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Abstract

In this paper, we study the sample complexity of weak learning. That is, we ask how
much data must be collected from an unknown distribution in order to extract a small
but significant advantage in prediction. We show that it is important to distinguish
between those learning algorithms that output deterministic hypotheses and those that
output randomized hypotheses. We prove that in the weak learning model, any algo-
rithm using deterministic hypotheses to weakly learn a class of Vapnik-Chervonenkis
dimension d(n) requires 2(/d(n)} examples. In contrast, when randomized hypothe-
ses are allowed, we show that ©(1) examples suffice in some cases. We then show that
there exists an efficient algorithm using deterministic hypotheses that weakly learns
against any distribution on a set of size d(n) with only O(d(n)?/®) examples. Thus for
the class of symmetric Boolean functions over n variables, where the strong learning
sample complexity is ©(n), the sample complexity for weak learning using determin-
istic hypotheses is (/%) and O(n?/3), and the sample complexity for weak learning
using randomized hypotheses is @(1). Next we prove the existence of classes for which
the distribution-free sample size required to obtain a slight advantage in prediction
over random guessing is essentially equal to that required to obtain arbitrary accuracy.
Finally, for a class of small circuits, namely all parity functions of subsets of n Boolean
variables, we prove a weak learning sample complexity of ©(n). This bound holds even
if the weak learning algorithm is allowed to replace random sampling with membership
queries, and the target distribution is uniform on {0,1}".

Most of this research was carried out while all three authors were at MIT Laboratory [or Computer
Science with support provided by ARO Grant DAAL03-86-K-0171, DARPA Coniract N{0014-89-J-1988,
NSF Grant CCR-88914428, and a grant from the Siemens Corporation. S. Goldman is currently supported
in part by a G.E. Foundation Junior Faculty Grant and NSF Grant CCR-9110108.



1 Introduction

In this paper, we study the sample complexity of weak learning. More precisely, we are
interested in the number of examples required for the distribution-free learning of a para-
meterized concept class C over {0,1}" when the hypothesis output by the learning algorithm
need only have accuracy % + %n)» for some polynomial p(n). Thus, the hypothesis must
perform only slightly better than random guessing. Viewed more fundamentally, we are
asking how much data must be collected from an unknown distribution in order to extract a
small but significant advantage in prediction. This weak learning model is derived from the
distribution-free “probably approximately correct” (or PAC) model introduced by Valiant,
in which the learning algorithm must output a hypothesis with accuracy 1 — ¢ for any small
0 < ¢ < 1/2. We refer to Valiant’s original model as strong learning.

Our motivation for studying the sample complexity of weak learning comes from several
sources. [First, in the strong learning model it is assumed that learning algorithms have
access to an unlimited supply of labeled examples drawn according to the unknown target
distribution. Given this unlimited supply of examples, the goal of a learning algorithm
is to discover almost all information about the target concept with respect to the target
distribution (i.e., to be able to correctly classify all but a fraction e of the examples with
respect to the target distribution). While much of the research in the strong learning model
has aimed at achieving this goal in polynomial time, many results have addressed the question
of the number of examples required.

In practice, however, we often find that there is a limited supply of examples. Research
involving archeological evidence or protein sequences are typical settings in which the avail-
able data are severely limited. Furthermore, in such settings one is rarely expecting to obtain
a highly accurate theory explaining all the evidence; indeed, a theory that provides even the
slightest bias may provide valuable clues and guidance for further investigations. Thus we
are motivated to ask, what is the minimum number of examples required to obtain some in-
formation about the target concept? An understanding of weak learning sample complexity
may be important in applications in which the number of available examples falls short of
the number required to obtain overwhelming accuracy in prediction, but suffices to obtain a
significant advantage over guessing.

A second motivation for our study is the recent result of Schapire [14] showing that a
concept class is weakly learnable in polynomial time if and only if it is strongly learnable in
polynomial time. Are the sample sizes required for weak learning and strong learning always
polynomially related? Some of our results give a negative answer to this question, and
we investigate conditions under which the weak learning sample complexity is significantly
smaller than the strong learning sample complexity.

A third motivation is that the nature of the weak learning model forces us to find dis-
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tributions with large support sets in order to prove good lower bounds on sample size. One
objection to the sample size lower bounds in the strong learning model is that these bounds
are typically obtained for a distribution over a small support set. Since, as our results will
show, such lower bounds break down for the weak learning model, we must look for hard
distributions over large support sets, such as the uniform distribution. In addition to involv-
ing what are perhaps more natural distributions, these results may be of some interest to
researchers in cryptography, where one is often interested in functions that are unpredictable
(in the weak learning sense) on the uniform distribution. Whereas cryptography has been
primarily and naturally interested in functions that are unpredictable in a computationally
bounded setting (such as quadratic residues), some of our results may be interpreted as an
investigation of this same problem in an information-theoretic setting.

We now give a summary of our results. Although our lower bounds on weak learning
sample size are information-theoretic (that is, they hold regardless of computation time), we
are primarily concerned with polynomial-time learning, and all example-efficient algorithms
we give run in polynomial time. We begin by observing that if the Vapnik-Chervonenkis
dimension of a concept class ), is super-polynomial in n, then the lower bound proofs for
the strong learning model [2] are easily adapted to give super-polynomial lower bounds on
the sample size required for weak learning. Thus, we focus on classes C, whose Vapnik-
Chervonenkis dimension is polynomial in n.

We note that the sample size lower bound for the strong learning model breaks down
for the weak learning model: namely, if a class ), has Vapnik-Chervonenkis dimension
polynomial in n, and the target distribution is uniform over a shattered set, then one example
suffices to obtain a weak learning hypothesis. The hypothesis uses the obvious technique of
correctly classifying the known point, and flipping a coin for the classification of any other
point. This simple hypothesis is randomized (this should not be confused with the learning
algorithm itself being randomized, which we always assume may be the case).

This example raises the natural question of the relative power of deterministic hypotheses
and randomized hypotheses. In the strong learning model, the sample size lower bounds hold
regardless of whether the hypothesis is deterministic or randomized. However, we show that
in the weak learning model it is important to distinguish between those learning algorithins
that output deterministic hypotheses and those that output randomized hypotheses. Namely,
we prove that in the weak learning model, any algorithm using deterministic hypotheses to
learn a class of Vapnik-Chervonenkis dimension d(n) requires {(1/d(n)) examples; the hard
distribution is again uniform over a shattered set. We then give an efficient algorithm using
deterministic hypotheses that weakly learns against eny distribution on a shattered set (or
more generally, any distribution on any set of size d(n), which we assume is polynomial in

n) with only O(d(n)*?) examples. This is a provable decrease from the number of examples



required for strong learning against the same class of distributions. The algorithm uses a
simnple sampling technique for converting any weak learning algorithm using randomized
hypotheses into one using deterministic hypotheses.

Furthermore, for some classes, such as symmetric functions over {0, 1}"*, any distribution
can be reduced to a distribution over a shattered set. Thus, for symmetric functions we
obtain an interesting separation of the sample sizes required in the various distribution-free
settings: the strong learning sample size is ©(n), the sample size required for weak learning
with deterministic hypotheses is £2(y/n) and O(n*?), and the sample size required for weak
learning with randomized hypotheses is ©(1). These bounds are given for fixed € and §; the
dependence on these parameters is described in the technical sections.

These results show that the sample complexity for weak learning may be considerably
smaller than for strong learning, and that the power of using randomized hypotheses for weak
learning may be dramatic. The results so far leave open the possibility that any concept
class of polynomial Vapnik-Chervonenkis dimension can be weakly learned using randomized
hypotheses with only a constant number of examples (for fixed §).

We show that this is not the case by proving the existence of classes C,, whose Vapnik-
Chervonenkis dimension is ©(n) and whose weak learning sample complexity is ©(n) (re-
gardless of the hypotheses used). In contrast to the results described above, this shows that
there are classes for which the distribution-free sample size required to obtain a slight ad-
vantage in prediction over random guessing is essentially the same as that required to obtain
arbitrary accuracy. However, we use a probabilistic construction to obtain this result, and
the resulting class C,, while having small Vapnik-Chervonenkis dimension, does not have
small (size polynomial in n) circuits, and thus is not learnable in polynomial time by results
of Schapire [14]. Are there classes of small circuits, learnable in polynomial time, whose
weak learning sample complexity is as large as their strong learning sample complexity?

By defining a combinatorial property of concept classes that is sufficient to imply large
weak learning sample complexity, and then demonstrating a class of small circuits possessing
this property, we are able to answer this question in the affirmative. The class of circuits is
simply all parity functions of subsets of n Boolean variables, which we prove has weak learning
sample complexity ©(n). We show that this holds even if the weak learning algorithm is
allowed to choose the examples itself (that is, the learning algorithm may replace random
sampling with membership queries), and the target distribution is uniform.

The sufficient property used is a first step towards characterizing weak learning sample
complexity in the same way that the Vapnik-Chervonenkis dimension gives a combinatorial
characterization of strong learning sample complexity. A necessary and sufficient character-

ization of weak learning sample complexity remains an interesting open problem.



2 Definitions

We begin by describing the distribution-free learning model introduced by Valiant [16]. The
learner is attempting to infer an unknown target concept ¢ chosen from some known concept
class C. In this paper, C' = U,»; C» is parameterized by the number of variables n, and each
¢ € Cy is a subset of the domain {0,1}". The learner is given access to labeled (positive and
negative) examples of the target concept, drawn randomly according to some unknown target
distribution D over {0,1}". The learner is also given as input 0 < ¢,6 < 1. The learner’s goal
is to output with probability at least 1 — § a hypothesis A that has probability at most ¢ of
disagreeing with ¢ on a randomly drawn example from D (thus, the hypothesis has accuracy
at least 1 — ¢, or is e-good). If such a learning algorithm A exists (that is, an algorithm A
meeting the goal for any n > 1, any target concept ¢ € C,,, any target distribution D, and
any €,6), we say that C is strongly learnable in the distribution-free model. In this setting
polynomial time means polynomial in n, 1/¢ and 1/§. The support set of a distribution D
is the set of all z such that D(z) > 0.

In the related weak learning model [12], we drop the demand for accuracy 1 —¢ and simply
ask that the hypothesis & have accuracy at least %—E— 5(1—?1) for some polynomial p(n). Thus we
ask only for a small correlation in the underlying distribution. In this setting polynomial time
means polynomial in n and 1/6. The weak sample compleaity for a parameterized concept
class C is a function of n and § that denotes the minimum number of examples required to
weakly learn any c € C),.

We will see shortly that it is important to distinguish between the cases where the
learning algorithm A outputs deterministic and randomized hypotheses. This should not be
confused with the learning algorithm itself, which we always assume may be randomized.
A deterministic hypothesis over {0,1}" is a function £ : {0,1}* — {0,1}. A randomized
hypothesis over {0,1}™ is a function h : {0,1}" x {0, 1}*™ — {0, 1}, where p(n) is some fixed
polynomial. On input z € {0,1}", the randomized hypothesis A is evaluated by choosing a
random string r € {0,1}”(*) uniformly and then computing A(z,r). Here, the accuracy of h
with respect to the target distribution is the probability of agreement with the target, where
the probability is now taken over both the random draw of 2 € {0,1}" according to D and
the random string r.

We also need the following definitions. A finite set Y C {0,1}" is shattered by C, if we
have {cNY | ¢ € Cn} = 2¥. The Vapnik-Chervonenkis dimension of C,, denoted ven(C,),
is defined to be the largest d such that some set of cardinality d is shattered by C,,.

Finally, to compute the sample sizes needed for several of our algorithms we use the
following versions of Chernoff bounds. The first bound stated, Hoeffding’s inequality [11}, will
be used whenever p > 1/4. However, when p < 1/4 the last two bounds as stated by Angluin
and Valiant [1] give better bounds. (See also Chernoff [3], and Erdds and Spencer {5].)



Lemma 1 (Chernoff Bounds) Let Xi,..., X, be a sequence of m independent Bernoulli
trials, each succeeding with probability p. Let 5 = X; 4+ --- + X, be the random variable
describing the total number of successes. Then for § < p and 0 < v < 1, the following

inequalities hold:

e~ 2m(p—0)?

IA

Pr[S < fm]
Pr(S < mp(1 —7)]
Pr[S > mp(l+7)) < e V™R

.
e~ mpf2

IA

3 Previous Work

In the strong learning model, a major contribution to the understanding of sample complexity
was made by Blumer et al. [2]. Building on the work of Vapnik and Chervonenkis [17], they
proved that the number of examples required for strongly learning a concept class Cy, is
Q(ven(Cr)) (ignoring dependence on € and §). Furthermore, they prove that the general
technique of finding a consistent hypothesis, when feasible, always results in a (possibly
super-polynomial time) learning algorithm using O(veD(C,)) examples. Thus, for strong
learning the sample complexity is characterized by the Vapnik-Chervonenkis dimension.

In the weak learning model there are no previous lower bounds on sample size, and the
only upper bounds are those already provided by results in the strong learning model. How-
ever, in the case that vCeD(C,) is super-polynomial in n, it is easy to adapt the lower hound
of Blumer et al. to give super-polynomial lower bounds on the sample size for weak learn-
ing. Since we are primarily concerned with classes learnable from a polynomial number of

examples in polynomial time, we restrict our attention to classes with dimension polynomial

in n.

4 Simple Bounds

In this section we look at two initial results on the sample complexity of weak learning. In the
polynomial-time setting, Schapire [14] proved that a concept class C' can be weakly learned in
polynomial time if and only if it can be strongly learned in polynomial time. More precisely,
he gives an efficient strong learning algorithm for C that uses an efficient weak learning
algorithm for C' as a subroutine. Subsequently, Freund {7, 8] has given a different technique
for converting a weak learning algorithm into a strong learning algorithm. Combining this
result with the lower bound provided by Blumer et al., one obtains an initial lower bound on
weak learning sample complexity. This bound does not give an unconditional lower bound
on the sample size required by any weak learning algorithm, but instead describes a tradeoff

between the advantage obtained and the number of examples required.
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Theorem 2 Let C be a parameterized concept class, let p(n) be a polynomial, and let
d(n) = vep(Cy,). Then any weak learning algorithm that ouiputs deterministic hypothe-

ses of accuracy 3 + ;{1-1;-)- must use

d(n)
Q
(p(n)‘*(log d(nm)
ezamples whenever § < 1/2.

Proof: We prove this result by showing that a weak learning algorithm that violates this
lower bound can be used to compress data beyond what is information-theoretically possible.

Fix § =1/2 and let A be a weak learning algorithm that outputs (3 — Hl;-tj)-good hypothe-
ses with probability 1/2, and that requires m(n) examples. (By running A repeatedly and
hypothesis testing, the probability & of failing to weakly learn can be made arbitrarily small.
This technique is described by Haussler et al. [9].) Note that the output hypothesis can be
encoded by the m(n) examples on which A was successfully trained. Under this encoding,
the size s(n) of the output hypothesis in bits is m(n) times the number of bits needed to
encode each example.

Schapire [14] and Freund [7, 8] describe techniques for converting this weak learning

algorithm into a strong learning algorithm A’ outputting hypotheses of size

O (s(n) - (p(n))* - (log(1/6))") (1)

for some constants @ and 8. If A’ is run against a uniform distribution over a shattered set
of size d{n) with e < 1/d(n), then the output hypothesis is consistent with the sample with
high probability. Since each example in the shattered set can be encoded by O(log d(n)) bits
it follows from the above that s(n) = O (m(n)logd(n)). Substituting this bound as well as
the bound 1/e = O(d(n)) into Equation (1) we see that the size of the hypothesis output by
Ais O (m(n) - (p(n))* - (log d(n))ﬁ“). Finally, since all 24" labelings of the instances in
the shattered set are possible, it is clear that at least d(n) bits are needed to encode these
labelings, and thus d(n) lower bounds the size of the hypothesis output by A’. Thus,

d(n) < O (m(n) - (p(n))* - (log d(n))**") .

Since, in Freund’s construction, & = 2 and 5 = 1, the stated lower bound on m(n) follows.
H

We now demonstrate that for concept classes with polynomial Vapnik-Chervonenkis di-
mension, the lower bound of Blumer et al. [2] breaks down in the weak learning model.
If ven(Ch) is polynomial in 7 and the target distribution is over a shattered set, then

O(log(1/6)) examples suffice for weak learning.



Theorem 3 Let C be a paramelerized concept class and let p(n) be a polynomial. Then
there exists an algorithm oulputting a randomized hypothesis with accuracy % - ﬁ on any

target distribution with a support set of cardinality d(n); the number of ezamples required is

O(%z% + log(l/cﬁ)) .
Proof: The algorithm draws enough points so the weight of the points in the sample cover
at least a fraction F of the distribution. The output hypothesis h correctly classifies the seen
points, and flips a fair coin elsewhere. Thus the error of k is at most (1 — £}/2. To insure
that the error is at most 3 — ﬁ, it suffices to select § = 2/p(n).

We use Hoeffding’s inequality to prove that a sample of size O(f8d(n) + log(1/8)) covers
a fraction § of the distribution with probability at least 1 — §. Since we have shown that
B = 2/p(n) suffices, without loss of generality assume that § < 1/3. If at least 1/3 of
the distribution is covered, then we are done. Suppose instead that fewer than 1/3 of the

distribution has been covered. Thus when drawing a new example z from [
1. Pz is already covered] < 1/3
2. Pr[z is new point with weight < 1/3d(n)] < 1/3
3. Pr[z is new point with weight > 1/3d(n)] > 1/3

We say that a trial is successful if z is a new point with weight at least 1/3d(n). Thus
after 3d(n)g successful trials a fraction 8 of the distribution will be covered. Using Hoeffd-
ing’s inequality with p = 1/3 and 8 = 1/6 it can easily be shown that a sample of size
max{18d(n)5,18In1/6} is sufficient to ensure that with probability 1 — § the number of
successful trials is at least 3d(n)F. Finally, substituting 2/p(n) for 8 gives the desired result.

-]

By setting p(n) = d(n) = vcD(C,) in Theorem 3, we obtain:

Corollary 4 Let C be a parameterized concept class over {0,1}" for which veD(C,,) is poly-
nomial tn n. Then there exists an algorithm outputting a randomized hypothesis that weakly
learns C, on any distribution over a set of cardinality voD(C,); the number of ezamples

required is O(log(1/6)).

Thus, for fixed §, O(1) examples suffice for weak learning against target distributions
over small support sets; this should be contrasted with the lower bound of Q(ven(C,)) for
the same class of distributions in the strong learning model [2]. In Section 6 we show that
for the weak learning model, randomized hypotheses are necessary to obtain such significant

decreases in sample complexity.



5 Removing Randomness from Hypotheses

In this section we give a sampling technique for converting randomized hypotheses into
deterministic hypotheses in both the strong and weak learning models. If computation
time is not a concern, then in the strong learning model randomized and deterministic
hypothesis classes give essentially the same power with respect to sample complexity (this
follows from the results of Blumer et al.). We extend this result to hold even when considering
computation time: we describe a technique to efficiently convert any randomized hypothesis
into a deterministic hypothesis using O{(1/¢)log(1/6)) additional examples.

We use the following definitions in the next two theorems. Given a randomized hypothesis
&k, let h(z,r) be the prediction made by A on instance z with random bits . We define
the error of h on random bits r as ex(r} = Pry[h(z,r) # c(2)] where ¢(z) is the correct
classification for z. Likewise for a deterministic hypothesis & and a sample S drawn randomly
from D, let ey = Prz[h(2) # c(z)] and let é,(S) denote the estimated error of hypothesis &
based on sample 5. That is, é,(S) = (number of misclassified examples from 5)/|.S].

Theorem 5 Let A be a strong learning algorithm for a parameterized class C that outputs a
randomized hypothesis and requires m(n, ¢, 6) examples. Then there exists a strong learning

algorithm A’ for C that outputs a deterministic hypothesis and requires

O (m(n, €,6)+ %10g(1/6))
examples.

Proof: We begin by running algorithm A (with parameters ¢/4 and §/2) once to obtain a
single randomized hypothesis %, that with probability at least 1 — /2, has error at most ¢/4.

It is easily shown that
Prii(z,r) # c(z)] = Ev[en(r)] <

T,T

Let ¢ = Pr,[en(r) > €/2). Since E,[en(r)] > eg/2 it follows that ¢ < 1/2 and thus

e | m

Pr [eh(r) < %} >1/2. (2)

We are now ready to describe the technique for converting the randomized hypothesis
into a deterministic one. We choose ¢t random strings ry,...,r; to obtain ¢ deferministic

hypotheses h; = h(-,r;). It follows from Equation (2) that
Pr [a,ll h;’s have error > g—] < 27

So for £ = lg(6/8), with probability 1 — §/6 at least one of the %;’s will have error at most
/2.



Next we use hypothesis testing (as described by Haussler et al. [9]) to estimate the error
of each hypothesis and output the one with the lowest error. For hypothesis A;, if 5, > ¢
then Chernoff bounds can be used to show that if a sample S of size (8/¢) In(6t/§) is drawn
then Pr[éy,(S) < ¢/2] < §/6t. Since at most ¢ such estimates are made, with probability at
least 1 — 6/6, for any hypothesis k; with ey, > ¢, the estimated error é,,(S5) > ¢/2.

Likewise, Chernoff bounds can be used to show that if a sample S of size (12/¢) In{6t/6)
is drawn then with probability 1 — §/6, for any hypothesis h; with e, < ¢/4, the estimated
error €,(5) < €/2. Thus by drawing an additional sample of size

Ef-ln% = 12 (1111—(,;2 +1nigg) 0 (élogé—)
we can ensure with probability at least 1 — § that the hypothesis output by A’ has error at
most €. ]

Thus for the case of strong learning the distinction between deterministic and randomized
hypothesis spaces is not significant. Next we give a similar conversion for the weak learning
model, but the increase in sample complexity is now significant. This result will be used
in the next section to obtain improved sample sizes for weak learning with deterministic

hypotheses.

Theorem 6 Let C be o parameterized concept class and lel p(n) be a polynomial. Let A be
a weak learning algorithm for C that outputs a randomized hypothesis of accuracy & + - p(n)
and that requires m(n,8) examples. Then there exists a weak learning algorithm A’ for
C that outputs a deterministic hypothesis and that requires O(m(n,§) + p(n)?log(p(n)/8))

examples.

Proof: As in the proof of Theorem 5 we begin by running algorithm A once to obtain a

single randomized hypothesis A, that with probability at least 1 — §/2, has error at most

1 It is easily shown that

2 p(n)
Pr{h(a,r) # e(a)] = Eefen(r)] < 5 —
. of - _
Pra(z,r z en(r)] < 5 o07)
Let ¢ = Pr,[ex(r) > 1 — g(m] Since E,[ex(r)] > ¢(3 21D(n)) it follows that
1 1

(3)

1
Pr < = — > .
H) S | 2 -1
As in the proof of Theorem 5 to convert the randomized hypothesis into a deterministic
one, we choose ¢ random strings r1,...,7; to obtain ¢ deterministic hypotheses i; = h(-, ;).
Using Equation (2) it is easily shown that for ¢ = (p(n)—1)1n(6/8), with probability 1 — /6
at least one of the A;’s will have error at most  — Z;D%n)'

10



Finally, we use hypothesis testing to accurately estimate the error of each hypothesis
and output the one with the lowest error. We want to draw enough examples so that the

following two requirements are met for all z;’s:

1. Ifep, 21 — ﬁ(n), then Pr[é;,(S) < 1 — m] < 6/6t.

2. If e, < 3 — 50 then Pr[én(S) 2 1 — 5575 < 6/6t.

Using Hoeffding’s inequality it can be shown that drawing a sample of size 8p{n)? In6¢/8
is sufficient to ensure that with probability 1 — §/6, the first requirement is met for all
hi’s. Likewise by drawing a sample of size 2p(n)* In 6¢/6 we can ensure that with probability

1 — §/6 the second requirement holds for all 2;’s. Thus an additional sample of size

8p(n)? In%t = 8p(n)? (lng +In{p(n) — 1) +Inln —g) =0 (;p(n)2 log E%}l)
is sufficiently large so that with probability at least I — § the hypothesis output by A’ has
error al most % - ﬁn). |

As we shall see, often when designing an algorithm with a randomized hypothesis, only a
single random bit is needed. If the hypothesis output by A only requires a constant number
of random bits, then only a constant number of hypotheses need to be generated. Thus in

Theorem 6, t = O(1) giving the following corollary.

Corollary 7 Let C be a parameterized concept class and let p(n) be a polynomial. Let
A be a weak learning algorithm for C that outputs a randomized hypothesis of accuracy
2+ ?—)ﬁ and that requires m(n, ) ezamples. Furthermore, suppose that h requires a constant
number of random bits. Then there exists a weak learning algorithm A’ for C' that oulpuls a

deterministic hypothesis and that requires O(m(n,§) + p(n)?log(1/8)) ezamples.

6 Deterministic Hypotheses for Weak Learning

In this section we consider the weak sample complexity when using deterministic hypotheses.

We begin by showing that any weak learning algorithm for a parameterized concept class C

using deterministic hypotheses requires £2(1/vep(C,,)) examples.

Theorem 8 Let C be a parameterized concept class. Then the sample size required for
weakly learning C, using deterministic hypotheses is Q(/veD(Cy)) for any § < &y, where
0 < & <1 is a constant.

Proof: Let d(n) = vCD(C,), and let A be a weak learning algorithm for C that outputs a
deterministic hypothesis. For each ¢ € (y, let the target distribution D be uniform over a
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shattered set T' of size d(n). Let C!, C C,, be such that C’ shatters T and |C”| = 240" (thus,
there is exactly one concept in C” for each induced labeling of T').

Consider the following experiment: first the target concept ¢ is chosen uniformly at
random from C),. Then a sample S of \/M points labeled according to ¢ is chosen from
the target distribution D and is given to A. The outcome of the experiment is the accuracy
of the deterministic hypothesis output by A.

This experiment is easily seen to be equivalent to the following one: first a sample S of
\/c.l(—rj points is chosen randomly from T and is randomly labeled. Then the target cis chosen
randomly among all concepts in C’ consistent with the chosen labeling. Then the labeled
sample is given to S, and the accuracy of the hypothesis output by A is measured. Now since
the hypothesis of A is chosen independently from the random choice of ¢, this experiment
is equivalent to the following: first a sample S of \/cm points is chosen randomly from T
and is randomly labeled. Then the labeled sample S is given to A, and the deterministic
hypothesis & of A is obtained. Then a target concept ¢ is chosen randomly from among all
concepts in ), consistent with S.

We assume, without loss of generality, that & makes no errors on the m points in the
sample S. It can be seen that the accuracy of A on D exceeds 1/2 only if % is incorrect on
at most d(n)/2 of the d(n) — \/cl—(v—zj points of T' — 5. However, we may regard the random
draw of ¢ in the third description of the experiment above as a sequence of unhiased coin
flips, since each possible labeling of the points in 7" — S is represented exactly once in C!.
But the probability that at least d(n)/2 tails occur in a sequence of d(n) - +/d(n) coin flips is
at least &g for some constant 0 < & < 1 (for example, see Feller [6]). Letting tails represent
points in 1" — 5 on which 4 is incorrect, and applying an averaging argument, we see that
there must exist some ¢ € C), for which A has probability at least 8y of failing to output a
hypothesis of accuracy 1/2 on D. [ ]

We now show that for fixed 6, the bound of Theorem 8 is tight on the uniform distribution
over a shattered set. Thus if the result of Theorem 8 is to be improved, a different distribution

must be used.

Theorem 9 Let C be a paramelerized concept class, and let d(n) be a polynomial. Then

there exists an efficient algorithm that weakly learns C, against the uniform distribulion on
any set of cardinality d(n); the number of examples required is O(\ fd(n)log(1/6) -+ log(l/é)) .

Proof: The algorithm is simple. First draw a large enough sample so that with probability
at least 1 — §/2 this sample will include s(n) distinct points from the support set. Using
Hoeffding’s inequality (as in the proof of Theorem 3) it is easily shown that a sample of
size O(s(n) + log(1/6)) is sufficient to achieve this goal. The output hypothesis A will be
constructed as follows. For each point in the sample, predict the known value. For all other

points, the learning algorithm flips a fair coin to select the classification.

12



Thus we only need to determine how large to make s(n) so that the accuracy of the
hypothesis is at least 7 + _&_(1;;_ Let B denote the fraction of the d(n) — s(n) unseen instances
that are classified correctly by k. Then, to achieve a 1/d(n} advantage, we need that

s(n) + Bd(n) = s(n)
d(n) -

1,1
2 d(n)

Solving for § gives the requirement that
d(n) — 2s(n) + 2
2(d(n) — s(n))
Finally, we use Hoeffding’s inequality (with m = d(n) — s(n), and p = 1/2) to ensure that 3
is sufficiently large with probability at least 1 — §/2. This yields the following:

—(s(n) - 2)?
exp {w(n) —5()) } S92

g2

Thus choosing s(n) = {/2d(n) In(1/6) + 2 suffices. ]

We now wish to extend the upper bound of Theorem 9 to hold for any distribution on
a. shattered set. This is obtained by applying the conversion technique of Corollary 7 to
the example-efficient algorithm of Theorem 3. The result is an efficient algorithm using
deterministic hypotheses for learning any concept class of polynomial Vapnik-Chervonenkis
dimension against any distribution on a set of size VveD(C,) using O(VGD(C’,,,)Z/3 10g(1/6))

examples:

Theorem 10 Let C be a parameterized concept class such that veD(Cy) 1s polynomial in
n. Then there exists an algorithm using deterministic hypotheses for weakly learning C,
against any distribulion over a set of size VCD(C,); the number of examples required is

O(ven(Cr)¥log(1/6)).

Proof: We apply the conversion technique of Corollary 7 to the algorithm of Theorem 3.
In applying this conversion we get an interesting trade-off between hypothesis accuracy and
sample complexity—the additional sample complexity needed for the conversion is reduced
as the accuracy of the randomized hypothesis improves. Specifically, if d(n) = vcp(Ch)
then a sample of size O(d(n)/p(n) + p(n)? log(1/§)) is required to obtain a hypothesis with
accuracy s + m. Letting p(n) = d(n)'/® we obtain the desired result. =

Thus for any class C, of polynomial Vapnik-Chervonenkis dimension, the strong learn-
ing sample complexity and the sample complexity for weak learning with deterministic hy-
potheses are always polynomially related; this follows from the results of Blumer et al. and
Theorem 8. However, for any distribution on a set of size veD(C,,), the number of examples

required for weakly learning C, with a deterministic hypothesis is provably less than that
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required for strong learning; this follows from Blumer et al. and Theorem 10. For weak learn-
ing with randomized hypotheses, O(log(1/8)) examples suffice for any distribution on a set
of size VCD(Ch), a provable and significant decrease from the sample size for weak learning
with deterministic hypotheses and for strong learning. For some classes of Boolean functions,
such as symmetric functions, any distribution reduces to a distribution on a shattered set
(symmetric functions are Boolean functions over {0, 1}™ whose output is invariant under all
permutations of the input bits). Thus for symmetric functions we obtain a separation of the

sample complexities for the various models.

Theorem 11 Let C' be the parameterized concept class of symmetric Boolean functions, and
let 0 < § < 1/2 be fized. Then the sample size required for strongly learning C, is ©(n),
the sample size required for weakly learning C, with deterministic hypotheses is Q0(y/n) and
O(n*?), and the sample size required for weakly learning C, with randomized hypotheses is

o(1).

It is interesting to note that the algorithms for weak learning with randomized hypotheses
all use a method of localization not available to a strong learning algorithm: a small set of
examples is used to classify some local region of the domain. For symmetric functions,
for instance, a single vector ¥ can be used to correctly classify all those vectors with the
same number of bifs set to 1 as v. The hypothesis output deterministically classifies this
small region and flips a fair coin elsewhere. Thus, the hypothesis space used is actually
considerably weaker in terms of representational power than the true target class. This
should be contrasted with results showing that the computational complexity of learning
can sometimes be reduced by using a hypothesis space that is more powerful than the target

class (see for example Pitt and Valiant [13]).

7 Almost Every Class Has Weak Sample Complexity Q(vcp(C,))

We have seen that the power of using a randomized hypothesis may be dramatic in some
cases for weak learning sample size. Qur results thus far leave open the possibility that every
concept class C, over {0,1}" such that vcn(C,) is polynomial in n can be weakly learned
with only a constant number of examples (for fixed §). The next theorem shows that this is

not the case for almost every concept class of polynomial dimension.

Theorem 12 For each n > 1, there is a parameterized class C of Boolean concepts over
{0,1}" such that vep(C,) = ©(n), and the number of ezamples required for weak learning
Cr (using either deterministic or randomized hypotheses) is Q(n).
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Proof: The proof is a probabilistic construction showing that a randomly chosen concept
class has the desired properties with overwhelming probability. From this we conclude that
some fixed concept class C,, has the desired properties. Note that a weak learning algorithm
A for 7, is given access to a complete description (truth table) of every concept in Cp. Thus
the choice of a random target class is only for the purposes of constructing C,, in the proof;
algorithm A is not being given examples of a “random” concept.

The class C,, we construct will consist of 2*» randomly chosen Boolean concepts on {0,1}"
for some constant k& > 1; it follows that veD(C,) < kn = O(n), and from the proof below it
can be shown that vep(C,) = f}{n).

Let S be any fixed set of n arbitrarily labeled examples from {0,1}". Now let N = 2" —n,
and let 7' = {0,1}* — 5. We think of S as the sample given to a learning algorithm, and T
as those points not seen by the algorithm. With respect to the N points in T', any Boolean
concept ¢ is represented by characteristic vector ¥, € {0,1}" on the N-dimensional Boolean
hypercube and any randomized hypothesis % is represented by a vector @, € [0,1]" in the
N-dimensional real cube. In both cases we regard the ith components (4.); and (v),): as the
probability that 1 is output when the input is the ith point of 7. For the moment we are
concerned only with behavior on the set 7', and equate concepts and randomized hypotheses
over T' with these characteristic vectors.

We now define a distance measure between concepts and randomized hypotheses by

i'Y_zl l(ﬁ;)i — (511)1'!

~ .
It is easily verified that dy(¥;, 7)) is 2 metric and is in fact the probability that the concept
¢ and the randomized hypothesis 2 disagree with respect to the uniform distribution on 7.
Thus, for any randomized hypothesis £, the ball in {0,1}" under the dy metric defined by

dn (U, Tp) =

by = {{;‘c € (0,11 : dy(5,,5)) < é}

is the set of all target concepts ¢ over T' such that & has accuracy more than 1/2 for ¢ (with
respect to the uniform distribution on 7'). The next lemma shows that any ball b, contains
less than half of {0,1}"; thus any randomized hypothesis 4 is a weak learning hypothesis

for at most half of all concepts over T'.

Lemma 13 For any randomized hypothesis ¥y, € [0,1]Y, at most 1/2 of the ¥, € {0,1}V
satisfy U, € by.

Proof: For any v. € {0,1}", we have dy(¥,,comp(%.)) = 1 where comp(%,) denotes the
complement of .. Thus dy(v.,0x) < 1/2 implies dy{comp(%.),%n) > 1/2 since dy is a

metric. B
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Thus if we draw a concept over 1" at random, the probability that 2 has accuracy more
than 1/2 with respect to this concept is at most 1/2. Using Chernoff bounds, it is easy to
show that if we draw many concepts at random, the fraction of the concepts drawn for which
h has accuracy more than 1/2 rapidly approaches some value bounded above by 1/2. We
want this statement to hold simultaneously for ell randomized hypotheses h. Since there
are infinitely many such hypotheses, we need a uniform convergence result for the class of
concept classes B = {by : h € [0,1]V}. This is exactly the approach taken in our next
lemma, which shows that with overwhelming probability, any fixed randomized hypothesis
h has accuracy more than 1/2 (with respect to the uniform distribution over T') for at most
half of all the concepts in C,,.

In the following lemma, it is assumed that C, is generated by choosing 2** random
characteristic vectors from {0,1}%". Until now, we have implicitly restricted our attention
to those concepts consistent with the fixed sample S. Now that we are drawing all 2" labels
for each concept at random, we must explicitly state this restriction. Finally, we sum the

probability of failure over all choices for S.

Lemma 14 Fiz 0 < 8 <1/2. The probability (over the random choice of the class C,) that
there exists ¥, € [0,1]Y such that dn(7.,%,) < 1/2 for a fraction 1/2 + 3 of the ¥, € C,

consistent with S is at most coe™" for some constant cp > 0.

Proof: It can be shown that if we draw 2** concepts randomly from {0,1}*", then the
probability we fail to get at least 2¢=1)"1 concepts consistent with S is at most e=2""""/8,

Now on the uniform distribution over {0,1}" any b, € B has probability weight at most
1/2 by Lemma 13. It can be shown that veD(B) = ¢ N for some constant ¢; > 0. Thus,
if we draw 2171 concepts uniformly at random from {0, 1}" then the probability that

there is some ¥ such that dy (7, ) < 1/2 for a fraction 1/2 + 8 of the ¥, drawn is at most

4(2(k—-1)n.clN)6_ﬁ22(k—1)n_1 /3

by Vapnik and Chervonenkis [17]. Note that this is a generalized use of the Vapnik-
Chervonenkis dimension, which is usually used to prove uniform convergence of some concept
class over a domain set. Here we are actually interested in the uniform convergence of a set
of concept classes, and each point of the “domain set” is now actually a concept itself.
Since the probability that we fail to have 2¥=1"~1 concepts in C, consistent with S is at
most e=2*70"/ 8 the total probability that there exists a @), satisfying the condition of this

lemma is bounded above by

e—?(kni)ﬂ/g+4(2(k_1}n.clN)B_ﬁ?z(k—l)n—l/s

which is at most cge™" for k > 5, n large enough and a constant ¢y > 0. [}
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To complete the proof of Theorem 12, we sum over all possible choices of the labeled
sample S of size n. The number of such samples is at most 2 +7; thus the probability (over
the random choice of C),) that there is some labeled sample S of n points such that there
exists T € [0, 1] satisfying dn (9., o) < 1/2 for a fraction 1/2+ § of the concepts in ¥, € O,
consistent with S is at most o2 t"/e?". From this we conclude that there must be some
fixed C, such that for any labeled sample S of n points, and any randomized hypothesis &,
h has error less than 1/2 on at most 1/2 4+ § of the concepts in C,, consistent with'S. By
choosing the target ¢ € C,, randomly from among all concepts consistent with S, the desired
bound is achieved by an averaging argument. (See Lemma 15 below.) [

Note that the above proof holds for almost every class C,,.

8 A Sufficient Condition for Large Weak Sample Complexity

We have now shown that there are classes C,, such that veD(C,) = ©(n) and (n) examples
are required to weakly learn C,, (even using a randomized hypothesis space). However, since
the proof of Theorem 12 is non-constructive in nature, so far we have no example of a class
C of small (polynomial-size) circuits over {0,1}" with an Q(vcD(C,,)) weak learning sample
size lower bound. Indeed, we do not even have non-constant lower bounds for any such class.
Our goal now is twofold. First, we wish to extract a combinatorial property of concept
classes from the proof of Theorem 12 that is sufficient to imply an Q(vep(C,)) lower bound.
Second, we wish to exhibit a class of small circuits that has this property, and thus requires
Q(vep(Cr)) examples to obtain even a small advantage over random guessing.

Let C, be a concept class over {0,1}"*. For any labeled sample S, we define C,(S) to be
the set of concepts in (), consistent with S. If & is any randomized hypothesis over {0,1}7,
and p(n) is any polynomial, we denote by Cy(S)[h, p(n)] all concepts ¢ € C,(S) such that &
is a (% - ;%ﬁ)—good hypothesis for target concept ¢ with respect to the uniform distribution
over {0, 1}".

For any function t(n), we say that the parameterized concept class C' is ¢(n)-unapprozimable
if there exists some constant 6g > 0 such that for any ¢ € C,, for any labeled sample S of ¢
consisting of at most ¢(n) examples, and for any randomized hypothesis % and polynomial

p(n), we have

ICn(S)h, p()]] < (1 = bo) - |Ca(S)]

for sufficiently large n. In other words, a concept class is t(n)-unapproximable if for every
sample S of size t(n) there exists no hypothesis & that weakly approximates a fraction 1 — &g
of the concepts consistent with 5. Note that the proof of Theorem 12 shows implicitly that
a randomly selected concept class is 2(n)-unapproximable with high probability.
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Lemma 15 Let C be a t(n)-unapprozimable concept class. Then t(n) ezamples are insuf-
ficient to weakly learn C,, when § < &8 for some constant &g > 0, and for n sufficiently

large.

Proof: A probabilistic argument is used to prove this lemma.

Let 6 > 0 witness that C,, is ¢(n)-unapproximable, and suppose for contradiction that
there exists an algorithm A that requires at most #(n) examples to find a (% — }Ilnj)‘gOOd
hypothesis with probability at least 1 — 6;. Assume » is sufficiently large.

Consider an experiment in which a target concept ¢ is chosen uniformly at random from
Cn, and A 1s trained on ¢ under a uniform distribution on the domain. By assumption, A
sees a sample S of cardinality at most #(n). Let A be the hypothesis output by A. The
chance that A is a (% - ﬁ)-good hypothesis is equal to the probability that ¢ is chosen in
Ca(S)[h, p(n)], given that c is chosen from among the consistent concepts C,(S). Since ¢

was selected uniformly at random, this probability is

[Cn(S)[R, p(n)]|

|Cn(S)| < 1 — ég.

Thus, the probability (over random choices of ¢) that A fails to output a (3 — p—(;—))—good

hypothesis is greater than 6. Since this probability is the average failure probability of A
over random choices of ¢, it follows that there exists some concept ¢ € C, for which the
probability of failure exceeds &. This contradicts our assumption about A. |

We note that Lemma 15 can be proved under weaker versions of #(n)-unapproximability.
For example, the lemma still holds even if we modify #(n}-unapproximability to hold only

for most samples S of cardinality ¢(n).

9 Small Circuits with Large Weak Sample Complexity

We turn next to the problem of finding a class of small circuits with large weak sample
complexity. In particular, we show that the class of parity functions on n variables is Q(n)-
unapproximable. Specifically, let P, be the class of concepts ¢ on domain {0, 1}" of the form
c(z) = i, ® -~ ® z;,. Thus, each concept is just the parity function computed on a subset
of the n variables. It is known that P, is learnable in polynomial time [10, 15]. It is not
hard to show that vCD(F,) = n. Also, note that each concept in P, can be represented by a
vector in {0,1}". Each vector & € {0,1}" is associated with the parity function ¢ defined by

oZ)=¢-F =P g

n
f==1

We use this vector representation throughout the following proof.
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Theorem 16 For any constant a < 1, for sufficiently large n, and for § < 1/2, the number
of examples required to weakly learn P, (using either deterministic or randomized hypotheses)

is at least an.

Proof: From Lemma 15, it suffices to show that B, is an-unapproximable. Consider a
sample, S = {(Z1,41),...,(Zs,£:)}, generated by some concept in P, where ¢ = |an]. Let h
be any randomized hypothesis. Then a concept (represented as a vector) & is consistent with
S if and only if €- Z; = #; for 2 = 1,...,¢. Thus, the sample S defines a system of ¢ linear
equations on n variables over the field Z,; the solution space of that system of equations
consists exactly of those concepts consistent with 5.

Let M be the t x n matrix whose 2th row is the vector ;. Let » < ¢ be the rank of M.
Then, using standard linear algebra techniques, it can be shown that » of the bits of & can
be solved for in terms of the remaining bits. That is, by possibly renaming variables, we
may write i

=0 @ as;Cs (4)
j=r41
for¢=1,...,r, and for some b;, a;; € {0,1} which can be determined from M using Gaussian
elimination. Put another way, for every assignment to the bits ¢4, - .., ¢n, equation (4) gives
an expression for the bits ¢y, .. ., ¢, with the property that the resulting concept ¢is consistent
with 5. Explicitly, this concept is defined by

n r n 7
C(’?_D') = @Cix,‘ = @ biz; @ @ cj(a:j & EBCL{_,’CB;‘). (5)

i=1 i=1 j=r+1 i=1

To complete the proof that P, is an-unapproximable, we will show that every hypothesis
h has accuracy less than % -+ 27,,—frm < % + 5‘(?:,%’5‘,{7’2" on over half of the consistent concepts.
Consider an experiment in which one of these consistent concepts is chosen uniformly at
random. Let ¢ be the random variable representing this randomly chosen concept, and let
e. denote A's error on ¢. Then

ec = Ea(|P(Z) — c(&)|]
where Z is a vector chosen uniformly at random from {0,1}7, and 2(Z) denotes the probability
that 2 outputs 1 on input Z. For vector Z, and r + 1 < 7 < n, we write &; to denote
z; & @i, ai;z;. Using this notation,
r n
c(f) = @b;:ﬂi 45 @ T (6)
i=1 j=rl

We say that £ is known if £; = 0 for all j (r 4+ 1 < j < n) since ¢(Z) can be determined in

this case using Equation (8).

Lemma 17 BEcfe] > 2 — 2.
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Proof: We have that E.[e.] = Ez[dz] where
dz = Ec[|2(Z) — (Z)]].

Clearly, dz > 0 for all 7.

If ¥ is not known, then ; = 1 for some j and so equation (6) implies that, for random
¢, ¢(Z) = 1 with probability 1/2. Thus, dz = 1/2 in this case.

Since the probability that a randomly chosen vector Z is known is exactly 2-("=") it

follows that .
Eel] = Ez[d,] = -2-(1 — 9~

as claimed. =

Lemma 18 E[ef] < 1 + 7.
Proof: We have that

Belel] = Ec[(Ez(A(Z) — (2)[])’]
= Ec[Bzg{[A(Z) — c(Z)] - |1(F) — c(#)]]]

= Bz glszg]

where szgy = E.[|h(Z) — c(&)] - |A(7) — c(7)]]. Clearly, sz < 1 for all Z, 7.

Suppose that ¥ and ¥ are not known, and suppose further that Z; # §; for some j.
Without loss of generality, assume that Z; = 1 and §; = 0. Since ¥ is not known, g = 1 for
some k. For a,b € {0,1}, we have that
Prle(Z) = a A e(§) = b] = 1/4.

[+

To see that this is so, fix all the bits of ¢ except for ¢; and ¢;. Choosing ¢, now determines
the value of ¢(¥) (since §; = 0) to be 1 with probability 1/2. Finally, ¢(Z) is determined
by choosing c;, and its value will be 1 with probability 1/2, independent of ¢(3). Thus, it
follows that szz = 1/4 in this case.

The probability that either # or 7 is known is at most 2- 2=(*="). The probability that
i; = §; for all j is 2-(»-7),

Combining these facts gives the stated bound on E.[e?]. 2

Thus, Var[e.] = Ele?] — (E[e])* < 5m=. Applying Chebyshev’s inequality, it follows that

1 4 1
ft):l‘ QCSE—W <'2-.

That is, & has error at least 2 — ——% - on more than half of the remaining concepts. B
) 3 T Sn—nz g T
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10 Limitations on the Power of Membership Queries

An interesting question in Valiant’s learning model is under what conditions the sample size
required for learning can be significantly reduced by allowing the learning algorithm to make
membership queries, in addition to receiving random examples from the target distribution.
Briefly, a membership query allows the learner to choose an input # and receive in unit time
the label assigned to 2 by the unknown target concept. In Valiant’s model with membership
queries, the learner is still required to output a hypothesis that is accurate (in either the
strong or weak learning sense) against the target distribution, but is now allowed both
random examples and membership queries during the learning process.

It can be shown that Lemma 15 holds even when both random examples and membership
queries are allowed. More precisely, if Cy, is t(n)-unapproximable, then any algorithm weakly
learning €, must see more than ¢(n) labeled examples of the target, regardless of whether
these examples are chosen randomly from the target distribution or are membership queries.
This again holds even when the target distribution is known to be uniform. In fact, we can
prove that the ¢(n) lower bound still holds even when the learning algorithm is allowed to
choose the answers to the membership queries; that is, the learning algorithm is allowed to
choose an input z and its corresponding label, and is then guaranteed that the target concept
will be consistent with this labeled example (provided such a concept exists). Applying
these results to the class of parity functions, we have a natural and simple class of efficiently
learnable Boolean circuits for which the @(n) random sample size required for strong learning
cannot be reduced even by relaxing to weak learning, restricting the target distribution to
be uniform, providing membership queries, and allowing the learner to play a significant role
in the choice of the target concept.

Similar issues have recently been investigated in Euclidean domains by Eisenberg and
Rivest [4].

11 Toward a Characterization of Weak Sample Complexity

As we have mentioned, it is well-known that the sample size required for strong learning is
characterized by the Vapnik-Chervonenkis dimension. In Section 6, we saw that this same
measure fails to characterize weak sample complexity — for instance, the weak learning
sample complexity of symmetric Boolean functions is significantly smaller than the strong
learning sample complexity. Perhaps the most interesting open problem suggested by the
research presented here is that of finding a clean combinatorial characterization of weak
sample complexity. We provided an initial step in this direction in Section 8 by defining
the notion of ¢(n)-unapproximability and proving that this is suflicient to imply a ¢(n) lower
bound. However, the necessity of this property (or even a weakened variant of it) has not been
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demonstrated. A promising alternative that was suggested to us is the property that every set
of d(n) points in the domain is shattered by C,, with the hard distribution being uniform.
However, it is possible to show the existence of classes C, such that ven(C,) = O(n?)
and every set of size n is shattered, yet there is an algorithm that successfully weakly
learns C, against the uniform distribution using zero examples! Thus, the combinatorial

characterization of weak sample complexity remains both open and elusive.
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