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Abstract

We study critical phenomena in gravitational collapses of stellar objects based on

numerical solutions of the Einstein equations.

We discovered that stellar objects with large kinetic energy described by an equa-

tion of state (EOS) commonly used in describing neutron star matter may undergo

critical collapses. To the best of our knowledge, this is the first study showing that

critical collapses can occur without postulating an exotic EOS.

We further showed that the critical collapses can occur due to an adiabatic change

of the EOS, without fine tuning of the initial conditions. This opens the possibility

that a neutron-star-like compact object with substantial kinetic energy, e.g. one newly

formed in a supernova or in a binary coalescence, may undergo a critical collapse in

processes which change the EOS, such as cooling.

We investigated the properties of the critical solutions of this system. We found,

surprisingly, that there are branches of critical solutions, and a complicated phase

diagram not been seen in other critical collapse studies.

The numerical simulations were carried out based on the full set of the Einstein

equations coupled to the general relativistic hydrodynamic equations. The code we
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Chapter 0

constructed, GRAstro-2D, assumed axisymmetry to achieve high enough resolution

needed for the study.
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Chapter 1

Introduction

An isolated matter distribution in general relativity will evolve to one of three states:

1. a black hole (or a naked singularity), 2. a star (a non-singular self-gravitating

object), and 3. the empty space (dispersal to infinity). In forming state 1 or 2,

part of the distribution may also disperse to infinity. Critical phenomena were first

found by Choptuik [1] at the dividing surface between 1 and 3; this is the so-called

type II critical collapse (with a black hole mass that could be arbitrarily small);

which most existing studies focus on (for review, see [2, 3, 4]). For a wide range

of physical systems, including massless and massive scalar fields (real or complex)

with different curvature couplings, “stiff” fluid (P = Kρ) for a range of constant K,

pure gravitational radiation spacetimes, 2-D sigma models, SU(2) Yang Mills field,

SU(2) Skyrme field, SO(3) Mexican hat model, in alternative gravitational theories

(Brans-Dicke, tensor-multi-scalar, or general relativity with a cosmological constant),

and in 2+1 dimension or higher than 4 dimensions, critical collapse phenomena have

1



Chapter 1 Introduction

been found at the boundary between 1 and 3 [3]. There are also a few investigations

at the boundary between 1 and 2 (the type I critical collapse, with a mass gap) for

massive scalar field, SU(2) fields and collisionless matter [5, 6, 7].

The key property of critical collapse is the existence of an intermediate attractor

(IA) at the threshold of black hole formation. When the initial matter distribution

has a parameter p close enough to its critical value p∗, the system will evolve towards

the IA (the critical solution) for some length in time depending on the value of p−p∗,

until the unstable mode of the IA kicks in to drive it to collapse (for p > p∗, super-

critical) or disperse (for p < p∗, sub-critical), as shown by the trajectories in Fig. 1.1.

In this figure, the IA, which is the critical solution, is static. In Fig. 1.2 the IA is a

limit cycle, representing a periodic critical solution. Here we assume the IA has only

one unstable mode, as is in all confirmed cases of critical collapse up to now. The

two figures are reproduced from Gundlach [3]. There is universality in the sense that

the parameter p can be any parameter of the initial distribution that connects the

black hole and the dispersed solution, e.g., p can be the density, a size parameter of

the system or the imploding velocity. Independent of how one chooses p, and hence

for a range of different initial setups in many dimensions in phase space (a range

of co-dimension one), the eventual collapses to black hole (or dispersal to infinity)

behave practically the same, as they are governed by the same unstable mode of the

IA. The property of this unstable mode depends only on the physics model, e.g., the

EOS, but not on the initial data. Associated with this unstable mode there are other

interesting properties of the critical phenomena including scaling of the mass of the

2



Chapter 1 Introduction
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Figure 1.1: The phase space diagram for the black hole threshold in the presence of a critical

point. The arrows show time evolutions of the spacetimes. The line without an arrow is not a time

evolution, but a 1-parameter family of initial data that crosses the black hole threshold at p = p∗.

black hole formed (for type II critical collapses) and self similarity of the spacetime.

The study of the critical collapse phenomena has led to new understanding of the

properties of the solution space near the dividing lines of the 3 “phases”.

Can critical collapses actually occur in nature? This is the main motivation of our

investigation. This question has not been previously investigated for good reasons:

All configurations found up to now that showed critical behavior are not expected to

be common in nature. The problem is not so much that the matter sources are often

exotic, e.g., stiff fluid, but that the initial configuration has to be fine tuned, with

(p− p∗)/p∗ many orders of magnitude less than 1. That is, only those configurations

3



Chapter 1 Introduction

black

hole 
threshold

flat space fixed point

black hole fixed point

limit cycle

Figure 1.2: The phase space diagram in the case that the IA is a limit cycle. The plane represents

the critical surface. The circle (fat unbroken line) is the limit cycle representing the critical solution.

Shown also are two trajectories near the critical surfaces and therefore attracted to the limit cycle,

and two trajectories out of the critical surface as the unstable mode of the IA finally sets in.

with, say, the central density ρ (for p chosen to be ρ) tuned very close to the critical

value ρ∗ can get funneled to the IA and have the critical unstable mode dominate its

collapse or dispersal. Unless one can find an astrophysics process that preferentially

drives the density to the particular value ρ∗, one might not expect to observe critical

collapse phenomena in nature.

We investigate this question by following a particular physical process in forming

a compact object which could be at the boundary surface between evolving to a

black hole or a one-singular stellar object. We choose to look at the end point of a

binary neutron star (NS) coalescence. It is well known that such coalescence can lead

to either a black hole or a hypermassive neutron star [8]. We follow the coalescence

process through a numerical evolution of the Einstein equations coupled to the general

4
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relativistic hydrodynamic equations [9]. The system of partial differential equations

is arguably the most complicated set of differential equations for which a numerical

solution is ever attempted. To achieve the resolution required for the study of the

critical collapse, we restrict the study to that of the axisymmetric situation, which

amounts to approximating the final plunge of the binary coalescence as a head on

collision.

We construct the GRAstro-2D code, which takes advantage of the axisymmetry

to provide high resolution in solving the coupled Einstein - general relativistic hy-

drodynamic equations. The reformulation of the Einstein equations that enables a

numerical solution of the equation is given in Chapter 2. The construction and the

validation of the GRAstro-2D code is given in Chapter 3.

The main results obtained are given in Chapter 4. Sec. 4.1 specifies the physical

system in full detail. Sec. 4.3 gives evidence for the existence of the type I critical

phenomena in head-on collision of neutron stars.

We found that in the super-critical regime, the merged object collapses promptly

to form a black hole, even though its mass could be less than the maximum stable

mass of one single NS in equilibrium with the same EOS. In the sub-critical regime, an

oscillating NS is formed. A configuration on the dividing surface evolves towards the

exact critical solution, which will oscillate forever. Configurations near the dividing

surface evolve towards a solution which is nearly critical and oscillates for a long time

but eventually an unstable mode sets in, driving it either collapsing to a black hole

or becoming an oscillating NS.

5



Chapter 1 Introduction

The characteristic frequency and the central densities of the near critical solutions

are significantly different from that of the oscillating NS in the sub-critical regime.

In Sec. 4.4, we determine the critical index γ as the time scale of growth of the

unstable mode bringing a near critical solution away from the critical solution. For the

polytropic EOS with a polytropic index Γ = 2, commonly used to describe neutron

star matter, we found γ ∼ 11M⊙ with exact value depending on the rest mass and

gravitational mass of the system. This corresponds to a growth time of the unstable

mode of about 0.05 ms.

In Sec. 4.5, we investigate the universality of the phenomena with different critical

parameter choices. Particularly interesting is the case in which the parameter is taken

to be the polytropic index Γ. The same critical index is found as with other parameter

choices. We point out that an adiabatic change of the EOS which can lead to a critical

collapse is particularly interesting. Coupled with the facts that a solution near the

critical surface will move toward the critical solution (the IA) in a short dynamical

time scale, and that the unstable mode will set in a short dynamical time scale,

this might enable critical collapses to be observable in nature: Upon coalescence,

a hypermassive neutron star is formed, supported against gravitational collapse by

angular momentum and thermal energy. Or in the case of a head-on collision, the

merged object, an oscillating neutron star is formed, supported by thermal energy.

The support against collapse will decrease in the dissipation/radiation time scale,

which is substantially longer than the dynamical time scale of the system. This

gradual loss of support can be described by an adiabatic change of the EOS, driving

6
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the critical surface to move toward the oscillating star in the dissipation time scale.

When the oscillating star is close enough to the critical surface, it will be attracted to

the IA (i.e., the critical solution), until the unstable mode of the IA kicks in, and it

will then collapse to a black hole through this unstable mode. This suggests that there

may exist a class of gravitational collapses in nature which go through the unstable

modes of a critical solution. We may observe such phenomena through the radiation

characteristic of this unstable mode of the critical solution.

In Sec. 4.6, we turn to study the properties of the critical solution. We report

a phase diagram of the total rest mass vs. the total ADM mass of the system. We

found that the boundary line that divides the black hole and the NS solutions in this

phase diagram have several branches, an interesting property that has not been seen

in other critical collapse studies.

7



Chapter 2

Einstein Equations in 3+1

formalism

2.1 3+1 splitting of spacetime

We divide spacetime into space plus time, as the physical problem we want to deal

with is an initial value problem: Given a compact object, how would it evolve? For

this purpose we need to first split the representation of the spacetime into a 3+1

form, and then also split the Einstein equation into a 3+1 form.

2.1.1 Foliation of Spacetime

We embed a family of spacelike hyperspace Σ such that each point on it, say (x,y,z),

becomes one point in the spacetime M as (t,x,y,z). We denote such a hypersurface

8



Chapter 2 Einstein Equations in 3+1 formalism

Figure 2.1: Foliation of the spacetimeM by a family of spacelike hypersurfaces Σt.

as Σt. These surfaces are non-intersecting:

Σt ∩ Σt′ = ∅ for t 6= t′. (2.1)

Each hypersurface Σt is called a slice of the foliation, with a unit normal ~n as

~n := −N ~∇t, (2.2)

with

N :=
(

−~∇t · ~∇t
)−1/2

=
(

−〈dt, ~∇t〉
)−1/2

. (2.3)

Here and in the rest of the thesis we follow the conventions of MTW [10] and Gour-

goulhon [11].

We assume that all Σt’s are spacelike and that the foliation covers the whole M

9



Chapter 2 Einstein Equations in 3+1 formalism

Figure 2.2: A point P with coordinates (xi) on the hypersurfaces Σt becomes Q, which has same

coordinates as P , on the hypersurfaces on Σt+δt, when it is dragged along the time vector ∂t. The

departure is given by the shift vector β.

(cf. Fig. 2.1):

M =
⋃

t

Σt. (2.4)

2.1.2 Shift vector

The hypersurface Σt will be Lie dragged along ∂t. Only when in very special situation

the ∂t coincides with the normal evolution vector ~m = N~n. In general we have

∂t = ~m + ~β, (2.5)

where ~β =: βi ∂i is called the shift vector. Thus,

nα =

(
1

N
,−β1

N
,−β2

N
,−β3

N

)

. (2.6)

and because n = −Ndt, we have

nα = (−N, 0, 0, 0). (2.7)

10



Chapter 2 Einstein Equations in 3+1 formalism

And Eq. (2.5) also lead to that

n · ~β = 0. (2.8)

2.1.3 3+1 metric components

We can derive from Eq. (2.5) the time-time component of the metric tensor g

g00 = g(∂t, ∂t) = ∂t · ∂t = −N2 + β · β = −N2 + βiβ
i, (2.9)

and

g0i = g(∂t, ∂i) = β · ∂i = 〈β, ∂i〉 = 〈βj dxj , ∂i〉 = βi. (2.10)

Thus the line element can now be written as

ds2 = (β2 − α2)dt2 + 2βi dt dxi + γij dxi dxj , (2.11)

here γij = gij is called the induced metric on the manifold Σt, or the 3-metric.

2.1.4 Intrinsic curvature

There is a connection (or covariant derivative) D for the 3-metric γij such that

Dγ = 0, (2.12)

The corresponding intrinsic curvature Rk
lij is defined by

∀v ∈ T (Σ), (DiDj −DjDi)v
k = Rk

lijv
l, (2.13)

with the Ricci tensor in 3-D Rij = Rk
ikj and the corresponding scalar curvature as:

Rij =
∂Γk

ij

∂xk
− ∂Γk

ik

∂xj
+ Γk

ijΓ
l
kl − Γl

ikΓ
k
lj, (2.14)

R = γijRij . (2.15)

11



Chapter 2 Einstein Equations in 3+1 formalism

Christoffel symbols Γk
ij in terms of partial derivatives of the metric is given by

Γk
ij =

1

2
γkl

(
∂γlj

∂xi
+

∂γil

∂xj
− ∂γij

∂xl

)

. (2.16)

2.1.5 The orthogonal projector

At each point p ∈ Σ, the space of all spacetime vectors can be orthogonally decom-

posed as

Tp(M) = Tp(Σ)⊕ Vect(ñ), (2.17)

where Vect(n) stands for the 1-dimensional subspace of Tp(M) generated by the

vector n.

The orthogonal projector onto Σ fromM is the operator ←→γ associated with the

decomposition Eq. (2.17) according to

←→γ (v) = v + (~n · v)~n. (2.18)

It has the properties

←→γ (~n) = 0. (2.19)

and

∀v ∈ Tp(Σ), ←→γ (v) = v. (2.20)

Components of ←→γ with respect to basis (eα) of Tp(M) are

γα
β = δα

β + nαnβ. (2.21)

By the projection operator the 3-metric can be expressed in components,

γαβ = gαβ + nαnβ . (2.22)

12



Chapter 2 Einstein Equations in 3+1 formalism

To project a general tensor from the spacetime M onto the hypersurface Σ we

have

(←→γ ∗T)
α1...αp

β1...βq
= γα1

µ1
. . . γαp

µp
γν1

β1
. . . γ

νq

βq
T µ1...µp

ν1...νq
. (2.23)

2.1.6 Links between the ∇ and D connections

Given a tensor field T on Σ, its covariant derivative DT with respect to the Levi-

Civita connection D of the metric γ (cf. Sec. 2.1.4) is related to the covariant deriva-

tive ∇T with respect to the spacetime connection ∇ by

DT =←→γ ∗∇T, (2.24)

in components [cf. Eq. (2.23)]:

DρT
α1...αp

β1...βq
= γα1

µ1
· · · γαp

µp
γν1

β1
· · ·γνq

βq
γσ

ρ∇σT µ1...µp

ν1...νq
. (2.25)

2.1.7 Extrinsic curvature

The extrinsic curvature is related to the bending of the hypersurface Σ inM, defined

as

∀(u,v) ∈ Tp(M)2, K(u,v) = K(←→γ (u),←→γ (v)) = −←→γ (u) · ∇←→γ (v)~n

= −u · ∇v~n− (a · u)(~n · v),

= −∇n(u,v)− 〈a,u〉〈n,v〉, (2.26)

where we have used the fact that ~n ·~n = −1 and hence ~n ·∇x~n = 0 for any vector

13



Chapter 2 Einstein Equations in 3+1 formalism

x. It is valid for any pair of vectors (u,v) in Tp(M), so we conclude that

∇n = −K− a⊗ n. (2.27)

In component form:

∇β nα = −Kαβ − aα nβ, (2.28)

here

aµ =
1

N
γν

µ∇νN = DµlnN. (2.29)

is the 4-acceleration. Applying the projector operator ←→γ ∗ to Eq. (2.27) we get:

K = −←→γ ∗∇n. (2.30)

Taking the trace of Eq. (2.27) with respect to the metric g we have the trace of

the extrinsic curvature tensor:

K = −∇ · ~n. (2.31)

By combining Eq. (2.28) and (2.29), we have

∇β mα = −NKα
β −DαN nβ + nα∇βN. (2.32)

2.1.8 Relation between 4-D and 3-D curvatures

Since γν
βnν = 0, and

∇µγ
σ
ν = ∇µ (δσ

ν + nσnν) = ∇µn
σ nν + nσ∇µnν ,

according to formula (2.25)

DαDβvγ = Dα(Dβv
γ) = γµ

αγν
βγγ

ρ∇µ(Dνv
ρ) = γµ

αγν
βγ

γ
ρ∇µ

(
γσ

νγ
ρ
λ∇σv

λ
)

= −Kαβ γγ
λ nσ∇σv

λ −Kγ
αKβλ vλ + γµ

αγσ
βγ

γ
λ∇µ∇σv

λ, (2.33)

14



Chapter 2 Einstein Equations in 3+1 formalism

hence

DαDβvγ −DβDγv
γ =

(
KαµKγ

β −KβµKγ
α

)
vµ + γρ

αγσ
βγγ

λ

(
∇ρ∇σv

λ −∇σ∇ρv
λ
)
.

(2.34)

By the 3-D and 4-D Ricci identities

(
KαµKγ

β −KβµK
γ
α

)
vµ + γρ

αγσ
βγ

γ
λ
4Rλ

µρσvµ = Rγ
µαβ vµ, (2.35)

And since v is an arbitrary vector of T (M), we have

γµ
αγν

βγ
γ
ργ

σ
δ
4Rρ

σµν = Rγ
δαβ + Kγ

αKδβ −Kγ
βKαδ. (2.36)

This is the so called Gauss relation that connects the 4-D and 3-D curvatures.

We contract the Gauss relation with Eq. (2.21) to get

γµ
αγν

β
4Rµν + γαµnνγρ

βnσ 4Rµ
νρσ = Rαβ + KKαβ −KαµKµ

β. (2.37)

We take its trace with respect to γ, take into account that Kµ
µ = Ki

i = K, KµνK
µν =

KijK
ij to obtain

4R + 2 4Rµνn
µnν = R + K2 −KijK

ij . (2.38)

This is the scalar Gauss relation, where 4R is the 4-D curvature scalar and 4Rµν is the

4-D Ricci tensor.

2.1.9 Lie derivative

The Lie derivative corresponds to the change determined by an observer who goes

from one point P (coordinates xi) in the direction of vector field ui to the infinites-

imally neighbor point P̄ (coordinates xi + ǫui(xn)) but still use the same coordinate

15
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system as at point P . Using such a coordinate system corresponds to a coordinate

transformation

xn′

= xn − ǫun(xi),

An′

i = δn
i − ǫun

,i. (2.39)

The components of the vector to be considered vn at the point P̄ will be (up to the

second order in ǫ)

vn′

(P̄ ) = An′

i vi(xk + ǫuk) = (δn
i − ǫun

,i)[v
i(P ) + ǫvi

,k(P )uk]

= vn(P ) + ǫvn
,k(P )uk − ǫun

,kv
k(P ). (2.40)

The Lie derivative of a vector field is defined as

Lu vα = vα
,µuµ − uα

,µv
µ. (2.41)

The Lie derivative of a 1-form will be similarly

Lu ωα = ωα,µuµ + uµ
,αωµ. (2.42)

We can use covariant derivative to replace the partial derivative in Eqs. (2.41) and

(2.42).

Lu vα = vα
;µu

µ − uα
;µv

µ,

Lu ωα = ωα;µu
µ + uµ

;αωµ. (2.43)

16
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Similarly, we can replace the partial derivatives by any connection without torsion,

such as the Levi-Civita connection ∇ and incorporate both vector indices, linear form

indices into one tensor

Lu T
α1...αµ

β1...βℓ
= uµ∇µT

α1...αµ

β1...βℓ
−

µ
∑

i=1

T
α1...

i
↓
σ...αµ

β1...βℓ
∇σu

αi+

ℓ∑

i=1

T
α1...αµ

β1... σ
↑

i

...βℓ
∇βi

uσ.

(2.44)

2.2 ADM formalism of Einstein equations

2.2.1 Evolution of the 3-metric

The evolution of the metric γ on Σt is naturally given by the Lie derivative of γ along

the normal evolution vector m (see Sec. (2.1.9)). By means of Eqs. (2.44) and (2.32),

we get

Lm γαβ = mµ∇µγαβ + γµβ∇αmµ + γαµ∇βmµ

= Nnµ∇µ(nαnβ)− γµβ (NKµ
α + DµN nα − nµ∇αN)

−γαµ

(
NKµ

β + DµN nβ − nµ∇βN
)

= −2NKαβ . (2.45)

From the very definition of the inverse 3-metric:

γikγ
kj = δj

i, (2.46)

17



Chapter 2 Einstein Equations in 3+1 formalism

and by using Eq. (2.45), we obtain

Lm γik γkj + γik Lm γkj = 0,

Lm γij = 2NKij , . (2.47)

2.2.2 Evolution of the orthogonal projector

Let us now evaluate the Lie derivative of the orthogonal projector onto Σt along the

normal evolution vector. Using Eqs. (2.44) and (2.32), we have

Lm γα
β = mµ∇µγ

α
β − γµ

β∇µm
α + γα

µ∇βmµ

= Nnµ∇µ(nαnβ) + γµ
β

(
NKα

µ + DαN nµ − nα∇µN
)

−γα
µ

(
NKµ

β + DµN nβ − nµ∇βN
)

= 0. (2.48)

Suppose T is a tensor field of type
(

1
1

)
and is tangent to Σt, then

γα
µγν

βT
µ
ν = T α

β. (2.49)

Taking the Lie derivative along m, employing the Leibniz rule and making use of

Eq. (2.48) leads to

Lm

(
γα

µγ
ν
βT

µ
ν

)
= γα

µγ
ν
β Lm T µ

ν = Lm T α
β,

←→γ ∗Lm T = Lm T. (2.50)

This shows that Lm T is tangent to Σt if T is tangent to Σt .

18
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2.2.3 3+1 decomposition of the stress-energy tensor

We decompose the stress-energy tensor T as

T = S + n⊗ p + p⊗ n + E n⊗ n, (2.51)

where

E := T(~n, ~n), (2.52)

is the matter energy density,

p := −T(~n,←→γ (.)), (2.53)

or in component form,

pα = −Tµν nµ γν
α, (2.54)

is the matter momentum density, and

S :=←→γ ∗T, (2.55)

or in component form,

Sαβ = Tµνγ
µ
αγν

β, (2.56)

is the matter stress tensor. Given two spacelike unit vectors e and e′ in the rest frame

of the Eulerian observer (both vectors are orthogonal to n), S(e, e′) is the force in

the direction e acting on the unit surface whose normal is e′. The trace of S with

respect to the metric γ (or equivalently with respect to the metric g) is defined as:

S := γijSij = gµνSµν . (2.57)
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Taking the trace of Eq. (2.51) with respect to the metric g yields

T = S −E. (2.58)

For a perfect fluid model of matter we have

T = (ρ + P )u⊗ u + P g, (2.59)

where u is the 4-velocity of a fluid element, ρ and P are two scalar fields, representing

respectively the matter energy density and the isotropic pressure, both measured in

the fluid frame (i.e. by an observer who is comoving with the fluid).

2.2.4 Evolution of the Extrinsic Curvature

By projection twice onto Σt and once along n of the 4-D Ricci identity, using of

Eq. (2.28), we arrive at

γαµ nργν
β nσ 4Rµ

ρνσ = γαµnσγν
β(∇ν∇σn

µ −∇σ∇νn
µ)

= γαµnσγν
β [−∇ν(K

µ
σ + Dµ ln N nσ) +∇σ(Kµ

ν + Dµ ln N nν)]

= −KασKσ
β +

1

N
DβDαN + γµ

αγν
β nσ∇σKµν . (2.60)

And by Eq. 2.44 we have

Lm Kαβ = mµ∇µKαβ + Kµβ∇αmµ + Kαµ∇βm
µ

= Nnµ∇µKαβ − 2NKαµKµ
β −KαµDµN nβ −KβµDµN nα. (2.61)

We project this equation onto Σt, i.e. apply the operator ←→γ ∗ to both sides and note

that Lm K is tangent to Σt (since K is), then

Lm Kαβ = N γµ
αγν

β nσ∇σKµν − 2NKαµKµ
β . (2.62)
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Plugging it into Eq. (2.60) and combining with the contracted Gauss relation Eq. (2.37)

we have

γµ
αγν

β
4Rµν = − 1

N
Lm Kαβ −

1

N
DαDβN + Rαβ + KKαβ − 2KαµKµ

β. (2.63)

Now we project the Einstein equations onto Σt

←→γ ∗ 4R = 8π

(

←→γ ∗T− 1

2
T←→γ ∗g

)

. (2.64)

Combining Eqs. (2.63) and (2.64), and notes that ←→γ ∗T is by definition S, T =

S − E [Eq. (2.58)], and ←→γ ∗g is simply γ, therefore

Lm K = −DDN + N
{

R + KK− 2K · ~K + 4π [(S − E)γ − 2S]
}

. (2.65)

In component form,

Lm Kαβ = −DαDβN + N
{
Rαβ + KKαβ − 2KαµKµ

β + 4π [(S −E)γαβ − 2Sαβ]
}

.

(2.66)

Let us take the trace of Eq. (2.63) with γαβ. Note that in the right-hand side we

can limit the range of variation of the indices to {1, 2, 3} since all the involved tensors

are spatial ones [including Lm K]. Hence

γµν4Rµν = − 1

N
γijLm Kij −

1

N
DiD

iN + R + K2 − 2KijK
ij . (2.67)

Now γµν4Rµν = (gµν + nµnν)4Rµν = 4R + 4Rµνn
µnν and

−γijLm Kij = −Lm (γijKij
︸ ︷︷ ︸

=K

) + KijLm γij

= −Lm K + 2NKijK
ij (2.68)
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Combine the scalar Gauss relation (2.38), Eq. (2.67) and (2.68) we arrive

4R = R + K2 + KijK
ij − 2

N
Lm K − 2

N
DiD

iN. (2.69)

2.2.5 Constraints equations

We first project the Einstein equation fully perpendicular to Σt

4R(~n, ~n) +
1

2
4R = 8πT(~n, ~n). (2.70)

here we have used g(~n, ~n) = −1. Notice that T(~n, ~n) = E, we arrive that

R + K2 −KijK
ij = 16πE. (2.71)

This equation is called the Hamiltonian constraint.

Now, let us project the Einstein equation once onto Σt and once along the normal

~n:

4R(~n,←→γ (.))− 1

2
4R g(~n,←→γ (.))
︸ ︷︷ ︸

=0

= 8πT(~n,←→γ (.)) = −p. (2.72)

Now, from Eq. (2.28),

γµ
αγν

βγ
γ
ρ∇µ∇νn

ρ = γµ
αγν

βγγ
ρ∇µ (−Kρ

ν − aρnν)

= −DαKγ
β + aγKαβ, (2.73)

Project the Ricci identity

(∇α∇β −∇β∇α)nγ = 4Rγ
µαβ nµ. (2.74)

onto Σt we have

γγ
ρ nσ γµ

αγν
β

4Rρ
σµν = DβKγ

α −DαKγ
β. (2.75)
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Contracting over indices α and γ, we have

γµ
αnν 4Rµν = DαK −DµK

µ
α. (2.76)

Combine Eqs. (2.72) and (2.76), we derive

DjK
j
i −DiK = 8πpi. (2.77)

This equation is called the momentum constraint.

Hamiltonian and momentum constraints are relations that must be satisfied in

each time slice for a physical spacetime.

2.2.6 3+1 Einstein evolution equation system

Notice that each term in Eq. (2.66) is a tensor field tangent to Σt. Consequently, we

may restrict to spatial indices without any loss of generality. Put it together with

Eq. (2.47), (2.71) and (2.77), we rewrite the 3+1 Einstein evolution system as

(
∂

∂t
−Lβ

)

γij = −2NKij , (2.78)

(
∂

∂t
−Lβ

)

Kij = −DiDjN + N
{
Rij + KKij − 2KikK

k
j + 4π [(S −E)γij − 2Sij]

}
,

(2.79)

together with the constraint equations

R + K2 −KijK
ij = 16πE, (2.80)

DjK
j
i −DiK = 8πpi. (2.81)
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We completed the splitting of the Einstein equation into a 3+1 formulation, with 4

constraint equations to be satisfied for each time slice, and 6 evolution equations to

evolve from one time slice to the next.

2.2.7 3+1 equations for the matter fields

Next we split the hydrodynamic equations into a 3+1 form.

The baryon number conservation of the matter leads to

∇ · jB = 0, (2.82)

where

jB = nBu, (2.83)

is the baryon number 4-current, here u is the fluid 4-velocity and nB the fluid proper

baryon number density.

Introduce the fluid velocity relative to the Eulerian observer (in ~n direction) as

U, we have

u = Γ(~n + U), (2.84)

with ~n ·U = 0, ~n · ~n = −1 and u · u = −1,

Γ = (1−U ·U)−1/2. (2.85)

And we have

U =
1

N
(V + β), (2.86)
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here

V i =
dxi

dt
=

ui

u0
. (2.87)

Then Eq. (2.82) becomes

0 = ∂0[N
√

γρ0u
0] + ∂i[N

√
γρ0Γ(ni + U i)]

= ∂0[
√

γρ0Γ] + ∂i[
√

γρ0ΓV i], (2.88)

here ρ0 = mBnB is the baryon density with mB the baryon mass. On the other hand,

due to the contracted Bianchi identities, we have for the energy-momentum tensor

Tµν ,

0 = ∇µT
µ
α = ∇µ (Sµ

α + nµpα + pµnα + Enµnα) . (2.89)

For α = 0, we have the energy conservation equation as

(
∂

∂t
− βi ∂

∂xi

)

E + N
(
Dip

i −KE −KijS
ij
)

+ 2piDiN = 0. (2.90)

On the other hand, the momentum conservation comes with the spatial components

of Eq. (2.89)

(
∂

∂t
−Lβ

)

pi + NDjS
j
i + SijD

jN −NKpi + EDiN = 0. (2.91)

2.3 Conformal decomposition

While Eq. (2.78) and (2.79) can be used for numerical evolution, in order to get a

stable evolution, rewriting the equations into the following forms separating out the

conformal degree of freedom is useful.
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2.3.1 Conformal metric

Define a conformal metric as

γ̃ij := Ψ−4γij, (2.92)

Then the inverse conformal metric γ̃ij is given by the requirement

γ̃ik γ̃kj = δ j
i , (2.93)

which is equivalent to

γ̃ij = Ψ4 γij . (2.94)

2.3.2 Conformal connection

γ̃ being a well defined metric on Σt, let D̃ be the Levi-Civita connection associated

to it:

D̃γ̃ = 0. (2.95)

Let us denote by Γ̃k
ij the Christoffel symbols of D̃ with respect to the coordinates

(xi):

Γ̃k
ij =

1

2
γ̃kl

(
∂γ̃lj

∂xi
+

∂γ̃il

∂xj
− ∂γ̃ij

∂xl

)

. (2.96)

The covariant derivatives D̃T and DT for a tensor field T of type
(

p
q

)

on Σt are

related by

DkT
i1...ip

j1...jq
= D̃kT

i1...ip
j1...jq

+

p
∑

r=1

Cir
kl T

i1...l...ip
j1...jq

−
q
∑

r=1

C l
kjr

T
i1...ip

j1...l...jq
,

(2.97)

where
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Ck
ij := Γk

ij − Γ̃k
ij , (2.98)

Γk
ij being the Christoffel symbols of the connection D.

It is easy to verify that

Ck
ij =

1

2
γkl
(

D̃iγlj + D̃jγil − D̃lγij

)

. (2.99)

Replacing γij and γij in terms of γ̃ij, γ̃ij and Ψ we can finally arrive at:

Ck
ij = 2

(

δk
iD̃j ln Ψ + δk

jD̃i ln Ψ− D̃k ln Ψ γ̃ij

)

. (2.100)

For a vector we have as a special case of Eq. (2.97),

Div
i = Ψ−6D̃i

(
Ψ6vi

)
. (2.101)

2.3.3 Expression of the Ricci tensor

Expressing the D-derivatives in term of the D̃-derivatives in

Rijv
j = DjDiv

j −DiDjv
j, (2.102)

and noting that the corresponding formula for the conformal quantities

D̃jD̃iv
j − D̃iD̃jv

j = R̃ijv
j, (2.103)

we can derive

Rij = R̃ij + D̃kC
k
ij − D̃iC

k
kj + Ck

ijC
l
lk − Ck

ilC
l
kj, (2.104)
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or in term of the conformal factor

Rij = R̃ij − 2D̃iD̃j ln Ψ− 2D̃kD̃
k ln Ψ γ̃ij + 4D̃i ln Ψ D̃j ln Ψ− 4D̃k ln Ψ D̃k ln Ψ γ̃ij,

(2.105)

and

R = Ψ−4R̃ − 8Ψ−5D̃iD̃
iΨ. (2.106)

2.3.4 Conformal decomposition of the extrinsic curvature

Let us first decompose the extrinsic curvature as

Kij = Aij +
1

3
Kγij and Kij = Aij +

1

3
Kγij . (2.107)

where

trγ A = γijAij = 0. (2.108)

The conformal scaling for time evolution is

Aij = Ψ−4Ãij , (2.109)

and

Aij := Ψ4Ãij . (2.110)

Besides,

KijK
ij =

(

Aij +
K

3
γij

)(

Aij +
K

3
γij

)

= AijA
ij +

K2

3
= ÃijÃ

ij +
K2

3
. (2.111)
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2.3.5 Conformal decomposition of the Einstein equations

From Eq. (2.78) we arrive

Lm γ̃ij = −2NΨ−4Aij −
2

3
(NK + 6Lm ln Ψ) γ̃ij . (2.112)

Take trace , note that Aij is traceless, and

δ(ln det A) = tr(A−1 × δA), (2.113)

−2(NK + 6Lm lnΨ) = γ̃ijLm γ̃ij = Lm ln det(γ̃ij). (2.114)

By construction, det(γ̃ij) = det fij = f (fij is the flat metric), and ∂f/∂t = 0,

Lm ln det(γ̃ij) = −Lβ ln f = −Lβ ln det(γ̃ij)

= −γ̃ijLβ γ̃ij = −2D̃iβ
i. (2.115)

Combine with Eq. (2.114) we get the equation for the conformal factor

(
∂

∂t
− Lβ

)

ln Ψ =
1

6

(

D̃iβ
i −NK

)

. (2.116)

Insert it into Eq. (2.112), we have

(
∂

∂t
− Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij. (2.117)

Accordingly we can derive

(
∂

∂t
− Lβ

)

γ̃ij = 2NÃij +
2

3
D̃kβ

k γ̃ij. (2.118)

Take the trace of Eq. (2.79) we have

Lm K = γijLm Kij + 2NKijK
ij

= −DiD
iN + N

[
R + K2 + 4π(S − 3E)

]
. (2.119)
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By using of the Hamiltonian constraints Eq. (2.79),

(
∂

∂t
− Lβ

)

K = −DiD
iN + N

[

4π(E + S) + AijA
ij +

K2

3

]

. (2.120)

Taking Lie derivative of Eq. (2.107)

Lm Kij = Lm Aij +
1

3
Lm K γij −

2

3
KNKij . (2.121)

replacing Kij by Aij we have

Lm Aij = −DiDjN + N

[

Rij +
1

3
KAij − 2AikA

k
j − 8π

(

Sij −
1

3
Sγij

)]

+
1

3

(
DkD

kN −NR
)
γij . (2.122)

The corresponding conformal version of Eqs. (2.120) and (2.122) are

(
∂

∂t
−Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

,

(2.123)

and

(
∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j lnΨ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[

R̃ij −
1

3
R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j lnΨ

+
2

3

(

D̃kD̃
k ln Ψ− 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

.

(2.124)

30



Chapter 2 Einstein Equations in 3+1 formalism

2.3.6 Conformal decomposition of the constraints equations

Substituting Eq. (2.106) for R and Eq. (2.111) into the Hamiltonian constraint equa-

tion (2.80) yields

D̃iD̃
iΨ− 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0. (2.125)

Let us first express the momentum constraint in terms of Aij . Note that

DjK
ij = DjA

ij +
1

3
DiK. (2.126)

Taking into account relation (2.109), we can easily rewrite Eq. (2.81) in terms of Ãij :

D̃jÃ
ij + 6ÃijD̃j lnΨ− 2

3
D̃iK = 8πΨ4pi. (2.127)
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2.3.7 Summary: conformal 3+1 Einstein system

Let us gather Eqs. (2.116), (2.117), (2.123), (2.124), (2.125) and (2.127):

(
∂

∂t
−Lβ

)

Ψ =
Ψ

6

(

D̃iβ
i −NK

)

(2.128)

(
∂

∂t
−Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij (2.129)

(
∂

∂t
−Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

(2.130)
(

∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[

R̃ij −
1

3
R̃γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j ln Ψ

+
2

3

(

D̃kD̃
k ln Ψ− 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

.

(2.131)

D̃iD̃
iΨ− 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0 (2.132)

D̃jÃ
ij + 6ÃijD̃j ln Ψ− 2

3
D̃iK = 8πΨ4pi. (2.133)

This is the set of spacetime evolution equations and constraint equations on which

we base our numerical study.

2.4 Gauge choices

One of the hardest problems in numerical evolution of the Einstein system is to make

good gauge choices responding to the geometry, which is dynamical.
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2.4.1 Choice of foliation

Geodesic slicing

This corresponds to the condition

N = 1. (2.134)

This implies that the 4-acceleration of the Eulerian observers [that’s just the spatial

gradient of ln N (cf. Eq. (2.29))] a = 0, i.e. the worldlines of the Eulerian observers

are geodesics. Moreover the choice (2.134) implies that the proper time along these

worldlines coincides with the coordinate time t. This simple choice often leads to the

development of coordinate singularity.

Maximal slicing

The maximal slicing corresponds to the vanishing of the mean curvature of the hy-

persurfaces Σt:

K = 0. (2.135)

and this condition leads to hypersurfaces of maximal volume.

Besides its nice geometrical definition, an interesting property of maximal slicing

is its singularity avoidance property. This is related to the fact that the set of the Eu-

lerian observers of a maximal foliation define an incompressible flow : from Eq. (2.31),

the condition K = 0 is equivalent to the incompressibility condition

∇ · ~n = 0 (2.136)
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for the 4-velocity field ~n of the Eulerian observers. The maximal slice provides sta-

bility. But unfortunately it involves the solving of a elliptical equation which is

computationally expensive.

Harmonic slicing

We say a coordinate (xα) is harmonic if the following equation holds

�gx
α = 0, (2.137)

where �g := ∇µ∇µ is the d’Alembertian associated with the metric g. The harmonic slicing

is defined when this condition holds for x0 = t (but not necessarily for the other coor-

dinates, leaving the freedom to choose any coordinate (xi) in each hypersurface Σt).

Using the standard expression for the d’Alembertian, it means that

1√−g

∂

∂xµ

(√−ggµν ∂t

∂xν
︸︷︷︸

=δ0
ν

)

= 0, (2.138)

Insert the metric components,

− ∂

∂t

(√
γ

N

)

+
∂

∂xi

(√
γ

N
βi

)

= 0. (2.139)

The final result can be written as:

(
∂

∂t
−Lβ

)

N = −KN2. (2.140)

This slicing is singularity avoiding, however it is less stable than the maximal slicing.
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1+log slicing

The harmonic slicing condition (2.140) has been generalized to

(
∂

∂t
− Lβ

)

N = −KN2f(N), (2.141)

where f is an arbitrary function. The harmonic slicing corresponds to f(N) = 1.

The geodesic slicing also fulfills this relation with f(N) = 0. The choice f(N) = 2/N

leads to
(

∂

∂t
−Lβ

)

N = −2KN. (2.142)

a solution of which is

N = 1 + ln γ. (2.143)

For this reason, a foliation whose lapse function obeys Eq. (2.142) is called a

1 + log slicing. This slicing is also singularity avoiding. It is expressed algebraically

locally, and hence easy to implement. This is the slicing most commonly used in our

numerical simulations.

2.5 Evolution of spatial coordinates

This section discusses choices of β which setup coordinates on slices Σt.
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2.5.1 Normal coordinates

As for the lapse choice N = 1 (geodesic slicing, Sec. 2.4.1), the simplest choice for

the shift vector is to set it to zero:

β = 0. (2.144)

Besides their simplicity, an advantage of normal coordinates is to be as regular as

the foliation itself: they cannot introduce some pathology per themselves. On the

other hand, the major drawback of these coordinates is that they may lead to a

large coordinate shear, resulting in large values of the metric coefficients γij. This is

especially true if rotation is present.

2.5.2 Minimal distortion

The distortion tensor Q is defined as the trace-free part of the time derivative of the

physical metric γ:

Qij =
∂γij

∂t
− 1

3
γkl ∂γkl

∂t
γij = Ψ4 ∂γ̃ij

∂t
. (2.145)

In terms of shift vector we can express it as

Qij = −2NAij + (Lβ)ij, (2.146)

The minimal distortion means that

DjQij = 0. (2.147)

Thus we have the equation for the shift

DjD
jβi +

1

3
DiDjβ

j + Ri
jβ

j = 16πNpi +
4

3
NDiK + 2AijDjN. (2.148)
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On the other hand we may rewrite Eq. (2.145) as

Qij =
∂γij

∂t
− 4

∂

∂t
lnΨ γij = Ψ4 ∂γ̃ij

∂t
. (2.149)

The minimal distortion condition can be expressed in terms of the time derivative

of the conformal metric by combining Eqs. (2.145) and (2.147):

Dj(Ψ4 ˙̃γij) = 0. (2.150)

or

D̃j(Ψ6 ˙̃γij) = 0. (2.151)

The drawback of the coordinate choice is that it is expensive to implement.

2.5.3 Approximate minimal distortion

In view of Eq. (2.151), it is natural to consider the simpler condition

D̃j ˙̃γij = 0, (2.152)

Since

˙̃γij = −2NÃij + γ̃ikγ̃jl(L̃β)kl. (2.153)

Equation (2.152) becomes then

D̃j
[

γ̃ikγ̃jl(L̃β)kl − 2NÃij

]

= 0, (2.154)

or

D̃jD̃
jβi +

1

3
D̃iD̃jβ

j + R̃i
jβ

j − 2ÃijD̃jN + 4N

[

3ÃijD̃j ln Ψ− 1

3
D̃iK − 4πΨ4pi

]

= 0.

(2.155)
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Replace the connection associated with metric γ̃ by the one with flat metric f , we

have instead of Eq. (2.152)

Dj ˙̃γij = 0, (2.156)

or the equation for β

DjDjβi +
1

3
DiDjβ

j − 2ÃijD̃jN + 4N

[

3ÃijD̃j ln Ψ− 1

3
D̃iK − 4πΨ4pi

]

= 0. (2.157)

This is called approximate minimal distortion.

2.5.4 Gamma freezing

Define

Γ̃i := γ̃jk
(

Γ̃i
jk − Γ̄i

jk

)

= −Djγ̃
ij , (2.158)

then the Gamma freezing condition is set to

∂Γ̃i

∂t
= − ∂

∂t

(
Djγ̃

ij
)

= −Dj
˙̃γij = 0, (2.159)

This is equivalent to

γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k +
2

3
Γ̃iDkβ

k − Γ̃kDkβ
i + βkDkΓ̃

i =

2N

[

8πΨ4pi − Ãjk
(

Γ̃i
jk − Γ̄i

jk

)

− 6ÃijDj ln Ψ +
2

3
γ̃ijDjK

]

+ 2ÃijDjN.

(2.160)

The advantage of using this is that it provides similar stability as the minimal dis-

tortion coordinates, while being simple to implement. This is the spatial coordinate

condition we use most commonly in our numerical simulations.
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2.6 Schemes for evolution

Even after having selected the foliation and the spatial coordinates propagation

(Sec. 2.4), there remains different strategies to integrate the 3+1 Einstein equations,

either in their original form (2.78)-(2.81), or in the conformal form (2.128)-(2.133).

In particular, the constraint equations (2.80)-(2.81) or (2.132)-(2.133) may be solved

or not during the evolution, giving rise to respectively the so-called free evolution

schemes and the constrained schemes.

2.6.1 Constrained schemes

A constrained scheme is a time scheme for integrating the 3+1 Einstein system in

which some (partially constrained scheme) or all (fully constrained scheme)

of the four constraints are used to compute some of the metric coefficients at each

step of the numerical evolution.

2.6.2 Free evolution schemes

We can derive from the Einstein equations that

(
∂

∂t
− Lβ

)

H = −Di(NM i) + 2NKH −M iDiN (2.161)

(
∂

∂t
−Lβ

)

M i = −Di(NH) + 2NKi
jM

j + NKM i + HDiN. (2.162)
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here H,Mi are the Hamiltonian, momentum constraints, respectively. If the con-

straints are satisfied at t = 0, i.e., H|t=0 = 0 and M i|t=0 = 0, then

∀t ≥ 0, H = 0 and M i = 0, (2.163)

i.e. the constraints are preserved by the time evolution. This means that we can

solve the equations without make use of the constraints equations. In this scheme we

need to assume that the violation from numerical errors and error from the boundary

conditions remain small throughout the evolution. The constraints can then be used

to monitor the accuracy of the numerical evolution. We use this strategy in all of our

numerical studies.

2.6.3 Evolution scheme of our study

In this thesis we based our study on the conformal 3+1 Einstein equations with a

particular choice of variables first proposed by Ref. [12, 13, 14].

One can define

∆k
ij := Γ̃k

ij − Γ̄k
ij =

1

2
γ̃kl (Diγ̃lj +Djγ̃il −Dlγ̃ij), (2.164)

with

∆k
ik =

1

2

∂

∂xi
ln γ̃ − 1

2

∂

∂xi
ln f = 0. (2.165)

We can express the Ricci tensor as

R̃ij =
∂

∂xk
Γ̃k

ij −
∂

∂xj
Γ̃k

ik + Γ̃k
ijΓ̃

l
kl − Γ̃k

ilΓ̃
l
kj

=
1

2

(

−γ̃klDkDlγ̃ij + γ̃ikDjΓ̃
k + γ̃jkDiΓ̃

k
)

+Qij(γ̃,Dγ̃), (2.166)
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and the Ricci scalar

R̃ = DkΓ̃
k +Q(γ̃,Dγ̃), (2.167)

where

Q(γ̃,Dγ̃) :=
1

2
γ̃klDkγ̃

ij Dlγ̃ij + γ̃ijQij(γ̃,Dγ̃), (2.168)

and

Qij(γ̃,Dγ̃) := −1

2

(
Dkγ̃lj Diγ̃

kl +Dkγ̃ilDjγ̃
kl +Dkγ̃

klDlγ̃ij

)
−∆k

il∆
l
kj. (2.169)

Then we can write the complete system of equations as:

(
∂

∂t
−Lβ

)

Ψ =
Ψ

6

(

D̃iβ
i −NK

)

, (2.170)

(
∂

∂t
−Lβ

)

γ̃ij = −2NÃij −
2

3
D̃kβ

k γ̃ij , (2.171)

(
∂

∂t
−Lβ

)

K = −Ψ−4
(

D̃iD̃
iN + 2D̃i ln Ψ D̃iN

)

+ N

[

4π(E + S) + ÃijÃ
ij +

K2

3

]

,

(2.172)
(

∂

∂t
− Lβ

)

Ãij = −2

3
D̃kβ

k Ãij + N

[

KÃij − 2γ̃klÃikÃjl − 8π

(

Ψ−4Sij −
1

3
Sγ̃ij

)]

+Ψ−4

{

− D̃iD̃jN + 2D̃i ln Ψ D̃jN + 2D̃j ln Ψ D̃iN

+
1

3

(

D̃kD̃
kN − 4D̃k ln Ψ D̃kN

)

γ̃ij

+N

[
1

2

(

−γ̃klDkDlγ̃ij + γ̃ikDjΓ̃
k + γ̃jkDiΓ̃

k
)

+Qij(γ̃,Dγ̃)

−1

3

(

DkΓ̃
k +Q(γ̃,Dγ̃)

)

γ̃ij − 2D̃iD̃j ln Ψ + 4D̃i ln Ψ D̃j lnΨ

+
2

3

(

D̃kD̃
k ln Ψ− 2D̃k ln Ψ D̃k ln Ψ

)

γ̃ij

]}

,

(2.173)
(

∂

∂t
− Lβ

)

Γ̃i =
2

3
Dkβ

k Γ̃i + γ̃jkDjDkβ
i +

1

3
γ̃ijDjDkβ

k − 2ÃijDjN

−2N

[

8πΨ4pi − Ãjk∆i
jk − 6ÃijDj ln Ψ +

2

3
γ̃ijDjK

] , (2.174)
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where Qij(γ̃,Dγ̃) and Q(γ̃,Dγ̃) are defined by Eqs. (2.169) and (2.168).

D̃iD̃
iΨ− 1

8
R̃Ψ +

(
1

8
ÃijÃ

ij − 1

12
K2 + 2πE

)

Ψ5 = 0, (2.175)

D̃jÃij + 6ÃijD̃
j lnΨ− 2

3
D̃iK = 8πpi, (2.176)

det(γ̃ij) = f, (2.177)

γ̃ijÃij = 0, (2.178)

Γ̃i +Djγ̃
ij = 0. (2.179)

This is the full set of the Einstein equations used in our numerical code. Next

we go for the equations of hydrodynamic variables in a form suitable for evolution

together with Eqs. (2.170)-(2.174).

Note that the 4-velocity uµ is normalized uµuµ = −1, so that its components can

be written in terms of the three spatial velocity components vi as

{uµ} =
W

α
{1, αvi − βi}, (2.180)

where W , instead of Γ in Eq. (2.85), is the Lorentz factor W = 1/
√

1− γijvivj, and

α = N, is the lapse function (see Eq. (2.3)). The specific enthalpy, h, is given as

h = 1 + ǫ + P/ρ, (2.181)

where ǫ is the specific internal energy density.

The general relativistic hydrodynamics equations, which include the baryon num-

ber conservation of matter, Eq. (2.82), and the conservation equations of the energy

momentum Eq. (2.89), can be written in first order, flux conservative form as

∂t
~U + ∂i

~F i = ~S, (2.182)
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where the conservative hydrodynamical variables ~U are written in terms of the prim-

itive variables {ρ, vi, ǫ} as

~U =











D

Sj

τ











=











√
γWρ

√
γρhW 2vj

√
γ(ρhW 2 − P −Wρ)











. (2.183)

The flux vector ~F i can be written as

~F i =











α (vi − βi/α)D

α
(
(vi − βi/α)Sj +

√
γPδi

j

)

α
(
(vi − βi/α)τ +

√
γviP

)











, (2.184)

and the source vector ~S can be written as

~S =











0

α
√

γT µνgνσΓσ
µj

α
√

γ(T µt∂µα− αT µνΓt
µν)











. (2.185)

Eqs. (2.182)-(2.185) is the full set of general relativistic hydrodynamic equations

used in our code.

In the case of the Einstein field equations, we expect the dynamical degrees of

freedom to remain smooth and continuous for a well-behaving coordinate system. On

the other hand, for the relativistic hydrodynamical equations, we know that shocks

(discontinuities) can easily form. Thus, the discretization method for the hydrody-

namical equations must be able to handle accurately the propagation of shocks. The

approach we use is based on the High Resolution Shock Capturing (HRSC) techniques
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(see [15]). We use a Roe’s approximate Riemann solver throughout the work on the

critical phenomena [15].

For the coordinate conditions to go with the evolution equations (2.170)-(2.174)

and (2.182)-(2.185), we implement a variant of the so-called “1+log” slicing condition

for the lapse,

∂α

∂t
= −2αK. (2.186)

Note that this is a completely local condition, and is therefore computationally inex-

pensive.

For the conditions on the shift, we use a modification of the “Gamma-Freezing”

shift equation [16]. Specifically, we implement the first integral form of the hyperbolic

Gamma-driver (Eq. (46) of reference [16]),

∂βi

∂t
= C1Γ̃

i − C2β
i, (2.187)

where we set the constants C1 = C2 = 0.8 for all numerical simulations in this thesis.

2.7 The construction of initial data

The initial data for the evolution must satisfy the Hamiltonian and momentum con-

straint equations (2.80)-(2.81) and in a form suitable for evolution with the system

(2.170)-(2.174) and (2.182)-(2.185). Next we describe the construction of such initial

data.
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2.7.1 Conformal decomposition of the constraints

With the conformal metric Eq. (2.92) and the traceless part of the extrinsic curvature

of the form:

Aij = Ψ−10Âij, (2.188)

we can derive the constraints equations as:

D̃iD̃
iΨ− 1

8
R̃Ψ +

1

8
ÂijÂ

ij Ψ−7 + 2πẼΨ−3 − 1

12
K2Ψ5 = 0, (2.189)

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πp̃i, (2.190)

where we have introduce the rescaled matter quantities

Ẽ := Ψ8E, (2.191)

and

p̃i := Ψ10pi. (2.192)

2.7.2 Longitudinal/transverse decomposition of Âij

Decompose Âij into a longitudinal part and a transverse one, by setting

Âij = (L̃X)ij + Âij
TT, (2.193)

where Âij
TT is both traceless and transverse (i.e. divergence-free) with respect to the

metric γ̃:

γ̃ijÂ
ij
TT = 0 and D̃jÂ

ij
TT = 0, (2.194)
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and (L̃X)ij is the conformal Killing operator associated with the metric γ̃ and

acting on the vector field X:

(L̃X)ij := D̃iXj + D̃jX i − 2

3
D̃kX

k γ̃ij . (2.195)

it is traceless

γ̃ij(L̃X)ij = 0, (2.196)

and the kernel of L̃ is made of the conformal Killing vectors of the metric γ̃, i.e.

the generators of the conformal isometrics. The symmetric tensor (L̃X)ij is called

the longitudinal part of Âij, whereas Âij
TT is called the transverse part.

Introducing the conformal vector Laplacian ∆̃L:

∆̃L X i := D̃j(L̃X)ij = D̃jD̃
jX i +

1

3
D̃iD̃jX

j + R̃i
jX

j , (2.197)

then by taking the divergence of Eq. (2.193): taking into account property (2.194),

we have

∆̃L X i = D̃j(L̃X)ij = D̃jÂ
ij. (2.198)

2.7.3 Conformal transverse-traceless form of the constraints

Inserting the longitudinal/transverse decomposition (2.193) into the constraint equa-

tions (2.189) and (2.190) and making use of Eq. (2.198) yields to the system

D̃iD̃
iΨ− 1

8
R̃Ψ +

1

8

[

(L̃X)ij + ÂTT
ij

] [

(L̃X)ij + Âij
TT

]

Ψ−7 + 2πẼΨ−3 − 1

12
K2Ψ5 = 0,

(2.199)

∆̃L X i − 2

3
Ψ6D̃iK = 8πp̃i, (2.200)
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where

(L̃X)ij := γ̃ikγ̃jl(L̃X)kl, (2.201)

ÂTT
ij := γ̃ikγ̃jlÂ

kl
TT. (2.202)

Then the strategy we use to get valid initial data for the Cauchy problem is to

choose (γ̃ij, Â
ij
TT, K, Ẽ, p̃i) on Σ0 and solve the system (2.199)-(2.200) to get Ψ and

X i. Then one constructs

γij = Ψ4γ̃ij, (2.203)

Kij = Ψ−10
(

(L̃X)ij + Âij
TT

)

+
1

3
Ψ−4Kγ̃ij, (2.204)

E = Ψ−8Ẽ, (2.205)

pi = Ψ−10p̃i, (2.206)

and obtains a set (γ,K, E,p) which satisfies the constraint equations (2.80)-(2.81).
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The GRAstro-2D code

In this chapter we describe our effort to construct a code for solving the Einstein

system derived in the previous chapter. We take the simplifying assumption of ax-

isymmetry in order to achieve the resolution needed for the critical collapse study.

Even under the axisymmetry assumption, the numerical calculation can only be car-

ried out using massively parallel computers at the national supercomputing centers.

3.1 Realizing axisymmetry in a 3D Cartesian sys-

tem

For an axisymmetric system the most natural coordinates are cylindrical (ρ, z, φ) or

spherical (r, θ, φ) coordinates. In such polar coordinates, we can ignore one spatial

dimension(say, (φ)), and apply boundary conditions easily.

However in the polar coordinates, there is a severe instability problem near the
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axis (ρ = 0, or θ = 0). One can easily see that there exits many singular terms in

some Ricci tensor elements for θ → 0. Though these terms will cancel each other and

give finite results when we do analytical calculations, the numerical errors will, when

divided by terms that vanish at the axis, lead to instability. One may want to use the

”numerical regularization” method of Evans [17], by redefining the improper variables,

but this has only limited success. If limited to a diagonal 3-metric [18], one can get a

long time stability, with the additional cost of solving several additional linear elliptic

partial differential equations. So this treatment cannot save much computational

time. Also, due to the logarithm coordinate, lots of computational efforts would be

wasted inside the horizon when there is one, while extra computational effort would

be needed to accurately represent gravitational wave outside.

Instead of going to a (r, θ, φ) coordinate, we employed an idea first developed in

Ref. [19] to handle axisymmetric simulations of vacuum spacetime. It solves only one

single 2D slice (i.e. the y = 0 x− z plane) of the 3D Cartesian grid, then rotate this

slice about the z axis to get the solution at any other (the y 6= 0) slices to calculate the

derivatives of y−direction in the 3D code. We can call this quasi-2D grid. Through

this we can have the singularity-free property of the 3D Cartesian coordinates, while

reducing the computer memory and time usage at the same time.

We extended the quasi-2D grid treatment to non-vacuum spacetime, and in par-

ticular, for the solving of the general relativistic hydrodynamic equations. Based on

our 3D Cartesian general-relativistic hydrodynamics code GRAstro [20] (Ref. [15, 21]

presented the formulations and tested the consistency and convergence of GRAstro
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Figure 3.1: Our grid in a constant z plane with ∆x = ∆y, staggering in x and z, not y, with a

stencil size 2. The dashed, dotted, dash-dotted circles show the rotation about z axis, the solid circles

represent grid points. The full filled ones are those we actually evaluate using the standard 3D finite

difference code, the partly filled ones are obtained by the boundary condition after the evolution.

The open ones represent stencil points which are needed for calculating of space derivations and can

be obtained by interpolation and symmetry transformation discussed above.

code), we introduce the quasi-2D grid technique and the development of GRAstro-2D

in Sec. 3.2. In Sec. 3.3, we present testings of GRAstro-2D with a single static neutron

star with spherical symmetry (so-called TOV [10] star), a boosted TOV star [15], and

two TOV stars in head-on collisions.

3.2 The construction of the GRAstro-2D code

For a system axisymmetric about the z-axis, the most economical treatment is to

evolve only one radial slice. We applied the same 3D updating method to solve the

equations for points along x-axis (y=0 plane), shown as filled solid circles in Fig. 3.1,

and then, use 3D boundary conditions to get the values on the half-filled points. Thus
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we get fields on the full y = 0 slice at each time step. To get values on stencil points

(open solid circles), we make use of the axisymmetry and do interpolations.

By axisymmetry, every component of a tensor should be exactly the same for all

points on a dash-dotted circle. That is,

T
i′
1
,i′

2
,...

j′
1
,j′

2
,...(x

′, 0, z′) = T i1,i2,...
j1,j2,...(ρ, 0, z). (3.1)

with ρ = x′ =
√

(x2 + y2), z = z′, and i′s = is, ... , j′s = js, ... , representing

two sets of indices in different coordinates (x′, y′, z′) and (x, y, z), respectively. Since

the calculation is running on (x, y, z) coordinates, we need a transformation from

(x′, y′, z′) to (x, y, z) for any grid point:

(
∂xi

∂x′j

)

=











cos φ − sin φ 0

sin φ cos φ 0

0 0 1











,

(

∂x′i

∂xj

)

(φ) =

(
∂xi

∂x′j

)

(−φ). (3.2)

Thus the components of a tensor at point (x, y, z) are

T i1,i2,...
j1,j2,...(x, y, z) =

(
∂xi1

∂x′i1

)(
∂xi2

∂x′i2

)

. . .

(

∂x′j1

∂xj1

)(

∂x′j2

∂xj2

)

. . .T
i′
1
,i′

2
,...

j′
1
,j′

2
,...(x

′, 0, z′), (3.3)

By the symmetry condition Eq. (3.1) we get

T i1,i2,...
j1,j2,...(x, y, z) =

(
∂xi1

∂x′k1

)(
∂xi2

∂x′k2

)

. . .

(

∂x′l1

∂xj1

)(

∂x′l2

∂xj2

)

. . .T k1,k2,...
l1,l2,... (

√

x2 + y2, 0, z).

(3.4)

This equation describes how to compute the components of a tensor in the stencil

grid points within the half-plane x ≥ 0 from corresponding points on y = 0 slice in
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Fig. 3.1. Next we need to connect points on y = 0 slice to the filled circles (calculated

grid points). This can be done by polynomial interpolations. We find that, except

for the outer boundary points, 4th order polynomials give good results.

3.3 Convergence test

A solution of Einstein equations should satisfy the Hamiltonian and momentum con-

straints. In numerical simulation, the error e due to finite differencing should decrease

to zero with reduced step length h (i.e., higher resolution).

Our code is convergent to second order ( the error e ∝ h2) at time t=0 for the solving

of the initial constraint equations, and first order (e ∝ h) for the evolution equations

due to the use of the high resolution shock capturing(HRSC) scheme with flux limiters

(see refs. [22, 23, 15]). To show the convergence in a figure, we scale the constraint

violations at time t (corresponding to different resolutions) so that they should over-

lap: for solution 1 with step length h1, error e1, solution 2 with h2 = (1/2)h1, error

e2, then we should have e2 = (1/2)e1 if the solution is first order convergent (2e2 will

overlap with e1, we call 2e2 as scaled e2 in a fig.), or e2 = (1/4)e1 if it is second order

convergent (4e2 will overlap with e1).
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3.3.1 Convergence over resolution

The numerical solutions should be convergent when the resolution is raised (the step

length h → 0). Fig. 3.2 and 3.3 show the convergence of Hamiltonian constraint

with 6 different resolutions that goes as high as to h=0.01 for the evolution of a static

TOV star [10] and boosted TOV star [15] initial data, respectively. The boosted TOV

test is a particularly useful test as it is a test bed that has an analytic solution and

at the same time involves all terms in the coupled Einstein and general relativistic

hydrodynamic system. For t=0, they showed the 2nd order convergence behavior.

For a later time they showed a convergence that’s higher than the first order but

lower than 2nd order, i.e., the separation between the solution curve with highest

resolution and the one with second highest is smaller than the one between the curve

with 2nd highest and the one with the 3rd highest, etc., which is expected convergence

behavior. Fig. 3.4 shows the convergence of the Hamiltonian constraint error for head-

on collision of two neutron stars with 3 resolutions and at various times. That the

convergence properties are correct throughout the time of evolution is one of the most

important validation of a numerical code.

3.3.2 Convergence over boundary size

To show the effect of the size of computational domain on the simulation, we plot

the convergence of the momentum constraints over time (Fig. 3.5). Because of the

reflection from the outer boundary of the computational domain, which is 62 M⊙ in
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Ham

x

Figure 3.2: Hamiltonian constraint distribution for static TOV star in 6 different resolutions. All

curves of t=0 overlapped with each other after scaling. More details are shown in the right lower

box.

this study, the convergence is ruined at the outer region. Fig. 3.6 shows that the

amplitude of momentum constraints is reduced when we increase the boundary size.

Fig. 3.7 shows the effect of the domain size on the convergence of the Hamiltonian

constraint. All curves in the figure overlap, although they correspond to different

boundary sizes.
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Ham

x

Figure 3.3: Hamiltonian constraint distribution for boosted TOV star in 6 different resolutions.

All curves of t=0 overlapped with each other after scaling. They are enlarged to show details in the

left lower box.
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Ham

Ham

x x

Figure 3.4: Hamiltonian constraint distribution for head-on collision of Neutron stars at 4 different

time.
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Mom

Mom

x x

Figure 3.5: Momentum constraint distribution for head-on collision of Neutron stars at 4 different

time.
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Figure 3.6: Momentum constraint distribution for head-on collision of Neutron stars in 4 different

grid sizes (4 curves end in different boundaries). The small box shows the constraint curves in more

detail in a grid size 2N , half of the bigger one. The momentum constraint decreases with increased

grid size.

58



Chapter 3 The GRAstro-2D code

Ham

x

−5.0 45.0 95.0 145.0 195.0 245.0
−0.0010

0.0040

0.0090

0.0140

Ham(x=2.43,y=0,z,t=324) vs. Grid Size for 2D head on(11/20/04)

N  grid points
2N
4N
8N

−1.0 4.0
0.0050

0.0070

0.0090

0.0110

0.0130

0.0150

0.0170

0.0190

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
−0.0005

0.0005

0.0015

0.0025

Figure 3.7: Hamiltonian constraint distribution for head-on collision of Neutron stars in 4 different

grid sizes. There are 3 boxes in the fig. The smallest, the medium and the largest one shows the

ham in the central, a region corresponds to the grid size N and 4N , respectively. It shows that the

Hamiltonian constraint is not affected by increasing the grid size.
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The critical gravitational collapse

of a non-rotating neutron star

system

4.1 Initial configuration

We use the polytropic equation of state (EOS): P = (Γ − 1)ρǫ with Γ = 2 (and

cases close to 2). Here ρ is the proper rest mass density and ǫ is the proper specific

internal energy density. Notice that the ”kinetic-energy-dominated” assumption has

not been made, unlike earlier investigations of the critical collapses of perfect fluid

systems (for review, see [24, 3, 2]). Initial data sets are constructed with P = kρΓ,

where k = 0.0298c2/ρn (ρn is the nuclear density, approximately 2.3 x 1014 g/cm3).

For this EOS, the maximum stable neutron star (NS) configuration has an Arnowitt-
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Deser-Misner (ADM) mass of 1.46M⊙ and a baryonic mass of 1.61M⊙.

To save computer memory and time, we put two TOV stars symmetrically about

z = 0 surface centered on the z axis so that we can use octant symmetry with the

simulations. The TOV stars are boosted in same speed but in opposite direction to

collide head-on.

4.2 Type I Critical Phenomena

The type I critical phenomena have been found on the critical surface dividing the

black holes and stars with exotic EOS (see reviews [3, 4]). It is found on the surface

that the black hole formed has a finite mass. The solutions near the critical solution

takes the following form

Z(x, t) ≃ Z∗(x) +
dC0

dp
(p∗)(p− p∗)e

λ0tZ0(x) + decaying modes (4.1)

so we have the life-time of a solution that is close to the critical one given by

tp = −λ−1
0 ln|p− p∗|+ const (4.2)

4.3 Existence of the Critical Phenomena in Head-

on Collisions of NSs of non-exotic matter.

In the first set of simulations, the two NSs are initially at a fixed distance (the

maximum density points of the two NSs are separated by 3R, where R ∼ 9.1M⊙ is
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Figure 4.1: Lapse functions at the center of collision vs. time for NSs with slightly different masses,

for the case of dx=0.12.

the coordinate radius of the NSs). The initial velocities of the NSs are that of freely

falling from infinity, determined by the Newtonian formula plus the 1PN (first order

Post-Newtonian) correction [10]. For example when the baryonic mass of each of the

NS is in the range of 0.786M⊙ to 0.793M⊙, the initial speed ranges from 0.15537 to

0.15584 (in units of c = 1). The computational grid has 323×5×323 points, covering

a computational domain of (πr2×height ) = (π × 38.52 × 77.0)M⊙
3. Each NS radius

is resolved with 76 grid points, taking advantage of the octane- and axi-symmetry of

the problem.
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Fig. 4.1 shows the evolution of the lapse function α at the center of the collision

as a function of the coordinate time, for systems with slightly different masses (all

other parameters, including physical and numerical parameters, are the same). The

line labeled 1 in Fig. 4.1 (which dips to 0 near t ∼ 150M⊙) represents the case of

0.793M⊙. We see that after the collision, α promptly ”collapses” to zero, signaling

the formation of a black hole. Note that the total baryonic mass of the merged object

1.59M⊙ is less than the maximum stable mass of a TOV solution of the same EOS

in equilibrium. The prompt gravitational collapse of the merged object with such a

mass indicates that it is in a state that is very different from being stationary [21, 25].

The line labeled 41 in Fig. 4.1 (which rises at t ∼ 120M⊙) represents the case

where each of the NSs has the baryonic mass 0.786M⊙. The lapse at the collision

center dips as the two stars merge, then rebounds. The merged object does not

collapse to a black hole but instead form a stable NS in axisymmetric oscillations.

The lapse at the center of the merged object oscillates around a value of 0.71, with a

period of about 160M⊙.

For configurations with masses between the bottom line (1) and top line (41), the

lapse α would rebound, dip etc., before eventually dipping to zero (a black hole is

formed) or going back up (a NS is formed). The critical solution is found by fine

tuning ρc, the proper mass density as measured by an observer at rest with the fluid

at the center of the star at the initial time. For the numerical setup used in the

study, at around ρc = 6.128202618199×10−4 (mass of each NS = 0.79070949026M⊙),

a change of the ρc by the 10th significant digit changes the dynamics from collapse to
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Figure 4.2: Comparing the lapse functions and the 4-d scalar curvatures for the cases of lines 20

and 21 in Fig. 4.1.

no collapse. In Fig. 4.1 we see that for these near critical configurations α oscillates

at about 0.255 with a period of ∼ 40M⊙. As the lapse is given by the determinant of

the 3 metric, this represents an oscillation of the 3 geometry.

For a more invariant measure, in Fig. 4.2 we plot as dotted and long dashed lines

the 4-D scalar curvature R at the collision center for two of the near critical solutions

(lines 20 and 21 in Fig. 4.1; they are the last ones to move away from the exact

critical solution at t ∼ 300M⊙). We see that R oscillates with the same period as

the determinant of the 3 metric (the lapse). As α collapses to zero, R blows up and
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in each such case we find an apparent horizon, indicating the formation of a black

hole. Similar oscillatory behavior has been seen in other critical collapse studies

[26, 27, 3, 2]. We note that at late time R of the sub-critical case (line 21) tends to

a small negative value as a static TOV star should.

We note that while in Fig. 4.1 a change in the 10th significant digit of the total mass

of the system can change the dynamics from that of sub-critical to supercritical, this

does not imply that we have determined the critical point to the 10th digit of accuracy.

The exact value of the critical point is affected by the resolution of the numerical grid

as well as the size of the computational domain. We have performed high resolution

simulations with 76 grid points per R, (with computational domain covering 8.5R),

and large computational domain simulations covering 34R (with resolution 38 grid

point per R). Convergence tests in both directions of resolution and size of the

computational domain suggest that the total mass of the critical solution in the

head-on collision case with the EOS given is at 1.58± 0.05M⊙, with the error bound

representing the truncation errors.

In Fig. 4.1 we used dx=0.12 and a grid size 38.76. We confirm our results us-

ing different resolutions, dx=0.16 in Fig. 4.3 and 0.24 in Fig. 4.4. Domain size for

Fig. 4.1,. 4.3 and 4.4 are the same. In Fig. 4.5 we use dx=0.12 as in Figs. 4.1 but

with 4 times the domain size. We thus confirmed the convergence of our result in

terms of both resolution and boundary size.
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Figure 4.3: Lapse functions at center of collision vs. time for NSs with slightly different masses,

dx=0.16.

4.4 Critical index

4.4.1 Definition

The critical index γ is determined through the relation T = γ log(p − p∗), where T

is the length of the coordinate time (which is asymptotically Minkowski) that a near

critical solution with a parameter value p stays near the exact critical solution with

p∗. [3, 4] In Sec. 3 above, p is taken as the central density ρc of the initial NSs. In

Fig. 4.6, we plot (α − α∗)/α∗ at the center of collision against the coordinate time,
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Figure 4.4: Lapse functions at center of collision vs. time for NSs with slightly different masses,

dx=0.24.

where α∗ is the lapse of the critical solution to the best we can determine. Only

the last part of the evolution is shown. We see explicitly the growth of the unstable

mode driving the near critical solution away from the critical solution. We defined

the ”departure time” T0.05 as the coordinate time that a line in this figure reaches

±0.05 = ±5%. Likewise we define T0.1, T0.15 and T0.2. In Fig. 4.7, the departure

times T0.05 and T0.2 are plotted against the log difference of p (taken to be ρc as in

Fig. 4.1) between the near critical and the critical solutions. With this, γ 0.05 defined

as T0.05/ log(p− p∗) is found to be 10.87, whereas γ 0.10, γ 0.15 and γ 0.2 are found to be
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Figure 4.5: Lapse functions at center of collision vs. time for NSs with slightly different masses,

dx=0.12, 4 times the grid size as figs. 4.1

10.92, 10.93 and 10.92 respectively. We see that the value of the critical index does

not depend sensitively on the definition of the departure point.

4.4.2 Convergence of the index

We see a basically 1st order convergence in Fig. 4.8, as expected. This shows the

convergence of our code for the critical collapse situation. We note that near the

critical point we cannot use the usual convergence test, since a tiny variation of the

initial data may lead to a very different final state.
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Figure 4.6: (α− α∗)/α∗ vs. coordinate time.

4.5 Universality

4.5.1 Universality

The above study uses the total mass/central density of the initial NSs as the critical

parameter p. Next we fix the central density ρc of the initial NSs at 6.12820305495×

10−4M⊙
−1. The initial coordinate separation between the center of the two NSs is

fixed to be D = 27.5M⊙. The initial velocity v is taken to be the parameter p. For

each choice of v, the Hamiltonian and momentum constraint equations are solved.
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Figure 4.7: Log(ρc − ρ∗c) vs. the departure time determined with Fig. 4.6; the slope gives the

critical index.

The results is shown Fig. 4.9. Convergence with respect to spatial resolutions and

outer boundary location has been verified. We find the same critical phenomena. The

critical index is extracted in the same manner and found to be 10.78M⊙.

Other choices of parameter p have also been studied, including:(i) p = D, while

fixing ρc and v, and (ii) p = ρc while fixing v and D. Note that the latter case is

different from the case discussed in Secs. 3 and 4 above, where the initial velocity is

determined by the free fall velocity up to the first PN correction. In all cases studied,

we see the same critical phenomena with consistent values of the critical index γ.
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Figure 4.8: Left side: critical indices calculated for 3 resolutions with 4 different cutoff. Right

side: errors relative to the highest resolution.
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Figure 4.9: Lapses at the collision center for systems with the boosting velocity at the initial time.

Next we ask: Is critical collapse possible only through fine tuning the initial

data? If true, we would not expect to see critical collapse phenomena in nature. We

investigate the possibility of taking p = Γ, the adiabatic index, as slow changes of

the EOS could occur in many astrophysical situations, e.g., accreting NSs and during

cooling of proto-NSs generated in supernovae. We fix D, ρc, v and vary Γ away from

2. The evolution of the lapse at the center of collision is shown in Fig. 4.10. We

see behavior similar to that of Fig. 4.1. The critical index γ is found to be again

10.78M⊙, consistent with the values found by fine tuning the initial configurations.
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Figure 4.10: Lapses at the collision center for systems with the polytropic index Γ varying between

1.9997 and 2.0001.

4.5.2 Possibility of being observed in nature

The system we studied is one step closer to reality in the sense that the EOS used is

closer to that of a realistic astrophysics object, in two ways: (i) The stiff fluid EOS

P = Kρ used in previous studies by other research groups is special in that it is scale

invariant, a central property for many systems of type II collapses (for review see [3]).

The EOS we used P = (Γ − 1)ρǫ breaks scale invariance. (ii) Further, P = Kρ is a

one dimensional EOS, whereas P = (Γ− 1)ρǫ is two dimensional, as is generic for a
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thermodynamic system (3 dimensional if chemical/nuclear reactions are included).

However, one would still not expect the critical collapse in our study to be ob-

servable in nature. First, an exact headon collision of two NSs is not likely to occur,

although the assumption of axisymmetry is already one step more general than the

assumption of spherical symmetry used in most existing critical studies. The second

and more important reason is that one has to tune the initial parameter to high ac-

curacy in order for the collapse to show critical behavior, e.g., when p is chosen to be

the central density ρ of the NSs, we have to tune (p − p∗)/p∗ to smaller than 10−4.

This is highly unlikely to occur in nature, given that there is no known astrophysics

mechanism that would drive the density to this particular value.

What changes the situation is that we found that the same critical collapse could

be triggered by a change of the polytropic index Γ in the EOS [28]. In Fig. 4.10 we

show the same oscillations of log(g) for a range of Γ near a critical value Γ∗. The

critical index γ is found to be again γ = 10.78(±0.06)M⊙.

This implies that for merged objects which may not be massive enough to col-

lapse promptly, but will collapse after losing thermal support, we may see critical

phenomena without fine tuning of initial data: The dominant cooling process, namely

neutrino radiation, is on the timescale of seconds. The EOS will therefore be soft-

ening on this timescale, which is significantly longer than the time scale of growth

(∼ 0.05ms) of the unstable mode of the IA. In losing thermal support, the merged

object will gradually approach the threshold and evolves towards the IA, until the

unstable mode kicks in causing a collapse to occurs in ∼ 0.05ms. We note that this
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will not be possible if the growth timescale of the unstable mode is longer than the

timescale of the softening of the EOS. In that case, with the EOS quickly softening,

the merged object will pass through the threshold region, and before the unstable

mode has time to develop, the merged object will be well on the supercritical side

and collapse without showing any critical behavior.

4.6 Phase space diagraph

4.6.1 Branches of critical solutions

In all previous studies for all choices of the parameters p, including p equals to some

size parameter of the system, rest mass of the system, ADM mass of the system,

central density, field strength etc, there is a unique p∗, for which when p > p∗ a black

hole is formed, and p < p∗ gives otherwise [5, 29, 2, 3, 4]. In our case, we found

that for the phase space under investigation, for many choices of the parameter p, the

value of p∗ is not unique. Namely, when p < p∗, the evolution leads to a neutron star,

for p∗ < p < p
′

∗
, the evolution leads to a black hole. However for p > p

′

∗
, the evolution

leads to a neutron star again. We first observed this phenomena with the choice p = v,

the initial speed of collision for the two stars starting at fixed distance d with fixed

initial central density ρc (for our problem of head-on collision of two neutron star with

a given EOS, the initial data has three parameters, namely, v, d, and ρc). In Fig. 4.11

we show the evolution of the lapse function for various initial speed v. Line 1 in

this figure represents the one with the smallest v (= 0.129317340017). We gradually
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increase v to 0.129514015227 represented by line 9 in the figure in 9 steps (hence 9 lines

in the figure), the evolutions all lead to a neutron star. We see in Fig. 4.11 the lapse

increases when the instable mode of the critical solution sets in, and an oscillating

neutron star is formed (the later part of evolution not shown). However if we increase

v further to v = 0.129514015270, which is represented by line 10, a black hole is

formed. The critical value of v (p∗) is hence 0.129514015227 < p∗ < 0.129514015270.

If we further increase v, we see the unstable mode sets in at earlier time, as we move

further away from the transition surface between forming a neutron star and a black

hole. At v = 0.130837340017, represented by line 19, a black hole is formed at time

less than one oscillating of the lapse. All that are familiar.

What is interesting is that if we further increase v to 0.172427340017, represented

by line 1 of Fig. 4.12, again with the same d and ρc. We see that a black hole is

formed if we further increase it by 8 steps to v = 0.172797483917, represented by line

8 in Fig. 4.12. We see that in all 8 cases a black hole is formed, but the unstable

mode sets in at a later and later time, indicating that v is getting close to another

critical value p
′

∗
, which is in between the v of line 8 and the v = 0.172797506017 of

line 9. From line 9 to 12 (v = 0.173147340017), a neutron star is formed at earlier

and earlier time with increasing v.

4.6.2 Phase diagram of neutron star critical collapses

For the three dimensional initial phase space of neutron star collapses parameterized

by d, v and ρc (respectively, the coordinate distance between the neutron stars on
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Figure 4.11: Lapse functions at center of collision vs. time for NSs with slightly different speeds.

collision course, the initial boosted speed and the central density), we fixed d to be

13.60M⊙ to form a two dimensional phase space. Fig. 4.13 shows critical points on

this two dimensional space. The horizontal axis is v, vertical axis is the central density

ρc (all in geometric units of G=c=1 with M⊙=1 as in everywhere else in this thesis).

For an initial configuration in the lower portion of the figure below the ν-shaped line,

a neutron star would be formed.

For example, for two neutron stars with central density 6.02098591836936e-4, and

zero initial boost velocity, the evolution leads to a neutron star. When we increase
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Figure 4.12: Lapse functions at center of collision varies in reversed direction as in Fig. 4.11.

the boost velocity to around 0.0791,we see the critical phenomena, as represented by

the arrow in Fig. 4.11. The exact critical value is at v = p∗ ≃ 0.079167082107. If

we move further to the right in this figure, i.e., increase the velocity further, a black

hole is formed. This is the central region of Fig. 4.13 labeled by ”BH”. If we further

increase the velocity keeping ρc fixed, at around v ≃ 0.2541 we encounter the 2nd

branch of critical solution, which is the one shown in Fig. 4.12. Here the critical

solution is at v = ρ
′

c ≃ 0.2541728244276879. If we further increase v from this point

on, a neutron star is formed.
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Figure 4.13: Central density vs. boosting velocity of critical solutions at initial time.

From Fig. 4.13, with d fixed to be 13.60, we see that there exist a minimum value

of ρc ≃ 0.0005882895, below which no black hole can be formed. This minimum value

exists at boost velocity of v ≃ 0.1503192. There is also a maximum value of ρc for

forming neutron star. On the high velocity side, there is a global maximal value of

ρc ≃ 0.00062112, appearing at v ≃ 0.41950. On the low velocity side, there is a local

maximum at ρc ≃ 0.00061842, appearing at v ≃ 0.022115.

While one sees complicated structure of the phase diagram in v vs. ρc, one may

have concern that v and ρc are not geometrically invariant quantities. In Fig. 4.14,

we plot the ADM mass of the system as the horizontal axis and the baryonic mass as

the vertical axis. Again we see a ν−shaped line. That the shape of lines representing

the critical points are similar in Fig. 4.13 and Fig. 4.14 highlights the fact that ρc is
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Figure 4.14: Total rest mass vs. total Adm mass of critical solutions at initial time.

closely related to the rest mass of the system, while the ADM mass which includes

the kinetic energy of the system is significantly affected by the boost velocity. We see

the same phenomena of different branches of critical solutions in Fig. 4.14, and the

same complicated phase diagram.

This leads to a very intriguing question: Fig. 4.14 is in terms of the physical param-

eters of the system at the initial time. They are not directly related to the properties

of the critical solution in the sense that the collision process emits gravitational wave,

and hence the ADM mass of the initial configuration may not be directly related to

the ADM mass of the critical solution itself as an isolated stationary compact object.

It is obvious that the critical solution as a self-gravitating isolated compact object

can be fully characterized by two parameters (two hairs in the sense of ”hairs” of
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black holes). The third piece of information in the 3 dimensional initial phase space

(d, v, ρc) must be ”radiated” away. We can take the two parameters charactering the

critical solution as an isolated compact object as the rest mass and the ADM mass of

the solution. In view of Fig. 4.14, one may suspect that the rest mass and the ADM

mass of the critical solution have an interesting relation.

However it is computationally difficult to extract the masses of the critical solution

form the numerical evolution. In principle, one can carry the numerical evolution to

a late time, using an outer boundary condition at the boundary of the computational

domain that let gravitational wave as well as any matter ejection to pass through. One

can then read out the rest mass and the ADM mass of the system consisting only of

the isolated self-gravitating object. However, an out-going wave boundary condition

has not been satisfactorily formulated for the Einstein theory despite many years of

effort by our group and other research groups in the world. Beside the difficulties in

formulating the out-going wave boundary condition, other difficulties in getting the

masses of the critical solution include the need for long time evolution (which puts

requirements on the resolution used that greatly increases the computational resource

needed), and the use of a thinner artificial ”atmosphere” in the numerical evolution

[9] (which in turn increases the requirement on the stability of the primitive variable

solver [30, 15]).

In Fig. 4.15 we show preliminary results of the relation between the rest mass

and the ADM mass of the critical solution. These are the masses extracted at the

3rd extremum of the oscillation (e.g. around t ∼ 158 in Fig. 4.11). The horizontal

81



Chapter 4 The critical gravitational collapse of a non-rotating neutron star system

Mrest

Madm

 1.63

 1.64

 1.65

 1.66

 1.67

 1.68

 1.69

 1.70

  1.600   1.620   1.640   1.660   1.680   1.700   1.720   1.740

Figure 4.15: Total rest mass vs. total Adm mass of critical solutions at the 3rd extremum.

axis is the ADM mass, while the vertical axis is the rest mass. The simulations have

been carried out at a resolution of dx=0.12, at 88 grid points per radius of the initial

neutron star. Indeed we see an non-trivial relation between the rest mass and the

ADM mass of the system, with many turning points. If these turning points are real,

they may have relation to the number of unstable modes of the solutions. However

further work would have to carried out to refine and confirm the result.

In Fig. 4.16, we plot the critical index of the critical solution (the vertical axis)

vs. the rest mass (the horizontal axis) of the system. The critical index is a direct

indication of the timescale of the unstable mode of the system (c.f. Sec. 4.4.1). Again

we see different branches of critical solutions. Starting with the minimum rest mass of

1.625 that a critical solution can be formed, the critical index γ is 10.35. As the rest

82



Chapter 4 The critical gravitational collapse of a non-rotating neutron star system

index

γ

Mrest

 8.00

 8.50

 9.00

 9.50

10.00

10.50

11.00

11.50

  1.630   1.640   1.650   1.660   1.670   1.680   1.690

Figure 4.16: The variation of critical index respect to the total rest mass of the system.

mass increases, one branch has γ decreasing while another branch has γ increasing.

However at large rest mass of around 1.682, the upper branch has another turning

point connecting to a third branch. Again further investigation must be done to

confirm this behavior.

In conclusion, the critical phenomena of gravitational collapse of compact object

is rich and interesting.
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Conclusion and discussions

We showed that critical gravitational collapse can occur with an equation of state(EOS)

commonly used in describing neutron star matter, and with a non-spherical initial

configuration. We further showed that critical collapses can occur due to an adia-

batic change of the EOS. This coupling with the fact that the dynamical time scale

of evolution towards to intermediate attractor (IA) (of order milliseconds) when the

star is near the critical surface, and the dynamical time scale of the unstable mode of

the IA (also of order milliseconds), are both much shorter than the dissipation time

scale of the system (of order seconds) suggests that we might be able to observe the

critical collapse phenomena in newly formed neutron matter compact objects, like

proto-neutron stars formed in supernova and hyper massive neutron stars in neutron

star binary coalescences.

However, the thesis has not answered the questions of whether ”critical collapses

can be observed in nature” in full. To answer this question, further research in the
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following two directions must be carried out: (1) How ”wide” is the ”window of critical

collapse” in binary neutron star coalescence (or supernova)? And (2), what are the

characteristics of gravitational wave signals and neutrino radiation signals that we

can observe from a critical collapse?

We have obtained various preliminary results for both of these questions, which

are not included in Chapter 4 of this thesis. These include: (1) Critical collapses with

angular momentum. We constructed head-on collisions of the neutron star with spins.

The merged object has non-trivial angular momentum. We observed again critical

phenomena. While the IA for the case without angular momentum is a limit cycle,

when angular momentum is added, instead of a limit cycle, the trajectory of a near

critical solution would spiral into a fixed point, with an increasing ”rate” of inspiral

for larger angular momentum. This is the first step towards the study of critical

phenomena in a binary coalescence which always comes with angular momentum.

(2) Through comparing the critical solutions with angular momenta obtained in the

axisymmetric study with the full 3D simulations of binary coalescence of neutron

stars with the same EOS carried out by other members of our research group, we

obtained evidence that critical collapses can occur in the full 3D situation without

axisymmetry. We see critical collapses at the boundary line between the prompt

and delayed collapses (Zhang et al [9]). (3) On the question of observable signals

from critical collapses, we obtained preliminary results indicating that in the case of

zero angular momentum the unstable mode of the critical solution is spherical. A

collapse through a spherical mode emits no gravitational wave. This means that a
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non-spherical object near the critical surface will radiate all its asymmetry away while

evolving towards the critical solution. And the final collapse of the compact object

would be ”silent” in term of gravitational radiation. We can observe only neutrino

signals of the final collapse without an accompanying gravitational wave signal. If

confirmed, this would suggest that there would be a class of gravitational collapses

which are gravitationally ”silent”. Would the unstable mode of a critical solution

with a significant angular momentum also be spherical? This is the next question we

plan on investigating.

We have not fully confirmed and included these results in Chapter 4 of the thesis.

We note that each simulation described in this thesis involves solving the Einstein

equation coupled with the general relativistic hydrodynamic equations with thousand

of terms, involving hundreds of variables and they must be updated on millions of grid

points for tens of thousands of time steps. Each simulation requires hundreds of hours

even on the massively parallel supercomputers of the national supercomputing centers.

To confirm one critical solution with, say, a given rest mass and a gravitational mass,

and find its critical index, tens if not hundreds of simulations must be carried out.

The construction of the numerical code, its validation with many convergence tests

(Chapter 3 gives just the most significant ones), together with the results presented

in Chapter 4, have taken many years of intense research effort.

Since the publication of our paper [28], other researchers have followed up in this

direction [31, 32].
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