with respect to clock movement. This leads us to consider a refinement in which
each pair of properties is replaced by a single property which replaces them. The first refinement rewrites F18.1.1.1
and F19.1.1.1, the next handles F4 and F6.

Refinement 1. F18.1.1.1 and F19.1.1.1 are replaced by
F20: gelock(T) A (message(P.Q,T,11) v (action(Pz.o) A # I AT>T

H
(3T :T' 2 T+1 o gelock(TY) )

which is simply the disjunction of F18.1.1.1 and F19.1.1.1.

Proof ligati

F20 — F18.1.1.1
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F20 — F19.1.1.1

Proof Qutline. To show that F20 implies F18.1.1.1, we must prove that the left-hand side of F18.1.1.1 implics
the lefi-hand side of F20, and that the right-hand side of F20 implies the right-hand side of F18.1.1.1, both of which

are obvious by inspection. The second proof is the same.

Refinement 2. F4 and F6 (or F4' and F6') are replaced by
F21:  imv. ({action(P,7,ct} A 0. # 1} v message(P,Q.T,11)) A gelock(T) = T <1
F21" inv. ((action(P,z,00) A ot # 1) v message(P,Q,1,10)) A gclock(T)

=
T 2 {(min P,Q',7"c' )t : (action(P,7,0) A &t = 1) v message(P,Q,T,11) = T )

Proof_Oblizations.
F21 +—F4

F21H+F6

The proof for the refinement of F4 and F6 is immediate.

Refined Specification.

Safety:  F1-F3, F5, F7-F17, F21

Progress: F18.2, F19.2, F19.3, F20

5.5. Refine mechanism for message delivery

Property F18.2 requires only that messages be delivered before time moves forward, but does not provide
any hints into the delivery mechanism. Property F12 provides the necessary insight, in that it requires that mes-
sages be delivered and absorbed in a single atomic step. This suggests the obvious refinement of replacing F18.2

with a progress property having the same form as F12.

Refinement. F18.2 is replaced with
F18.2.1: gelock(t) A { set Q,p' : message(Q.PT,U) W Y=M A M 2 {] A stale(P,5)

>
(T p:(set Qu': message(QP,r,) i 'y = M-[1t) = state(P,u(P.o.u)) )
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F18.2.1 b~ F18.2.
Proof Oufline. The proof makes nse of the induction principle for leads-to, where the well-founded set is the

set of messages which remain to be delivered at the current time. The induction principle requires that we prove the

following lemma, which implies F18.2:

L4: gclock(z) A message(P,Q,T,10) A
{set PLQ'.1' : message(P . QT ) AL Ep L Y=M
'_)

(gclock(t) A message(P,Q,T, ) A {set PLQ' 1" : message(P,Qt ) all= 1 'Y M) v
{gclock(t) A —message(P,Q,t,1))
By applying PSP to F18.2.1 and F10, we can conclude the following:
gelock(T) A {set Q' : message(Q' P, ' )=M A M = {} A stae(P,0) A
message(P,Q,T,10)

[
({3 m :(set Q' : message(Q' P10 11 W'Y = M-{m]} = state(P,u(P,o,m)) } A
message(P,Q,T. 1t} A gelock(T)) v
—message(P,Q,7,11) A gelock(t)
Reformulating the properly to emphasize the form of the sels over their content, plus some math (o remove redun-
dant terms, we get the following:
gelock(t) A message(P,Q,T,1) A {set Q'u' : message(Q Pt} 'Y =M A M # [} A state(P,o)
[RN
(gelock(t) A message(P,Q.T.1) A { set Q' : message(Q,Pt ) 'Y M) v
(—message(P,Q.t.1) A gelock(t))
Since F2 requires that there is always exactly one o for which state(P,o) is true, and since ¢ does not appear any-
where else in the property, we can apply the general disjunction rule for leads-to to remove state(P, ) from the lefi-
hand-side, giving:
gelock(t) A message(P,Q,T,1) A (set Q11" : message(Q Pt ) i y=MAM = {}
>

(gelock(t) A message(P,Q,T.14) A {set Q' : message(Q.PT ) = 'Y M) v
(—message(P,Q,t. 1) A gelock(t))

Finally, observe that

message(P,Q,T,1) = (set Q' : message(Q Po,u) 'Y= {)
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which allows us to remove the M = {} disjunct from the lhs, giving
gclock(t) A message(P,Q,T,1) A { set Q)" : message(Q' Pl y=M
-

(gclock(t) A message(P,Q,t.1) A (set PLQ'1' : message(P',Q't.u) )M v
(gclock(z) A —message(P,Q,1,11))

Which implies L4, ]

Nofe. We can also use L4 to prove another result:

Ls: gelock(t) k> ( ¥V P,Q,ut :: —message(P,Q,T.1) )

L5 implies F19.2 (by application PSP over L5 and F14), which can therefore be dropped from the specification.
‘The proof of L5 also uses the induction principle for leads-to, this time over the size of the set of messages, as op-

posed to its content. From L4, we can conclude the following:

L6: gclock(z} A { 2 P,Q,it : message(P,.Q 1) s 13=MAM>0
>
gelock(t) A ( 2 P,Q.1 : message(P,Q,T,1) = 1) <M

using the general disjunction theorem for leads-to. To complete the proof that L4 implies 1.5, we must be able to

show the following:

L7: gelock(T) A ( X P,Q,1 : message(P,Q Tl 1)=M
[N
(gelock(t) A (X P,Q.1 : message(PQ,T,10) 2 1Yy < M) v
{V P,QL :: mmessage(®,Q7.10) )

The result follows immediately from L6 and

gelock(z) A (2 P,Q.u : message(P,Q,t,u) : 1 )= 0= gelock(t) A {V P,Q,u :: —message(P,Q,T.0) ) [

Refin ification.

Safery:  F1-F3, F5, Fi-F17, F21

Progress: F18.2.1, F19.3, F20
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5.6. Add upper bound on time increment

‘We are now in a position to perform the second refinement suggested in section 4.3. While F20 provides a
lower bound on the time increment (namely 1), it does not include the upper bound. Such an upper bound is pro-
vided by F21, since the time may never exceed the earliest message or action time. By folding F21 into F20, the
progress property expresses all the constraints on the clock movement, which is convenient when the lime comes 1o

write the abstract program.

Refinement, F20 is replaced by F20.1, which requires that the clock move forward whenever the earliest work 10

be done 18 in the future.

F20.1 gelock(Ty A
(message(P,Q,t".1) v (action(P,7.0) A 0t L)) A
t={(min P,Q,T"u,a : message(P,Q,T",u) v (actionP,T o) Aot L)) :: T' Y A
T>T
—
(3T :t2T = T+1 :: gelock(T) )

Proof ligations.

F20.1 — F20.

Proof Quiling. From L5 (and an analogous property over actions, the proof of which is omitted), we can see
eventually the system reaches a state in which there are no messages or actions for the current time, That is, we

have the property:

L.8: gelock(T) — (V P,Q.u i —message(P,Q, T} ) A (V P,ot : —action(P,T,o) v o= 1)

F21 thus implies that the minimum activity is in the future, and from F20.1, the clock must move forward, Since

The left-hand side of F20 implies the left-had side of L8, we have F20.

Refin ification.

Safety:  F1-F3, F5, F1-F17, F21

Progress: F18.2.1, F19.3, F20.1
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5.7. The Final Specification.

At this point, the three progress properties describe transformations which can easily be considered atomic,
which was our goal in the refinement process. The complete specification is reproduced below.
Fi1; inv. {X T:gclock(D 1 1)=1
B2: inv.(Zo:sae@Po)uly=1
F3: inv, (¥ 1.0 action(P,1,0) 1) =1
F5: inv. message(P,Q,T,1t} A message(P,QT W) A PO = F.QN = u=1
F7: gclock(t) unless (I 7': 7' 2 t+1 11 gelock(t) )
F8: action(P,7,00) A {set Q7,1 : messageP, QW) Uy =M
unless
—action(P,t,0) v { set Q, 7' : message(P,Qt W) udc M
Fo: message(P.Q,t,11) unless message(P,Q,1.1) A gclock(t)
F10:  message(P,Q,t,1} A gelock(t) unless —message(P,Q,T.1) A gelock(T)
F11:  —message(P.Q,T.1t) » gclock(T) unless —gclock(t)
F12: state(P,c) A gelock(t) A {set Q.0 : message(QP T ) = uy=M A M # {}
unless
(3 (set Qu' : message(Q.P,T,1n) - W)= M-{1] :: state(P.u(P,o,n)) )
Fl13:  action(P,1,0} A 0 # | unless action(P,T,0) A o # . A gelock(t)
F14: action(P,; 1,0} A o 2 L A gclock(t)
unless
action(P,1,0) A 0= L A gelock(t) A (V Quu i —message(Q.P,T1) )
F15; state(P,6) A enabled(P,7,00)
unless
action(P.e(P,c,0),a(P,0,00)) A
state(P,s(P,c,0)) A
(V Q:¢(P.Qo,0) :: message(P,Q1(P,Q.1,0,0),v(P,Q,0,0) )
Fl16:  stable halt(F)
F17: state(P,o} A gelock(T)
unless
state(P,0) A {3 Q,v",0.1 : gelock(z’) i enabled(P,T',00) v message(Q,P,tu) )
F18.2.1: gclock(t) A { set Q, : message(Q.P,T,1) m ) =M A M= {} A state(P,G)

o ]
(Fp:{set Qu' : message(QPT.U) ' y=M- {1} : stae(PuP.o.u) )
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F19.3:  enabled(P,1,0} A state(P,5)
Haction(P,e(P,G,a),a(P,c,a)) A
state(P,s(P,o,00) A
{V Q: c(P,Q,0,0) :: message(P,Q,J(P,Q,1,5,0),v(P,Q,5,00) )

F20.1 gelock(T) A
{message(®,Q,7" W) v (action(P,T,0) A0 # L)) A
T=(min P,Q,T" o : message(P,Q,T" 1} v (action(P,T o) A= L)) = T" Y A
T>T
=
(AT :t2T 2 T+ = gelock(T?) )

F21: inv.
((action(P,1,0) A 00 L) v message(P,Q,T,1L)) A gclock(T)
)
T <{min P,Q"7," 0" : (action(P,7,0) A o # L) v message(P,Q,T,1) 2 T)

5.8. Abstract Program

The three progress properties (F18.2.1, F19.3, and F20.1) suggest an abstract program having three Lransac-
Lion types: one to execute actions, one to move the clock, and one (o deliver messages. The remainder of this sec-
tion gives these transactions. Informally, each transaction consists of two subtransactions, one 10 establish the re-
quired progress condition, and one to continue the computation. The transactions are given without proof.
Accompanying each transaction is a list of the properties which directly constrain its form, and which are therefore
likely to be affected directly by any refinement of the ransaction. We make use of these characteristic properties in
the program refinement stages as a heuristic for reducing the amount of formal proof required. Note that this does
not imply that it is not necessary to prove that the transaction satisfies the property, but rather that the proof can be
deferred until the program refinement process is completed, since the refinements are unlikely 1o invalidate the prop-

erty.

Property F18.2.1 requires that a messages with a delivery time equal to the current simulation time be in-
corporated nto the state of the destination processor., We implement this as a global transaction of type gdeliver,
which does this work for all messages at all procassor.

gdeliver=
PQ1.p0o:

gclock(t), state(P,), message(Q.P,1,10) —» message(Q,P,t. )i, state(P,o)t, state(Pu(P.o.1))
i TRUE — gdeliver

The characteristic properties for this transaction are F2, F9, F10, and F12.
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Property F15.3 requires that the execution of an enabled action result in the atomic update of the processor's
local state, the creation of the next action, and (possibly) the sending of messages (o other processors. To accom-
plish this, we introduce a transaction type fask, having the same form as action. with the obvious relationship:

F22:  inv. [task(P,7,0)] <> action(P,T,00)

Because this transaction affects the entire abstract state, it is necessary to verify that it violates none of the safety

properties of the specification. A brief perusal of the specification identifies F2, F3, F13, F14, F15, and F16 as the
characteristic set for this transaction.

task(P,z,01) =

o:

a# L, gelock(t), (V Q. :: —message(Q,P,T,10) ), state(P,o)
ﬁ

task(P,e(P,o,0),a(P,5,0)),

state(P,o)1, state(P,s(P,5,00)),

{Q:c(P,Qo.0) : message(P,Q,I(P,Q.1,6,0),v(P,Q,0,0)) )
I NOR — task(P,7,0)

Finally, property F20.1 requires that time move forward when all the work 1o do is in the future. This is
accomplished by introducing a transaction of type grick which examines the global system state and moves the clock

forward when there are no tasks or messages to be processed at the current time.

gtick =
T,T:
gelock(T),
(¥ P,Q,t.o. : message(QPT.0) v (task(Pr.o) Az L) T>T),
T+1 < T < {min P,Q,7,0,0 : message(Q,P,T,1) v (task(P,r,o) A= 1L) 1)
_)

gelock(THt, gelock(T")
I TRUE —» gtick
As with the other transaciions, there is no need to prove that this transaction satisfies most of the safety properties.
In particular, we need only provide proofs for properties F1, F7, F10, F11, F14, F15, and F21.

6. Architecture-Directed Program Refinement

The abstract program definitely solves the simulation problem. However, the widespread use of global data
items makes it unsuitable for implementation on any truly distributed architecture, Qur refinement methodology

now turns to address this problem. In the next two sections, we give formal descriptions of the constraints imposed
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on programs by two example architectures, and then use these constraints to derive a solution specifically tailored to

each architecture.

6.1. Consensus Bus

Our first example architecture is a classic distributed memory message-passing architecture with a special-
purpose device which makes it particularly well-suited for use in distributed simulation. The target machine consists
of a number of identical components called sites. Each site 4 contains a controller £, a processor ¢, and two memory
units, r (registers) and m (main memory). We assume that all entities in the physical system are assigned distin-
guishable identifiers which we can use to refer to each component, and let / denote the set of site identifiers. The
sites arc connected by a data bus D and a consensus bus C. Both the controller and the processor are sequential ma-
chines capable of executing one operation at a time. At each site, the two processing units run asynchronously; that
is, they do not share 2 common clock. The registers are used to allow the controller and processor at a single sile 10
share a limited amount of data. Reads and writes to the registers are atomic. Figure 2 shows a stylized representa-

tion of a single site.

The data bus is the primary mechanism for sharing information between sites. This bus connects the pro-
cessors and main memories from all sites, creating a limited form of distributed shared memory. Using the data bus,
processors can write to, but not read from, memories at other sites. In a sense, the data bus implements a message-
passing channel which allows processors to pass data amongst themselves by leaving messages in mailboxes. The
local memories can be read only by the processor at the same site, no other memory accesses are permitied. In par-
ticular, the controllers cannot access the main memories, and the register units can only be accessed by the process-

ing units at the same site. All accesses to the main memories (both reads and wriles) are alomic.

The consensus bus is a specialized hardware device which allows all the controller elements to share a Hm-
ited amount of information in the following manner. Logically, during the execution of a single step, the con-
trollers at each site provide to the bus a data value. The consensus bus computes a hardwired [unction of these val-
ues, the result of which is then provided to the controllers and can be used in the remainder of the siep. The result is

a synchronous, lock-step execution by the controllers.
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Figure 2: One site of the postulated architecture.

Allocation Constraints. Now, we can define formally a site A as a five-tuple consisting of the site
identifier A.id and the identifiers for the individual hardware components associated with the site: a controller ik, a
bank of registers i.r, a processor /e, and a memory Am. H is the set consisting of all sile identifiers. We aiso in-
troduce the set K of controller identifiers, the set R of register identifiers, the set E of processor identifiers, and the
set M of memory identifiers. Since each hardware component belongs to one and only one site we find it convenient

to introduce a function:

sitt : KURUEUM—->H

which given the identifier of a component, returns the identifier for the site to which the component belongs.

We now consider formally the constraints on allocation of programs and data to sites. For this purpose, we
can introduce a predicate locus(i j), where i is from the set of transactions or the set of tuples, and j is from the set of
identifiers for hardware components. The predicate locus(i,j) is irue if the dataspace element 7 is allocated to compo-

nent j, and is initially restricted so that transactions are mapped to processing units, and data tuples to memory units:

te TRS A locus(ti) =ie EuK
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ve TPS A locus(v,i) =ie RuM

This very general definition of the locus predicate can be further constrained to reflect the specifics of the
simulator hardware. In the present case, the sequential nature of the processing units constrains the allocation of
software to hardware, allowing at most one transaction o be present at any time on each of the processing units:

Cel:  inv. )] A [t2] A t] 21t A locus(ty,iy) A locus(in,iz) = i) = ip

(The notation [¢] means “the transaction instance ¢ exists in the dataspace.”) Also, because the processors run asyn-
chronously with respect to the rest of the system, transactions which are placed on them cannot be part of any syn-
chronic group containing transactions allocated to other processing units:

Ce2: inv.[t1]Aaltpl Aty 2o A locus(tdaie E= = (t =1p)

Finally, since controllers execute synchronously, transactions which are placed on them must all be part of the same

synchronic group.

Cc3:  imv. [4] A lto] A docus(lip) Al e KA locus(tpiz) alpe K= =1y

Access Restrictions. We turn now to the constraints on memory access by transactions. In particular,
we wish to constrain the locations of reads and writes made by transactions. Qur approach is 1o introduce auxiliary
tuples which record the reading or writing of a variable by a program running on one of the processing units, We
can describe the read/write constraints in terms of invariants over two auxiliary tuples, raccess(i,j) and waccess(i j),
where ie KU E,andje KURUE UM (we include the possibility that a transaction is read or written).
The presence of one of these tuples in the dataspace indicates that a transaction with locus # has read (or written) an
entity with locus j. To prove that a transaction satisfies one of these constraints, all subtransactions are augmenied
to insert an raccess tuple whenever a tuple appears in the query of the subtransaction, and to insert a waccess tuple
whenever a tuple appears in the action. The access constraints can now be expressed in lerms of three invariants.

Ccd:  Transactions on the processors can only read from memories located at the same site
inv.ie E araccess(ij) = je R u M A site(i) = site(j)

Cc5:  Transactions on processors can write (o any memory, 1o regisiers al the same site, and to the pro-

cessor itself (to change execution state)
inv.ie E A waccess(i,j) = je M v (j € R U E a site(i) = site(f))
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Cc6:  Transactions on controllers can read and write only registers at the same site or the controller itself

inv.ie K A (raccess(i,j} v waccess(i,j)) = j € K U R A site(i} = site(j)

Consensus bus. The consensus bus is actually a specialized device which synchronizes the execution of
all controllers. Additicnally, at each step the bus accepts a boolean value from each controller and returns (o all con-
trollers the result of applying the logical and across all the boolean values received. There are two reasons for intro-
ducing the consensus bus in our illustration. First, from a practical viewpoint, such a bus is easy 1o construct and
matches the needs of the simulator. Second, from a pedagogical perspective, the bus allows us to illustrate the for-

malization of a highly specialized device and the expressive power of the synchronic group construct in Swarm,

Returning to the formalization of the constraints imposed by the consensus bus, we take advantage of the
built-in consensus feature associated with synchronic groups. It allows us to reduce the effect of the consensus bus
to restricting transactions allocated to the controllers from using any of the special queries except for AND and
NAND (and of course, TRUE). To accomplish this, we augment each subtransaction on controller £ that uses
OR (or NOR), e¢.g.,

I : OR, guery — action

$0 as to insert an auxiliary tuple that records the improper use of the consensus bus, i.e.,

I : OR, query —» action, invalid_consensus()

and add the foliowing proof obligation:

Ce7:  imv. —invalid_consensus()

We rely here upon Cc3, which requires all transactions allocated to controllers to execute synchronously, allowing
us to make use of the Swarm consensus mechanism. This formulation is in fact stronger than a syntactic restric-
tion; for example, if the query associated with the OR always evaluates Lo false, we can prove that no improper use

of the consensus bus takes place in spite of the fact that the syntax alone suggests otherwise.

The formalization of architectural constraints clearly depends upon the computational model being used.
The fact that Swarm already provides a form of built-in consensus makes the formalization trivial. This does not

mean that our assertional method would be inappropriate otherwise, but it does mean that the formalization, by ne-
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cessity, would be more complex. In the absence of the built-in consensus, auxiliary tuples would be needed to keep
track of the booleans supplied by each controller and the values returned by the bus. The relation between these val-

ues would, of course, be constrained by an appropriate invariant.

Initial Mapping. We now return to the task of mapping the abstract program onto this architecture.
Obviously, not all of the abstract program's state can be allocated without violating the architectural constraints,
This fact will drive the derivation process as we move to resolve those allocation decisions which cannot be made at
this point. Nevertheless, certain allocations are required by the nature of the architecture; for example, the task
transaction must be allocated to the processors as the ¢asks at each processor must run asynchronously, the proces-
sor's state should be placed into the processor's local memory, and messages which must be sent from one processor
to another, should also be allocated to memories.

Acl:  inv. locus(task(P,t,0)i) = ie E

AcZ:  inv, locus(state(P,6),i) > ie M

Ac3:  inv. locus(message(P,Q, )i =ie M

Ac4:  inv. locus(state(P,0),i1) A locus(task(P,T,0),i) = site(iy) = site(is)

AcS:  inv. locus(message(Q,P,7,1),i1} A locus(task(P,1,ct),ip) = site(i1) = site(is)

Note that this allocation satisfies Cc1-Cc2 for the entire abstract state, and that Ce3, Ce6 and Co7 are sat-
isfied vacuously (since no transaction is allocated to the controllers). However, there is no allocation of either gdle-
liver or gtick that satisfies the requirements. Obviously, neither can be placed on the processors without violating
Cc1, and allocating them to the controllers would violate C¢6, since each needs access to information located in the
site’s main memory. Further, the gelock tuple cannot be allocated to any memory or register bank, as it must be

read by every processor, violating either Cc4 or Cc6. The remainder of the refinement process is guided by these

failures.

Allocate gdeliver. The problem of resolving the allocation of gdeliver is most easily solved, so we ad-
dress it first. Since the work done by the transaction is clearly local, the obvious solution is to distribute the pro-

cessing to each site, introducing a local deliver transaction, with one copy of the transaction for cach node.

Refinement. The gdeliver transaction type is replaced by a deliver transaction type, formed by paramelterizing gde-

liver with the node id, as follows:
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deliver(P) =

Q.tno:
gelock(t), state(P,o), message(Q,P,7,1) — message(Q.P, 1,11, state(P,o)t, state(P,u(P,o.1t))
I TRUE - deliver(P)

We require that there be a deliver transaction for each processor, i.e.,

Ce8:  inv. (3 Q.o (action(Q,1,0) A o # L) v message(Q,P,t,u) Y = deliver(P)*
This formulation requires that a deliver transaction exists if there is the possibility of any new messages appearing in
the future, while allowing the program to terminate when the simulation is complete. Additionally, we introduce

further refinements on locus to guarantee that the transaction satisfies the access restrictions (Cc4 and Cc5):
Ac6t:  inv. locus(deliver(P),i) = i€ E
AcT:  inv. locus(deliver(P),iy) A locus(task(P,1,0),in) = site(iy) = site(ia)

Re-Verification Obligations. All the safety properties associated with gdeliver (F2, F9, F10, F12, or
F18.2.1) continue to be satisfied, since no new state transitions are introduced by this refinement. The progress
property (IF18.2.1) also continues to hold. This can be seen by observing that any transition which would have been
made by the global transaction will be performed by one of the local transactions (specifically the one assigned 1o the
destination site); and since the local transactions are always re-created, the statement needed to make the transition

always exists.

Outstanding Violations. This allocation violates Ccl as task is already allocated to the processor, but we will

deal with this violation later. Additionally, neither gelock nor grick can yet be allocated.

Allocate gelock(T). We now turn to the problem of allocating the clock. Since task reads gelock, Cod
applies, requiring that gclock be located on every processor which has a task, and that the wple be located in either
registers or memory. This suggests that a local clock should be maintained at each site, with all clocks running in

lockstep,

Refinement. We introduce a tuple of type clock, with one tuple for each node. The wple replaces the gclock tu-

ple type. All three transactions must be re-written to make use of the new data representation.
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task(P,t,a) =

G:
o # L, clock(P,t), { V QL :: —message(Q.P,T,1) ), state(P,5)
._..)
task(P,e(P,0,0),a(P,0,0),
state(P,0)1, state(P,s(P,o,x)),
( Q M C(P,Q,G',C(,) - meSSBgG(P,QJ(P»Q»T;U,a)sV(P,Qac,C’v)) )
I NOR — task(P,7,00)
gtick =
P.T, T :
clock(P'.T),
{V P,Qr,0.l : message(Q,P,T,1) v (taskPro) Az L) Tt>T),
T+1 < T'< {min P,Q,1,00,1 : message(Q,P,7,11) v (task(P,r,o0) A% 1) 1)
_)
{P: P e nodes :: clock(P,T)t, clock(®,T" )
I TRUE — gtick
deliver(F) =
Q.T.U.0:
clock(P.7), state(P,0), message(Q,P,7,u) — message(Q.P,7,u)1, state(P,0)T, stale(P,u(P,a,u))
I TRUE — deliver(P)

We introduce the obvious requirements that there be exactly one clock for each processor, and that all clocks carry the

same time.
Ce9: inv.(XT:clock(P,T)::1)=1
Cel0: inv. gelock(T) ={ ¥ P :: clock(P,T) )

Additionally, to resolve the violation of Cc:4 by task and deliver, we must allocate the clock tuple to either registers
or memories at the same site as the two transactions. That is, we introduce the following additional restrictions on

locus :
AcB:  inv. locus(clock®P,T,i) =ie MUR
AcY:  inv. locus(clock(P,T),i1) A locus(task(P,1,0),ip) = site(i1) = site(iz)

Re-Verification Obligations. The transactions fask and deliver are actually unafTected by this transformation
since gelock(T) = clock(P,T). As far as grick is concerned, it clearly satisfies Cc 10, and consequently, all other be-

havioral obligations. Additionally, we can now show that the task and deliver ransactions access only local data.

Outstanding Violations. Both task and deliver now satisfy all architectural constraints except for Cel. grick

cannot be allocated without violating one of Ccd-C6.
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Allocate grick. As we turn to address the problem of allocating gtick, note that the “V™” in Lhe query
suggests using the consensus bus, so an allocation to the controllers is proposed. With this in mind, we iniroduce a

distributed processing scheme, with one tick transaction at each site,

Refingment. The refinement is presented in two steps. First, we present a formulation with a separate subtransac-
tion for each processor F. Each subtransaction checks locally for work to be performed. The global check is then
done using an AND special predicate query, which succeeds only when each of the local subtransactions succeed
(that is, all the work at each site is in the future). Additionally, we must select a time increment that does not vio-
late F21. Since we cannot pass any additional information between controllers, and since all sites must have the
same time value, I is the only reasonable choice.,
gtick =
{ HP:Pe nodes:
T : clock(P,T), ( V Q..o : message(Q.P,T,11) v (task(P,T,0) A v 2 L) =t > T ) — skip
I T:AND, clock(P,T) — clock(P,T)t, clock(P,T+1)

)
' TRUE — gtick

Now we can separate the grick transaction into a collection of local, synchronous fick transactions, one for each pro-
cessor, with the AND special query computed by the consensus bus. The parameter to the local wransaction is the £
from the subtransaction generator. This transformation retains the semantics of the previous transaction, since the
individual tick transactions are in the same synchronic group. This gives us the following definition for the new
ransaction:
tick(P) =
T : clock(®,T), { V Q,7,0.4 : message(Q,P,7,1} v (task(P,T,0) A o= L)1 7> T ) — skip

i T:AND, clock(P,T) — clock(®P,T)t, clock(P,T+1)

I TRUE — tick(P)
To maintain the invariant that all clocks have the same value, we must require that, if any tick transaction remains
in the dataspace, then all transactions remain, i.e.,

Cell:  inv. tick(P) <> tick(Q)

Since we make use of the consensus bus, we will need to allocate the transactions to the controllers:
Acl0:  inv. locus(tick(P),i) = ie K
Acll: inv. locus(tick(P),i1) A locus(task(P,t,00).ip) = site(iy) = site(ip)
Ccl2:  inv. tick(P)~tick(Q)
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Finally, since the tick transaction reads and writes the clock tuple, that tuple must be atocated to the registers, al-

lowing us to refine the locus of clock further:
Acl2: inv. locus(clock(P,T),) =ie R

Re-Verification Qbligations. Because the combination of #ick transactions is functionally equivalent to the

original gtick, no re-verification is required.

Outstanding Violations. We are left with a violation of C¢6 by tick, since it must delermine the existence or

non-existence of messages and tasks, neither of which are allocated to the registers. The violations of Cc1 by task

and deliver are also outstanding,

Detecting absence of work. To remove the violation of Cc6 by tick, we introduce two new wple
types, allocated to the registers, which contain sufficient information to allow #ick to detect that there is no remain-

ing work to be done at a site at the current time,

Refinement. We introduce the tuple types event(P,7) and no_msg(P), having the meanings “the next task 10 ¢xe-
cute for node F is at time 7,” and “there are no remaining unabsorbed messages for node P at the present time,” re-

spectively.
Acl3: inv. locus(event(P1),) = ie R
Acl4: inv. locus(event(P,t),i1) A locus(task(P,t,0),i0) = site(i;) = site(ip)
Acl5:  inv. locus(no_msg(P)i) = ie R
Acl6:  inv. locus(no_msg(P),i1) A locus(task(P),in) = site(i) = site(ip)

The task transaction maintains the event tuple, while deliver and fick cooperate to update no_msg.

task(P,7,0) =

G:
o % L, clock(P,7), no_msg(P), state(P,o)

%
event(P, 01,
task(P.e(P,0,0),a(P,0,0)), (: a(P.5.0} = L :: event(P.e(P,5,00) ),
state(P,0)7, state(P,s(P,0,00),
(Q:cP,Q.0.0) it message®,Q,1(P,Q,1,0,0),v(P.Q,5,0)) }

i NOR — task(P,7,00)

tick({P) =
T : clock(P,T), no_msg(P), —event(P,T) — skip
Il T:AND, clock(®P,T) — clock(P,T)t, clock(P,T+1), no_msg(P)}
I TRUE— tick(P)
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deliver(F) =
Q.T.),0:
clock(P,t), state(P,0), message(Q,P,T.1) — message(Q.P,T,)T, state(P,0)t, state(P,u(P,c.1L)
I t:clock®,1),{V QH :: —message(Q,P,T,)1) ) — no_msg(P)
I TRUE — deliver(P)

Re-Verification Obligations. We must show that the new forms of each transaction satisfy the corresponding

characteristic properties. We can also show that there are now no access violations by tick.

Proof Outline. To prove the functicnal correctness of this refinement, we must show that the new representation
carries the same semantics as the original. In particular, we must show that fick cannot incorrectly detect the ab-
sence of work. This can be accomplished if the refined transactions maintain the following invariants, which equate
the two data representations:

Cel3: inv, event(P)={(3J o : taskPr,o) sz L)
Ccl4: inv. no_msg(P) A clock(P,1) = (V Q,u :: —message(Q.Pt,1n))

The truth of these invariants is clear from the text of the transactions. Since the no_msg tuple is removed by tick

when the clock is advanced (to maintain Cc14), we require a progress property that guarantees that the removal of

the last message for a node results in the re-insertion of no_msg. That is, we require:
Ccl5: no_msg(P) detects clock(P,1} A { ¥ Q1 ;1 —message(Q,P,t,1L) )

This property follows immediately from the invariance of C=14 and the text of deliver,

Qutstanding Violations. Only the violation of Cc1 by task and deliver is outstanding,

Satisfy uniprogramming requirements for processors. Since the deliver and task transactions
require access to both the registers and memory at a site, both must be allocated to the processors. However, at most
one transaction can be present on any processor. To satisfy Cc1, we must combine these 2 transactions in some
way. This can be done either by combining the two transactions into a single transaction that does both, or by al-
ternating them. We opt for the latter, since this more closely reflects the approach that might be used in a traditional

programming language.
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Refinement. We modify task and deliver as follows:

task(P,7,0) =
G:
o # 1, clock(P,1), no_msg(P), state(P,q)
._)
event(P,1)7, deliver(P.aP,o,00), { : a(P,0,0) # L :: event(P,e(P,o,0)) ),
state(P,0)1, state(P,s(P,0,00)),
{Q: c(P,Q,0.0) :: message(P,Q.1(P,Q,1,6,0),v(P,Q,0,0)) )
I NOR — task(P,t,0)
deliver(P,o) =
Q.16 :
clock(P,7}, state(P,c), message(Q,P,7, 1)
._)
message(Q.P,t, 1)1, state(P,0)t, state(P,u(P,o,1)), deliver(P,0)
f NOR — no_msg(F)
I ©:NOR, clock{P,1), event(P,1) — task(P,t,00)
I T,7:NOR, clock(P,1), ((event(P,T) A T# 1) v o = L) > deliver(P,0)

with the additional requirement that only one of the two transactions is present at any given time:
Cel6:  inv, —(task(P,T,00) A deliver(P,aN)

We have added a parameter to deliver 1o keep track of the action which should be performed when all messages have

been delivered. There is no need to include the time of the next action, since (hat is already available from the event

tuple,

Proof Obligations. This transformation does not affect any of the safety properties to be satisfied by task and de-
liver. We must, however, show that the transactions satisfy F18.2.1, the progress property which was previously

satisfied by deliver, and F19.3, the progress property for task. Finally, it is obvious that the new transactions sat-

isfy Ccl and, therefore, all architectural constraints are met at this point.

Proof Oufline. To prove that messages are eventually delivered (F18.2.1), we must show that if there is a mcs-

sage to be delivered at the current time, then there is a deliver transaction to process it, that is

inv. clock(P,7) A message(Q,P,t,n) = (3 o :: deliver(P,o) )

This invariant can be verified by examining the program text: deliver does not move the time nor create messages;

tick does not create messages, and only advances the time when there are no messages and no rask; and once a fask is
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execuied, it creates the next deliver transaction, with all messages being in the future. Since the new form of deliver

clearly performs the necessary state transitions, then we have F18.2.1.

Additionally, we must show that if there is an event scheduled at any given time, there will eventually be a task

transaction to perform it, e.g.,

event(P,1)} until task(P,1,00)

The unless is clearly maintained by the entire program, and the leads-to is established by the third subtransaclion

of deliver.

This completes the derivation of the simulation program for execution on the consensus bus architecture.
To simplify the presentation, we did not consider the problem of termination, although it should be clear that the is-
sue could have been addressed at the expense of slightly more complex formulations of some properties, We now
turn our consideration to solving the problem on a very different architecture, to show the flexibility of this ap-

proach.

6.2. Ring

Our second example architecture is a traditional ring. The nodes in the ring are multiprogrammable, general
purpose processors containing a local memory. Each processor is assumed to have a unique identifier from the set
{ 0..N-1}, where N is the size of the ring. Identifiers are assigned sequentially around the ring. The nodes on
the ring are connected by one-way, asynchronous communication channels (communication is clockwise around the
ring). This is a true distributed memory architecture, so a process can only directly read from its local memory. We
model message passing as writes by one processor to another processor's memory; because communication proceeds
clockwise around the ring, a processor can write both to its local memory, and to the memory of the process 10 ils
immediate right in the ring. ‘We assume that all memory accesses are atomic. To simplify discussions about the
ting, we introduce two definitions.

right(Py= (P+1) mod N

R twixt P,Q)=(P>QAPSR<NVOSR<Q)v(P<QAPLR<Q)
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Allocation Constraints. As with the consensus bus, we will express the mapping of program ele-
menis to hardware using the predicate locus(i j), having the meaning that the transaction or taple { is 10 be allocated

to the processor with identifier f.

Access Restrictions. We introduce two auxiliary tuple types raccess(i,j) and waccess(i,j} to record reads
and writes. Both i and j are integers in the range 0..N-1, and have the meaning that a ransaction resident on node /
of the ring has read (or written) a tuple or transaction on node j. The informal access constraints can be formally ex-
pressed using two predicates over (hese auxiliary tuples.

Cprl: inv, raccess(i,j) = 1i=j

Cr2:  inv. waccess(i,j) = 1= v j = right(i)

Additional Restrictions. The only additional constraint introduced by the ring architecture is the re-
quirement that the nodes execute asynchronously. This can be succinctly stated within the Swarm notation using the
= notation, as:

Cr3:  inv. [t1] A [t2] A locus(ty,ig) A locus(ty,in) A i) #ip = —(t; = (g)

Initial Mapping. Very little of the abstract program's initial state can be allocated without further re-
finement. While we can be certain that we want each processor's local state 10 be allocated (o the same location as
the task ransaction (Ar 1), no other decisions are possible.

AgRl:  inv. locus(task(P,7,a},ij) A locus(state(P,6)is) = i) = in

Several problems are immediately obvious. First, gelock cannot be allocated to any node in the ring, since
its value is read by every task. Further, neither of the global transactions (gdeliver and gtick) can be placed until
gclock is dealt with. Finally, the restriction on writes (CRr2) makes it impossible for a transaction 10 send a mes-
sage to any transaction allocated to a processor other than the one 1o its right. Until the allocation decisions are

made, it is not possible to prove that any of the transactions satisfy the access constraints (Cr1 and Cg2), since cach

transaction reads or writes the clock,

Allocate gdeliver. The problem of allocating gdeliver is the most easily solved. By Cr2, any transac-
tion which updates a state tuple must be located on the same node as the state tuple. As in the consensus bus archi-
tecture, this implies a distributed version of gdeliver, with one transaction for each P. The refinement is identical to

that in the previous example, so we give it without further comment.
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deliver(P) =

Q1,10 :
gelock(t), state(P,o), message(Q,P,t.11) — message(Q.P,T. 1)1, state(P,0)1, state(P,u(P,o.1L))
I TRUE — deliver(P)

with
Cr4:  inv. {(J Q1,001 =2 (action(Q,1,00) A ¢ 3 L) v message(Q,P,z,11) ) = deliver(P)
Ap2:  inv, locus(deliver{P’),i1) A locus(task(P,7,0),is) = i1 =1p

Outstanding Violations. We still cannot allocate the gclock wple, nor can we allocate the grick transaction.

The violation of the write restrictions (Cr2) with regards 1o messages aiso remains, and will be considered next.

Add a “current location” field to messages. Obviously, messages must be sent around the ring,
since we cannot send messages directly between non-adjacent processors. As a first step, we will modify the form of

messages to accommaodate the routing process.

Refinement. We begin with a simple data refinement, refining the structure of messages by adding an additional

processor identifier which gives the current location of the message, e.g.

msg(P,Q.R,T.11)

with the meaning, “Q has sent a message with content 4 to R; it is currently at node P and must be delivered at time

7.” Our coupling invariant (CR5) states that a message exists if there is an analogous msg located somewhere be-

tween the source and destination processors.
Cr3:  inv. message(QR,7,n} = (3 P: P twixt(QR) :: msg(P,Q.R,T.10) )

Additionally, we require that there be at most one msg wiple for any message (Cr6), and that it be allocated o the
processor simulating node P (AR3):

Cré: inv. (X P:msgP.QR1)::1)<1

ARr3:  inv. locus(deliver(P),i1) A locus(msg(P,Q.R,T,u)ip) = i1 = iy

We update the program to use the new representation. Note that the sending of a msg by task is performed by writ-

ing the tuple directly to the destination processor,
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task(P,t,0) =

o
o # L, gclock(t), { V QR i1 —msg(Q.R,P.t,1) ), state(P.o)
_)
task(P,e(P,o.00,a(P,c,0m), state(P,o) T, state(P,s(P,o,00),
(Q:e(P.Qo,0) : msg(QP.QIP,Q,1,0,0),v(P,Q,0.0)) )
I NOR — task(P,7,00)
deliver(P) =
(ORI
gelock(t), state(P,o), msg(P,Q,P,7.1) — msgP,Q,P.1,)1, state(P,0) T, state(P,u(P,o,u))
i TRUE - deliver(P)
gtick =
T,T':
gelock(T),
{V P,QRt,on : msgR.QPIL) v (taskPr,o) Az ) ut>T),
T+1 < T' < {min P,QRr.a.p : msg(R,QP,T,1) v (lask(Pr,o) Ance= L1} 1T)
_)
gelock(T), gelock(T?)
I TRUE — gtick
Re-Verification Obligations. Obviously, the transactions satisfy the new archilectural constraints (Cg3,

Cro6). Since this is simply a data refinement, no new transitions are added (o the program, so the program continues
to salisfy the safety properties of the original specification. I is necessary 10 verily thal the progress propertics of

the original program remain satisfied. In particular, we need to show that deliver continues Lo establish F18.2.1.

Proof Outline. The proof that deliver still satisfies F18.2.1 follows directly from the text of the program, by
noting that the program maintains the following invariant, which says that all messages are located at the message’s

destination processor:
L1 inv. msgP.QR,T U= P=R
which guarantees that messages sent arrive at their destination. Further, deliver guarantees
gelock(t) A {set Q1 : msgP,QP ) i )=Ma M= {] A state(P,0)

=3

(I (set Qu': msgP,QPr ) i ' y=M- L} :: state(PuP,o,u)) )

By the definition of msg and L1, we have F18.2.1.

Outstanding Violations. Neither grick nor gelock have been allocated. In addition, task creates the new mes-

sages at the target processor, which is a violation of CR2.
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Route messages around the ring. The write access violation by task can be resolved by adding a
transaction fype which routes messages around the ring, and then moedifying task 1o create new messages locally.

We use a distributed solution, allocating one routing transaction to each processor,

Refinement, We add a new transaction type router{P) which simply forwards messages which are not yet at their

destination. Its behavior is formally described as:

Cr7:  Messages eventually reach their destination
msg(P,P,Q,T.1) > msg(Q.P.Q.7,1)

Cr8:  Messages remain at their destination until they are absorbed
msg(P,Q,P,t,11) unless { V R :: —msg(R,Q.P,z.1) )
"The router transaction actually implements these new properties incrementally, by moving the messages one proces-
sor at a time, clockwise around the ring,
router(P) =
QR Tu:

msg(P,Q.R,t.u), P #R — msg(P,QR,T.)0)t, msg(right(P),Q.R,T,1t)
I TRUE — router(P)

This transaction should be allocated to the same location as the analogous deliver trangaction, and we must guaranice
that the transaction will continue to exist whenever there s the possibility that any messages may arrive needing to

be routed, e.g.,
Ar4:  inv. Iocus(deliver(P),iy) A locus(router(P),ip} =» i1 = i
Cr9:  inv. {3 Qr,ou = (action(Q,7,0) A 0 # L) v message(Q,P,7.u) ) = router(P)

Re-Verification Obligations. We must show that this new transaction does not violate any of the safety prop-
erties from the original specification. In particular, we can identify the properties affected by the transaction as F5,

F9,F10, and F1i. The proofs are straightforward. Additionally, we must show that router establishes Cg7, and

that this in trn allows us to conclude that F18.2.1 is satisfied by the new program.

Proof Qutline. To prove that router establishes Cp7, we can show that the sum of the distances between the cur-
rent locations of all messages in the system and their destinations never increases, and in fact will decrease.
Informally, this means that eventually, all messages will arrive at their destinations. Formally, router establishes

the following progress property:
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L2: gelock(t) A (X PR, : msg(P.QR,T, 1) = distPR) ) =M A M>0
Jud
gelock(t) A { £ P,QRT,U : msgP.QR,T,10) ;: dist(PR) Y < M
where dis{(P,R) is the number of processors between P and R moving clockwise around the ring. Since by F11
messages are not created with a time stamp equal to the current time, the metric M cannot increase. Using L2, we

can prove by induction the following progress property:

L3: gclock(t) —» (X P.QR7.U : msg(P,Q.R,T,1) i dist®P.R) )= 0

which states that eventually there are no messages with a current ime stamp that are not at their destinations. Since

by F20.1, the clock must eventually assume a value equal (0 the time stamp on any message, L3 gives us Cr7.

Additionally, it is clear that deliver establishes the following variant of F18.2.1, which states that messages which
have arrived at their destination will eventually be absorbed, while allowing for the arrival of new messages (via
router):
L4: gelock(t) A {set Qu : msg(P,QP, T m W y=M A M 2 [} A stae(P,5)
s
gclock(t) A
({(Fp:(set Qu': msg(P,QPTU) = ') = M-{p} = state(Pu(P,op)) ) v
state(P,o) A M (set Qu' : msg(P.Q Pt 1) ' )

Since the number of messages is bounded above (by F11), eventually the set of undelivered messages with current

time stamps will reach a maximum, from which time it can only decrease. Cr7 guarantees that all messages even-

tually reach their destinations, and L4 requires that they eventually be delivered, which gives us F18.2.1.

Quistanding Viplations. The allocation of gtick and gclock has not yet been resolved, and the violation of Cr1

by the query for outstanding messages in rask remains.

Refine time increment into search and update phases. As in the consensus bus example, it is
clear that gtick and gclock must be distributed. However, the absence of either a global control mechanism or global
memory requires that the approach be truly distributed. As a first refinement, we can break the work of gfick into
two phases, a search phase which finds the earliest work, and an update phase which changes the current time. We

find the following definitions useful at this point:
no_msg(R,T)=(V P.QL :: —msg(P,Q.R7,u} )
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work(P,7) = ( 3 o,Q.R,1L = action(P,7,00) v msg(P,Q.R,T.1L) )

Refinegment. The initial program refinement is simply to split gfick into two global transactions which maich the

two phases, satisfying the following requirements:

Crl0:

Cril;

Crl2:

Crl3:

Crl4:

Crls:

The search and update phases are mutually exclusive:
inv. —(gsearch A (3 T :: gupdate(T) )

The search and update phases continue at least until all work is completed
inv. work(P,T) =» (gsearch v (3 T': T'<£ T : gupdate(T") })

There is at most one time value being propagated
inv. (X T:gupdae(T):: 1} <1

The search phase triggers an update phase identifying the time of the next work
gsearch = gupdate({ min P,T: work(P,T) = T ))

The update phase triggers a search phase
gupdate(T) untif gsearch

The update phase changes the simulation time
gupdate(T) until gclock(T)

The gsearch transaction is taken from property Cr13, and gupdate from Cg14 and Cg15.

gsearch =

t:17={min P,T: work(P,T) : T ) — gupdate(t)

gupdate(t) =

T : gelock(T) — gelock(T)T, gelock(t), gsearch

Re-Verification Obligations. We will need to prove that this pair of transactions satisfies the safety propertics
from the original specification. This is trivial for gsearch since it introduces no transitions within the original state
{as a result, its characteristic property set is empty). Since gupdate performs the time change, it must be shown Lo

satisfy the entire characteristic sel for gtick, namely, F1, F7, Fi0, F11, Fi4, Fi3, and F21. Additionally, we must

prove that the new transactions satisfy F20.1, the progress property which motivated gtick.

Proof Quiline. The proof that the refinement continues to satisfy F20.1 involves simply proving that Cg10-

Cr15 constituie a refinement of F20.1, As a review, F20.1 states:

F20.1

gelock(t) AT={min P,T' : work(P, T} : T' }AT> 1

—

(AT :7+1 2T < T gelock(T) )
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Informally, Cr11 requires that if there is work to be done, then the system is in a state which, by Cr13 and Cg14,
will eventually cause the clock to be moved (Cr15). More formally, Cr11 implies the following lemma, which de-

scribes the legal states of this sub-system at any given time:

LS: inv. T={min P,T': work(P,T") : T') = (gsearch v (gupdate(T} A T' < T) v gupdate(T))

The proof follows from the general disjunction rule for leads-to, as follows. L5 can be used to prove L6, which
says that if T is the next time at which there is work, then the system will eventually set the clock to time T, i.e.,

L6: T ={min P,T : work(P,T) :: T ) > gclock(T)

L6 follows from L5, Cr13, Cr14, Cr15, and the transitivity of leads-to. Since L6 implies F20.1, the refinement

is proven.

Qutstanding Violations. We have not yet allocated either of the new transactions or gelock. The read violation

by task remains.

Distribute clock. As a first step towards allocating gsearch, gupdate, and gelock, we distribute the
clock, giving each processor a local copy which will be updated during the update phase. This refinement will allow

us to prove that several of the transactions satisfy the access constraints, which has not been possible until now.

Refinement. In the consensus bus example, we were able to maintain an invariant which basically required that
all local clocks have the same value. Since there is no global control mechanism available in this architecture, we
elect to require a slightly weaker coupling invariant. Naturally, if a solution were to present itself which enabled us
to maintain all the clocks in synchrony, it would satisfy the coupling invariant. Specifically, we will define the
global time 10 be the minimum local time value, with the added restriction that there can only be at most 2 different
local time values.

Crl6: inv. gelock(T) = T = { min P,T" : clock(P, T : T" )

Crl7: inv.1<(ZXT:{3Puclock(PT) )12

The elock taples are allocated to the same processor as the task transaction for the same node:
ARS:  inv. locus(clock(P,T},i1} A locus(task(P,T,00).in) = i} = i2

46



We re-write the transactions to use the new representation (router is not affected):
task(P,t,0) =
o
o #.L, clock(®,t), {V QR,u i1 =msg(R,Q,P,7,u) ), stae(P,c)
_)
task(P.e(P,0,0),a(P,0.0)),
state(P,c)t, state(P,s(P,G,0)),
( Q : C(P,Q,O',Of.) e mSg(P,P,Q,l(P,Q,T,U:OE),V(P:Q,G,OL)) )
I NOR — task(P,t,00)
deliver(P) =
Qpo:
clock(P,1), state(P,0), msg(P,Q.P,t,n) — msg(P,Q.P,1.1)1, state(P,0)7, state(P,u(P,o.p))
I TRUE — deliver(P)

gsearch =
T:7=(min P,T: work(P,T) :: T} ) — gupdate(t)

gupdate(t) =
clock(P, T} — ( P :: clock(P,T)T }, { P i clock(P,z) ), gsearch

Proof Obligations. Since the refinement doesn't change the semantics of any of the transactions, it is not neces-

sary to re-verify adherence to the original specification. This refinement allows us to prove that deliver only accesses

local data (Cgr1-Cr2), and so it satisfies the entire architectural specification,

Qutstanding Violations. The allocation of gsearch and gupdate remains to be decided, and the read violation by

task is still around.

Distribute gupdate. We now wish to distribute the update process to eliminate its violations of the
specification. The obvious solution is to distribute the transaction, and pass control around the ring, allowing cach

processor to update its clock locally,

Refinement. We replace the gupdate transaction type with update. This ransaction moves around the ring, updat-
ing the clock at each processor. We consider that the system is in the update phase whenever there is an update

trangaction at any site:

Cr18: gupdate(t)=( 2 P :: update(P 1) }

Additional requirements describe the behavior of the new transaction:
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Cr19: There is at most one update transaction at a time
(ZPT:update(P,T):1)<1

Cr20: The transition from the search phase to the update phase takes place at processor
gsearch unless { 3 T :: update(0,T) )

CRr21: The update transaction moves clockwise around the ring
update(P,T) A P < N-1 until update(right(P), T)

CRr22: When the update transaction reaches processor N-1, the search phase begins
update(N-1,T) unless gsearch

Addidonally, we allocate the update transaction to the same processor as the local clock:
ARG:  inv. locus(update(P,7),i1) A locus(clock(P,T),iz) = i1 = ia
We can now write the update transaction definition, The first subtransaction is simply a distributed version of the
subtransaction from gupdare; the second subtransaction is from Cr21; and the third is from Cp22 and Cr14. This
transaction now satisfies the entire specification.
update(P,;1) =
clock(P,T) — clock(P,T)t, clock(P,T)
i P<N-1— update(right(P),7)
I P=N-1— gsearch
We also re-write the gsearch transaction to satisfy Cr20 and Cp13:
gsearch =
T:1={min P,T: work(P,T) :: T) } = update(0,7)
Proof Obligations. We must show that the collection of update transactions satisfies the progress propertics
(Cr14 and CR15) that were originally satisfied by gupdate, and that there is no violation of the characteristic safety
properties for gupdate. The former follows directly from the ransitivity of leads-to, and the latter is clear from cx-
amining the text of the transaction. Additionally, we can show that update performs only local reads and right

writes, satisfying Cr1 and Cp2.

Quistanding Violations. gsearch has not yet been allocated. The only access violations left to resolve are

those of Crl by gsearch and task.

Distribute search. Our solution is to distribute the search process in such a way as to guaranice that

messages are delivered to their destinations before the Iocal clock is updated. This will allow us to replace the global
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message query in fask with a local query, eliminating the access violation. We propose the creation of a search
transaction which is passed from processor to processor. When received by a processor, the time stamp carried on
the ransaction should be compared against the earliest work which the processor knows about, and if the processor
knows of earlier work to be done, it changes the time stamp before passing the transaction on. If the search process

makes 2 passes around the ring, then we can guarantee that the delivery times for all messages are considered.

Refinement. We propose the following form for search:

search(P,n,T)

having the meaning: the search process is at processor P, and at this point, the earliest work found is at time 7. The
transaction makes 2 passes around the ring; n contains the pass number, As with the refinement o gupdate, we al-

low at most one search transaction to exist at any given time:

Cr23: (ZPn,T:searchPnT 1)<l

We introduce the obvions coupling invariant to map gsearch Lo search:

Cpr24: inv. gsearch ={3d Pn,T :: search(P,n,T) }

and we do not allow the time stamp on the search transaction to increase:

Cr25: search(P.,n,T) unless {3 P'.n',T" : search(P',n', T :: T'< T)

The allocation is the same one used for all entities in this process:

AR7:  locus(clock(P,1),i1) A locus(search(P.n,T),ig) = iy =iy
To guarantee that messages are delivered before the local clock is updated, we will want the search transaction Lo
“push” messages around the ring. That is, messages should be lorwarded before the wansaction advances. This idea
is captured formally in the following invariant, which states that on the second pass, all unreceived messages located
at nodes “ahead” of the search transaction are in fact destined for processors “ahead” of the ransaction:

Cr26: inv. search(P,2,7) = (msg(Q.R.S.7.)) A Q twixt(P,N-1) = S twixt (P, N-1))

Since this invariant must hold as soon as the second pass begins, it in fact constrains the first pass, requiring that it

be performed in a manner guaranteed to establish CR26. The main significance of CR26 is that it guarantees that the
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second pass will encounter every message. We introduce the function min_work(P}, which simply computes the

minimum time value for which work is known at processor P, i.e.,

min_work(P) = {min T' : work(P,T") :: T")

Additionally, we require the transaction to move clockwise around the ring, updating its time stamp to reflect the
minimum time for which work has been encountered. The actual properties differ slightly depending on where the
transaction currently resides:
Cr27: During either pass, if the transaction is not at the end of the ring, it moves clockwise, changing
the time if appropriate

search(P,n,T) A P # N-1 until search({right(P),n,min{T,min_work(P)))

CRr28: At the beginning of the ring, pass I becomes pass 2
search(N-1,1,T) until search{0,2,min{T,min_work{N-1)))

CRr29: At the beginning of the ring, pass 2 becomes the update phase
search{N-1,2,T) until update(0,min{T,min_work(N-1))}
Finally, we refine Cr22 to reflect the new notation:

Cr22.1 update{N-1,T) unless search(0,1,=0)

This gives us the following form for the search transaction:

search(P,n,T) =
Q.R,t,un:
msg(P,Q.R,T.)}, R#P, 1< T — search(P,n,T)
I NOR,P # N-1— search(right(P),n,min(T,min_work({P)))
I’ NOR,P=N-1,n=1— search(0,2,min{T,min_work{P)))
I NOR, P =N-1, n=2 — update(0,min(T,min_work(F)))

The first subtransaction serves to maintain Cp26 by making the NOR of the other three subtransactions false as

long as there are still messages to be forwarded (by routery; the second, third, and fourth subiransactions are {rom

Cr27, Cr28, and Cp29, respectively. We must also revise update to reflect Cr22.1.
update(P,1) =
clock(P,T} — clock(P,T), clock{P,1)

I P<N-1-— update(right(P);z)
I P=N-1— search(0,1,00)

Finally, Cr26 implies that when the update transaction arrives at a node there are no messages for the transaction

that are not already at the processor, that is, the following invariant is maintained by the program:
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Cr30: inv. clock(P,1) A message(QRPp) = P=Q

This allows us to modify task to check for messages locally, eliminating its read violation as well;
task(P,t,00 =
G:

o # 1, clock(P,1), (V Qu iz —msg(P,Q,P,7.1) ), state(P,o)
__)

task(P,e(P,c,00),a(P,0,01)),

state(P,0)1t, state(P,s(P,c,0)),

{Q: c¢P,Qo.0) : msgP,P,QIP,Q,1,0,0),v(P.Q.0,00) )
I NOR — task(P,t,0)

Proof Obligations. We will need to show that the search and update transactions, as modified, continue 10 sal-
isfy the constraints which initially motivated their form, e.g., Cr10-Cr13, and Cp19-Cp22. Additionally, we can
now show that search does not violate the read access restrictions (Cr 1), so the program now satisfics the entire ar-

chitectural specification.

Proof Qutline, The proof that the update transaction is correct is straightforward. Similarly, the invariance of
CR30 is obvious from the program text. More interesting is the proof that search satisfies the previous specifica-
tion, in particular the progress properties Cr13-Cr15. As with the refinement of gupdate in the previous section,
the approach is to show that Cr25-CRr29 amount to a refinement of Cg13, and that search satisfies the refined prop-

eriies.

The proof amounts to showing that CR26 is adequate to guarantee that the search process encounters every message

before the end of the second pass. That s, if we can prove the following invariant, then the refinement is correct:

L3: inv. search(P2, 1) = (V Q:0<Q <P 1 £ min_work(Q) )

Taking CRr26 with P = § (that is, the search process has reached the destination of some message), allows us Lo infer
Q =5, that is, the message has reached its destination, since we have Q twixt(P,N-1) and Q twix((R,P). From this,

we can conclude (from the definition of min_work)

search(P,2,7) = min_work(P) = (min Q,R,7',0, : action(P,T',0) A & # L v message(R,Q,P, 7' 1) 1 ')
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That is, when the search transaction arrives at node P, then the computation of min_work will include all messages
destined for that node. Thus, each of the min computations in Cr27-Cr29 is guaranteed to compute the minimum

for all nodes up to P, which gives us L5. Cr13 follows immediately from L5 and the transitivity of leads-to.

Now that all of the architectural constraints have been satisfied for all elements of the program, the process
is complete. It should be noted that there is likely a one-pass algorithm for search, but the architectural constraints
do not force us to discover it, and thus it is outside the scope of this paper.

7. Discussion

In this paper we have shown that architectural constraints can be formalized as assertions over programs and
that violations of such assertions by an otherwise correct program can guide a program refinement process leading to
a final solution which satisfies both the functional specifications and the architectural constrainis. As in the case of
specification refinement, program refinement is a creative process not likely to succumb easily (o atiempts at mech-
anization. Nevertheless, our experience demonsirates the existence of several broad classes of program refinements
which, far from being mechanical in nature, entail only minimal re-verification of the program. This is a significant

result since the re-verification of each new program could, in general, be a very time-consuming activity.

The first class of refinements could be termed straight data refinement. One example is provided by the dis-
tribution of the gelock wple in the consensus bus architecture. This refinement has two characteristics which allow
us to forgo most re-verification in the resulting program. First, the coupling invariant that ties the old and new data
representations defines an equivalence relation and, thus, eliminates any need (o re-write the specification 10 use the
new representation. Second, the state transitions taking place in the old and new programs are also in a one-10-onc

relation. The resulting program thus satisfies the same safety and progress properties as the original one.

The second class of refinements are the synchronous process distribution refinements such as the distribu-
tion of grick in the consensus bus example. No re-verification was required for this refinement because the seman-
tics of the resulting synchronic group are identical to that of the original transaction. This refinement allowed us 1o
convert one global transaction into a set of transactions which perform local actions but are synchronized so as to ac-

complish the same total effect. The resulting structure has great potential for parallel execution in a distributed ar-
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chitecture which provides the needed synchronization mechanisms. The refinement as performed in the example was

aided by the fact that both the original query and actions were easily partitioned among the available processors.

A third class of refinements is the asynchronous process distribution. The distribution of the gdeliver trans-
action (in both examples) is illustrative of this class. One global transaction was replaced by a number of asyn-
chronous local transactions. This was possible because the processing performed by the original transaction was it-
self “asynchronous” in the sense that each time the original was executed, the changes it made to the global system

state were in fact local and non-interfering.

The fourth class of refinements is the serialization, as illustrated by the final refinement in the consensus
bus architecture which combines two non-interfering transactions (fask and deliver) into a single transaction. This
refinement is interesting because it reflects a transformation which is likely to be nseful in the real world, where
multiple activities may need to be grouped, either for architectoral reasons, as in the example, or for other practical
reasons, such as required access (o shared data. The transformation described above takes advantage of the fact that
the two transactions perform actions which cannot interfere with one another—ask can only execute when there are
no messages, and deliver has nothing to do when all messages have been delivered. Had the two transactions inter-
fered in some way, it would have been necessary to refine one to eliminate the interference before they could be com-

bined.

Although we made no attempt to catalog the full range of program refinements we have encountered so far
in our work, it seems reasonable that a broad repertoire of useful ransformations could be developed and characterized
formally, along the lines of the work in the Action Systems [2] model. In this paper an attempt is made 10 classily
program transformations by some characteristics manifest by the program to be refined. In general, their approach is
to manipulate a program to reduce the interference of its statements, and then to use a “stock” refinement to dis-
tribute the computation. In effect, they move the creative part of the refinement process into the problem of remov-

ing the interference between statements; this is very similar {0 our approach in this paper.

Two refinements from the ring example are interesting, not so much because they can be neatly classified,

but rather because they look more like specification refinements than program refinements. The refinement of gtick
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into two phases, and the resulting refinements of the gsearch and gupdare transactions, while relatively complex,
were easy to prove precisely because we were able to prove that the properties we introduced to describe the behavior
of the new transactions were in fact a refinement of the original specification. This leads us to wonder if it is neces-
sary to do program refinement at all, That is, is it possible to reason about the influence of the architectural con-
straints on a program without actually writing a program? This idea is attractive to us becanse the techniques for
manipulating specifications are much better understood than those for manipulating programs, and we would like o
stay within the specification realm for as long as possible. One possible approach might be (0 wrile programs sim-
ply to detect violations of the architectural constraints, but then to use the insight gained from the program Lo moti-
vate the next refinement of the specification—this may turn out o be uneconomical and also 1o lead us back 10 the
ad-hoc factoring of architectural constraints which characterizes specification refinements today. A more attractive al-
ternative is to take advantage of the ability present in the Swarm Iogic to reason about both data (data tuples) and ac-
tions (transactions)—the specifications shown in this paper do not really draw any distinction between deriving a
UNITY ora Swarm program—and to angment the specifications with assertions regarding data and action allocation

Lo processors.

8. Conclusions

In this paper, we have shown that architectural constraints can be expressed using assertions about programs
in the style of UNITY and Swarm logics—the same notation we use to write formal behavior specifications. By
unifying the notations, we are able to directly factor the architectural consiraints into the program derivation process.
Our current approach requires a program be generated through specification refinement before the architectural con-
straints can be considered—the architectural constraints involve assertions over auxiliary tuples (variables) whose in-
troduction requires the presence of a program. To the best of our knowledge, this is the first time that architectural
constrains have been specified formally and compliance of the program to the architecture for which it is intended has
been verified formally.
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1 Thisisan example of a constructor, a syntactic element which occurs frequently in our notation. The general
form of the constructor is:
( op dummy_variables : range_constraint :: expression

where op is typically a binary, associative, and commutative operator (such as +, *, A, v, writlen 3, [1, ¥, 3,
respectively). Logically, the constructor creates a multi-set of values {v,, v, ..., v,] by evalualing the expression
for every possible instantiation of the dummy_variables satisfying the range_constraint. The final value of the
constructor is obtained by evaluating the expression v, op v, 0p ... op vp- If the range is empty the zero-
element for the operator is returned. Other frequently used operators are min, max, and set, having the obvious
interpretations. We occassionally omit the range of the constructor (and the first colon) when the range is obvious
from the context.
2 The special predicates are AND, NAND, OR, NOR, and TRUE, meaning “all,” “not-all,”, “some,” “none,”
and “no-matter-how-many” of the regular queries succeed.
3 The same expression, appearing in the query of a subtransaction, allows the program (o query for the existence
of a synchrony relation entry. Synchrony relation entries can also be deleted using the dagger. Furthermore, it is
possible to query (but not modify) the transitive closure of the synchrony relation using “=" in place of “~.

Throughout the architectural refinements, we will use transaction names as predicates. Informally, if T'is a
transaction type name, then the predicate T means that there is a transaction (or collection of transactions) which
satisfy the progress properties satisfied by the transaction T. This notation allows us to treat transaction relinement
as a form of data refinement, a subject to which we will return in the discussion.
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Figure 1: Notation used in the Swarm proof logic.
Figure 2: One site of the postulated architecture.
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