
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

1-1-2011 

Discovering Conserved cis-Regulatory Elements That Regulate Discovering Conserved cis-Regulatory Elements That Regulate 

Expression in Caenorhabditis elegans Expression in Caenorhabditis elegans 

Nnamdi Ihuegbu 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
Ihuegbu, Nnamdi, "Discovering Conserved cis-Regulatory Elements That Regulate Expression in 
Caenorhabditis elegans" (2011). All Theses and Dissertations (ETDs). 591. 
https://openscholarship.wustl.edu/etd/591 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/591?utm_source=openscholarship.wustl.edu%2Fetd%2F591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 
 

WASHINGTON UNIVERSITY IN ST. LOUIS 

 

Division of Biology and Biomedical Sciences 

Computational and Systems Biology 

 

Dissertation Examination Committee: 

Tim Schedl, Chair 

Jeremy Buhler 

Joseph Corbo 

Stephen Kornfeld 

Gary Stormo 

Ting Wang 

 

 

DISCOVERING CONSERVED cis-REGULATORY ELEMENTS 

THAT REGULATE EXPRESSION IN Caenorhabditis elegans 

by 

 

Nnamdi Ihuegbu 
 

 

 

A dissertation presented to the 

Graduate School of Arts and Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

December 2011 

Saint Louis, Missouri



ii 
 

ABSTRACT OF THE DISSERTATION 

Discovering conserved cis-Regulatory elements that regulate 

expression in Caenorhabditis elegans 

By 

Nnamdi Ihuegbu 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2011 

Professor Tim Schedl, Chairperson 

 

The aim of this dissertation is two-fold: (1) To catalog all cis-regulatory elements within 

the intergenic and intronic regions surrounding every gene in C.elegans (i.e. the 

regulome) and (2) to determine which cis-regulatory elements are associated with 

expression under specific conditions. We initially use PhyloNet to predict conserved 

motifs with instances in about half of the protein-coding genes. This initial first step was 

valuable as it recovered some known elements and cis-regulatory modules. Yet the 

results had a lot of redundant motifs and sites, and the approach was not efficiently 

scalable to the entire regulome of C. elegans or other higher-order eukaryotes. Magma 

(Multiple Aligner of Genomic Multiple Alignments) overcomes these shortcomings by 

using efficient clustering and memory management algorithms. Additionally, it 

implements a fast greedy set-cover solution to significantly reduce redundant motifs. 
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These differences make Magma ~70 times faster than PhyloNet and Magma-based 

predictions occur near ~99% of all C. elegans protein-coding genes. Furthermore, we 

show tractable scaling for higher-order eukaryotes with larger regulomes. Finally, we 

demonstrate that a Magma-predicted motif, which represents the binding specificity for 

HLH-30, plays a critical role in the host-defense to pathogenic infections. This novel 

finding shows that hlh-30(-) animals are more susceptible to S. aureus and P. aeruginosa 

than their wild type counterparts. 
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Chapter 1: Introduction 

 

C. elegans as a model for studying transcription regulation 

C. elegans is a ~1mm transparent nematode which inhabits warm soil environments. An 

adult hermaphrodite has 959 somatic cells and an adult male has 1031 different cells. 

There are several attributes of C. elegans that make it an amenable system to studying 

transcription regulation: (1) It’s non-variant cell lineage, which has been completely 

determined, has been very instrumental to developmental studies including: cell fates and 

differentiation stages (Sulston and Horvitz 1977; Kimble and Hirsh 1979; Sulston, 

Schierenberg et al. 1983; Kipreos 2005), the maternal to zygotic switch (Maduro, 

Broitman-Maduro et al. 2007), and silencing . (2) The multicellular organism is 

transparent and has several differentiated tissues (such as the pharynx, intestine, vulva, 

and pan-neurons) whose cells can be easily interrogated with fluorescence and other 

imaging modalities (Liu, Long et al. 2009). (3) These differentiated tissues 

(organogenesis) are similar to the development of organs in other complex organisms 

(Maduro 2006; Mango 2007; Mango 2009; Hobert 2010). Other conserved features of 

nematode biology that are used as models for other complex organisms include: 

components of the transcription machinery and mediator complexes (Casamassimi and 

Napoli 2007), aging (Antebi 2007; Baugh, Demodena et al. 2009), response to dietary 

restrictions (Baugh, Demodena et al. 2009), and reaction to pathogens (Irazoqui, Urbach 

et al. 2010). (4) The C. elegans genome has undergone little revision since first published. 

Current evidence suggests that the majority of transcriptional regulatory sequences are 

located in a relatively compact portion of the genome within about 2kb upstream of each 
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gene (Dupuy, Li et al. 2004; Zhao, Schriefer et al. 2007; Sleumer, Bilenky et al. 2009). 

This reduced search space makes it possible to attempt to catalog all cis-regulatory 

elements in this organism and study their effects on transcription. (5) Finally, C. elegans 

has been extensively probed for the phenotypes of its ~20,000 genes. Studies have tested 

genetic interactions between genes (Lehner, Crombie et al. 2006) and have used RNAi to 

study the effects of knocking down about 85% of genes (Kamath and Ahringer 2003; 

Lehner, Tischler et al. 2006). 

Current challenges in discovering cis-regulatory elements  

A long-standing problem in molecular genetics and genomics is the identification of all 

the trans-acting factors (transcription factors, RNA-binding proteins, miRNAs, etc) that 

regulate expression via their cis-sites in specific conditions and tissues. These factors and 

sites are components of gene-regulatory networks (GRNs). Previous work has elucidated 

aspects of these GRNs and explained biological mechanisms behind responses to specific 

conditions (Arnone and Davidson 1997; Bolouri and Davidson 2002; Maduro and 

Rothman 2002; Wenick and Hobert 2004; Hobert 2008; Gertz, Siggia et al. 2009). A 

bottleneck in deriving these GRNs in C. elegans is the genome-wide identification of cis-

binding sites and the in-vivo specificity of trans-factors. There are an estimated 900 C. 

elegans Transcription Factors (TFs) and more RNA-binding proteins. To directly probe 

cis-bound regions (and indirectly infer TF specificities), some have employed chromatin 

immunoprecipitation (ChIP) techniques to catalog transcription factor binding sites 

(TFBS). ChIP is a laborious approach that is severely hampered by the following issues: 

(1) the need to develop antibody tags for each factor; (2) the lack of adequate resolution 

of binding sites due to sonication protocols; and (3) may not capture binding sites for 
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RNA-trans elements like RNA-binding proteins and miRNAs. As a result, there has been 

slow progress in cataloging these sites using this method. The most comprehensive 

collection of C. elegans ChIP-bound regions comes from the modENCODE project 

which only has regions for 23 TFs (Gerstein, Lu et al. 2010). 

Chromatin Immuno-Precipitation 

Chromatin Imunno-Precipitation (ChIP) is a tool in molecular biology for probing the 

DNA-bound regions for specific factors. This is accomplished by first crosslinking 

factors in a cell to their bound regions using formaldehyde (or another agent). The cells 

are then lysed to expose the genetic material and sonicated to break-up the bound 

complexes to 300-1000bp fragments. The bound proteins are digested using proteases 

and the extracted DNA is purified, amplified and   measured either by PCR methods, 

hybridized cDNA chips (ChIP-CHIP) or next-generation sequencing (ChIP-Seq). These 

steps are illustrated in the Figure 1. 
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Figure 1: Chromatin Immunoprecipitation procedure 

An illustration of the major steps involved in chromatin immunoprecipitation. This figure 

was taken from  Farnham (2009). 

 

Motif-Finding 

Another approach to discovering TFBS is to computationally search for frequently 

occurring similar sites within non-coding, regulatory regions of the genome (possibly 

conserved). These similar sites are then clustered into specificity models called motifs. 

This process is often referred to as motif-finding. These motifs represent putative binding 

specificities for corresponding TFs and other trans-factors.  
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Algorithms to recognize motifs in genomic DNA take one of two basic approaches. The 

multiple gene, single species approach recognizes motifs because they recur with few 

changes in the promoters of multiple genes within a single genome. These genes are 

usually the results of ChIP experiments. Therefore, they are known, or thought, to be co-

regulated and expected to share a common motif. In contrast, the single gene, multiple 

species -- or phylogenetic footprinting – approach recognizes motifs in a single promoter 

region by their conservation across species, which is assumed to be greater than that of 

the surrounding background sequence (Gelfand 1999; McGuire, Hughes et al. 2000; 

McCue, Thompson et al. 2001; Panina, Mironov et al. 2001; Rajewsky, Socci et al. 2002; 

Frazer, Elnitski et al. 2003; Panina, Vitreschak et al. 2003; Marchal, De Keersmaecker et 

al. 2004). These methods work because binding sites are typically under selective 

pressure and therefore mutate more slowly than the surrounding sequence. Wang and 

Stormo (2003) combined these two approaches in their PhyloCon program, which runs 

not on individual DNA sequences but rather on alignments of orthologous promoter 

regions. In this paradigm, a motif is required both to recur across different promoters and 

to be conserved across species in each of its occurrences. Other tools that take a 

conceptually similar approach include (Qin, McCue et al. 2003; Jensen, Shen et al. 2005; 

Monsieurs, Thijs et al. 2006), all of which report results on bacterial promoters. 

Resulting motifs can be represented as either: consensus sequence, count or frequency 

matrices, and logos. The following figure is an example these various representations for 

a set of similar sites (see figure 2).  
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Figure 2: Representations of cis-regulatory elements 

 

These motif models describe the binding specificity of a putative TF. Pioneering work by 

Berg and von Hippel (1987) introduced a statistical-mechanical framework for deriving 

this TF specificity/affinity. Their major assumptions, as is still adopted, were: (1) similar 

sites are bound by a TF with similar affinities and (2) contacting DNA-binding residues 

independently bind to nearby nucleotides. The first assumption, which is based on a 

natural selection argument, has been further observed in crystal structures of similar 

DNA sites bound to protein families with similar structures (Sandelin and Wasserman 

2004). The second argument has also been shown to be generally acceptable. Most 

recently, Zhao and Stormo (2011) demonstrate that most protein specificity, ascertained 

by protein-bound microarrays (PBMs), can be adequately modeled with the independent 

nucleotide assumption, and find only a few exceptions where the pairwise interaction 

terms offer significant improvements. 

ATGATAAGAT 
TAGATAAGAA 
ATGATAAGAT 
AAGATAAGTT 
AAGATAAGTT 
AAGATAAGTA 
TAGATAAGAA 
TAGATAAGAA 
ATGATAAGAT 
AAGATAAGTT 
ATGATAAGAT 
AAGATAAGTT 
AAGATAAGTA 
TAGATAAGAA 

WWGATAAGWW 

SITES CONSENSUS POSITION SPECIFIC MATRIX LOGO 
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Position Specific Scoring Matrices (PSSMs) are based on counts matrices. They consider 

both the observed and the expected background frequency of nucleotides in the genome 

by taking the logarithm of the ratios. The resulting ‘binding energy’ approximates the 

free energy required for a putative TF to bind to a DNA site (Stormo and Fields 1998). 

When summed over the genome, the resulting metric is proportional to the genome-wide 

occupancy of the TF (Granek and Clarke 2005; Bussemaker, Foat et al. 2007):  

   (     )  ∑       

     

 

   is a specific promoter,    is a specific PSSM and    are all of the positions within the 

promoter. The score for any site with a given PSSM is       and is related to the 

logarithm of the probability of the site being bound by the TF whose specificity is 

represented by the PSSM. 

Although they are less expensive than the ChIP techniques, computational results tend to 

be plagued by the following issues: (1) inability to identify the TF/factor that may bind 

via the discovered motifs; (2) Ineffective clustering of similar sites into motifs leading to 

reduced sensitivity, redundant motifs and unrealistic runtimes for organisms with larger 

regulomes (all non-coding sequences surrounding genes that harbor regulatory elements); 

(3) statistically significant sites may not be biologically functional because their 

similarity may just be artifacts of a relatively short evolutionary process. Additionally, 

they may be biologically insignificant because these computational approaches do not 

take into account the free concentration of TFs/factors in the cell. Since the concentration 
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of TFs is much less than the DNA sites in the cell, a 'perfect' TFBS may have the 

potential to be bound by a factor but may not be bound at a specific time or condition.  

Most combined (multi-species, multi-gene) motif-finding approaches are generally 

characterized by three major steps: (1) Phylogenetic-footprinting to discover 

evolutionarily-conserved profiles; (2) Profile clustering to aggregate similarly conserved 

footprints observed at several locations in the genome, and (3) post-processing to remove 

redundant or unrealistic discovered elements. Due to the time and memory cost of the 

second and third stages most computational solutions for multicellular eukaryotic 

genomes have avoided whole-regulome searches (i.e. promoter, introns, and downstream 

regions of every gene) and only concentrate on specific regions near selected genes. In 

this thesis I present a new computational approach (Magma) that provides an adequate 

solution to these issues that plague motif-finding approaches and show tractable scaling 

times for higher-order organisms (Ihuegbu, Stormo et al. 2011). 

Cis-Regulatory Modules 

Gene expression is a non-linear function of multiple nearby cis-regulatory sites and the 

collection of trans-TFs bound to them. Arnone and Davidson (1997) showed that 

understanding gene expression requires not only the collection of individual TFBS, but 

clusters of these sites where multiple TFs may act to coordinately endow a specific 

regulatory mode (Moilanen, Fukushige et al. 1999; Gaudet and Mango 2002; Kirouac and 

Sternberg 2003; Natarajan, Jackson et al. 2004). These clustered sites, also called cis-

regulatory modules, are comprised of TFBS that are nearby, perhaps tens of bases apart. 

The few known C. elegans modules collected in the Oreganno database of regulatory 
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elements average about 200 bases and are usually within 2kb upstream of the start site 

(Montgomery, Griffith et al. 2006; Griffith, Montgomery et al. 2008). In this thesis, I 

expand this collection of modules by predicting other modules in the promoter, intronic, 

and downstream regions near genes. 

Determining differentially expressed genes 

There are several different molecular biology techniques to ascertain the steady-state 

relative abundances of RNA molecules available at a snapshot within a single cell or 

tissue. The more popular techniques include: expression cDNA chips, RNA-Seq, and 

Promoter∷GFP fusions. The earlier of these is cDNA expression microarrays in which 

microarray chips are pre-fabricated with spots of complimentary DNA matching regular 

intervals or particular regions of an organism’s transcriptome (all genes, pseudo-genes, 

etc. that are transcribed in an organism’s genome). As shown in Figure 3, these probes 

are hybridized with the extracted, labeled RNA sample from a cell in aqueous phase via 

hydrogen bonds between complimentary nucleic bases. After hybridization, unbound 

molecules are washed off the chip slide and the fluorescently labeled pairs are imaged 

with a scanner. The bound spots are illuminated and their relative abundance is estimated 

from the intensity of the fluorescence. More high density olignonucleotide libraries have 

since been fabricated on chips that provide even greater coverage of the transcriptome. 

Figure 3: Expression Microarray 

An illustration of a labelled RNA molecule extracted from cells of interest hybridizing to 

fixed complementary probes on a surface. This image and following legend were taken 

from Schulze and Downward (2001). 
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cDNA microarrays. Array preparation: inserts from cDNA collections or libraries (such 

as IMAGE libraries) are amplified using either vector-specific or gene-specific primers. 

PCR products are printed at specified sites on glass slides using high-precision arraying 

robots. Through the use of chemical linkers, selective covalent attachment of the coding 

strand to the glass surface can be achieved. Target preparation: RNA from two different 

tissues or cell populations is used to synthesize single-stranded cDNA in the presence of 

nucleotides labelled with two different fluorescent dyes (for example, Cy3 and Cy5). 

Both samples are mixed in a small volume of hybridization buffer and hybridized to the 

array surface, usually by stationary hybridization under a cover-slip, resulting in 

competitive binding of differentially labelled cDNAs to the corresponding array 

elements. High-resolution confocal fluorescence scanning of the array with two different 

wavelengths corresponding to the dyes used provides relative signal intensities and ratios 

of mRNA abundance for the genes represented on the array. b, High-density 

oligonucleotide microarrays. Array preparation: sequences of 16–20 short 

oligonucleotides (typically 25mers) are chosen from the mRNA reference sequence of 

each gene, often representing the most unique part of the transcript in the 5'-untranslated 

region. Light-directed, in situ oligonucleotide synthesis is used to generate high-density 

probe arrays containing over 300,000 individual elements. Target preparation: polyA
+
 

RNA from different tissues or cell populations is used to generate double-stranded cDNA 

carrying a transcriptional start site for T7 DNA polymerase. During in vitro transcription, 

biotin-labelled nucleotides are incorporated into the synthesized cRNA molecules. Each 

target sample is hybridized to a separate probe array and target binding is detected by 

staining with a fluorescent dye coupled to streptavidin. Signal intensities of probe array 

element sets on different arrays are used to calculate relative mRNA abundance for the 

genes represented on the array. 
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A recent, more throughput method is RNA-Sequencing coupled with Next-Generation 

Sequencing. In this approach, RNA molecules are extracted and prepared with adapters 

and primers for sequencing. Next-Generation Sequencing platforms, such as Solexa, are 

capable of quickly generating millions of reads tracing RNA molecules using a library of 

cDNA molecules. After extension and sequencing, reads are aligned to a reference 

genome and clustered.. The normalized number of reads aligned to each gene model is 

proportional to the abundance of the transcript. This process is demonstrated in Figure 4 

which is adapted from Figure 1a by Mortazavi, Williams et al. (2008).  
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Figure 4: RNA-Sequencing  

A description of the major steps involved in RNA-Sequencing. This image was adapted 

from Mortazavi, Williams et al. (2008). 

 

Reporter promoter∷GFP fusions offer the lowest throughput of these methods, but they 

also offer the greatest gene-specificity as they allow for observation of gene activation in 

its in vivo temporal and spatial contexts. In this method, promoters of interest (or the 

entire gene body as seen in Figure 5) are fused to a green fluorescent protein gene (GFP) 

and transformed or transfected into the organism of interest. These reporter genes are 

used to monitor the activation of specific genes at a time during development or in 

response to stimuli. Additionally they can then be used to filter genes during development 

as done in FACs sorting and other screening assays (Boulin, Etchberger et al. 2006; Koo, 

Kim et al. 2007). 
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Figure 5: Reporter:GFP constructs 

A brief description of the general steps involved in designing a C-terminal reporter:GFP 

fusion, taken from (Boulin, Etchberger et al. 2006)Primers A and B amplify the genomic 

region (amplicon #1). Primer B adds a 24 bp overlap in frame to the GFP coding region. 

Primers C and D amplify the reporter gene (e.g., GFP) and 3' UTR (amplicon #2). 

Primers A* and D* are used to fuse amplicon #1 and amplicon #2 (gray box indicates 24 

bp sequence overlap). The resulting fusion product (amplicon #3) can be directly injected 

into C. elegans without purification. 

 

Associating putative cis-regulatory elements to expression 

Ongoing challenges in finding cis-regulatory elements on a genome-wide scale for 

higher- eukaryotes has also made it difficult to associate cis-elements to differential 

expression on a genome-wide scale. Earliest methods to associate cis-regulatory elements 

to expression, involved searching for the presence of similar sites near gene modules -- 

clusters of similarly expressed genes (Eisen, Spellman et al. 1998). This spurred the use 

of Gibbs sampling techniques to find over-represented or enriched motifs in the 



14 
 

promoters, inferring causation between the presence of these sites and the expression 

level (Spellman, Sherlock et al. 1998; Tavazoie, Hughes et al. 1999). Beginning with 

Segal, Dahlquist et al. (2003) and Beer and Tavazoie (2004), mRNA expression levels 

were predicted as simply the average from all genes in a set after clustering based on 

presence of similar combinations of motifs. 

More recent quantitative approaches begin by using a PSSM to define a metric that is 

proportional to the occupancy of the TF. Bussemaker, Li et al. (2001) introduced 

sequence-based linear regression techniques to model the gene expression levels based on 

the occupancy of independent multivariate regulatory motifs. In their method they used a 

forward variable selection to include orthogonal motifs discovered in the promoter 

sequences that explained the most variation in the observed expression levels. Since then 

others have adopted similar regression techniques (Foat, Houshmandi et al. 2005; Foat, 

Morozov et al. 2006). Keles, van der Laan et al. (2002) extended this approach by 

introducing terms to capture the location bias of regulatory motifs in the promoter and 

selecting significant variables using feature selection. Others have also used expectation 

maximization methods to infer TF promoter-specific affinities and regulatory effects 

(Nachman, Regev et al. 2004; Tanay and Shamir 2004). These quantitative techniques 

offer more statistical rigor than other qualitative (enrichment) methods but they require 

more parameters and make more predictions than are actually tested (such as the relative 

weight of motifs in predicting gene expression).  
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Overview of this thesis 

In this work, I describe initial efforts to comprehensively discover cis-regulatory 

elements in promoters of C. elegans genes using PhyloNet (Zhao, Ihuegbu et al. 2011). I 

then furthered this to enable efficient scaling for the rest of the regulome and for higher-

order organisms (with larger non-coding regions). The resulting software tool, Magma 

(Multiple Aligner of Genomic Multiple Alignments), is an efficient method for 

discovering conserved elements that recur several times in a eukaryotic genome 

(Ihuegbu, Stormo et al. 2011). Although it is motivated by PhyloNet, it differs in 

important ways that make it much faster and somewhat more sensitive. Consequently, for 

the first time, intergenic, UTR, and intronic elements are discovered in the C. elegans 

regulome. Magma efficiently clusters millions of sites into motifs and is fairly sensitive 

in recovering known regulatory elements and modules as well as their associations to 

expression. Furthermore, in collaboration with Javier Irazoqui and Orane Visvikis, I 

describe a novel discovery in which sites that comprise a Magma-discovered motif, 

which represents a binding preference for HLH-30, are bound by HLH-30 in response to 

S. aureus infection. When this TF is knocked out, C. elegans animals have a significantly 

increased susceptibility to the pathogen. 

This simple approach to finding and relating cis-regulatory elements to expression (via 

enrichments) excludes several important determinants such as: (1) Chromatin/histone 

structure, (2) Copy number variation, and (3) binding-site turnover. Nevertheless, many 

of our findings correspond to known trans-factors that have been previously implicated 

with specific conditions/tissues. Furthermore, I predict several novel mechanisms of 
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regulation implicating known factors with new conditions and/or new regions of 

regulation.  
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Chapter 2: Conserved Motifs and Prediction of 

Regulatory Modules in Caenorhabditis elegans
1
 

  

                                                           
 
1
 This chapter was adopted from: Zhao, G., Ihuegbu, N., Lee, M., Schriefer, L., Wang, T., 

and Stormo, G.D. (2011). Conserved Motifs and Prediction of Regulatory Modules in 

Caenorhabditis elegans. Submitted to G3: Genes, Genomes, Genetics. I designed the 

analysis pipeline to evaluate the correspondence between the PhyloNet-predicted motifs 

and different types of expression data and wrote up these results and discussions. 

Additionally I helped design the website that hosts and visualizes the predicted regulatory 

elements in context of other biological annotations. 
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Abstract 

 

Transcriptional regulation, a primary mechanism for controlling the development of 

multicellular organisms, is carried out by transcription factors (TFs) that recognize and 

bind to their cognate binding sites. Our understanding of transcriptional regulation in C. 

elegans, which TFs bind to which sites and regulate which genes, is still very limited. To 

expand our knowledge about the C. elegans regulatory network, we performed a 

comprehensive analysis of the C. elegans, C. briggsae and C. remanei genomes to 

identify regulatory elements that are conserved in all genomes. Our analysis identified 

4959 elements that are significantly conserved across the genomes and that each occur 

multiple times within each genome, both hallmarks of functional sites. Our motifs show 

significant matches to core promoter elements, known TF binding sites, splice sites and 

poly-A signals as well as many putative regulatory sites. Many of the motifs are 

significantly correlated with various types of experimental data including gene expression 

patterns, tissue specific expression patterns and binding site location analysis as well as 

enrichment in specific functional classes of genes. Many can also be significantly 

associated with specific TFs. Combinations of motif occurrences allow us to predict the 

location of cis-regulatory modules and we show that many of them significantly overlap 

experimentally determined enhancers. We provide access to the predicted binding sites, 

their associated motifs and the predicted cis-regulatory modules across the whole genome 

through a web-accessible database and as tracks for genome browsers. 
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Introduction 

 

The development of an organism is largely controlled by transcriptional regulation 

which determines where and when every gene is expressed. A first step toward the 

understanding of how genomic DNA controls the development of an organism is to 

understand the mechanisms that control differential gene expression. Transcriptional 

regulation is carried out by transcription factors (TFs) via their binding to specific DNA 

sequences. Binding sites of TFs can be represented as consensus sequences but position 

weight matrices (PWM) provide a more quantitative description of the specificity of a TF 

(Stormo 2000). Currently our knowledge of the TFs and their binding sites is very 

limited. For example, the human genome has greater than 2000 predicted TFs (Lander, 

Linton et al. 2001) but only a few hundred have quantitative models of their specificity, 

primarily based on computational tools that have been developed to facilitate the 

identification of PWMs for TFs (reviewed in GuhaThakurta 2006). Furthermore, 

although computational methods can successful identify binding sites that are bound by a 

particular TF in vitro, most of the predicted binding sites are not functional in vivo 

(Whittle, Lazakovitch et al. 2009; Li, Thomas et al. 2011). Previous studies have shown 

that TF binding sites tend to cluster together to direct tissue/temporal-specific gene 

expression (Kirchhamer, Yuh et al. 1996; Arnone and Davidson 1997). These clusters of 

binding sites that regulate expression are referred to as cis-regulatory modules (CRMs). 

Clustering of TF binding sites, along with phylogenetic conservation and other measures 

of “regulatory potential”, have been widely used in computational prediction of CRMs 

and is a more reliable indicator of in vivo regulatory function of DNA sequences (Kolbe, 

Taylor et al. 2004; Wasserman and Sandelin 2004; King, Taylor et al. 2005; Blanchette, 
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Bataille et al. 2006; Sinha, Liang et al. 2006; Taylor, Tyekucheva et al. 2006; Ferretti, 

Poitras et al. 2007) .  

C. elegans has been an important model organism for studying development and was 

the first metazoan with a completely sequenced genome (Consortium. 1998). While a few 

promoters have been studied in detail (Krause, Harrison et al. 1994; Gaudet and Mango 

2002; Ao, Gaudet et al. 2004; McGhee, Sleumer et al. 2007; McGhee, Fukushige et al. 

2009), most transcriptional regulatory interactions remain unknown. Recently projects 

have been undertaken to gain a more comprehensive view of which TFs regulate which 

promoters using experimental approaches to identify their interactions directly 

(Deplancke, Mukhopadhyay et al. 2006; Celniker, Dillon et al. 2009; Gerstein, Lu et al. 

2011) but those are still in early phases. A complementary approach is to identify non-

coding segments of the genome that are conserved across species and are likely to contain 

regulatory elements (reviewed in Wasserman and Sandelin 2004). There are several 

previous works on regulatory motif prediction in C. elegans (GuhaThakurta, Palomar et 

al. 2002; Ao, Gaudet et al. 2004; Gaudet, Muttumu et al. 2004; GuhaThakurta, Schriefer 

et al. 2004). However, those focus on sets of genes that are expressed under specific 

conditions or in specific tissues. A recent report compared eight nematode species and 

identified regions conserved in C. elegans and at least three other species for over 3800 

genes which are catalogued in their cisRED database (Sleumer, Bilenky et al. 2009). In 

this paper we performed a genome-wide cis-regulatory element identification using 

PHYLONET (Wang and Stormo 2005), which systematically identifies phylogenetically 

conserved motifs that also occur multiple times throughout the genome and are likely to 

define a network of regulatory sites for a given organism. The first step of this approach 
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is similar to that used for cisRED, identifying segments conserved across multiple 

species, but then it further compares all such conserved regions to each other to identify 

those associated with multiple genes. Applying PHYLONET on 2kb intergenic regions 

from the genomes of C. elegans, C. briggsae and C. remanei leads to the identification of 

cis-regulatory elements from various functional categories. We identified core promoter 

elements, TF binding sites, splicing sites, poly-A signals as well as binding sites of non-

TF proteins. In addition, for each regulatory element, PHYLONET identified a set of 

genes which are potentially regulated by the motif. Gene functional enrichment and 

expression coherence analysis under several conditions provide strong support that most 

of the motifs are functional elements that are responsible for the regulation of the target 

genes. The instances of these predicted cis-regulatory elements along the promoter 

sequences are highly clustered. Based on this observation we developed a program, 

CERMOD, to predict new CRMs. Comparison between the predicted modules with 

experimentally characterized modules shows high sensitivity with 83.2% (124/149) of 

experimentally characterized modules. For genes with experimentally determined CRMs 

47.9% (135/282) of our predicted modules are located within experimentally defined 

regions. This is a lower bound of predictive accuracy because many of our predicted 

modules could be real but are located within promoter regions that haven’t been tested. 
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Material and Methods 

 

Genome Sequences 

 

The chromosomal sequence and the gene structures of C. elegans (Consortium. 

1998) (WS170) and C. briggsae (Stein et al. 2003) genome are downloaded from the 

Wormbase ftp-site (ftp://ftp.wormbase.org/pub/wormbase/genomes/). These were then 

used to obtain -2000 to -1 upstream region sequences. C. remanei sequence and 

annotation were produced by the Genome Sequencing Center at Washington University 

School of Medicine in St. Louis and were obtained from 

http://genome.wustl.edu/pub/organism/Invertebrates/Caenorhabditis_remanei/. 

Identification of orthologs of C. elegans genes 

 

C. briggsae orthologs of C. elegans genes were obtained from WormBase 

ftp://ftp.wormbase.org/pub/wormbase/datasets/stein_2003/orthologs_and_orphans/orthol

ogs.txt.gz. To identify C. elegans orthologous genes in the C. remanei genome, we used 

the NCBI BLAST program (version 2.0) (Altschul et al. 1990) to compare all annotated 

protein coding gene sequences in the C. remanei genome with that in the C. elegans 

genome. Two genes are defined to be orthologous if all of the following three conditions 

are met: (i) their protein sequences are reciprocal best BLASTP hits between two 

genomes, (ii) the BLASTP E-value is lower than 1E-10, and (iii) the BLAST alignment 

covers ≥ 60% of the length of at least one sequence.  The promoter sequences (defined as 

-1 to up to -2000 intergenic sequences upstream of translational start site ATG) of all 

http://genome.wustl.edu/pub/organism/Invertebrates/Caenorhabditis_remanei/
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genes in the orthologous gene set that contain both C. briggsae and C. remanei orthologs 

of C. elegans gene were retrieved.  Each sequence group of orthologous genes forms a 

data entry. For C. elegans genes that are in operons (Blumenthal et al. 2002), we only 

considered the first genes in the operons.   

Motif identification and consolidation 

 

We used PHYLONET, a program that systematically identifies phylogenetically 

conserved motifs and defines a network of regulatory sites for a given organism (Wang 

and Stormo 2005), to search for conserved regulatory elements.  PHYLONET was run 

with options s= 1, iq = 20, id = 20 and pf = 10. Up to 10 predicted cis-regulatory 

elements are reported for each intergenic region. Cis-regulatory elements are represented 

by position weight matrices (PWMs)(Stormo 2000) and each matrix is associated with a 

set of genes that are potentially regulated by this element (gene cluster).  

The initial motifs generated by PHYLONET are redundant because each gene is 

used as a query and different gene queries can generate very similar motif profiles and 

target gene clusters.  To remove redundancy of the whole genome motif profile set, we 

used the average log likelihood ratio (ALLR) statistic (Wang and Stormo 2003) to 

determine the similarity between motif profiles. ALLR statistics are implemented in 

MatAlign-v4a (Wang and Stormo, unpublished). Similarity of two motif profiles is 

determined by the ALLR scores of each pair of motif profiles and the length of the 

aligned part of the two motifs.  To determine the best parameters for clustering PWMs, 

we analyzed matrices in the TRANSFAC database (Matys, Fricke et al. 2003). 

TRANSFAC version 10.2 contains 811 PWMs, 540 of which have known binding factors 
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that are classified at the family level. PWM similarity is measured with two parameters: 

ALLR score and OLAP score, which is the percentage of the two PWMs that overlap. At 

each ALLR and OLAP score cutoff value, we compare each of the 540 matrices with all 

of the others to determine the score distributions. From this information we calculate 

sensitivity and specificity for classifying each PWM into the correct family at each 

ALLR and OLAP cutoff value. Our results suggest that ALLR > 6.57, OLAP > 68.1% 

gives the best specificity. For all PHYLONET output matrices, the best one is picked first 

(the one with the highest Total ALLR score in PHYLONET output). Then it is compared 

with the rest of the matrices using ALLR statistics. Any matrix that appears redundant to 

the chosen matrix is removed. Then the second best one is picked and the process is 

repeated until all the matrices have been analyzed.  

Calculation of functional enrichment of target genes sharing the same motif profile. 

 

We tested the functional enrichment of target genes of each motif profile based on 

Gene Ontology (GO).  GO terms and annotations of C. elegans, were downloaded from 

WormBase. All genes sharing the same GO term are clustered.  Based on GO term 

hierarchies, we added all genes in the children GO terms to the current GO term gene 

cluster. The cumulative hyper-geometric distribution (Tan et al. 2005; Tavazoie et al. 

1999) is used to calculate the P-value of observing the number of genes associated to a 

motif profile and enriched in a particular GO term.   
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Calculation of microarray expression profile coherence 

 

Microarray expression profiles are downloaded from the Gene Expression Omnibus 

(GEO). Expression Coherence (EC) score and threshold distance (D) were calculated as 

described (Pilpel et al. 2001). We define the gene clusters to have significant expression 

coherence when their P-value < 0.05 after correction for multiple tests.  

Cis-regulatory module identification 

 

To identify DNA regions enriched for predicted motifs, we first identify all predicted 

sites for all the motifs using Patser (Hertz and Stormo 1999) using default cutoff scores. 

Then we calculate the average number of binding sites per position in the sequence and Z 

score for each position. We identify those peak positions that have a Z score ≥ 3.09 

(corresponding to p-value = 1.0E-3). For each peak position, we extend it in both 5’ and 

3’ direction if the next Z score > 0 position is less than 30 bp away (the longest motif 

length). Peak positions used in a previous extension step are not extended.  

 

Results and Discussion 

 

This section is divided into four subsections:  

I: Overview of the conserved motifs identified by PhyloNet 

II: Correspondence between the motifs and several different types of experimental data to 

assess their likely functions 
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III: Using the motifs to predict cis-regulatory modules across the entire intergenic regions 

of C elegans, and an assessment of the accuracy of those predictions 

IV: A description of the database of exemplar sites and motifs and of the genome browser 

that facilitate access to the sites, motifs and module predictions. 

I. Overview of the conserved motifs identified by PhyloNet   

 

To systematically identify conserved elements in C. elegans, we used the genome 

sequences from C. briggsae and C. remanei. We obtained 11,860 C. briggsae orthologs 

and 12,466 C. remanei orthologs for 16,544 C. elegans genes. Some C. elegans genes are 

organized as operons and genes in operons share a common promoter sequence that 

allows coordinated expression of the genes. After removing the distal genes in operons, 

as annotated in Wormbase (http://www.wormbase.org/), 10,491 and 11,064 of the C. 

elegans genes have C. briggsae and C. remanei orthologs, respectively. 9,356 genes that 

have both C. briggsae and C. remanei orthologs were used for further analysis.  

Current evidence indicates that C. elegans regulatory regions are fairly compact and 

most known regulatory elements occur within 2kb upstream of the coding region of the 

gene (Dupuy, Li et al. 2004; Zhao, Schriefer et al. 2007; Sleumer, Bilenky et al. 2009). 

We retrieved up to 2kb upstream promoter sequences for all of the genes with orthologs 

in each species.  Each C. elegans gene and its orthologs form a data entry which contains 

three promoter regions. For each data entry, PHYLONET (Wang and Stormo 2005) was 

applied to query the database and up to 10 most significant predicted motifs, represented 

as position weight matrices (PWMs) (Stormo 2000), were obtained for further analysis. 
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Because of the greedy and reciprocal nature of the PHYLONET algorithm, where each 

promoter serves as the query for a BLAST-like alignment to every other promoter, these 

initial predicted motifs in the PHYLONET output files are highly redundant. We took 

two steps to consolidate predicted motifs. The first step compares matrices in each query 

output file to consolidate matrices that significantly overlap. This step results in a total of 

36953 PWMs, an average of 3.95 PWMs for each C. elegans promoter. This set of sites is 

called the exemplar sites, those identified by PHYLONET as being conserved in the three 

species and significantly similar across multiple genes. From the initial set of nearly 

20Mbp in candidate regions from C. elegans, the exemplar motifs cover a total of 

3,695,282bp, which is about 18% of the intergenic regions considered.  

The second step is to consolidate PWMs based on motif similarity to generate the 

final set. This step is challenging because our goal is to find cis-acting regulatory motifs 

that correspond to all of the trans-acting regulatory factors, but there is not a simple one-

to-one relationship between them.  One complication is that TFs from the same structural 

family often bind to highly similar DNA target sequences (Luscombe, Austin et al. 2000) 

and it can be difficult to separate sites for different TFs based on the conserved motifs 

alone. Several computational approaches have been developed to quantify similarities 

between PWMs (Wang and Stormo 2003; Kielbasa, Gonze et al. 2005; Schones, Sumazin 

et al. 2005) and to use this information to classify the structural class of mediating TFs 

for novel motifs (Sandelin and Wasserman 2004; Kielbasa, Gonze et al. 2005; Schones, 

Sumazin et al. 2005; Narlikar and Hartemink 2006). Mahony et al. (Mahony, Auron et al. 

2007) evaluated various comparison metrics and alignment algorithms for comparing 

PWMs. We use the average log-likelihood ratio (ALLR) (Wang and Stormo 2003) to 
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cluster motifs into distinct sets. Although Mahony et al. (Mahony, Auron et al. 2007) did 

not find ALLR to be the best statistic for assigning motifs to TF structural classes, our 

most challenging goal is to distinguish similar motifs from the same class, for which 

ALLR is well suited. 

Our stringent criteria (see MATERIALS AND METHODS) allow only very similar 

motifs being clustered together. This gives us confidence that we have not merged motifs 

for different TFs, but has the disadvantage that we may have several distinct PWMs 

remaining for the same TF. This is certainly the case as the second consolidation step 

leaves us with 4959 distinct motifs with lengths between 5 and 30 bases, many more than 

the proposed number of about 940 C. elegans TF genes (Reece-Hoyes et al. 2005). These 

motifs cover 3,442,144 bp and have an average length of about 15bp. We find other types 

of known motifs besides TF binding sites (see below), but in addition the motifs probably 

contain sites for combinations of TFs which we have not separated into distinct sub-sites. 

These consolidated PWMs are all very significant (p<10
-10

), and each is associated with a 

set of genes that are potentially regulated by this motif. Each consolidated PWM is 

associated with a set of exemplar sites and a gene list. The gene lists range from 3 to 

7724 genes. We expect the exemplar sites for each PWM to be an incomplete set of 

binding sites for the associated factor because less than half of the C. elegans genes are 

used in our initial promoter set and because, even for orthologous genes, some sites will 

not be conserved across the different species. We can use the PWMs to predict other 

potential binding sites for the associated factor. These predicted sites should provide a 

more comprehensive list of binding sites, and regulated genes, for each PWM, but will 

likely also include some false predictions. 
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II. Correspondence between the motifs and several different types of experimental 

data  

 

Intergenic regions contain different kinds of regulatory elements. We are particularly 

interested in TF binding sites involved in controlling gene expression, but other elements 

are also obtained in our set of conserved motifs. Figure 6 shows three different classes of 

conserved elements that emerge from this analysis. The PWM H01M10.2.1 is likely to 

represent the binding motif for the transcription factor NFI-1 based on several types of 

evidence: 1) it is highly similar to the documented NFI-1 binding site (Whittle, 

Lazakovitch et al. 2009) and the vertebrate NF-1 binding site (TRANSFAC AC number: 

M00056) 2) the gene cluster associated with the H01M10.2.1 matrix is significantly 

enriched for the known NFI-1 target genes (Whittle, Lazakovitch et al. 2009) (p<10
-14

).  

3)  the gene cluster associated with the H01M10.2.1 matrix is significantly enriched for 

genes that are expressed in pharynx (p<3x10
-5

) and body wall muscle (p<7x10
-3

) which is 

consistent with observed NFI-1 expression in C. elegans (Lazakovitch, Kalb et al. 2005; 

Lazakovitch, Kalb et al. 2008). 4) H01M10.2.1 is significantly correlated to NFI-1 ChIP 

samples (p<10
-6

; t-value ~ 15.6). 5) the gene cluster associated with the H01M10.2.1 

matrix is significantly enriched for GO terms that are consistent with NFI-1's function. A 

second type of element we obtain is a core promoter motif such as the TATA-box (Figure 

6). K09B3.1.8 matrix is very similar to the TRANSFAC TATA box PWM (M00216) 

and, unlike most transcript factors binding sites, it is significantly biased in its location 

and its orientation.  It is significantly over-represented near the translational start site 

ATG, in positions between 21-40 (p<10
-10

) and 41 – 60 (p<10
-10

) nucleotides upstream of 

the ATG.  It is also preferentially located on the + strand (p < 10
-3

) as expected for a core 
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promoter element. A third type of element we find are those related to RNA processing. 

In C. elegans more than half of pre-mRNAs are subject to SL1 trans-splicing 

(Blumenthal and Steward 1997). The trans-splice site consensus on the pre-mRNAs is the 

same as the intron 3' splice site consensus. Y94H6A.1.1 matrix is significantly similar to 

the C. elegans trans-splice/3’ splice signal. It is significantly over-represented near the 

translational start site ATG (Figure 6). However, different from the TATA box, it is 

preferentially located between 0 to 20 nucleotides upstream of ATG (p<10
-20

). Trans-

splicing occurs close to the start codon in C. elegans with 49% of transcripts analyzed 

containing a spliced leader sequence within 10 nucleotides of the initiator AUG (Lall, 

Friedman et al. 2004). In addition, Y94H6A.1.1.matrix is preferentially located on the + 

strand (p < 10
-3

) as expected for a splicing signal. We did not find a motif that represents 

the 5’ splice signal which is consistent with the presence of 3’ but not 5’ splice signal in 

front of ATG in the case of trans-splicing.  

Besides identifying PHYLONET PWMs that correspond to motifs for known factors 

as described above, we can assess whether the genes associated with any PWM are 

significantly correlated with specific biological assays. In the following sections we 

consider data from four different approaches: 1) transcription factor binding data, such as 

ChIP-chip and ChIP-seq experiments that identify binding locations for specific TFs; 2) 

expression data, such as microarrays that measure gene expression patterns under specific 

conditions or specific genetic backgrounds; 3) tissue specific expression patterns of genes 

using GFP-fusions; 4) enrichment for specific classes of genes using gene ontology (GO) 

classifications for genes. Significant correlations between the genes selected by any of 
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those methods and genes associated with one of our PWMs provides supporting evidence 

that the PWM represents a regulatory motif.  

II.1 Location analysis 

 

Regions in the genome where TFs bind in vivo can be determined experimentally by 

expressing tagged C. elegans TFs that then are cross-linked to chromatin and their 

locations determined by either array hybridizations (ChIP-chip) or sequencing (ChIP-

seq). We compare those experimentally determined binding locations to the predicted 

occupancy for each PWM on each promoter. The predicted occupancy is calculated by 

scoring each position in the promoter with the PWM and summing the exponentiated 

scores: 

   (     )  ∑       

     

 

where    is a specific promoter,    is a specific PWM and    are all of the positions 

within the promoter. The score for any site with a given PWM is       and is related to 

the logarithm of the probability of the site being bound by the TF whose specificity is 

represented by the PWM (Stormo 2000; GuhaThakurta, Schriefer et al. 2004; Granek and 

Clarke 2005; Chang, Nagarajan et al. 2006). The proportionality constant that relates this 

occupancy score to the true occupancy of the promoter is unknown but is not needed 

because we use a correlation coefficient to compare the occupancy score to the 

experimental determinations of binding locations.  
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A total of 57 binding assays, including array hybridizations (ChIP-chip, 39 samples) 

and sequencing (ChIP-seq, 18 samples), were obtained from the GEO database (Barrett, 

Troup et al. 2009). Individual samples are further processed where appropriate, such as 

comparing a specific ChIP-chip array to its control array or to different time points in a 

time series experiment. Thus 51 experiments were used in the analysis and a total of 794 

motifs have a predicted occupancy that is significantly correlated (p<0.01, or t-value > 

6.02 after correcting for multiple tests) with at least one of the 51 different processed 

samples  (see Supplemental material: “Motifs Significant in Location Analysis” for the 

complete list). An example is H01M10.2.1 which is significantly correlated to NFI-1 

ChIP samples (p<1x10
-6

; t-value ~ 15.6) (Whittle, Lazakovitch et al. 2009). Using ChIP-

Seq Whittle et al identified 55 genes that passed a strict cutoff for binding. The motif they 

identified in 49 of the 55 bound regions is nearly identical to our motif H01M10.2.1 and 

also to a previously reported motif for vertebrate NFIs (Figure 6). Of those 55 genes, 36 

were included in the promoter sets analyzed by PHYLONET and 32 of them had NFI-1 

binding sites identified by Whittle et al within the 2kb upstream regions of our study. The 

PHYLONET PWM H01M10.2.1 contains 22 exemplar sites from that set of 32 reported 

NFI-1 sites (p<10
-14

).   

II.2 Expression analysis 

 

The same predicted occupancy scores for each PWM and each promoter can be compared 

to expression data to determine if motif occurrences are significantly correlated with 

expression patterns. A total 1197 expression samples were obtained from the GEO 

database and further processed where appropriate, as in the location analysis. A total of 
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797 motifs are significantly correlated (p<0.01 after correction for multiple tests) with at 

least one of 850 different processed samples (see Supplemental material: “Motifs 

Significant in Microarray Expression Analysis” for the complete list). 

In the location analyses described above, we uncovered associations between 

specific motifs and the specific proteins that were immunoprecipitated. This lets us infer 

that the motif represents the binding specificity of the protein, or perhaps another protein 

that is tightly coupled to the one that is precipitated. In the expression analysis we 

identify motifs that are associated with genes whose expression changes under different 

conditions, genetic backgrounds or at different times or different tissues during 

development. We can hypothesize that the motifs represents the binding sites for some 

proteins responsible for these changes in expression, but the identity of the proteins is 

usually unknown. However, in some cases we find the same motif identified in the 

location analysis and the expression analysis which suggests that the specific protein acts 

through the identified motif to control the expression of the regulated genes. We find 424 

such motifs that are significant in both datasets.  

Although our collection of expression microarrays do not include any records in 

which NFI-1 mutants were probed for genome-wide expression, previous work that 

suggest NFI-1 is critical for wild type adult lifespan (Lazakovitch, Kalb et al. 2005). We 

observe significant correlations between occupancy scores for H01M10.2.1 on nearby 

genes and their expression changes in age-related micorarray records (p<0.01). 

Additionally, another discovered motif C18D1.B.5 is similar to the core portion of 

previously discovered Motif Enriched on X (MEX) motif which Jans et al show to be a 

component of the Dosage Compensation Complex (DCC) (Jans, Gladden et al. 2009). 
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Interestingly, our location analysis results show that C18D1.B.5 is correlated with the 

Chip-Chip results for the DCC subunits (DPY27: p<10
-16

; SDC-2: p<10
-16

; SDC-3: p<10
-

14
; MIX-1: p<10

-3
; HTZ-1: p<10

-16
). Additionally, our expression analyses show that 

C18D1.B.5 matrix is also correlated with XO vs. XX-WT expression studies (p<10
-16

). 

Co-regulated genes often have similar expression profiles under different conditions. 

We can thus evaluate the likelihood of a motif being biologically meaningful by the 

coherence of the expression profiles of all the target genes associated with the motif. We 

used the expression coherence score (Pilpel, Sudarsanam et al. 2001) to measure the 

overall similarity of the expression profiles of all the target genes of a given predicted 

motif in several different conditions. The NCBI GEO database contains 9 datasets that 

studied C. elegans gene expression under different conditions or at different time points 

and therefore are suitable for expression coherence analysis. The 9 data sets are PAL-1 

network (GDS1319),  Hypoxia response (GDS1379), TOM1/UNC-43 (GDS1786), Twist 

over-expression (GDS2463), lin-35 null mutant at various stages of development 

(GDS2751), Aging time course (GDS583),  heat stress time course (GDS584) Germline 

development (GDS6) and daf-2 mutant expression profiling (GDS770). Using a 

stringency cutoff of p<0.05 after correction for multiple tests we determined that 682 

(13.75%) exemplar gene sets exhibit similar expression patterns in at least one 

experimental condition, suggesting a regulatory function of that associated PWM (see 

Supplemental material: “Motifs Significant in Expression Coherence Analysis” for the 

complete list). H01M10.2.1 matrix associated genes, described above as associated with 

NFI-1 binding, have significant expression coherence in both hypoxia response 

experiment and heat stress time course experiment. Interestingly NF1 in Drosophila has 
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similar functions of regulating life span as that of C. elegans NFI-1 and flies over-

expressing NF1 had increased life spans, improved reproductive fitness, increased 

resistance to oxidative and heat stress in association with increased mitochondrial 

respiration and a 60% reduction in ROS production (Tong, Schriner et al. 2007)  

C47A10.6.1 is similar to the heat shock element (HSE) identified in the promoters of 

the genes that were consistently up-regulated 1 and 4 hr after heat shock (GuhaThakurta, 

Palomar et al. 2002). Genes associated with C47A10.6.1 have significant expression 

coherence in both hypoxia response experiment and heat stress time course experiment 

but not in any other experiment. F01G4.4.5 is similar to the heat shock associated site 

(HSAS) identified in the same study as HSE (GuhaThakurta, Palomar et al. 2002). 

Similarly, genes associated with F01G4.4.5 have significant expression coherence in both 

hypoxia response experiment and heat stress time course experiment but not in any other 

experiment.  

II.3 Tissue-specific expression patterns 

 

1,882 C. elegans transcripts (~10% of the genome) have classified expression patterns in 

88 different spatial-temporal patterns between the larval and adult stages (Hunt-Newbury, 

Viveiros et al. 2007). Ignoring the developmental stage, we combined expression of the 

genes into 49 distinct tissue or cell-types. We asked if the exemplar genes for any specific 

motifs were enriched for specific tissues with a Fisher exact test. After correcting for 

number of motifs and tissues, we find 251 motifs with genes that are significantly 

enriched in 23 of the 49 tissue and cell types. For example, the genes associated with the 

F26A1.1.1 PWM are enriched for pharyngeal genes (p<5×10
-20

). This PWM is very 
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similar to the known motif for the TF Pha4 which is known to direct transcription of 

pharyngeal genes (Gaudet and Mango 2002). In accordance with previous reports that 

NFI-1 is expressed in muscles (mainly pharynx and head muscles), neurons and intestinal 

cells (Lazakovitch, Kalb et al. 2005; Lazakovitch, Kalb et al. 2008), our corresponding 

motif (H01M10.2.1) is also  enriched for genes whose GFP-fused promoters are 

expressed in the pharynx (p<3x10
-5

) and body wall muscle (p<7x10
-3

).  

II.4 GO enrichments  

 

Gene Ontology (GO) enrichment has been widely used to assess whether gene sets 

defined by various clustering methods appear to be significantly related to one another 

functionally. We compared the exemplar gene sets for each of the PHYLONET PWMs 

with the GO annotation, at a stringent significance threshold (p <0.05 after correction for 

multiple tests), to find that 3676 (74%) are significantly enriched for at least one 

biological function  

In C. elegans NFI-1 is shown to be import in regulating motility (Lazakovitch, Kalb 

et al. 2005). Consistent with this, genes associated with H01M10.2.1 PWM are enriched 

for GO term microtubule cytoskeleton organization and biogenesis (GO:0000226, 1.0E-

06), microtubule organizing center (GO:0005815, 3.7E-06) and microtubule-based 

process (GO:0007017, 9.3E-06). Vertebrate NF1 is involved in chromatin/chromosome 

remodeling (Hebbar and Archer 2003) and in vivo target of C. elegans NFI-1 includes 

many genes involved in this process (Whittle, Lazakovitch et al. 2009). Consistent with 

this, genes associated with H01M10.2.1 PWM are enriched for GO term centrosome 

(GO:0005813, 6.8E-07) and spindle organization and biogenesis (GO:0007051, 4.5E-09 
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). In addition, in vivo NFI-1 targets also includes phosphatase, vaculolar protein sorting 

factors and protein translocation related proteins and H01M10.2.1 PWM is enriched for 

GO terms phosphoserine phosphatase activity (GO:0004647, 6.3E-08), vacuolar 

membrane (GO:0005774, 6.3E-08), vesicle membrane (GO:0012506, 4.3E-06) and  

protein transport  (GO:0015031, 2.9E-06). Taken together, the consistent evidence from 

multiple independent sources: the similarity of H01M10.2.1 matrix to the C. elegans NFI-

1 binding motif and the vertebrate NF-1 binding motif, significant enrichment in tissue-

GFP analysis, location analysis, expression analysis as well as significant GO enrichment 

and NFI-1 targets enrichment, strongly suggests that our PHYLONET-discovered matrix 

H01M10.2.1 represents the DNA-binding specificity for NFI-1 transcription factor. If we 

combine all of the biological assays described above we find that a large fraction (4066 

of the 4959, 82%) of the predicted motifs have at least one type of evidence to support its 

regulatory function. Currently, most of the C. elegans TFs are uncharacterized which 

limits our ability to make direct connections between the PWMs we discover with 

PHYLONET. But the fact that all of the motifs are conserved across species as well as 

highly similar in the regulatory regions of multiple genes, and the fact that a large 

fraction of them are supported by one or more types of experimental or comparative 

evidence, leads us to believe that they represent regulatory sites for one, or more, TFs and 

control the expression of C. elegans genes.   
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III: Using the motifs to predict Cis-regulatory modules (CRMs)  

 

A cis-regulatory module (CRM) is a segment of DNA that contains multiple 

transcription factor binding sites which function together to regulate the particular 

expression patterns of the associated gene. Many studies have shown that in higher 

organisms CRM is a common strategy in regulating gene expression. If our predicted 

motifs are functional we would expect the exemplar sites composing those motifs to 

overlap significantly with experimentally defined regulatory modules. From the literature 

we collected 41 promoters included in our PHYLONET analysis that have been 

experimentally tested for the location of regulatory regions. The experiments involve 

inserting segments of promoters into vectors to create transgenic worms and then it is 

determined if that region drives expression of a reporter gene, typically GFP. Often the 

promoter segments that are tested are large and don’t provide finer resolution about the 

critical region, but in other cases the tested segments were small or deletions were 

introduced to identify critical regions. Using the 2kb upstream sequence of the 41 genes 

gives us 82kb of potential regulatory sequence for our comparison. There are a total of 61 

CRMs that have been experimentally determined in those regions, covering a total of 

26,594 bp, 32.4% of the total sequence. This undoubtedly contains regions that are not 

essential for activity, but that is the limit of the resolution from the currently available 

experiments. The 41 promoters contain a set of 12,107 exemplar sites and cover 

12,473bp, 15.2% of the total sequence. If those two sets of sequences were unrelated we 

would expect them to overlap by about 5% of the total promoter region, but in fact the 

overlap is much higher. Of the 61 experimentally confirmed CRMs, 53 (86.9%) of them 

have overlapping exemplar sites, indicating that using exemplar sites to predict CRMs 
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would have high sensitivity. 6428 (53.1%) of the exemplar sites are within experimental 

CRM regions, which is the minimum positive predictive value (PPV) of the exemplar 

sites. It could be much higher because not all regions of the promoters were tested and 

there could be additional CRMs in the promoters that are also functional. These results 

together indicate that exemplar sites from the PHYLONET analysis can be used to 

identify the likely regulatory regions for many C. elegans genes.  

We can also predict CRMs based on predicted binding sites using the PWMs. While 

this will increase the false positive rate, it allows predictions across the whole genome, 

not just the ~50% of genes used in the PHYLONET analysis and not limited to the 2 kb 

upstream region. We find that the predicted binding sites based on the PWMs are highly 

clustered along the promoter sequences (Figure 7), consistent with previous experimental 

observations and the general model that DNA sequences with clustered TF binding sites 

are usually regulatory sequences that direct specific spatial and temporal gene expression 

(Arnone and Davidson 1997; Wasserman and Sandelin 2004; Blanchette, Bataille et al. 

2006; Sinha, Liang et al. 2006).  To examine whether DNA regions with significantly 

enriched motif binding sites correspond to regulatory sequences, we focused on regions 

that have binding sites significantly more than average (Z score ≥ 3.09, p ≤ 10
-3

). For 

example, hlh-1 (B0304.1) upstream sequence is one of the best studied promoter regions. 

A total of six regulatory sequences are identified by detailed deletion and enhancer assays 

(Krause, Harrison et al. 1994). The regions with significantly enriched motifs correspond 

very well to the experimentally delineated regulatory sequences (Figure 7). Based on this 

observation, we developed an algorithm, C. elegans Regulatory Module Detector 

(CERMOD), to predict regulatory modules using the 4959 PHYLONET PWMs. For hlh-
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1, CERMOD predicted 5 modules in the full 3053 bp upstream sequence which 

corresponds to all six known regulatory sequences (Figure 7).  

To evaluate the predictive power of CERMOD, we performed a thorough literature 

search to identify any C. elegans genes whose promoter regions have been analyzed to 

locate any regulatory sequences. We identified 75 genes which are expressed in a broad 

range of tissues at various developmental times (Supplemental Table 1: Experimental 

Modules). We used upstream intergenic sequences which range from 347 bp to 20,000 

bp. There are 149 experimentally determined regulatory regions that are important for 

corresponding gene expression in neurons, hypoderms, excretory cells, muscle precursor 

cells, adult muscle cells, vulva cells, sheath cells, etc. These regulatory regions are 

determined by deletion and/or enhancer assays. Wherever possible, we use regions that 

are determined by enhancer assay because it better defines the boundary of regulatory 

regions that are sufficient in regulation.  Application of CERMOD on this set of data 

identified 124 of the 149 ( 83.2%) experimentally defined modules. Figure 7 shows the 

comparison between predicted modules with experimentally defined modules in the 

upstream sequences of 4 well-studied genes. Because some of the predicted modules are 

located within DNA sequences that have not been tested, we cannot calculate the positive 

predictive value (PPV) but it is at least 24.3% (214/882). The real PPV is surely higher 

because in some studies reporter gene expression in tissues other than the interested one 

is not reported (Wenick and Hobert 2004). Supplemental material: “Pictures of 

Experimental Module and Predicted Module in Promoter Region” shows the comparison 

of predicted and experimentally characterized modules in the entire set of genes with 

experimental evidence.  
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We performed simulations to estimate the statistical significance of obtaining the 

same sensitivity and PPV given the promoter sequences and the known regulatory 

modules. We simulate the distribution of predicted modules in the promoters by 

randomly picking a start position for each module. The length and number of modules in 

each gene is kept the same as the predicted modules in this gene. The simulation is 

repeated 10,000 times and the sensitivity and PPV are calculated for each one. The 

average sensitivity is 63.1% with standard deviation of  3.3%. The average PPV is  

20.4% with standard deviation of 1.1%. Therefore, the p-values of getting  83.2% 

sensitivity and  24.3% PPV are both much less than 0.001.  

Because many experimental modules have not been further analyzed to delineate the 

boundary, the functional module can be very long (experimental modules referenced in 

this manuscript range from 44 to 5287 bp). This resulted in high sensitivity in simulated 

data. To reduce the effect of those long experimental modules, we used only modules that 

are within the size range of predicted modules (27 to 580bp) and calculate sensitivity and 

PPV. The sensitivity did not change much (68 out of 87 are correctly predicted, 78.1%) 

but the sensitivity of simulated data is greatly reduced (48.5%), making our predictions 

even more significant.  

Cis-regulatory module prediction in miRNA promoters and introns  

 

C. elegans experiments have shown that some introns contain regulatory sequences 

(Okkema, Harrison et al. 1993; Krause, Harrison et al. 1994; Hwang and Lee 2003). To 

test if CERMOD can predict CRMs in intron regions we identified 6 genes in which 

intron regulatory sequence have been mapped in detail. There are 13 experimentally 
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defined modules in the introns from these 6 genes, 10 of which are correctly predicted 

(76.9%, Figure 8).   We performed simulations as described above and the simulated data 

has an average sensitivity of 46.8%, making our predictions highly significant (p<0.005).  

microRNAs (miRNAs) are ~22 nt RNAs that bind to partially imperfectly matched 

sites on target mRNAs to regulate transcript expression. They are now known to 

influence a broad range of biological processes. However little is known about how 

miRNA transcription is regulated. Currently there is only one miRNA, let-7, whose 

promoter has been dissected to identify regulatory sequences. The let-7 family of 

microRNAs, first discovered in C. elegans, is functionally conserved from worms to 

humans. A growing body of evidence suggests that the human let-7 expression is 

misregulated in many human cancers and restoration of let-7 expression may be a useful 

therapeutic option in cancers (Boyerinas, Park et al. 2010). Expression of let-7 RNA is 

temporally regulated with robust expression in the fourth larval and adult states. The 

DNA fragment located at [-1169, -1285] upstream of the mature RNA is necessary and 

sufficient for this temporal regulation. We predicted three modules in the ~1.8 kb 

upstream sequence (Figure 8). The predicted module [-1193, -1259] is completely within 

the experimentally defined module. let-7 is also expressed in the anchor cell at L3 and in 

the distal tip cells at the adult stage (Esquela-Kerscher, Johnson et al. 2005). It would be 

interesting to see whether the other two predicted modules drive let-7 expression in those 

cells.  
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Experimental test of CRM prediction  

 

mlc-1 and mlc-2 are the two muscle regulatory myosin
 
light chain genes in C. 

elegans. They are divergently located and share a 2.6 kb intergenic region. It was shown 

that they are both expressed in the body-wall muscles, pharyngeal muscles, and vulval 

muscles. However, the intergenic region has not been analyzed in detail to identify all the 

regulatory sequences that drive their expression. Previous study has shown that the first 

400 bp of mlc-2 upstream sequence is enough to drive its expression in the body wall 

muscle cells (GuhaThakurta, Schriefer et al. 2004). To gain better information about 

transcriptional regulation of mlc-1 and mlc-2, we applied our module prediction method 

on the intergenic region of mlc-1/mlc-2 and experimentally tested our prediction. Within 

this 2662 bp DNA fragment our method predicted 3 CRMs (Figure 9): [39, 203] is just 

upstream of mlc-1; [1918, 2009] is located at -655 to -746 bp upstream of mlc-2 

translational start codon; [2322, 2489] is close to mlc-2 translational start codon ATG and 

corresponds to the first 400 bp upstream that we had previously shown to drive 

expression in the body wall muscle (GuhaThakurta, Schriefer et al. 2004). We tested 

regions [1726, 2126], which includes one of the predicted CRMs, and [875, 1747], which 

does not include any predicted CRM,  for enhancer activity by cloning them into a pes-10 

minimal promoter (Fire, Harrison et al. 1990). Only the DNA fragment which covers the 

predicted module showed enhancer activity and the expression was limited to the 

pharyngeal muscle. So these two experimental results are consistent with the use of 

PHYLONET PWMs for predicting regulatory regions of C. elegans promoters. This 

result has another interesting aspect. The mlc-2 gene is known to be expressed in both 

body wall and pharyngeal muscle and we have separated those two tissue specific 
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expression patterns into two separate CRMs. The closest enhancer upsteam of the ATG 

drives expression only in body wall muscle, and the farther enhancer, located over 500bp 

upstream, drives expression in the pharyngeal muscle.  

 

IV: Facilitating access to the sites, motifs and module predictions  

 

All data and results discussed here, including the putative regulatory motifs, 

supporting evidence for each motif, list of motifs that are significant in each analysis, 

experimental modules and references, pictures of experimental modules and predicted 

modules in promoter regions as well as in intron regions and microRNA promoters are 

available via the web interface at http://ural.wustl.edu/~gzhao1/CE_PhyloNet/. Each 

motif can be accessed by name and the link provides the exemplar sites and the gene list 

for that motif as well as other related information. Links are also included for all of the 

genes containing exemplar sites where all of the motifs they are associated with can be 

found.   

We have created files for both the exemplar sites and CERMOD predicted modules 

across the whole genome in BED formats that can be uploaded as custom tracks and 

viewed in the UCSC genome browser. These track records can be downloaded from 

http://ural.wustl.edu/~molee0805/PhyloNet_sites.txt. In the genome browser page, when 

a Phylonet site or CERMOD module is clicked on it opens up an external site with 

information about the motif or module. For a motif, this information includes a logo of 

the motif, the matrix and all exemplar sites genome-wide. Figure 10 highlights the 

capabilities of this interface. 

http://ural.wustl.edu/~gzhao1/CE_PhyloNet/
http://ural.wustl.edu/~molee0805/PhyloNet_sites.txt
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Conclusions 

 

We performed a genome-wide search for conserved regulatory elements in C. elegans, C. 

remanei and C. briggsae and identified a total of 4959 regulatory elements. Our study 

identified regulatory elements with diverse biologically functions which include at least 

core promoter elements, TF binding sites, and functional RNA sites. Multiple 

independent evidence provide strong support for their biologically significance. The 

distribution of these regulatory motifs along promoter sequences is highly clustered 

which allowed us to accurately detect DNA regulatory sequences that drive 

spatial/temporal-specific gene expression. Our work greatly expanded our knowledge of 

regulatory sites in C. elegans and is a valuable step towards building a genome-wide 

regulatory network of C. elegans.  CERMOD, predicts modules from the distribution of 

the predicted motif occurrences along the promoter sequences and identifies statistically 

significantly clustered motif sites. It does not require a training set and it is not necessary 

to know in which tissue a gene is expressed. it has high sensitivity and specificity on 

experimentally verified CRMs and we expect it to have similar sensitivity and positive 

predictive value on any given C. elegans sequence.  The accessibility of all of our results, 

the exemplar sites, the predicted motifs and the predicted CRMs, through the UCSC 

genome browser should make them a valuable resource for the research community. 

 

 

 

 



46 
 

Acknowledgments 

 

We thank Jiajian Liu and Xing Xu for insightful discussions. This work was supported by 

National Institute of Health grants HG00249 and G.Z. was supported by National 

Institute of Health institutional training grant 5 T32 HG000045-08 and National Institute 

of General Medical Sciences NRSA service award 1 F32 GM73444-01. T.W. was a 

Helen Hay Whitney fellow. M.L. was supported by the BioMedRap program at 

Washington University. 

Table 1. Performance of CERMOD on gene promoters.  

  
Known Modules Predicted Modules 

Overla

p 
Correctly Reference 

Gene Name Start End Start End % 

predicted (Krause, 

Harrison et 

al. 1994) 
B0304.1a hlh-1 -457 -536 -479 -675 72.5 Yes 

 B0304.1a hlh-1 -725 -949 -724 -816 98.9 Yes 

 B0304.1a hlh-1 -1579 -1932 -1513 -1702 65.3 Yes 

 B0304.1a hlh-1 -2116 -2470 -2353 -2585 50.6 Yes 

 B0304.1a hlh-1 -2537 -2605 -2353 -2585 71 Yes 

 B0304.1a hlh-1 -2633 -2810 -2693 -2771 100 Yes 

 

B0414.2 rnt-1 -136 -5422 -5263 -5368 100 Yes 

(Nam, Jin et 

al. 2002) 
B0414.2 rnt-1 -136 -5422 -3874 -3964 100 Yes 

 B0414.2 rnt-1 -136 -5422 -3434 -3499 100 Yes 

 B0414.2 rnt-1 -136 -5422 -2795 -2946 100 Yes 

 B0414.2 rnt-1 -136 -5422 -1630 -1758 100 Yes 

 B0414.2 rnt-1 -136 -5422 -484 -536 100 Yes 

 B0414.2 rnt-1 -5874 -6425 - - - No 

 B0414.2 rnt-1 -6426 -7150 -6930 -7064 100 Yes 

 B0414.2 rnt-1 -6426 -7150 -6231 -6632 51.5 Yes 

 

C01B7.1b 

 

-1 -667 -291 -476 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 

C02B8.4 hlh-8 -1 -315 -88 -272 100 Yes 

(Harfe, Vaz 

Gomes et al. 

1998) 

C02D4.2a ser-2 -1 -512 - - - No 

(Zhao, 

Schriefer et al. 

2007) 

C02D4.2c ser-2 -1 -282 -52 -223 100 Yes (Wenick and 
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Hobert 2004) 
C02D4.2c ser-2 -282 -802 -534 -610 100 Yes 

 C02D4.2c ser-2 -802 -2689 - - - No 

 C02D4.2c ser-2 -2689 -4334 -2984 -3046 100 Yes 

 C02D4.2c ser-2 -2689 -4334 -2826 -2919 100 Yes 

 

C07H6.7 lin-39 -2000 -5400 -3510 -3691 100 Yes 

(Wagmaister, 

Miley et al. 

2006) 
C07H6.7 lin-39 -2000 -5400 -1921 -2118 60.1 Yes 

 C07H6.7 lin-39 -5100 -6400 -5696 -5796 100 Yes 

 C07H6.7 lin-39 -7362 -7700 - - - No 

 

C08C3.1c egl-5 -3183 -3486 -3239 -3494 96.9 Yes 

(Teng, Girard 

et al. 2004) 
C08C3.1c egl-5 -5124 -5438 -5375 -5455 79 Yes 

 C08C3.1c egl-5 -5124 -5438 -5213 -5337 100 Yes 

 C08C3.1c egl-5 -7045 -8386 -7777 -7927 100 Yes 

 C08C3.1c egl-5 -7045 -8386 -7249 -7310 100 Yes 

 C08C3.1c egl-5 -7493 -7938 -7777 -7927 100 Yes 

 C08C3.1c egl-5 -7045 -7514 -7249 -7310 100 Yes 

 

C09D1.1a 

unc-

89 -1 -588 -365 -557 100 Yes 

(GuhaThakur

ta, Schriefer 

et al. 2004) 

C09D1.1a 

unc-

89 -1 -588 -136 -289 100 Yes 

 

C09D1.1a 

unc-

89 -1 -588 -29 -95 100 Yes 

 

C10G11.7 

 

-1 -741 -374 -569 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
C10G11.7 

 

-1 -741 -81 -180 100 Yes 

 

C18D1.3 flp-4 -1052 -2385 -1075 -1161 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 

C33G3.1a dyc-1 -1 -520 -275 -384 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
C33G3.1a dyc-1 -1 -520 -138 -229 100 Yes 

 

C36B7.7 hen-1 -1 -1408 -1025 -1117 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
C36B7.7 hen-1 -1 -1408 -387 -966 100 Yes 

 C36B7.7 hen-1 -1 -1408 -88 -240 100 Yes 

 C36B7.7 hen-1 -1 -1408 0 -26 96.3 Yes 

 

C36B7.7 hen-1 -1556 -1909 -1866 -1928 69.8 Yes 

(Wenick and 

Hobert 2004) 
C36B7.7 hen-1 -1556 -1909 -1682 -1769 100 Yes 

 C36B7.7 hen-1 -2135 -2911 -2785 -2821 100 Yes 

 C36B7.7 hen-1 -2135 -2911 -2615 -2704 100 Yes 

 C36B7.7 hen-1 -2135 -2911 -2490 -2582 100 Yes 

 C36B7.7 hen-1 -2135 -2911 -2177 -2311 100 Yes 

 C36B7.7 hen-1 -2911 -3903 -3168 -3228 100 Yes 

 C36B7.7 hen-1 -2911 -3903 -2997 -3057 100 Yes 
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C36E6.5 mlc-2 -1 -400 -175 -342 100 Yes 

(GuhaThakurta

, Schriefer et 

al. 2004) 

C36E6.5 mlc-2 -536 -936 -655 -746 100 Yes 

 

C37A2.4a cye-1 -1 -219 -115 -178 100 Yes 

(Brodigan, 

Liu et al. 

2003) 
C37A2.4a cye-1 -523 -609 -497 -652 100 Yes 

 C37A2.4a cye-1 -609 -735 - - - No 

 C37A2.4a cye-1 -933 -2200 - - - No 

 

C37E2.4 

ceh-

36 -394 -1883 -1032 -1191 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 

C42D8.2 vit-2 -1 -247 - - - No 

(MacMorris, 

Broverman et 

al. 1992) 

C42D8.8a apl-1 -6318 -6518 - - - No 

(Niwa and 

Hada 2010) 

C54D1.6 bar-1 -1200 -2100 - - - No 

(Natarajan, 

Jackson et al. 

2004) 
C54D1.6 bar-1 -2000 -3100 -2698 -2795 100 Yes 

 C54D1.6 bar-1 -2000 -3100 -2430 -2502 100 Yes 

 C54D1.6 bar-1 -2000 -3100 -2277 -2333 100 Yes 

 C54D1.6 bar-1 -4779 -5100 -4914 -4997 100 Yes 

 C54D1.6 bar-1 -4000 -5100 -4914 -4997 100 Yes 

 

C54F6.14 ftn-1 -631 -693 - - - No 

(Romney, 

Thacker et al. 

2008) 

C55B7.12a che-1 -1 -695 -533 -600 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
C55B7.12a che-1 -1 -695 -88 -240 100 Yes 

 

D1037.3 ftn-2 -1251 -1313 -1189 -1378 100 Yes 

(Romney, 

Thacker et al. 

2008) 

E01H11.3 flp-20 -1 -1223 -831 -916 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
E01H11.3 flp-20 -1 -1223 -279 -506 100 Yes 

 E01H11.3 flp-20 -1 -1223 -70 -143 100 Yes 

 E01H11.3 flp-20 -612 -2852 -2402 -2498 100 Yes 

 E01H11.3 flp-20 -612 -2852 -2146 -2216 100 Yes 

 E01H11.3 flp-20 -612 -2852 -1843 -1933 100 Yes 

 E01H11.3 flp-20 -612 -2852 -1679 -1772 100 Yes 

 E01H11.3 flp-20 -612 -2852 -831 -916 100 Yes 

 

EGAP1.3 

zmp-

1 -2034 -2334 -2194 -2270 100 Yes 

(Kirouac and 

Sternberg 

2003) 

EGAP1.3 

zmp-

1 -2034 -2334 -2051 -2134 100 Yes 

 F07A5.7 unc- -1 -500 -90 -401 100 Yes (GuhaThakur
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15 ta, Schriefer 

et al. 2004) 

F07D3.2 flp-6 -1483 -1950 - - - No 

(Etchberger, 

Lorch et al. 

2007) 

F08B6.2 gpc-2 -1 -770 -359 -711 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 

F11C3.3 

unc-

54 -61 -241 -132 -251 91.7 Yes 

(Okkema, 

Harrison et 

al. 1993) 

F18E9.2 nlp-7 -1052 -2536 -1270 -1420 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
F18E9.2 nlp-7 -1052 -2536 -1043 -1224 95.1 Yes 

 

F22E10.1 

pgp-

12 -1 -475 -246 -361 100 Yes 

(Zhao, Fang et 

al. 2005) 

F27D4.2 

 

-467 -1212 -477 -786 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 

F29F11.5a 

ceh-

22 -18 -801 -173 -274 100 Yes 

(Kuchenthal, 

Chen et al. 

2001) 

F29F11.5a 

ceh-

22 -18 -801 -14 -133 96.7 Yes 

 

F29F11.5a 

ceh-

22 -651 -797 - - - No 

 

F29F11.5a 

ceh-

22 -1436 -1922 - - - No 

 

F31A9.3a arg-1 -1 -436 - - - No 

(Zhao, Wang 

et al. 2007) 
F31A9.3a arg-1 -1914 -2824 -2505 -2588 100 Yes 

 F31A9.3a arg-1 -1914 -2824 -2155 -2223 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -5452 -5539 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -5212 -5320 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -4562 -4676 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -4278 -4345 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -3666 -3749 100 Yes 

 F31A9.3a arg-1 -2972 -6240 -3300 -3376 100 Yes 

 

F33D4.3 flp-13 -1 -1036 -850 -959 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
F33D4.3 flp-13 -1 -1036 -714 -779 100 Yes 

 F33D4.3 flp-13 -1 -1036 -306 -397 100 Yes 

 F33D4.3 flp-13 -1 -1036 0 -149 99.3 Yes 

 

F35D6.1a fem-1 -1 -170 -28 -218 84.1 Yes 

(Gaudet, 

VanderElst et 

al. 1996) 

F36H1.4a lin-3 -1 -155 -71 -149 100 Yes 

(Hwang and 

Sternberg 

2004) 

F38G1.2 egl- -1 -322 -186 -281 100 Yes (Cui and Han 
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17 2003) 

F38G1.2 

egl-

17 -303 -366 -314 -427 82.8 Yes 

 

F38G1.2 

egl-

17 -1409 -1572 -1465 -1587 87.8 Yes 

 

F38G1.2 

egl-

17 -2233 -2589 - - - No 

 

F38G1.2 

egl-

17 -41 -143 - - - No 

(Kirouac and 

Sternberg 

2003) 

F38G1.2 

egl-

17 -234 -392 -314 -427 69.3 Yes 

 

F38G1.2 

egl-

17 -234 -392 -186 -281 50 Yes 

 

F38G1.2 

egl-

17 -1018 -1526 -1465 -1587 50.4 Yes 

 

F38G1.2 

egl-

17 -1097 -1820 -1465 -1587 100 Yes 

 

F40E10.3 csq-1 -263 -338 -129 -464 100 Yes 

(Cho, Eom et 

al. 1999) 
F40E10.3 csq-1 -317 -528 -129 -464 69.8 Yes 

 

F44F4.13 sra-11 -1189 -2708 -2140 -2229 100 Yes 

(Wenick and 

Hobert 2004) 
F44F4.13 sra-11 -1189 -2708 -1992 -2093 100 Yes 

 F44F4.13 sra-11 -1189 -2708 -1692 -1775 100 Yes 

 F44F4.13 sra-11 -1189 -2708 -1532 -1632 100 Yes 

 F44F4.13 sra-11 -1189 -2708 -1357 -1419 100 Yes 

 F44F4.13 sra-11 -1189 -2708 -1163 -1300 81.2 Yes 

 F44F4.13 sra-11 -2612 -2708 -2637 -2872 74.2 Yes 

 F44F4.13 sra-11 -2708 -4823 -4775 -4825 96.1 Yes 

 F44F4.13 sra-11 -2708 -4823 -4602 -4737 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -4353 -4460 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -4188 -4283 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -3953 -4036 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -3575 -3647 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -3464 -3531 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -3316 -3386 100 Yes 

 F44F4.13 sra-11 -2708 -4823 -2637 -2872 69.9 Yes 

 

F45D3.2 

 

-1 -697 -434 -520 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
F45D3.2 

 

-1 -697 -79 -243 100 Yes 

 

F46C8.6 dpy-7 -122 -282 -133 -313 93.2 Yes 

(Gilleard, 

Barry et al. 

1997) 

F48C11.3 nlp-3 -1226 -2488 -2403 -2486 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 
F48C11.3 nlp-3 -1226 -2488 -2127 -2227 100 Yes 

 F48C11.3 nlp-3 -1226 -2488 -1992 -2074 100 Yes 

 F48C11.3 nlp-3 -1226 -2488 -1868 -1918 100 Yes 

 F48C11.3 nlp-3 -1226 -2488 -1645 -1733 100 Yes 
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F52E1.4a gcy-7 -1 -188 -10 -202 95.2 Yes 

(Etchberger, 

Lorch et al. 

2007) 

F55B12.1 

ceh-

24 -1500 -1895 -1545 -1645 100 Yes 

(Harfe and 

Fire 1998) 

F55B12.1 

ceh-

24 -1793 -1910 - - - No 

 

F55B12.1 

ceh-

24 -1989 -2443 - - - No 

 

F55B12.1 

ceh-

24 -2545 -2602 - - - No 

 

F55E10.7 

 

-638 -2147 -1192 -1267 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 

F56D12.5a vig-1 -191 -596 -408 -607 94.5 Yes 

(Shin, Choi 

et al. 2008) 

F58A3.2a 

egl-

15 -1 -701 -353 -542 100 Yes 

(Harfe, Vaz 

Gomes et al. 

1998) 

F58A3.2a 

egl-

15 -1 -701 -72 -301 100 Yes 

 

F58B4.1a 

nas-

31 -1 -312 -24 -228 100 Yes 

(Zhao, Fang et 

al. 2005) 

H14A12.4 mls-1 -1 -798 -115 -322 100 Yes 

(Zhao, Wang 

et al. 2007) 

K03D10.1 kal-1 -1 -270 -73 -119 100 Yes 

(Wenick and 

Hobert 2004) 
K03D10.1 kal-1 -1548 -2865 -2828 -2886 64.4 Yes 

 K03D10.1 kal-1 -1548 -2865 -2635 -2714 100 Yes 

 K03D10.1 kal-1 -2865 -3679 - - - No 

 K03D10.1 kal-1 -3679 -5256 -4760 -4836 100 Yes 

 K03D10.1 kal-1 -3679 -5256 -4150 -4224 100 Yes 

 K03D10.1 kal-1 -3679 -5256 -3929 -4021 100 Yes 

 

K03E6.1 lim-6 -1 -208 - - - No 

(Etchberger, 

Lorch et al. 

2007) 

K07C6.4 

cyp-

35B1 -1 -360 -107 -284 100 Yes 

(Iser, Wilson 

et al. 2011) 

K07C6.4 

cyp-

35B1 -510 -660 -351 -632 81.5 Yes 

 

K10G6.3 

 

-378 -929 -746 -859 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
K10G6.3 

 

-378 -929 -606 -693 100 Yes 

 K10G6.3 

 

-378 -929 -443 -540 100 Yes 

 

K12F2.1 

myo-

3 -328 -749 -220 -639 74.3 Yes 

(Okkema, 

Harrison et 

al. 1993) 

K12F2.1 

myo-

3 -1010 -1948 -1441 -1538 100 Yes 

 

K12F2.1 

myo-

3 -1010 -1948 -1246 -1335 100 Yes 
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R02E12.6 hrg-1 -1 -254 -193 -282 68.9 Yes 

 

R03C1.3a cog-1 -2924 -3444 -2837 -3061 61.3 Yes 

(Etchberger, 

Lorch et al. 

2007) 

R06C7.10 

myo-

1 -123 -500 -156 -479 100 Yes 

(Okkema, 

Harrison et 

al. 1993) 

R06C7.10 

myo-

1 -646 -1725 -1416 -1713 100 Yes 

 

R13A5.5 

ceh-

13 -2334 -2604 -2383 -2461 100 Yes 

(Stoyanov, 

Fleischmann 

et al. 2003) 

R13A5.5 

ceh-

13 -2000 -3200 -2851 -2964 100 Yes 

(Streit, 

Kohler et al. 

2002) 

R13A5.5 

ceh-

13 -2000 -3200 -2661 -2743 100 Yes 

 

R13A5.5 

ceh-

13 -2000 -3200 -2383 -2461 100 Yes 

 

R13A5.5 

ceh-

13 -3200 -3940 -3798 -3886 100 Yes 

 

R13A5.5 

ceh-

13 -3200 -3940 -3397 -3486 100 Yes 

 

R13A5.5 

ceh-

13 -6150 -6600 -6220 -6284 100 Yes 

 

T01E8.2 ref-1 -282 -435 - - - No 

(Neves, 

English et al. 

2007) 

T03D8.5 

gcy-

22 -1 -829 -377 -612 100 Yes 

(Etchberger, 

Lorch et al. 

2007) 

T03D8.5 

gcy-

22 -1 -829 0 -168 99.4 Yes 

 

T15H9.3 hlh-6 -1 -241 -28 -117 100 Yes 

(Raharjo and 

Gaudet 2007) 
T15H9.3 hlh-6 -241 -747 -502 -621 100 Yes 

 

T18D3.4 

myo-

2 -370 -686 -542 -630 100 Yes 

(Okkema, 

Harrison et 

al. 1993) 

T18D3.4 

myo-

2 -458 -764 -542 -630 100 Yes 

 

T18D3.4 

myo-

2 -17 -239 -79 -153 100 Yes 

 

T20G5.6 

unc-

47 -1 -239 -54 -362 77.8 Yes 

(Eastman, 

Horvitz et al. 

1999) 

T22B7.1a 

egl-

13 -1 -1330 -1247 -1330 100 Yes 

(Oommen 

and Newman 

2007) 

T22B7.1a 

egl-

13 -1 -1330 -521 -605 100 Yes 

 T22B7.1a egl- -1 -1330 -213 -294 100 Yes 
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13 

T22B7.1a 

egl-

13 -1 -1330 -73 -136 100 Yes 

 

T22B7.1a 

egl-

13 -1 -632 -521 -605 100 Yes 

 

T22B7.1a 

egl-

13 -1 -632 -213 -294 100 Yes 

 

T22B7.1a 

egl-

13 -1 -632 -73 -136 100 Yes 

 

T28B8.1 

 

-1 -597 -187 -546 100 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
T28B8.1 

 

-1 -597 0 -110 99.1 Yes 

 

W03A3.1 

ceh-

10 -1 -1121 -458 -545 100 Yes 

(Wenick and 

Hobert 2004) 

W03A3.1 

ceh-

10 -1 -1121 -16 -324 100 Yes 

 

W03A3.1 

ceh-

10 -2851 -3655 -2976 -3324 100 Yes 

 

W06H8.6 

 

-1 -675 -469 -820 58.8 Yes 

(Zhao, 

Schriefer et 

al. 2007) 
W06H8.6 

 

-675 -1333 -858 -1149 100 Yes 

 

W09B12.1 ace-1 -1 -288 0 -173 99.4 Yes 

(Culetto, 

Combes et al. 

1999) 
W09B12.1 ace-1 -493 -698 -610 -706 91.8 Yes 

 W09B12.1 ace-1 -1731 -2049 -1953 -2093 68.8 Yes 

 W09B12.1 ace-1 -1731 -2049 -1787 -1865 100 Yes 

 W09B12.1 ace-1 -2049 -2398 -2277 -2374 100 Yes 

 

Y105E8B.1

a tmy-1 -1 -818 -78 -389 100 Yes 

(Kagawa, 

Sugimoto et 

al. 1995) 

Y105E8B.1

c tmy-1 -1 -853 -327 -455 100 Yes 

(Anyanful, 

Sakube et al. 

2001) 

Y22F5A.3 

snap-

25 -980 -1123 - - - No 

(Hwang and 

Lee 2003) 

Y22F5A.3 

snap-

25 -169 -305 - - - No 

 

Y37D8A.2

3a 

unc-

25 -1 -180 -10 -92 100 Yes 

(Eastman, 

Horvitz et al. 

1999) 
Y73C8B.4 lag-2 -1 -1029 -279 -400 100 Yes 

 Y73C8B.4 lag-2 -5567 -5674 -5628 -5714 54 Yes 

 

ZC247.3 lin-11 -1 -1700 -1288 -1355 100 Yes 

(Gupta and 

Sternberg 

2002) 
ZC247.3 lin-11 -1 -1700 0 -245 99.6 Yes 

 ZC247.3 lin-11 -1700 -2230 -1758 -1818 100 Yes 

 ZC247.3 lin-11 -2230 -2880 -2722 -2833 100 Yes 

 ZC247.3 lin-11 -2230 -2880 -2339 -2435 100 Yes 
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ZC416.8a 

unc-

17 -1 -822 -113 -289 100 Yes 

(Wenick and 

Hobert 2004) 

ZC416.8a 

unc-

17 -822 -1495 - - - No 

 

ZC416.8a 

unc-

17 -1876 -2463 - - - No 

 

ZK112.7 cdh-3 -1044 -1607 -1030 -1324 95.3 Yes 

(Kirouac and 

Sternberg 

2003) 
ZK112.7 cdh-3 -2877 -3629 -2869 -3093 96.4 Yes 

 ZK112.7 cdh-3 -3519 -3751 -3592 -3690 100 Yes 

 

ZK455.7 pgp-3 -1 -502 -245 -363 100 Yes 

(Zhao, Fang 

et al. 2005) 
ZK455.7 pgp-3 -1 -502 -120 -203 100 Yes 

 ZK455.7 pgp-3 -1 -502 0 -62 98.4 Yes 

 

ZK652.5 

ceh-

23 -1 -791 -546 -667 100 Yes 

(Wenick and 

Hobert 2004) 

ZK652.5 

ceh-

23 -1 -791 -224 -314 100 Yes 

 

ZK652.5 

ceh-

23 -791 -1109 -863 -938 100 Yes 

 

ZK652.5 

ceh-

23 -2269 -2453 -2376 -2467 84.8 Yes 

 

ZK652.5 

ceh-

23 -4915 -5455 -5086 -5315 100 Yes 

 

ZK652.5 

ceh-

23 -4915 -5455 -4878 -4971 60.6 Yes 

 

ZK652.5 

ceh-

23 -5486 -6376 -6012 -6099 100 Yes 

 

ZK652.5 

ceh-

23 -5486 -6376 -5817 -5878 100 Yes 

 

ZK652.5 

ceh-

23 -5486 -6376 -5669 -5774 100 Yes 

 

ZK652.5 

ceh-

23 -5486 -6376 -5475 -5544 84.3 Yes 

 

ZK652.5 

ceh-

23 -6776 -6819 -6688 -6822 100 Yes 

 

ZK652.5 

ceh-

23 -6819 -7275 -7100 -7238 100 Yes 

 

ZK970.6 gcy-5 -1 -306 -71 -161 100 Yes 

(Wenick and 

Hobert 2004) 
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Figure 6  

Examples of three different classes of conserved elements and supporting evidence. 

Upper panel: Sequence logo, reference, binding factor as well as supporting evidence for 

NFI-1, TATA box and C. elegans 3' splice/trans-splicing signal. Lower panel: 

Distribution of K09B3.1.8.matrix and Y94H6A.1.1.matrix sites on promoters. 
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Figure 7 

Comparison between predicted Cis-Regulatory Module (CRM) with experimentally 

defined CRM in four best studied promoters. A. Comparison between predicted CRM 

with experimentally defined CRM in hlh-1. B. Distribution of Z score of number of motif 

sites across the hlh-1 promoter. C. Comparison between predicted Cis-Regulatory 

Module (CRM) with experimentally defined CRM in myo-3, myo-1 and myo-2. 

Turquoise bar: experimentally tested DNA fragment without regulatory function; Red 

bar: experimentally tested DNA fragment with regulatory function; Deep blue bar: 

promoter sequence; Grey bar: predicted CRM. Black triangle: translational start codon. 

Position coordinates shown are relative to translational start codon. 
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Figure 8 

Comparison between predicted CRM with experimentally defined CRM in intron regions 

and in miRNA let-7 promoter. A. Comparison in intron regions. B. Comparison in 

miRNA let-7 promoter. Red bar: experimentally tested DNA fragment with regulatory 

function; Deep blue bar: input DNA sequence; Grey bar: predicted CRM. Black triangle: 

translational start codon. Position coordinates shown are relative to translational start 

codon. 
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Figure 9 

Experimental test of predicted CRM in mlc-1/mlc-2 intergenic region. Turquoise bar: 

DNA fragment tested that did not show regulatory function; Deep blue bar: mlc-1/mlc-2 

intergenic region DNA sequence; Grey bar: predicted CRM. Black triangle: translational 

start codon. Positive position coordinates shown are relative to mlc-1 translational start 

codon. Negative position coordinates shown are relative to mlc-2 translational start 

codon.  
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Figure 10 

Example use of the UCSC genome browser. A. Screen shot of genomic region containing 

exemplar sites; clicking on the red circled exemplar site in front of the gene F26A3.6 

takes you to the additional information page for this gene, shown in part B. Clicking on 

the outside link (highlighted in red) takes you to a table with all the motifs in this 

promoter region, shown in part C. Clicking on the specific motif highlighted in red opens 

a new page displaying the additional information for this motif, shown in part D. 

 

Figure 10: A 

 

 

Figure 10: B 
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Figure 10: C 

 

Figure 10: D 
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Supplemental Figure 1 

Comparison between discovered motifs and previously characterized transcription factor 

motifs.  
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Supplemental Figure 2 

Comparison between discovered motifs and previously characterized regulatory 

elements.  
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Chapter 3: Discovering conserved cis-Regulatory 

elements in C. elegans using Magma
2
 

  

                                                           
 
2
 This chapter was adapted from: Ihuegbu. N., Stormo., G.D., and Buhler., J. (2011). Fast, 

sensitive discovery of conserved genome-wide motifs. Accepted for publication to the 

Journal of Computational Biology. In the previous chapter, we noticed that PhyloNet did 

not efficiently scale to larger input spaces. We designed Magma to overcome much of 

these issues and showed much quicker runtimes for larger regulomes in higher order 

organisms. Jeremy Buhler designed the speed-up optimizations in Magma. I designed the 

redundancy-reducing post-processing half, benchmarked its efficiency and efficacy, and 

wrote the paper with Gary Stormo. 
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Abstract 

Regulatory sites that control gene expression are essential to the proper functioning of 

cells, and identifying them is critical for modeling regulatory networks. We have 

developed Magma (Multiple Aligner of Genomic Multiple Alignments), a software tool 

for multiple species, multiple gene motif discovery. Magma identifies putative regulatory 

sites that are conserved across multiple species and occur near multiple genes throughout 

a reference genome. It is particularly designed to be very efficient in the discovery of 

regulatory elements from higher-order eukaryotes with large non-coding regions. Magma 

takes as input multiple alignments from non-coding regions, which can include gaps. It 

computes similarities between profiles of conserved non-coding regions, clusters similar 

profiles into motifs and reduces any resulting redundancy in an efficient manner. Magma 

is about 70 times faster than PhyloNet, a previous program for this task, with slightly 

greater sensitivity. We ran Magma on all non-coding DNA conserved between C. elegans 

and 5 additional species, about 80Mbp in total, in less than 4 hours. We obtained 2309 

motifs with lengths from 6-20bp, each occurring at least 10 times throughout the genome, 

that collectively covered about 500kbp of the genomes, approximately 0.6% of the input. 

Predicted sites occurred in all types of non-coding sequence but were especially enriched 

in the promoter regions. Comparisons to several experimental datasets show that Magma 

motifs correspond to a variety of known regulatory motifs. Finally we show that Magma 

has tractable scaling with reasonable runtimes for other high-order eukaryotes. 
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Introduction 

 

A key area of genomic research is understanding the cis-regulatory network that governs 

transcriptional regulation. Over the past two decades, many computational approaches 

have been developed to discover transcription factor (TF) binding sites in the genome by 

identifying recurring sequence motifs that bind a particular factor. Discovering such 

motifs is challenging because they are usually short (5-12 bases) and degenerate. 

Traditional algorithms to recognize motifs in genomic DNA take one of two basic 

approaches. The multiple gene, single species approach recognizes motifs because they 

recur with few changes in the promoters of multiple genes within a single genome 

(Lawrence, Altschul et al. 1993; Hertz and Stormo 1999; Bailey, Williams et al. 2006; 

Elemento, Slonim et al. 2007). In contrast, the single gene, multiple species – or  

phylogenetic footprinting – approach recognizes motifs in a single promoter region by 

their conservation across species, which is assumed to be greater than that of the 

surrounding background sequence (Gelfand 1999; McGuire, Hughes et al. 2000; McCue, 

Thompson et al. 2001; Panina, Mironov et al. 2001; Rajewsky, Socci et al. 2002; Frazer, 

Elnitski et al. 2003; Panina, Vitreschak et al. 2003; Marchal, De Keersmaecker et al. 

2004). These methods work because binding sites are typically under selective pressure 

and therefore mutate more slowly than the surrounding sequence. Wang and Stormo 

(2003) combined these two approaches in their PhyloCon program, which uses 

alignments of orthologous promoter regions rather than individual DNA sequences. In 

this paradigm, a motif is required both to recur across different promoters and to be 

conserved across species in each of its occurrences. Other tools that take a conceptually 

similar approach include (Qin, McCue et al. 2003; Jensen, Shen et al. 2005; Monsieurs, 
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Thijs et al. 2006), all of which report results on bacterial promoters. 

To scale PhyloCon's methods to discover motifs across an entire genome, the successor 

program—PhyloNet (Wang and Stormo 2005)—implemented a BLAST-like seeded 

alignment algorithm to accelerate detection of putative motif instances across thousands 

of promoters. This allowed its application to all noncoding sequences of the yeast 

genome, but still at a high cost – over five CPU-days on a 2.4GHz workstation. The 

noncoding sequences of a higher eukaryotic genome represent tens to hundreds of times 

more sequence than yeast. Most phylogenetically-based motif-finding algorithms scale 

quadratically with the input size, so the lengthy times expected for higher eukaryotic 

promoter analyses are a deterrent to genome-wide motif discovery. 

This work describes Magma (Multiple Aligner of Genomic Multiple Alignments), a new 

algorithm for multi-gene, multi-species computational motif discovery. Magma 

significantly departs from the PhyloNet pipeline for accelerated operations, most 

substantially by introducing new algorithms to group putative TF binding sites into 

motifs and to reduce redundancy in its output. Magma also operates on gapped genomic 

sequence alignments. Using alignments of Saccharomyces promoters, Magma runs 

almost 70 times faster than PhyloNet with improved sensitivity. Magma scales to 

analyses of higher eukaryotes; it can analyze all proximal promoters in Drosophila in less 

time than that required by PhyloNet to analyze yeast. Although Magma's efficiency 

allows us to perform whole-genome motif-finding on higher eukaryotes, its motif-finding 

methods can sometimes produce many redundant, partially overlapping motifs. We 

alleviate this problem by with a fast, greedy, set-covering approach (Chvatal 1979).  
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We demonstrate Magma’s motif discovery prowess using essentially all of C. elegans 

non-coding sequence: an 70Mbp-search space consisting of promoters, UTRs, introns, 

and downstream regions. To the best of our knowledge, this is the most comprehensive 

motif-finding effort to date in C. elegans. Furthermore, we show that these motifs and 

their conserved exemplar sites correspond to many known regulatory sites, are enriched 

in TF-bound regions, and are correlated with expression. Magma and all post-processing 

software are available for noncommercial use by request to the authors. 
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Methods 

 

The Magma Computation 

 

Magma takes as input a collection of multiple sequence alignments or profiles (e.g. the 

Multiple Alignment Format, or MAF, blocks from UCSC), each of which aligns 

orthologous genomic sequences from different species. Its goal is to discover short 

motifs, which are approximate sequence patterns that occur in multiple instances, or 

exemplar sites, within each genome and appear distinct from the surrounding sequence. 

However, because Magma searches profiles rather than single sequences, each instance 

of a motif is itself a collection of aligned sequences exhibiting significant conservation 

across the species in its profile. Magma compares pairs of profiles using the average log-

likelihood ratio (ALLR) score, a measure of similarity between columns of two multiple 

alignments (Wang and Stormo 2003). The ALLR is well-defined for pairs of columns 

containing different total numbers of characters, so it may be applied to columns which 

have different number of bases due to gaps. For two motifs of equal length, their total 

ALLR score is simply the sum of the ALLR scores of their corresponding columns, 

ignoring gapped positions. 

Magma discovers motifs by comparing one input profile, the query, to a database of all 

other profiles. Each profile in the input serves as the query in turn, until all profiles have 

been compared pairwise. Magma’s search has two phases: generation of high-scoring 

segment pairs (HSPs), which locally align two profiles, and clustering of all HSPs 

involving a given query to form motifs. HSP generation is further subdivided into seed 

matching and extension. 



74 
 

An HSP is a local alignment of the query profile and a database profile, such that the total 

ALLR score of all aligned column pairs exceeds a user-defined threshold T.  To reduce 

the computational cost of search, and to allow identification of multiple HSPs per profile 

pair, HSP generation uses a seeded alignment approach on a simplified representation of 

the input profiles.  Each input profile is first quantized into a sequence over an alphabet 

of 15 symbols, each of which represents a particular vector of base counts, by mapping 

each profile column to the symbol whose vector has the most similar distribution (Wang 

and Stormo 2005). The alignment score for a pair of symbols is the ALLR score for the 

corresponding pair of vectors. The quantized query and database profiles are scanned for 

seed matches, or pairs of fixed-length substrings with at least some minimum score, using 

a neighborhood hashing strategy analogous to that used by BLASTP for sequence 

alignment. Each seed match between two profiles is extended by dynamic programming 

into the best HSP passing through the match, and HSPs with scores exceeding T are 

retained. Whereas seed matching is done on the quantized profiles, extension is done in 

the original profiles using the full ALLR score. 

Magma’s Clustering Algorithm 

The clustering phase collects and aligns putative motif instances from the HSPs generated 

by the previous phase.  A cluster is a collection of HSPs, all of which overlap on a given 

query profile Pq. A cluster of n HSPs therefore defines intervals from at most n distinct 

profiles besides the query, all of which are aligned to Pq (and hence transitively to each 

other).  Clustering first groups all HSPs for a query, then reduces each cluster to a single 

motif, with each interval possibly contributing one motif instance.  A motif may use only 

a subset of the cluster's intervals, and each interval must be adjusted so that all instances 
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of the motif have the same length. Subsetting and length adjustment are performed so as 

to maximize the sum of ALLR scores between the instance drawn from Pq and each other 

instance in the motif. 

Magma uses efficient clustering methods that offer strong performance and quality 

guarantees.  Edges of an HSP overlap graph are determined by overlaps between intervals 

on the same profile, making this graph an interval graph.  All maximal cliques in such a 

graph can easily be found in time linear in the number of HSPs and enumerated in time 

proportional to their total size (Gupta, Lee et al. 1982).  Magma therefore uses interval 

clique finding to guarantee both maximality and exhaustive enumeration of clusters, with 

much better scalability than general clique finding.  To avoid building clusters from HSPs 

that overlap by very little (e.g. a single base), it is desirable to enforce a minimum 

overlap of k positions to create an edge in the overlap graph.  Magma enforces this 

criterion by reducing each interval's right endpoint by k-1 positions prior to clique 

finding. 

To simplify conversion of clusters to motifs, Magma uses the following enumerative 

algorithm. For each HSP Hj in the cluster, let Pq (the query) and Pj be the profiles that it 

aligns, and let [lj , rj] and [l'j , r'j] be the intervals that it aligns from Pq and Pj, 

respectively.  Let dj = l'j - lj be the diagonal of Hj, that is, the offset of its starting indices 

in the query and database profiles. 

Suppose that the HSPs in a cluster have minj lj = L  and maxj rj = R.  For each left 

endpoint ℓ and right endpoint r, L ≤ ℓ ≤ r ≤ R, we find the best-scoring motif whose 

instance on Pq is the interval [ℓ , r].  The instance corresponding to HSP Hj is then [ℓ + dj, 

r + dj].  (If this instance runs off either end of Pj, then it is discarded for this choice of 
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endpoints.)  We then discard any instance whose ALLR score versus the query instance is 

negative and retain the total score sℓ,r of the remaining instances.  The motif with the 

highest total ALLR score for the cluster is the one with endpoints argmaxℓ,r sℓr in profile 

Pq. 

Our enumerative algorithm requires time Θ(m
2
n), where n is the number of HSPs in the 

cluster and m = R - L + 1.  However, the ALLR scores for each column of the alignment 

between each Pj and Pq can be precomputed and stored in total time Θ(mn). Hence, the 

constant factor associated with the quadratic cost in m is small in practice, consisting 

mostly of addition and table lookup. We also note that when the goal is instead to 

minimize the statistical p-value defined in (Wang and Stormo 2005) for the motif, the 

motif with best p-value for a cluster can still be found in time Θ(m
2
 n log n). 

 

Reducing Redundant Motifs 

The motifs obtained by HSP finding and clustering may contain many overlapping, 

partially redundant motifs. The major source of redundancy is the re-use of overlapping 

profiles in construction of multiple motifs. Since we know the genomic coordinates of all 

the exemplar sites that were used to construct every motif, we can re-describe this 

problem as an NP-Complete Set-Covering problem (Karp 1972; Vazirani 2001). Given a 

universe U of exemplar contigs (i.e. contiguous regions built from overlapping exemplar 

sites) and a collection of motifs S, each of which covers a subset of U, a cover is a subset 

C of S whose union of exemplar sites covers all of U. 

We implement a fast greedy approximation for the Set-Covering problem to significantly 

reduce the motif redundancy in the final output. Greedy algorithms for minimum Set-
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Covering achieve a log(n) approximation, where n is the size of the largest set (Chvatal 

1979):  

 ( )  ∑
 

 
    ( )

 

   
 

This means we use at most log(n) times the minimum number of motifs needed to cover 

all instances. Our implementation is similar to other Set-Covering solutions but with 

some slight modifications. At each iteration, we define a cover as the set of sites from the 

most occurring motif (m*), as well as sites from any other motif that overlaps m* sites by 

at least d sites. Thus at each iteration we remove a set of sites u* in U and their associated 

motifs from the problem. We continue this recursion as long as |u*| ≥ Mu minimum 

unique sites. The redundant motifs in each resulting cover are subsequently resolved by 

iteratively scanning all the sites with each motif (by order of most occurrences) and 

masking their instances. This continues until there are fewer than Mu sites left in the 

cover. 
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Results 

 

Magma is a fast genome-wide motif-finder with tractable scaling for higher-order 

eukaryotes 

 

Magma was designed in part to overcome performance limitations in the earlier PhyloNet 

motif-finding software. To measure Magma’s performance relative to PhyloNet, we ran 

both programs to discover initial motifs in yeast promoters. On a cluster of 2.4GHz AMD 

Opteron processors, we observed a ~70x speedup. Moreover, Magma’s ability to use 

gapped profiles, which better aligns motif instances in different parts of the same profile, 

allowed it to discover more known motifs than PhyloNet while still including less of the 

reference sequence in its output. We also examined how Magma scales when applied to 

more complex eukaryotes (Table 2).   

Table 2: Magma scales to higher-order eukaryotes with practical runtime 

Organism 

Search Space 

(Mbp) 

Magma-

DiscoveryTime (cpu 

secs) 

S. cereviasae 1.74 101 

D. melanogaster 15.36 3184 

C. elegans 69.10 12915 

 

Running Magma on D. melanogaster’s conserved promoter regions (~9x increase in 

search space) required about 30x more time than the yeast experiment.  The complete C. 

elegans conserved regulome from six species (~40x search space) required ~130x more 

time (~3.5hrs). In practice, we implement Magma such that the set of all queries is 
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distributed across several processors, so that the actual running time for C. elegans was 

only ~0.75 hrs. 

 

Characteristics of Magma C. elegans Motifs 

We discovered 2,309 motifs in C. elegans, ranging in length from 6 to 20 bases. These 

motifs are composed of 65,747 unique, non-coding, conserved exemplar sites covering 

566,666bp (~0.8% of the C. elegans input sequence). These sites are distributed across all 

non-coding regions but have the most occurrences in the promoter regions, as would be 

expected for regulatory sites (Table 3). We make these motifs available as position-

specific count matrices at http://ural.wustl.edu/~nihuegbu/Magma/homepage.html. 

Table 3: Distribution of exemplar sites in different non-coding sequence classes 

Location 

Number of 

Sites 

Coverage 

(bp) 

Size of input 

region (bp) 

Fraction of 

input region 

2kb 5’ 

Intergenic 34,278 258,322 21,532,733 1.20% 

5'UTR 2,596 15,411 461,624 3.34% 

1st Intron 15,514 73,904 7,918,585 0.93% 

Other 

Intron 27,787 122,333 23,691,626 0.52% 

3'UTR 4,436 27,111 1,934,557 1.40% 

* Note: Some of these sites overlap different regulatory regions of multiple genes 
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Evaluation of Magma C. elegans motifs  

We assessed whether Magma’s motifs are consistent with the known binding sites for the 

few characterized factors and with other information about regulatory interactions. 

Because we do not expect Magma’s exemplar sites for each motif to be a comprehensive 

list of all sites for its associated TF, we scan each non-coding region in our input with the 

PWM for each motif to determine if it was significantly enriched in instances of the 

motif. The expected number of motif instances arising by chance is determined by the 

information content of the motif (Schneider, Stormo et al. 1986; Hertz and Stormo 1999), 

while the observed number is the actual number of sites within each dataset whose score 

exceeds the information content of the motif. The score of a putative motif with respect to 

a given dataset is the log-likelihood ratio 

 ( | ) ln
observed

LLR motif dataset observed
expected



.

 

One of the best-characterized TFs in C. elegans is the Nuclear Factor I (NFI). Whittle, 

Lazakovitch et al. (2009) performed ChIP-CHIP for NFI, probing its in vivo targets at 55 

regions (~1500bp each). Magma finds two motifs that are strongly enriched within those 

regions, both very similar to the known consensus of TTGGCAN3TGCCAA (Figure 11). 
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Figure 11: Log Likelihood Ratio uncovers NFI-like motifs on NFI ChIP peaks. 

 

 

The modENCODE consortium identified regions from ChIP-Seq experiments that bound 

several TFs (Gerstein, Lu et al. 2010). These regions, with average length of 200 bases, 

were filtered to remove those that overlapped ubiquitous HOT sites, leaving 74,065 

regions from 28 samples that bound a total of 23 different TFs (PHA-4 was assayed at 6 

different developmental and environmental conditions). For each sample, we ranked the 

motifs using the above LLR score. For the three TFs with known motifs, the most 

significant Magma motif matches the known consensus (Table 4; for the PHA-4-YA set 

the second-ranked motif matches the consensus). Significant motifs were found for each 

of the remaining ChIP-Seq datasets, but since the TFs binding these sites have unknown 

motifs, we could not use them to validate Magma’s performance. 
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Table 4: Magma motifs in modENCODE ChIP peaks  

ChIP-Seq 

Sample 

Class TF Known 

Specificity 

Magma Motif LOGO LLR 

Rank 

HLH1_EMB bHLH HLH-1 E-Box 

(CANNTG) 
 

1 

PHA4_EMB 

PHA4_L1 

PHA4_L2 

PHA-4-

Late_Emb 

PHA-4-

Starved_L1 

PHA-4-YA 

Forkhead PHA-4 TRTTKRY 

 

1 

1 

1 

1 

 

1 

 

2 

ELT3_L1 GATA-Zn 

Finger 

ELT-3 GATA-site 

 

1 

 

 

We also identified significant motifs for 12 factors with at least 10 promoter binding 

observations from the EDGE database of Yeast-One Hybrid (Y1H) experiments (Barrasa, 

Vaglio et al. 2007), though again the correct motifs for these sites are not known a priori. 

The Oreganno database lists187 different experimentally tested binding sites and cis-

regulatory modules in C. elegans (Montgomery, Griffith et al. 2006; Griffith, 
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Montgomery et al. 2008), which includes the annotated bound factors for several sites. 

We find significant matches among our Magma motifs for 185 of these sites, including 

motifs whose specificity resembles that of TFs matching annotated PHA-4, ELT-2, and 

DAF-19 sites. 

Hunt-Newbury and colleagues built promoter:GFP fusion libraries for approximately 

2000 C. elegans genes (Hunt-Newbury, Viveiros et al. 2007) and cataloged the temporal 

and spatial expression of the green fluorescent protein. Chikina and colleagues (Chikina, 

Huttenhower et al. 2009) used support vector machines (SVMs) to predict other genes 

from C. elegans with similar expression profiles and achieved 90% precision for all of 

the major tissues (intestine, hypodermis, muscle, neurons, pharynx) except germ-line. 

Using these two datasets (the gold GFP dataset and the SVM predictions), we identified 

enriched motifs by computing an occupancy score for each motif and each 1kb-promoter 

in each tissue-specific gene set (Granek and Clarke 2005). We recovered several known 

cis-regulatory elements that regulate or establish tissue expression. For instance, ELT-2 is 

a zinc finger protein that is known to bind to GATA cis-based elements to regulate 

transcription in C. elegans intestines (McGhee, Sleumer et al. 2007). Figure 12 shows 

three GATA motifs and their tissue enrichments (log p-values). Although GATA-

elements are mostly enriched in the promoters of intestine-expressed genes, we also 

found it enriched in the introns (especially the first intron) of neuronal and muscle tissue-

types such as pharynx, uterus, and vulva, consistent with previous developmental studies 

highlighting the broad role of GATA-factors in development (Spencer, Zeller et al. 

2011). We re-discovered other known cis-acting elements that endow tissue-specific 

expression, such as PHA-4- and PHA-4-variant-like motifs enriched in the pharynx. 
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Figure 12: Magma GATA-like motifs are mostly enriched in intestinal cells 

 

 

 

 

We further analyzed 88 C. elegans ChIP and expression microarray series data sets from 

the GEO Omnibus database, including 1,362 total samples. Similarly to the previous 

section, we analyzed the occupancy scores for our discovered motifs to uncover 

significant enrichments with the differentially regulated genes from each expression 

sample. We identified significant motifs for 991 different samples. We found that a motif 

matching the known specificity of Daf-16 (GTTGTTTAC) is significantly enriched in 
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daf-2/daf-16 mutant experiments (McElwee, Schuster et al. 2004). Daf-16 has also been 

shown to be involved in starvation response in C. elegans (Henderson and Johnson 

2001), and samples from starvation experiments (Baugh, Demodena et al. 2009), are 

significantly enriched for the same motif.  
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Discussion and Conclusions 

 

We have described Magma, a program that identifies motifs that are conserved across 

species and occur in several locations within the reference genome. In a comparison to 

the PhyloNet program on the yeast genome, we found slightly higher sensitivity with 

greatly increased speed, about 70x faster. The entire non-coding conserved genome of C. 

elegans, about 70Mbp, can be analyzed in less than four hours on a single CPU. We 

observed that Magma scales sub-quadratically with its input size, due to lower density of 

strongly conserved regions hence less HSP extensions per seed. Although the lack of 

extensive knowledge about regulatory motifs in C. elegans hinders a comprehensive 

evaluation of Magma’s specificity, comparison to known motifs from a variety of 

experimental datasets show that its motifs are generally consistent with existing 

knowledge. Finally, we posit that these motifs likely represent specificities for TFs 

involved in various regulatory networks controlling gene expression in different 

conditions and developmental processes.  
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Chapter 4: Discovering cis-Regulatory Modules in 

C. elegans using Magma motifs 
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Cis-regulatory modules are comprised of clustered transcription factor 

binding sites 

 

A cis-regulatory module (CRM) is a segment of DNA that contains clustered 

transcription factor binding sites which function together to regulate the particular 

expression patterns of the associated gene. Many studies have shown that in higher 

organisms, CRM is a common strategy in regulating gene expression. Clustered TF 

binding sites direct tissue/temporal-specific in vivo gene expression (Kirchhamer, Yuh et 

al. 1996; Arnone and Davidson 1997; Wasserman and Sandelin 2004; Blanchette, 

Bataille et al. 2006; Sinha, Liang et al. 2006). Consequently, clusters of TF binding sites, 

along with phylogenetic conservation and other measures of “regulatory potential”, have 

been widely used in computational prediction of CRMs and is a more reliable indicator of 

in vivo regulatory function of DNA sequences (Kolbe, Taylor et al. 2004; Wasserman and 

Sandelin 2004; King, Taylor et al. 2005; Blanchette, Bataille et al. 2006; Sinha, Liang et 

al. 2006; Taylor, Tyekucheva et al. 2006; Ferretti, Poitras et al. 2007) .  

Due to the speedup modifications, Magma is capable of predicting regulatory sites from a 

larger space which encompasses more genes than the earlier discovered PhyloNet motifs 

in Chapter 2. Additionally, due to a better redundancy reduction algorithm, Magma 

motifs are more specific. They are less redundant, do not have overlapping exemplar 

sites, and are fewer than the PhyloNet results. Consequently, we inquired if these Magma 

sites cluster like known transcription factor binding sites. Conserved, exemplar instances 

from Magma-predicted motifs are highly clustered along the regulome. Furthermore, they 

occur more frequently than expected within known cis-regulatory modules (p<1e-9) (See 

Figure 13). Based on this, I extended the earlier framework (in Chapter 2) to predict 
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CRMs based on this more comprehensive motif collection. 

Figure 13: Magma exemplar sites are clustered within known cis-regulatory 

modules 

The “Known CRMs” track describes the genome intervals that have been validated by 

previous studies to have regulatory capacity; The tracks starting with the prefix 

“Region_” under the Magma title are conserved exemplar sites for the different Magma 

motifs discovered in this region; “RefSeq Genes” describe the gene models from the 

RefSeq database; and the “Conservation” and other genomes below it describe the 

conservation of this region in other nematode genomes. 

 

 

Predicting cis-regulatory modules 

Predicting cis-regulatory modules from sequence alone is challenging because a 

regulome-wide scan tends to over predict putative binding sites. Consequently this leads 

to an exaggeration of predicted clustered sites or CRMs (specificity problem). On the 

other hand, too few CRMs are predicted if only conserved exemplar sites are used as not 

all functional elements are conserved with enough instances to meet the multi-gene multi-
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species constraints (sensitivity problem). To ameliorate these seemingly-competing 

methods, I designed a framework that combines the two approaches to exploit both the 

sensitivity of regulome-scanning and the specificity of conserved exemplar sites. 

Regulome-scanning methods over-predict putative sites and CRMs for several reasons. 

These include: (1) use of excessive (possibly thousands) predicted motifs; (2) use of non-

complex and degenerate motifs to score a large space; (3) a significant portion of the 

motifs are redundant; (4) overly relaxed site-matching criteria; (5) overly generous site 

extension criteria to define modules. The method presented here reduces these unwanted 

results by using the previously discovered collection of 2309 Magma motifs, a reasonably 

sized set given the ~900 estimated C. elegans TFs and many other RNA-binding proteins 

& RNAs. Additionally, these motifs have little redundancy due to our post-processing 

set-cover step. We further ameliorate the problem of over-predicting CRMs by only 

scanning motifs with 12 or more bits of information using Patser (Hertz and Stormo 

1999) and find peaks using CERMOD (Zhao, Ihuegbu et al. 2011). CERMOD calculates 

the average number of Patser-predicted binding and a Z-score for each position along a 

sequence. Using Z-scores ≥ 3.09 (corresponding to p-value = 1.0E-3), CERMOD selects 

peaks and extends them in both directions if the next position with Z-score > 0 is within 

30bp. We keep scanned peaks that are comprised of 3 or more different motif instances 

and combine the intervals with the original high-confident conserved Magma exemplar 

sites from all 2309 motifs. After clustering nearby sites and peaks (within 75bp), we 

define our final set of predicted CRMs. We predict 110,933 Magma-based CRMs 

covering ~9.75Mbp of intergenic and intronic bases (an average of ~88bp). Table 5 

shows the distribution of predicted CRMs across the regulome near coding genes. 
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Consistent with known regulatory elements, the upstream and first intron regions contain 

the greatest density of predicted modules. 

 Table 5: Distribution of Predicted CRMs surrounding protein-coding genes 

Location 

Number of 

CRMs 

Coverage 

(bp) 

Size of input 

region (bp) 

Fraction of 

input region 

1kb 5’ 

Intergenic 51,567 4,575,173 21,043,726 21.74% 

5’ UTR 3,243 394,890 9,080,734 4.35% 

1st Intron 20,149 1,922,953 11,952,010 16.09% 

Other 

Intron 45,576 4,014,064 25,204,976 15.93% 

3’UTR 5,124 403,352 3,920,828 10.29% 

* Note: Some of these sites overlap different regulatory regions of multiple genes 

 

These predicted CRMs are available at the site 

http://ural.wustl.edu/~nihuegbu/Magma/homepage.html as tracks that can be viewed in 

the UCSC Browser. This presentation forum is especially useful for viewing the 

predicted CRMs in context with the original Magma conserved sites, gene models, 

conservation, and other relevant information. 
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Evaluating predicted cis-regulatory modules (CRMs)  

To evaluate our predicted CRMs, we performed a thorough search of existing literature 

and the Oreganno database (Montgomery, Griffith et al. 2006; Griffith, Montgomery et 

al. 2008) of regulatory elements to identify C. elegans genes which have nearby non-

coding regions that have been analyzed for regulatory capacity. We identified 44 genes 

that contain 79 CRMs of 400bp-length or less (see Table 6 at the end of this chapter). 

Sixty-nine (69) of these CRMs are in upstream regions and 10 are in intronic regions. 

These experimentally determined regulatory regions are important for their 

corresponding gene expression at various developmental stages and in a broad range of 

tissues including: neurons, hypoderms, excretory cells, muscle precursor cells, adult 

muscle cells, vulva cells, sheath cells, etc. They were determined by deletion and/or 

enhancer assays. Wherever possible, we use regions that are determined by enhancer 

assay because it better defines the boundary of regulatory regions that are sufficient in 

regulation.   

The predicted CRMs overlap 51 of the 79 (~65%) experimentally defined modules. Since 

most of the known CRMs reside in the upstream regions of genes (69/79) we evaluated 

the performance of our upstream predicted CRMs against this set. Forty-four (44) of the 

69 known upstream CRMs overlap a predicted upstream CRM. It is difficult to assess the 

significance of this overlap since the predicted CRMs and the known CRMs often do not 

have comparable lengths. Larger portions of non-coding sequences are usually tested in 

enhancer or deletion assays to curb the risk of failure. Hence the reported CRM intervals 

are often much larger than the actual functioning portions. Additionally, enhancer assays 

are laborious (a major reason why only few CRMs are known). Therefore many non-
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coding portions which are predicted to be CRMs may actually regulate nearby genes but 

have not been tested. Nevertheless, we see that this overlap in upstream predicted CRMs 

and known CRMs is significant at p≪0.001 using a Chi-Square test (see Figure 14). 

Figure 14: Predicted Upstream CRMs significantly overlap known Upstream CRMs 

 

 

 

 

 

Known Upstream CRMs 

(14,499bp) 

 

Predicted Upstream CRMs 

(~4.84Mbp) 

Entire Promoterome 

(~20.70Mbp) 

~3.9kbp 

p≪0.001 
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Experimental test of CRM prediction 

  

mlc-1 and mlc-2 are the two muscle regulatory myosin light chain genes in C. elegans. 

They are divergently located and share a 2.6 kb intergenic region. It was shown that they 

are both expressed in the body-wall muscles, pharyngeal muscles, and vulval muscles. 

However, the intergenic region has not been analyzed in detail to identify all the 

regulatory sequences that drive their expression. Previous study has shown that the first 

400 bp of mlc-2 upstream sequence is enough to drive its expression in the body wall 

muscle cells (GuhaThakurta, Schriefer et al. 2004). To gain better information about 

transcriptional regulation of mlc-1 and mlc-2, the new Magma-based module prediction 

method was applied on their intergenic region and predicted modules were 

experimentally tested. Three (3) Magma-based CRMs were predicted within this 2662 bp 

DNA fragment (Figure 15): [17,456,614 - 17,456,944] (nearest to mlc-2), [17,457,025 - 

17,457,240] (near mlc-2) and [17,458,974 - 17,459,154] (nearest to mlc-1). The predicted 

CRM closest to mlc-2 overlaps a 400bp region that had been previously shown to drive 

expression in the body wall muscle (GuhaThakurta, Schriefer et al. 2004). As tested in 

Chapter 2, the DNA fragment which covers the middle predicted module showed 

enhancer activity for pharyngeal muscle. Again, it is interesting to note that mlc-2 gene is 

known to be expressed in both body wall and pharyngeal muscle. We have uncovered a 

separated CRM that specifically drives its pharyngeal muscle expression. 
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Figure 15: Verifying a Magma-based module for pharyngeal muscle 

The “Magma” track contains conserved exemplar sites for the different Magma motifs 

discovered in this region;  The track below the title “Experimentally Tested Regions” are 

the two regions tested in Chapter 2; The “Known Modules” track describes the genome 

intervals that have been validated by previous studies to have regulatory capacity; The 

“Magma CRMs” track shows the predicted CRMs using Magma motifs in this chapter; 

The track below “RefSeq Genes” shows the gene models from the RefSeq database; and 

the “Conservation” and other genomes below it describe the conservation of this region 

in other nematode genomes. 
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Conclusion 

 

Cis-Regulatory modules (CRMs) are DNA stretches of dense clustered transcription 

factor binding sites that independently endow a nearby gene with conditions-specific 

spatial/temporal expression patterns. Likewise, the previously discovered Magma 

exemplar sites were observed to be highly clustered, especially within known modules. 

This observation spurred the development of a framework for predicting CRMs in C. 

elegans to augment the few known modules. 

This approach ameliorates the challenges of CRM prediction: high sensitivity but over-

prediction with scanning-only methods and low sensitivity but high specificity with 

conservation-only methods. The proposed solution combines both scanning and 

conservation information. The regulome is scanned with more complex motifs (thereby 

reducing over-prediction due to degenerate or simple motifs) and their instances are 

clustered with nearby conserved exemplar sites into putative CRM windows. 

This method predicts 110,933 Magma-based CRMs covering ~9.75Mbp of intergenic and 

intronic bases (an average of ~88bp). These predictions are evaluated by measuring their 

overlap with known, literature compiled CRMs. Predicted CRMs overlap with 51/79 

(~65%) of known CRMs. Furthermore upstream predicted CRMs overlap 44 of the 

known 69 upstream CRMs significantly at p≪0.0001. 

Finally, two regions upstream to mlc-2 are experimentally tested: one includes a 

predicted CRM and the other does not. We show that the region that includes the 

predicted CRM drives pharyngeal expression of mlc-2 and no enhancer activity was 

observed for the other. 
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Table 6: Experimentally tested cis-regulatory modules 

Chr Start End Name Expression Reference 

chrI 3682153 3682215 ftn-2 ion dependent 
transcription in 
intestine 
(necessary and 
sufficient) 

An iron enhancer element in 
the FTN-1 gene directs iron-
dependent expression in 
Caenorhabditis elegans 
intestine. Romney SJ, Thacker 
C, Leibold EA. J Biol Chem. 
2008;283(2):716-25 , 
necessary and sufficient 

chrI 7267057 7267434 myo-
1 

    

chrI 14142193 14142462 kal-1 AIY, other 
neurons (EA). 

Genomic cis-regulatory 
architecture and trans-acting 
regulators of a single 
interneuron-specific gene 
battery in C. elegans. 

chrI 14863499 14863679 unc-
54 

  Sequence requirements for 
myosin gene expression and 
regulation in Caenorhabditis 
elegans.   Okkema PG, 
Harrison SW, Plunger V, 
Aryana A, Fire A. Genetics. 
1993;135(2):385-404. 

chrII 9614736 9614976 hlh-6 pharyngeal 
glands, minimal 
promoter 

Gland-specific expression of 
C. elegans hlh-6 requires the 
combinatorial action of three 
distinct promoter elements. 
Raharjo I, Gaudet J. Dev Biol. 
2007;302(1):295-308.  
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chrII 10316142 10316447 gcy-5 neurons (EA or 
minimal 
promoter)  

The molecular signature and 
cis-regulatory architecture of 
a C. elegans gustatory 
neuron. Etchberger JF, Lorch 
A, Sleumer MC, Zapf R, Jones 
SJ, Marra MA, Holt RA, 
Moerman DG, Hobert O.  
Genes Dev. 2007 Jul 
1;21(13):1653-74. 

chrII 10912854 10912950 sra-11 AIY, other 
neurons(EA). 

  

chrIII 5934897 5935197 zmp-1 AC, VulA, VulE 
(EA) 

 cis-Regulatory control of 
three cell fate-specific genes 
in vulval organogenesis of 
Caenorhabditis elegans and C. 
briggsae. Kirouac M, 
Sternberg PW. Dev Biol. 
2003;257(1):85-103 

chrIII 7541988 7542326 lin-39 p7/8, p5/6, VCN, 
p5.p, p8.p (EA) 

  

chrIII 7757896 7758128 cdh-3 AC (EA)   

chrIII 10186156 10186394 unc-
47 

minimal 
promoter 

Coordinated transcriptional 
regulation of the unc-25 
glutamic acid decarboxylase 
and the unc-47 GABA 
vesicular transporter by the 
Caenorhabditis elegans UNC-
30 homeodomain protein. 
Eastman C, Horvitz HR, Jin Y. J 
Neurosci. 1999;19(15):6225-
34. minimal promoter 
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chrIV 5537956 5538014 fem-1 minimal 
promoter 

 Gaudet J, VanderElst I, 
Spence AM. Post-
transcriptional regulation of 
sex determination in 
Caenorhabditis elegans: 
widespread expression of the 
sex-determining gene fem-1 
in both sexes. Mol Biol Cell. 
1996 Jul;7(7):1107-21. 

chrV 7548176 7548238 ftn-1 ion dependent 
transcription in 
intestine 
(necessary and 
sufficient) 

An iron enhancer element in 
the FTN-1 gene directs iron-
dependent expression in 
Caenorhabditis elegans 
intestine. Romney SJ, Thacker 
C, Leibold EA. J Biol Chem. 
2008;283(2):716-25 , 
necessary and sufficient 

chrV 10271236 10271379 snap-
25 

motor neurons 
(necessary and 
sufficient) 

Neuron cell type-specific 
SNAP-25 expression driven by 
multiple regulatory elements 
in the nematode 
Caenorhabditis elegans. 

chrV 10270425 10270561 snap-
25 

amphid, phasmid 
neurons 
(necessary and 
sufficient) 

  

chrV 10921734 10922045 nas-
31 

exlusive 
excretory cell 
(minimal 
promoter) 

Distinct regulatory elements 
mediate similar expression 
patterns in the excretory cell 
of Caenorhabditis elegans. 
Zhao Z, Fang L, Chen N, 
Johnsen RC, Stein L, Baillie DL. 
J Biol Chem. 2005, 
18;280(46):38787-94. 
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chrX 7118491 7118844 hen-1 AIY, other 
neurons (EA). 

Genomic cis-regulatory 
architecture and trans-acting 
regulators of a single 
interneuron-specific gene 
battery in C. elegans. 

chrX 7175347 7175668 bar-1 subset of ventral 
cord neurons 
(EA) 

  

chrX 7537858 7538018 dpy-7 hypodermal cell 
(EA) 

cis regulatory requirements 
for hypodermal cell-specific 
expression of the 
Caenorhabditis elegans 
cuticle collagen gene dpy-7. 

chrX 15298146 15298427 ser-2 minimal 
promoter 

Genomic cis-regulatory 
architecture and trans-acting 
regulators of a single 
interneuron-specific gene 
battery in C. elegans. 

chrX 17456484 17456883 mlc-2 muscle (minimal 
promoter) 

Novel transcription regulatory 
elements in Caenorhabditis 
elegans muscle genes. 
GuhaThakurta D, Schriefer LA, 
Waterston RH, Stormo GD. 
Genome Res. 2004 
Dec;14(12):2457-68. 

chrI 6780601 6780819 cye-1 neurons, intestin   Brodigan, T.M., Liu, J., Park, 
M., Kipreos, E.T., and Krause, 
M. (2003). Cyclin E expression 
during development in 
Caenorhabditis elegans. Dev. 
Biol. 254, 102.115.   

chrI 6780211 6780297 cye-1 seam cell, 
embryonic 

  

chrI 6780085 6780211 cye-1 vulval and p   

chrII 4518519 4518598 hlh-1 BWM (EA)  use enhancer assay position 
instead of deletion assay 
position 
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chrII 4518106 4518330 hlh-1 D, MS (DA) Elements regulating cell- and 
stage-specific expression of 
the C. elegans MyoD family 
homolog hlh-1.     Krause M, 
Harrison SW, Xu SQ, Chen L, 
Fire A. Dev Biol. 
1994;166(1):133-48. 

chrII 4517123 4517476 hlh-1 mature BWM 
(DA) 

  

chrII 4516585 4516939 hlh-1 C, MS (DA)   

chrII 4516450 4516518 hlh-1 MS-
grandaughter 
(DA) 

  

chrII 4516245 4516422 hlh-1 BWM (EA)   

chrII 10217957 10218110 ref-1 endodermal cell 
(EA) 

Notch-GATA synergy 
promotes endoderm-specific 
expression of ref-1 in C. 
elegans. Neves A, English K, 
Priess JR. Development. 2007 
Dec;134(24):4459-68. Epub 
2007 Nov 14. 

chrIII 7552979 7553249 ceh-
13 

mail tail 
(necessary and 
sufficient) 

Expression of the C. elegans 
labial orthologue ceh-13 
during male tail 
morphogenesis.  Stoyanov 
CN, Fleischmann M, Suzuki Y, 
Tapparel N, Gautron F, Streit 
A, Wood WB, MÃ¼F. Dev Biol. 
2003 Jul 1;259(1):137-49.  

chrIII 7810911 7811214 egl-5 v6 lineage 
(enhancer assay) 

Dissection of cis-regulatory 
elements in the C. elegans 
Hox gene egl-5 promoter.   
Teng Y, Girard L, Ferreira HB, 
Sternberg PW, Emmons SW.  
Dev Biol. 2004 
,15;276(2):476-92. 

chrIII 7808959 7809273 egl-5 tail hyperderm, 
sex muscle 
(enhancer assay) 
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chrIII 7838410 7838728 ceh-
23 

CAN (EA)   

chrIII 7837066 7837250 ceh-
23 

neurons (EA)   

chrIII 7832700 7832743 ceh-
23 

neurons (EA)   

chrIII 12942359 12942538 unc-
25 

minimal 
promoter 

Coordinated transcriptional 
regulation of the unc-25 
glutamic acid decarboxylase 
and the unc-47 GABA 
vesicular transporter by the 
Caenorhabditis elegans UNC-
30 homeodomain protein. 
Eastman C, Horvitz HR, Jin Y. J 
Neurosci. 1999;19(15):6225-
34. 

chrIV 11057629 11057783 lin-3 anchor cell (EA) A cell-specific enhancer that 
specifies lin-3 expression in 
the C. elegans anchor cell for 
vulval development. Hwang 
BJ, Sternberg PW. 
Development. 
2004;131(1):143-51.  

chrV 8387145 8387332 gcy-7 neurons (EA or 
minimal 
promoter)  

The molecular signature and 
cis-regulatory architecture of 
a C. elegans gustatory 
neuron. Etchberger JF, Lorch 
A, Sleumer MC, Zapf R, Jones 
SJ, Marra MA, Holt RA, 
Moerman DG, Hobert O.  
Genes Dev. 2007 Jul 
1;21(13):1653-74. 

chrV 10671809 10671955 ceh-
22 

enhance 
expression (DA) 
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chrV 13811391 13811786 ceh-
24 

m8 (DA) Muscle and nerve-specific 
regulation of a novel NK-2 
class homeodomain factor in 
Caenorhabditis elegans. Harfe 
BD, Fire A. Development. 
1998 Feb;125(3):421-9. 

chrV 13811376 13811493 ceh-
24 

m8 (DA)   

chrV 13810684 13810741 ceh-
24 

head neurons 
(DA) 

  

chrX 489472 489793 egl-17 early expression 
(EA) 

Cis regulatory requirements 
for vulval cell-specific 
expression of the 
Caenorhabditis elegans 
fibroblast growth factor gene 
egl-17. Cui M, Han M. Dev 
Biol. 2003; 257(1):104-16.  

chrX 489428 489491 egl-17 VulD, VulC (EA) vulC, vulD 

chrX 488222 488385 egl-17 early stage, high 
level expression 
(EA) 

  

chrX 487205 487561 egl-17 M4 cell (DA) deletion assay 

chrX 489651 489753 egl-17 vulE, vulF,  cis-Regulatory control of 
three cell fate-specific genes 
in vulval organogenesis of 
Caenorhabditis elegans and C. 
briggsae. Kirouac M, 
Sternberg PW. Dev Biol. 
2003;257(1):85-103. 

chrX 489402 489560 egl-17 vulC, vulD   

chrX 1074724 1074931 lim-6 neurons (EA or 
minimal 
promoter)  

The molecular signature and 
cis-regulatory architecture of 
a C. elegans gustatory 
neuron. Etchberger JF, Lorch 
A, Sleumer MC, Zapf R, Jones 
SJ, Marra MA, Holt RA, 
Moerman DG, Hobert O.  
Genes Dev. 2007 Jul 
1;21(13):1653-74. 
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chrX 5100763 5101009 vit-2  MacMorris, M., Broverman, 
S., Greenspoon, S., Lea, K., 
Madej, C., Blumenthal, T., and 
Spieth, J. (1992). Regulation 
of vitellogenin gene 
expression in transgenic 
Caenorhabditis elegans: short 
sequences required for 
activation of the vit-2 
promoter. Mol. Cell. Biol. 12, 
1652.1662 

chrX 8116264 8116578 hlh-8 minimal 
promoter 

Analysis of a Caenorhabditis 
elegans Twist homolog 
identifies conserved and 
divergent aspects of 
mesodermal patterning. 
Harfe BD, Vaz Gomes A, 
Kenyon C, Liu J, Krause M, 
Fire A. Genes Dev. 1998 Aug 
15;12(16):2623-35.  

chrX 12467384 12467700 myo-
2 

  Sequence requirements for 
myosin gene expression and 
regulation in Caenorhabditis 
elegans.   Okkema PG, 
Harrison SW, Plunger V, 
Aryana A, Fire A. Genetics. 
1993;135(2):385-404. 

chrX 12467306 12467612 myo-
2 

    

chrX 12467831 12468053 myo-
2 

minimal 
promoter 

  

chrX 14684459 14684534 csq-1 minimal 
promoter 

Analysis of calsequestrin gene 
expression using green 
fluorescent protein in 
Caenorhabditis elegans. Cho 
JH, Eom SH, Ahnn J. Mol Cells. 
1999;9(2):230-4. 

chrX 14684269 14684480 csq-1 BWM (EA)   
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chrX 16367009 16367296 ace-1 minimal 
promoter 

Structure and promoter 
activity of the 5' flanking 
region of ace-1, the gene 
encoding 
acetylcholinesterase of class 
A in Caenorhabditis elegans. 
Culetto E, Combes D, Fedon 
Y, Roig A, Toutant JP, 
Arpagaus M. J Mol Biol. 
1999;290(5):951-66. 

chrX 16366599 16366804 ace-1 pm5, neuron 
(DA) 

  

chrX 16365248 16365566 ace-1 BWM, anal 
muscle, vulval 
muscle cells (DA) 

  

chrX 16364899 16365248 ace-1 BWM, anal 
muscle (DA) 

  

chrI 14862280 14862368 unc-
54 

   Sequence requirements for 
myosin gene expression and 
regulation in Caenorhabditis 
elegans.   Okkema PG, 
Harrison SW, Plunger V, 
Aryana A, Fire A. Genetics. 
1993;135(2):385-404. 

chrV 10265894 10266133 snap-
25 

motor neurons 
(EA) 

Neuron cell type-specific 
SNAP-25 expression driven by 
multiple regulatory elements 
in the nematode 
Caenorhabditis elegans. 

chrV 10263906 10263934 snap-
25 

motor neurons 
(EA) 

  

chrV 10265323 10265348 snap-
25 

pharyngeal 
neurons (EA) 

  

chrV 10263829 10263858 snap-
25 

mechanosensoty 
neruons (EA) 
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chrII 4519082 4519125 hlh-1 MS-
granddaughter 
cells 

Elements regulating cell- and 
stage-specific expression of 
the C. elegans MyoD family 
homolog hlh-1.     Krause M, 
Harrison SW, Xu SQ, Chen L, 
Fire A. Dev Biol. 
1994;166(1):133-48. 

chrII 4519751 4519862 hlh-1 GLR cells (EA)   

chrV 10671979 10672225 ceh-
22 

  OREG0001740* 

chrV 13502235 13502489 avr-
15 

  OREG0001745* 

chrX 2215627 2215881 peb-1   OREG0001746* 

chrX 15517456 15517710 eat-
20 

  OREG0001747* 

chrV 6691816 6692212 mtl-1   OREG0001824* 

chrV 14018598 14018950 mtl-2   OREG0001825* 

chrX 7175658 7175978 bar-1   OREG0001987* 

chrX 489420 489562 egl-17   OREG0002003* 

chrX 489654 489755 egl-17   OREG0002011* 

chrIII 7754894 7755048 cdh-3   OREG0002021* 

* Identifier in Oreganno Database of regulatory elements 
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Chapter 5: HLH-30 is a novel transcription 

factors involved in host defense response
3
 

  

                                                           
 
3
 This chapter is adapted from a manuscript in preparation: Ihuegbu, N.*, Visvikis, O.*, 

Luhachack, L.G., Stormo, G.D., Irazoqui, J.E. (2011). HLH-30/MiTF are novel 

transcription factors involved in host defense response. This is an ongoing collaboration 

between Nnamdi Ihuegbu, Orane Visvikis, Gary Stormo and Javier Irazoqui. This chapter 

and the tentative title represents parts of a manuscript that will be submitted once further 

experiments are completed. We anticipate submitting the complete manuscript for 

publication consideration in a few weeks.  
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Introduction 

 

As well as being an excellent tool for genetic manipulation, C. elegans has also 

been extensively used as a model system to study many human pathogens and infections 

(Kurz and Ewbank 2000; Aballay and Ausubel 2002; Couillault and Ewbank 2002; Sifri, 

Begun et al. 2005; Powell and Ausubel 2008). Many of these cause potent intestinal 

infections in nematodes that result in death. Like in humans, the major site for host-

microbe interaction is along the intestinal tract. Yet unlike humans, C.elegans intestinal 

tract is made up of 20 intestinal epithelial cells (IECs) that are non-reneweable; they do 

not shed and proliferate like mammalian IECs (Figure 16).  
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Figure 16: Schematic representation of the C. elegans intestine 

The following figure and legend were taken from (Irazoqui, Urbach et al. 2010). The C. 

elegans intestine is composed of 20 intestinal epithelial cells. These cells are organized in 

9 rings: ring 1 contains four cells and rings 2–9 contain two cells each. The apical surface 

of each of the intestinal epithelial cells forms the microvillar brush border and faces the 

intestinal lumen. The intestinal epithelium is the major interface of interaction between C. 

elegans and ingested microbes 

 

  

There are special advantages to using a transparent organism to study pathogenesis. 

Animals can be infected, through their diet, with pathogens laced with reporter 

constructs. These constructs contain a reporter that fluoresces as the poisoned diet 

progresses along the pharynx and accumulates in the intestinal tracts (Irazoqui, Ng et al. 

2008). Additionally pathogenesis can be monitored by plotting survival curves (Tan, 
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Mahajan-Miklos et al. 1999), observing morphological or behavioral changes (Hodgkin, 

Kuwabara et al. 2000; Pujol, Link et al. 2001; Zhang, Lu et al. 2005). Their gene 

expression differences can be ascertained by using microarrays, RNA-Seq and 

quantitative reverse polymerase chain reactions (qRT-PCR) (Troemel, Chu et al. 2006). 

 Staphylococcus aureus is a gram-positive bacterium that causes many diseases in 

animals (Sifri, Begun et al. 2003; Cuny, Friedrich et al. 2010). Furthermore increasing 

virulent methicillin-restistant strains are worrisome and motivating further studies into 

the host-immunity response to this pathogen (Boucher and Corey 2008). As reviewed in 

Irazoqui, Urbach et al. (2010), human colonization by S. aureus is widespread as 30% of 

the population carries the bacteria in the microflora of epithelia in the nasopharynx, skin, 

and intestine (Graham, Lin et al. 2006). S. aureus can also cause severe skin infections, 

osteomyelitis, endocarditis, food poisoning, pneumonia, and flesh-eating disease (Gordon 

and Lowy 2008). To successfully present these traits in the host, it deploys several 

virulence factors, including cytolysis which destroy the host’s immune cells and tissues 

(Nizet 2007; Diep and Otto 2008). 

Mechanisms of defense evolved before the split between invertebrates and 

vertebrates, thus many host signaling pathways are conserved and shared between 

nematodes and humans. Because nematodes represent a much simpler system, 

invertebrate genetic models have been used to identify conserved signaling pathways that 

also play key roles in mammalian innate immune response. Some of these include: p38 

MAPK, insulin, TGF-β, and β-catenin pathways (Kurz and Ewbank 2003; Irazoqui, Ng et 

al. 2008; Zugasti and Ewbank 2009; Irazoqui, Urbach et al. 2010).  

The pathogen Staphylococcus aureus causes intestinal pathogenesis and nematode 
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death, and has been shown to trigger a transcriptional host-defense response. 

Interestingly, this response is independent of the p38 MAPK, insulin and TGF-beta 

pathways, and relies only partially on β-catenin pathway (Irazoqui, Troemel et al. 2010). 

To further understand the host response to S.aureus, we embarked on this project to 

uncover the differential transcriptional regulation triggered in C. elegans in response to 

infection. Knowing the collection of genes differentially regulated by S. aureus may help 

uncover specific pathways activated by pathogenic infections in C. elegans and possibly 

in humans as well. 
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Results 

 

An M-Box motif corresponding to HLH-30 is enriched in promoters of S. aureus 

induced genes 

 

Previous published work measured differential expression due to S. aureus 

infection in worms with expression microarrays (Irazoqui, Troemel et al. 2010). Promoter 

regions for 688 genes were deemed significantly up-regulated after infection (p<0.05) 

and we searched for potential regulatory elements in them from a catalog of conserved 

motifs identified by Magma (Multiple Aligner of Genomic Multiple Alignments) 

(Ihuegbu, Stormo et al. 2011). Using C. elegans as the reference genome, Magma 

compares segments of the genome that are conserved across 5 other nematode species to 

identify conserved motifs that have many instances within the reference genome – typical  

characteristics of regulatory motifs. The catalog contains 2309 conserved motifs obtained 

from all classes of non-coding sequences: intergenic, intronic and UTR regions. Here we 

used the 2kb upstream region of the 688 up-regulated genes to identify which conserved 

motifs are significantly enriched (adjusted p<0.05, see Methods). After excluding 

promiscuous motifs that showed enrichment in many other unrelated conditions, two 

significant motifs were identified: a GATA element and an M-Box motif 

(Region_366771.1 see Figure 17). GATA elements have been previously associated with 

intestinal development and biology (Maduro 2006; Pauli, Liu et al. 2006; McGhee, 

Fukushige et al. 2009). Consequently, we decided to focus on the novel enrichment of the 

M-Box motif in this S. aureus up-regulated set (BH-corrected p<0.0056). 
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Figure 17: An M-Box motif is enriched in S. aureus induced genes 

 

 

Grove and colleagues recently used Protein Binding Microarrays (PBM) to 

uncover the in vitro binding specificity of several bHLH proteins. They found three 

bHLH factors (including HLH-30) that specifically bind as a homodimer to CACGTG 

(Grove, De Masi et al. 2009). This is the exact consensus sequence of our discovered, 

enriched motif. 

We searched the TRANSFAC database of previously discovered transcription 

factor binding site (TFBS) models from various organisms to find the closes match to our 

motif. We found that the discovered M-Box motif (CACGTG) is similar to a few 

mammalian HLH factors, including the MiTF/TFEB motif (CAT/CGTG). According to 

the KEGG database of orthologs and TreeFam families of proteins, Microphthalmia-

associated transcription factor (MiTF) is a homolog of HLH-30 (Figure 18). 
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Figure 18: MiTF is homologous to HLH-30 

The following figure is adapted from KEGG and TreeFam protein family trees 

 

 

Out of the 3 bHLH proteins Grove, De Masi et al. (2009) showed to bind to the 

discovered M-Box consensus sequence, HLH-30 is the only protein that has a 

mammalian (specifically human) homolog (MiTF). Additionally, previous studies have 

implicated MiTF in a variety of stress responses (Saha, Singh et al. 2006; Liu, Fu et al. 

2009). 

All this led us to the hypothesis that the discovered M-Box motif is in fact a 

preferred binding profile for HLH-30 and that HLH-30 plays a significant role in 

response to S. aureus infection in nematodes. In accordance with this hypothesis, RT-

qPCR experiments showed that hlh-30 mRNA is up-regulated by 2 fold after 8 hours of 

infection (Figure 19).  
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Figure 19: hlh-30 is up-regulated by 2-fold after 8 hrs of S. aureus infection 

This figure displays the mRNA levels of hlh-30 and clec-71 (positive control) using qRT-

PCR. At each time point, replicates for each strain (fed either S. aureus or a normal diet 

of E. coli ), were collected and their mRNA levels for these genes were measured. 

 

HLH-30 is localized in the nucleus upon S. aureus infection 

 

 To assess the localization of HLH-30 protein in vivo, we generated transgenic 

wild type animals expressing GFP- tagged HLH-30 under its own promoter (hlh-

30p::HLH-30::GFP). We found that HLH-30 is expressed in many tissues, including the 

intestine – the major tissue exposed to the pathogen. At a sub-cellular level, HLH-30 

equally localizes in the cytoplasm and the nucleus when animals are grown on standard 

non-pathogenic E. coli OP50. Thirty (30) minutes after transfer to S. aureus lawn, hlh-

30p∷HLH-30::GFP accumulates in the nucleus of 95% of exposed animals. This is 

illustrated by the punctate pattern in the “infected” panel of figure 20 versus the more 
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evenly distributed pattern in the “uninfected” panel. This is shows that HLH-30 

localization is regulated during infection, supporting the hypothesis of its role as a major 

transcription factor involved in the host response. Altogether, these results demonstrate 

that HLH-30 is induced upon infection and targeted to the nucleus to trigger the host 

defense response. 

 

Figure 20: HLH-30 is localized in the nucleus upon S. aureus infection 

 

uninfected infected 

hlh-30p::HLH-30::GFP  hlh-30p::HLH-30::GFP  
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Transcriptional differences due to S. aureus infection 

 

To gain insight on the role of HLH-30 in the transcriptional host response, we 

investigate which transcripts HLH-30 regulates in response to S. aureus. We used RNA-

Seq to measure mRNA abundances of wild type and hlh-30(-) animals fed either non-

pathogenic E. coli or S. aureus (i.e. 4 samples). Sequenced 42-bp reads from the two 

biological replicates in each condition were aligned to the C. elegans WS190 genome 

yielding an average of 12.7 million aligned reads for the 8 replicates (~21x coverage 

assuming a transcriptome of 25Mbp) (See Table 7 and  Methods). The biological 

replicates are nearly identical as we observed little biological variance between them (r
2 

values range from 0.94 to 0.97).  

Table 7: Wild type and hlh-30(-) RNA-Sequencing reads for infected and uninfected 

samples 

 

Replicate mRNA Sample Total Mapped Reads 
Total 

Mapped 
Reads % 

05_14_11 

hlh-30_OP50 11,502,365 95.18% 

hlh-30_SA 13,433,320 95.45% 

N2_OP50 11,630,550 95.11% 

N2_SA 11,219,832 95.34% 

05_26_11 

hlh-30_OP50 11,690,588 95.42% 

hlh-30_SA 12,609,269 94.85% 

N2_OP50 13,341,375 95.45% 

N2_SA 11,383,914 95.28% 
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To avoid the variance overdispersion problem, we used DESeq (which uses a 

negative binomial distribution to model the expected variance) to determine significant S. 

aureus induced transcripts (SAITs) from our replicated RNA-Seq design (adjusted 

p<0.05) (Anders and Huber 2010). We implemented DESeq twice to determine the wild 

type SAITs and the mutant SAITs (i.e N2.SAITs and hlh-30(-).SAITs).  

Figure 21 shows the number of differentially expressed transcripts that are HLH-

30 dependent (HLH-30.dep.SAITs), HLH-30 independent (HLH-30.indep.SAITs) and 

those that are differentially expressed even when lacking HLH-30 (HLH-

30.comp.SAITs). We observe a significant overlap between genes with promoters that 

have highly occupied M-Box instances and the HLH-30.dep.SAITs set (p<4.6e-4). This 

enrichment is specific as the HLH-30.indep.SAITs (p<0.8484) and HLH-30.comp.SAITs 

sets (p<0.6318) are not significantly enriched for this motif. This specific enrichment 

again bolsters our argument that the Magma- discovered M-Box motif represents the 

preferred binding specificity for HLH-30. 
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Figure 21: A HLH-30 motif is specifically enriched in HLH-30-dep-SAITs 

 

 

 

Validation of HLH-30 targets 

 

To confirm the RNA-seq results, we measured the expression of 10 genes 

previously implicated with host defense in C.elegans using qRT-PCR (Irazoqui, Troemel 

et al. 2010). Six (6) of these were predicted to be HLH-30.dep.SAITs. Flavin-containing 

monooxygenase (fmo-2) is one of the predicted targets of HLH-30. A conserved 

exemplar site of the HLH-30-like M-Box motif lies just 195bp upstream of its translation 

start site. As seen in figure 22, fmo-2 is down-regulated by almost 8-fold when hlh-30 is 

knocked out. All 10 genes are down-regulated by at least 2-fold in the mutant, and 8 of 

them down-regulated by at least 5-fold. This demonstrates that, in this set of targets, 

 

 

N2. SAITs (494) hlh-30(-).SAITs (247) 

HLH-30-dep SAITs 
(p<0.00046) 
 

HLH-30-indep SAITs 
(p<0.8484) 

HLH-30-comp SAITs 
(p<0.6318) 

188 59 435 
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HLH-30 is an important regulator involved in host-defense and, in the case of fmo-2, this 

regulation is likely direct.  

Figure 22: HLH-30 targets are down-regulated in mutant animals versus wild type 
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hlh-30(-) animals have significantly reduced lifespan due to infections 

 

To determine the phenotype and impact of HLH-30 on host-defense and 

mortality, we performed S. aureus killing assays comparing wild type animals to hlh-30(-

) mutants. Results show that hlh-30(-) mutants animals display enhanced susceptibility to 

S. aureus compared to wild type (Figure 23A).  This results might be explained by a 

defective transcriptional response in hlh-30(-) mutants. To determine if this response is 

specific to the Gram positive S. aureus pathogen, we tested the susceptibility of hlh-30(-) 

on the gram negative Pseudomonas aeruginosa. We performed killing assay using 

standard protocols (Powell and Ausubel 2008) and found that hlh-30(-) animals are more 

susceptible to both pathogens (Figure 23 A & B) but not oxidative stress (Figure 23 C). 

In both killing assays, we see that hlh-30(-) animals live about a day shorter than their 

wild type counterparts. This suggests that HLH-30 is a central regulator of the host 

response to multiple infections. 
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Figure 23: hlh-30(-) animals are more susceptible to infections 

 

It is worth noting that hlh-30(-) animals have shorter lifespans than their wild type 

counterparts on non-pathogenic bacteria. As seen in Figure 24, hlh-30(-) animals 

typically live about 5 days shorter than wild type animals. Yet the stark infection 

phenotype difference we notice due to hlh-30(-) takes place relatively quickly within 2 

days while the aging difference occurs after 5 days. 

 

 

 

A 

B 

C 
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Figure 24: hlh-30(-) animals have shorter lifespans 
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Methods and Materials 

 

Strains  

 

C. elegans strains used in this study are detailed in Table 8. Bacterial strains are detailed 

in Table 9. Transgenic animals where obtained by gonadal microinjection in wild type 

young gravid adults using pPRF4-rol-6 as a selection marker. hlh-30p::HLH-30::GFP 

fusion expression plasmid was obtained by LR recombinaison (Gateway system, 

invitrogen) using pDONR P4-P1R-hlh-30p (Open Biosystem), pDONR201-HLH-30 

ORF (Vidal ORFeome) and pKA674 expression plasmid.  

C. elegans Growth 

 

C. elegans was grown on nematode-growth media (NGM) plates seeded with E. coli 

OP50 at 15–20°C according to standard procedures (Brenner 1974). 

Cdc25 RNAi Knockdown 

 

RNAi was carried out using bacterial feeding RNAi (Timmons, Court et al. 2001). L4 

animals were incubated on Cdc25 RNAi bacteria for 48 h at 15°C before transfer to 

killing plates. Cdc25 RNAi clone was obtained from the Ahringer laboratory and 

confirmed by sequencing. 

Killing Assays  

 

S. aureus assays were performed as described in Sifri, Begun et al. (2003).  P. aeruginosa 

killing assays were performed as described in Powell and Ausubel (2008). Briefly, 

NCTC8325 was grown overnight in tryptic soy broth (TSB, BD) with 10 g/ml nalidixic 
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acid (Sigma). Ten l of overnight cultures were seeded on 35 mm tryptic soy agar (TSA, 

BD) plates with 10g/ml nalidixic acid, and incubated 4h at 37°C. PA14 was grown 

overnight in Luria Browth (LB, BD). Ten l of overnight cultures were seeded on 35 mm 

slow killing plates, which contain modified NGM (0.35% peptone), incubated 24 h at 

37°C then 24 h at 25°C, before adding 80–100 g/ml 5-fluorodeoxyuridine (FUDR, 

Sigma), to prevent progeny from hatching. For S. aureus, a total of 25–35 Cdc25 RNAi 

treated animals were transferred to each of three replicate plates. For P. aeruginosa, a 

total of 25–35 L4 hermaphrodites were transferred to each of three replicate plates. 

Animals that died of bursting vulva or crawling off the agar were censored. Experiments 

were performed at least twice. 

Lifespan assays 

 

For lifespan assay, a total of 25–35 synchronized L4 hermaphrodites were transferred to 

each of three replicate plates per strain. For E.coli OP50 lifespan and heat-shock, 

NGM+OP50 plates were supplemented with 80 –100g/ml FUDR. For lifespan under 

oxidative stress conditions, 6 synchronized L4 hermaphrodites were transferred in M9 

supplemented with paraquat 100mM (Sigma) to each well of three replicate 12 well 

plates per strain. Experiments were performed at least twice. 

Quantitative RT-PCR Analysis 

 

Synchronized C. elegans animals were treated similar to the killing assays described 

above, where S.aureus infected samples were compared with parallel samples feeding on 

heat-killed E. coli OP50 on the same medium. Total RNA was extracted using TRI 
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Reagent (Molecular Research Center) and reverse transcribed by using the SuperScript 

III kit (Invitrogen). cDNA was subjected to qRT-PCR analysis as described (Irazoqui, 

Troemel et al. 2010). Primer sequences are detailed in Table 10. All values are 

normalized against the control gene snb-1, which did not vary under conditions being 

tested. Fold change was calculated by using the Pfaffl method (39). One-sample t tests 

were performed by using Graphpad Prism 4. A P value less than or equal to 0.05 was 

considered significant.  

 

Table 8 : list of C. elegans strains 

Strain Relevant genotype source 

N2 Bristol Wild type CGC 

VT1584 hlh-30(tm1978)IV CGC 

JIN1610 jinEx[rol-6] This work 

JIN1590 jinEx[hlh-30p::HLH-

30::GFP,rol-6] 

This work 

 

 

Table 9 : list of bacterial strain 

Bacterial species Bacterial strains 

Escherichia coli OP50 Ura- StrR 

Staphylococcus aureus NCTC832 Wild type strain; rsbU mutant 

Pseudomonas aeruginosa PA14 Pathogenic clinical isolate 

 

Table 10: list of primer for qRT-PCR  

Name Sequence (5’-3’) 

snb-1 F CCGGATAAGACCATCTTGACG 

snb-1 R GACGACTTCATCAACCTGAGC 

clec-60 F ACGGGCAAGTTATTGGAGAG 

clec-60 R ACACGGTATTGAATCCACGA 

F53A9.8 F GCGCTAAAACTCAACACCAA 

F53A9.8 R ATGTCCTTCATGGGAGTCGT 
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clec-52 F ATGGAGGAGATTTGGCTTCA 

clec-52 R CCTGTCCAATCCTTGTCCTT 

clec-71 F CGGTATCGAGCAAGACTCAC 

clec-71 R GCATTGACGGCATATATTGG 

exc-5 F CCTGATGGATCAACAACAACA 

exc-5 R TAAGTCTCTTGGCGGGAGAA 

lys-5 F TCCCAGAATTTATCATTCATCG 

lys-5 R TGGCATTCTTGACATTTTGC 

fmo-2 F AAGCTGGAGACACGAGGATT 

f mo-2 R GGAGTTAAGCATAGCTTGAGGAA 

ilys-3 F GCGAATGATCTTAGCTGTGC 

ilys-3 R CCAGTTCCAGCACATTGACT 

cpr-2 F CAGAACGACCTACACCAACG 

cpr-2 R CGGTTCTTGGAACAGGGTAT 

Y65B4BR.1 F AAATGTGATCACTGCCATTCA 

Y65B4BR.1 R ATTCCGGTCATGGATACGAT 

 

 

Uncovering HLH-30 from Expression Microarray 

 

 Irazoqui, Troemel et al. (2010) infected worms with S. aureus, RNA from replicates 

were extracted, labeled and hybridized to gene probes using the GPL200 Affymetrix C. 

elegans Genome Array (GSE21819). Assuming a normal distribution of the mean 

intensity fold-changes, we performed a Z-Score test and selected 688 genes with 

significantly increased log-fold changes (p<0.05).  

For each of the 2309 Magma-discovered motifs (M) we defined an occupancy 

score similar to Granek and Clarke (2005) for each promoter (P) in the genome: 

 

    (   )  [ ∑ ∏     (      )

  

   

        

   

] 
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In the above equation, M is a motif matrix containing the relative frequency of each base 

with respect to the consensus nucleotide. This is also known as a Position-Specific 

Affinity Matrix or PSAM (Foat, Houshmandi et al. 2005). The parameters Lp and LM are 

the respective lengths of the promoter and the motif. Using this score, a sum of 1 or better 

means the accrued sites for this motif along the promoter is as good as a consensus site. 

For each motif, we collected all promoters with occupancy scores equivalent to at least 

one consensus sequence and performed right-tailed fisher exact tests with this list and the 

688 genes to uncover enriched motifs. We report the enrichment p-value for each motif 

after correcting for multiple hypothesis testing. 

 

Method 2: Discovering differentially expressed transcripts using RNA-Seq 

 

After sequencing, raw 42-bp reads were aligned to the WS190 assembly of C. elegans 

using TopHat (Trapnell, Pachter et al. 2009). The abundance of transcripts were 

estimated and normalized as FPKMs using Cufflinks (Mortazavi, Williams et al. 2008; 

Trapnell, Williams et al. 2010). We used DESeq to determine differentially expressed 

transcripts between the uninfected and infected populations, given the two biological 

replicates, and only retained transcripts that were significant at an adjust p-value of less 

than 0.05. 
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Discussion and Conclusion 

 

In this chapter we show that a Magma-discovered M-Box motif is enriched in the 

promoters of up-regulated genes upon S. aureus induction. This motif is similar to that 

discovered for HLH-30 using in vitro protein binding microarrays (Grove, De Masi et al. 

2009). Using qRT-PCR we show that hlh-30 is up-regulated 2-fold upon S. aureus 

infection. Furthermore, in about 30 minutes much of the already translated HLH-30 

rushes into the nucleus in response to infection (~95% of animals showed a punctate 

fluorescent pattern). This increased transcription and available proteins executes a 

differential transcriptional program in which 435 transcripts show significant specific 

HLH-30-dependent S. aureus induction (SAITs). These SAITs are enriched for metabolic 

processes and their regulation by HLH-30 is critical for surviving the infection. In fact we 

show that HLH-30 is critical for surviving both the gram positive S. aureus and the gram 

negative P. auereginosa suggesting it is a central regulator in the hosts’ response to 

pathogenic bacteria. hlh-30(-) animals tend to live about 1 day shorter than their wild 

type counterparts due to infection. Interestingly, hlh-30 seems to also impact aging as 

these mutant animals also live much shorter than wild type animals and aging-related 

genes are overrepresented in the HLH-30.dep.SAITs. Yet this aging phenotype occurs 

much later after the infection phenotype. The molecular pathways relating aging and the 

ability to fight infections are not well defined but HLH-30 seems to play a central role in 

both and may be a productive target to further those studies. 

Finally, HLH-30 is homologous to the mammalian factor Microphthalmia factor (MiTF). 

Previous studies have implicated MiTF in various stresses (Saha, Singh et al. 2006; Liu, 

Fu et al. 2009) but not involved in pathogenic infections. Further studies will be required 
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to see if HLH-30’s role in regulating differential transcription due to infections is 

conserved in mammals via MiTF.   
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Chapter 6: Conclusions and Future Directions 

 This dissertation had two major aims: (1) To catalog all cis-regulatory elements 

within the intergenic and intronic regions surrounding every gene in C. elegans (i.e. the 

regulome) and (2) to determine cis-regulatory elements associated with expression under 

specific conditions. Applying PhyloNet and CERMOD was a significant initial step to 

achieving the first aim. We found motifs that matched several known transcription factor 

binding sites and other known regulatory elements. Additionally our module predictions 

overlapped most of the known modules. Yet these initial results had a lot of redundant 

motifs and the approach was not efficiently scalable to the entire C. elegans regulome. 

Magma (Multiple Aligner of Genomic Multiple Alignments) overcomes these 

shortcomings by: (1) utilizing more efficient HSP clustering methods that offer strong 

performance and quality guarantees. It uses interval clique finding to ensure maximality 

and exhaustive enumeration of clusters, with better scaling than general clique finding. 

(2) Magma uses an enumerative algorithm to convert HSP clusters to motifs that requires 

Θ(m
2
n), where n is the number of HSPs in the cluster and m  is the interval coverage of 

the largest cluster. However efficient use of lookup tables makes the quadratic cost small 

in practice. (3)  Magma uses a fast greedy set-cover solution to achieve a log(n) 

approximation to the motif redundancy problem. These differences allowed Magma to 

predict about 2300 motifs and 110,000 CRMs in the intergenic and intronic regions of 

about 99% of all protein-coding genes in C. elegans. Additionally we show that the 

approach tractably scales to higher order organisms with larger regulomes. 
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 Although I believe this is a milestone in motif-finding research, there are still 

other pertinent information that has been challenging for motif-finders to incorporate, but 

will mark the next-generation of these tools. Due to lack of TF concentration and 

chromatin accessibility information, most motif-finders predict more putative 

transcription factor binding sites than are observed to be bound by TFs (by ChIP-CHIP, 

ChIP-Seq and other methods). Hence the ability to incorporate contextual cell-state 

information such as the chromatin structure and other epigenetic marks will help make 

much more specific and informed motif predictions that reflect the functional state of the 

cell. The modENCODE project is currently pioneering the measurement of these 

epigenetic marks in different cells throughout C.elegans (Gerstein, Lu et al. 2010). As 

more of these kinds of information become available, motif-finders will be best served to 

incorporate their information into their models, similar to how conservation information 

has been incorporated. 

 To achieve the second aim of this thesis, we show functional enrichments of the 

predicted motifs in various expression datasets. The implication is that the motifs 

represent the binding specificities of TFs involved in the particular expression being 

measured. Using the GEO Omnibus database of expression microarray results we make 

hundreds of these predictions. In some cases we implicate known elements in novel 

functions (such as the possible role of GATA elements in response to Cadmium 

exposure) and in other times we see new regions of regulation (such as the enrichment of 

GATA elements in the introns of genes expressed in the uterus).  

 Specifically we predict and validate a novel role for HLH-30 in the host response 

to infection. S. aureus and P. aeruginosa are among the most common bacterial 



133 
 

infections in humans and cause many life-threatening symptoms. Lately, the increasing 

prevalence of Methicillin-resistant S. aureus (MRSA) is motivating a lot of studies to find 

novel pathways to combat the pathogen. HLH-30 is homologous to MiTF, a mammalian 

transcription factor that had previously been associated to some stress conditions but not 

infections. Inspecting the promoters of up-regulated genes in a S. aureus infection 

microarray, we discover an enrichment of a Magma-discovered M-Box motif. This motif 

was subsequently shown to be a binding preference for HLH-30. Results describe how 

the hlh-30 gene is up-regulated, and has increased nuclear localization in response to S. 

aureus. When hlh-30 is knocked out to create hlh-30(-) animals its predicted targets, 

which include previously implicated genes in host-defense, are also down-regulated 

under S. aureus. The predicted HLH-30-like M-Box motif is specifically enriched in this 

set of HLH-30-dependent S. aureus induced transcripts (SAITs). Finally, compared to 

their wild type counterparts, hlh-30(-) animals are not able to respond as well to 

infections and are more susceptible to their fatal effects. This infection-caused fatality 

occurs within 2-3 days, much quicker than the aging complications caused by knocking 

out the hlh-30 gene. 

 It will beneficial to know if MiTF (a human homolog of HLH-30) is a similar 

regulator of the host-defense to these pathogens. MiTF has several well defined targets, 

do these also show a MiTF-dependent infection induced up-regulation? How disruptive is 

the knockout of MiTF on the host’s ability to fight infection? In the case C. elegans, it 

was extremely fatal as its intestinal epithelial cells are non-renewable. Fortunately, this is 

not the case for humans. Can transgenically-increased levels of MiTF decrease 

susceptibility to these pathogens? Answers to these questions will provide valuable 
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insight of the conserved role of HLH-30/MiTF as a central regulator in the host’s defense 

to pathogens and, depending on their results, could eventually present a new potential 

target for anti-microbial drugs.  
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