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Abstract

A method for detecting patterns in biological sequences is described that
incorporates rigorous statistics for determining significance, and an algebraic
system that, in combination with a depth first search procedure, can be used to
efficiently search for all patterns up to a specified length. This method includes a
context free command language grammar and is formulated using a mathematical
model amenable to additional enhancements. The method was implemented and
verified by detection of various types of patterns in protein sequences.
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A MODEL FOR DETECTING MOTIFS IN BIOLOGICAL
SEQUENCES

1. INTRODUCTION

This report proposes a new method for detecting patterns in groups of biological
sequences. This method offers several significant improvements over other sequence
analysis methods: [1] it does not require an alignment, [2] it has a rigorous statistical basis,
[3] it can efficiently search for all patterns up to a given length without heuristics, and [4] it

is formulated using a mathematical model amenable to additional enhancements.

1.1. SEQUENCE ANALYSIS

Biological science is undergoing a revolution; there is a growing emphasis on sequence
data, as manifested by efforts to sequence the genomes of human and model organisms.
This shift in emphasis refiects a belief among molecular biologists that there is much to be
gained from gathering sequence data prior to knowing what those sequences encode.
Comparison of DNA sequences, or of inferred protein sequences, with other sequences can
often lead to valuable insights into their biological function. This has motivated a search
for efficient and sensitive sequence analysis methods for detecting patterns shared by
groups of nucleic acids or proteins. Some background information on biological sequences

and sequence motifs will provide a better understanding into these methods.



1.2. BIOLOGICAL SEQUENCES

1.2.1 NUCLEIC ACIDS
Deoxyribonucleic acid (DNA) is the genetic material of living organisms and thus
encodes the information needed for synthesis of the cellular components. DNA consists of
two antiparallel polynucleotide chains of deoxyadenosine(A), deoxycytosine(C),
deoxyguanosine(G) and deoxythymidine(T) residues connected by phosphodiester
linkages. Ribonucleic acid (RNA) is a polynucleotide which plays an essential role in the
expression of the genetic information encoded in DNA. RNA consists of a single chain of
adenosine(A), cytosine(C), guanosine(G) and uridine(U) residues.
The characterization of nucleic acid sequences is an extensive and rapidly expanding
area of research. However, since the focus of this work is on protein sequence analysis, it
will only be pointed out that the method to be described here can easily be applied to nucleic

acid sequences by incorporating an "alphabet"” for nucleotide residues.

1.2.2 PROTEINS

In order to understand the molecular biology of an organism it is important to
understand the structure and function of its molecular constituents. Protein is an especially
important component since it plays a key structural and catalytic role in the cell. Proteins
are made from an "alphabet” of twenty amino acids (Table 1.1) that differ from each other

only in a part of the molecule called the R group or side chain (Figure 1.1).

R

I
H,N-C~C—OH

| I

HO
Figure 1.1. Structure of amino acids. Amino acids have a
common structure except for their side chain or R group, which is
different for each amino acid.
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Table 1.1. The 20 amino acids that make up proteins.

Symbol Chemical Name Side Chain (R)
A alanine small aliphatic
C cysteine forms disulfide cross links
D aspartate small acidic
E glutamate acidic
F phenylalanine aromatic
G glycine hydrogen atom side chain
H histidine imidazole group
I isoleucine aliphatic
K lysine basic
L leucine aliphatic
M methionine aliphatic, contains sulfur
N asparagine amide
P proline substituted g-amino group
Q glutamine amide
R arginine basic
S serine hydroxyl
T threonine hydroxyl
N valine aliphatic
W tryptophane aromatic
Y tyrosine aromatic, hydroxyl

The primary structure of proteins consists of a sequence of amino acid residues linked by
covalent peptide bonds. Thus proteins consist of a backbone of repeating units where the

side chains vary depending on the amino acid residue present at each position (Figure 1.2).

I

-C-0
I

o

H
| ;
N e (e ~N-

ooy —

Figure 1.2. Protein structure. The primary structure of a
protein consists of amino acid residues linked by covalent peptide
bonds.
The biological activity of a protein is due to its three dimensional or tertiary structure.
The tertiary structure is determined by the primary structure through interactions of the

individual residues with each other, with the solvent and with other cellular components.
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Therefore, assuming a complete understanding of biochemistry, the structure of a protein
could be determined from its primary sequence and the cellular environment. This is an
underlying assumption of attempts to predict protein secondary structure (i.e., structure due
to interactions between more or less adjacent residues) from the primary sequence alone (1,
2).1 However, these methods have not so far been very successful, presumably due to our
Iack of biochemical understanding and to computational limitations. On the other hand,
sequence motif analysis (see next section) assumes very little about the actual chemical
interactions determining the biological activity of a protein. Nevertheless, such analyses
can often point to functionally important residues conserved among a group of related

proteins and thereby provide valuable clues to protein structure and function.

1.3. MOTIFS AS INDICATORS OF STRUCTURE AND FUNCTION

A motif is a sequence pattern that occurs frequently within a group of proteins or
nucleic acids. For example, the pattern “G. .G .GK” is frequently found in proteins that
bind to a purine nucleotide triphosphate (ATP/GTP); therefore this pattern is a motif
characterizing ATP/GTP-binding proteins. (A dot'.'indicates that any amino acid residue
is allowed at that position in the pattern or motif.) Presumably the amino acid residues that
make up such motifs are conserved among related proteins because they play important
structural or functional roles. Evidence supporting this hypothesis has been obtained for
many motifs. For example, the 3-dimensional structures of two ATP/GTP-binding
proteins, adenylate kinase and p21 ras protein, have been determined. Superposition of the
ATP/GTP-binding regions reveal a similar role for motif residues of both proteins in
substrate binding (3); the lysine (K) and glycine (G) residues in the motif all closely interact

with the substrate.

IThe numbers in parentheses in the text indicate references in the Bibliography.
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As a second example of the predictive value of motif analysis, Neuwald et al. (4)
found that inositol monophosphatase (IMP) and several homologous proteins share two
sequence motifs with inositol polyphosphate 1-phosphatase (IPP) (Figure 1.3). They
suggested that these motifs correspond to binding sites within IMP and IPP for inositol
phosphates or for lithium since both substances are bound by these proteins. This
prediction was recently confirmed by a 3-dimensional analysis of IMP (Philip Majerus,
personal communication); residues of both motifs are involved in binding to inositol
monophosphate. Although many of the proteins homologous? to IMP have clear biological
roles, there is as yet no experimental evidence that they have phosphatase activity.
Nevertheless, the shared motifs strongly suggest that these proteins also bind
phosphorylated compounds. Thus, this example illustrates that motif analysis is useful,
not only for predicting which residues in a protein play essential functional roles, but also

for predicting biological activities for proteins of unknown function.

1.4. PROBLEM STATEMENT

In some cases sequence motifs can be found by visnal inspection, but more often they
are found by examining alignments of related proteins as is seen in Figure 1.3. However
obtaining an alignment for a large number of sequences can be difficult and alignment
methods are often unreliable when there is little sequence homology. Thus, one is
confronted with the problem of detecting motifs independent of an alignment. This
problem can be restated as follows: given a possibly large group of proteins (or nucleic
acids), which may be distantly related, find the most significant shared patterns among
these sequences. Ideally we would like to find the most biologically significant patterns,

but of course this cannot be determined by sequence analysis alone.

2Two proteins are homologous if they are related through a common ancestoral protein; homology is
inferred from extensive sequence similarity.



6

MADP--=-—-- WOECMDYAVT LAGQAGEVVREALK-- - - mmmmmm = = NEM
MTSRTTTATELDEIYTFAVOLGKDAGN LLMEAARLRFSNNNANHDKESTTQ
MDCP-IPQTELDEIYAFATDLARKAGOLLLERVN---—--=--=-- DRNS-EQ
Mo e mme e - - HPMLNIAVRAARKAGKLIAKNYE -~ - mmm e m e == TED
~~~~~~~~~~~~~ MLDOVCOLARNAGDAIMQVYD------=---=--=---GTK

NI-MVKsSpPADLVTATDOKVEXMLITSIKEKYPSHESFIGEESVAAGE-~-XK
EF-TEKDSAVDIVIToTIDEDVEAFIKSAINTRYPSHPFIGEETYAKSSOQSTR

VY-AEKENAVDLVTQTDEDVESLIKTAIQTKYPAEKFLGEESYAKGE--SR

AVEASQKGSNPFVTNVDKAAEAVIIDTIRKSYPoHTIITEES---GE-~~-1§

PMDVVSKADNSPVEAADIAAHTVIMDGLRILIPOVEPVLSEED-~PPG-~--W
~—~~-motif A----

SILTD--NPTWIIDPIDGTTNFVHGFPFVAVSIGFVVNRKEMEFrGIVYs

PYLVTHTTPTHVVDPLDGTvNY T HLFPMFCVSIAFLVDGTPVIGVICA

EYLIDE~-QPTWc VDPLDGTVNF T HAFPMFCVSIGFIVNHYPVIGVIYA

EGTDC--DVOWVIDPLDGTTNFIKRLPEFAVSIAVRIKGRTEVAVVYD

EVROHW-QRYWLVDPLDG TR e FIKRNGEPTVNIALIDHGEPILGVVYA
W-VDPIDsSTYQYIK

CLEDKMYTGREGEKGAFCNG-QKLOVSHQ~ ~~ = =~~~ EDITKSsLLVTELGSS
PMLGOLFTACKGRGAWLNETQRLEPLVRQ----PMPKSAPGGCVFSCEWGKD
PMLNQLFSSCLNRGAWLNEMQOQLPLIRKPSIPPLPATARPSKCIFACEWGKD
PMRNELFTATRGQGAQLNGYRLLGSTAR---=-=-~-=-~ DLDGTILATGFP-FK
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Figure 1.3. Conserved regions between inositol monophosphatase and homologous
proteins. Similar residues are bold. Protein sequences shown are bovine inositol
monophosphatase (IMP), the products of the Neurospora crassa qa-x gene (Qa-X), the
Aspergillus nidulans quiG gene (QutG) and the Escherichia coli suhB and amtA genes
(SuhB, AmtA) and the C-terminal peptide fragment inferred from the 3' end of an ORF
upstream from the Rhizobium leguminosarum pss gene. IMP and bovine inositol
polyphosphate 1-phosphatase (IPP) are not homologous but they share two motifs (A and

B). Conserved residues within motifs are enlarged. For references see (4).
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Consequently, the next best thing is to develop a method for detecting statistically
significant patterns; a quantitative measure of that significance would be very useful as
well.

Fortunately, the development of sequence analysis methods is facilitated by the nature
of biological information. Since nucleic acids and proteins consist of strings of residues,
they can be readily represented by a formal mathematical model. Then, abstract data types
can be developed from the mathematical model and finally, appropriate data structures and

algorithms can be found to insure efficient implementation of the method.

1.5. OVERVIEW

The next chapter will review previous sequence analysis methods for detecting motifs.
In Chapter 3 a new method is developed which is then verified in Chapter 4 by using it to
analyze several groups of proteins. In the final chapter, the method of Chapter 3 is
evaluated and compared with other methods and suggestions for future enhancements are
discussed. Definitions (Section 6.1) and statistical formulas (Section 6.2), are given in the

Appendix .



2. SEQUENCE ANALYSIS METHODS

Many sequence analysis methods involve sequence alignments while a number of more
recent methods do not. This chapter reviews both types with an emphasis on those

methods that can be used to detect patterns in distantly related sequences.

2.1. METHODS BASED ON ALIGNMENTS

The major purpose behind alignment methods is to determine the "minimum distance"
between two sequences. This can be defined as the smallest number of insertions,
deletions, and residue substitutions required to change one sequence into another (5).
However, with biological sequences it is more typical to view the distance between
sequences as the minimum number of mutations required during evolution to transform one
sequence into two related sequences. Since mutations are not all equally probable, a
scoring scheme is used that puts more weight on more probable mutations.

It is important to realize that these mutational probabilities depend, not only on the
probability of the mutation occuring, but also on its selective advantage or disadvantage.
For this reason, a residue is often more likely to be replaced by a chemically similar residue
than by a dissimilar one. For example, a hydrophobic amino acid residue, which is
commonly found in the interior of a protein, is often replaced by another hydrophobic
residue because replacement by a hydrophilic residue, which is commonly found on the
exterior, may disrupt the protein's three dimensional structure.

The minimal distance between two sequences is determined by finding an optimal
alignment (Figure 2.1) using a scoring scheme that places positive weights on matches
(identical or similar residues) and negative weights on mismatches (dissimilar residues) and
on gaps (insertions or deletions). Usually these match-mismatch weights are stored in a

matrix of 12 x [X] cells, where X is either the amino acid or nucleotide alphabet, so that the
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similarity or dissimilarity of two residues, r; and r2, can be found by looking at the row for

r7 and the column for r (or vice versa). If the weights accurately reflect true mutational
probabilities, then the highest scoring (or optimal) alignment reflects the shortest
evolutionary path from one sequence to the other.

10 20 30 40 50
GPKEPEVTVPEGDASAGRDIFDSQCSACHAIEGDST——AAPVLGGVIGRKAGQEK”FAYS

................................

ASFS——-EAPPGNPDAGAKIFKTKCAQCHTVDAGAGHKQGPNLHGLFGRQSGTTAGYSYS
10 20 30 40 50

60 70 80 90 100
KGMKGSGITWNEKHLFVFLKNPSKHVPGTKMAFAGLPADKDRADLIAYLK———SV

-------------------------------------

AANKNKAVEWEENTLYDYLLNPKKYIPGTKMVFPGLKKPQDRADLIAYLKKATSS
60 70 80 90 100 110

Figure 2.1. Optimal alignment of cytochromes ¢. Sequences are

from Tetrahymena pyriformis (top) and wheat (bottom). Residue

ilc;csr}{lt.ities are indicated by a colon, similarities by a dot and gaps by a
2.1.1. AMINO ACID WEIGHTING SCHEMES

Some amino acid weighting schemes are based on the chemical properties of the amino
acids (6) and assume that transformations to similar residues are favored during evolution.
Just as English letters can be grouped by similarities in their pronunciation into gutturals
(G,K,C), labials (B,P,F), dentals (T,D), etc., amino acids can be grouped by similarities
in the chemical properties of their R groups. For example, the side chains of both aspartate
(D) and glutamate (E) contain carboxylic acid groups (-<COOH) and both alanine (A) and
threonine (T) have rather small side chains. Thus amino acid pairs can be given weights
proportional to these chemical similarities.

However the list of amino acid similarities and differences is quite long and interrelated.
For example, alanine's side chain is short like threonine's, but threonine's side chain
contains an hydroxyl group (-OH) like tyrosine's, yet tyrosine's side chain is large and
aromatic like phenylalanine's, etc. Sorting out how all these similarities and differences

actually influence the ability for some residues to replace others can be very difficult. In
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order to circumvent this problem, Dayhoff and coworkers (7, 8) have empirically

determined the likelihood that one residue will replace another by examining amino acid
substitution patterns in groups of closely related proteins; weights are assigned using these
likelihoods.

Determining meaningful gap weights is more difficult, but some rules of thumb have
been suggested (9). Note that an optimal alignment for two sequences is a function of the

weighting scheme; changing the weights may change the optimal alignment.

2.1.2. GLOBAL ALIGNMENT METHODS

The global alignment problem is to find the best overall alignment for two sequences.
This could be done by calculating scores for every possible alignment. However, the
combinatorics of such a brute force approach quickly become unmanageable. Fortunately,
dynamic programming algorithms can solve such optimization problems in a reasonable
amount of time and memory. The first such algorithm was developed by Needleman and
Wunsch (10); later Sellers (11, 12) described a slightly different but equivalent algorithm.
These methods are guaranteed to find an optimal alignment, but they will not find other

optimal or near optimal alignments and thus they may miss significant patterns.

2.1.3. LOCAL ALIGNMENT METHODS

Local alignments are used to detect conserved regions in proteins or nucleic acids
which might in general have little detectable overall homology; unconserved regions do not
contribute to the final score. Two approaches to local alignment have been taken. One
approach described by Smith and Waterman (13) uses the Needleman-Wunsch method in a
modified form and is guaranteed to detect the optimal subsequence alignment.

A second approach is to use an heuristic procedure to find locally similar segments! and

then to extend these regions until a maximum relatedness score is obtained; such methods

1A segment is a contiguous stretch of residues in a sequence,
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are very fast. The FASTA program (14, 15) implements this approach by combining a

lookup table of the positions of all short k-letter words with a 'diagonal’ method (16, 17) to
locate regions of local similarity. A more recent method, which has been implemented in
the program BLAST (18), works by identifying short length & segments that are likely to
yield high scoring extended regions. First, a list of patterns that yield a 'threshold’
relatedness score with a query sequence is created. Next, a database is scanned for
segments matching these patterns using a deterministic finite automaton (19). Finally,

matched segments are extended and regions scoring above a cutoff score are reported.

2.1.4. MULTIPLE ALIGNMENT METHODS

Pairwise sequence comparisons are useful for alignment of two homologous sequences
and for database searches. However, often biologically significant patterns may only be
detected by multiple alignment, because a pattern, which may be statistically insignificant
when found in only two sequences, can be significant when found in many sequences.
When a group of sequences are known to be globally homologous, a number of multiple
alignment methods can be applied (20-30). However, the focus of this study is on
methods to identify patterns occurring in distantly related sequences; several multiple

alignment methods attempt to solve this problem.

2.1.4.1. Heuristic Methods that Add Sequences One at a Time

Bacon and Anderson (6) describe a heuristic method to prune the search space of all
possible n-wise subsequence alignments to a manageable size. Their method includes a
scoring scheme for mismatches based on the chemical attributes of amino acids and
involves the following steps. First, all possible alignments of length £ segments from the
first two sequences are evaluated and the best of these are saved on a heap, H;. Next, all
alignments consisting of segment pairs in H; are evaluated against all segments from the

third sequence, and the best of the three-way alignments are stored on a second heap H>.
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Then all ways of aligning the fourth sequence with the alignments in A2 are tried, and the

best ones replace the segments in Hj. This process continues until either Hy or H2
contains the best set of alignments found. This method works even for fairly long patterns
in a large numbers of sequences but has several disadvantages. First, the order of the input
sequences can influence the output, sometimes dramatically. For example, if the first two
sequences happen to be quite distantly related, patterns common to the other sequences may
never be detected. Second, the method is limited by the fixed pattern size and the need for
all the sequences to contain fairly reasonable matches to the final patterns detected. Stormo

and Hartzell (32) describe a related method which is framed in terms of information theory.

2.1.4.2. Methods Used to Detect Ordered Patterns

Sobel and Martinez (33) describe a method that uses a 'longest path' algorithm to find
optimal and near optimal alignments of sequences. A path starts at the beginning of the
sequences and proceeds toward the end of the sequences. The edges of the path
correspond to successive segments common to all the sequences where the segment lengths
correspond to edge lengths; no mismatches are allowed and a length penalty is added for
gaps between segments. Thus, an optimal alignment for the sequences corresponds to a
longest path. Near optimal alignments are found using the method of Byers and Waterman
(34) which requires very little additional time and memory space once the optimal alignment
is known. This method can be applied to a large number of sequences to detect patterns of
variable length; however it does not incorporate a match-mismatch scoring scheme, and it
requires that patterns occur in the same order and be present in all the sequences.

Karlin et al. (35) describe a similar method but use linked lists to locate identical length
k patterns within a sequence. At each position in the linked list is stored the location of the
next segment in the sequence matching the same pattern (null =  is stored at the last
occurrence of a pattern). By concatenating the input sequences, the problem of finding

matches between multiple sequences is reduced to one of finding long repeating
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superpatterns within a single sequence. (Errors and gaps are allowed between patterns
within the superpattern.) The locations of these longer repeated superpatterns is determined
using the pattern information contained in the linked list. Statistical methods are used to

distinguish nonrandom sequence relationships from chance configurations.

2.1.4.3. Methods Using Diagonals

Schuler, et al. (36) describe a method for finding regions of local similarity among a
group of three or more sequences. First, all input sequences are compared to find 2-
diagonals, i.e., alignments of two full-length sequences without gaps, that contain a
segment pair with a relatedness score above a low threshold level. Next, the method
attempts to construct a 3-diagonal using combinations of three 2-diagonals detected in the
first step. This process is continued as long as possible in order to find a maximum -
diagonal which contains a set of m aligned sequences all of which have relatedness scores
to each other above the threshold level. Finally, this m-diagonal is parsed, using a heuristic
procedure, to locate conserved regions; a statistical criterion (37, 38) is used to aid in the
identification of significant regions. This method utilizes rigorous statistics, is not limited
to finding patterns of any fixed length, and incorporates a relatedness scoring scheme. A
limitation of this method is that the parsing procedure is not always able to disentangle the
complex relationships of patterns among the diagonals in order to choose the best
conserved region. To get around this problem several tools are provided for interactively
editing the output. This method can handle moderate numbers of sequences. Vingron and
Argos (39) describe a similar method that uses algebraic manipulations of sequence dot-

plots to locate m-diagonals.

2.1.5. PROFILE ANALYSIS
Profile analysis (40, 41) is a method that attempts to capture the subtle structural and

functional information implicit in alignments of related proteins in order to detect distant
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relationships. This information is represented in a position specific scoring table or profile.

The score for a specific residue at a given position is determined from the frequency of its
occurrence in the entire set of aligned sequences. A relatedness scoring matrix is used to
distribute these scores more evenly among similar residues, and penalties are used for
insertions or deletions at each position. Thus, the similarity of a query sequence to an
entire group of aligned sequences can be tested by comparing that sequence with the profile
using a dynamic programming algorithm. This method can also use information from
protein structural studies to construct the profile (42). Profile analysis is useful for finding

sequences matching known patterns but is not designed to detect new motifs.

2.2, METHODS NOT NEEDING ALIGNMENTS

While alignments are useful for discovering motifs, the most sensitive of these methods
can require considerable effort when applied to a large number of sequences, i.e., about ten
or more average size proteins, and they may be unreliable when there is little sequence
homology. This has motivated development of pattern detection methods that do not

require an alignment.

2.2.1. LEXICOGRAPHICALLY ORDERED MATRIX METHODS

In these methods, patterns are ordered lexicographically (and put into one-to-one
correspondence with a set of succeeding integers) so that pattern data can be collected into
arrays2.

Queen et al. (43) developed one of the first methods for the detection of patterns in
multiple sequences. This method relies on a two dimensional matrix consisting of a one
dimensional integer array of length IZIV for each sequence, where Y, is the alphabet and N

1s the pattern length; thus, there is one integer in each array for every possible pattern.

2An array is an ordered set.
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These arrays are used to store the number of segments in each sequence matching a pattern
in at least M out of the N positions. A separate array is then used to record the number of
sequences matching each pattern. If more than a minimum number, X, of sequences
contain the pattern (allowing for the N — M mismatches) the algorithm returns the set of
sequences and their locations. The algorithm also allows specification of a maximum
distance separating the patterns in the sequences; this feature detects patterns that only occur
in corresponding locations for each sequence. This method works reasonably well for
even large numbers of nucleotide sequences and allows for mismaiches, but its usefulness
in the analysis of protein sequences is limited due to the large array sizes needed for the
amino acid alphabet. A second limitation is that the patterns must be contiguous and of a
fixed and rather short length.

Waterman et al. (44) proposed a closely related method but with improved data analysis
that increases its utility., They also generalized the concept of a mismatch into what they
call a neighborhood function to describe closely related patterns (this allows for insertion
and deletions) and provide a way to estimate the statistical significance. Staden (45) has

recently described yet another version of this technique.

2.2.2. METHODS BASED ON FIXED PATTERNS
Smith, et al. (46) describe a method for finding motifs in groups of functionally related
proteins which they have implemented in the MOTIF program. This method involves the
following steps:
Step 1: Select all 3-amino acid patterns occurring in at least k of the proteins
in the group such that no more than r redundant (internally repeated)
copies of the pattern occur.
Step 2: Obtain the pattern scores by measuring the average relatedness value
of the protein segments containing those patterns using a Dayhoff

relatedness odds (PAM 250) matrix (7, 8).
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The highest scoring patterns along with matching segments are reported. (Unmatched

segments that have high scoring alignments with the matched segments are also reported.)

This method works fairly well even on large numbers of sequences, and has been
incorporated into a method for obtaining a database of the most conserved regions of
related proteins (47). In addition, this method has inspired development of a method to be
described in Chapter 3. Nevertheless, it has several deficiencies. First, it lacks a statistical
basis and therefore cannot give a direct measure of significance. (However, a Monte Carlo
simulation routine for empirically determining the statistical significance is included with
the MOTTF program.) Second, the method is limited to detection of rather short motifs and
does not allow for mismatches in the 3-amino acid patterns of the first step. Third, it is not
likely to find motifs which occur in only a minority of the proteins or which are internally
repeated. The reason for this is as follows. The parameters £ (the minimum number of
proteins that must contain a 3-amino acid pattern in Step 1) and r (the maximum number of
internal repeats) are used to cut down on detection of random background patterns by
relying on two underlying assumptions. [1] True motifs will usually occur in a majority of
the proteins and [2] they will tend not to be repeated within a single protein. Thus, in order
to eliminate background noise, usually r is small and & is 2 N+2, where N is the total
number of proteins. However, these assumptions are not valid since there are instances of
internally repeated motifs (48, 49) and proteins with the same function could belong to
several different subgroups sharing distinct motifs due to differing mechanisms. Thus, this
method is mostly limited to detecting motifs among groups of proteins that are known to be
related before the analysis and, even then, it may miss patterns present only in a2 minority of
the proteins.

An earlier method, which is similar to the MOTIF method, is described by Posfai et al.
(50). This method 1s used to produce a global alignment of a set of similar sequences by

performing the following steps: [1] locate the most significant (short) pattern common to all
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the sequences; [2] align the sequences at this pattern (this divides each sequence in the set

in two so that two sets of half sequences are created); [3] recursively repeat steps 1 and 2

on the two sets of half sequences until no common pattern can be found.

2.2.3. A METHOD BASED ON EXPECTATION MAXIMIZATION

Lawrence and Reilly (51) describe a rigorous statistical method for pattern identification
and characterization. Unaligned sequences contain no explicit information on the locations
of patterns in a group of sequences. This method employs the "missing information
principle" (52) to develop an expectation maximization (EM) algorithm which overcomes
this information deficit. The algorithm estimates the probabilities of pattern locations being
at each position in each sequence and thereby predicts the most likely sites simultaneously
with the maximum likelihood estimates of the model parameters. An advantage of this
method is its ability to detect long patterns in a large set of sequences, but this is offset by
the need for a fixed pattern size and for each sequence to contain at least one common

pattern.

2.24. PATTERN MATCHING PROGRAMS

A number of methods are available for finding user designated patterns in a database of
protein or nucleic acid sequences; for example see (53-55). Some particularly useful
methods, which allow for approximate matching to regular expressions (56), have been

developed by researchers at the University of Arizona (57).
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3. A MODEL FOR DETECTING MOTIFS IN
BIOLOGICAL SEQUENCES

From the previous chapter it seems clear that the ideal sequence analysis method has not
yet been found. Such a method would [1] be based on rigorous statistics, [2] efficiently
detect significant patterns of variable length among large numbers of distantly related
sequences, [3] incorporate a relatedness scoring scheme and, as an additional indicator of
significance, [4] take into account the order in which the patterns occurred in the
sequences. There are other enhancements, which could also be included, but which might
either contribute very little or be computationally intractable. For example, the additional
complexity needed to directly detect long patterns with gaps could easily become
unmanageable; a simpler method might detect these patterns as an ordered arrangement of
short contiguous motifs separated by variable length regions.

Although development of an ideal method is not likely in the immediate future, the
method described here incorporates a number of key features. It has a rigorous statistical
basis and is capable of detecting significant patterns among fairly large groups of distantly
related sequences. In addition, it is based on a mathematical model that lays a foundation
for further improvements, such as incorporation of a relatedness scoring scheme (see
Section 5.2.1).

A model for detecting motifs should include a set of patterns, a population of sequence
segments to be matched with those patterns, and a set of operations that perform the
matching and determine statistical significance. In this chapter, such a mathematical model,
called a generator-population dyad, is described. A generator-population dyad is composed
of an aligned segment population, which defines a set of segments (called a universal
block) derived from one or more biological sequences, and a pattern generator, which is an

abstract object used to generate a set of patterns for analysis. The model also incorporates
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an algebraic system for sets of segments (called blocks) matching specific patterns. Before

proceeding to a formal description of the model, an informal overview of the basic method

will be presented.

3.1. INFORMAL OVERVIEW

A key aspect of the method described here is how to obtain a population of sequence
segments of length £ to be analyzed; there are at least two ways to do this. One way is to
generate a set of overlapping segments from each member of a group of sequences, either
proteins or nucleic acids. For example, if one sequence in a group of proteins is:

MAGTHFGGKTRRTNMVLCWSTAGPK
then the set of corresponding overlapping segments of length 12 would be:
MAGTHEFGGKTRR
AGTHFGGKTRRT
GTHFGGKTRRTN
THF GGKTRRTNM
HEGGKTRRTNMV
FGGKTRRTNMVL
GGKTRRTNMVLC
GKTRRTNMVLCW
KTRRTNMVLCWS
TRRTNMVLCWST
RRTNMVLCWSTA
RTNMVLCWSTAG
TNMVLCWSTAGP
NMVLCWSTAGPK

Another way is to obtain a set of length k& segments having either a functionally
important sequence feature or an arbitrary pattern as a fiducial mark for alignment.
Examples of functionally important features include sites, in DNA or RNA, where
transcription or translation is initiated or terminated, where transposon insertion or RNA
splicing occurs, or, in proteins, where phosphorylation, protease cleavage or substrate
binding occurs. For example, protein amino-terminal regions aligned at their amino-

terminal ends would create a population of segments like the one shown in Figure 3.1.
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NH3-MDPVVVLVLGLCCLLLLS IWKQNSGRGKLPPGPTPFPIIG Progesterone 21-monooxygenase
NH-PRASGNLIPQEKIVNLLNDIFGAGFDTVTTAISWSIMYLV Cytochrome P450IA2
NH3-MSVSALSSTRFTGSISGFLOVASVLGLLLLLVKAVQFYLQ Laurate omega-hydroxylase
NH2-MAVLSRMRLRWALLDTRVMGHGLCPQGARAKAATPAALRD Vitamin D3 25-hydroxylase
NH2-MVLAGLLLLLTLLSGAHLIWGRWKLRNLHLPPLVPGFLHL Steroid 21-monooxygenase
NHp-MVNPKHHIFVCTSCRLNGKQQGFCYSKNSVEIVETFMEEL Ferredoxin (2Fe-25)
Figure 3.1. A population of aligned protein segments containing amino-
terminal ends.
Alternatively, protein segments, aligned using a common arbitrary 'seed' pattern, such
as the pattern . .. ... GK.vunan ”, would create a segment population like the following,
TVEYLKGKDNHVAD
RFQSRQGKEQLDLQ
YYSVICGKKIIATR

LKCKSNGKVKKQHP

Once a population of aligned segments for analysis is obtained, the following method
can be used to determine whether the occurrence of a given pattern in the population is

statistically significant:

Statistical Evaluation Method
Given a pattern and a population of segments, perform the
following steps:
STEP 1: Determine the number of segments (n) in the
sample population that match the pattern.
STEP 2: Assuming statistical independence (see below),
calculate the probability of n or more matches from the
cumulative binomial distribution function.
STEP 3: If the probability of obtaining the observed
number of matching segments is very small then conclude

that the pattern is significant.
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Thus, the statistic being measured by this method is the number of segments matching a

pattern. The null hypothesis assumes that each segment is independent from other
segments and that residues at each location in a segment are independent of residues at
other locations. This implies that the statistic is binomially distributed, i.e., models a series
of N independent trials where the outcome is either success (the pattern and segment match)
or failure (they do not). The probability of n or more successes out of N trials can be
calculated from the cumulative binomial distribution function,

N

PV = D, (V) pi (hpV-i (3.1)

i=n

where p is the product of the frequencies with which the residues at each position in the
pattern occur in the segment population as a whole. For example, for the following pattern

and set of segments, n out of the N segments match the pattern:

PATTERN: veas YEP ...,
3
SUCCESS: FVYF YEP YIPLSETS

1
MIFA YEP FFLSNGGI 2
LILG FEP YGIVGEAS n

FAILURE: NAGH ISM KSLKEIPL n+l
VNTG HIQ QKIKSDPM n+2

QDVL MKD VTNEFINI N

The probability of » or more successes out of NV trials is then calculated from Equation 3.1
where
p = (frequency at which ‘Y’ or ‘F’ occurs at position 5)
x (frequency at which ‘E’ occurs at position 6)

x (frequency at which ‘P’ occurs at position 7).
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With this as an overview of the basic method, the next sections proceed to model the

relationship between patterns and sequences using five abstract data types: sequence
entities, pattern generators, blocks, aligned segment populations, and generator-population
dyads. In addition to defining each abstract data structure and its associated operations, an
attributed context free grammar is given, which describes a command language for
generating structures and performing operations. Several key data structures and

algorithms used to implement the mode] are described using the notation of Tarjan (58).

3.2. BIOLOGICAL SEQUENCE ENTITIES
A biological sequence entity is the fundamental object of sequence analysis and
represents a protein or nucleic acid sequence that performs a specific biological function

within a particular organism.

3.2.1. DEFINITIONS

A residue (r) is an element of 2, where 2 is the alphabet of either nucleotides or
amino acids. A biological sequence (S) is a string of elements of 2. X+ denotes the set
of all such strings of length > 1. A biological sequence entity (E) is an element of the
function Fgeg: N — >+ where F Seq Maps a unique identification number or identifier (E.J)
for each biological sequence entity to the entity’s sequence (E.S) 8o that E.§ = Fgeg(E.D).
For example, the biological sequence entity, E, where

EJ=38574 and

E.§ = "MGDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAAGFSYTDAN

KNKGITWGEDTLME YLENPKKYIPGTKMIFAGIKKKGERADLIAYLKKATNE",

represents the protein sequence for rat cytochrome ¢ which has been given the identification

number 38574.
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3.2.2. ATTRIBUTED GRAMMAR AND OPERATIONS

An attributed grammar can be used to parse residues, sequences and entities from an
input string. The nonterminal <residue> represents one of the symbols for an amino acid

residue! (as given in Table 1.1) and is defined by the rule:

<residue>41 —A [[al= A1
|c Mal=¢C]J
|D [[al= D]
Y [al= Y]]

(Terminal symbols are given in bold while nonterminal symbols are enclosed in angle
brackets.) The subscript symbols at, a2, etc. represent nonterminal attributes which are
defined by the boolean expression enclosed in double square brackets. A sequence can be
derived from individual residues by repeated concatenation of amino acid residues. Thus

the nonterminal <sequence> is defined by the rule:

<sequence>aq —> <sequences>gp <residuesgs [[ 31 =a2 & a3 ]]
| <residueszo [[ a1 = a2 ]]
The symbol '&' represents the concatenation operation. Finally, an entity can be created
from a non-negative integer, corresponding to the entity's identification number, and a

sequence using the following rule:

<entity>z1 —> <integersa2 <sequence>a3 [[ a1 = <a2,a3> ]]

The following operation, which corresponds to this rule, creates a new sequence entity:
make_entity(integer /, sequence S): Return entity E = </,5>.
Other operations for retrieving information, and randomizing sequence entities are also
defined. Two operations return information about the sequence entity:

identifier(entity F): Return integer E.7.

LA similar rule can be defined for the nucleic acid alphabet.
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residue(integer i,entity E): Return residue E.5(7).
S(?) denotes the ith residue of sequence S or more generally A(i) denotes the ith element of
an array or list.
Randomizing operations are performed on sequence entities in order to facilitate
statistical analysis:
permute(entity F): Randomly permute the residues in E.S.
random(entity E, real dfreq[1.|E.S|][re Y ]1[re X]): Randomize
residues in E.S consistent with the position dependent di-residue

frequencies defined by dfreq. (See next section for details.)

3.2.3. IMPLEMENTATION
The operation permute( ) is implemented using a heap (59). The individual residues of
sequence E.S are inserted into the heap using a random number as the key. (Items are
ordered in a heap according to their keys.) Then minimum key residues are sequentially
removed from the heap and concatenated to obtain a random permutation of the sequence.
The operation random( ) is implemented as follows. First, the elements of X are
mapped into an array (residue R[1..1%1]), and an integer i is initialized to 1. Then, the
following three steps are repeated while [ < IE.SI:
STEP 1: Generate a random real number (real rand) between 0.0 and 1.0
and initialize the integer n := 1.
STEP 2: While rand := rand — dfreq[iJlE.SD)I[RM)] > 00— n:=n+1.
STEP 3: Set E.S(i +1) := R(n) and increment i.
This algorithm generates a nonstationary (position dependent) first order Markov chain.

Implementation of the other operations is straightforward.
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3.3. PATTERN GENERATORS

Having established a model for biological sequences, a representation for patterns
present in those sequences is now formulated. An abstract data type, pattern generator, is
used to generate groups of one or more sequence patterns. Sequences, patterns and
generators form an hierarchy; just as one or more sequences can match a pattern, one or
more paiterns can match a generator. Operations and an attributed grammar are defined for

three subclasses of especially useful generators.

3.3.1. DEFINITIONS

A biological sequence pattern (Q) is defined as a sequence of one or more subsets of

>

Qe {<st,st> I5i€ P(E)n 1Si <k a ke P} (3.2)

For example, <{F, Y},%,{N, D},{P},{P}> is an sequence pattern where . is the alphabet
of amino acid residues and k=5. A sequence S =rj...,ry matches a pattern Q =
<87,....5k'> {(and Q matches S) iff £ =k" and r;e s; for 1 <i <k. Thus, the sequence
“YHDPP” matches the above pattern while “YHDPPA” and “YHDGP” do not. A universal
pattern, Qy = <2X,2....,2>, matches any sequence of length & = IQyl. A simple

pattern (g) consists of a sequence of complete or singleton sets:
qe {<s1,...,sk> Isie {({rllreZ}u{X} A l<i<kake P} (3.3)

It is useful to have a notation for a group of one or more patterns. To do this we
introduce the concept of a pattern generator (G) which is defined as a sequence of one or

more subsets of the power set of 2.:

GeG={<oy,..00> loic Py~ 1Si<k nke P} (3.4)
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A pattern O = <s7,...,5¢> matches a generator G = <0y,...,0p’> (and G matches Q) iff &
=k’ and s; € o; for 1 £i <k. For example, the above pattern matches the generator
<{ty,r}L{Z}){{n, D}, {n}, (D} },{p),{{r} I re X}>. 1tis helpful to define a concise
notation for generators which eliminates confusing commas and angle brackets, and
introduces several abbreviations (Table 3.1).

Table 3.1. Concise notation for pattern generators. All commas and angle
brackets are eliminated in the new notation; Vx,Vy: Txlxy € 2.

NEW NOTATION OLD NOTATION COMMENT
. o HrxssFxnr oo erlxilse s a non-singleton

{rxjrxz. . .rxln. . . ..rx’. . .rxn} Xprix2 Xi ) {rxi,- . -,rx"}} generator set
fot pae = the set of all 1-

? {rizrpz. . iyl = {{x} Tx e X} residue sets

a multi-residue
FeiFyn...T I U !
{regrey xn} {rxys Txys wn}) singleton set
a 1-residue
I'x Urel) singleton set
v (%) the singleton set
) containing ),

Thus the above generator would be designated as "{YF}.{ND:N:D}P 2", using this
notation. A null generator (Gg) is a sequence of 0 sets.

There are three types of generators which are particularly useful for the analysis of
biological sequences: 1-pattern generators, variable generators, and 2x2-table generators.

A 1-pattern generator (Gg) matches only one pattern Q. For example, the
generator . {ND}PPY" can only be matched with the pattern <2,{N,D},{P},{P},{¥}>,
and therefore is a 1-pattern generator. The concise notation for a 1-pattern generator will
often be used to denote the single matching pattern. The universal generator, Gg,, =
., is a 1-pattern generator that matches the universal pattern Q of length £.

A variable generator (Gy) is derived from a 1-pattern generator Gg by converting

one or more °.’s at arbitrary positions in Gg into “?’s. For example, the variable residue
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generator Gy =“. 2. ?PPY” is derived from the 1-pattern generator Gg=“. .. .PPY” by

converting two °.’s in Gg into ‘2’s.

A 2x2-table generator (G,) is derived from a 1-pattern generator Gg by 2-
partitioning the elements of two multi-residue singleton sets in Gg to produce a 4-pattern
generator. (Note that a 1-pattern generator, Gg, is a sequence of singleton sets where
Go() = {Q()}.) For example, the table generator G; = “. {ILV:YF}. {N:D}PPY" is
derived from the 1-pattern generator Gg = “. {ILVYF}. {ND}PPY” by 2-partitioning the
elements of the multi-residue singleton sets {{I,L,V,Y,F}} and {{N,D}}. The four
patterns recognized by G, can be mapped to the cells of a 2-dimensional table with the bins

of the rows and columns of the table corresponding to the bins of the partitioned sets:

{N} {D}

{I,L,V} AILV).NPPY JdILv).pPPY

{v,F} .{YF}.NPPY .{YF}.DPPY

Such tables are represented by the abstract data type table which is defined in the
Appendix (Section 6.3) and represents a 2x2 contingency table on which statistical

analysis operations can be performed.

3.3.2. OPERATIONS AND ATTRIBUTED GRAMMAR

The operations and attributed grammar described here can only create the three specific
types of generators mentioned above; in the future, operations and grammatical rules for
other types of generators may also be developed.

Since we are only interested in patterns with reference to some set of biological
subsequences of length £, it is helpful to require that all patterns also be of length £. Thus
the following operation creates a null generator G but requires that a total of k append

operations be performed on Gg;:
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make_generator(integer £): Create and return a null generator, Gg,

such that a total number of & append operations are required.

Ifi < k£ append operations are performed before a non-append operation occurs a silent
operation is done that sets G := G & .%%. This eliminates the need to specify all k
positions of G either within the command input string or within higher level operations. If
more than £ append operations are performed on G, the generator is destroyed, since it
cannot recognize any length & pattern, and null is returned by further operations. The

following append operations are possible:

append_set(generator G, set V): Append {V}, where V c X, to the
end of G,1e. G =G & {V}.

append_variable(generator G): Append the set '?' to the end of
generator G, ie., G =G & '?'.

append_partition(generator G, 2-partition {U,V}): Append the 2-
partitioned residue set {U,V} where U,V < ¥ and U nV =@ to the
end of generator G, i.e., G := G & {U,V}. The attributed grammar
for G insures that two and only two partition operations are

performed during creation of a table generator (see below).

Using these operations all 1-pattern, variable, and table generators can be created from
input strings defined by the following atiributed grammar; these input sirings correspond to
the concise notation for generators.

The grammar rule for generating 1-pattern generators is:

a2 & {a3} 1]
a2 & {a3} ]

<1p_generator>a1 — <1p_generators>z2 <set>;3 il at
| <univ_generator>zo <subset>a3 [{ at

where the non-terminals <set>, <subset>, and <univ_generator> are defined by:
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<set>a1 —> <subset>go [[ a1l = a2 ]]
|*.’ fat=21
<subset>z1 — '{' <residues>z> '}’ [ a1 = a2 J]
[ <residue>gao [f a1 = {a2} ]|
<residues>51 —> <residues>zp <residue>;3 [[ a1 = a2 v {a3} ]]
| <residue>zo [[ a1 = {a2} 11
<univ_generator>a{ —> <univ_generator>ag2 ‘.’ ffal=a2& {2} 1]
| ([al=Gg ]

Rules for generating variable generators are defined in terms of 1-pattern generators:

<var_generatorsz1 — <var_generatorsgzo <set>33  [[ a1 = a2 & {a3} ]]

| <var_generatorsaos ‘2’ [[at=a2& {{x}Ixe X} ]
| <ip_generatorszo ‘2’ f[lal=a2 & {{x}1xe X} ]
| <univ_generator>zo ‘2’ fal=a2& {{x}lxe X} ]

Rules for generating table generators require the non-terminal, <part_generator>, for
creating an intermediate generator with a single partitioned set; a 2-partitioned set is

represented by the non-terminal, <partition>:

<tab_generator>51 —> <tab_generator>azz <set>53 [[ a1 = a2 & {a3} ]]

| <part_generator>ao <partition>z3 [[ al = a2 & a3 ]]
<part_generator>a1 — <part_generator>zo <set>33 [[ a1 = a2 & {a3} ]]

| <1p_generator>a2 <partition>a3 [[ a1l = a2 & a3 Jj

| <univ_generaiorszo <partition>,3 [[al =a2 & a3 ]]
<pariition>z4 — '{' <residues>zo':' <residues>53 '}’ [[ a1 = {{a2},{a3}} 1]

A semantic check must be done to insure that the partitioned residue sets are disjoint.
The following operations are used to modify a 1-pattern generator G by redefining its
ith set:

def_residue(residue 7, integer i, generator G): Redefine G so that

G@) = {{r}}.
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add_residue(residue r, integer i, generator (¢): Redefine G so that

G(i) = {V U {r}} where [V} = G(i) before the operation.

def_dot(integer i, generator G): Redefine G so that G(i) :=".".
The following operations return information about the 1-pattern generator, Gg:

member(residue r, integer i, generator Gg): If r € Qi) € Go(¥)
return true; otherwise return false.

show_pattern(generator Gg): Show the pattern Q.

The merge( ) operation can be used to merge two simple patterns.  Two generators, Gy
and G, are mergable iff they are both simple 1-pattern generators where |G gl = 1G41 and
for the corresponding simple patterns, ¢ and g": (V){g(i) # q'()) — (@)= X A q'(Q) #
X)) and there exists one and only one 1 <j <IG,l such that g(j) # ¢°(j). The merged
pattern, Q, is obtained from g and g’ by setting Q(i) = g(@) U g'(i) for 1 <i <£lgql. For
example, merging the generators ".NPPY" and ".DPPY" yields ". {ND}PPY". The
merge( ) operation is used during an exhaustive search in order to find patterns having

either of two amino acids at a single position (see Section 3.6).

merge(generator G4, generator G7): If G, and G4 are mergable then
merge them and return the generator for the merged pattern;

otherwise return null.
The operation is_variable( ) determines whether the ith setof Gisa ‘?”:

is_variable(integer i, generator G,): Return true if G,(i) = ‘?’;

otherwise return false.

The following operations return information about the table generator Gy:
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gen_table(generator G,): Return a 2 X 2 table corresponding to the

table generator G;. The table data type is described in the Appendix
(Section 6.3).

tab_pattern(integer R, integer C, generator G;): Return the 1-pattern
generator for the pattern found in the Rth row and the Cth column of
the 2 x 2 contingency table for generator G;. If G; is not a table

generator or if R,C € {0,1} then null is returned.

3.3.3. IMPLEMENTATION

Since only three subclasses of pattern generators are used, this allows the generator
data type to be implemented using a simpler data structure than would be required to
implement every possible generator. A I-pattern generator, G, is implemented as the
corresponding pattern () (i.e., as an array of sets), so that the set Gg(i) is the singleton set
containing the ith element in the array = {array(i)} = {Q(@{)}. Each of the sets in this array
is implemented using a bitarray of 32 bits. This accommodates an alphabet of up to 32
symbols where each symbol maps to a specific bit.

Variable generators are implemented using a modification of the same data structure
where a variable set (‘?’) is indicated by a bitarray of 32 zero bits (the empty set is not
otherwise needed in a pattern or generator).

A table generator is implemented using another modification: a pointer p to a table data
structure is used where p # null implies that G is a table generator. Recall that Gy is
derived from a 1-pattern generator, G, by 2-partitioning two sets in ¢ and that the four
patterns recognized by G, can be mapped to the cells of a 2x2 table whose rows and
columns correspond to the partitioned sets of . Thus, the partitioned sets can be stored as
part of the table data structure. The two bitarrays in G, corresponding to the partitioned

sets are set to 32 zero bits.
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The table generator operations are implemented as follows. The gen_table(G,)
operation simply returns a pointer to the table data structure; tab_pattern(R,C,G,) first
creates a copy of the array structure for G;. Next, it calls a table data type operation that
returns the Rth bin in the row partition and the Cth bin in the column partition. The
information in these sets is used to turn on the appropriate bits in the copied array, thereby
creating the 1-pattern generator to be returned.

Other generator operations can be implemented by operating on bitarrays in a
straightforward manner. Thus, all three generator types can be implemented using a single

basic data structure.

3.4. BLOCKS
Starting with the models for individnal sequences and patterns, another abstract data

type, block, is formulated to represent a set of subsequences that match a particular pattern.

3.4.1. DEFINITIONS

A segment (e) is a 3-tuple? e = <I: N,o: N,k: P> where e.] is the identifier (E.I) for
some sequence entity E, e.o is the offset of the segment from the start of the sequence E.S
such that 0 <e.o <IE.S|—e.k, and e.k is the segment length. Thus ¢ corresponds to a
subsequence, S, via the function fggg: NxNxP — T such that

S = fseg(€) =Te.o+1Te.0+2--Teorek Where there exists an entity E such that
ES=Fgeqle)=rirz..rn n0<e0 sn-ek.

(3 = 3+ U {A} where A is the string of length zero.) For example, fseg(<459,1,5>) =

"GDVEK" where E = <459,"AGDVEKPWQLIL">.

2The notation for a k-tuple includes the set (following the colon) from which each element is derived.
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Let Gy be the set of all length & segments derivable from an arbitrary set of biological

sequence entities [ ]:

Bi={e=<:NfNkP>l<e,S>e fegnek=knel=EI n EeIl} G5

Let the universe U be an arbitrary subset of fBi; then, given a pattern Q, a block Bg is a
subset of U such that ¢ € U is a member of B if and only if subsequence § = fseg(e)

matches the pattern Q:
Bg={eeUl fsy(e) matches @ }

Note that O = .* implies Bg = U; for this reason U is also called the universal block
(By). The null block (Bg) is the empty set &.

A convenient way to represent a block is to use the concise notation for the 1-pattern
generator of ¢ as a subscript to the block symbol. For example, Bg =B _ vy, designates
the set of segments in the universe matching the pattern Q =*. .PPY”. Thus, if the
universe is defined as

U=By=B..... ={e1, e2, e3, e4, e5, €6, €7, €3 }
where
Fsegle1) = "ATPPY", freg(e2) ="HIPSN", fgep(e3)="SVPPY",
Fseg(e4) = "AGEMA", fsep(es) = "FTPPY", fsepleg)="RTLPY",
Fsegle7) = "CTPWY", fseg(eg) = "ATDKR"
then B ppy ={e€1, €3, €5 }.
Before defining operations on blocks, an algebraic system for deriving an arbitrary

block, By, from a small set of elementary blocks wili be described.

3.4.2. AN ALGEBRA FOR BLOCKS
In order to detect a conserved pattern, called a motif, among a group of biological

sequences it is important to determine the probability of finding a block of 1Bgl segments in
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By matching the pattern 0. Assuming independence of sequence segments and of residues

at different positions in each segment, this can be obtained from the cumulative binomial

distribution function;

1By
> (%) pt (1pys-
i=Bgl (3.6)

where p is the product of the frequencies with which the residues at individual positions in
the universal block match the pattern at those positions. (For a rigorous definition of p see
Equation 3.9 below.)

An algebraic system for blocks can be used to determine which segments in a universal
block match an arbitrary pattern Q and from this the corresponding values of p and |Bgl in
Equation 3.6. This algebra requires that an array of elementary sequence blocks, block
blr € X2)[1..k], be created such that b(r][i] contains e € f, if and only if, for § = fseg(e),
S(i) =r. (B is defined in terms of some set of entities, II, by Equation 3.5.) An
alternative representation for elementary blocks is to use, as a subscript to b, the concise
notation for the generator with {{r}} at position i and {2} at all other positions. For
example, the array of elementary blocks of length 5 (using the amino acid alphabet) is given
in Table 3.2. Starting from these elementary blocks, & block, By, for an arbitrary pattern,
Q, can be obtained by performing the basic operations of set union and set intersection

using the following equation:
k

Bo=Bun| M ( U b[r]m)
[=1 regz) (37)
For example, the block B (np}ppy ¢an be derived from elementary blocks b x., . .,

bp..,b. p..,b _.p.,andb__ _ _v,and the universal block B = By, by the

following formula:

B wpyepy=8.. ... NG N...YUbp, .. )Nb p..nb, _p.Nb ¥
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‘Table 3.2. Elementary blocks of length 5 for amino acids.
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The probability (assuming statistical independence) of finding a particular block Bg
given a universal block, By, can be determined by using the cumulative binomial

distribution function and equations involving elementary blocks:

|By]
P(BglBy) = Z (IB:JI )pi (l-p) |By|- i (3.8)
i =|Bgl
: Bm( U b{r][i])|
where p= H Byl (3.9)
i=1

The set of segments matching an arbitrary pattern and the associated probability can be
determined concurrently by recursively performing calculations involving Equations 3.7 -

3.9. For example, by combining a depth first search procedure (59) with these calculations
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on elementary blocks, the blocks matching every possible simple pattern and their

probabilities can be found. The root node of the search tree is obtained by selecting certain
segments of interest from among all the segments (fy) for a given set of entities (I]),
thereby creating a universal block, By < Pr. The value of p is initialized to 1.0. Then the
space of all simple patterns can be explored by recursively generating the children of each
node, starting with the root, by taking the intersection of that node with elementary blocks
(see Figure 3.2). At the same time the value of p.p;1g for each node is determined by
setting Pchild = Pparent X |By nb[rlli] | + 1Byl where the child node was derived from a
parent node by using the elementary block b[r][i{]. Thus the probability at each node can
be obtained from the values of Byl , p and IBgl using the cumulative binomial distribution
function. The depth first search procedure saves time by eliminating the need to recalculate

p and By for ancestor nodes while searching descendant nodes.

By
L{ 3..<cB )
B =B,
// \((B e=2 B0 by)
T
By.... Beo.. B B B .y

/\(.,esnnb..,)

B PPA B - PRY

Figuore 3.2. Depth first pattern search using elementary blocks.
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3.4.3. OPERATIONS

The following operation creates a null block:
make_block(): Create and return the null block, Bg.

Set operations for blocks are:

member_block(segment ¢, block B): Return true if e € B; otherwise
return false.

add_segment(segment e, block B): Assign B :=B U {e}.
delete(segment e, block B): Assign B ;=B - {e}.
cardinality(block B): Return IBI.
intersect(block B1, block B2, block B): Assign B :=B1 n B2.
card_intersect(block B, block B2, block B): Assign B :=BI n B2

and return B,

union(block B/, block B2, block B): Assign B := Bl U B2.

3.4.4. IMPLEMENTATION
If an order is imposed on the set of all segments, B¢, then these segments can be

represented as an array of 18| bits. This allows block intersect and union operations to be

done in parallel, § bits (1 byte) at a time.

MM o [0 = N
[ ~ [NX0 = [

Even greater efficiency is achieved by maintaining a list of those bytes which contain at
least one element; operations on null bytes need not be done since the intersection of a
null set with any set is always null (i.e., s N null = null for any set 5) (see Figure 3.3).
This speeds up succeeding intersect operations since the bit array gets increasingly sparse

with each intersection. A globally defined lookup table (integer cardinality[1..255]) can
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be used to determine the cardinality of each non-null byte (see Figure 3.4). An important

algorithm which uses this data structure to perform the card_intersect( ) operation is given

in Figure 3.5.

[N
9 | 10

HIHI
3

115|712} 1

Figure 3.3. Representation of segments in a block by an array of bits.
Intersections are performed only on non-null bytes by maintaining a list.

Decimal value: 1 2 3 4 255

BYTE: TTITTITH [OTTT7E T
CARDINALITY: 1 1 2 1 . n

Figure 3.4. A lookup table for determining the cardinality of a non-null
byte.

integer function card_intersect(set 7,52, modifies set S)
integer i,n := 0;
S.queue = ];
forie Sy.queue —
S.byte[i] := S1.byte[i] m Sp.byteli];
if S.bytefil={ } —
S.queue = 8.queue & [il;
n = n + cardinality[S.byre[i] 1;
fi;
rof;
return n;
end card_intersect;

Figure 3.5. An algorithm for calculating both the intersection of two sets
and the cardinality of the resultant set using a list.
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3.5. ALIGNED SEGMENT POPULATIONS
Using the model just developed for blocks an abstract data type, aligned segment
population, is formulated to represent a set of sequence segments to be searched for

patterns of potential biological significance.

3.5.1. DEFINITION

An aligned segment population (seg_pop P) is defined as a 4-tuple,
<ILk,By, 2>, where [] is a set of biological sequence entities and By; is a subset of S,
the set of all length k segments derived from [] (see Equation 3.5), and 3, is the amino acid
or nucleotide alphabet. A null segment population (Pg) is a seg_pop with [ =8, k
= (} and consequently with By = @ (i.e., Pg = <@,0,0,2>).

3.5.2. ATTRIBUTED GRAMMAR AND OPERATIONS
A population can be created from an input string of biological sequence entities defined by

the following attributed grammar:
<SeQ_pop>ai —> <NewW_pop>g2 [ a1 =<a2.Il.kdefault, Braepaurer 32-2> 1|

<New_pop>at —» <NEW_Pop>a2 <entity>a3 [[ at=<a2.]l v {a3},0,8,a2.2> ]]
| <entity>a2 [[ al=<{a2},0,8,2> ]|

where 2, and the value of kdefault is globally defined. Three operations corresponding
to these rules are:
make_pop(set 2): Create and return a null segment population Pg.
add_pop(entity E, seg_pop P): Assign P.[1 .= PJ] U {E}.
reset(integer k', seg_pop P): Assign P.k=#&" and P.By = ;..
After the universal block is initialized to 3 using the reset( ) operation, several other
operations can be applied to modify By;. Two of these operations require specification of

the set of segments which is to be retained or removed from By
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select(block B, seg pop P): Assign P.By .= P.By N B.
remove(block B, seg_pop P): Assign P.By; = P.By—B.

Another selection operation, purgeH( ), removes "low entropy" segments from the
population. Such segments contain a disproportionate number of certain residues. For
example, the segment "GPGGPAPGGPSPGG" has a high proportion of glycines and
prolines. Such segments interfere with the analysis by contradicting underlying
assumptions about statistical independence. purgeH( ) removes all segments from the
population above a cutoff "entropy score" which is based on the negative logarithm of the
multinomial probability function. (For a more detailed description of entropy scores see

the section on statistical formulas in the Appendix, Section 6.3.)

purgeH(integer x, seg_pop P): Remove all e € P.By; with "entropy

score” above x.

Often the detection of patterns conserved among distantly related® proteins or nucleic
acids is more useful for determining functionally or structurally important residues. The

operation blast( ) insures that P.By; contains only segments derived from more distantly

related sequence entities in P.[T; it uses a method developed by Altschul et al. (18).

blast(integer x, seg_pop P): Group all entities E,E’e P.IT with a
sequence similarity BLAST (PAM 120) score greater than x into the
same equivalence class. Select one entity € P.[] from each class.

Remove every segment ¢ € P.By which was derived from an

unselected entity.

3Two sequences are distantly related if they share little similarity based on a relatedness score as described in
Section 2.1.
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‘The universal block can be changed back to its initial state using the revert( ) operation:

revert(seg_pop P): Add back all e € f8; previously removed from By,

Two operations randomize sequence entities in the segment population:

shuffle(seg_pop P): Revert(P); call the operation permute(E) on all E
e P.J] and reset(P).
randomize(seg_pop P): Revert(P); call the operation random(E,
dfreq(P)) on all E € P.I] and reset(P) (assumes that all £.S are of
the same length). The dfreq(P) operation is defined below.
The grammar used to create a segment population can be extended to allow for

modification of that population using the operations just defined:

<Seg_pop>z1 —> <New_pop>z2
[[ a1 =<a2.Il.kdefault. Braefautr 32.2> ]
| select <1p_generator>a2 <seg_pop>a3
[{ ai=<a3.[1, a3.k, a3.By N Baz, a3.2> |]
| remove <1p_generator>ao <seg_pop>a3
[[ at=<a3.[1, a3.k, a3.By — Ba2, a3.2> 1]
| purge <integer>a2 <seg_pop>a3
[[ at=<a3.[1, a3.k, BpyrgeH,o, 33.2> ]
| blast <integer>ga2 <seg_pop>a3
[[ al=<al.]], a3.k, BBLASTa2 as3.2> |
| revert <seg_pop>a2
[[ a1 = <a2.ll, a2.k, Ba2 k. a2.2.> ||
| shuffle <seg_pop>a2
[[ a1=<IIshuffied, 2., Ba2.k, a2. 3> ]
| randomize <seg_pop>a2
[[ at=<Il;andomized, a2.k. Ba2.k. a2.2> ]|
| reset <integer>a2 <seg_pop>a3
[[ al=<a3.Il, a2, Bao, a3.2> 1]
f [[ at=Pop ]|

The non-terminal <1p_generator> defines the block of segments to be selected or removed

from the segment population. The operation reset( ) can be performed whenever a pattern
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search using a different segment length is desired. The global variable seg_pop Pop

allows access to the segment population.

Three operations return information about the segment population.

freq(seg_pop P): Return a £ x |1Z| array of real numbers where
cell[i]fr] of the array is the frequency with which residue r is found
at position i in Byy.

dfreq(seg_pop P): Return a k x |3 x I3 array of real numbers where
cell[i]{r][s] of the array is the frequency with which the di-residue rs
is found at position i in By.

elementaryblocks(seg_pop P): Return the array of elementary blocks
b{re X][1..k], where k = P.k and where e € Biis an element of

br){i] iff SG) = r where § = feg(e).

The array returned by the freq( ) operation can be used for calculating the value of p for the
cumulative binomial distribution function (Equation 3.8); this saves time by eliminating
repeat calculations of By n b[r][i] | + IByl in Equation 3.9. The array returned by the
dfreq( ) operation is used as an argument for the random( ) operation of the sequence entity

abstract data type.

3.5.3. IMPLEMENTATION

The segment population data structure is implemented using an amray of type segment
for ¢ as was mentioned in Section 3.4 and an array of type entity for P.JI. Segments in
Bi are ordered and mapped to the numbers from 1 to I8;l. Then each segment, e, is
examined, using the segment offset (e.0) and the residue( ) operation, to determine which
segments are to be added to which elementary blocks. The selection operations, select( ),
remove( ), purgeH( ), blast( ) and revert( ), are implemented by calling block operations

and modify only the universal block P.By. The disjoint sets data structure described by
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Tarjan (58) is used to group sequence entities into equivalence classes for the blast( )

operation. The shuffle( ) and randomize( ) operations are implemented by calling the
entity operations permute( ) and random( ), respectively. Values of cells in the array
returned by freq( ) are calculated by determining the value of freq{il[r] =By n b[r]{i] | +
Byl for 1 <i<kandre }. Similarly, values of cells in the dfreq array are calculated by
determining the value of dfreq[i][7][s] =By n b[r][i1 nb[si[i + 1] |+ 1Byl for1 <i<k
andall 7,s € .

3.6. GENERATOR-POPULATION DYADS

Here the final form of the model is described which combines a segment population and
a pattern generator into one structure (a generator-population dyad). This allows various
questions to be asked about the segment population using patterns specified either by the

primary generator or by secondary generators derived from the primary generator.

3.6.1. DEFINITIONS

A generator-population dyad (D) is defined as a 2-tuple <P,G> where D.P is an
aligned segment population and D.G is a pattern generator, called the primary generator
of D. Additional generators, called secondary generators, are derived from D.G or
from other secondary generators during a dyad operation. For example, secondary 1-
pattern generators, are derived from the universal 1-pattern generator G, during an
exhaustive simple pattern search; these generators recognize all simple patterns that have

more than O but less than d + 1 singleton sets where d is the depth of the search.

3.6.2. OPERATIONS AND ATTRIBUTED GRAMMAR
The following operation creates a dyad from an aligned sequence population and a

generator G:
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make_dyad(seg_pop P, generator G): Create and return dyad D =

<P.G>.

The attributed grammar associated with this operation classifies dyads syntactically

according to the type of generator used in its construction:

<dyad>41 —> <seg_pop>a2 <1p_generator>33 [[ a1 = <a2,a3> ]}
<var_dyad>g31 —> <SeQ_pop>a2 <var_generator>z3 [[ a1t = <a2,a3> ]
<tab_dyad>g1 —> <Seg_pop>y2 <tab_generatorsaa [[ a1l = <a2,a3> ]]
<srch_dyad>31 —> <SeQ_pop>32 <univ_generator>a3 [[ al = <a2,a3> ||

Dyad operations using a single 1-pattern generator can reveal [1] which segments in the
population match the specified pattern, [2] which sequence entities these segments were

obtained from, and [3] the associated probability.

block(dyad D): Show the segments of block, Bg, corresponding to the
1-pattern generator D.G.

what(dyad D): Show the sequence entities that contain segments
matching the 1-pattern generator D.Gg.

evaluate(dyad D): Determine the probability P(Bg | D.P Byy) where the
block, Bg, corresponds to the 1-pattern generator D.Gg. Show the
pattern (J, the number of segments matching Bg, the number of
sequence entities from which those segments were derived, the
expected number of matching segments, and the probability from the

cumulative binomial distribution function.

The eval_var( ) operation, using a variable generator, returns statistical information

about closely related patterns:
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eval_var(dyad D): Derive all secondary 1-pattern generators, Gg, for

patterns matching the primary variable generator, D.Gy, and

sequentially call the operation evaluate(<D.P,Gg>).

The cntable( ) operation, using a table generator, detects significant correlations

between residues at different positions in a pattern.

cntable(dyad D): Show the contingency table and the probability, using
Fisher’s Exact Test (60), corresponding to the 2x2 table generator,
D.G.
The search_blocks( ) operation reveals [1] which simple patterns are most significant
for a given universal block of a segment population, and [2] which of a specified number
of the most significant simple patterns can be merged (see Section 3.3) into a pattern having

either of two residues at a single position.

search_blocks(integer 4, integer n, dyad D, real prob): Call
evaluate(<D.P,Gg >) for up to n of the most significant d-residue
patterns, (J, with an adjusted probability (see Section 4.2.1) greater
than prob. Also call evaluate(<D.P,Gg >) for all merged patterns
derived from the n most significant 2-residue to d-residue patterns
that have an adjusted probability greater than prob. The 2- to d-

residue secondary generators (Gg) are derived from the primary

generator (D.Gqy,) using generator operations.

A d-residue pattern is a simple pattern having 4 singleton sets. The operation
monte_carlo( ) randomizes the population a specified number of times calling the
search_blocks( ) operation each time; this allows empirical verification of the statistical

calculations.
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monte_carlo(integer i, integer d, integer n, dyad D, real p):

Randomize(D.P) i times calling the operation search_blocks(d, n,
D, p) each time.
The following grammar with action symbols execute these operations; the search

parameters n and prob are globally defined but can be redefined:

<command> —» <dyad>a1 { evaluate(al) }
| <var_dyad>a1 {eval_var(al) }
| <tab_dyad>j1 { cntable(at) }
| block <dyad>a1 { block(al) }

| search <integer>5q <srch_dyad>a2
{ search_blocks(al,n,a2,prob} }
| rand <integer>z1 search <integer>z2 <srch_dyad>a3
{monte_carlo(atl,a2,n,a3,prob)}

See Section 6.6 for examples of how command languge strings are used.

3.6.3. IMPLEMENTATION

The cntable( ) operation is implemented as follows. The 2x2 table for the table
generator D.G; is obtained by calling table(D.Gy) (see Section 3.3). Then, the value of each
cell of the table is set to IBgl, where By is the block for pattern Q corresponding to the 1-
pattern generator Gg for that cell. This is done in the following way. First, call the
operation get_pattern(row,column,G) which will return the secondary 1-pattern generator
G that corresponds to that cell. Second, call the operation evaluate(<D.P,Gp>) to
determine the number of segments matching Bg. After the table values are assigned, the
table operation exact_test( ) is performed to determine the significance of correlation (see
Section 6.3).

The search_blocks operation is implemented as follows. The search_blocks( )
algorithm (see Figure 3.6) acts as a driver for a depth first simple pattern search (see Figure

3.2). A min-max heap (61) is used to save the » most significant d-residue patterns found.
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procedure search_blocks(integer depth, heap size, dyad D, real p)

integer k := D.P.k;

block b[ ][ 1. By :=D.P.By;

heap H :=makeheap(heap size);

generator G :=D.Go

b = elementaryblocks(D.P);

dfs(b, By, By, G, 1.0, depth, 1, k, H);

do minkey(H) < p and G := deletemin(H)) # null — evaluate(<D.P,G>); od;
end search_blocks;

Figure 3.6. Algorithm used to implement the search_blocks( ) operation.
The merge( ) operation has been omitted for clarity.

procedure dfs(block b[ ][ 1.Bo.By, generator G, real p, integer 4, i, £,

modifies heap H)
element r; real p’; block By

doi<k—
forre X —

Bg = b[r][i] N Bg;

if | Bg'l 2 minblock —
pi=p - 1 b[rlli] "By l+1Byl,
Go(@) = {{r}};
if I1Bg'l ~p’«1Byl>2-NIBy |- (1-p’) —

insertheap(Gg, P(1 By |, 1 Bg’l, p’), H);

fi;
ifd >0 — dfs(h, Bg', By, Gg. p’, d-1, i+1,k, H) fi;
fi:
rof;
Go()={2}); i=i+1;
od;
end dfs;

Figure 3.7. Algorithm used to implement the dfs( ) operation. The
operation insertheap( ) is used to maintain a min-max heap (#) of the most
significant patterns.
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The minkey( ) heap operation returns the value of the minimum key for the heap. The

operation evaluate( ) is called for patterns with a calculated probability greater than the
specified cutoff.

The dfs( )* algorithm is given in Figure 3.7 and incorporates two features to improve
its performance. First, the search tree is pruned by cutting off nodes with a block size less
than a minimum value (minblock) which is globally defined (see Figure 3.8). Second, the
cumulative binomial probability, which is used as a key to insert patterns into the heap, is
calculated only if the observed size of a sequence block is more than two standard
deviations above the mean. (If the heap is full then the insertheap( ) operation only inserts
a pattern Q into the heap if its key is less than the maximum valued key; the pattern having
the maximum valued key is deleted from the heap before such an insertion.)
Implementation of the evaluate( ) and eval_var( ) operations is similar to the

search_blocks( ) operation except that single recursive paths are taken.

Figure 3.8. Pruning a pattern search tree. The search tree is pruned at
nodes with block size less than a minimum cutoff (minblock = 9 in figure).
This speeds up the search for pathways leading to true motifs.

4dfs stands for depth first gearch.
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If the universal block D.P.By consists of fully overlapping segments, then it is not

necessary for the search_blocks( ) operation to search for all simple patterns but only for
"left justified" simple patterns, i.e., patterns that start with a single residue set. A set of
fully overlapping segments is defined by the following procedure. First, an infinite
string of dummy residues ‘' are attached to the end of each biological sequence entity E €
D.PIT to create a modified set of entities [I'. (A dummy residue is also added to all ¥--sets
of the simple patterns but not to single residue sets.) Next, a set of overlapping segments
is derived from [T' as was described in Section 3.1. Finally, segments consisting only of
dummy residues are discarded to create the set of fully overlapping segments. For

example, if there exists a sequence entity £ € D.P.[] such that
E.S = "MTHFSGGKTRRTN"
then the corresponding modified sequence entity £’ e ' would have the sequence

E'S = "MTHF SGGKTRRTN@@3233 . . . . .
and the set of fully overlapping segments (of length = 7) would be:

MTHF SGG
THESGGK
HESGGKT
FSGGKTR
SGGKTRR
GGKTRRT
GRTRRTN
KTRRTNw
TRRTN@@
RRTNgzo
TNogs s
Negoasoa

The search_blocks( ) operation need only search such a set for "left justified" patterns
because for any arbitrary pattern, Q, that begins with the ¥-set and that matches some

segment in an arbitrary sequence entity £’ € [T,
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o ..T.R.N
E'S: MTHFSGGKTRRIN@@Z. . .

matching segment: GKTRRTN

there always exists a "left justified" pattern that detects the same residues in the sequence.

o T,.R.N..
E'S: MTHFSGGKTRRTN@ES. . .

matching segment: TRRTN@&

Thus a more efficient form of the search_blocks( ) operation (not shown), that searches
only for "left justified” patterns, is used when the universal block D.P.By is a set of fully
overlapping sequences. (Note that certain selection operations can produce a universal
block that is not a set of fully overlapping sequences.)

Thus, the dyad abstract data type can be used to search for statistically significant
simple patterns in a variety of segment populations (obtained by varying the value of D.P.k
and by selection operations on D.P). In addition, the simple patterns detected may be
merged into patterns having either of two amino acids at a single position; this may provide
opportunities to test for correlations between residues at different positions using the
cntable( ) operation. Chapter 4 explores the potential of this model to detect patterns in a

variety of aligned segment populations.
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4. VERIFICATION OF THE METHOD

4,1, IMPLEMENTATION - THE ASSET PROGRAM

The model described in the previous chapter was implemented in the C programming
language on a Sun4/260 under the UNIX operating system (62). The command language
grammar was implemented using Lex (63) and Yacc (64); key operations were linked into
the grammar through the use of action symbols. The program, called ASSET (Aligned

Segment Statistical Evaluation Tool), was used to verify the method.

4.2, ASSET PERFORMANCE PROFILE

In this section the performance of ASSET is evaluated. Before proceeding, several
terms, to be used throughout this section, are in need of clarification. The term "pattern
probability" is used to denote the probability (under appropriate independence assumptions)
of finding the observed number, or more, of segments in a population that match a specific
pattern; this is obtained using the cumulative binomial distribution function as described in
Section 3.1. The term "adjusted probability" requires a lengthier explanation. An aligned
segment population is often searched using a large number, N, of different patterns, where
N may be on the order of a million or so. The pattern probability p associated with each
pattern, can be viewed as a random variable; the "adjusted probability” Pagj, associated to p
and N, is the probability that during a search of N patterns, one or more of these N random
variables is < p. Pagj can be computed from p and N using the cumulative binomial
distribution function (Equation 3.1) (see next section). When N =1 (i.e., a single pattern,
selected in advance is tested) the pattern probability = the adjusted probability. In general,
however, the adjusted probability is larger and measures the significance of a detected

pattern given the size of the set of patterns which was tested.
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4.2.1. STATISTICAL SIGNIFICANCE

A pattern is statistically significant (i.e., the null hypothesis is rejected) if its adjusted
probability is less than some cutoff (called the level of significance). Conventionally (and
in this study) the significance level is taken to be 0.01. If the adjusted probability is greater
than 0.01 the null hypothesis cannot be rejected and no conclusion can be reached. It is
important to realize that a pattern could have an adjusted probability > 0.01 and still be
biologically significant. Moreover, statistical significance of a pattern does not reveal what
that significance might mean. It could be that the pattern is due to chance (although this is
unlikely) or that the pattern corresponds to an evolutionary conserved region without
functional significance, or that the pattern is functionally important. Therefore, the
statistical analysis should be seen only as an heuristic for formulating experimentally
testable hypotheses and not as a means to determine the biological significance of a pattern.

As was mentioned above, the adjusted probability Pygj (i.e., the probability of detecting
one or more patterns having the same or a smaller pattern probability) can be determined
using the cumulative binomial distribution function where N is the number of patterns
tested, and p is the pattern probability. An upper bound on Pagj can be obtained from the

inequality

N
Pati= (V) p ap-i < Np + @p)? “-1)
P

(see Section 6.4 for a proof). For patterns with Pag; < 0.01, which are of interest here, Np
is small and therefore provides an excellent approximation to the value of P,gj.
Consequently, it is used throughout the studies described below.

The performance of the ASSET program was evaluated with reference to several
parameters: the search depth, the search minimum block size (minblock), and the

population segment length (P.k ). The search depth, d, indicates the lowest level searched
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during a depth first pattern search (see Figure 3.2 and 3.7); note that at a depth of d the

search procedure tests for d-residue patterns, i.e., patterns matching only single residues at
d positions and any residue at other positions. The parameter minblock 1s used to prune the

search space (see Section 3.6 and Figure 3.8).

4.2.2. STATISTICAL VERIFICATION

In order to verify correct implementation of the statistical method and that the ASSET
statistical model is accurate, Monte Carlo simulations were performed using the
monte_carlo( ) operation described in Section 3.6.2. For patterns having small (pattern)
probabilities, these probabilities were generally in agreement with empirical probabilities.
Empirical probabilities were determined by the following procedure. [1] Select a
probability value 0 < p << 1 to be tested. [2] Generate a random aligned segment
population using either the randomize( ) or the shuffle( ) operation. {3] Find the number of
2- and 3-residue patterns having a pattern probability < p for that random segment
population using the evaluate( ) operation. [4] Repeat steps 2 and 3 » times (each iteration
is called arun). [5] Divide the total number of patterns having a pattern probability <p by
the total number of pattemns tested, i.e., # patterns found + (# patterns searched perrun X n
runs).

In one experiment, where 19 tRNA synthetases were randomized using the shuffle( )
operation, the empirically determined pattern probabilities were found to be slightly lower
(more significant) than the calcuiated probabilities (Table 4.1). This may be partly due to
the fact that sets of overlapping segments are not really independent. It is also partly
explained by the fact that the cumulative binomial probability is a step function (see Figure
4.1). In any case, since the calculated probabilities appear to err slightly toward the
conservative side, unwarranted rejection of the null hypothesis is unlikely (see Section

3.1).
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Calculated and empirically determined pattern
probabilities. Empirical probabilities were based on about 36,000,000
patterns for the shuffle( ) operation (100 runs) and on about
4,890,000 patterns for the randomize( ) operation (5 runs) using either
diresidue or monoresidue frequencies.

CALCULATED EMPIRICAL PROBABILITIES
PROBABILITIES| using shuffle() using randomize( )

w/ diresidue freq. | w/ monoresidue freq.
<10-4 < 1044 not determined <1045
<10-5 < 10-55 <1047 <1056
<10-6 < 10-6.5 < 10-53 < 10-62
<10-7 <10-72 < 1058 not determined

In a second experiment, about 8,000 21-residue subsequences matching the seed
pattern .. ........ GK......... " were obtained from among sequences in the PIR
protein database (65) version 31. These subsequences were randomized using the
random( ) operation. (Recall that the random( ) operation randomizes residues consistent
with the position dependent diresidue frequencies obtained from the population.) In this
experiment the empirically determined probabilities were found to be slightly higher (less
significant) than the calculated probabilities (see Table 4.1). This could be due to a
violation of the assumption that residues at different positions in the segments are
statistically independent since the random segment population was created using diresidue
frequencies. Also, since the ASSET method is designed to detect short patterns, it is not
surprising that retaining diresidue frequencies should result in elevated empirical pattern
probabilities, since short 2-tesidue patterns present in the original population would tend to
be retained. (Randomizing the population using triresidue frequencies should produce an
even more marked effect.) In order to investigate this further, the random( ) operation was

modified to generate sequences based on position dependent monoresidue frequencies.

Empirically determined probabilities using this modified operation were slightly lower
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(more significant) than the calculated probabilities (Table 4.1). These results confirm that

the ASSET statistical method, although appearing to error on the conservative side, is

generally reliable.
theoretical
probability
cutoff
actual
probability
cutoff

Figure 4.1. Discrepancy between theoretical and actual pattern
probability cutoffs. Empirically determined pattern probabilities are lower
than expected because the cumulative binomial probability is a step function.
How this occurs can best be shown using an extreme example, where the
pattern probability for a single pattern is determined using a large number of
random segment populations that all have the same residue frequencies and
number of segments. In this case, the values of N and p in the cumulative
binomial probability function (Equation 3.1) are constant, so that the pattern
probability for each segment population is calculated using the same
distribution. (However, the number of matching segments will vary.)
Consequently, only if the theoretical probability cutoff is on the edge of a
step will it equal the actual cutoff; otherwise the actual cutoff will be at a
smaller value and will lead to an empirical probability that appears to be
lower than expected.

4.2.3, ASSET EXECUTION PERFORMANCE
In order to evaluate the execution performance of the ASSET program, experiments

were performed using a group of tRNA synthetases. These proteins are, in general,
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distantly related and have only two short conserved patterns, the 'HIGH' and 'KMSKS'

motifs; therefore they act as a particularly stringent test of the sensitivity of the ASSET
method. Closely related proteins where eliminated using the blast( ) operation with a
BLAST score of 200 using a PAM 120 (7, 8) relatedness scoring matrix. The remaining
19 synthetases have a combined length of about 13,000 residues.

Experiments were done to investigate how the pattern search depth and the minimum
block size (minblock) affect the execution time of and the number of patterns detected by
the search_blocks( ) operation. In these experiments the minimum block size was varied
from 1 to 9 using search depths of 3, 4, and 5 and with a segment length of 11. The value
of minblock had essentially no effect on the run time for a 3-residue search, but did affect

deeper searches; especially when minblock = 1 (Figure 4.2A).
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Figure 4.2. Effect of varying the minimum block size on the
search_blocks() operation. A. Execution time on a Sun4/260. B. Number
of patterns detected with adjusted probabilities < 0.01.
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The increase in execution time needed for small values of minblock yielded no additional

information; essentially the same number of patterns were detected for minblock values
between 1 and 4 inclusive (Figure 4.2B).

In another set of experiments on the same data, the segment length was varied from 5
to 25, again using search depths of 3, 4 and 5 with a constant minblock value of 5. The
number of patterns searched at level d is given by Ng= (g) x 204, where n is the segment
length and d is the depth of the search. Thus, the anticipated execution time is O(n%) where
the number of segments is assumed to be constant. However, the actual execution time,
which does increase significantly with increased segment length (Figure 4.3A), seems to
have a much lower upper bound than O(n4) as revealed by nearly identical run times for 4-
and 5-residue searches (as well as for a 10-residue search which is not shown); this is

probably due to efficient pruning of the search tree.
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Figure 4.3. Effect of varying the segment length on the search_blocks( )
operation. A. Execution time on a Sun4/260. B. Number of patterns
detected with adjusted probabilities < 0.01.
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The number of patterns detected increased with increased segment length for 4- and 5-
residue pattern searches but not for a 3-pattern search (Figure 4.3B). These results suggest
that a minblock setting greater than 3 is best and that for 3-residue searches a modest
segment length of 10 to 15 residues should be adequate; however, more tests on a variety

of data are needed to verify this conclusion.

4.3. DETECTING MOTIFS AMONG DISTANTLY RELATED PROTEINS

In this section ASSET is compared with a program called MOTIF, which implements
the method of Smith et al. (46). A strict comparison of ASSET and MOTTF is not possible
since the parameters for the two programs are not identical. However, a rough comparison
can be made by choosing parameters appropriately. The MOTIF program uses three
parameters: the minimum number of proteins that must match a pattern before that pattern
can be detected (designated here as the minimum match setting), the maximum number of
internally repeated copies allowed in order to detect a pattern (the maximum internal
repeats), and a parameter that determines the segment length. The ASSET minimum block
size is roughly equivalent to MOTIF's minimum match setting, so these parameters were
given equivalent values for comparable pattern searches. The programs were tested in their

ability to detect motifs in the 19 tRNA synthetases mentioned above on a Sun4/260.

4.3.1. DETECTION OF MOTIFS IN 19 TRNA SYNTHETASES
The ASSET program was used for both a 3- and a 4-residue pattern search of the 19

tRNA synthetases.

4.3.1.1. Three-Residue Pattern Search
An exhaustive search by ASSET for all 3-residue patterns took 1.3 minutes on a
Sun4/260 (minimum block size = 9; segment length = 11). The "HIGH'-related pattern

"H.GH" was detected in 16 proteins (adjusted probability = 10-13.7). This pattern along



59
with other 'HIGH'-related patterns, having adjusted probabilities < 0.0002, were detected

in all 19 proteins. The 'KMSKS'-related pattern "KMS. ." was detected in 11 proteins
(adjusted probability = 10-3.6), This pattern and other KMSKS-related patterns, having
adjusted probabilities < 0.0008, were detected in 14 proteins. A total of 14 patterns related

to the 'HIGH' and 'KMSKS' motifs had adjusted probabilities below the significance level
(p £0.01) (Figure 4.4).

8

number of patterns

2 3 4 -5 8 -7 -8 -9 -10 -11 -12 -13 -14
loglQ of adjusted probabilities

Figure 4.4. Detection of 'HIGH' and 'KMSKS' motifs by ASSET in a
3-residue pattern search of 19 tRNA synthetases (minimum block size =
9). Unlabeled patterns are also related to the '"HIGH' and 'KMSKS'

motifs.

4.3.1.1. Four-Residue Pattern Search
Greater sensitivity in detecting the 'KMSKS' motif was achieved by searching for all 4-

residue patterns (minimum block size = 5; segment length = 11) which took 2.65 minutes

(Figure 4.5).
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Figure 4.5. Detection of 'HIGH' and 'KMSKS' motifs by ASSET in a

4-residue pattern search of 19 tRNA synthetases (minimum block size = 5).

Unlabeled patterns are also related to the HIGH' and 'KMSKS' motifs.
A number of 'KMSKS'-related patterns were detected in 11 proteins with adjusted
probabilities £ 10-11-4 and in 18 proteins with adjusted probabilities < 0.004. This search
was of comparable sensitivity in detecting the 'HIGH' motif; a number of 'HIGH -related
patterns were detected in 16 proteins with adjusted probabilities < 10-12 and in 19 proteins
with adjusted probabilities < 0.006. A total of 95 'HIGH'- and 'KMSKS'-related simple
patterns were detected with adjusted probabilities below the significance level cutoff of
0.01. The same region of a sequence was often detected by several related patterns, for
example, residues 92-102 of a Neurospora leucyl-tRNA synthetase, contain all five
'HIGH'-related patterns shown in Figure 4.5 (the sequence in this region is

"PYPSGHLHLGH"). Although, in general, fewer proteins were detected for an arbitrary
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4-residue pattern than for a 3-residue pattern, the total number of proteins matching a

‘HIGH'- or 'KMSKS'-related pattern was equivalent or higher in the 4-residue search due
to the greater number of patterns detected. Thus it seems that, at least for certain patterns

and groups of proteins, a 4-residue search may be slightly more sensitive.

4.3.2. COMPARISONS WITH THE MOTIF PROGRAM.

By contrast, a search using the MOTIF program (minimum match setting = 9;
maximum internal repeats = 1; segment length = 11} detected the 'HIGH'-related pattern
"H.GH" in 16 proteins but was unable to distinguish the 'KMSKS'-related pattern
"K.S.S", present in 12 proteins, from random background patterns (Figure 4.6A).
However, decreasing the maximum number of internal repeats to 0 resulted in detection of
the pattern ".M.KS" in 11 proteins at an adjusted probability of about 10-2 as judged by the
number of random background patterns having similar scores in 100 Monte Carlo
simulations (Figure 4.6B). A 20 fold increase in the number of Monte Carlo simulations
(from 5 to 100) increased the highest random background score by about 50 to 100 points
(see Figure 4.6). This suggests that a random background score between 700 and 750 may
be obtained after about 1,000 to 10,000 simulations. Therefore, the 'HIGH' motif seems
to have an adjusted probability of about 10-3 to 104 for the statistic measured by the
MOTIF method. Since ASSET detected the 'KMSKS'- and 'HIGH'-related motifs at
adjusted probabilities of 10-3-6 and 10~13.7, respectively, the ASSET program seems to be
at least 3-4 orders of magnitude more sensitive than MOTIF in distinguishing these patterns
from random background. Increasing the segment length from 11 to 21 increased the
'KMSKS'-motif score from 694 (pattern: "M.XS") to 717 (pattern: "MS....N").
However, the larger segment length also caused random background scores to increase; 18
(length = 21) versus 9 (length = 11) random background patterns had scores = 600 in 100
shuffied runs. A further increase in the segment length to 37 residues did not increase the

"KMSKS'-motif score.
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Figure 4.6. Detection of 'HIGH' and 'KMSKS' motifs by MOTIF in a
pattern search of 19 tRNA synthetases (minimum matches = 9, segment
length = 11}. The number of patterns with scores = 550 detected in Monte
Carlo simulations (shuffled runs) are also shown; these simulations were
performed in order to obtain an estimate of statistical significance. A.
Maximum internal repeats = 1. B. Maximum internal repeats = 0.
ASSET's better sensitivity did not result in significantly poorer performance, despite
the fact that ASSET, unlike MOTTF, uses no heuristics. Using a minimum block size and a
minimum match setting of 9, ASSET's run times were about 40% longer than run times for
MOTIF (Figure 4.7); at higher minimum match settings MOTIF performs even better.
Nevertheless, this benefit is offset by the need to rerun MOTIF several times using various

minimum match and maximum internal repeat settings to insure that nothing has been

missed. To be safe, MOTIF could be run at a low minimum match and a high maximum
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internal repeat setting, but this can produce adverse effects. When the minimum number of
matches was decreased to 5, MOTIF's run time increased dramatically and was much
worse than ASSET's (see Figure 4.7). A similar but less dramatic effect is seen when the
maximum internal repeats setting is raised. This increase in run time may reflect MOTIF's
need to calculate relatedness scores for many more random background patterns at the
suboptimal settings. However, for detection of patterns present in a significant majority of
proteins, MOTIF will save a few minutes of computation time over ASSET, but with a
possible loss of sensitivity and with no direct measure of significance. Since MOTIF
searches only for 3-residue patterns, a comparison with ASSET for 4-residue patterns

could not be done.

execution time (minutes)

segment length

Figure 4.7. Execution times for ASSET and MOTTIF at various segment
Iengths. MOTIF minimum match settings (or ASSET minimum block sizes)
of 5 and 9 were used. MOTIF's maximum internal repeats setting was
Zero.
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4.4. DETECTING PATTERNS HAVING EITHER OF TWO AMINO ACIDS

AT A SINGLE POSITION

Protein sequence motifs are often found to have two or more related amino acids at a
single position. Such motifs were detected using the merge( ) operation during a search of
15 adenine methylases. Several 3-residue patterns having either of two amino acids at a
single position were detected including "{yv}..pP.",". . {ND}PP.", and
"..{ND}P.Y" (Figure 4.8). Detection of these patterns offers an opportunity to test for
correlations between residues at different positions.

_loglO(prob)

PATTERN OBS (E) EXP PTRN ADJST
PPY....... 14 (13) 0.48 -15.6 -9.6
D..... PP.. 11 (10) 0.60 -10.3 -4.3
DP.Y...... 11 (10) 0.69 -9.7 -3.7
DPP....... 10 (9) 0.60 -9.0 -3.0
D...... PY. 10 (9 0.69 -8.5 -2.5
Do P.Y. 10 (9) 0.69 ~-8.5 -2.5
D.PY...... 10 (9) 0.69 -8.5 -2.5
NPP....... 15 (14) 1.30 -11.2 -3.6
D

N.PY...... 16 (13) 1.40 -11.5 -3.9
D

Y..PP..... 13 (11) 1.10 -9.9 -2.3
v

Figure 4.8. Patterns found by ASSET in 15 adenine methylases.
Abbreviations: OBS, number of matching segments observed; (E), number
of entities containing the pattern; EXP, number of matching segments
expected; logl0(prob)_PTRN, logarithm (base 10) of the probability of
finding the observed number or more segments matching the pattern ;
log10(prob)_ADIST, logarithm (base 10) of the adjusted probability.

4.5. TESTING FOR CORRELATIONS
The adenine methylases mentioned in the previous section have two chemically similar
groups of amino acids at a position near the most significant pattern detected, “PPY”. The

residue at this variable position (“?. .PPY") is either one of the aromatic amino acids,
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tyrosine (Y) or phenylalanine (F), or one of the aliphatic amino acids, isoleucine (I),

leucine (L) or valine (V) (see Figure 4.9). Is there a correlation between finding an
aspartate (D) or asparagine (N) at position 3 and an amino acid from one of these groups at
position 1 of the matching segments? (Only aspartate (D) or asparagine (N) occur at
position 3.) When Fisher's exact test is performed on the table generator
“[YEILV}.{D:N}PPY" a significant correlation is found (p = (0.001); an aromatic amino
acid always occurs with aspartate and an aliphatic amino acid always occurs with
asparagine (Table 4.2). However, since this test was suggested by looking at the data, this
correlation is more likely to be due to a chance observation; consequently, further testing on

an independent set of data is required to confirm these results.

loglO{prob)
PATTERN OBS (E) EXP PTRN
1..PPY.... 1 (1) 0.032 -1.5
L..PPY.... 1 (L) 0.047 -1.3
F..PPY.... 2 (2) 0.026 -3.5
Y..PPY.... 8 (7) 0.023 -17.7
V..PPY.... 2 (2) 0.028 -3.4

Figure 4.9. ASSET output for the eval_var(D) operation corresponding
to the variable generator D.G ="?. .PPY". The segment population (D.P)
was derived from 15 adenine methylases. Abbreviations are as given in
Figure 4.7.

Table 4.2. Contingency table corresponding to the table
generator "{YF:ILV}.{D:N}PPY". The segment
population was derived from 15 adenine methylases.
Expected values are in parentheses.

D N
ILV 0(2.9) 4(1.1) 4
YF 10(7.1) 0(2.9) 10

10 4 14
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Examination of the regions near these motifs reveals that, except for two homologous

proteins (ECOP15BMO_1 and PP1IMOD_1), these sequences are not particularly similar
except in the vicinity of the motifs (see Table 4.3). Thus, it seems unlikely that this
correlation is simply due to a close evolutionary relationship between subgroups of these
sequences. One possible explanation for this correlation is that mutation of a residue at one
position may require a compensating mutation at the other position in order to maintain
protein function, i.e., there is an interaction between residues at the two positions. These
results demonstrate that ASSET is able to detect correlations between sequence patterns.
Table 4.3. Sequence context for the "PPY" motif in 15 adenine methylases.

Sequences containing the "{ILV}.NPPY" motif are above the double line while
sequences containing the "{ YF}.DPPY" motif are below it.

SEQUENCE PROTEIN LOCATION
LLWKGGKFDFIVGN PPY VVRPSGYKNDNRI | CHVIAMB3 1 (105-134)
LAPLEGQFDFVVGN PPY VRPELIPAPLLAE | PSEPAER7_1 (106-135)
LWEPGEAFDLILGN PPY GIVGEASKYPIHV | MITA THEAQ (91-120)
IENYSPKYNKAILN PPY LKIAAKGRERALL PROIRM 1 (139-168)
VNAYAEKVKMIYID PPY NTGKDGEVYNDDR | ECOPISBMO 1] (109-138)
VNAYAEKVNMIYID PPY NTGKDGFVYNDDR PP1IMOD_1 (109-138)
SLIERKVYGDILYID PPY NGRQYISNYHLLE | FVBFOKMR 1 (204-233)
NFSQLDONDLVYCD PPY LITTGSYNDGNRG | FVBFOKMR 1 (534-563)
KDVKILDGDEVYVD PPY LITVADYNKFWSE PTAT4G69_2 (157-186)
AIVDVRTGDFVYFD PPY IPLSETSAFTSYT STRDPN2A 1 (180-209)
KTIPNESIDLIFAD PPY FMOTEGKLLRTNG HEAMTEN_1 (22-51)
SKMKPESMDMIFAD PPY FLSNGGISNSGGQ | STRDPNZA 2 (22-51)
TIGMVNRDDVVYCD PPY IGRHVDYFNSWGE | PLBECORV_ 2 (179-208)
SMARADDASVVYCD PPY APLSATANFTAYH DMA_ECOLI (167-196)

4.6, DETECTING MOTIFS PRESENT IN ONLY A MINORITY OF
PROTEINS IN A GROUP

ASSET was next tested for its ability to detect patterns present in only a small number
of proteins in a group. This was done in two ways. First, the ASSET program was used
to search a large group of functionally related proteins for minor motifs which had escaped

detection by the MOTIF program. Second, a procedure was developed to search for
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patterns among proteins in a large database where functional relationships are not known

prior to analysis.

4.6.1. FINDING MINOR PATTERNS IN 29 REVERSE TRANSCRIPTASES

Smith et al. (46) describe a search of 33 reverse transcriptases using the MOTIF
program that yielded three motifs. 29 of these 33 proteins were retrieved from the protein
databases (4 were not found, see Section 6.5) and analyzed using both ASSET and
MOTIF. In an attempt to detect patterns occurring in a minority of the proteins, MOTIF
minimum match settings between 8 and 10 were used (and from 0 to 3 internal repeats were
allowed); this yielded only one additional pattern having a score 2 600 for a total of 4
patterns detected by MOTIF. In addition to detecting these patterns, ASSET found 7 other
groups of patterns (a pattern group contains many related patterns); these occurred in a
minor fraction of the 29 proteins (see Table 4.4). Thus ASSET appears to be more
sensitive than MOTIF in detecting 'minority’ patterns. Six of the 11 patterns, including the
4 detected by the MOTIF program, include amino acid residues which were found, by
substitution mutations, to be functionally important in HIV transcriptases (66). This

suggests that ASSET is locating patterns that point to key residues in these proteins.



63

Table 4.4. Patterns Detected in 29 Reverse Transcriptases. Twelve different
groups of related patterns were detected by ASSET; only a few of the most
significant patterns for each group are shown. The patterns detected by MOTIF
are related to four of these groups. Known functionally important residues, as
revealed by substitution mutations in HIV transcriptases (66), are bold. The
numbers in parentheses (under the PROTEINS column) indicate the number of
matching segments for internally repeated patterns.

log10
PATTERN ADJUST. PROB. | PROTEINS | MOTIF | ASSET
Y.DD.. -12 2521
Y.DD.L -14 15 YES YES
¥YMDD. . -20 13
PQG..... -3 18(25)
.0G...8Pp -13 15 YES YES
PQG....P -11 14
[ PQG...SP 25 13
..R...D.R..N -18 16
K..... D.R..N -8 12 YES YES
K.R...D.R..N -17 10
D..D..F...L -8 12
D..D..F.I.. -8 11 YES YES
D..D..F..P, -7 10
N...DS.¥ -9 11
.I..DS.Y -4 9 NO YES
NI..D..Y¥Y -3 9
NI..DS.Y -16 9
QK..G...W -6 9 NO YES
D.Q...G...W -6 8
QWPL. ... -7 10
OQWP....K -6 9 NO YES
| QWP L K -15 9
WQ.D.T -13 11
W..D.TH -12 10 NO YES
| WQ.D.TH -25 10
A...V..C..C -13 9 NO YES
A,,I...C..C -12 9
P.N...... VE. -5 10 NO YES
Puoirnsss VER -5 10
AFT.P -5 10 NO YES
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4.6.2. SEARCHING LARGE DATABASES FOR RELATED PROTEINS

The PIR protein database version 31 was searched for motifs using a general
procedure which is described as follows. First, every subsequence in the protein database
matching a "seed" pattern, e.g. two amino acids flanked by a number of unspecified
residues, are selected. Second, similar subsequences are removed from the selected set
using the blast( ) operation with a specific cutoff score. This eliminates the most closely
related subsequences from the analysis. Third, the subsequence population is analyzed
with ASSET for statistically significant patterns. (Low entropy sequences may first need to
be removed from the population using the purgeH( ) operation.) Last, the proteins
containing these patterns are obtained and analyzed by ASSET as a group to detect
additional patterns. Thus, this procedure could detect motifs among proteins not
previously known to be related. Collections of subsequences matching all two amino acid
seed patterns could be generated from a large protein database in order to do an exhaustive

search for patterns in the database.

Obtain all subsequences from
the protein database matching
the pattern

Remove similar subsequences
using blast( ) with a cutoff
(PAM 120) score of 75

Search for significant pattemns
in the remaining sequences

Select the proteins with these
patterns from the database and
test for additional patterns
within this group

Figure 4.10. Procedure used to detect patterns in the PIR database.
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This procedure was applied to sequences in the PIR protein database using the "seed"
pattern .. ... .. GK.'vvvvno " (Figure 4.10). Similar sequences were removed using a
(PAM 120) cutoff score of 75. ASSET detected a number of ATP/GTP-binding site motifs
(3) in the database, some with very low adjusted probabilities (Figure 4.11). This
demonstrates that ASSET is sensitive enough to detect patterns even among a large
database of proteins. The last step of the procedure (i.e., selecting proteins with significant

patterns for further testing) was not done.

.......... GK......... ({(seed pattern)
__logl0(prob)
PATTERN OBS EXP PTRN ADJST
..... G..G.GKS........ 55 5 -34.9 -26.5
..... G....GKgT....... 43 5 -23.9 -15.6
........ G.GKgT....... 37 4 -19.5 -11.1
.I.G..G.GK? ........ 37 5 -17.2 -8.9
...%.G.PG.GK ......... 32 4 -15.4 -7.0
.I.G.?..GK.T ....... 34 5 -15.3 -6.9
...%.G..G.GK ...... I.. 33 5 ~15.1 -6.7
........ GSGKT.....%.. 33 5 -14.3 -5.9
..... G...?GKS.....L.. 35 6 -14.0 -5.06
........ GSGKg........ 32 5 -13.5 -5.1
...L....G.GKg ........ 34 6 -13.4 -5.0
T

Figure 4.11. Detection of the ATP/GTP-binding site motif A among
sequences in the PIR protein database. (See text for details.)

4,7. DETECTING MOTIFS WHICH ARE INTERNALLY REPEATED
Since the ASSET method is not based on the number of proteins having a specific

pattern but rather on the number of matching segments, it can detect internally repeated
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