
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Theses and Dissertations (ETDs)

1-1-2011

Efficient Automated Planning with New Formulations Efficient Automated Planning with New Formulations

Ruoyun Huang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

Recommended Citation Recommended Citation
Huang, Ruoyun, "Efficient Automated Planning with New Formulations" (2011). All Theses and
Dissertations (ETDs). 588.
https://openscholarship.wustl.edu/etd/588

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/588?utm_source=openscholarship.wustl.edu%2Fetd%2F588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Dissertation Examination Committee:
Yixin Chen, Chair
Christopher Gill

Katz Norman
Yinjie Tang

Kilian Weinberger
Weixiong Zhang

Efficient Automated Planning with New Formulations

by

Ruoyun Huang

A dissertation presented to the Graduate School of Arts and Sciences
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2011
Saint Louis, Missouri

ABSTRACT OF THE DISSERTATION

Efficient Automated Planning with New Formulations

by

Ruoyun Huang

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2011

Research Advisors: Professor Yixin Chen and Professor Weixiong Zhang

Problem solving usually strongly relies on how the problem is formulated. This fact also applies

to automated planning, a key field in artificial intelligence research. Classical planning used to be

dominated by STRIPS formulation, a simple model based on propositional logic. In the recently

introduced SAS+ formulation, the multi-valued variables naturally depict certain invariants that are

missed in STRIPS, make SAS+ have many favorable features.

Because of its rich structural information SAS+ begins to attract lots of research interest. Existing

works, however, are mostly limited to one single thing: to improve heuristic functions. This is in

sharp contrast with the abundance of planning models and techniques in the field. On the other

hand, although heuristic is a key part for search, its effectiveness is limited. Recent investigations

have shown that even if we have almost perfect heuristics, the number of states to visit is still

exponential. Therefore, there is a barrier between the nice features of SAS+ and its applications in

planning algorithms.

In this dissertation, we have recasted two major planning paradigms: state space search and plan-

ning as Satisfiability (SAT), with three major contributions. First, we have utilized SAS+ for a new

hierarchical state space search model by taking advantage of the decomposable structure within

SAS+. This algorithm can greatly reduce the time complexity for planning. Second, planning as

ii

Satisfiability is a major planning approach, but it is traditionally based on STRIPS. We have de-

veloped a new SAS+ based SAT encoding scheme (SASE) for planning. The state space modeled

by SASE shows a decomposable structure with certain components independent to others, show-

ing promising structure that STRIPS based encoding does not have. Third, the expressiveness of

planning is important for real world scenarios, thus we have also extended the planning as SAT

to temporally expressive planning and planning with action costs, two advanced features beyond

classical planning. The resulting planner is competitive to state-of-the-art planners, in terms of both

quality and performance.

Overall, our work strongly suggests a shifting trend of planning from STRIPS to SAS+, and shows

the power of formulating planning problems as Satisfiability. Given the important roles of both

classical planning and temporal planning, our work will inspire new developments in other advanced

planning problem domains.

iii

Acknowledgments

I would like to thank my advisors, Professor Yixin Chen and Professor Weixiong Zhang, for their
guidance during the course of my graduate study. They taught me how to find important subjects,
define suitable research problems, solve problems, and present the results in an informative and
interesting way. I would like to thank Professors Chris Gill, Katz Norman, Yinjie Tang, and Kil-
ian Weinberger for serving on my Ph.D. committee and for providing many useful comments and
suggestions.

I would also like to thank You Xu, Minmin Chen, Qiang Lu, Zhao Xing, and Guobing Zou in
our research group for providing insightful comments on the work and for providing a friendly
environment for me to work in.

Ruoyun Huang

Washington University in Saint Louis
August 2011

iv

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . viii

List of Figures . x

1 Introduction . 1
1.1 STRIPS versus SAS+ Formulation . 1
1.2 Contributions and Significance of Research . 2

1.2.1 SAS+ in Planning as Search . 3
1.2.2 SAS+ and Planning as Satisfiability . 4
1.2.3 Temporally Expressive Planning . 5

1.3 Outline . 6

2 Background . 8
2.1 STRIPS Formulation . 8
2.2 SAS+ Formulation . 9
2.3 Domain Transition Graph . 12
2.4 Planning Techniques . 14

2.4.1 Classical Planning as Heuristic Search . 14
2.4.2 Classical Planning as Satisfiability . 15
2.4.3 SAT Encoding for Classical Planning . 16

3 Abstraction State Space Search . 18
3.1 Greedy Incomplete Plan Retrieving Algorithm (GIR) 19

3.1.1 Materializing a Transition . 19
3.1.2 Search for Facts . 22
3.1.3 Searching for a Valid Transition Path . 23

3.2 Experimental Results . 23
3.3 Summary . 25

4 Long Distance Mutual Exclusions . 26
4.1 Long Distance Mutual Exclusions From Single DTG 27
4.2 Enhanced Londex Constraints From Multiple DTGs 30

4.2.1 Invariant Connectivity Graphs and Trees 33
4.2.2 Algorithm for Generating londexm . 34
4.2.3 Summary of londexm Computation . 40

v

4.3 Non-Clausal Londex Constraints . 41
4.3.1 Londex as Nonclausal Constraints . 42
4.3.2 Effects of Nonclausal Londex Constraints 44

4.4 Experimental Results . 45
4.5 Summary . 47

5 SAS+ Planning as Satisfiability . 48
5.1 SASE Encoding Scheme . 49

5.1.1 Search Spaces of Encodings . 51
5.1.2 A Running Example . 52

5.2 Correctness of SAS+ Based Encoding . 53
5.2.1 Solution Structures of STRIPS Based Encoding 53
5.2.2 Equivalence of STRIPS and SAS+ Based Encodings 57

5.3 SAT Solving Efficiency on Different Encodings 65
5.3.1 The VSIDS Heuristic in SAT Solving . 65
5.3.2 Transition Variables versus Action Variables 66
5.3.3 Branching Frequency of Transition Variables 68
5.3.4 Transition Index and SAT Solving Speedup 69

5.4 Reducing the Encoding Size of SASE . 74
5.4.1 Mutual Exclusion Cliques . 74
5.4.2 Reducing Subsumed Action Cliques . 74
5.4.3 Reducing Action Variables . 75

5.5 Experimental Results . 77
5.6 Summary . 81

6 Temporally Expressive Planning as Satisfiability 84
6.1 Temporally Expressive Planning . 85
6.2 A STRIPS Style Encoding Scheme . 87
6.3 Temporally Expressive Planning, A SAS+ Perspective 89
6.4 A Transition Based Encoding for Temporal Planning 91
6.5 Experimental Results . 92

6.5.1 The Peer-to-Peer Domain . 93
6.5.2 The Matchlift Domain . 95
6.5.3 The Matchlift-Variant Domain . 96
6.5.4 The Driverslogshift Domain . 97
6.5.5 Encoding Efficiency . 98

6.6 Summary . 99

7 Cost Sensitive Temporally Expressive Planning . 100
7.1 Cost Sensitive Temporal Planning Task . 101
7.2 Solve CSTE by Weighted Partial Max-SAT . 102
7.3 A Branch-and-Bound Algorithm . 104

7.3.1 Lower Bounding Based on Relaxed Planning 105
7.3.2 Action Cost Based Variable Branching . 111

7.4 Experimental Results . 113
7.5 Summary . 117

vi

8 Conclusions and Future Research . 118
8.1 Future Works . 118

8.1.1 Adaptive Search Strategies for Abstractions 119
8.1.2 Other Semantics and Encodings . 119
8.1.3 Additional Techniques for Planning as SAT 120
8.1.4 More Understanding of Structures in General SAT Instances 120
8.1.5 SAS+ in More Advanced and Expressive Planning Models 121

References . 122

Vita . 131

vii

List of Tables

1.1 An outline of how classical planning (with different representations), and temporal
planning are tackled by heuristic search and planning as satisfiability; both are the
most representative one in their planning method family. The cells with grey color
indicate our original works. 3

3.1 The overall results of DTG-Plan(DP) and Fast-Downward (FD) on IPC5 domains.
The results are shown in terms of: 1) the number of instance solved by each ap-
proach and 2) the average time (sec) to solve one instance. Instances solved by both
methods are used to calculate 2). 24

4.1 Invariants of the TPP domain. 34
4.2 Comparisons of the average constraint distances for both fact londex and action

londex. Column “Count” indicates the number of constraints we can derive in each
problem. Columns ‘londex1’ and ‘londexm’ give the average constraint distances
of londex1 and londexm, respectively. 41

5.1 The h values of transition variables versus action variables in all domains. Column
‘N’ is the optimal makespan. Column ‘h’ is the average and Column ‘σ’ is the
standard deviation. Column ‘h of V p

δ ’ and ‘h of V p
o ’ refer to the average h value of

transition variables and action variables in V p, while p equals to 1, 2, 5 or 10. ‘-’
means there is no variable in that percentile range. 68

5.2 Statistics of action cliques, before and after the subsumed action cliques are reduced.
“count” gives the number of action cliques, and “size” is the average size of the
action cliques. 75

5.3 Number of reducible actions in representative instances. Columns ‘R1’ and ‘R2’
give the number of action variables reduced, by unary transition reduction and unary
difference set reduction, respectively. Column ‘%’ is the percentage of the actions
reduced by both methods combined. 76

5.4 Number of instances solved in each domain within 1800 seconds. SP06c and SASEc

are short for SP06-Crypto and SASE-Crypto. 80
5.5 Detailed results on various of instances. Column ‘Time’ is the total running time.

Columns ‘Var’, ‘Clause’, ‘Mem’ are the number of variables, number of clauses and
memory consumption (in Megabytes), respectively, of the largest SAT encoding.
‘TLE’ is short for memory limit exceeded and a ‘-’ indicates the planner fails to
solve the instance. 82

5.6 Detailed results on various of instances on IPC benchmark domains. 83

6.1 Results on the P2P domain. Crikey2, LPG-c and TFD fail to solve any of the instances. 95
6.2 Results on the Matchlift domain. 96

viii

6.3 Results on the Matchlift-Variant (MLR) domain. 97
6.4 Results on the Driverslogshift domain. TFD cannot solve any instance of this domain. 98

7.1 Experimental results in the P2P domain. Column ‘P’ is the instance ID. Columns
‘T’, ‘H’ and ‘C’ are the solving time, makespan and total action costs of solutions,
respectively. 114

7.2 Experimental results on the Matchlift domain. 115
7.3 Experimental results in the Matchlift-Variant domain. ‘TLE’ means that the solver

runs out of the time limit of 3600s and ‘-’ means no solution is found. 116
7.4 Experimental results in the Driverslogshift domain. The result marked with a ‘∗’

means that the solution is invalid. 116

ix

List of Figures

2.1 The DTG generated from the state variable xT1 in Example 1. 13

3.1 Initial state of an example and the DTG of block A 21
3.2 Experimental results (running time) on IPC-5 domains. 24
3.3 Experimental results (number of actions) on IPC-5 domains. 25

4.1 DTGs of the example problem and their causal dependencies. 27
4.2 Enhancement of londex distances based on causal dependencies. 30
4.3 The ICG and ICTs in the TPP domain. 34
4.4 Computing minimum causal dependency cost based on shared preconditions. . . . 36
4.5 An example where shared-precondition enhancement fails to enhance the distance

from v to w, but the bridge analysis works. 39
4.6 Propagating a Υ-value through a bridge f g. 39
4.7 The numbers of londex clauses used by both clausal and nonclausal methods on

Storage-15 (Makespan 8). 44
4.8 Number of instances solved by each planner. 46

5.1 Illustration of how the search spaces of two encoding schemes differ from each other. 51
5.2 Comparisons of variable branching frequency (with k = 1000) for transition and action

variables in solving certain SAT instances in twelve benchmark domains encoded by SASE.
Each figure corresponds to an individual run of MiniSAT. The x axis corresponds to all the
decision epochs during SAT solving. The y axis denotes the branching frequency (defined
in the text) in an epoch of k = 1000. 70

5.3 Comparisons of variable branching frequency (with k = 1000) for transition and action
variables in solving certain SAT instances in nine other benchmark domains encoded by
SASE. 71

5.4 The correlation between SAT solving speedup and the transition indexes. 73
5.5 The results of SASE while different reduction methods are turned on or off. 77
5.6 Number of problems solved by each planner, with increasing limits on running time,

memory consumption, number of variables and number of clauses. 79

6.1 This figure partially illustrates temporal dependencies of actions for instances in
three domains: Trucks, Matchlift and P2P. Each node represents an action. Each
edge represents a temporal dependency between two actions. 93

6.2 The Number of instances that PET and SET can solve, with increasing limits on
number of variables or clauses. 99

x

7.1 A relaxed planning graph for a simple example with 4 actions and 7 facts. For simplicity,
no-ops are represented by dots and some action nodes in time steps 1 and 2 are ignored.
µ(a1, a2, a3, a4) = (10, 10, 15, 5). 106

xi

Chapter 1

Introduction

Since one purpose of artificial intelligence is to grasp the computational aspects of intelligence,
mimicking how intelligent agents would behave in the dynamic world, then planning is certainly

a key capability of such agents. As more practical considerations, planning techniques have been
applied to various real world domains: High Speed Manufacturing [32, 112], Storytelling [97],

Anti-Air Defense Operations [6], Mobile Robots [22], Biological Network Planning [15], Human
Robot Teaming [120], Personal Activity Planning [100], Natural Language Processing [78, 5] and

so forth. Although planning has been vastly applied, to solve planning problems is usually still
computationally challenging. In order to be more applicable, automated planning calls for further

developments.

Classical planning models the dynamic world using a deterministic, static, finite, and fully observ-
able model. It is relatively restricted, since real world problems usually have lots of complicated

properties, for instance, uncertainties, numerics and temporal information etc. Having such restric-
tions, classical planning is still the key field in planning research. The reason is that it always

inspires new techniques and algorithms that are also applicable in advanced planning models. For-
mulation (may also called representation in the literature) is the foundation of a planning algorithm,

determining the efficiency of problem solving. Therefore, lots of research efforts have been devoted

to studying the formulations of classical planning. The contributions of this dissertation mostly
focus on recognizing the potentials of SAS+ formulation, the potentials of formulating planning as

satisfiability, and exploiting them for more efficient planning algorithms.

1.1 STRIPS versus SAS+ Formulation

STRIPS used to be the most popular formulation in classical planning. Nevertheless, the recently
introduced SAS+ formulation [66, 4] begins to attract more interest. SAS+ is similar to STRIPS in

the sense that both are of state transition style. The essential difference is that SAS+ is consisted

1

of multi-valued variables. Those multi-valued variables naturally describes some invariants, which

are not explicitly recognized by STRIPS. For example, suppose we have one box and N different
places to be put the box on, in STRIPS we will have N propositional facts, indicating all the possible

places that the box can be located on. The invariant in this case is the box cannot exist in multiple
places. In other words, the invariant implies that in any state exactly one of these N propositions

can be true. Such information is naturally carried by SAS+, but not by STRIPS.

It is critical to mention that a STRIPS state space can be very large for a typical planning problem.
In particular, the number of binary facts (F) in a planning problem is typically in the order of 103

to 104, and the size of the state space is Ω(2F), resulting in huge time and memory complexities
in the worst case. To the contrary, in SAS+ the number of multi-valued variables is in the order

100, while each variable’s domain is of a size from a few to 20. Furthermore, comparing with the
traditional STRIPS formalism, the SAS+ formalism provides structures such as Domain Transition

Graphs (DTGs) and Causal Graphs (CGs) to capture vital information of domain transitions and
causal dependencies [54].

Given the favorable features of SAS+, research that fully exploit SAS+’s potentials is still limited.

SAS+ has been used to derive causal graph heuristics [54], landmarks [102] and automatic heuristic
function generation strategy [58]. Most these works focus on exploiting SAS+’s structural informa-

tion to pursue one single thing: better heuristics. It has been pointed out, however, that we will not
obtain too much further improvements by just seeking for better heuristics [59]. Helmert has shown

that even with an almost perfect heuristic function, the number of states to visit is still exponential.
As heuristic function is just a small, even though important, part of the heuristic search model, more

big ideas are needed to fertilize this field.

Besides those research on heuristic search, there are very few planning methods that utilize SAS+

formulation. The only such research that we are aware of is a mixed integer programming model [14].
The state of the art, is thus in sharp contrast with the abundance of planning approaches; we have

so many planning approaches: partial order causal link planning [133], planning as model check-
ing [33], HTN planning [36] and planning as Satisfiability. All these approaches have interesting

characteristics. It is thus both interesting and rewarding to see whether SAS+ can benefit these
planning approaches.

1.2 Contributions and Significance of Research

This dissertation is consisted of three parts (as summarized in Table 1.1). The first two parts extend

SAS+ to two major planning approaches: heuristic search [21] and SAT-based planning [20, 65],

2

Classical Planning Temporal Planning
STRIPS SAS+

H
eu

ri
st

ic
Se

ar
ch

Most heuristic search plan-
ners are based on STRIPS.
Some of them use SAS+ just
to derive heuristic functions.

A new abstraction method
search on SAS+ (See Chap-
ter 3).

Most existing temporal plan-
ners fall into this category.

Pl
an

ni
ng

as
SA

T

All the existing SAT-based
planners are STRIPS based.

Stronger mutual exclusions
by utilizing SAS+ (Chap-
ter 4); A new SAT formula
based on SAS+ (Chapter 5).

SAT-based temporally ex-
pressive planning. Two
encodings are studied (Chap-
ter 6). This framework is also
extended to handle action
costs (Chapter 7).

Table 1.1: An outline of how classical planning (with different representations), and temporal plan-
ning are tackled by heuristic search and planning as satisfiability; both are the most representative
one in their planning method family. The cells with grey color indicate our original works.

respectively. The third part is to extend SAS+ and planning as SAT to temporally expressive plan-

ning and action costs, two advanced planning features. In the following, we discuss the state of the
art in these fields and briefly introduce our contributions.

1.2.1 SAS+ in Planning as Search

Built upon the STRIPS formulation, the heuristic search model for classical planning has achieved
great success in the last decade; and it is probably still the most popular framework. Also, it is

in fact the most active field where the studies of SAS+ take place. Although there is intensive
research that apply SAS+ to heuristic search, existing works focus mainly on deriving heuristics

by using SAS+ for extra information. That is, the essence of these works is based on STRIPS.
In addition, the motivation of studying heuristic search is recently criticized: we will not obtain

too much further improvements by seeking for better heuristics [59]. To enrich the heuristic search
model, alternative methods to take advantage of SAS+ is seriously needed. Helmert suggests several

potential directions [59], for example, symmetry detection [40] or domain simplification [52].

Those possible future directions [59] suggested by Helmert are of course not a complete list. We
realize that search in an abstraction state space is also a promising alternative. The basic idea of

abstraction state space is following: instead of traversing in the original state space, we restrict and
manage our search within an abstracted state space, which is a projection from the original state

space. In other words, one state in the abstracted state space corresponds to multiple states in the

3

original state space. As far as we know, earlier work [76] requires intensive domain analysis, and

the hierarchy cut is fixed before the problem solving, which is typically not flexible enough. We can
naturally get lots of structural information from SAS+, such as Domain Transition Graph (DTG)

and Causal Graph (CG), and build up abstractions accordingly without domain knowledge.

The search in a planning problem however cannot be completely decomposed into searching indi-
vidual DTGs. DTGs may depend on one another due to causal dependencies, which lead to complex

orderings among actions. Hence, causal dependencies are indeed the culprit of the difficulty of au-
tomated planning. One possible approach is to merge individual DTGs under the constraints of

their causal dependencies, while maintaining the overall graph as small as possible so as to make
the search efficient. However, an effective DTG merging scheme is difficult to figure out [57]. This

certainly calls for a new approach to utilize DTGs and deal with their causal dependencies.

We propose to search in a space of DTGs and CGs rather than a binary-fact space. Based on the
DTG structures, one subroutine of our algorithm directly extracts plans from a graph composed of

DTGs. We distribute the decision making into several hierarchical levels of search to deal with
causal dependencies. At each level, we design heuristics to order branching choices and prune al-

ternatives that are not promising. We show that the direct search of DTGs can work well across
a variety of planning domains, showing competitive performance. Our method is an anytime al-

gorithm which extends state space increasingly [21]. The resulting planner has achieved certain
amounts of efficiency improvements in a range of benchmark domains.

The proposed method has at least two advantages over the traditional heuristic search algorithms

on STRIPS models such as FF [60]. First, unlike the popular relaxed-plan heuristic that ignores

delete effects, the DTGs preserve much structural information and help avoid dead-ends. Second,
the proposed method introduces a hierarchy of decision-making where heuristics can be accordingly

designed for different levels of granularity of search. In contrast to requiring a single good heuristic
in planners, the proposed method provides an extensible framework in which heuristics and control

rules can be designed, incorporated and improved at multiple levels.

1.2.2 SAS+ and Planning as Satisfiability

Besides heuristic search, planning as satisfiability is another major paradigm for planning. The
approaches using this technique compile a planning problem into a sequence of SAT instances,

with increasing time horizons [73], also called makespan. Planning as satisfiability has a number
of distinct characteristics that make it effective and widely applicable. It makes a good use of the

4

extensive advancement in SAT solvers. The SAT formulation can be extended to accommodate a

variety of complex problems, such as planning with uncertainty [19], numerical planning [61].

To the best of our knowledge, all existing developments over planning as SAT are based on STRIPS.
They do not accommodate to the fact that the benefits of using SAS+ has been widely accepted. We

show that SAS+ can be used to derive stronger mutual exclusions [20]. This is the first work that
takes advantage of SAS+ in the planning as SAT approach. This work uses redundant constraints to

boost the problem solving on the original SAT formula. In other words, the essence of this method
is still STRIPS based.

To fully exploit the potentials of SAS+, we in addition propose a SAS+ based SAT encoding scheme

(SASE) for classical planning. Unlike previous STRIPS based SAT encoding schemes that model
actions and facts, SASE directly models transitions in the SAS+ formalism. Transitions can be

viewed as a high-level abstraction of actions, and there are typically fewer transitions than actions
in a planning task. SASE describes two major classes of constraints: first the constraints between

transitions and second the constraints that match actions with transitions. To further improve the
performance of SASE, we propose a number of techniques to reduce encoding size by recognizing

certain structures of actions and transitions in SASE.

We study the search space induced by SASE, and show that it leads to level by level SAT solvings,
with strong empirical evidence support. Although it is not exactly in a level by level manner, from a

statistical perspective, transitions do have a significantly higher chance to be decided earlier during
SAT solving. We provide such studies, explaining why it is the case under the popular VSIDS

framework, and propose how to measure the significance of transition variables. Our study reveals

that there is strong correlation between transitions’ significance and the speedups.

Our results show that SASE is more efficient in terms of both time and memory usage, and solves
some large instances that state-of-the-art STRIPS-based SAT planners fail to solve.

1.2.3 Temporally Expressive Planning

An essential quality of a planner is its modeling capability, which has been been a continuing en-

deavor of planning research. An important development beyond classical planning is temporal plan-
ning, which deals with durative actions occurring over extended intervals of time [94]. Particularly,

both preconditions and effects of durative actions can be temporally quantified. Several temporal
planning algorithms have been developed in the last decade [94, 118, 3, 53, 48, 79, 133, 129, 46,

47, 38].

5

Despite their successes, these planners in general have two limitations. First, most existing tem-

poral planners cannot deal with temporally expressive problems. Temporal action concurrency is
supported in PDDL2.1 [41], but the fact of lacking supporting planners was not noticed by the

research community until recently [26]. A planning problem is temporally expressive if all of its
solutions require action concurrency, which indicates that one action occurs within the time interval

of another action. Most existing temporal planners are temporally simple without requiring action
concurrency [26].

Second, most existing temporal planners either attempt to minimize the total duration of the solution

plan (i.e. makespan), or just ignore all quality metrics. However, for many applications, it is required
to optimize not only the makespan, but also the total action cost [31], which can represent many

quantities, such as the cost of resources used, the total money spent, or the total energy consumed.

We extend the planning as SAT method to temporally expressive planning problems. First we have
an encoding scheme for temporally expressive planning based on STRIPS, and extend this approach

to handle action cost. We further incorporate SAS+, and apply the idea in SASE to temporally
expressive problems.

1.3 Outline

This dissertation is organized as follows.

In Chapter 2, we give a brief introduction to the related topics. In particular, we formalize STRIPS

and SAS+ formulations, along with additional topics such as domain transition graph, casual graph

and mutual exclusions. We also introduce how planning as search and planning as SAT approaches
work.

In Chapter 3 we discuss how to conduct search directly in DTGs. The resulting planner called DTG-

Plan, is in fact composed of several components. We explain the details of these components, and
how they work together as a complete algorithm. In Chapter 4, we discuss our work on improving

mutual exclusion for planning as SAT, called long distance mutual exclusion. We also introduce
a stronger long distance mutex by exploiting more information from causal dependencies. While

long distance mutual exclusion may consume lots of memory, we in addition present a non-clausal
method, which does not trigger the constraints until it becomes necessary.

In Chapter 5, we introduce SASE, the new encoding based on SAS+. We analyze its properties by

comparing it with the well known planning graph based encoding, and show that they enforce the

6

same semantics. We study the search space and the problem structure induced by this new encoding,

and explain why it leads to better performance in modern SAT solving algorithms.

In Chapter 6, we extend the planning as SAT method to temporally expressive planning. Two
encoding schemes are studied: one based on STRIPS and the other based on SAS+. In Chapter 7,

we extend the SAT-based temporal planning framework to further handle action cost. This approach
results in MinCost SAT formulas, for which we study two methods to solve them. One method

is converting the formula and apply existing MaxSAT solvers. The other is a planning specialized
branch and bound algorithm.

7

Chapter 2

Background

In this chapter, we introduce both STRIPS formulation and SAS+ formulation for classical planning.
We also briefly introduce the state of art for classical planning.

2.1 STRIPS Formulation

The traditional planning representation STRIPS is defined over binary-valued propositional facts.

A STRIPS planning problem is a tuple Ψ = (F ,A, φI , φG), where:

• F is a set of propositional facts;

• A is a set of actions. Each action a ∈ A is a triple a = (pre(a), add(a), del(a)), where pre(a)

⊆ F is the set of preconditions, and add(a) ⊆ F and del(a) ⊆ F are the sets of add facts and
delete facts, respectively;

• A state φ ⊆ F is a subset of facts that are assumed true. Any fact not in φ is assumed false in
this state. φI ⊆ F is the initial state, and φG ⊆ F is the goal specification.

We define three action sets. We use ADD(f) to denote the set of actions that have f as one of
their add effects, meaning ADD(f) = {a | f ∈ add(a)}. Similarly, two other action sets are

DEL(f) = {a | f ∈ del(a)} and PRE(f) = {a | f ∈ pre(a)}.

An action a is applicable to a state φ if pre(a) ⊆ φ. We use apply(φ, a) to denote the state after
applying an applicable action a to φ, in which variable assignments are changed into (φ \ del(a))∪
add(a). We also write apply(s, P) to denote the state after applying a set of actions P in parallel,
P ⊆ A, to s. A set of actions P is applicable to φ, when 1) each a ∈ P is applicable to φ, and 2)

there does not exist two actions a1, a2 ∈ P such that a1 and a2 are mutually exclusive (mutex) [10].
Two actions a and b are mutex at time step t when one of the following three conditions holds:

8

• Inconsistent effects: del(a) ∩ add(b) ̸= ∅ or del(b) ∩ add(a) ̸= ∅.

• Interference: del(a) ∩ pre(b) ̸= ∅ or del(b) ∩ pre(a) ̸= ∅.

• Competing needs: There exists f1 ∈ pre(a) and f2 ∈ pre(b), such that f1 and f2 are mutex
at time step t− 1.

Two facts f1 and f2 are mutex at a time step if, for all actions a and b such that f1 ∈ add(a), f2 ∈
add(b), a and b are mutex at the previous time step. No facts in the first level, namely the initial state,

are mutexes. We call this mutex defined on planning graphs as P-mutex, in order to distinguish this
mutex from another notion of mutex we discuss in the next section.

A fast but incomplete method to detect mutually exclusive facts and actions is first introduced in

Graphplan [10] in which a planning graph with multiple proposition levels is built. Starting from the
initial state, the action and fact mutexes in one specific proposition level depend on the mutexes in

the previous proposition level. Starting with the interference of actions, mutex of facts and actions
can be calculated iteratively until a fix point is achieved.

Definition 1 (Parallel Plan). For a STRIPS planning problem Ψ = (F ,A, φI , φG), a parallel

plan is a sequence P = {P1, P2, . . . , PN}, where each Pt ⊆ A, t = 1, 2, . . . , N , is a set of actions

executed at time step t, such that

φG ⊆ apply(. . . apply(apply(φI , P1), P2) . . . PN).

As a special case of parallel solution plan, a sequential plan is a parallel plan P = {P1, P2, . . . , PN},
where every Pi have exactly one action from A.

2.2 SAS+ Formulation

The SAS+ formalism [4] represents a classical planning problem by a set of multi-valued state
variables. A planning task Π in the SAS+ formalism is defined as a tuple Π = {X ,O, sI , sG},
where

• X = {x1, · · · , xN} is a set of state variables, each with an associated finite domain Dom(xi);

• O is a set of actions and each action a ∈ O is a tuple (pre(a), eff(a)), where pre(a) and
eff(a) are sets of partial state variable assignments in the form of xi = v, v ∈ Dom(xi);

9

• A state s is a full assignment (a set of assignments that assigns a value to every state variable).

If an assignment (x = f) is in s, we can write s(x) = f . We denote S as the set of all states.

• sI ∈ S is the initial state, and sG is a partial assignment of some state variables that defines

the goal. A state s ∈ S is a goal state if sG ⊆ s.

We first define transition and its semantics. We build constraints by recognizing that transitions are
atomic elements of state transitions. Actions, cast as constraints as well in our case, act as another

layer of logic flow over transitions.

Definition 2 (Transition). For a SAS+ planning task Π = {X ,O, sI , sG}, given a state variable

x ∈ X , a transition is a re-assignment of x from value f to g, f, g ∈ Dom(x), written as δxf→g, or

from an unknown value to g, written as δx∗→g. We may also simplify the notation of δxf→g as δx or δ,

when there is no confusion.

Transitions in a SAS+ planning task can be classified into three categories.

• Transitions of the form δxf→g are called regular. A regular transition δxf→g is applicable to a
state s, if and only if s(x) = f . Let s′ = apply(s, δxf→g) be the state after applying transition

δ to state s, we have s′(x) = g.

• Transitions of the form δxf→f are called prevailing. A prevailing transition δxf→f is applicable

to a state s if and only if s(x) = f , and apply(s, δxf→f) = s.

• Transitions of the form δx∗→g are called mechanical. A mechanical transition δx∗→g can be
applied to an arbitrary state s, and the result of apply(s, δx∗→g) is a state s′ with s′(x) = g.

A transition is applicable at a state s only for the above three cases.

For each action a, we denote its transition set as M(a), which includes: all regular transitions
δxf→g such that (x = f) ∈ pre(a) and (x = g) ∈ eff(a), all prevailing transitions δxf→f such

that (x = f) ∈ pre(a), and all mechanical transitions δx∗→g such that (x = g) ∈ eff(a). Given
a transition δ, we use A(δ) to denote the set of actions a such that δ ∈ M(a). We call A(δ) the

supporting action set of δ.

For a state variable x, we introduce T (x) = {δxf→g} ∪ {δxf→f} ∪ {δx∗→g}, for all f, g ∈ Dom(x),
which is the set of all transitions that affect x. We also define T as the union of T (x), ∀x ∈ X . T
is the set of all transitions. We also use R(x) = {δxf→f | ∀f, f ∈ Dom(x)} to denote the set of all
prevailing transitions related to x, and R the union of R(x) for all x ∈ X .

10

Definition 3 (Transition Mutex). For a SAS+ planning task, two different transitions δ1 and δ2

are mutually exclusive if and only if there exists a state variable x ∈ X such that δ1, δ2 ∈ T (x),
and one of the following holds:

1. Neither δ1 nor δ2 is a mechanical transition.

2. At least one of δ1 and δ2 is mechanical transition, and δ1 and δ2 transit to different values.

Two transitions that are both mechanical or not, are mutual exclusive to another, as long as they
belong to the same state variable. If exactly one of them is mechanical, then they are mutually

exclusive if and only if they transit to different values.

A set of transitions T is applicable to a state s when 1) every transition δ ∈ T is applicable to s, and
2) there do not exist two transitions δ1, δ2 ∈ T such that δ1 and δ2 are mutually exclusive. When T

is applicable to s, we write apply(s, T) to denote the state after applying all transitions in T to s in
an arbitrary order.

Definition 4 (Transition Plan). A transition plan is a sequence {T1, T2, . . . , TN}, where each Tt,

t ∈ [1, N], is a set of transitions executed at time step t, such that

sG ⊆ apply(. . . apply(apply(sI , T1), T2) . . . TN).

In a SAS+ planning task, for a given state s and an action a, when all variable assignments in pre(a)

match the assignments in s, a is applicable in state s. We use apply(s, a) to denote the state after
applying a to s, in which variable assignments are changed according to eff(a).

Definition 5 (S-Mutex). For a SAS+ planning task Π = {X ,O, sI , sG}, two actions a1, a2 ∈ O
are S-mutex if and only if either of the following holds:

1. There exists a transition δ, δ ̸∈ R, such that δ ∈M(a1) and δ ∈M(a2).

2. There exist two transitions δ and δ′ such that they are mutually exclusive to each other and

δ ∈M(a1) and δ′ ∈M(a2).

We named the mutex in SAS+ planning S-mutex to distinguish it from the P-mutex defined in

STRIPS planning. We will show in Chapter 5 that these two mutual exclusions induce equivalent

11

semantics. Therefore, we in general use the single term mutual exclusion (mutex) for both, unless

otherwise indicated.

For a SAS+ planning task, we write apply(s, P) to denote the state after applying a set of actions
P , P ⊆ O, to s. A set of actions P is applicable to s when 1) each a ∈ P is applicable to s, and 2)

there are no two actions a1, a2 ∈ P such that a1 and a2 are S-mutex.

Definition 6 (Action Plan). For a SAS+ task, an action plan is a sequence P = {P1, . . . , PN},
where each Pt, t ∈ [1, N], is a set of actions executed at time step t such that

sG ⊆ apply(. . . apply(apply(sI , P1), P2) . . . PN).

The definition of an action plan for SAS+ planning is essentially the same as that for STRIPS
planning (Definition 1). There always exists a unique transition plan for a valid action plan. In

contrast, given a transition plan, there may exist either no or multiple valid action plans. This

problem of finding a set of matching actions for a set of given transitions, is in fact an Exact Cover
problem [67].

2.3 Domain Transition Graph

To better represent the structural information in SAS+, we further define Domain Transition Graph

and Causal Dependency. Both definitions follow Fast-Downward, where they are formalized for the
first time [54].

Definition 7 (Domain Transition Graph (DTG)). Given a SAS+ planning problem (X ,O, sI , sG)
and variable x ∈ X , its DTG Gx = (V,E) is a directed graph, where V = {v|v ∈ Dom(x)} and

E = {A(δu,v) | u, v ∈ V }.

Each value in Dom(x) is a node in G. Each directed edge (u, v), is a set of actions that all have

transition δu,v. Given a fact f , we use DTG(f) to denote the DTG that has f . For simplicity, given
a f and DTG G, we say f ∈ G, if f is in G’s vertex set V . Similarly, we say an action a ∈ G, if a

is included in any of G’s edges.

To illustrate DTGs, consider a simplified transportation domain similar to Depots domain [127]. It
has four types of objects: TRUCK, CITY, HOIST and CRATE. In this domain, trucks travel between

12

cities with crates loaded or not, and in each CITY, there is a hoist whose primary actions are LOAD

and UNLOAD of crates.

Example 1 Consider a problem with four cities (L1, L2, L3, L4), one truck T1, and one crate C1,

where cities (L1, L2, L3, L4) have, respectively, hoists (H1, H2, H3, H4) installed. There are links
between L1 and L2, L2 and L3, and L3 and L4. We use two state variables to formulate it, xT1

and xC1 , denoting the locations of the truck and the cargo, respectively. The variables’ assignments
are Dom(xT1) ={L1, L2, L3, L4} and Dom(xC1) = {L1, L2, L3, L4, H1, H2, H3, H4, T1}. An

example state is s = (xT1 = L1, xC1 = T1).

Each of the two state variables we discussed in Example 1 has a DTG. One of them, which models

the location of T1, is illustrated in Figure 2.1 as G1. The corresponding facts are the vertices. The
actions, which make the multi-value variables alter between values, consist the transition edges. In

G1, it is those ‘MOVE’ actions that make the edges.

AT T1 L1

AT T1 L2

AT T1 L3

G1

AT T1 L4

Figure 2.1: The DTG generated from the state variable xT1 in Example 1.

Given two facts f and g, which are both vertices in a DTG G, we compute the shortest path between
f and g in G. The length of this shortest path is the minimum number of transitions from f to g

in G (Definition 8). Note that in certain planning tasks, two facts may both exist in more than one
DTG, we refer DTG cost to the minimum one among all such DTGs, unless otherwise indicated.

Definition 8 (DTG Cost). Given a domain transition graph G and fact f and g, both in G, the

DTG cost from f to g in G, denoted as ∆G(f, g), is the length of the shortest path from vertex f to

vertex g in G.

Example 2 For the DTGs in Figure 2.1, let us denote (AT T1 L1) as f and (AT T1 L4) as g. The
DTG cost between these two facts is ∆G1(f, g) = 4.

13

Domain transition graphs organize how a state variable transits between different values. While

every state variable can be considered as a partial assignment of state, the transitions are essen-
tially partial changes between states. We in addition define causal dependency, which depicts how

multiple DTGs, while represented in domain transition graphs, are constrained by each others.

Definition 9 (Causal Dependency). Given two different DTGs G and G′, if there is an action

a ∈ G′, such that there is a fact f ∈ pre(a) and f ∈ G, then G′ depends on G, denoted as

G′ ∈ dep(G).

2.4 Planning Techniques

There are three optimization metrics in classical planning: number of actions, total action cost, and

makespan. The problem of optimizing the number of action is often called sequential planning, in
which case all the actions execute one after another. Actions may in addition have costs then the

quality of a plan P is measured by the total action costs of all the actions in P , making the number
of action its special case.

The third optimization metric is makespan. By optimizing makespan, we allow multiple actions

to be arranged in parallel, as long as there is no mutual exclusion violated [10]. This parallelism
semantics is formalized by Graph-Planner [10] for the first time. When discussing planning as SAT,

we always assume makespan to be the metric.

As to the state of the art, heuristic search planners currently dominate sequential planning, while

SAT based method is much more efficient in optimizing makespan. We briefly introduce these two
different planning approaches in the following.

Note that in this dissertation we assume planning problems are based on PDDL [86, 41] planning

modeling language. PDDL is practically the standard of all benchmarks in the planning community.
In its early versions, PDDL only supports proposition based actions, but nowadays it supports many

advanced features.

2.4.1 Classical Planning as Heuristic Search

Planning as heuristic search has achieved great successes in the last decade. The research on plan-
ning as search may use two different types of spaces: state space model and plan space model (a.k.a.

14

partial ordering planning in some literatures [133]). Note in this dissertation when discussing heuris-

tic search, we always refer to the state space model.

Heuristic search has been used in planning for long time. A systematic study on heuristic search
planning is HSP [11]. For the first time, a heuristic function automatically derived from the PDDL

specification, is used to guide the search. It has started a series of intensive research efforts leading
to more powerful systems. The next milestone along this line of research, Fast-Forward [60], uses a

better heuristic function, called relaxed planning graph. After that, SAS+ begins to show its power in
a practical planning system. A planner called Fast-Downward [54] devises a new heuristic function

called casual graph heuristic, accompanied by various other techniques. Note that state transiting
in Fast-Downward is still STRIPS. Later on, even more heuristic functions are devised [102]. Most

these works above generate sub-optimal solutions. It is not until recently that heuristic search is
used for optimal sequential planning [58]. SAS+ is adopted by a pattern database heuristic deriva-

tion framework, which has achieved significant success over existing optimal sequential planners.
Certain limitations still exist though: this heuristic usually heavily relies on parameter tunings.

As mentioned above, there are heavy portion of planning research devoted to heuristic search, espe-

cially in improving the quality of heuristic functions. These research is however mostly orthogonal
to this dissertation. Helmert points out that even if we have an almost perfect heuristic, to con-

duct search is very expensive. Therefore, the advances in this field call for alternative techniques.
In Chapter 3, we will discuss one alternative technique called abstraction search. The idea of ab-

straction itself is not completely new. The most well known research in this category is the HTN
planning [36, 49]. This work has a limitation of being domain dependent. In other words, domain

knowledge from human experts are needed to determine the hierarchies in planning tasks. The only
recent work uses an idea similar to abstractions, but is based on its own modeling specifications [76].

2.4.2 Classical Planning as Satisfiability

Boolean Satisfiability (SAT) Problem is one of the most important and extensively studied problems
in computer science. Given a propositional Boolean formula (Definition 10), SAT problem is to find

a variable assignment that satisfies all the clauses, or to prove that no such assignment exists. SAT
is the first problem shown to be NP-complete [25, 67].

Definition 10 (Satisfiability Problem). A SAT instance is a tuple (V,C), where V is a set of

variables and C is a set of clauses. Given a SAT instance (V,C), an assignment Γ sets every

variable v ∈ V to be true or false, denoted as Γ(v) =

⊥

or Γ(v) =⊥. If an assignment Γ makes

every clause in C to be true, then Γ is a solution to (V,C).

15

The standard formula for SAT solvers’ input is Conjunctive Normal Form (CNF), which is a Boolean

formula involving a set of Boolean variables and a conjunction of a set of disjunctive clauses of
literals, with each literal being either a variable or its negation. Most modern SAT solvers are based

on the Davis-Putnam-Logemann-Loveland (DPLL) procedure. DPLL is a depth-first branch-and-
search procedure and often presented as a recursive procedure. SAT algorithms are nowadays very

sophisticated, and so efficient that can handle very large problems.

SAT-based planners often use generic SAT solvers as a blackbox. This method has at least two
advantages. First, different types of generic SAT solvers can be adopted easily, so that the latest

development in SAT research can be always fully utilized. Second, planning-specific constraints
can be explicitly encoded in a SAT formula to make the SAT solving efficient.

2.4.3 SAT Encoding for Classical Planning

The overall planning as SAT method is quite straightforward: compile planning problem up to a
fixed bound, call a SAT solver to solve the compiled formula, and repeat until a solution is found.

Therefore the way that how the compilations work is the key (may also be called encoding scheme
in the following).

Encoding scheme could be also considered as a way of formulating planning problem. It con-

verts planning problem to a more general form of problem formulation, in our case SAT formulas.
Encoding scheme has great impacts on the efficacy of SAT-based planning. It is pointed out in

various literatures that different formulas to the same problem may have huge differences in terms
of computational properties [114]. To develop novel and superior SAT encoding schemes has great

potentials to advance the state-of-the-art of planning.

Extensive research have been done on devising SAT encoding for planning. The encoding scheme
by SatPlan06 [74] (denoted as PE in the following) is the most representative one. It enforces the

same semantics as the one defined by the planning graph. To facilitate the encoding, SatPlan06
introduces a dummy action dumf which has f as its both precondition and add-effect. We use

A+ to denote the set of actions when dummy actions are added, which is A ∪ {dumf | ∀f ∈ F}.
Unless otherwise indicated, action set ADD(f), DEL(f), and PRE(f) all include the corresponding

dummy actions.

Let us denote a PE encoding up to time step N as PE(Ψ, N), for a given STRIPS task Ψ =

(F ,A, φI , φG). As a SAT instance, PE(Ψ, N) is defined by (V,C), where V = {Wf,t|f ∈ F , t ∈
[1, N+1]}∪{Wa,t|a ∈ A+, t ∈ [1, N]}. Wf,t =

⊥

indicates that f is true at t, otherwise Wf,t =⊥.
The clause set C includes the following types of clauses:

16

I. Initial state: (∀f, f ∈ φI): Wf,1;

II. Goal state: (∀f, f ∈ φG): Wf,N+1;

III. Add effect: (∀f ∈ F , t ∈ [1, N]): Wf,t+1 →
∨

∀a,f∈add(a)Wa,t;

IV. Precondition: (∀f ∈ A+, t ∈ [1, N])): Wa,t →Wf,t;

V. Mutex of actions: (∀a, b ∈ A+, t ∈ [1, N], a and b are mutex): W a,t ∨W b,t;

VI. Mutex of facts: (∀f, g ∈ F , t ∈ [1, N + 1], f and g are mutex) : W f,t ∨W g,t;

Clauses in class I and II enforce that the initial state is true at the first time step, and that the goal

facts need to be true at the last time step. Clauses in class III specify that if a fact f is true at time
step t, then there is at least one action a ∈ A+ at time step t− 1 that has f as an add effect. Clauses

of class IV specify that if an action a is true at time t, then all its preconditions are true at time t.

Classes V and VI specify mutex between actions and facts, respectively.

17

Chapter 3

Abstraction State Space Search

The domain transitions and causal dependencies in SAS+ have not been fully exploited. Therefore,
the research community is looking for more comprehensive studies and deeper understandings over

them. Our work is motivated by the possibility of searching directly in graphs composed of DTGs
which are further inter-connected by CGs. The compact structures from SAS+ give rise to smaller

spaces. Also, the size of each DTG is small and a direct search on DTGs can be efficient. The
resulting algorithm called DTG-Plan, is to mitigate enormous number of expanding states during

search.

DTG-Plan uses an incremental abstraction state space search in the higher level. It starts from a very
small abstraction state space, expands its abstraction state space, to guarantee the completeness.

A key component of DTG-Plan is a Greedy Incomplete plan Retrieving (GIR) algorithm as the
subroutine. GIR retrieves a plan quickly to satisfy a set of facts, and is called by DTG-Plan each

time when expanding a state.

The motivation of abstraction state space is as follows. Suppose we have a planning instance, the

goals are in several distinct DTGs, each has a goal fact. Assume we throw away all the precondition
constraints, then it is trivial to achieve the goals: just make those transitions leading to the goals in

each corresponding DTGs.

Unfortunately, in reality we can never just simply reduce a problem in this way. But still, what if
we have a procedure that is very likely to find a sequence of actions making a transition possible

in constant time? That is exactly what GIR does. GIR sacrifice the completeness for speed, but in
most cases it does find a sub-solution. The nice feature here is: even if the incomplete GIR fails, we

do not terminate the algorithm. DTG-Plan expands to a larger scope such that the state missed in
the previous iteration will be covered in a new iteration. More specifically, given a SAS+ planning

task, the abstraction state space works as follows:

1. We start from a set of DTGs D, such that each DTG in D has a goal fact from sG .

18

2. We conduct a standard A∗ heuristic search in the state space determined by D, using the

relaxed planning graph heuristic function [60]. The initial state and goal state are as original.
The successor function, is to apply one transitions of all DTGs in D. Each transition might be

either applicable or not (precondition not satisfied). In the later case, we use GIR to retrieve
a plan to repair the broken preconditions, then do the state expanding. If GIR fails, we just

suppose this expanding is infeasible (i.e. a dead-end).

3. Once we have explored the whole state space induced by D and find a solution, then return

it. If there still time, we extend the scope of D and return to Step 1 for one more iteration.
The state space scope increasing strategy is based on the causal dependency. Every time we

check all the depended DTGs by all the DTG in D, and incorporate certain number of them
according to a progress estimation into D.

4. Repeat Steps 2 and 3, unless we have already incorporated all DTGs into D. That is, D covers
the whole original search space. To maintain a global hashing table for all the visited states is

crucial, because it can prevent us from visiting one state twice (during two iterations).

3.1 Greedy Incomplete Plan Retrieving Algorithm (GIR)

GIR has three components: search for obtaining set of facts (search factset() as Algorithm 2),

search for a valid transition path (search paths() as Algorithm 3) and materializing a transition
(search transition() as Algorithm 1). Based on the DTGs, GIR directly extracts plans from a graph

composed of DTGs. We distribute the decision making into several hierarchical levels of search to
deal with causal dependencies. At each level, we design heuristics to order branching choices and

prune non-promising alternatives.

For a DTG G and two facts f and h in G, we define transition path set P(G, f, h) to be the set of
all possible paths from f to h in G, with the restriction that each vertex can appear at most once in

a path. This path set P is the major reason that makes GIR incomplete.

3.1.1 Materializing a Transition

We now consider search transition(), listed in Algorithm 1. It takes as parameters a given state S, a

DTG G, a transition δ, and a set of forced preconditions to be explained shortly. In this procedure
we choose an action a to materialize the transition δ. Before executing a, its preconditions and

forced preconditions must also be true. Therefore, the procedure typically returns a plan consisting
of a sequence of actions achieving the preconditions, followed by the action a at the end.

19

Algorithm 1: search transition(s, G, δ, forced pre)
Input: a state s, a DTG G, a transition δ, a set of facts forced pre
Output: a plan sol that realizes δ from s;
let A′ be the set of actions supporting δ, sorted by cost(o) ;1

foreach action o in A′ do2

if ∃f ,f ∈ del(o), f ∈ protect list then continue;3

F = { f | f ∈ pre(o) or f ∈ forced pre };4

s′ ← s;5

sol← search fact set(s′ , F);6

if sol is valid then7

s← s′;8

apply the effects of o to s;9

sol = sol + {o};10

return sol; //upon exit, s is the state after executing sol11

return no solution;12

A transition usually has a number of supporting actions, from which one must be chosen. To choose
one action, we sort all supporting actions by a heuristic value in Line 2 of Algorithm 1. Given the

transition T in a DTG G, we evaluate each of its supporting actions by estimating the number of
steps needed to make all its preconditions true. Formally, given an action o and the current state φ,

we estimate the cost to enable o as the total minimum DTG cost of all preconditions of o:

cost(o) =
∑

∀f∈pre(o)

|∆G(π(G,φ), f)|.

In search transition(), we sort all supporting actions in an ascending order of their costs. Actions

with lower costs are tried earlier because their preconditions are likely to be easier to achieve.

Forced preconditions

We denote the set of forced preconditions as forced pre(T ,p). When materializing a transition T in
a path p in a plan, it is beneficial to look ahead at the full path p. A wrong plan for the transition may

lead the search into a deadend. Although backtracking can solve this problem, it is more efficient to
detect such situations beforehand and avoid deadends.

Consider an example of the Blocksworld domain shown in Figure 3.1. There are three blocks A,

B and C. Figure 3.1.i) illustrates the initial state, in which A and B are on the table and C is on B.
The goal is “ON A B”. Figure 3.1.ii) shows a part of the DTG of block A. Because of the transition

edges among the three vertices, they must be true at different time steps.

20

Suppose we make the first transition (Pickup A TABLE), the state of block A becomes “HOLDING

A”. To achieve “ON A B”, the next action in the path is (Put A B), which has two preconditions.
The first precondition is “HOLDING A” which is true. The second precondition is “CLEAR B”.

Since C is on top of B, we need to remove C from B. But that requires the arm to be free, resulting
in “HOLDING A” being invalidated. A deadend is thus encountered.

A

C

B
ONTABLE A

HOLDING APickup

ON A B

Put

i). Initial State ii).DTG of block A

T1
T2 T3

Figure 3.1: Initial state of an example and the DTG of block A

It is clear that the way to avoid this deadend is to achieve “CLEAR B” first before executing (Pickup

A TABLE) to make “HOLDING A” true. In general, for each transition T , there may be some facts
that need to be made true before an action materializing T is executed. Below we define the forced

preconditions, a set of facts that need to be true before transition T is executed.

Given a path p of transitions in a DTG G, and a transition T on path p, we define the forced
preconditions of T with respect to p as follows. Assume T turns a fact f to g, and then T1, which

is the next transition following T on path p, changes fact g to h. If there exists a fact q such that
q ∈ pre(o) for any action supporting T1 and there is a forced ordering q ≺ g [77], we call q a forced

precondition of transition Tf,g. The set force pre(T , p) includes all such forced preconditions of T .

The rationale for the above definition is the following. The fact q is required in order to execute
T1. We need to find a plan to satisfy q when we call search transition() for T1. However, in our

case, it would be too late due to the q ≺ g ordering, which means that g has to be invalidated before
achieving q. Thus, we need to achieve q before g. In search transition(), a forced precondition, such

as q, will be treated as a precondition for transition T (Line 5).

In the Blocksworld example, “CLEAR B” is a precondition of (Put A B), and there is a forced
ordering “CLEAR B” ≺ “HOLDING A”. Thus, we recognize it as a forced precondition of the

transition from “ONTABLE A” to “ON A B”. Computing forced preconditions can avoid many
deadends during search. It is useful not only for Blocksworld, but also for other domains such as

TPP and Rovers.

21

Algorithm 2: search fact set(s, F)
Input: a state s, a set of facts F
Output: a plan sol that achieves facts in F from s;
if all facts in F are true in s then return {};1

generate the partial orders O1, O2, and O3;2

while new valid permutation exists do3

initialize sol and s′ with {} and s, respectively;4

foreach f, f ∈ F do5

G← DTG(f);6

h← π(G, s);7

sol1← search paths(s′, G, h, f);8

if sol1 is valid then break;9

update s and sol with s′ and sol + sol1, respectively;10

if sol is valid then break;11

return sol; //upon exit, s is the state after executing sol;12

3.1.2 Search for Facts

Given a state s and a set of facts F , starting at s, the procedure search factset() searches for a valid

plan that can make all facts f ∈ F be true at a final state. The facts in F may require a particular
order to be made true one by one. The reason of enforcing such a ordering is as follows. The

search factset() procedure allows sub-plans for facts to be interleaved when necessary. It tries to
meet the facts ordered earlier whenever possible. Thus when the facts are ordered properly, it is

faster to generate plans for each subgoal sequentially with less backtracking. For the facts in F , we
have the following partial orders, listed with a descending priority.

O1. For two facts f, h ∈ F , if DTG(h) ∈ dep(DTG(f)), we order f before h. To understand
the reason, consider a transportation domain with a cargo and a truck. The DTG of a cargo

depends on that of a truck. If we fix the truck at a location, then we may not be able to move
the cargo without moving the truck. Thus, it is more reasonable to first deliver the cargo

before relocating the truck.

O2. For each fact f ∈ F , we evaluate a degree-of-dependency function defined as

degree(f) = |dep(DTG(f))| − |dep−1(DTG(f))|,

where dep−1(G) is the set of graphs that G depends on. For two facts f, h ∈ F , if degree(f) >
dep(DTG(h)), we order f before h. This is a generalization of O1.

O3. For two facts f, h ∈ F , if there is a forced ordering f ≺ h, we order f before h.

22

Algorithm 3: search paths(s, G, f1, f2)
Input: a state s, a DTG G, facts f1,f2
Output: a plan sol;
if f1 ∈ protect list then return no solution;1

foreach p ∈ P(G, f1, f2) do2

compute forced pre(δ, p) for each transition δ in p;3

sol← {} ;4

foreach δ ∈ p do5

s′ ← s;6

sol← sol+ search transition(s′ , G , δ, forced pre(δ, p));7

if sol is not valid then break;8

s← s′;9

if sol is valid then10

return sol; //upon exit, s is the state after executing sol;11

return no solution;12

In search factset(), we first consider all the permutations that honor the above partial orderings. In

very rare cases, when all permutations that meet O1, O2 and O3 fail, we continue to compute the
remaining orderings.

3.1.3 Searching for a Valid Transition Path

Given a state s, a graph G and two facts f1, f2 ∈ G, procedure search paths() tries to find a valid
transition path from f1 to f2. First, we compute the set of possible paths P(G, f1, f2). For each p

in P(G, f1, f2), we first compute its forced preconditions and then traverse along p to form a plan
(Lines 6-11). For each transition δ in p, we call procedure search transition() to search for a plan.

A plan is returned when solutions to all transitions of a path p is found.

3.2 Experimental Results

We test DTG-Plan on the STRIPS domains of the 5th International Planning Competition (IPC5).
We compare DTG-Plan with Fast-Downward [54]. Fast-Downward is one of the top STRIPS plan-

ners, which uses the DTGs in SAS+ formalism to compute the heuristic. Therefore, we can directly
compare a method of directly searching in DTGs (DTG-Plan) against a method using DTGs for

deriving a heuristic (Fast-Downward). To carry out the comparison, we compile the latest version

23

Instances Average Time
DP FD DP FD

OpenStack 28 28 3.39 10.91
Pathways 30 30 1.69 2.90

Rovers 40 40 12.05 9.69
Storage 17 18 0.58 1.78

TPP 30 30 9.16 47.16
Trucks 16 10 19.19 53.04

Table 3.1: The overall results of DTG-Plan(DP) and Fast-Downward (FD) on IPC5 domains. The
results are shown in terms of: 1) the number of instance solved by each approach and 2) the average
time (sec) to solve one instance. Instances solved by both methods are used to calculate 2).

of Fast-Downward on our computers, and ran all experiments on a computer with a 2.0MHZ Xeon

CPU and 2GB memory and within a 1800 seconds time limit for each run.

Table 3.1 summarizes the results in six out of seven STRIPS domains used in IPC5. Figure 3.2 gives
details on some larger instances. For each domain, we show the ten highest numbered instances

for which at least one of two methods can solve. DTG-Plan currently does not have competitive
performance on the seventh domain, Pipesworld. The reason is that solving this domain requires

interleaving of paths not in goal-level DTGs but in other DTGs.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 21 22 23 24 25 26 27 28 29 30

TPP Domain (Time)

DTG-PLAN
Fast-Downward

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 7 8 9 10 11 12 13 14 15 16

Trucks Domain (Time)

DTG-PLAN
Fast-Downward

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 31 32 33 34 35 36 37 38 39 40

Rovers Domain (Time)

DTG-PLAN
Fast-Downward

 0

 2

 4

 6

 8

 10

 12

 14

 16

 21 22 23 24 25 26 27 28 29 30

Pathways Domain (Time)

DTG-PLAN
Fast-Downward

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 9 10 11 12 13 14 15 16 17 18

Storage Domain (Time)

DTG-PLAN
Fast-Downward

 0

 20

 40

 60

 80

 100

 120

 140

 18 20 22 24 26 28 30

Openstack Domain (Time)

DTG-PLAN
Fast-Downward

Figure 3.2: Experimental results (running time) on IPC-5 domains.

From the experimental results, DTG-Plan is faster than Fast-Downward on most larger instances,
sometimes by more than ten times. For instance, in the Trucks domain, DTG-Plan can solve six

large instances that Fast-Downward failed.

24

 100

 150

 200

 250

 300

 350

 400

 21 22 23 24 25 26 27 28 29 30

TPP Domain (Number of Actions)

DTG-PLAN
Fast-Downward

 25

 30

 35

 40

 45

 50

 55

 60

 7 8 9 10 11 12 13 14 15 16

Trucks Domain (Number of Actions)

DTG-PLAN
Fast-Downward

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 31 32 33 34 35 36 37 38 39 40

Rovers Domain (Number of Actions)

DTG-PLAN
Fast-Downward

 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

 21 22 23 24 25 26 27 28 29 30

Pathways Domain (Number of Actions)

DTG-PLAN
Fast-Downward

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 9 10 11 12 13 14 15 16 17 18

Storage Domain(Number of Actions)

DTG-PLAN
Fast-Downward

 100

 150

 200

 250

 300

 350

 400

 450

 500

 18 20 22 24 26 28 30

Openstack Domain (Number of Actions)

DTG-PLAN
Fast-Downward

Figure 3.3: Experimental results (number of actions) on IPC-5 domains.

Regarding the number of actions, the two planners differ by less than 20% in most cases. DTG-Plan

is better on Storage, while Fast-Downward is better on TPP, Pathways, and Rovers. In the current
version of DTG-Plan, we focused on heuristics that improve time efficiency. The fast speed of

DTG-Plan allows us to deliver high-quality anytime solutions for a given time limit.

3.3 Summary

DTG-Plan directly searches for plans in a graph composed of DTGs. We distribute the decision
making over several search hierarchies to deal with causal dependencies. For each level, we have

developed heuristics to order branching choices and to prune nonpromising alternatives. We have
experimentally showed that the strategy of direct search in DTGs can work well across a variety of

planning domains. Comparison against a leading STRIPS planner has showed that our method is
competitive with the state-of-the-art heuristic planner that uses the SAS+ formalism for constructing

heuristics. A limitation is that the efficiency of DTG-Plandepends on the problem structure. DTG-
Plan works well on IPC-5 domains, but it does not show very clear advantages on IPC-6 domains.

The hierarchy of the proposed search algorithm may seem to be complex, but very often the search

can extract a plan quickly along a depth-first path with little backtracking. Since the sizes of DTGs
are generally small, the search can be very efficient with proper pruning and ordering heuristics.

The proposed work provides an extensible framework in which strategies can be designed and re-

fined at multiple levels of search, leaving many opportunities for future improvement. Our study is
the first attempt towards searching in the DTG space instead of the traditional state space.

25

Chapter 4

Long Distance Mutual Exclusions

In this chapter, we study the role of constraints in planning as SAT. Planning as SAT usually op-
timizes makespan, in which case multiple actions may execute in parallel, as long as they are not

mutex, as defined in Section 2.1. In fact, sequential planning can be considered as special case of
parallel planning, with every individual action to be mutual exclusive to the other.

Mutual exclusions’ vital role to parallel planning is not just for correct semantics, but also for better

problem solving efficiency. Earlier studies have pointed out that those additional mutex is the key
reason to the efficiency of SAT-based planning [74].

We derive Long Distance Mutual Exclusion (londex), a stronger type of mutual exclusion, from the

SAS+ formulation. Londex also has two types: fact londex and action londex. Londex constraints
specify that certain facts (or actions) cannot be true within some time steps. That is, if we say two

facts (or actions) are londex constraints with distance of k, then given a fact (or an action) is true
at time t, the other fact can never be true within k time steps away from t. When translated into

CNF clauses, londex are also 2-literal clauses. It greatly helps the constraint propagation. Note in

this chapter we assume planning tasks are in the STRIPS formulation, while londex is essentially
redundant additional information.

We will start with londex1, which is of a simpler form, and then londexm, an enhanced form of

constraints. To intuitively illustrate what londex is, let us consider the instance in Example 1 (shown
in Figure 4.1). According to londex1, the distance between (LIFTING H1 C1) and (LIFTING H4

C1) is 2, which is the minimum distance from (LIFTING H1 C1) to (LIFTING H4 C1) in G2. This
is a lower bound of the time step to obtain the second fact, when given the first one. We can also

take causal dependency into account, the lower bound of the distance from (LIFTING H1 C1) to
(LIFTING H4 C1) will be 4 for the following reason. Suppose in the initial state, C1 is at L1 and

the goal is to move C1 to L4. If we only consider the distance in G2, the minimum distance is 2.
However, according to G1, there must be at least three MOVE actions for T1 to transit from L1 to

L4 before H4 can lift C1. Hence, at least four time steps are required to reach the goal (LIFTING

26

LIFTING H1 C1

LIFTING H4 C1

AT C1 L4

1

1

1

1

londex1:2

londexm:4

IN C1 T1

AT C1 L1

AT T1 L1

AT T1 L2

AT T1 L3

londex1:4

londexm:6

Depend

G1

G2

AT T1 L4

…

...

Figure 4.1: DTGs of the example problem and their causal dependencies.

H4 C1) from (LIFTING H1 C1). By considering dependencies among DTGs, tighter bounds can be

obtained.

4.1 Long Distance Mutual Exclusions From Single DTG

Broadly speaking, londex can include any constraint that relates actions or facts at different time
steps. In the following, we introduce londex1, each of which is derived from only a single DTG.

In order to generate londex1, we first extract fact distance information from a DTG that characterizes

the structure of a planning domain. We can generate londex1 from DTG costs. For a given fact f ,
we use t(f) to denote an arbitrary time step where f is true. This notation also applies to actions.

Definition 11 (Fact londex). Given two facts f1 and f2, corresponding to two nodes in a DTG G

and ∆G(f1, f2) = r, a fact londex between f1 and f2 specifies that: if f1 and f2 are true at time

steps t(f1) and t(f2), respectively, then there exists no valid plan for which 0 ≤ t(f2)− t(f1) < r.

Fact londex reflects the minimum distance between the facts belonging to the same DTG. It is

possible that f1 and f2 can be true at multiple time steps in a plan; all occurrences of f1 and f2 must
satisfy this constraint.

Example 3 Given the DTGs in Figure 4.1, if (AT C1 L1) is true at time step 0, then (AT C1 L4)
cannot be true before step 3.

27

We now consider londex1 for actions. For simplicity, we say that an action a is associated with a

fact f if f appears in pre(a), add(a), or del(a). Intuitively, when two facts in a DTG are not too
close to each other, two actions associated with the facts cannot be too close to each other either.

Without loss of generality, we mark the time steps for actions and facts as follows. For an action a

assigned at time step t(a), all of the facts in pre(a) are also true at time step t(a) while all of the

facts in add(a) are made true at time step t(a) + 1.

We consider two classes of londex1 between two actions a and b.

Class A: Action interference londex. This type of londex specifies that, if actions a and b are
associated with a fact f and arranged to be executed at time steps t(a) and t(b), respectively, neither

of the following can be true in any valid plan:

(1) f ∈ del(a), f ∈ add(b), and t(a) = t(b);

(2) f ∈ del(a), f ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ 1.

The above cases (1) and (2) are stronger than the original mutex defined in Section 2.1 because of

the inequalities in case (2). If we replace the inequalities in case (2) by t(a) = t(b), cases (1) and
(2) are equivalent to the original mutex. To reiterate, a and b may appear more than once in a plan

and all multiple occurrences should satisfy these constraints.

Class B: Action distance londex. This type of action londex specifies that, if actions a and b are
associated with facts f1 and f2, respectively, and it is impossible to have 0 ≤ t(f2) − t(f1) < r

following the definition of fact londex, then none of the following can be true:

(1) f1 ∈ add(a), f2 ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 1;

(2) f1 ∈ add(a), f2 ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r;

(3) f1 ∈ pre(a), f2 ∈ add(b), and 0 ≤ t(b)− t(a) ≤ r − 2;

(4) f1 ∈ pre(a), f2 ∈ pre(b), and 0 ≤ t(b)− t(a) ≤ r − 1.

The distance londex are easy to prove. For example, in case (1), if a is executed at time t(a), then

f1 is valid at time t(a) + 1. Since the fact distance from f1 to f2 is r, f2 cannot be true until time
t(a) + 1 + r. Then, since f2 is an add-effect of b, b cannot be executed until time t(a) + r. Other

cases can be shown similarly.

28

Algorithm 4: generate londex1(Ψ)
Input: A STRIPS planning problem Ψ
Output: londex1 for facts and actions
generate the DTGs for Ψ;1

foreach fact f do EA1(f)← generate action interference londex;2

foreach domain transition graph G do3

foreach pair of facts (f1,f2) ∈ G do4

compute ∆G(f1, f2);5

EF1(f1, f2)← generate fact londex ;6

EA2(f1, f2)← generate action distance londex ;7

Example 4 In Example 1, mutex can only detect the constraints that the truck cannot arrive at

and leave the same location at the same time. For example, MOVE(T1 L1 L2) and MOVE(T1 L3

L1) at the same time is mutually exclusive because MOVE(T1 L1 L2) deletes (AT T1 L1) while

MOVE(T1 L3 L1) adds (AT T1 L1). In contrast, londex is stronger as it further specifies that two
actions moving the same truck, even if they happen at different time points, may conflict with each

other. For example, if L1 and L4 are 3 steps apart in the DTG, arranging MOVE(T1 L1 L2) at step
0 and MOVE(T1 L4 L3) at step 2 violates a londex but not a mutex.

Note that any londex constraint is state-independent, since the cost is a lower bound of fact or
action distance in any valid plan regardless of the current state. It is important to emphasize that

the londex distance is different from the heuristic function employed by Fast Downward, which is
state-dependent. State independencies can be used to compute londex in a preprocessing phase,

which can be reused throughout the planning process.

The algorithm for generating londex1 is shown in Algorithm 1, where EF1(f1, f2) denotes all fact
londex relating facts f1 and f2, EA1(f) contains all interference action londex related to a fact f

and EA2(f1, f2) denotes all action londex related to facts f1 and f2.

Londex1 can be generated in polynomial time in the number of facts and the number of actions. Let
the number of facts be |F|, the number of actions be |A| and the number of DTGs be |G|. An upper

bound of the time complexity of generate londex1() is O(|G||A|2|F|2). Note that the factor |A|
actually represents the upper bound of the maximum number of actions that have any individual fact

as either an add-effect, del-effect or precondition. Empirically, the preprocessing takes less than 30
seconds to generate all londex1 for most of the instances from all IPC competitions [127, 124, 123],

which is negligible compared to the planning time that londex1 can help reduce.

Similar to mutex, londex constraints are logically redundant constraints that will not affect the
solution space when added or removed from the problem encoding. In general, the more constraints

29

V1

V2 ...

V4

V5 V6

a

b c

...

...

G1

G2

G3

G4 G5

G6

G7

V’2

V’1

Figure 4.2: Enhancement of londex distances based on causal dependencies.

a planner can detect and utilize, the more pruning power it will have through constraint propagation.

The quantity of londex1 constraints is often much larger than that of mutex and thus the former can
provide much stronger pruning.

4.2 Enhanced Londex Constraints From Multiple DTGs

Those action and fact londex discussed in the previous section are direct information from DTGs.

We further derive stronger londex by recognizing more hidden information from the dependencies
between DTGs. Sometimes a transition in a DTG implies a sequence of actions (instead of only

one), to enable this transition. Such kind of extended constraint can be detected in certain domains,
and leads to further improvements in problem solving.

The idea as illustrated in Figure 4.2, in the high level, is to improve londex by exploiting the causal

dependencies (Definition 9). There are seven DTGs, {G1, . . . , G7}, some of which depend on
others as indicated by the arrows. In G1, the path from V4 to V6 has the minimum DTG cost of 3

(V4 → V2 → V5 → V6 with transition actions a, b, and c). Suppose a’s precondition is V ′
1 , c’s

precondition is V ′
2 , and V ′

1 and V ′
2 are vertices in G2. Thus, G1 depends on G2. Suppose that the

minimum DTG cost from V ′
1 to V ′

2 is 5 in G2. The distance between V4 and V6 should be at least
be 5 + 1 = 6, a bound tighter than the original value of 3. Moreover, if more dependencies of G2

exist, we may continue to improve the distance bound by considering more dependent DTGs.

We define unary invariant, which is a restricted form of various invariants that have been studied
before. Its definition is based on PDDL modeling language [86, 41], and we assume the planning

30

instance is specified by PDDL in a concise way of ungrounded actions and predicates. That is, the

definitions have templates with parameters of types for objects. Each predicate may have several
parameters, each associated with a type of object. Such a compact representation is often expanded

to grounded facts and actions before planning. Invariants are usually derived from the ungrounded
representation.

The predicate grounding operation works as follows. Given a PDDL domain definition, we replace

the parameters of each predicate p with objects that have matching types to generate all possible
facts. That is, its result, GROUND(p) = {f1, f2, . . . , fn}, is a set of grounded facts. Take predicate

p =(AT X1TRUCK X2LOCATION) as an example. In its definition, X1 is of type TRUCK and X2 of type
LOCATION. Suppose in a given problem, there are two trucks {T1, T2} and two locations {L1,

L2}, the grounding operation on p results in GROUND(p)={(AT T1 L1), (AT T1 L2), (AT T2 L1),
(AT T2 L2)}.

Definition 12 (Unary invariant). Given a STRIPS planning domain, an invariant I = ⟨t, P ⟩
of this domain consists of a set of predicates P = {p1, p2, . . . , pn} and a type t such that 1) all

predicates in P take an object of type t as a parameter, and 2) among all facts grounded from the

predicates in P that have the same instantiation of the parameter of type t, one and only one of

these grounded facts can be true in any state.

There are various types of invariants. The most common type of invariant is represented as a logical

expression, indicating there will always be a constant number of facts to be true at any time, for any

arbitrary plan P . In this work, we only consider the unary invariants that specify “one and only one
fact can be true in a set of facts”. This is a restricted form of the invariants thoroughly studied by

the AI planning community. It can be considered as a combination of two types of invariants which
are called “state membership invariant” and “uniqueness invariant” in TIM [39]. We only use this

special class of invariants because it can be used to generate DTGs, based upon which we construct
londex. We plan to consider other invariants in our future work.

An invariant generally gives rise to multiple DTGs. Intuitively, a DTG can be viewed as a grounded

representation of an invariant. If a DTG G is generated from an invariant I , we write invar(G)=I .
We illustrate how to derive DTGs from an invariant using the following two examples. Formal

descriptions can be found in the literature [54].

Example 5 In the truck example, an invariant with type TRUCK is:

I = ⟨TRUCK, {(AT X1TRUCK X2LOCATION)}⟩

31

This invariant implies that a truck can only be at one location at any time. Suppose there are

three trucks and three locations, then for each object that is of TRUCK type (i.e. T1, T2, or T3),

there will be a corresponding DTG. To generate these DTGs, we first plug each of these three ob-
jects into the invariant. We will get the following partially grounded formulae, one for each truck:

{(AT T1 X2)|∀X2LOCATION }, {(AT T2 X2)|∀X2LOCATION }, and {(AT T3 X2)|∀X2LOCATION }.
Next, for each of these formulae, we get one DTG. For the first formula {(AT T1 X2)|∀X2LOCATION },
its corresponding DTG indicates that T1 may be located in different locations. The DTG has three
vertices { (AT T1 L1), (AT T1 L2), (AT T1 L3)} and its edges can be determined by Definition 7.

Similar DTGs can be generated for T2 and T3. By doing this, multiple different DTGs are generated
from one single invariant.

Example 6 Another invariant, with type CARGO, is:

I = ⟨CARGO, {(AT X1 X2), (IN X1 X3)}⟩,

where X1, X2 and X3 are of types CARGO, LOCATION and TRUCK.

This invariant means that a cargo can either be at a location or in a truck. Multiple DTGs can be

generated, one for each cargo. For example, for a cargo C1, by plugging into the parameter X1CARGO

with the concrete object C1 and perform grounding, we can have a DTG with four vertices: (AT C1

L1), (AT C1 L2), (AT C1 L3), and (IN C1 T1).

Definition 13 (Causal Dependency of Invariants). Invariant I2 is said to be dependent on invari-

ant I1, denoted as I2 ∈ dep(I1), if there exist two DTGs, G1 and G2, such that invar(G1) = I1,

invar(G2) = I2, and G2 ∈ dep(G1).

Example 7 In Figure 4.1, DTGs G1 and G2 are from different invariants. The invariant of G1 is

I1 = ⟨TRUCK, {(AT X1 X2)}⟩,

where X1 and X2 are of type TRUCK and LOCATION, respectively. The invariant of G2 is

I2 = ⟨CARGO, {(AT X1 X2), (IN X1 X3), (LIFTING X4 X1)}⟩,

which has X1 of type CARGO, X2 of type LOCATION, X3 of type TRUCK and X4 of type HOIST.
In this example, since G2 depends on G1, we also have that I2 depends on I1, denoted as I2 ∈
dep(I1).

32

4.2.1 Invariant Connectivity Graphs and Trees

Corresponding to a dependency graph of DTGs, we can also construct an Invariant Connectivity
Graph (ICG), where the nodes correspond to invariants and there is a directed edge from node I2 to

node I1 if I2 ∈ dep(I1). Each problem instance has one invariant connectivity graph.

Given an ICG, we may choose any invariant I as the root and build a spanning tree of the ICG. This
leads to an Invariant Connectivity Tree (ICT) rooted at I .

We have introduced the data structure called causal graph, which is originally introduced in Fast-

Downward [54] to represent the dependencies between the DTGs, along with a method for breaking
the cycles. An ICG and a causal graph are different. The ICG can be viewed as the ungrounded

counterpart of the causal graph. Each vertex in an ICG is an invariant, while each vertex in a causal
graph is a DTG. Therefore, the ICG models the dependencies among invariants and the causal graph

models the dependencies among DTGs.

The method we use for generating ICTs is different from the cycle-breaking strategy used in the
Causal Graph (CG) heuristic [54]. The former simply finds a spanning tree from a certain root

node, while the latter orders the nodes by the difference of in-degrees and out-degrees and removes
certain edges based on the ordering. In the CG heuristic, the cycle-breaking can be expensive since

it is done only once and the CG heuristic uses the same tree to compute the heuristic values for all
states. In our algorithm, however, we generate different ICTs for different facts and thus require

the cycle-breaking to be fast. Moreover, in our algorithm, we use the invariant under consideration
as the root in order to maximize the possible dependencies that we can exploit to enhance londex

distances.

We can create different ICTs using different nodes as the root node. Taking the TPP domain used in
IPC5 as an example, we can derive five invariants, as shown in Table 4.1. Figure 4.3 illustrates the

ICG of the TPP domain and two example ICTs with I1 and I3 as the root, respectively.

The purpose of deriving ICTs is to remove cyclic dependencies for computing londexm. Theoret-
ically, any way to break a cyclic dependency is acceptable for the purpose of computing londexm,

since londexm just provide lower bounds on distances. However, when we compute londexm based
on DTGs derived from the same invariant I , we use an ICT with I as its root. This is because we

want to take into account as many dependencies as possible, in order to derive tight distance lower

bounds. For example, if we use the ICT rooted at I1 in Figure 4.3 to compute londexm with respect
to invariant I3, we will only consider I3’s dependencies on I4 and I5 while miss its dependencies

on I1 and I0. Using the ICT rooted at I3, on the other hand, will include more dependencies.

33

0: ⟨TRUCK, {(AT TRUCK,#)}⟩
1: ⟨GOODS, {(ON-SALE GOODS,#,#)}⟩
2: ⟨GOODS, {(STORED GOODS,#)} ⟩
3: ⟨GOODS, {(READY-TO-LOAD GOODS,#,#)} ⟩
4: ⟨GOODS, {(LOADED GOODS,#,#)} ⟩

Table 4.1: Invariants of the TPP domain.

I3

I0

I1

I2

I4

I1

I3I0

I4

I2

or

I3

I1

I0

I4

I2

Figure 4.3: The ICG and ICTs in the TPP domain.

Note that there may exist multiple ICTs with the same invariant as the root node. When an invariant
I has multiple ICTs with I as the root, we can arbitrarily choose one of these ICTs. Again, any ICT

is usable for the purpose of computing londexm since all we need are lower bounds and hence we
can discard some dependencies. For a node I in an ICT Z, we use depZ(I) to denote the set of

invariants that I depends on within Z.

4.2.2 Algorithm for Generating londexm

Since action londex is derived from fact londex, our strategy is to first enhance the distance in fact
londex. After we obtain enhanced fact londex, we use the same definitions used by londex1 to

enhance the distances in action londex.

It is not as straightforward as it might seem to augment the fact distance with causal dependencies.
The main difficulty is that we need to ensure that the enhanced distance value is a valid lower bound

in any solution plan, regardless of the initial, goal, or intermediate states. Further, the enhanced
distance value must be a lower bound to the distance in parallel plans. Therefore, we need to take

the possible parallelization of actions into consideration. In this section, we propose two methods
to enhance the distance constraints that satisfy the above requirements. We start with some basic

definitions.

Definition 14 (Predecessor and Successor Set). Given a transition δv→w in a DTG G(V,E),

v, w ∈ V , we call w a successor of v, and v a predecessor of w. For a node u in G(V,E), we

34

define its successor set to be succ(u) = {x | x ∈ V, Tu,x ∈ E}, and its predecessor set to be

pred(u) = {x | x ∈ V, Tx,u ∈ E}.

Definition 15 (Shared Precondition). Given a transition Tv,w in a DTG G(V,E), if there is a

fact f such that f ∈ pre(a) for each action a ∈ δv,w, we define f as a shared precondition for

the transition δv→w, denoted by f 7→ δv→w. We define SP (v, w) = {f |f 7→ Tv,w} to be the set of
shared preconditions of δv→w.

Notice that the minimum DTG cost ∆G(f1, f2) is a lower bound of the distance from f1 to f2 in

G. However, due to shared preconditions and causal dependencies, we may obtain tighter lower
bounds than ∆G(f1, f2). Shared preconditions can be found in most problem instances that we

experimentally studied.

Distance enhancement based on shared preconditioning

The idea of augmenting fact londex stems from the observation that some transitions in a DTG may
always require some transitions in another DTG due to shared preconditions. To be concrete, we

illustrate our idea by Figure 4.4. Consider two facts f and g in the same DTG G. When computing
the londex1 distance between f and g in G, we use ∆G(f, g) as the minimum distance. Consider

the shortest path between f and g, ξ = (f, v1, . . . , w1, g). If there is a shared precondition p of
δf→v1 and a shared precondition p′ of δw1→g, and if p and p′ are also in another DTG G′ which

G depends upon, we can compute ∆G′(p, p′), the minimum distance between p to p′ in G′. If
∆G′(p, p′) ≥ ∆G(f, g), the minimum cost to transit from f to g through the path ξ can be updated

to ∆G′(p, p′) + 1 rather than ∆G(f, g).

The above enhancement is valid for the following reason. Let P be a parallel plan that transfers f
to g by going through v1 and w1. Let f and g be true at time tf and tg, respectively. Then, since p

is the shared precondition for δf→v1 , p must be true at some time tp where tp ≥ tf . Similarly, since
p′ is the shared precondition for Tw1→g, p′ must be true at some time tp′ where

tp′ < tg. (4.1)

Note that it is impossible to have tp′ = tg, because p′ is the precondition of the transition T (w1, g).

Therefore, if p′ is true at tp′ , the earliest possible time for g to be true is tp′ +1. Therefore, we have
tg − tf ≥ tp′ − tp + 1. Hence, ∆G′(p, p′) + 1 is a lower bound on the distance between f and

g under the condition that the transition goes through v1 and w1. Moreover, enumerating all pairs

35

f

V1

V2

V3

W1

W2

g

G

p’p
G’

Shared
Precondition p Precondition p’

Shared

Figure 4.4: Computing minimum causal dependency cost based on shared preconditions.

(vi, wi) where vi ∈ succ(f) and wi ∈ pred(g) will result in a lower bound unconditional of which
nodes the transition goes through.

It is important to note that londex helps to compute distance lower bounds in parallel plans instead

of sequential plans. Therefore, ∆G′(p, p′) + ∆G(f, g) may not be a lower bound, because there
may be shared actions between G′ and G. Even if G′ and G have disjoint action sets, the actions

transforming p to p′ and the actions transforming f to g may be placed in the same time step in a
parallel plan as long as they are not mutually exclusive. ∆G′(p, p′)+ 1, on the other hand, is a valid

lower bound.

The above analysis on shared preconditions provides a mechanism to enhance the distance lower
bound between f and g. The distance lower bound between p and p′ may also be recursively
enhanced through the same dependency analysis. Let Υ(f, g) denote the enhanced distance lower

bound between any two facts f and g in the same DTG G, we are interested in computing

Υ(f, g) = min
v∈succ(f),w∈pred(g)

{
max

(
max

p∈SP (f,v),p′∈SP (w,g)
{Υ(p, p′)}+ 1,∆G(v, w) + 2

)}
(4.2)

However, it is difficult to exactly compute (4.2) because the definition of Υ-value may be cyclic

if there are cycles in the dependency graph of DTGs. Fortunately, we are only interested in any
tighter lower bound and are not required to have the maximum possible Υ-value. Therefore, in our

implementation, for each DTG G, we construct an ICT rooted at invar(G) and consider the shared
preconditions p and p′ only if they both reside in a DTG G′ where invar(G) depends on invar(G′)

in the ICT. This will effectively remove possible dependency cycles and make (4.2) well defined.

The details of the algorithm for computing the Υ-value is given in procedures Υ-value() and β-
value() in Algorithms 2 and 3, respectively. The β-value is similar to the Υ-value, but is intermediate

36

Algorithm 5: Υ-value(G, b)
Input: A DTG G with its ∆G values, an integer bound b
Output: Υ(f, g) for every pair f, g ∈ G
generate an ICT Z with invar(G) as the root;1

clear the saved β-value for all pairs of facts;2

foreach pair of facts (f, g), f, g ∈ G do3

if 1 < ∆G(f, g) ≤ b then Υ(f, g)=β-value(Z,G,f,g) ;4

else Υ(f, g) = ∆G(f, g) ;5

Algorithm 6: β-value(Z,G,f,g)
Input: Invariant connectivity tree Z, DTG G, facts f and g
Output: β-value of facts f,g
if β-value(f,g) is saved then return the saved value;1

β =∞;2

Generate the ordered succ-pred-pair list L(f, g); // see text for details3

foreach pair of facts ⟨v, w⟩ in L(f, g) do4

let α be the shortest path of v w such that f, g /∈ α;5

if |α|+ 2 ≥ β then break;6

m← |α|+ 2;7

foreach ⟨p, p′⟩,p 7→ T (f, v) and p′ 7→ T (w, g) do8

if p, p′ ∈ G′ and invar(G′) ∈ depZ(invar(G)) then9

m← max(m, β-value(Z,G′, p, p′)+1);10

β ←min(m, β) ;11

save β as β-value(f ,g);12

return β;13

and temporary. This is because each individual function call of β-value() in Υ-value() can be based

on a different ICT. Since the β-values depend on the ICT generated in Line 1 of Υ-value(), all

β-values are discarded when a different ICT is used.

The recursive function β-value() is used to retrieve causal dependencies and count them into tran-
sition costs, until no further uncalculated information can be found. For each pair of facts (f, g) in

a DTG, we enumerate all facts v and w such that v ∈ succ(f) and w ∈ pred(g). We order the
pairs by their shortest distances. Specifically, in Line 3 of the β-value() algorithm, we generate the

succ-pred-pair list L(f, g) defined as follows: L(f, g) = (pair1, pair2, . . . , pairn), where pairi =
(v, w), v ∈ succ(f), and w ∈ pred(g). L(f, g) is so ordered that the shortest distance between the

two facts in pairi is no greater than the shortest distance between the two facts in pairj , if i < j.
The purpose of ordering the pairs is to save computation time. When the shortest path from f to

g going through pairi has a length greater than the current enhanced β value, we do not need to
consider pairi or any subsequent pairs in L(f, g) (Line 6).

37

A special case is when there is a fact v such that v ∈ succ(f) and v ∈ pred(g). For such a fact v,

we insert the pair (v, v) to the beginning of L(f, g) because the distance of (v, v) is zero.

The distance value can be enhanced if there is a pair of facts (p, p′) with the following restriction: a)
p 7→ δf→v, b) p′ 7→ δw→g, c) both p and p′ belong to a DTG G′ that does not have the same fact with

G, and d) invar(G) depends on invar(G′) in the pre-generated ICT Z (Line 9). We can potentially
enhance the Υ value when such conditions are met (Line 10). If dependencies over several different

pairs of (p, p′) can be found, we use the maximum distance lower bound that can be obtained (Line
8–10).

We should note that we save the β-value for every pair of facts under a given ICT (Line 12 of

β-value()). During the computation of β-value(Z,G,f,g), we first look up a hash table to see if the β-
value(f,g) has been saved already (Line 1 of β-value()). If not, we call β-value(Z,G,f,g) recursively

to compute it. When we use a different ICT, we discard all β-values and recompute (Line 2 of
Υ-value()).

An integer b is used to parameterize Υ-value(G, b), in which we only try to enhance the distance of

(f, g) when ∆G(f, g) is greater than one but no more than b. When ∆G(f, g) = 1, there is a direct
transition from f to g and their distance cannot be enhanced through shared preconditions. A larger

b leads to potentially longer enhanced distances, while a smaller b requires a smaller computational
cost. We find in our experiments that most Υ-value enhancements are obtained when the ∆G value

is 2.

Another technical detail is that a pair of facts may appear in more than one DTG. In this case, their
Υ-values will be computed multiple times and we retain the maximum value.

Distance enhancement based on bridge analysis

The Υ-value can enhance the ∆G(f, g) value by considering the causal dependencies derived from
shared preconditions. However, in some cases, we may not be able to detect shared preconditions by

the causal dependency analysis, although there may indeed exist a tighter lower bound. Figure 4.5

shows such an example, where there are five facts {v, f, g, h, w} in the DTG. There are shared
preconditions p1 and p2 satisfying p1 7→ δf→h and p2 7→ δh→g. Suppose that the Υ-value of

(f, g) is 4 which is greater than the original fact distance ∆G(f, g) = 2. However, for facts v and
w, we cannot find any shared precondition for δv→f or δg→w. Therefore, the shared-precondition

enhancement cannot be applied to enhance the distance between v and w.

38

Figure 4.5: An example where shared-precondition enhancement fails to enhance the distance from
v to w, but the bridge analysis works.

f ... g

v1

v2

v3

v4

v5

w1 w2

w3

w4
w5

Figure 4.6: Propagating a Υ-value through a bridge f g.

Nevertheless, we may still augment the distance value of a pair of facts through what we call bridge

analysis. For a pair of connected facts v and w in a DTG G, a pair of facts (f, g) is called a bridge
pair of (v, w) if any path from v to w in G visits f and g in order. A path from f to g is then called
a bridge.

DTGs are typically sparse and frequently contain bridge pairs. Hence, an enhanced distance value

based on a bridge pair can be propagated to other pairs of facts. In Figure 4.6, if the distance of
(f, g) is increased to Υ(f, g) by shared preconditions, its improvement can be propagated to all

other fact pairs (vi, wj) that have (f, g) as a bridge pair. Precisely, the distance of (vi, wj) can be
improved to:

∆G(vi, f) + Υ(f, g) + ∆G(g, wj). (4.3)

The enhanced cost in (4.3) is a lower bound of the distance from vi to wj in any parallel plan,
because (f ,g) is a bridge pair for (vi, wj). Any path from vi to wj will have the form vi f
g wj , so that the cost of f g will always be part of the cost of vi wj . Since the three
sub-paths vi f , f g, and g wj cannot overlap in any parallel plan, their costs can be added

as in (4.3).

In Figure 4.1, the Υ-value of (LIFTING H1 C1) to (LIFTING H4 C1) is 4. Facts (AT C1 L1) and
(AT C1 L4) have (LIFTING H1 C1) and (LIFTING H4 C1) as a bridge pair. So the distance from

39

(AT C1 L1) to (AT C1 L4) can be improved by ∆G((AT C1 L1), (LIFTING H1 C1)) + Υ((LIFTING

H1 C1), (LIFTING H4 C1)) + ∆G((LIFTING H4 C1), (AT C1 L4)) = 1+4+1 = 6, which is greater
than that of 4 as in londex1.

Finally, propagating Υ-value through bridge pairs takes little time because for each DTG, the com-

putation happens within the graph itself and does not require exploration of multiple DTGs in the
dependency trees. The propagation allows us to enhance a large number of distances with little cost.

4.2.3 Summary of londexm Computation

Algorithm 4 summarizes the procedure for generating londexm. It has four steps:

1. (Lines 1–3) Compute londex1. Namely, initialize and compute the minimum DTG costs,

2. (Lines 4–5) Compute the Υ-values for facts whose londex1 distances are no more than 2. We

set b = 2 because we have found that it is not worth the computational cost to use a larger
b. The number of extra distances that can be enhanced using a larger b is very limited and in

most cases can also be augmented by the more efficient bridge-pair enhancement in the next
step.

3. (Lines 6–10) Perform the bridge-pair enhancement to propagate the Υ-values to other pairs.

4. (Line 11) Generate londexm for actions. Like londex1, we generate the action londex of
londexm using condition (1)-(4) in Class B of Section 4.1, in which a londex1 fact distance r

is replaced by a londexm fact distance.

The total time complexity of generate londexm() is O(|G||V |2d), where |G| is the total number of

DTGs, |V | the maximum number of vertices in a DTG, and d the maximum depth of any ICT. d is
typically a small constant (< 5), and both |G| (< 100) and |V | (10 to 100) are usually small. The

actual complexity can be further reduced as we use b = 2 in Υ-value(G, b). In practice, it takes less
than 100 seconds to generate londexm for the largest problems in the IPCs that we tested.

Table 4.2 shows the improvement of londexm over londex1 regarding the average distance of the

constraints in several representative problem instances. We see that for fact londex, londexm im-
proves the average distance by 6% (Depot domain) to 36% (Zenotravel domain). The action londex

is usually of much larger quantity, in tens of millions. We can also observe similar improvements in
the action londex, mostly around 10%.

40

Algorithm 7: generate londexm()
Input: The set of all DTGs G; The set of all facts F
Output: all londexm
foreach G = (V,E) do1

foreach pair of facts (f, g) ∈ V 2 do2

compute ∆G(f, g) ;3

foreach G = (V,E) do4

call Υ-value(G, b), where b=2;5

foreach G = (V,E) do6

foreach pair of facts (v, w) ∈ V 2 with ∆G(v, w) ≥ 3 do7

foreach bridge pair (f, g) of v w do8

if Υ(f, g) > ∆G(f, g) then9

increase the distance of (v,w) to ∆G(v, f) + Υ(f, g) + ∆G(g, w) ;10

generate londexm for actions;11

Problem
Fact londex Action londex

Count londex1 londexm Count londex1 londexm
Depot 20 27824 1.806 1.917 1799312 2.826 2.939

Driverlog 20 52242 2.401 2.792 2195384 2.119 2.301
Pipesworld 20 10672 1.887 2.188 14317438 2.023 2.257

Trucks 20 1628 1.926 2.176 28345668 4.027 4.447
Zenotravel 20 20070 1.612 2.187 30572950 2.593 2.723

Table 4.2: Comparisons of the average constraint distances for both fact londex and action londex.
Column “Count” indicates the number of constraints we can derive in each problem. Columns
‘londex1’ and ‘londexm’ give the average constraint distances of londex1 and londexm, respectively.

4.3 Non-Clausal Londex Constraints

Londex constraints, in particular londexm constraints, has the disadvantage that it may substantially
increase the encoding size. For instance, tens of millions of clauses may be generated from the

londexm constraints. As a result, memory becomes a limiting factor for applying londex constraints.

Not all londex constraints are needed for constraint propagation during SAT solving. In fact, less
than 1% of the londex constraints are used in the problem instances that we have experimented with.

Thus, it is a waste of time and memory to generate and store those londex constraints that are never
needed. However, it is difficult to determine or predict, at the encoding phase, which constraints are

useful.

41

To address this memory issue, we propose a new framework of SAT-based planning in which we

use londex constraints as nonclausal constraints. In the new approach, we do not encode any londex
constraint as a SAT clause in the initial encoding phase, but rather instantiate those londex con-

straints that are needed on-the-fly during SAT solving in a conflict-driven way. The SAT solver
used cannot be a blackbox but needs to be integrated with a londex reasoning mechanism. By using

this approach, in most cases we only need to trigger less than 1% of all londex constraints, which are
critically helpful. We can solve many planning instances in various domains that were not solvable

previously due to the memory restriction.

4.3.1 Londex as Nonclausal Constraints

Our algorithm is specified in DPLL nonclausal londex() in Algorithm 5, which is a variant of the
DPLL procedure used by MiniSat [34] integrated with londex as nonclausal constraints. An es-

sential element of this algorithm is the method to identify and invoke required londex constraints

to strengthen constraint propagation, particularly unit propagation, in SAT solving. If any conflict
occurs while propagating (londex) constraints, we generate and add new nonclausal constraints to

the SAT solver [34].

An action londex constraint can be represented in a nonclausal form t(a) − t(b) ≥ r, where a and
b are actions. To use the londex constraints in a SAT planner where the SAT solver is used as a

blackbox, we need to convert a londex constraint in the nonclausal form into SAT clauses. We need
to generate a clause ¬va,t ∨ ¬va,t′ , for any t− t′ < r, 1 ≤ t, t′ ≤ L, where L is the total number of

time steps.

In our new approach, we do not instantiate these clauses. Instead, we only save the londex con-
straints in their nonclausal forms. Let r be the average value of distance in the londex constraints,

the space saving by using nonclausal forms is of the order Θ(rL).

The original DPLL algorithm, used in Algorithm 5, works as follows. In each iteration, it selects
an unassigned variable x and sets it to 1 (Line 6). MiniSat uses a heuristic [34] that orders the

unassigned variables by their degrees of activities and chooses the one with the highest degree.
After x is assigned to 1, it performs unit propagation in the standard DPLL algorithm (Line 14).

During the unit propagation, an implied literal can be set to 1 or 0. The literals that are processed
by the unit propagation enter the queue Q (Line 12). During the propagation, a conflict occurs

if a propagated value or implied variable assignment is in conflict with a previous assignment. If
a conflict is encountered, new clauses specifying the conflict, which has been often called “no-

good” clause learning to avoid encountering the same conflict multiple times, are added to the SAT

42

Algorithm 8: DPLL nonclausal londex()
Input: variables V, clauses C, londex constraints L
Output: return the solution to SAT problem or report no solution found
Q← empty queue, conflict-free← true;;1

while true do2

if conflict-free then3

if no unassigned variable can be found then return satisfiable;4

select the unassigned variable z with the highest activity;5

enqueue(Q, ⟨z, value[z] = 1⟩);6

else7

if the conflict is found at the root level then return unsatisfiable;8

analyze conflicts, generate learnt clauses and backtrack until conflicts are eliminated;9

while Q is not empty do10

⟨x, value[x]⟩ = dequeue(Q);11

propagate value[x], enqueue new assignments to Q, and break if conflict detected;12

if value[x] = 1 then13

for all literals y that must be 0 according to londex constraints do14

if y is already assigned as 1 then15

set conflict-free = false;16

break;17

else18

assign value[y] = 0;19

enqueue(Q, ⟨y, value[y] = 0⟩ ;20

formulation and the algorithm backtracks to resolve the conflict (Line 9). Details of the backtracking
process can be found in the paper describing MiniSat [34].

After the original unit propagation, if there is any conflict, we will perform an additional londex-

constraint propagation if the newly dequeued or chosen variable x is assigned to 1 (Lines 15–20).
When x has the value 1, the corresponding action or fact is placed at a certain time step. We check

all of the londex constraints and identify all actions and facts that cannot occur at certain time steps.
For example, if there is a londex constraint t(a) − t(b) ≥ 6 for two actions a and b, and if x = 1

corresponds to placing a at time step 12, we set to 0 all those literals that correspond to placing b at
time steps 7 to 12. These potential assignments in the form of value[y] = 0 will also be enqueued

and further propagated (Lines 19–20).

We do not perform any londex-constraint propagation if x is set to 0 because x = 0 means a fact or
action is not at a specific time step. Such a fact cannot be propagated using londex.

43

10

102

103

104

105

106

107

 0 10000 20000 30000 40000 50000

N
um

be
r

of
 c

la
us

es

Decisions

Solution Found

Solution Found

non-clausal londexm
clausal londexm

Figure 4.7: The numbers of londex clauses used by both clausal and nonclausal methods on Storage-
15 (Makespan 8).

It is also possible that a conflict may be detected during the londex-constraint propagation. Since

we always set an implied literal y to 0 during londex-constraint propagation, a conflict happens if
y has already been assigned to 1. Such a conflict will be resolved in the same way as the original

conflicts in the DPLL algorithm (Lines 15–17).

The algorithm terminates when there is no unassigned variable, in which case the problem is satis-
fiable (Line 4), or when a conflict is found at the root level during backtracking, in which case the

problem is unsatisfiable (Line 8).

4.3.2 Effects of Nonclausal Londex Constraints

The new approach can reduce the memory usage by only enforcing on the fly a small portion of
all londex constraints. For each constraint, it takes extra time to expand the londex constraints

in nonclausal form before being used in constraint propagation. Surprisingly, we found that for
many problems, this approach can save not only space but also search time. This is because the

cost for checking and processing clauses in constraint propagation is greatly reduced since many
fewer clauses are in the SAT encoding. In the experimental results section, we will show that the

nonclausal londex approach can not only address the memory issue, but also make the algorithm
faster and applicable to many large problem instances.

By using this approach, in most cases we only need to activate less than 1% of all londex constraints.

Figure 4.7 compares the total number of londex constraint clauses used by the original method
and the number of londex constraint clauses actually used by the new nonclausal approach on the

44

Storage-15 problem in IPC5. It is a representative example that the non-clausal method finds a

solution with much fewer decisions than the original one. We can find similar cases in many other
instances.

In the figure, we show the total number of londex constraint clauses used as the search algorithm

proceeds. The label “solution found” marks the time when the SAT instance is solved. The original
method instantiates all londex constraints as clauses in the SAT formulation and thus maintains a

constant number of clauses. The new nonclausal method instantiate clauses on demand and exhibits
a dramatic reduction on the number of clauses. It uses two orders of magnitude fewer clauses

and solves the problem faster than the clausal londex approach. Using the new approach, we can
solve many new planning instances in various domains, which were not solvable previously due to

memory or time limitation.

4.4 Experimental Results

We now evaluate the effects of londex by integrating londex constraints in both SATPlan04 and
SATPlan06. As discussed earlier, SATPlan04 and SATPlan06 differ mainly in their encoding mech-

anisms; SATPlan04 uses an action-based encoding with action literals only, while SATPlan06 uses a
hybrid encoding that includes both action and fact literals. We show that londex constraint is effec-

tive in reducing the solution time for both encodings. We also show that londexm constraint is more
powerful than londex1 constraint. The experiments are conducted on a Xeon 2.0 GHz workstation

with 2Gb of memory limit.

In our experiments, we study the performance of original SATPlan04 (denoted as SAT04), SAT-
Plan04 with londex1 as clausal constraints (denoted as A(1)), SATPlan04 with londexm as clausal

constraints (denoted as A(m)), and SATPlan04 with londexm as nonclausal constraints (denoted as

A(m)∗). Here, “A” means using an action-based encoding.

We also integrate londex constraints into SATPlan06, which uses a hybrid encoding with action and
fact literals. In our experiments, we compare the performance of the original SATPlan06 (denoted

as SAT06), SATPlan06 with londex1 as clausal constraints (denoted as H(1)), and SATPlan06 with
londexm as clausal constraints (denoted as H(m)). Here, “H” means using a hybrid encoding.

In our experiments, we do not apply the nonclausal-constraint technique to the hybrid encoding

for the following reasons. The motivation of the nonclausal constraints is to reduce memory con-
sumption. For SATPlan04, since it uses an action-based encoding, we can only use action londex

constraint, which is typically of very large quantity. For SATPlan06 which uses a hybrid encoding,

45

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r

of
 I

ns
ta

nc
es

 S
ol

ve
d

in
 I

P
C

3,
4,

5

Running Time of Planners

SAT04
A(1)
A(m)

A(m)*
SAT06

H(1)
H(m)

Figure 4.8: Number of instances solved by each planner.

since both fact and action literals are available, we can use either fact londex or action londex, or

both. According to our experiments, adding both of fact and action londex constraints provides
almost no extra benefit. The strong correlation between these two kinds of constraints make their

pruning capability overlapped, as in general we can derive action londex from fact londex, and vice
versa. On the other hand, since there are typically much fewer facts than actions in a planning in-

stance, the quantity of fact londex constraints is much fewer than that of action londex constraint.
Therefore, for the hybrid encoding in SATPlan06, memory is not a bottleneck and hence using lon-

dex as nonclausal constraints is not beneficial. Further, since the number of fact londex constraints
is relatively very small, using fact londex as nonclausal constraints can save only negligible over-

head for constraint propagation and we cannot observe any difference in the runtime. That is why
we do not use nonclausal constraints for the hybrid encoding.

We conduct the experiments on all of the IPC3, IPC4 and IPC5 domains. In our experiments, if

a domain appears in more than one IPC, we use the one in the latest IPC. Figure 4.8 illustrates
the number of instances solved by each planner when the solving time increases. We see from

Figure 4.8 that the efficiency of the seven planners can be ranked as, from best to worst, H(m),
H(1), A(m)∗, A(m), SAT06, A(1) and SAT04. For each problem instance, we have verified that all

solvers give the same makespan.

On the IPC domains that we test, SAT04 has the worst performance. A(1) is much better than
SAT04, where londex constraints greatly helps the performance. The encoding of SAT06 is better

overall. In addition, while londex constraints are integrated, we achieve moderate improvements.

46

4.5 Summary

Londex is a general class of constraints that can be automatically derived from the problem structure

of STRIPS planning domains. We have first proposed londex1, which is derived based on the topol-
ogy of individual DTGs. Londex1 gives rise to state-independent minimum distance of actions and

facts that can be utilized during the planing process. We further extend londex1 by exploiting the
causal dependencies among multiple DTGs. The resulting londexm provides tighter lower bounds

on the minimum state-independent distances between facts and actions, leading to stronger search
space pruning.

We have integrated londex into SAT-based planning. By incorporating londex constraints into the

SAT formulation, we are able to achieve strong constraint propagation and significant improvement
to planning efficiency. In order to ease the burden of a high memory requirement by londex, we

have proposed a mechanism for utilizing the londex constraints as nonclausal constraints. Instead
of adding londex constraints as clauses to the SAT encoding, we have modified the DPLL search

algorithm and used londex for unit propagation in a conflict-driven fashion so as to generate only
the londex constraints as needed. This technique enables us to make full use of the pruning power

of londex without exhausting available memory.

The experimental results on recent IPC domains show that londex constraints can speed up planners

using both action-based and hybrid SAT encodings, on most problems of nearly all domains that we
tested.

Although londex has achieved extensive improvement regarding problem solving efficiency, there

are a few limitations. First, we have to keep two sets of planning formulations in a planner: STRIPS
for encoding and SAS+ for londex constraints. This leads to additional processing time. Second,

this method is in general not memory efficient. As we will show in the next chapter, the STRIPS
based encoding is in fact not compact enough. Thus having more redundant clauses makes it even

more memory consuming. Having too many clauses not only have side effects on the memory
usage, but also makes the SAT solving less efficient in some instances.

47

Chapter 5

SAS+ Planning as Satisfiability

A key factor for the performance of the planning as satisfiability approach is the SAT encoding
scheme, which is the way a planning problem is compiled into SAT formulae with boolean vari-

ables and clauses. As the encoding scheme has a great impact to the efficiency of SAT-based plan-
ning, developing novel and superior SAT encoding has been an active research topic. Previously,

extensive research has been done on making the SAT encoding more compact. One example of
compact encoding is the lifted action representation, first studied in [72] and soon later more com-

prehensively in [35]. In this compact encoding scheme, actions are represented by a conjunction of
parameters, thus this method mitigates the problem of blowing up time steps caused by grounding

and itemizing each action. The original scheme does not guarantee the optimality on time steps,
however, an improved lifted action representation that preserves optimality is proposed[109]. Later,

a new encoding [107] is also proposed based on a relaxed parallelism semantic, which also does not
guarantee optimality.

All these previous enhancements were still based on STRIPS. In this chapter, we propose the first

SAS+ based encoding scheme (SASE) for classical planning. Unlike previous STRIPS based SAT
encoding schemes that model actions and facts, SASE directly models transitions in the SAS+

formulation. Transitions can be viewed as a high-level abstraction of actions, and there are typically

significantly fewer transitions than actions in a planning task. The proposed SASE scheme describes
two major classes of constraints: first the constraints between transitions and second the constraints

that match actions with transitions. We theoretically and empirically study SASE and compare it
against the transitional STRIPS based SAT encoding. To further improve the performance of SASE,

we propose a number of techniques to reduce encoding size by recognizing certain structures of
actions and transitions in it.

Theoretically, we study the relationship between the solution spaces of SASE and that of STRIPS

based encoding. We show that the set of solution plans found by the STRIPS based encoding and

48

by SASE are isomorphic, meaning that there is a bijective mapping between the two. Hence, we

show the equivalence between solving the STRIPS based encoding and SASE.

As an attempt to assess the performance gain of SASE, we study how it makes a DPLL SAT solv-
ing algorithm behave in a more favorable way. The study is quantified by the widely used VSIDS

heuristic. The transition variables that we introduce have high frequencies in clauses. Thus tran-
sition variables consequently have higher VSIDS scores. The higher VSIDS scores lead to more

branching on the transition variables than action variables. Since the transition variables has high
scores and hence stronger constraint propagation, branching more on the transition variables leads

to faster SAT solving. We provide empirical evidences to support our explanation. More impor-
tantly, we introduce an indicator called transition index, and empirically show that there is strong

correlation between the transition index and SAT solving speedup.

Finally, we evaluate the new encoding on the standard benchmarks from the recent International
Planning Competitions. Our results show that the new SASE encoding scheme is more efficient

in terms of both time and memory usage comparing to STRIPS-based encodings, and solves some
large instances that the state-of-the-art STRIPS-based SAT planners fail to solve.

We first present SASE in Section 5.1 and prove its equivalence to the STRIPS based encoding in

Section 5.2. We study the reason why SASE works better in modern SAT solving algorithms, by
conducting empirical studies to support the worst case analysis in Section 5.3. The techniques to

further reduce the encoding size are considered in Section 5.4. We present our experimental results
in Section 5.5, and summarize in the last section.

5.1 SASE Encoding Scheme

In this section, we introduce our new encoding for SAS+ planning tasks, denoted as SASE. We use
the same search framework as SatPlan: start with a small number of time steps N and increase N

by one each time until a satisfiable solution is found. For each given N , we encode a planning task
into a SAT instance which can be solved by a SAT solver. A SASE instance includes two types of

binary variables:

1. Transition variables: Uδ,t, ∀δ ∈ T and t ∈ [1, N], which may also be written as Ux,f,g,t when

δ is explicitly δxf→g;

2. Action variables: Ua,t, ∀a ∈ O and t ∈ [1, N].

49

As to constraints, SASE has eight classes of clauses for a SAS+ planning task. In the following, we

define each class for every time step t ∈ [1, N] unless otherwise indicated.

1. Initial state: ∀x, sI(x) = f ,
∨

∀δf→g∈T (x) Ux,f,g,1;

2. Goal: ∀x, sG(x) = g,
∨

∀δf→g∈T (x) Ux,f,g,N ;

3. Progression: ∀δxh→f ∈ T and t ∈ [1, N − 1], Ux,h,f,t →
∨

∀δxf→g∈T (x) Ux,f,g,t+1;

4. Regression: ∀δxf→g ∈ T and t ∈ [2, N], Ux,f,g,t →
∨

∀δx
f ′→f

∈T (x) Ux,f ′,f,t−1;

5. Transition mutex: ∀δ1∀δ2 such that δ1 and δ2 are transition mutex, U δ1,t ∨ U δ2,t;

6. Composition of actions: ∀a ∈ O, Ua,t →
∧

∀δ∈M(a) Uδ,t;

7. Action existence: ∀δ ∈ T \R, Uδ,t →
∨

∀a,δ∈M(a) Ua,t;

8. Action mutex: ∀a1∀a2 such that ∃δ, δ ∈ T (a1) ∩ T (a2) and δ ̸∈ R, Ua1,t ∨ Ua2,t;

Clauses in classes 3 and 4 specify and restrict how transitions change over time. Clauses in classes
5 enforce that at most one related transition can be true for each state variable at each time step.

Clauses in classes 6 and 7 together encode how actions are composed to match the transitions.
Clauses in class 8 enforce mutual exclusion between actions.

Note there are essential differences between transition variables in SASE and fact variables in PE.
In terms of semantics, a transition variable at time step n in SASE is equivalent to the conjunction

of two fact variables in PE, at time step n and n+ 1, respectively. Nevertheless, facts variables are
not able to enforce a transition plan as transition variables do. The reason is that transition variables

not only imply the values of multi-valued variables, but also enforce how these values propagate
over time steps.

In addition, transition variables are different from action variables regarding their roles in SAT solv-

ing. The reason is as follows. In SASE, action variables only exist in the constraints for transition-
action matching, but not in the constraints between time steps. Transition variables exist in both.

Thus transition variables appear more frequently in a SAT instance. The inclusion of those high-
frequency variables can help the SAT solvers through the VSIDS rule for variable branching. We

will discuss more and provide an empirical study in Section 5.3.

50

5.1.1 Search Spaces of Encodings

It is in general difficult to accurately estimate the time that a SAT solver needs to solve a SAT
instance, as it depends on not only the problem size, but also the structure of the clauses. In this

section, we give a preliminary analysis of the worst case search space of a planning problem encoded
in SASE for a given time step N . In particular, we examine the search spaces corresponding to the

SAT instances in PE and SASE, respectively. We analyze the underlying encoding structures in
SASE and why a problem in SASE can be typically efficiently solved.

We first consider the search space of planning in PE. To simplify the analysis, we focus on an

action-based encoding. The argument can be readily extended to an encoding with both actions and
facts explicitly represented. In an action-based encoding, one binary variable is introduced for each

action a at a time step t. The constraint propagation is achieved through application of actions in
this encoding; hence, a key problem is to select a set of actions for each time step t. There are 2|O|

possible subsets of actions at each time step. Therefore, a total of (2|O|)N possible action plans in
the search space. An exhaustive search will explore a search space of size O((2|O|)N).

Figure 5.1: Illustration of how the search spaces of two encoding schemes differ from each other.

The major difference between the SAT instances in SASE and PE is that in the former encoding,
actions are not responsible for the constraint propagation across time steps. Figure 5.1 illustrates

their difference. In SASE, the SAT instance can be conceptually reduced to the following search
problem of two hierarchies.

• At the top level, we search for a transition plan as defined in Definition 4. This amounts to
finding a set of transitions for each time step t (corresponding to all δ such that Uδ,t is set to

⊥

), so that they satisfy the clauses in classes 1-5 of the SASE encoding.

51

• At the lower level, we try to find an action plan that satisfies the transition plan. In other

words, for a given transition plan that satisfies clauses in classes 1-5, we try to find an action
plan satisfying clauses in classes 6-8.

We now analyze the search space size in both hierarchies of SASE. For the top level, since there are
|T | transitions, at each time step we has 2|T | choices thus the size is in total (2|T |)N . We note that

|T | is usually much less than |O|. On the lower level, two observations can be made. For a time
step t and a given subset of selected transitions (corresponding to all δ such that Uδ,t is set to 1),

finding a subset of actions that satisfies clauses in classes 6-8 amounts to exploring a search space
with size K =

∏
δ∈T |A(δ)| in the worst case. Given a transition plan, the problems of finding a

supporting action plan at different time steps are independent of one another. That is, an action plan
can be found for each time step separately without backtracking across different time steps. Hence,

the total cost of the lower level is NK. Therefore, to solve an SASE instance, the search space that
an exhaustive search may explore is bounded by O((2|T |)NNK).

The number of transitions |T | is generally much smaller than the number of actions |O| in prac-

tise. For instance, in Pipesworld-30, |O| is 15912 and |T | is 3474; in TPP-30, |O| is 11202 and
|T | is 1988. On the other hand, although K is exponential in |T |, it is a relatively smaller term.

Therefore, the bound of SASE O((2|T |)NNK) is smaller than the one for STRIPS-based encoding
O((2|O|)N).

5.1.2 A Running Example

Let us show how SASE works on an example. Consider a planning task with two multi-valued
variables x and y, where dom(x) = {f, g, h} and dom(y) = {d, e}. There are three actions a1 =

{δxf→g, δ
y
d→e}, a2 = {δxf→g, δ

y
e→d} and a3 = {δxg→h, δ

y
e→d}. The initial state is {x = f, y = d}

and the goal state is {x = h, y = d}. One solution to this instance is a plan of two actions: a1 at

time step 1 and then a3 at time step 2.

In the following we list the constraints between transitions and actions, namely those specified in
classes 6 and 7. The clauses in other classes are self-explanatory. In particular, here we only list

the variables and clauses for time step 1, because these constraints all repeat for time step 2. The
transition variables at time step 1 are { Ux,f,g,1, Ux,f,f,1, Ux,g,h,1, Ux,g,g,1, Ux,h,h,1, Uy,d,d,1, Uy,e,e,1,

Uy,e,d,1 }, and they repeat for time step 2. The action variables at time step 1 are { Ua1,1, Ua2,1,
Ua3,1}, and they repeat for time step 2.

52

The clauses in class 6 are: Ua1,1 ∨ Ux,f,g,1, Ua1,1 ∨ Ux,d,e,1, Ua2,1 ∨ Ux,f,g,1, Ua2,1 ∨ Uy,e,d,1,

Ua3,1∨Ux,g,h,1 and Ua3,1∨Ux,e,d,1. The clauses in class 7 are Ux,f,g,1∨Ua1,1∨Ua2,1, Ux,g,h,1∨Ua3,1,
Ux,d,e,1 ∨ Ua1,1, and Ux,e,d,1 ∨ Ua2,1 ∨ Ua3,1.

The solution, in terms of actions, has action variables Ua1,1 and Ua3,2 to be true, and all other action

variables to be false. In addition, the corresponding transition plan has the following transition
variables to be true: {Ux,f,g,1, Ux,g,h,2, Uy,d,e,1, Uy,e,d,2}, while all other transition variables are

false.

As mentioned above, although there are often multiple transition plans, a transition plan may not
correspond to a valid action plan. In this particular example, there are several different transition

plans that satisfy the initial state and the goal, but some of them do not have a corresponding action
plan. For example by having transition variables {Ux,f,g,1, Ux,g,h,2, Uy,d,d,1, Uy,d,d,2} to be true, it

results in a transition plan, but does not lead to a valid action plan.

5.2 Correctness of SAS+ Based Encoding

It is important to prove the correctness of the proposed encoding. We achieve so by proving that
SASE for SAS+ planning has the same solution space as that of PE used in STRIPS planning. More

specifically, we show that, for a given planning task and a given time step N , the SAT instance from
SASE is satisfiable if and only if the SAT instance from PE is satisfiable. Here, we assume the

correctness of the PE encoding, used by a number of planners such as SatPlan06 [74] for STRIPS
planning.

Given a STRIPS task Ψ, we use PE(Ψ, N) to denote the encoding by PE with a time step bound N .
Similarly, we use SASE(Π, N) to denote that by SASE, when given a SAS+ task Π.

5.2.1 Solution Structures of STRIPS Based Encoding

In this section, we study a few properties of the solutions in a STRIPS based encoding. These prop-

erties provide some key insights for establishing the relationship between PE and SASE encodings.

Lemma 1 Given a STRIPS task Ψ = (F ,A, φI , φG), a time step N , and its PE SAT instance

PE(Ψ, N) = (V,C), suppose there are a satisfiable solution denoted as Γ, a fact f ∈ F , and

t ∈ [1, N] such that: 1) Γ(Wdumf ,t) =⊥, 2) Γ(Wf,t) =

⊥

, and 3) ∀a ∈ DEL(f), Γ(Wa,t) =⊥,

53

then we can construct an alternative solution Γ′ to PE(Ψ, N) as follows:

Γ′(v) =

{ ⊥

, v = Wdumf ,t, v ∈ V

Γ(v), v ̸= Wdumf ,t, v ∈ V
(5.1)

Proof We show that Γ′ satisfies every clause in C just as Γ does. Since all variables but Wdumf ,t

keep the same value, we only need to look at those clauses that have Wdumf ,t in them. According

to the definition of PE, Wdumf ,t may exist in three types of clauses:

1. Clauses for add effects. In this case, the clauses are of the form Wf,t+1 → (Wdumf ,t ∨
Wa1,t ∨ . . .∨Wam,t), which is equivalent to W f,t+1 ∨Wdumf ,t ∨Wa1,t ∨ . . .∨Wam,t. Since

Γ′(Wdumf ,t) =

⊥

, such clauses are still true.

2. Clauses for preconditions. In this case, the clauses are of the form Wdumf ,t → Wf,t, which

is equivalent to Wdumf ,t ∨Wf,t. Since Γ′(Wf,t) =

⊥

, these clauses remain true for Γ′.

3. Clauses of mutual exclusion between actions. Without loss of generality, let us denote such a

clause Wdumf ,t ∨Wa,t. For a given f , the actions in all such clauses are mutex with dumf ,
because f is their delete effect. According to the construction, since Γ′(Wa,t) = Γ(Wa,t) =⊥,

all such clauses are true.

The three cases above conclude that all clauses that include Wdumf ,t are satisfied by Γ′. Therefore,
Γ′ is also a solution to PE. �

Lemma 2 Given a STRIPS task Ψ = (F ,A, φI , φG), a time step N , and its PE SAT instance

PE(Ψ, N) = (V,C), suppose there are a satisfiable solution denoted as Γ, a fact f ∈ F , and t ∈
[1, N] such that: 1) Γ(Wf,t) =⊥, 2) there exists an action a ∈ ADD(f) such that Γ(Wa,t−1) =

⊥

,

then we can construct an alternative solution Γ′ to PE(Ψ, N) as follows:

Γ′(v) =

{ ⊥

, v = Wf,t, v ∈ V

Γ(v), v ̸= Wf,t, v ∈ V
(5.2)

Proof We will show that Γ′ makes each clause in C to be true. Since all variables but Wf,t keep

the same value, we only need to look at those clauses that have Wf,t in them. According to the
definition of PE, Wf,t may exist in three types of clauses.

1. Clauses for add effects. In this case, f is an add effect of multiple actions. Let us write this
clauses as Wf,t → (Wa1,t−1∨Wa2,t−1∨ . . .∨Wam,t−1), which is Wf,t∨Wa1,t−1∨Wa2,t−1∨

54

. . .∨Wam,t−1. Since there exists an action a ∈ ADD(f) such that Γ(Wa,t−1) =

⊥

, the clause

is still true in Γ′.

2. Clauses for preconditions. In this case, f is a precondition of an action b. This clause is

written as Wb,t →Wf,t, which is equivalent to Wb,t ∨Wf,t. Since Γ′(Wf,t) =

⊥

, this clause
is still true.

3. Clauses of fact mutex. Without loss of generality, consider a fact g that is mutex with f .

The corresponding clause will be Wf,t ∨ Wg,t. Since Γ′(Wf,t) =

⊥

, this clause is true if
Γ′(Wg,t) =⊥.

We now suppose Γ′(Wg,t) =

⊥

and show that it leads to a contradiction. According to clauses

of class III, there must be a variable Wb,t−1, such that g ∈ add(b) and Γ′(Wb,t−1) =

⊥

.
According to the definition of mutex, two facts are mutex only when every pair of the actions

that add them are mutex. Thus, Wa,t−1 and Wb,t−1 are mutex. Therefore, Γ′(Wa,t−1) =

⊥

and Γ′(Wb,t−1) =

⊥

, leading to a contradiction. As a result, Γ′(Wg,t) =⊥, and consequently

this clause is satisfied.

The three cases above conclude that all clauses that include Wf,t are satisfied by Γ′. Therefore, Γ′

is also a solution to PE. �

Lemmas 1 and 2 show that under certain conditions, some dummy action variables and fact variables

in PE are free variables. They can be set to be either true or false while the SAT instance remains
satisfied. Note that although we can manipulate these free variables to construct an alternative

solution Γ′ from a given solution Γ, both Γ and Γ′ refer to the same STRIPS plan, because there is
no change to any real action variable. This leads to an important insight on the solutions of PE: a

solution plan to a STRIPS planning problem Ψ may correspond to multiple solutions to PE(Ψ, N).

Lemma 3 Given a STRIPS task Ψ = (F ,A, φI , φG), a time step N , and its PE SAT instance

PE(Ψ, N) = (V,C), those clauses that define competing needs mutex and fact mutex can be inferred

from other clauses in PE(Ψ, N).

Proof We need to prove:

• if actions a and b are mutex at level t due to competing needs, the clause W a,t ∨W b,t can be
inferred from other clauses (except for the fact mutex clauses) in PE.

• if facts f1 and f2 are mutex at level t, the clause W f1,t ∨W f2,t can be inferred from other
clauses (except for the competing need mutex clauses) in PE.

55

We prove by mathematical induction on t. When t = 0, each two facts in the initial state are not

mutex, thus there is no competing needs mutex and no fact mutex. Now suppose the hypothesis
holds at time step t, we prove that the mutex clauses defined by competing needs mutex and fact

mutex at time t+ 1 can be inferred from other clauses.

Consider two facts f1 and f2 that are mutex at level t+1. According to the definition of fact mutex,
for every two actions a and b such that a ∈ ADD(f1), b ∈ ADD(f2), a and b are mutex. Based on

the induction, we have W a,t ∨W b,t (for ∀a, b that a ∈ ADD(f1), and b ∈ ADD(f2)). Since f1 ∈
add(a) and f2 ∈ add(b), we have Wf1,t+1 →

∨
∀a∈ADD(f1)

Wa,t and Wf2,t+1 →
∨

∀b∈ADD(f2)
Wb,t.

A resolution using these three types of clauses can be performed as follows:

W f1,t+1 ∨
∨

∀a∈ADD(f1)
Wa,t, W a,t ∨W b,t (∀a ∈ ADD(f1), ∀b ∈ ADD(f2))

W f1,t+1 ∨
∨

∀b∈ADD(f2)
W b,t

(5.3)

Another resolution using (5.3) gives:

W f1,t+1 ∨
∨

∀b∈ADD(f2)
W b,t, W f2,t+1 ∨

∨
∀b∈ADD(f2)

Wb,t

W f1,t+1 ∨W f2,t+1

(5.4)

Hence, fact mutex at level t + 1 can be inferred. Now, consider two actions a and b at level t + 1

which are mutex because of competing needs. There exist two mutex facts f ∈ pre(a) and g ∈
pre(b). From above, we have W f,t+1 ∨W g,t+1. Since f ∈ pre(a) and g ∈ pre(b), then we have

Wa,t+1 →Wf,t+1 and Wb,t+1 →Wg,t+1.

We can perform a resolution using these three types of clauses:

W a,t+1 ∨Wf,t+1, W f,t+1 ∨W g,t+1

W a,t+1 ∨W g,t+1

(5.5)

Another resolution using (5.5) gives:

W b,t+1 ∨Wg,t+1, W a,t+1 ∨W g,t+1

W a,t+1 ∨W b,t+1

. (5.6)

Therefore, the action mutex defined by competing needs can also be inferred from other clauses. �

56

Lemma 3 shows that when encoding a STRIPS task, it is not necessary to encode fact mutex and

competing needs action mutex, as they are implied by other clauses. Therefore, when we consider
the completeness and correctness of PE, we can ignore these redundant clauses. Analysis with

similar conclusion can be found in some literatures [116], but using different approaches.

5.2.2 Equivalence of STRIPS and SAS+ Based Encodings

A classical planning problem can be represented by both STRIPS and SAS+ formalisms, in which
case we say the two formalisms are equivalent. Given a STRIPS task Ψ = (F ,A, φI , φG) and

its equivalent SAS+ planning task Π = (X ,O, sI , sG), the following isomorphisms (bijective map-
pings) exist:

• ϕf : F →
∏

X Dom(X) (a binary STRIPS fact corresponds to an variable assignment in

SAS+);

• ϕa : A → O (a STRIPS action corresponds to a SAS+ action);

• ϕi : φI → sI (can be derived from ϕf);

• ϕg : φG → sG (can be derived from ϕf).

Furthermore, since both formalisms represent the same planning task, these mappings preserve the

relations between actions and facts. For example, if f ∈ pre(a) where f ∈ F and a ∈ A in a
STRIPS formalism, we have ϕf (f) ∈ pre(ϕa(a)) in the SAS+ formalism.

First, we show that the parallelism semantics enforced by S-mutex in SAS+ is equivalent to that by

P-mutex in STRIPS.

Lemma 4 Given a SAS+ planning task Π = (X ,O, sI , sG) and its equivalent STRIPS task Ψ =

(F ,A, φI , φG), suppose we have actions a, b ∈ O, and their equivalent actions a′, b′ ∈ A (i.e.

a = ϕa(a
′) and b = ϕa(b

′)), a and b are S-mutex if and only if a′ and b′ are P-mutex.

Proof We construct the proof by studying it on both directions. Based on Lemma 3, we only

consider inconsistent effects and interference mutex in P-mutex.

⇒: if a′ and b′ are P-mutex in Ψ, a and b are S-mutex in Π.

Since a′ and b′ are P-mutex, one either deletes precondition or add-effect of the other. Without loss
of generality, suppose a′ deletes f (i.e. f ∈ del(a′) ∩ pre(b′)). Consequently, there must be a

57

transition δ1 = δxf→h ∈ T (a) such that f ̸= h and δ2 = δxf→g ∈ T (b). There are two cases to be

considered.

1) δ1 ̸= δ2. δ1 and δ2 are mutex transitions by Definition 3, since they both transit from f . Therefore,
a and b are S-mutex, according to the second condition in Definition 5.

2) δ1 = δ2. In this case, a and b are S-mutex by the first condition of Definition 5.

Based on the two cases, we conclude that a and b are S-mutex. A similar argument applies to the

case when one action deletes the other’s add-effect.

⇐: if a and b are S-mutex in Π, a′ and b′ are P-mutex in Ψ.

If two actions a and b are S-mutex in Π, there are two cases.

1) There exists a transition δ, which is in both T (a) and T (b). Consequently, a′ and b′ deletes each
other’s precondition and thus they are P-mutex.

2) There exist two distinct transitions δ1 ∈ T (a), δ2 ∈ T (b) and a multi-valued variable x ∈ X ,

such that {δ1, δ2} ⊆ T (x). Let us denote these two transitions as δxv1→v2 and δxv3→v4 . In such a case,
suppose δxv1→v2 and δxv3→v4 are allowed to be executed in parallel in a STRIPS plan. It obviously

leads to a contradiction, since v1, v2, v3, v4 ∈ Dom(x) are values of the same multi-valued variable,

and by the definition of SAS+ formalism, only one of them can be true at the same time. Therefore,
the preconditions of a′ and b′ must be mutex, and hence a′ and b′ are P-mutex. �

Lemma 4 gives the connection between P-mutex and S-mutex. Based on that we can construct the

relations between the encodings, which are presented in Theorem 1 and Theorem 2, respectively.

Theorem 1 Given a STRIPS task Ψ and a SAS+ task Π that are equivalent, for a time step bound

N , if PE(Ψ, N) is satisfiable, SASE(Π, N) is also satisfiable.

Proof Since PE(Ψ, N) is satisfiable, we denote one of its solutions as ΓΨ. We first present how to

construct an assignment to SASE(Π, N) from ΓΨ. Next, we prove that this constructed assignment
satisfies every clause in SASE(Π, N).

Construction. There are two steps for the construction. According to Lemmas 1 and 2, there

are in general some free variables in ΓΨ. In the first step, we construct an alternative solution to
PE(Ψ, N) by changing all free variables in ΓΨ to be true according to Lemmas 1 and 2. Let us

denote the resulting solution as Γ′
Ψ. Then, we construct an assignment for SASE(Π, N) from Γ′

Ψ.
The value of each variable in ΓΠ is defined as follows.

58

1. For every a ∈ O (which is also in A)1, we let Ua,t = Wa,t.

2. For every transition δf→g ∈ T , if Wf,t =

⊥

and Wg,t+1 =

⊥

in Γ′
Ψ, we set Ux,f,g,t =

⊥

in

ΓΠ.

Satisfiability. We prove that every individual clause in SASE is satisfied by ΓΠ. There are eight
types of clauses.

1. (Forward progression). According to our construction, we need to show that, for any t ∈
[1, N − 2],

∀δxh→f ∈ T , (Wh,t ∧Wf,t+1)→
∨

∀g,δxf→g∈T
(Wf,t+1 ∧Wg,t+2) (5.7)

If Γ′
Ψ(Wf,t+1) =⊥, then (5.7) is satisfied by Γ′

Ψ. If Γ′
Ψ(Wf,t+1) =

⊥

, we consider an action

set Y = {dumf} ∪ DEL(f), which is a subset of M(δxf→g). There are two possibilities.

• For every action a ∈ Y , Γ′
Ψ(Wa,t+1) =⊥. In such a case, Wdumf ,t+1 and Wf,t+2 are

free variables according to Lemmas 1 and 2, respectively. Therefore, according to the
construction in Γ′

Ψ, which assigns all free variables to true, variables Wf,t+1, Wf,t+2

and Wdumf ,t+1 are all
⊥

. In addition, δf→f is always in T , meaning Wf,t+2 is included
in the right hand side of (5.7). Therefore, (5.7) is satisfied by Γ′

Ψ.

• There exists an action a ∈ Y , such that Γ′
Ψ(Wa,t+1) =

⊥

. In such a case, let us
consider an arbitrary fact g ∈ add(a). If Γ′

Ψ(Wg,t+2) =

⊥

, then (5.7) is satisfied by

Γ′
Ψ. Otherwise, according to Lemma 2, Wg,t+2 is a free variable and Wg,t+2 is already

set to true in our construction of Γ′
Ψ. Therefore, Γ′

Ψ satisfies (5.7).

2. (Regression). According to our construction, we need to show that, for any t ∈ [2, N − 1],

∀δxf→g ∈ T , (Wf,t ∧Wg,t+1)→
∨

∀h,δxh→f∈T (x)

(Wh,t−1 ∧Wf,t) (5.8)

Consider clauses of class III (add effect) in PE. These clauses indicate that for each fact

f ∈ F , Wf,t implies a disjunction of Wa,t−1 for all actions a such that f ∈ add(a). Thus, for
a given f , the following clauses are included in PE, which are satisfied by Γ′

Ψ:

Wf,t →
∨

∀a∈ADD(f)

Wa,t−1. (5.9)

1For simplicity, we use a to denote the same action in A instead of using ϕa(a).

59

For a given f , we consider the action set
∪

∀hA(δh→f), denoted as Z. Since ADD(f) ⊆ Z,

Wf,t →
∨

∀a∈Z
Wa,t−1 (5.10)

For any transition δxh→f , for each action a ∈ A(δxh→f), since h ∈ pre(a), Γ′
Ψ satisfies

Wa,t−1 →Wh,t−1. Therefore, for each h ∈ pre(a), we have∨
∀a∈A(δxh→f)

Wa,t−1 →Wh,t−1. (5.11)

Expand the set Z, we can convert (5.10) to:

Wf,t →
∨

∀h,δxh→f∈T
(

∨
∀a∈A(δxh→f)

Wa,t−1). (5.12)

By combining (5.11) and (5.12), we have:

Wf,t →
∨

∀h,δxh→f∈T
Wh,t−1, (5.13)

which implies

Wf,t →
∨

∀h,δxh→f∈T
(Wh,t−1 ∧Wf,t). (5.14)

From (5.14), we can see that the clauses of regression in (5.8) are true.

3. (Initial state). We need to show that for each variable x in X such that sI(x) = f :∨
∀g,δf→g∈T

Uf,g,1 (5.15)

According to our construction, (5.15) becomes:

∨
∀g,δf→g∈T

(Wf,1 ∧Wg,2),

which is equivalent to:

Wf,1 ∧ (
∨

∀g,δf→g∈T (x)

Wg,2) (5.16)

60

Since f is in the initial state, ΓΨ(Wf,1) = Γ′
Ψ(Wf,1) =

⊥

. Therefore the first part of the

conjunction in (5.16) is true. The rest part of (5.16) can be seen to be true following a similar
argument as that for the progression case.

4. (Goal). The goal clauses can be shown in a similar way as that for the initial state clauses.

5. (Composition of actions). The clauses we want to prove to be true are, for any action a,
Ua,t →

∧
∀δ∈M(a) Uδ,t, or equivalently, Ua,t ∨

∧
∀δ∈M(a) Uδ,t.

Suppose M(a) = {δf1→g1 , δf2→g2 , . . . , δfm→gm}. The clause we need to show becomes:

(Wa,t ∨Wf1,t) ∧ (Wa,t ∨Wg1,t) ∧ (Wa,t ∨Wf2,t) ∧ (Wa,t ∨Wg2,t) ∧ . . .

∧(Wa,t ∨Wfm,t) ∧ (Wa,t ∨Wgm,t) (5.17)

Let us call these two-literal disjunctions in (5.17) as sub-clauses. All those Wa,t ∨Wfi,t sub-

clauses in (5.17) are exactly the same as the precondition clause (class IV) in PE. So all
Wa,t ∨Wfi,t in (5.17) are satisfied.

Next, let us consider those Wa,t ∨Wgi,t sub-clauses. For any g = gi, i = 1, · · · ,m. There
are four cases where Wa,t and Wg,t are assigned different values:

• (Wa,t =⊥,Wg,t =⊥): Wa,t ∨Wg,t is satisfied.

• (Wa,t =⊥,Wg,t =
⊥

): Wa,t ∨Wg,t is satisfied.

• (Wa,t =

⊥

,Wg,t =

⊥

): Wa,t ∨Wg,t is satisfied.

• (Wa,t =

⊥

,Wg,t =⊥): According to Lemma 2, Wg,t is a free variable. Therefore, since
Γ′
Ψ(Wg,t) =

⊥

, Wa,t ∨Wg,t is satisfied by Γ′
Ψ, and hence satisfied by ΓΠ.

6. (Transition mutex). Consider any mutex clause between two regular transitions δ1 = δf→g

and δ2 = δf ′→g′ . Let δf→g ∈ M(a) and δf ′→g′ ∈ M(b), we see that a and b are S-mutex.

According to Lemma 4, a and b are also P-mutex in PE. Therefore, we have Wa,t ∨ Wb,t.
From our construction, we know Ua,t ∨Ub,t. Then, since we have the composition of actions,

Ua,t →
∧

∀δ∈M(a) Uδ,t and Ub,t →
∧

∀δ∈M(b) Uδ,t. A simple resolution of these clauses yields
Uδ1,t ∨ Uδ2,t, which equals to the transition mutex clause Uδ1,t → Uδ2,t. Therefore, the

transition mutex clause is true in ΓΠ. A similar argument applies when the transitions are
prevailing and mechanical.

7. (Action existence). The clauses that we want to prove are Uδ,t →
∨

δ∈M(a) Ua,t, for any
transitions δ. By our construction, the clauses become

Wf,t ∨Wg,t+1 ∨
∨

∀a∈A(δf→g)

Wa,t. (5.18)

61

Let δ = δf→g. First, we know by definition that
∪

∀hA(δh→g) = ADD(g). Let us denote

ADD(g) as Z. According to clauses of class III in PE, there are clauses:

Wg,t →
∨

∀a∈Z
Wa,t. (5.19)

We divide Z into multiple action sets according to different fact from {f, h1, . . . , hm}, de-

noted as Zf , Zh1 , · · · , Zhm . In fact, for each h ∈ {f, h1, . . . , hm}, Zh is equivalent to
A(δh→g). Consider any hi, i = 1, · · · ,m. According to the clauses of class IV, for every

action a ∈ PRE(h), there is a clause Wa,t →Whi,t, which is

Wa,t ∨Whi,t. (5.20)

Next, we perform resolutions by using (5.19) and all the clauses in (5.20), for all such hi and

corresponding actions. We consequently have:

Wg,t ∨ (Wh1,t ∨Wh2,t ∨ . . . ∨Whm,t) ∨
∨

∀a∈Zf

Wa,t. (5.21)

Further, note that all h1, h2, . . . , fm are mutex to f , a resolution using all the mutex clauses

in PEresults in:

(5.21), Wh1,t ∨Wf,t, Wh2,t ∨Wf,t, . . . ,Whm,t ∨Wf,t

Wg,t ∨ (Wf,t ∨Wf,t ∨ . . . ∨Wf,t) ∨
∨

∀a∈Zf
Wa,t

(5.22)

Since Zf = A(δf→g), the outcome of (5.22) leads to (5.18).

8. (Action mutex). Action mutex clauses are satisfied by ΓΠ according to Lemma 4.

Combining all the cases concludes that the constructed solution ΓΠ satisfies all the clauses in SASE

which means SASE is satisfiable. Since for all action a, ΓΨ(Wa,t) = Γ′
Ψ(Wa,t) = ΓΠ(Ua,t), ΓΨ

and ΓΠ represent the same solution plan. �

Theorem 2 Given a STRIPS task Ψ and a SAS+ task Π that are equivalent, for a time step bound

N , if SASE(Π, N) is satisfiable, PE(Ψ, N) is also satisfiable.

Proof Assuming ΓΠ is a satisfiable solution to SASE(Π, N), we first construct an assignment ΓΨ

from ΓΠ, and show that ΓΨ satisfies every clause in PE(Ψ, N).

Construction. We construct a solution ΓΨ as follows:

62

1. For every a ∈ A (which is also in O), we let Wa,t = Ua,t;

2. For every dummy action variable dumf , we let Wdumf ,t = Uδf→f ,t;

3. For every transition δf→g ∈ T , if Ux,f,g,t =

⊥

in ΓΠ, we set Wf,t = Wg,t+1 =

⊥

in ΓΠ;

4. For each fact f , if Uh,f,t =⊥ for every transition δh→f ∈ T (which implies that case 3 will
not assign a value to f), we set Wf,t to be ⊥.

Satisfiability. Next, we prove that every clause in PE is satisfied by ΓΨ. The clauses for the initial
and goal states are obviously satisfied. Now we consider the add-effect clauses. The clauses that we

want to prove are, for every fact f :

Wf,t →
∨

∀a∈ADD(f)

Wa,t−1 (5.23)

For a given fact f , we consider all the facts h ̸= f , such that δh→f ∈ T . For all such h, there are

two further cases:

• There exists a fact h such that δxh→f ∈ T and Ux,h,f,t−1 =

⊥

in ΓΠ. In the satisfiable SASE
instance, the action existence clauses in class 6 specify that the truth of a non-prevailing

transition δ indicates a disjunction of all actions in A(δ). Since Ux,h,f,t−1 =

⊥

, it follows
that in the SASE instance there is an action a ∈ A(δxh→f) such that Ua,t−1 =

⊥

. Then, by

our construction of ΓΨ, we see that both Wh,t−1 and Wf,t are true. Since Wf,t and Wa,t−1,
a ∈ ADD(f), are all true, (5.23) is satisfied by ΓΨ.

• If for every fact h that δxh→f ∈ T , Ux,h,f,t−1 =⊥ in ΓΠ, then, according to our construction,

Wf,t =⊥ in ΓΨ. Thus, ΓΨ satisfies (5.23).

The two cases above conclude that ΓΨ satisfies the add effect clauses. Next, we show that ΓΨ

satisfies the precondition clauses, Wa,t → Wf,t (i.e. Wa,t ∨Wf,t), for all actions a ∈ A and facts

f ∈ pre(a). In SASE, we have clauses of class 6, which are Ua,t → Uδ,t, for all actions a ∈ O and
δ ∈M(a). Let the transition be δxf,g, we have Ua,t∨ (Uf,t−1∧Ug,t−1), which implies Ua,t∨Uf,t−1.

By our construction, we know Wa,t ∨Wf,t−1 is true.

Finally, the mutex clauses are satisfied by ΓΨ according to Lemma 4. Combining all the cases con-
cludes that the constructed solution ΓΨ satisfies all the clauses in PE which means PE is satisfiable.

�

63

From Theorems 1 and 2, we reach the following conclusion.

Theorem 3 A classical planning problem is solvable by the PE encoding if and only if it is solv-

able by the SASE encoding. Further, for solvable problems, the solution plans found by the two

encodings have the same, optimal makespan.

Remarks. We have proved the equivalence between SAS+ based (SASE) and STRIPS based (PE)

encodings. The correctness and optimality of SASE consequently follow, by assuming the correct-
ness of PE encoding used in SatPlan06. Furthermore, we have a few following insights.

• In terms of SAT solutions, there is an epimorphism (a surjective mapping) between the solu-
tions to PE and the solutions to SASE. That is, multiple SAT solutions in PE map to one SAT

solution in SASE and every SAT solution in SASE is mapped from at least one SAT solution
in PE. This is due to the existence of free variables in the PE encoding. One solution in SASE

corresponds to a group of solutions in PE with the same assignments to real action variables
but different assignments to the free variables.

There are two types of free variables in PE characterized by Lemmas 1 and 2, respectively.

The first type includes certain dummy action variables and the second type includes certain
fact variables. For example, if a fact f is added by an action a at level t, the fact variable

Wf,t can still be false if f is not used by any action in a later level as a precondition. The
solution satisfies the SAT instance in PE, although semantically the fact assignment is wrong.

However, it does not affect the correctness of PE encoding, since we only extract the assign-
ments of variables for real actions, with the dummy actions and facts discarded. In contrast, in

SASE all fact variables are implicitly enforced to take correct values through the assignment
of transition variables. As a result, SASE enforces stronger constraints that may lead to more

effective constraint propagation in SAT solving.

• In terms of action plans, there is an isomorphism (a bijective one-to-one mapping) between PE

and SASE. An action plan is extracted from a SAT solution by using the action variables only
(excluding dummy actions and fact variables). The constructions in the proofs to Theorems

1 and 2 give the details of this isomorphism. Note that in the constructions, we change the
values of free variables, but leave the real action variables intact.

64

5.3 SAT Solving Efficiency on Different Encodings

In Section 5.1, we showed that PE and SASE are equivalent in terms of semantics. In this section,

we study what makes them different regarding practical problem solving. In particular, we want to
understand how PE and SASE would make a SAT solving algorithm behave differently.

Modern SAT solvers, which nowadays all employ many sophisticated techniques, are too compli-

cated to be characterized by simple models. In general, it is difficult to accurately estimate the time
that a SAT solver needs to solve a SAT instance. In this section, we provide an explanation of why

the SAT encodings from SASE are more efficient for SAT solvers to solve than the SAT encodings
from PE, and provide empirical evidence to support this explanation.

We discuss SASE’s problem structure and why the widely used SAT solving heuristic VSIDS [88]

works better on SASE encodings. The idea in VSIDS is to select those variables that appear fre-
quently in the original and learnt clauses, since they lead to stronger constraint reasoning and space

pruning. We show that, if we order all the variables by their VSIDS score, the top-ranked transi-
tion variables introduced in SASE have much higher VSIDS scores than those top-ranked action

variables. As a result, those top-ranked transition variables are selected more often and provide

stronger constraint propagation, speeding up SAT solving. Empirically, we define a significance
index of transition variables and show that it has strong correlation with the SAT solving speedup.

All the analysis in this section uses SatPlan06 as the baseline.

5.3.1 The VSIDS Heuristic in SAT Solving

The SAT solvers we use are based on the DPLL algorithm [29]. In a DPLL algorithm, a decision

variable refers to the one selected as the next variable for branching. Once a decision variable

is chosen, more variables could be fixed by unit propagation. The ordering of decision variables
significantly affects the problem solving efficiency. Most existing complete SAT algorithms use

variants of VSIDS heuristic [88] as the variable ordering strategy.

The VSIDS heuristic essentially evaluates a variable by using the Exponential Moving Average
(EMA) of the number of times (frequency) it appears in all the clauses. This frequency value

keeps changing because of the learnt clauses. Therefore, VSIDS uses a smoothing scheme which
periodically scales down the scores of all variables by a constant in order to reflect the importance

of recent changes in frequencies. The variable that occurs the most frequently usually has a higher
value, thus also a higher chance of being chosen as a decision variable. A random decision is made

if there is a tie. Thus, variables associated with more recent conflict clauses have higher priorities.

65

We first consider the frequency only. Then we investigate further by taking the periodic update into

consideration.

Given the fact that the frequency is used as the major measurement, VSIDS will be most effective
when the difference between variables’ frequencies are large and there are some variables with high

frequencies. If all variables have the same frequency, then picking decision variables will be purely
random. Further, variables with high frequencies are desirable since they lead to stronger constraint

propagation.

Therefore, because of the way VSIDS works, we want to enlarge the difference between variable
frequencies and make some variables have very high frequencies. SASE’s problem structure does

what is suggested by this motivation.

The two-level structure, as we discussed in Section 5.1.1, makes transition variables more signifi-
cant. Transition variables take more responsibilities in terms of constraint propagation as many of

them appear frequently in clauses. They consequently are more likely to be chosen by the VSIDS
heuristic. Suppose we make a total ordering of all variables by their frequencies from high to low,

in the following we give empirical studies to show that top ranked transition variables have much
higher chance to be assigned since the top ranked variables consist mostly of transition variables

rather than action variables.

In the rest of this section, we will show the significance of transition variables, and explain why they
make the search more efficient. In Section 5.3.2, we present a comparison on transition variables

versus action variables. In Section 5.3.3, we show how often transition variables are chosen as

decision variables, which is a direct evidences of transition variables’ significance. Section 5.3.4
shows a strong statical correlation between the speedup in SAT solving and an index measuring the

significance of transition variables within the VSDIS heuristic.

5.3.2 Transition Variables versus Action Variables

Let us first formalize how the frequency of variables is measured. Given a SAT instance (V,C), we
quantify every individual variable v ∈ V , and define a function h(v) to indicate the frequency of v.

That is, h(v) is the number of clauses that v appears in.

We further define percentile and top variable set to quantify our analysis.

Definition 16 (Percentile and Top Variable Set). Given a SAT instance (V,C), we sort all vari-

ables in V by h(v) from high to low. For an integer p, 0 ≤ p ≤ 100, the pth percentile, hp is the

66

lowest value such that p percent of variables in V have an h value below hp. For the given SAT

instance (V,C) and the pth percentile, we define V p = {v | v ∈ V, h(v) ≥ hp} as the top p%

variable set.

Top variable set is to measure the top ranked variables with the highest h value. We use Vo and Vδ to
denote the action variables and transition variables in V , respectively. We also define V p

o = Vo∩V p,

and similarly V p
δ = Vδ ∩ V p. Table 5.1 compares the h values of transition variables and action

variables in real SAT instances. This table has two parts. For the first part, we list the average

and standard deviation of h values for both transition variables and action variables. The data are
collected from the first satisfiable instance of the largest solvable instance in every domain. From

the average h value, we can tell that in most domains transition variables occur more frequently
than action variables do. We can also see that the standard deviation of transition variables are often

large. They are in general not only larger than action variables’ standard deviation, but also even
larger than the expected value of transition variables. The high frequencies of transition variables,

along with large standard deviations, are preferred by the VSIDS heuristic and can aid SAT solving,
as we discussed before.

The second part lists the average of h value for transition variables and action variables, in the top p

variable set with different values of p: 1%, 2%, 5% and 10%. The difference between V p
o and V p

δ is
dramatic. In most cases, transition variables dominate the top variable sets, while action variables

exist only in very few cases. One exception is the Airport domain. In this domain, although the
average h value of all transition variables is smaller than the average h value of action variables,

if we look at the top 1% variables, the average h value of transition variables is much higher than

the average h value of action variables. Since VSIDS picks the variable with the highest heuristic
value, transition variables have higher chances of being picked as decision variable.

The above investigation leads to a speculation: can we expect further improvements, by using a

crafted SAT solver which always branches on transition variables first? The answer is no. We in
fact developed a specific SAT solver that always branches on transition variables first. The result

shows that such a solver is less effective than a general SAT solver. The reason is as follows.
First, although transition variable usually deserve higher priority being decision variables, it is not

necessary true for all transitions variables. Some action variables, even though very few, may turn
out to be important as well. This in fact can be observed from Table 5.1. Second, as we mentioned

above, the occurrence is not all that how VSIDS works. The statistical data we presented in Table 5.1
does not reflect the dynamic changes of heuristic values. Therefore, it is better left to SAT solvers

to determine variable ordering by the VSIDS heuristic.

67

Instances N Vδ Vo h of V p
δ h of V p

o

h σ h σ 1% 2% 5 % 10% 1% 2% 5 % 10%
Airport-48 68 8.6 7.6 19.6 12.9 98.5 75.5 59.2 23.4 39.6 35.9 34.7 32.4
Depot-14 12 10.5 6.0 6.3 3.3 32.5 28.6 23.7 20.9 - - - -
Driverlog-16 18 32.3 11.1 5.6 3.1 43.9 34.6 26.5 23.4 - - - -
Elevator-16 15 22.2 7.4 10.2 3.8 27.0 18.9 18.9 18.9 - - - -
Freecell-6 16 42.6 58.0 33.2 7.0 115.6 86.0 49.0 34.7 - - - -
Openstacks-2 23 14.1 5.2 11.5 4.3 17.2 17.2 16.2 15.2 - - - -
Parcprinter-20 19 12.0 11.8 15.5 5.9 44.3 42.8 26.7 17.8 30.0 30.0 30.0 30.0
Pathways-17 21 5.5 8.5 12.9 3.6 33.6 26.9 15.9 14.5 - - - -
Pegsol-25 25 23.0 15.5 15.2 6.3 30.0 29.8 17.2 15.5 - - - -
Pipe-notankage-49 12 22.9 47.1 41.3 3.4 77.1 57.5 36.4 25.3 - - - -
Pipe-tankage-26 18 58.1 116.7 50.7 12.8 266.4 174.0 86.8 56.0 - - - -
Rovers-18 12 15.5 14.6 16.0 6.9 175.1 86.0 35.5 35.5 - - - -
Satellite-13 13 31.8 7.8 2.0 0.3 35.0 35.0 35.0 35.0 - - - -
Scanalyzer-28 5 113.0 151.4 8.6 1.1 242.8 175.8 129.7 129.7 - - - -
Sokoban-6 35 15.6 4.8 20.0 4.7 16.6 14.1 12.8 11.2 - - - 10.0
Storage-13 18 4.7 1.9 6.3 1.6 10.4 10.4 9.0 8.1 - - - 9.0
TPP-30 11 12.3 16.1 4.8 0.7 84.2 57.8 34.4 24.6 - - - -
Transport-17 22 22.8 19.0 4.5 1.1 99.6 58.1 52.0 41.6 - - - -
Trucks-13 24 5.1 7.6 6.4 1.2 56.7 38.2 20.8 16.3 - - - -
Woodworking-30 4 6.2 5.1 10.2 3.5 23.1 22.1 18.9 17.2 - - - 13.1
Zenotravel-16 7 20.2 25.0 3.9 0.3 51.3 51.3 36.2 28.5 - - - -

Table 5.1: The h values of transition variables versus action variables in all domains. Column ‘N’ is
the optimal makespan. Column ‘h’ is the average and Column ‘σ’ is the standard deviation. Column
‘h of V p

δ ’ and ‘h of V p
o ’ refer to the average h value of transition variables and action variables in

V p, while p equals to 1, 2, 5 or 10. ‘-’ means there is no variable in that percentile range.

5.3.3 Branching Frequency of Transition Variables

In Section 5.3.2, we have seen the difference there is between transition variables and action vari-
ables, in terms of the h values. As we mentioned above, however, VSIDS heuristic periodically

updates heuristic values of all variables. The dynamic updating of heuristic values is so far not cap-
tured by above analysis. In the following, we present more direct empirical evidence to show that

transition variables are indeed decided chosen more frequently than action variables for branching,
especially at early stages of SAT solving. That is, a SAT solving engine spends most of its time

on deciding an appropriate transition plan. This analysis takes into consideration VSIDS’s dynamic
updating strategy.

We empirically test the probabilities that transition variables and action variables are chosen as

branching variables. We measure for every k consecutive decision variables, the number of transi-

tion variables (Mδ) and action variables (Mo) that are selected as the decision variables. Let Vδ and

68

Vo be the sets of transition variables and action variables, respectively, in a SASE encoding. If all

variables are selected equally likely, we should have

E(Mδ) = k
|Vδ|

|Vδ|+ |Vo|
and E(Mo) = k

|Vo|
|Vδ|+ |Vo|

, (5.24)

which implies:
E(Mδ)

k|Vδ|
=

E(Mo)

k|Vo|
(5.25)

In Figures 5.2 and 5.3 in the Appendix, we show some empirical results where we divide the SAT

solving process into epoches of length k = 1000 each, for all domains from IPC-3 to IPC-6. In
each domain, we choose a instance with at least 500,000 decisions. In some domains (e.g. Wood-

working), even the biggest instance has only thousands of decisions. In such a case, we choose the
instance with the biggest number of decisions. We also choose the instances to be half UNSAT and

half SAT, if we can find appropriately large ones in the particular domain. For every epoch, we
plot the branching frequency, which is Mδ

k|Vδ| for transition variables and Mo
k|Vo| for action variables,

respectively. According to (5.25), these two branching frequencies should be about the same if the
two classes of variables are equally likely to be chosen.

From Figures 5.2 and 5.3, it is evident that, for all these instances except Storage-12 and Woodworking-

20, the branching frequency of transition variables are higher than that of action variables. In fact,
in many cases, the branching frequencies of transition variables can be up to 10 times higher than

those of action variables. In Transport-26 and Zenotravel-15, the difference is orders of magnitude
larger. Such results clearly show that the SAT solving engine branches on the transition variables

more frequently than on action variables, which corroborates our analysis in the previous subsection
that some of the transition variables introduced by SASE have a higher h values during SAT solving

and enhance the strength of VSIDS heuristic.. It shows that the SAT engine spends the majority of
time choosing correct transition variables, and when the transition variables are fixed, most action

variables can be fixed through constraint propagation instead of branching.

The observation on branching frequency greatly confirms the fact that, statistically, transition vari-
ables are picked more often, and assigned values much earlier than action variables.

5.3.4 Transition Index and SAT Solving Speedup

The behaviors of transition variables, as presented above, strongly suggest that there are correlation
between the significance of transition variables and the speedup SASE achieves. Nevertheless, the

69

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 40000 80000 120000 160000

Transition Vars

Action Vars

(a) Airport-44, N = 68, Sat

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50000 100000 150000 200000 250000 300000 350000

Transition Vars

Action Vars

(b) Depot-8, N = 14, Sat

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10000 20000 30000 40000 50000 60000 70000

Transition Vars

Action Vars

(c) Driverlog-16, N = 14, Unsat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 5000 10000 15000

Transition Vars

Action Vars

(d) Elevator-30, N = 10, Sat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5000 10000 15000 20000 25000 30000 35000

Transition Vars

Action Vars

(e) Freecell-4, N = 12, Unsat

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 300000 600000

Transition Vars

Action Vars

(f) Openstack-5, N = 22, Unsat

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 500 1000 1500 2000 2500 3000

Transition Vars

Action Vars

(g) Parcprinter-29, N = 23, Sat

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 2000 4000 6000 8000 10000 12000 14000

Transition Vars

Action Vars

(h) Pathways-15, N = 18, Sat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 200000 600000 1e+06

Transition Vars

Action Vars

(i) Pegsol-18, N = 20, Unsat

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 20000 40000 60000 80000 100000 120000 140000

Transition Vars

Action Vars

(j) Pipe-notankage-29, N = 14,
Satisfiable

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 10000 20000 30000 40000 50000 60000 70000

Transition Vars

Action Vars

(k) Pipe-tankage-21, N = 13, Un-
sat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2000 4000 6000 8000 10000 12000 14000 16000

Transition Vars

Action Vars

(l) Rovers-15, N = 12, Satisfiable

Figure 5.2: Comparisons of variable branching frequency (with k = 1000) for transition and action variables
in solving certain SAT instances in twelve benchmark domains encoded by SASE. Each figure corresponds
to an individual run of MiniSAT. The x axis corresponds to all the decision epochs during SAT solving. The
y axis denotes the branching frequency (defined in the text) in an epoch of k = 1000.

70

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 50000 100000 150000 200000 250000 300000

Transition Vars

Action Vars

(a) Satellite-12, N = 13, Unsat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 100000 200000 300000 400000

Transition Vars

Action Vars

(b) Scanalyzer-27, N = 12, Sat

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 300000 600000

Transition Vars

Action Vars

(c) Sokoban-6, N = 33, Unsat

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 30000 60000

Transition Vars

Action Vars

(d) Storage-12, N = 9, Sat

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 5000 10000 15000 20000 25000 30000 35000 40000

Transition Vars

Action Vars

(e) TPP-26, N = 10, Unsat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 50000 100000 150000

Transition Vars

Action Vars

(f) Transport-26, N = 12, Sat

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 100000 200000 300000 400000

Transition Vars

Action Vars

(g) Trucks-7, N = 17, Unsat

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Transition Vars

Action Vars

(h) Woodworking-20, N = 4, Sat

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50000 100000 150000 200000 250000 300000

Transition Vars

Action Vars

(i) Zenotravel-15, N = 7, Sat

Figure 5.3: Comparisons of variable branching frequency (with k = 1000) for transition and action variables
in solving certain SAT instances in nine other benchmark domains encoded by SASE.

71

study on branching frequency only profiles the connection by showing what exactly happens during

SAT solving. Another interesting study should reveal what leads to the speedup in a more direct
way. To quantify the analysis, we define a measurement called the transition index.

As mentioned earlier, the h value does not exactly reflect how VSIDS works, as it updates dynami-

cally throughout SAT solving. Nevertheless, by putting together all variables and study their h(), the
statistics on the population leads to interesting observations. That is the motivation of the transition

index, as specified in Definition 17.

Definition 17 (Transition Index). Given a planning problem’s SAT instance (V,C), we measure

the top p(0 ≤ p ≤ 100) variable set, and calculate the transition index of p as follows:

|V p
δ |/|V

p|
|Vδ|/|V |

Essentially, the transition index measures the relative density of transition variables in the top vari-
able set. If the distribution of the transition variables is homogeneous under the total ordering based

on h, |V p
δ |/|V

p| should be equal to |Vδ|/|V | for any given p. A transition index larger than 1 indi-
cates that the transition variables have a higher-than-normal density in the top p% variable set. The

larger the transition index is, the more skewed the density of the transition variables is in the top p%

variable set.

Given a planning problem’s SAT instance, there is strong correlation between its transition index and

the speedup SASE obtains. In Figure 5.4 we measure such correlation for all the domains from IPC-
3 to IPC-6. 12 transition indexes are presented: 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80% and 90%. Each dot in the figure refers to an individual planning instance. Bootstrap
aggregating [13] is used for the regression lines. For each measurement, we calculate Spearman’s

rank correlation coefficient [90]. It assesses how well the relationship between two variables can
be described using a monotonic function. If there are no repeated data values, a perfect Spearman

correlation of +1 or -1 occurs when each of the variables is a perfect monotone function of the other.

The instances included in Figure 5.4 are those solved by both SatPlan06 and SASE, with Precosat
as the SAT solver. In total we have 186 instances. The speedup of each instance is SASE’s SAT

solving time divided by SatPlan06’s SAT solving time, which is larger than 1 in most cases. To
reduce noises, we do not consider those small instances that both SASE and SatPlan06 spend less

than 1 second to solve.

We can see that a larger transition index leads to a higher speedup. Variables with higher h values
are chosen as decision variables with a higher probability. Thus, a measurement of higher top

72

0 5 10 15 20 25
Speed Up

0

1

2

3

4

5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.36747

(a) Transition Index of 1%

0 5 10 15 20 25
Speed Up

0

1

2

3

4

5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.364647

(b) Transition Index of 2%

0 5 10 15 20 25
Speed Up

0

1

2

3

4

5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.379701

(c) Transition Index of 5%

0 5 10 15 20 25
Speed Up

0

1

2

3

4

5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.376107

(d) Transition Index of 10%

0 5 10 15 20 25
Speed Up

0

1

2

3

4

5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.224876

(e) Transition Index of 20%

0 5 10 15 20 25
Speed Up

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.045689

(f) Transition Index of 30%

0 5 10 15 20 25
Speed Up

0.0

0.5

1.0

1.5

2.0

2.5

Tr
an

si
tio

n
In

de
x

Correlation coefficient: -0.007959

(g) Transition Index of 40%

0 5 10 15 20 25
Speed Up

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.119936

(h) Transition Index of 50%

0 5 10 15 20 25
Speed Up

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Tr

an
si

tio
n

In
de

x
Correlation coefficient: 0.128777

(i) Transition Index of 60%

0 5 10 15 20 25
Speed Up

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.178038

(j) Transition Index of 70%

0 5 10 15 20 25
Speed Up

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.071442

(k) Transition Index of 80%

0 5 10 15 20 25
Speed Up

0.7

0.8

0.9

1.0

1.1

Tr
an

si
tio

n
In

de
x

Correlation coefficient: 0.059778

(l) Transition Index of 90%

Figure 5.4: The correlation between SAT solving speedup and the transition indexes.

73

variables is more important, as those low-ranked variables are rarely selected for branching anyway.

As expected, the correlation between the transition index and speedup are higher in the transition
index with smaller p, such as 1%, 2%, and 5%. Such a result directly links the significance of top

ranked (high frequency) transition variables to speedup in SAT solving.

5.4 Reducing the Encoding Size of SASE

We now propose several techniques to further reduce the size of SAT instances in SASE. We first
represent all mutual exclusions in SASE using a more compact clique representation. We then

develop two new techniques to recognize the special structure of SASE and further reduce the
encoding size.

5.4.1 Mutual Exclusion Cliques

A major observation on SASE is that mutual exclusions naturally define cliques of transitions or
actions in which at most one of them can be true at any time step. There are two types of cliques:

1) for each x ∈ X , T (x) is a clique of transitions enforced by the class 5 clauses, and 2) for each
transition δ that is not prevailing, A(δ) is a clique of actions enforced by the class 8 clauses.

To encode all mutex within a clique of size n pair-wisely requires Θ(n2) clauses. To reduce the

number of clauses used, in SASE, we use a compact representation proposed in [104] which uses
Θ(n log n) auxiliary variables and Θ(n log n) clauses. The basic idea is the following. Suppose that

we have a clique {x, y, z} where at most one variable can be true. we introduce auxiliary variables
b0 and b1 and clauses x⇔ b0 ∧ b1, y ⇔ b0 ∧ b1 and z ⇔ b0 ∧ b1.

Note that in PE, mutex are not naturally cliques like in SASE, although it is always possible to do

some extra work to explicitly tell PE what could be in cliques. Thus the compact clique representa-
tion cannot be effectively applied, unless we mix up two formulism together in a single planner.

5.4.2 Reducing Subsumed Action Cliques

We observe that there exist many action cliques that share common elements, while transition

cliques do not have this property. In the following, we discuss the case where one action clique
is a subset of another. Given two transitions δ1 and δ2, if A(δ1) ⊆ A(δ2), clique A(δ1) is referred

to being subsumed by clique A(δ2).

74

Instances Before subsumed After subsumed
count size count size

Pipesworld-20 2548 21.72 516 53.66
Storage-20 1449 12.46 249 60.22
Openstack-10 221 22.44 141 23.4
Airport-20 1024 6.45 604 8.49
Driverslog-15 1848 2.82 1848 2.82

Table 5.2: Statistics of action cliques, before and after the subsumed action cliques are reduced.
“count” gives the number of action cliques, and “size” is the average size of the action cliques.

In preprocessing, for each transition δ1 ∈ T , we check if A(δ1) is subsumed by another transition

δ2’s action clique. If so, we do not encode action clique A(δ1). In the special case when A(δ1) =

A(δ2) for two transitions δ1 and δ2, we only need to encode one of them.

Table 5.2 presents the number of cliques and their average sizes, before and after reducing action

cliques, on some representative problems. The reduction is substantial on most problem domains,
except for Driverslog in which no reduction occurred. Note that the average sizes of cliques are

increased since smaller ones are subsumed and not encoded.

5.4.3 Reducing Action Variables

Action variables are the majority of all variables. Thus, it is important to reduce the number of action

variables. We propose two methods when certain structure of a SAS+ planning task is observed.

Unary transition reduction

Given a transition δ such that |T (δ)| = 1, we say that the only action a in T (δ) is reducible. Since
a is the only action supporting δ, they are logically equivalent. For any such action a, we remove

Va,t and replace it by Uδ,t, for t = 1, · · · , N . An effect of this reduction on a few representative
domains can be seen in Table 5.3.

Unary difference set reduction

Besides unary transition variables, an action variable may also be eliminated by two or more transi-
tion variables. A frequent pattern is the following: given a transition δ, for all actions in A(δ), their

transition sets often differ by only one transition.

75

Instances |O| R1 R2 %
Zeno-15 9420 1800 7620 100.00
Pathway-15 1174 173 810 83.73
Trucks-15 3168 36 300 10.61
Openstack-10 1660 0 400 24.10
Storage-10 846 540 0 63.83

Table 5.3: Number of reducible actions in representative instances. Columns ‘R1’ and ‘R2’ give the
number of action variables reduced, by unary transition reduction and unary difference set reduction,
respectively. Column ‘%’ is the percentage of the actions reduced by both methods combined.

Definition 18 Given a transition δ ∈ T , let I =
∩

∀a∈A(δ)M(a). If for every a ∈ A(δ), |M(a) \
I| = 1, we call the action set A(δ) a unary difference set.

Consider a transition δ1 with A(δ1) = {a1, a2, . . . , an}. If A(δ1) is a unary difference set, the

transition sets must have the following form:

M(a1) = {δ1, δ2, . . . , δk, θ1}

M(a2) = {δ1, δ2, . . . , δk, θ2}

...

M(an) = {δ1, δ2, . . . , δk, θn}

In this case, we eliminate the action variables for a1, · · · , an by introducing the following clauses.
For each i, i = 1, · · · , n, we replace Vai,t by Uδ1,t ∧ Uθi,t, for t = 1, · · · , N . Hence, the action

variables can be eliminated and represented by only two transition variables.

Table 5.3 shows the number of reducible actions in several representative problems. In Zenotravel,
all action variables can be eliminated when the two reduction methods are used. In Openstack and

Storage, there is only one type of reduction that can be applied.

Figure 5.5 shows the number of solvable problems from all the problems in IPC-3 to IPC-6, with
increasing limits on running time, memory consumption, number of variables or number of clauses.

Precosat is used for all planners. Running time is measured by all the time including preprocessing
and problem solving. Memory usage is based on the status report by Precosat. Under the maximum

CPU time (1800s) and memory limit (4Gb), when both optimizations are off, SASE solves 397
instances. By turning on either the clique representation or the reduction method, SASE solves 416

and 405 instances, respectively. While both clique and reduction are turned on, SASE solves 426
instances.

76

 300

 320

 340

 360

 380

 400

 420

 440

 10 600 1200 1800

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Running Time (seconds)

clique=on, reduction=on
clique=on, reduction=off
clique=off, reduction=on
clique=off, reduction=off

 300

 320

 340

 360

 380

 400

 420

 440

 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Memory Usage (Megabytes)

clique=on, reduction=on
clique=on, reduction=off
clique=off, reduction=on
clique=off, reduction=off

 300

 320

 340

 360

 380

 400

 420

 440

 500000 1e+06 1.5e+06 2e+06 2.5e+06

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Number of Variables

clique=on, reduction=on
clique=on, reduction=off
clique=off, reduction=on
clique=off, reduction=off

 300

 320

 340

 360

 380

 400

 420

 440

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Number of Clauses

clique=on, reduction=on
clique=on, reduction=off
clique=off, reduction=on
clique=off, reduction=off

Figure 5.5: The results of SASE while different reduction methods are turned on or off.

The reduction method gives us a few improvements in problem solving time, and the clique rep-
resentation makes more improvements. For memory consumptions, reduction methods gives mod-

erate amount of improvements, while the clique representation leads to more substantial improve-
ments. For numbers of clauses, the clique technique gives significant reduction. As to numbers of

variables, the clique technique gives some improvements, while the reduction method makes some
further improvements.

5.5 Experimental Results

We run all experiments on a PC workstation with a 2.3 GHz AMD Quad-Core Opteron processor.

The running time for each instance is set to 1800 seconds, and the memory is limited to 4GB. For
all planners, the running time includes parsing, preprocessing and problem solving. The memory

consumption is the peak memory usage reported by the SAT solvers.

We test all problem instances of STRIPS domains in IPC-3 to IPC-6. PSR and Philosophers are not
included because they have derived facts, which cannot be handled correctly by any of the planners

tested. We use the parser by Fast-Downward [54, 55] to generate the SAS+ formalism from STRIPS

77

inputs. The preprocessing and encoding parts of SASE are implemented in Python2.6. All the

instances are based on grounded STRIPS.

Precosat (build236) [8], the winner of the application track in the SAT’09 competition, is used
as the SAT solver for most planners that we tested and compared. Besides Precosat, we also use

CryptoMinisat [119], the winner of SAT Race 2010, as the underlying solver of SatPlan06 and
SASE. The nine planners considered are listed as follows.

1. SP06 and SP06-Crypto. They are the original SatPlan06 planner, only with the underlying
SAT solver changed to Precosat and CryptoMinisat, respectively.

2. SASE and SASE-Crypto. They are SASE encoding introduced in this chapter, with all the

optimization methods turned on. The underlying SAT solvers are Precosat and CryptoMinisat,
respectively.

3. SP06L. It is SatPlan06 with long-distance mutual exclusion (londex) [20]. We compare
against londex since it also derives transition information from the SAS+ formalism. Here

we use domain transition graph from Fast-Downward’s parser to derive londex information.

4. SP06C. It is SatPlan06 with the clique technique [104] to represent the mutual exclusions.
The clique information is obtained via Fast-Downward. Note that due to the different ground-

ing strategies by SatPlan06 and Fast-Downward, not all of the mutual exclusions defined in
SatPlan06 can be covered by cliques.

5. nplan. The nplan solver is set to use ∀-step to generate plans with the same optimality metric
as other planners. The build-in SAT solver is changed to Precosat.

6. SplitE. It is the split encoding introduced by Robinson et al. [109] using Precosat.

7. LM-cut. This is a sequential optimal planner, using LM-Cut heuristic [56] and A* search.

We use the implementation in Fast-Downward.

In Figure 5.6, we present the number of instances that are solvable in the testing domains, with

respect to the given time limit and memory limit. It is easy to see that SASE and SASE-Crypto
have clear advantages. LM-cut is the least efficient, but again, the comparisons to LM-cut is like

comparing oranges and apple, since different optimization metrics are used. For running time, the
differences between most other planners are minor, except for SplitE is worse than all other SAT-

based planners. For memory consumption, SASE and SASE-Crypto are clearly much better than all
other planners. nplan is slightly better than others in smaller instances, but when it comes to larger

instances, SatPlan06 becomes more competitive.

78

 200

 250

 300

 350

 400

 450

 600 1200 1800

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Running Time (seconds)

SatPlan06
SP06L
SP06C

nplan
SplitE
SASE

SP06-Crypto
SASE-Crypto

LM-cut
 200

 250

 300

 350

 400

 450

 500 1000 1500 2000 2500 3000 3500 4000

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Memory Usage (Megabytes)

SatPlan06
SP06L
SP06C

nplan
SplitE
SASE

SP06-Crypto
SASE-Crypto

LM-cut

 200

 250

 300

 350

 400

 450

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Number of Variables

SatPlan06
SP06L
SP06C

nplan
SplitE
SASE

SP06-Crypto
SASE-Crypto

 200

 250

 300

 350

 400

 450

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

N
u

m
b
er

 o
f

In
st

an
ce

s
S

o
lv

ed

Number of Clauses

SatPlan06
SP06L
SP06C

nplan
SplitE
SASE

SP06-Crypto
SASE-Crypto

Figure 5.6: Number of problems solved by each planner, with increasing limits on running time,
memory consumption, number of variables and number of clauses.

In Figure 5.6, for SAT based planners, we also present the number of instances that are solvable

with increasing limits on the number of variables and number of clauses. Note that the curves are

slightly affected by the given time and memory limit, thus the same encoding using different SAT
solvers may look slightly different. We can however still see SASE’s advantages in terms of number

of variables. As to number of clauses, SASE is significantly better than other planners.

Table 5.4 presents the number of instances solved in each planning domain, within the given time
and memory limit. In general, SASE solves more instances than other planners. nplan has a few

bugs that it cannot find the correct solution with the optimal makespan in domains Openstacks,
Rovers and Storage. SplitE has bugs in its parser that it cannot handle problems in both Airport and

Pathways. Although LM-cut overall solves fewer instances, in a few domains it is much better than
all other SAT based planners.

Both SP06L and SP06C use Fast-Downward’s parser to get domain transition graph information.

As we use STRIPS input for all domains, in some cases Fast-Downward may spent too much time in
pre-processing grounded STRIPS instances. That is why the efficiency of londex or clique represen-

tation may not compensate the time spent in pre-processing, leading to slightly worse performance
than the original SP06 in a few instances. For example, londex is helpful in TPP, but not in Trucks

79

Domain SP06 SP06L SP06C nplan SplitE SASE SP06c SASEc LM-cut
Airport 35 38 39 20 0 46 38 42 27
Depot 17 16 16 19 17 17 17 15 7
Driverlog 16 16 16 17 17 17 17 17 13
Elevator 30 30 30 30 30 30 30 30 19
Freecell 5 4 5 6 5 6 4 6 5
Openstacks 5 5 5 0 5 5 5 5 20
Parcprinter 29 29 29 30 29 30 29 30 21
Pathways 11 11 11 12 0 12 9 10 5
Pegsol 21 21 21 21 22 24 18 19 27
Pipe-notankage 38 37 31 40 37 37 38 35 17
Pipe-tankage 16 16 16 22 10 26 13 23 11
Rovers 13 13 13 0 18 14 13 17 7
Satellite 17 17 17 18 16 18 17 17 7
Scanalyzer 15 14 14 18 13 18 16 17 7
Sokoban 5 5 3 11 5 5 5 5 24
Storage 15 15 15 0 16 15 15 15 15
TPP 27 30 29 28 25 30 28 29 6
Transport 19 16 19 22 18 22 19 21 12
Trucks 7 6 5 10 8 8 7 8 10
Woodworking 30 30 30 30 30 30 30 30 16
Zenotravel 15 15 15 15 15 16 16 16 12
Total 386 384 379 369 336 426 384 407 288

Table 5.4: Number of instances solved in each domain within 1800 seconds. SP06c and SASEc are
short for SP06-Crypto and SASE-Crypto.

and Scanalyzer. The clique representation is very helpful in Airport domain, with 10 more instances

solved, but does not help too much in Pegsol and Satellite.

Comparing with nplan, in general SASE is better. A quick observation over the comparisons be-
tween nplan and SASE is that, nplan performs better than SASE on those domains with very few

concurrencies. For example, both Sokoban and Trucks have only one action at nearly each time
step. We believe the reason should be the way nplan encodes all mutual exclusions as linear encod-

ing [107]. However, the linear encoding seems not as space efficient as SASE combined with the
clique representation.

SplitE in general is slightly worse than SP06. It wins over SP06 on 5 domains and SP06 wins over

SplitE on 6 domains. Overall, SplitE is competitive to neither nplan nor SASE, although Rovers is
the single domain where SplitE is better than all others.

Although CryptoMinisat won over Precosat in SAT Race 2010, it is not as good for planning prob-

lems. For SP06, Precosat solves 386 instances and CryptoMinisat solves 384 instances. For SASE,

80

Precosat solves 426 and CryptoMinisat solves 407. In both cases, CryptoMinisat leads to fewer

instances solved.

In Tables 5.5 and 5.6, we give more details on some of the instances considered. We compare
the four fundamentally different encodings that we tested, which are SatPlan06, nplan, SplitE and

SASE. We list two largest solvable instances in each domain. If both of the two largest instances
are solved by only one planner, we add one more instance which is solved by at least one more

planner. We do not include any instance that all planners spend less than 100 seconds to solve. For
example, all instances in the Woodworking domain take all planners less than 100 seconds, thus

are not included in this table. Usually a less memory consumption (which includes the memory
consumption during the problem solving) leads to faster problem solving. In some cases, having less

variables and clauses does not necessarily result in less memory consumption. Although Figure 5.6
shows that SASE is in general more memory efficient, in some cases nplan or SplitE may have

smaller memory consumptions.

5.6 Summary

We have devised a new encoding scheme (called SASE) that compiles SAS+ representation directly
into a SAT formula [65]. In a typical SAT formula that is compiled from STRIPS, the constraints

are organized in a strongly coupled manner. SASE models a planning problem with a search space
consisted of two hierarchical subspaces. The top subspace is the space of transition plans, and the

lower subspace is the space of supporting action plans corresponding to feasible transition plans.
We have proved that SASE enforces the same semantics to SatPlan06. We have also conducted

empirical study to explain the reason why SASE is more favorable to modern SAT solvers. The
experiments on IPC domains show that SASE has clear advantage over all state-of-the-art SAT-

based planners.

81

In
st

an
ce

s
Sa

tP
la

n0
6

np
la

n
Sp

lit
E

SA
SE

Ti
m

e
M

em
V

ar
C

la
us

e
Ti

m
e

M
em

V
ar

C
la

us
e

Ti
m

e
M

em
V

ar
C

la
us

e
Ti

m
e

M
em

V
ar

C
la

us
e

A
ir

po
rt

-3
0

13
45

.5
55

5
31

60
26

50
09

88
3

T
L

E
T

L
E

42
1.

0
40

0
50

51
24

45
01

65
1

A
ir

po
rt

-3
2

T
L

E
T

L
E

T
L

E
10

56
.8

21
43

87
42

43
94

12
63

5
A

ir
po

rt
-4

6
T

L
E

T
L

E
T

L
E

96
5.

8
66

3
72

09
10

68
81

56
7

D
ep

ot
-9

T
L

E
74

3.
0

19
0

54
90

6
63

76
24

T
L

E
T

L
E

D
ep

ot
-1

1
16

29
.1

51
5

28
44

4
33

77
13

3
23

9.
2

55
45

41
4

48
80

04
10

91
.3

78
65

14
2

30
45

38
T

L
E

D
ep

ot
-1

5
T

L
E

86
8.

6
17

7
10

61
84

12
31

78
5

T
L

E
T

L
E

D
riv

er
lo

g-
16

T
L

E
63

3.
3

21
1

10
05

05
13

85
27

4
14

46
.3

92
95

83
0

33
42

63
94

5.
5

11
26

10
28

13
10

41
84

2
D

riv
er

lo
g-

17
90

2.
1

51
7

61
91

5
27

52
78

7
26

3.
1

17
7

89
45

0
14

29
18

8
81

3.
3

95
75

56
7

27
97

20
35

4.
0

76
7

82
28

9
88

92
83

Fr
ee

ce
ll-

5
14

.5
11

14
20

1
55

57
5

42
4.

9
31

2
56

01
2

45
79

44
0

11
49

.7
62

23
89

4
24

13
96

97
1.

0
31

6
60

88
5

10
13

01
9

Fr
ee

ce
ll-

6
T

L
E

31
7.

9
50

5
76

60
9

77
17

04
3

T
L

E
16

8.
8

15
3

69
95

3
12

57
83

4
O

pe
ns

ta
ck

-2
10

0.
6

19
37

09
66

71
2

-
34

.6
14

29
26

49
41

1
17

.8
7

56
10

23
72

5
Pa

rc
pr

in
te

r-
30

T
L

E
16

02
.0

89
24

15
4

11
32

55
8

T
L

E
3.

1
15

25
38

8
13

57
60

Pa
th

w
ay

s-
8

T
L

E
12

73
.3

84
20

90
8

35
13

83
-

T
L

E
Pa

th
w

ay
s-

13
10

81
.8

85
19

26
7

59
70

22
84

9.
7

11
5

26
36

6
52

10
23

-
12

64
.7

94
27

41
1

15
85

57
pe

gs
ol

-2
1

T
L

E
T

L
E

17
20

.1
70

16
45

1
86

14
8

11
48

.7
12

5
12

68
4

95
23

0
Pe

gs
ol

-2
3

T
L

E
T

L
E

T
L

E
13

20
.9

13
7

13
41

9
10

08
32

Pe
gs

ol
-2

5
T

L
E

T
L

E
T

L
E

11
49

.5
14

7
14

71
3

11
33

59
Pi

pe
-n

ot
an

k-
30

T
L

E
10

38
.4

39
8

75
04

6
85

56
94

T
L

E
T

L
E

Pi
pe

-n
ot

an
k-

33
72

3.
2

79
0

31
36

6
58

67
65

0
77

0.
7

18
6

51
59

4
66

20
86

11
33

.8
14

7
86

24
6

32
78

37
T

L
E

Ta
bl

e
5.

5:
D

et
ai

le
d

re
su

lts
on

va
ri

ou
so

fi
ns

ta
nc

es
.C

ol
um

n
‘T

im
e’

is
th

e
to

ta
lr

un
ni

ng
tim

e.
C

ol
um

ns
‘V

ar
’,

‘C
la

us
e’

,‘
M

em
’a

re
th

e
nu

m
be

ro
f

va
ri

ab
le

s,
nu

m
be

ro
fc

la
us

es
an

d
m

em
or

y
co

ns
um

pt
io

n
(i

n
M

eg
ab

yt
es

),
re

sp
ec

tiv
el

y,
of

th
e

la
rg

es
tS

A
T

en
co

di
ng

.‘
T

L
E

’i
s

sh
or

tf
or

m
em

or
y

lim
it

ex
ce

ed
ed

an
d

a
‘-

’i
nd

ic
at

es
th

e
pl

an
ne

rf
ai

ls
to

so
lv

e
th

e
in

st
an

ce
.

82

In
st

an
ce

s
Sa

tP
la

n0
6

np
la

n
Sp

lit
E

SA
SE

Ti
m

e
M

em
V

ar
C

la
us

e
Ti

m
e

M
em

V
ar

C
la

us
e

Ti
m

e
M

em
V

ar
C

la
us

e
Ti

m
e

M
em

V
ar

C
la

us
e

Pi
pe

-t
an

k-
27

T
L

E
13

70
.7

20
84

24
64

90
27

09
41

58
T

L
E

65
8.

6
57

3
18

50
45

46
25

06
7

Pi
pe

-t
an

k-
29

T
L

E
T

L
E

T
L

E
12

54
.9

74
1

25
98

34
69

88
26

2
Pi

pe
-t

an
k-

35
T

L
E

T
L

E
T

L
E

17
88

.3
82

3
27

25
95

73
26

11
9

R
ov

er
s-

13
T

L
E

-
52

.9
16

12
75

9
76

86
2

T
L

E
R

ov
er

s-
17

T
L

E
-

90
.4

28
21

14
6

99
84

7
T

L
E

R
ov

er
s-

18
T

L
E

T
L

E
50

.7
26

24
39

4
12

23
64

40
2.

0
79

32
43

6
31

36
80

Sa
te

lli
te

-1
2

37
5.

1
20

3
53

64
9

17
34

49
7

10
8.

8
55

53
89

5
38

09
54

14
22

.8
17

13
93

1
10

94
05

78
5.

2
22

83
55

53
4

62
85

10
Sa

te
lli

te
-1

6
T

L
E

T
L

E
T

L
E

14
82

.3
16

99
67

70
7

80
07

10
Sc

an
al

yz
er

-2
7

T
L

E
89

5.
5

38
8

24
63

12
52

77
88

0
T

L
E

24
7.

5
34

8
66

61
5

23
41

38
7

Sc
an

al
yz

er
-2

8
T

L
E

T
L

E
T

L
E

25
2.

4
37

8
84

02
9

38
80

65
9

So
ko

ba
n-

4
T

L
E

87
2.

4
19

0
58

34
6

13
52

94
2

T
L

E
T

L
E

So
ko

ba
n-

5
48

9.
7

30
6

24
29

8
11

11
36

4
29

.3
50

31
76

8
41

82
26

86
7.

3
15

6
58

18
2

39
78

66
52

6.
1

71
3

36
20

7
50

97
07

So
ko

ba
n-

9
T

L
E

15
57

.3
24

8
40

31
4

49
37

82
T

L
E

T
L

E
St

or
ag

e-
13

92
.3

84
73

69
36

23
45

-
24

.0
28

13
11

4
69

98
2

14
3.

9
10

7
11

98
6

12
89

03
St

or
ag

e-
16

T
L

E
-

70
4.

9
64

35
78

9
11

59
52

T
L

E
T

PP
-2

8
T

L
E

T
L

E
T

L
E

13
22

.2
36

1
12

87
24

96
14

37
T

PP
-3

0
T

L
E

24
2.

0
81

7
50

22
24

19
46

20
64

T
L

E
10

51
.0

34
1

13
61

06
99

71
77

Tr
an

sp
or

t-
8

T
L

E
96

4.
4

18
1

10
42

26
14

59
25

7
T

L
E

11
09

.7
46

5
10

06
71

93
62

11
Tr

an
sp

or
t-

17
T

L
E

13
96

.3
20

1
13

33
81

18
42

50
3

T
L

E
11

45
.4

63
0

11
25

06
10

57
85

4
Tr

uc
ks

-9
T

L
E

30
9.

2
13

4
70

29
6

14
13

04
4

94
2.

1
35

8
50

71
2

25
86

75
6

T
L

E
Tr

uc
ks

-1
3

T
L

E
10

64
.5

38
4

16
60

90
48

22
81

9
T

L
E

17
76

.1
25

7
20

50
12

18
24

29
2

Z
en

ot
ra

ve
l-

14
15

7.
9

68
9

26
20

1
66

32
92

3
17

.1
62

42
44

5
83

12
47

26
5.

9
13

80
19

73
16

5
27

.5
42

37
62

0
34

48
56

Z
en

ot
ra

ve
l-

15
41

9.
1

97
4

33
25

9
89

56
08

7
62

.3
13

2
73

36
0

19
35

68
9

55
8.

8
29

14
37

3
99

20
8

14
2.

7
14

6
46

78
8

50
65

40

Ta
bl

e
5.

6:
D

et
ai

le
d

re
su

lts
on

va
ri

ou
s

of
in

st
an

ce
s

on
IP

C
be

nc
hm

ar
k

do
m

ai
ns

.

83

Chapter 6

Temporally Expressive Planning as
Satisfiability

In this chapter, we extend the planning as SAT approach to tackle temporal planning. Temporal

planning is important as temporal constraints are inherent in most planning problems. Temporal
planning is also difficult and much more complex than classical planning. Despite that temporal

planning is important and much effort has been devoted to it, most existing temporal planners,
including SGPlan [129] and CPT [128], do not support temporally expressive planning [26]. A

planning task is temporally expressive if it has required concurrency property (otherwise it is tem-
porally simple), which is supported by PDDL2.1 semantics. A problem has a required concurrency

if there exists a plan for solving the problem and every solution has concurrently executed actions.

Most existing planners make some assumptions on how actions interact with one another. The
only existing PDDL based temporally expressive planner that we are aware of is Crikey [24, 23].

Crikey combines planning and scheduling for temporal problems, and uses state-based forward
heuristic search, which is Enforced Hill Climbing (EHC) followed by Best-First Search if EHC

fails. Nevertheless, Crikey is still not complete with regarding to temporal expressiveness. On the
other hand, Cushing et al. also points out that all the temporal planning benchmarks in recently

planning competitions are not temporally expressive [26]. In other words, those existing temporal
planning problems have no essential difference to classical planning problems.

The lack of both temporally expressive planners and benchmarks is in sharp contrast with the reality

that many real-world planning problems are highly concurrent. Inspired by the enormous success
of the SAT-based planning paradigm, we adopt its basic idea to formulate temporally expressive

planning problems. Our work is also in part inspired by the studies on the advantages of applying
SAT testing to general temporal problems [95].

We follow the temporal planning model in PDDL2.1 specification [41] with a few assumptions:
each action is grounded, and of constant duration. In addition, we assume time to be discrete.

84

Although PDDL2.1’s semantics have certain limitations thus may not be expressive enough for

certain scenarios [2], it is so far the most widely accepted. Most existing temporal planners adopt
PDDL2.1 semantics.

Similar to STRIPS, in PDDL2.1 a state of the world is determined by a set of propositions. An

action is defined by ‘conditions’ and ‘effects’, which are essentially propositions but with temporal
information enforced. A condition may be either of following three types: ‘at start’, ‘at end’ or

‘overall’. For an ‘at start’ or ‘at end’ condition, the corresponding proposition needs to be true at
the beginning or the ending time point of the action. As to ‘overall’ condition, the corresponding

proposition needs to be true throughout the action’s life time. An action is applicable to a given
state, only if all its conditions are satisfied. Effects may be either ‘at start’ or ‘at end’, indicating the

point the event occurs.

This chapter is organized as follows. First in Section 6.1 we formalize temporal planning in a
STRIPS style. Then we introduce an encoding that handles temporal planning tasks based on this

formulations in Section 6.2. The second part is to apply SASE encoding strategy to temporal plan-
ning. We first present a formulation of temporal planning in a SAS+ style in Section 6.3, and present

the corresponding encoding scheme in Section 6.4. Finally, we discuss the existing temporally ex-
pressive domains and conduct experiments by comparing our two encodings to the existing search

based temporally expressive planners.

6.1 Temporally Expressive Planning

In this dissertation, we consider temporal planning in a discrete time space, thus a temporal planning
task can be also sketched in a state space fashion just like what is defined for classical planning in

Chapter 2. A fact f is an atomic proposition that can be either true or false; we use ft to represent

the fact f at time t. A state φ is a set of facts that are true. We use φt to represent the state at time t.

Definition 19 (Durative Action). A durative action a is defined by a tuple

(ρ, π⊢, π↔, π⊣, α⊢, α⊣),

where ρ is the duration of o, respectively; π⊢, π⊣ are condition fact sets that must be true at the

start or at the end of o, respectively; π↔ is the overall fact sets that must be true over lifetime,

respectively; and α⊢, α⊣ are the effects at the start and the end of o, respectively.

85

We assume that action durations and costs are integers where ρ(o) > 0 and µ(o) ≥ 0. Given a

durative action o, we use π⊢ to represent π⊢(o). The same abbreviation applies to π↔, π⊣, α⊢, and
α⊣. In PDDL2.1, the annotations of precondition and overall facts are: 1) π⊢: “(at start f)”, 2) π⊣:

“(at end f)”, and 3) π↔: “(over all f)”. The annotations of effects are: 1) α⊢: “(at start f)” and 2)
α⊣: “(at end f)”.

Given a durative action o and a sequence of states φt, φt+1, ..., φt+ρ(o)−1, o is applicable at time t

(denoted as ot) if the following conditions are satisfied: a) ∀f ∈ π⊢, ft ∈ φt; b) ∀f ∈ π⊣, ft+ρ(o)−1 ∈
φt+ρ(o)−1; and c) ∀f ∈ π↔, t′ ∈ (t, t+ ρ(o)− 1), ft′ ∈ φt′ .

Action o’s execution at time t will affects states φt+1 and φt+ρ(o). States φt+1 and φt+ρ(o) satisfy

ot’s effects if: 1) for each add-effect f ∈ α⊢, ft+1 ∈ φt+1, 2) for each delete-effect (not f) ∈ α⊢,
ft+1 /∈ φt+1, 3) for each add-effect f ∈ α⊣, ft+ρ(o) ∈ φt+ρ(o), and 4) for each delete-effect

(not f) ∈ α⊣, ft+ρ(o) /∈ φt+ρ(o).

A temporal planning task Ψ is defined by tuple (F ,A, φI , φG), while A here is a set of durative
actions and F is a set of propositional facts. For simplicity, we assume every action o ∈ A to be

durative and grounded.

Definition 20 (Temporal Plan). Given a temporal planning task Ψ = (F ,A, φI , φG), a plan

P = (p0, p1, . . . , pn−1) is a sequence of action sets, where each action set pt ⊆ A indicates

the actions executed at time t. P is a solution plan if there exists a state sequence S0, S1, ..., Sn

satisfying: a) S0 = φI; b) for each action ot ∈ pt, ot is applicable at time t, and St+1, St+ρ(o)

satisfy ot’s effects; c) for all f ∈ φG , fn ∈ Sn.

The semantics of temporal planning that we consider is as expressive as what is defined in the

PDDL2.1 standard [41], except for the discrete time setting. While many research has the issue
of being not as expressive as PDDL2.1 specification, our approach is capable of handling temporal

expressiveness.

Definition 21 (Required Concurrency). A temporal planning task Ψ has required concurrency if

it has at least one solution plan and every solution of Ψ has concurrently executed actions.

Definition 22 (Temporal Dependency). Given two durative actions a and a′, we define that a

temporally depends on a′ when one of the following conditions holds:

1. ∃f ∈ π⊢(a), such that f ∈ α⊢(a
′) and ¬f ∈ α⊣(a

′);

86

2. ∃¬f ∈ π⊢(a), such that ¬f ∈ α⊢(a
′) and f ∈ α⊣(a

′).

Two factors lead to concurrencies in a temporally expressive problem. One is the required concur-
rent interaction (i.e., concurrent execution) among actions, and the other is enforced deadlines [24].

We do not have any assumption and our approach is capable of handling general required concur-
rencies.

6.2 A STRIPS Style Encoding Scheme

Given a temporally expressive planning task Ψ, we first compile Ψ into a classical planning task Ψ′,

along with extra constraints indicating the concurrency information. Then, we follow the typical
SAT-based planning method: convert Ψ′ and extra constraints into a SAT formula, and call a SAT

solver to solve it. Repeat this operation iteratively, until a solution is found.

The compilation from Ψ to Ψ′ works as follows, each durative action o is converted into two simple
actions plus one propositional fact, written as tuple (o⊢, o⊣, f

o). These two simple actions indicate

the starting and ending event of o. The fact fa, when it is true, indicates that o is executing. The
idea of transforming durative actions is proposed in [84]. It has several advantages. For example,

some techniques from classical planning can be applied without sacrificing the completeness. To
distinguish temporal actions and simple actions, we use a, b, c to denote simple actions and o, p, q

for durative actions.

We extend the encoding of propositional planning in planning graph to temporal planning using the

above transformation. Given a time span N and a simplified temporal planning task (Fs,As, φI , φG),
we define the following variables for the encoding.

1. Action variables Wa,t, 0 ≤ t ≤ N, a ∈ As.

2. Fact variables Wf,t, 0 ≤ t ≤ N, f ∈ Fs.

We also need the following clauses for the encoding.

(I). Initial state (for all f ∈ φI): Wf,0

(II). Goal states (for all f ∈ φG): Wf,t

87

(III). Preconditions of simple actions (for all a ∈ As, 0 ≤ t < N):

Wa,t →
∧

f∈pre(a)

xf,t

(IV). Add effects of simple actions (for all f ∈ Fs, 0 < t ≤ N):

Wf,t →
∨

{a|f∈add(a)}

Wa,t−1

(V). Durative actions (∀o, t, o ∈ A, 0 ≤ t < t+ ρ < N):

Wo⊢,t ↔Wo⊣,t+ρ−1

Wo⊢,t →
∧

t+1≤t′≤t+ρ−1

(Wfo,t′)

Wo⊢,t →
∧

t+1≤t′≤t+ρ−1

(
∧

f∈π↔

Wf,t′)

If a start action o⊢ is true at time t, then action o⊣ must be true at time t + ρ − 1, and vice
versa. If a start action o⊢ is true at time t, then the fact fo and all the overall facts determined

by π↔ must be true in the executing duration [t + 1, t + ρ − 1]. These constraints enforce
that o is executed in [t, t+ ρ). Note it is not necessary to encode this type of constraints for

those actions whose duration ρ is smaller than or equal to 1.

(VI). Action mutex (0 ≤ t < N): for each pair of mutex actions (a1, a2):

¬Wa1,t

∨
¬Wa2,t

(VII). Fact mutex (0 ≤ t ≤ N): for each pair of mutex facts (f1, f2):

¬Wf1,t

∨
¬Wf2,t

It is vital to enforce action mutex constraints to ensure the correct semantics. Several algorithms are

proposed to detect mutex between durative actions in temporal planning [118]. Here we compute

those required action mutex for all transformed actions a ∈ As according to the method discussed
in Chapter 2.

88

6.3 Temporally Expressive Planning, A SAS+ Perspective

Like classical planning, temporal planning can be formulated in a SAS+ style. A SAS+ temporal

planning task is also consisted of multi-valued variables. A state in a SAS+ temporal planning task is
thus an assignment to all multi-valued variables. We adopt the definition to transition (Definition 2).

Based on transitions, Definition 23 defines duration action.

Definition 23 (SAS+ Durative Action). A duration action o is defined by a 4-tuple (ρ, o⊢, o↔, o⊣),

where ρ > 0 is the duration of o, and others are sets of transitions. Suppose o is executed at time

step t, then it ends at time step t+ ρ− 1. The three sets of transitions are consequently defined as:

• o⊢ is a set of transitions that execute at time step t;

• o↔ is a set of prevailing transitions that execute at all time step t′, while t < t′ < t+ ρ− 1;

• o⊣ is a set of transitions that execute at time step t+ ρ− 1.

Note in previous section, o⊢ and o⊣ refer to simplified actions. Here under the context of SAS+ for-
mulation, o⊢, o↔ and o⊣ refer to sets of transitions. We use M(o) = o⊢∪o↔∪o⊣ to indicate all the

transitions enforced by o. Definition 23 enforces the equivalent semantics to that in Definition 19,
although in different manners.

A durative action o is applicable iff: 1) Every transition in o⊢ is applicable to state st; 2) Every

transition in o↔ is applicable to state st′ , for every t’, such that t < t′ < t + ρ − 1; 3) Every
transition in o⊣ is applicable to state st+ρ−1. The effect of applying a durative action o is the effect

of applying all the transitions in M(o) to the corresponding states throughout the life time of o. In
particular, because there are only prevailing transitions in o↔, the effects are essentially enforced

by o⊢ and o⊣. Base on Definition 23, a SAS+ temporal planning task is defined as follows.

Definition 24 (Temporal Planning Task). A planning task Π in the SAS+ formalism is defined as

a tuple Π = {X ,O, sI , sG}, where

• X = {x1, · · · , xN} is a set of state variables, each with an associated finite domain Dom(xi);

• O is a set of durative actions;

• A state s is a full assignment (a set of assignments that assigns a value to every state variable).

If an assignment (x = f) is in s, we can write s(x) = f . We denote S as the set of all states.

89

• sI ∈ S is the initial state, and sG is a partial assignment of some state variables that defines

the goal. A state s ∈ S is a goal state if sG ⊆ s.

We use T to denote the set of all transitions in a planning task. We also use R(x) to denote the set

of all prevailing transitions related to x, and R the union of R(x) for all x ∈ X .

To handle concurrency, it is vital to forbid certain actions being executed in parallel, by enforcing
mutual exclusions accordingly. First we adopt Definition 3 to define transition mutex. For sim-

plicity, we say two transition sets T1 and T2 are mutual exclusive, as long as there exist two mutex
transitions δ1 ∈ T1 and δ2 ∈ T2, such that δ1 and δ2 are mutex. Based on transition mutex, we have

durative action mutex (also called durative mutex) defined in Definition 25.

Definition 25 (Durative Mutex). Given two durative actions o1 and o2, they are mutual exclusive

if there exist two transition δ ∈M(o1) and δ′ ∈M(o2), such that δ and δ′ are transition mutex.

The definition to the durative actions’s mutual exclusion is simple. Nevertheless, due to the com-

plicated semantics of durative action, we do not want to try all the enumerations to find out mutex.
Therefore, we check explicit conditions instead. Given two durative actions o and q, they are mutual

exclusive if either of the following cases hold:

1. o⊢ and q⊣ are mutual exclusive, denoted as o ons
e q.

2. o↔ and q⊢ are mutual exclusive, denoted as o ono
s q.

3. o↔ and q⊣ are mutual exclusive, denoted as o ono
e q.

4. o⊢ and q⊢ are mutual exclusive, denoted as o ons
s q.

5. o⊣ and q⊣ are mutual exclusive, denoted as o one
e q.

Each individual of the five conditions above is by itself a sufficient condition for durative mutex.
That is, if one condition holds for two given actions, then we know these two actions are mutual

exclusive. Note that for the five relations, some are commutative (i.e. ons
s and one

e), while others are
not. Given two durative action, they may have multiple mutex relations as above. In such cases, we

need to explicitly encode all of them.

Given two intervals X and Y , there are seven possible relations between them [1]: X takes place
before Y , X meets Y , X overlaps with Y , X starts Y , X during Y , X finishes Y , and X is equal

90

to Y . Since we are considering mutual exclusion, the relation ‘takes place before’ is impossible

to hold. In addition, the relation “Overlaps” is covered by Conditions 2 and 3. Therefore, the
five verification conditions covers all the possible conditions between two durative actions that are

mutual exclusive. That is, if none of the five conditions holds for two durative actions, then they are
not mutual exclusive.

6.4 A Transition Based Encoding for Temporal Planning

In this section, we introduce the encoding scheme for SAS+ temporal planning task Π. We have
two types of variables:

1. Transition variables: Uδ,t, ∀δ ∈ T and t ∈ [1, N], which may also be written as Ux,f,g,t when
δ is explicitly δxf→g;

2. Action variables: Uo,t, ∀o ∈ O and t ∈ [1, N].

As to constraints, we has eight classes of clauses for a task Π. In the following, we define each class

for every time step t ∈ [1, N] unless otherwise indicated.

(i). Initial state: ∀x, sI(x) = f ,
∨

∀δf→g∈T (x) Ux,f,g,1;

(ii). Goal: ∀x, sG(x) = g,
∨

∀δf→g∈T (x) Ux,f,g,N ;

(iii). Progression: ∀δxh→f ∈ T and t ∈ [1, N − 1], Ux,h,f,t →
∨

∀δxf→g∈T (x) Ux,f,g,t+1;

(iv). Regression: ∀δxf→g ∈ T and t ∈ [2, N], Ux,f,g,t →
∨

∀δx
f ′→f

∈T (x) Ux,f ′,f,t−1;

(v). Transition mutex: ∀δ1∀δ2 such that δ1 and δ2 are transition mutex, U δ1,t ∨ U δ2,t;

(vi). Composition of actions ∀o ∈ O:

Uo,t →
∧

∀δ∈o⊢

Uδ,t

Uo,t →
∧

∀δ∈o⊢

Uδ,t+ρ−1

Uo,t →
∧

∀δ∈o↔,t<t′<t+ρ−1

Uδ,t′ ;

91

(vii). Action existence: ∀δ ∈ T \R, Uδ,t → (
∨

∀o,δ∈o⊢
Uo,t ∨

∨
∀o,δ∈o⊣

Ua,t−ρ+1);

(viii). Action mutex: For each non-prevailing transition δ ∈ T and time step t, let us define a set of

variables Kδ = {Uo,t | δ ∈ o⊢} ∪ {Uo,t−ρ(o)+1 | δ ∈ o⊣}. All the variables in Kδ are mutual
exclusive to each other.

This encoding borrows ideas from SASE (Chapter 5) regarding the role of transitions in constructing
constraints. Nevertheless there are essential differences, due to the semantics of temporal planning.

The first major difference is how action mutex is enforced. The second difference is how actions
and transitions match. In SASE a transition implies a disjunction of certain actions in the same

time step. In the case of temporal planning, a transition may imply a durative action to be executed
several time steps away.

Note that in Definition 25, we have five different (but not necessary disjoint) conditions to determine

if two durative actions are mutual exclusive. While it comes to the phase of encoding, it becomes
much easier because certain types of mutual exclusions are already handled by the clauses in Class v.

For example, suppose we have two actions that are mutual exclusive on Condition 2 (i.e. o ono
s q).

In such a case, there exist transition δ ∈ o↔ and transition δ′ ∈ q⊢, such that δ and δ′ are mutual

exclusive. Such a mutex is covered by clauses of class v.

6.5 Experimental Results

Our experiments are done in a P2P domain that we develop and several other temporally expressive
domains [24]. Besides the original problems, we also generate some larger instances from a problem

generator that we develop. Note that we do not use all the domains in [24] because some of them
cannot scale to large problems (e.g. the Match domain), and a few of them have variable-duration

actions (e.g. the Café domain). The following is a brief description of the domains that are included
in the experiments.

Note all the domains we test have required concurrency in them. High concurrencies in temporal

planning problems are very different from most other temporal planning problems we have seen.

Figure 6.1 illustrates the temporal dependencies (Definition 22) in several instances from different
domains. All these instances have comparable problem sizes. The instance of the P2P domain

has 90 facts and 252 actions, and the instance of Matchlift domain [24] has 216 facts and 558
actions. Figure 6.1 (I) is an instance of the Trucks domain, which is temporally simple and thus has

all actions isolated. In Figure 6.1 (II) for the Matchlift domain, each action has up to two actions

92

I II III

… … ... … … ... … … ...

Figure 6.1: This figure partially illustrates temporal dependencies of actions for instances in three
domains: Trucks, Matchlift and P2P. Each node represents an action. Each edge represents a tem-
poral dependency between two actions.

temporally depending on it. In Figure 6.1 (III) for the P2P domain, each action has up to five actions
temporally depending on it.

The experiments are presented in two parts. In the first part, we compare Crikey2, Crikey3, LPG-

c [48], Temporal Fast Downward (TFD) [38], PET (planning as SAT with a STRIPS based encod-
ing), and SET (planning as SAT with a SAS+ based encoding). Because PET and SET have the

same solution quality, in Tables 6.1 to 6.4 we only list the solution quality for one.

6.5.1 The Peer-to-Peer Domain

This domain models file transfers in Peer-to-Peer (P2P) networks. In Peer-to-Peer (P2P) networks,

each computer, called a peer, may upload or download data from another. One critical issue in
P2P networks is that a substantial amount of inter-peer data communication traffic is unnecessarily

duplicated. For those systems having consistent and intensive data sharing between peers, com-
munication latency is a potential bottleneck of the overall network performance. Mechanisms in

network design, particularly proxy caching (a.k.a. gateway caching), have been proposed to reduce
duplicated data transmission. Making a good use of the proxy cache is critical for optimizing data

transmission.

There are at least two different types of optimization in P2P networks. The first one is approached
from the user’s point of view: each individual user wants all the data needed within the shortest

possible time [7]. The other type is approached from the point of view of a network service provider
(such as an Internet service provider (ISP)), who owns the network but does not control individual

peers. The main concern of a service provider is to reduce the overall communication load.

93

These two performance metrics are typically conflicting. We adopt performance metrics that lie

in the middle of the above mentioned two. Under these metrics, the network owner knows each
peer’s needs, and the objective is to minimize the overall makespan for all the data delivery for all

peers and minimize the total communication loads caused by different actions including serving and
downloading. The problem, when casted as a planning problem, is temporally expressive.

The main constraint in this problem is to satisfy a file request from a peer p1, the same file has to

be offered by another peer p2. p1 can execute the download action to get the file, when 1) there is
a route between p1 and p2, and 2) p2 is serving the file throughout the transferring. As such, these

serve and download actions require concurrency in any valid plan.

In addition, the proxy cache, which stores local caching files, will guarantee that, when p2 is serving

a file, any peer who is routed to p2 can download the file very quickly. The upload bandwidth of a

peer is typically much narrower than its download bandwidth. Therefore, enforced by the optimality
goal, the more peers downloading this particular file, the larger the whole network’s throughput will

be, which brings about a shorter time span in a solution plan.

In the serve action, for example, the processing time of a file is proportional to its file size. We
assume that by actively sharing a file, the uploading peer uses up its uploading bandwidth. That is,

we assume that it cannot share another file simultaneously. This assumption will not impose a real
restriction as we can introduce a time sharing scheme to extend the method we develop. A predicate

‘serving’ as one of the add-effects at the beginning indicates that the peer is sharing a file. When
sharing a file from a peer, the connected route will guarantee that any other peers can get this file

in a constant time (because download speed is much faster), as long as it is routed to the uploading

peer.

The results on the P2P domain is shown in Table 6.1. The instances are generated randomly with
different parameter settings, and the size of each file object is randomly chosen from four to eight

units. The goal state for each instance is that each peer gets all requested files. There are two types
of problems settings with different styles of network topology. One is loosely connected while the

other is more highly connected.

Also, in the initial state, only leaf peers (those that are only connected to one other peer) have files
to share. only connected to one other peer) have files to share. There are less concurrencies in this

setting. Crikey3 is faster on two simpler instances but slower than PET and SET on two other larger
instances. Overall, the time spans found by Crikey3 are about three to five times longer than those

found by PET and SET. Crikey2 failed to solve any instance in this category. Instances 9 to 16
have more complicated network topology. Nearly all nodes are connected to one another. Every

peer has some files needed by all others. In this setting, much higher concurrencies are required

94

Crikey3 PET SET
P Span Time Span Time Mem Time Mem
1 22 0.1 22 5.3 6 3.5 3
2 32 0.1 32 27.2 15 12.7 8
3 40 0.2 40 412.2 56 175.1 39
4 72 1.3 27 4.0 6 3.2 3
5 100 7.1 34 12.1 10 10.2 8
6 150 111.5 39 24.7 15 19.3 11
7 - 54 85.5 27 53.5 19
8 200 287.7 49 80.5 29 46.2 15
9 - 60 284.3 45 122.6 24
10 - 32 228.4 175 103.2 80
11 - 20 55.7 56 17.4 18
12 - 23 123.2 129 41.2 35
13 - 31 379.1 368 229.3 158
14 - 36 2377.6 793 711.4 266

Table 6.1: Results on the P2P domain. Crikey2, LPG-c and TFD fail to solve any of the instances.

to derive a plan. Both Crikey2 and Crikey3 fail to solve any instance within the resource limit.

Crikey3 times out and Crikey2 reports no solution is found. It may be due to their incompleteness.
SET consistently outperforms PET regarding both time and memory. In general SET uses half of

the running time, and half of the memory usage. The advantage of using SET is especially clear on
larger instances. For instance, it takes PET 2377.7 seconds to solve P2P-14, while it is just 711.0

for SET. To solve instance P2P-15, PET needs 633 MB memory, but SET only needs 138 MB.

6.5.2 The Matchlift Domain

In a Matchlift problem [24], an electrician enters an building to fix fuses during an outrage. Since
there is no light, the electrician needs to light a match to make it possible to repair in a dark room.

The required concurrencies between the action of lighting of a match, and the action of mending the
fuse, make the problem temporally expressive. Furthermore, before mending a fuse, the electrician

may need to travel through the building by taking the elevator to the appropriate floor, and then find
out and enter the correct room.

The original Matchlift domain [24] has some flaws, in which an electrician’s position is not updated

until the end of a durative action. This can introduce a huge increase to the number of electricians
needed in Crikey2 and Crikey3, and eventually electricians will exist everywhere. To make Crikey2

and Crikey3 work properly in this domain, we fix the flaws and use the fixed version of Matchlift
domain for this set of experiments.

95

Crikey2 Crikey3 LPG-c TFD PET SET
P Span Time Span Time Span Time Span Time Span Time Mem Time Mem
1 13 3.0 18 0.1 17 0.1 13 0.0 13 2.2 4 1.6 5
2 11 0.7 14 0.3 9 12.6 9 0.1 9 1.5 1 1.2 5
3 23 2.9 28 0.1 - 22 0.0 23 8.8 7 7.2 6
4 19 9.6 34 0.1 - 18 0.0 21 8.5 10 7.8 10
5 35 52.8 43 0.1 - 24 0.0 28 21.0 17 24.9 18
6 39 24.4 47 1.4 - 25 8.3 29 54.5 82 101.5 41
7 37 131.9 58 0.4 - 31 1.2 37 3042.2 361 507.2 117
8 42 73.8 58 1.9 - 30 20.8 34 1027.3 325 945.9 151
9 39 60.4 43 0.1 - 26 7.3 30 46.7 58 60.1 51
10 28 234.1 58 0.1 - 28 0.0 28 244.1 235 204.9 103
11 47 376.7 58 0.7 - 31 0.0 37 3483.5 659 977.9 241

Table 6.2: Results on the Matchlift domain.

The results on the Matchlift domain are in Table 6.2. We generate all instances randomly using

different parameters for the numbers of floors, rooms, matches and fuses. Each instance has the
same number of fuses and matches. In other words, these instances are easier because we can

always find a valid plan, such that there is exactly one running action concurrent with a lighting
match action. On all instances, Crikey3 is the fastest to find solutions, but with the poorest quality.

TFD is slightly slower but the plan quality is better. LPG-c cannot handle the concurrency that it
only solves 2 out of the 11 instances. PET spends more running time, since it finds the optimal

solutions. SET further has better efficiency than PET do. The running time is up to six times faster
and the memory consumption is as low as 1/3.

6.5.3 The Matchlift-Variant Domain

The original Matchlift domain only requires one electrician to do the repairing. Also, there are
always enough matches available. It is of a relatively weak form of required concurrency. We make

a revised Matchlift domain (called Matchlift-Variant domain), which requires more concurrencies
due to two changes. First, the number of matches is less than the number of fuses, so that multiple

electricians need to share one match. Second, we reduce the duration of the ‘mend fuse’ action so
that an electrician is able to conduct more mending actions during one match’s lighting, which also

results in higher concurrencies.

The results on the Matchlift-Variant domain are shown in Table 6.3. All instances are generated
with increasing numbers of fuses and electricians. All other settings are random. Instances with

the same number of fuses and electricians might still have different degrees of concurrency, due to
different numbers of matches and other resources available. For example, although Instances 7 and

8 have the same parameters, Instance 8 is more difficult than Instance 7 due to the different ways
how the fuses are distributed over the rooms.

96

Crikey2 Crikey3 LPG-c TFD PET SET
P Span Time Span Time Span Time Span Time Span Time Mem Time Mem
1 14 10.9 17 5.1 - - 13 3.5 3 3.4 5
2 13 147.7 16 7.5 13 0.4 - 13 1.7 3 2.1 4
3 19 6.1 23 0.1 - 19 0.5 18 6.9 7 5.9 6
4 25 106.0 27 41.8 21 460.9 - 21 15.7 16 15.7 11
5 23 20.3 33 0.1 - 29 5.9 22 19.8 21 16.2 10
6 25 121.6 27 42.0 33 0.1 - 21 16.9 18 15.0 11
7 - TLE - - 16 46.2 21 14.3 10
8 17 167.1 TLE - - 16 168.1 29 110.0 23
9 TLE TLE - 33 104.7 22 70.4 81 34.1 21
10 TLE TLE - - 20 239.2 39 157.3 35
11 TLE TLE - - 16 2035.0 85 135.9 38
12 TLE TLE - - 13 3.7 6 3.2 7

Table 6.3: Results on the Matchlift-Variant (MLR) domain.

As shown by the experimental results, PET and SET find optimal solutions on all instances tested,

whereas Crikey2 and Crikey3 ran out of time on most instances and generate suboptimal plans on
the few instances they finish. For the instances they solve, Crikey3 has the worst solution quality.

It is very efficient in finding a solution in a few small instances, but in other instances, it is even

slower. LPG-c and TFD can only handle very few instances in this domain.

The results on Instances 11 and 12 are special and interesting. These two instances are generated
under the same parameter setting, except for the number of matches. Instance 12 has only one

match, which means the four electricians need to cooperate with each other perfectly to get all
the fuses fixed. Comparing to Instance 11, Instance 12 turns out to be more difficult for Crikey2,

because it requires more concurrencies. Instance 12 is much easier than Instance 11 for PET and
SET. PET solves Instance 12 in just about three seconds, but spent more than 1800 seconds on

Instance 11. The difference is less significant for SET, which solves Instance 12 in 3 seconds, and
Instance 11 in 135 seconds.

6.5.4 The Driverslogshift Domain

The Driverslogshift domain [24] is an extended version of the Driverslog domain from IPC-3 [127].

It does similar things as those defined in the original Driverslog domain, as long as the worker is
in the ‘working’ status. The working status, for each individual worker, is modeled as a durative

action with a fixed duration. After the working action is over, the worker needs to take a rest,
which takes a constant duration. The working action has to be concurrent with other actions by

the worker. This is why the problem is temporally expressive. The possible actions of a worker,
are driving trucks between locations, loading/unloading the trucks, and walking between locations.

97

Crikey2 Crikey3 LPG-c PET SET
P Span Time Span Time Span Time Span Time Mem Time Mem
1 122 16.7 224 0.1 712 336.7 102 134.9 37 104.8 23
2 122 4.0 122 0.1 244 2.2 122 177.5 31 129.2 30
3 122 18.8 225 0.1 346 712.5 122 198.5 38 140.0 31
4 122 19.8 323 0.2 122 365.3 122 200.9 38 137.2 31
5 102 38.3 238 0.1 224 653.0 102 183.7 48 131.7 35
6 122 10.4 326 0.1 224 85.8 118 186.7 39 123.5 24
7 102 201.4 102 0.2 102 9.3 102 319.0 79 209.3 60
8 102 180.4 125 0.2 102 2.2 102 322.1 75 228.1 80
9 102 159.5 125 0.2 102 15.9 102 318.1 79 238.0 97

Table 6.4: Results on the Driverslogshift domain. TFD cannot solve any instance of this domain.

The problem instances in the Driverslogshift domain have much longer makespan than those in the

Matchlift and P2P domains.

Compared with P2P and Matchlift, this domain has long durative actions, which give rise to a long

makespan. Therefore, it is relatively difficult to optimally solve instances in this domain.

The problem instances in the Driverlogshift domain have much longer time spans than those in the
Matchlift and P2P domains. The actions with duration of two are changed to three to distinguish ⊢,

⊣ and ↔ conditions and effects. This change is made to accommodate PET and SET for solving
discrete problems. This domain is different from P2P and Matchlift. It has long durative actions,

which give rise to longer time spans. Therefore, it is relatively difficult to optimally solve instances
in this domain. These observations are reflected by our experimental result in Table 6.4.

As shown in Table 6.4, the optimal time spans of the instances tested, provided by PET and SET,

are typically much shorter than those by Crikey3. For example, the optimal time span for Instance
4 is about one third of the time span reported by Crikey3. As a trade-off, both SET and PET need

longer time for finding optimal solutions. Now consider Crikey2, a suboptimal solver. Surprisingly,
it is able to generate solutions of the same quality as what STEP found on most instances in this

domain. SET is in general better than PET, but the improvements are not as significant as those
in previous domains. Although LPG-c can solve all the instances, it however is the worst in both

planning quality and running time.

6.5.5 Encoding Efficiency

In addition to the number of instances solved, we compare the two encoding schemes regarding
their efficiency. In Figure 6.2, we present the number of instances that PET and SET can solve,

with increasing limits on number of variables or clauses. In both cases, SET in general solves 50%

98

 20

 25

 30

 35

 40

 45

 50

 0 50000 100000 150000 200000 250000

N
u

m
b

e
r

o
f

In
s
ta

n
c
e
s
 S

o
lv

e
d

Number of Variables

PET

SET
 20

 25

 30

 35

 40

 45

 50

 0 200000 400000 600000 800000 1e+06 1.2e+06

N
u

m
b

e
r

o
f

In
s
ta

n
c
e
s
 S

o
lv

e
d

Number of Clauses

PET

SET

Figure 6.2: The Number of instances that PET and SET can solve, with increasing limits on number
of variables or clauses.

more instances than PET. PET uses 250,000 variables to solve all the problems and it only costs

SET 100,000 variables. For the number of clauses, it takes PET 1,200,000 clauses to solve all the
instances and only 400,000 for SET. Since SET is more compact by having fewer variables and

fewer clauses, it consistently uses less memory for all the instances.

6.6 Summary

We have presented a planning as SAT methodology for temporal planning. Two encodings are
introduced, one is based on STRIPS and the other on SAS+. Comparing to the state-of-the-art

search based planners, PET and SET can handle the required concurrency much better. They both
solve instances that state-of-the-art planners cannot handle at all. For these two encodings, the

experimental results on the temporally expressive domains show that the encoding based on SAS+
is more time and memory efficient.

99

Chapter 7

Cost Sensitive Temporally Expressive
Planning

In this chapter, we extend our temporal planning approach to further handle one more advanced

feature: action cost. Chapter 6 shows that most existing temporal planners are temporally simple
without required concurrency, which is crucial for many applications. Although there are a few

planners that can handle required concurrency and some planners can handle action costs, none of
them can handle both. Existing temporal planners either attempt to minimize the total duration of

the solution plan (i.e. makespan), or do not consider any quality metric at all. Nevertheless, many
applications want to optimize not only the makespan, but also the total action cost [31], which can

be used to represent features, such as cost of resources used, the total money spent, and the total
energy consumed. Action cost is adopted as a new criterion in IPC-6 planning competition [122].

We call such problems with both temporal expressiveness and action cost, as Cost-Sensitive Tempo-

rally Expressive (CSTE) planning. CSTE planning is important and ubiquitous in many real world
scenarios. Example CSTE domains include but not limit to:

1. Web service composition. Web service composition (WSC) is the problem of integrating
multiple web services to satisfy a particular request [98]. Planning has been adopted as one

of the major methods for WSC [18, 98]. WSC problems may require CSTE planning, since
different web services operate under different conditions and different rates of cost (some are

free). As a result, it is desirable to optimize the QoS metrics, such as total price, reliability, and
reputation. Moreover, temporally concurrent actions are often needed to coordinate multiple

web services.

2. Peer-to-Peer network communication. In Peer-to-Peer network communication, one peer’s

uploading has to be concurrent with one or more other peers’ downloading [64]. Besides
the required concurrency, modern communication is service oriented; communication actions

100

are charged by different costs, depending on the types of network service used. A desirable

planner will need to find temporally expressive solutions that also minimize the total action
costs and thus require a CSTE planning.

3. Autonomous systems. Planning for autonomous systems, including robotics, rovers, and

spacecrafts, often requires CSTE planning. Consider a spacecraft controlling example [117]
in which the spacecraft movement is made by firing thrusters. Multiple operations need to be

performed within the time interval when the thrusters are fired, thus requiring action concur-
rency. Moreover, operation costs such as energy need to be minimized in order to best utilize

the on-board resources.

We extend our planning approach in Chapter 6 to handle CSTE planning tasks. Central to this

approach is a transformation for turning a CSTE instance into an optimization problem with SAT
constraints. Such a problem, called a MinCost SAT formulation, is a SAT problem with an objective

of minimizing the total cost of literals assigned to be true [83].

Given a MinCost SAT instance compiled from a CSTE planning task, we develop two approaches

to solve it. In the first approach, we compile a MinCost SAT into Weighted Partial Max-SAT
problems and apply existing Max-SAT solvers. Second, we develop BB-DPLL, a branch-and-bound

algorithm based on DPLL, to directly solve MinCost SAT problems. To this end, an effective
bounding technique, and an action-cost-based variable branching scheme is developed to make the

problem solving efficient. Our results show that such a SAT-based approach is a good choice for
CSTE planning.

The rest of this chapter is organized as follows. In Section 7.1 we define CSTE planning. We discuss

the method of using Max-SAT to solve CSTE planning tasks in Section 7.2, and the branch-and-
bound planning specialized algorithm in Section 7.3. Finally, we present our experimental results

on a variety of CSTE planning domains in Section 7.4.

7.1 Cost Sensitive Temporal Planning Task

A durative action with cost is defined by a tuple (ρ, µ, π⊢, π↔, π⊣, α⊢, α⊣), such that µ is the action
cost and all others follow Definition 19. A cost sensitive temporally expressive planning task is

defined by Ψ = (F ,A, φI , φG), which is similar to the definition to temporal planning tasks in
Section 6.1, except A is a set of durative actions with costs.

101

We adopt the overall procedure for temporal planning (Section 6.2). In the first step, each cost-

sensitive durative action o is converted into two simple actions and one propositional fact, written as
(o⊢, o⊣, f

o). We use the symbol a to denote the simple action which indicates the starting (a = o⊢)

or ending events (a = o⊣) of o. The fact fo, when is true, indicates that o is being executed. We
denote the set of all such fo as F o = {fo | o ∈ A}. Similarly, this transformation would only take

effects on those actions with ρ > 1.

Given a CSTE planning task Ψ = (F ,A, φI , φG), we denote the simplified task as Ψs = (Fs,As, φI , φG),
where F s = F ∪ F o and Os = {o⊢, o⊣ | o ∈ A} ∪ {no-op action for f | f ∈ F s}. The cost of

each simple action is defined by

µ(a) =

{
µ(o), if a = o⊢

0, otherwise

Once we have the temporal planning task compiled, we can apply the encoding introduced in Sec-

tion 6.2. For a CSTE planning task, the resulting SAT instance is a MinCost SAT problem, defined
as follows.

Definition 26 (MinCost SAT Problem). A MinCost SAT problem is a tuple Φc = (V,C, µ),

where V is a set of Boolean variables, C is a set of clauses, and µ is a function µ : V → N. A

solution to Φ is an assignment Γ that minimizes the objective function:

cost(Γ) =
∑
x∈V

µ(x)Γ(x),

subject to: Γ(p) = 1, ∀p ∈ C.

Our encodings introduced in Chapter 6 can be easily extended to model action costs, by assigning

the variable of a starting action o⊢ with a cost of ρ(o). Such a flexibility is one of the advantages
of planning as SAT approach. To solve the MinCost SAT problems, we apply two approaches as

discussed in the following sections.

7.2 Solve CSTE by Weighted Partial Max-SAT

Besides MinCost SAT, there is another type of extended SAT problem, called weighted partial Max-
SAT Problem [125], which is widely accepted by the SAT community. There are a lot of well

102

developed Max-SAT solvers. We compile a MinCost SAT problem into a Max-SAT problem, and

make use of existing Max-SAT solvers.

Definition 27 (Weighted partial Max-SAT Problem). A weighted partial Max-SAT problem is

a tuple Φa = (V,Ch, Cs, w), where V is a set of variables, Ch and Cs are sets of hard and soft
clauses, respectively, and w is the weight function of soft clauses defined by w : Cs → N.

A solution to Φa is a variable assignment Γ that maximizes the function:

weight(Γ) =
∑
p∈Cs

w(p)Γ(p),

subject to: Γ(p′) = 1, ∀p′ ∈ Ch.

A weighted partial Max-SAT problem Φa amounts to finding a variable assignment, such that all

hard clauses are satisfied, and the total weight of satisfied soft clauses is maximized. In the follow-
ing, we use the notation of assignment function Γ() : V ∪ C → {0, 1} in the following definitions.

Given a MinCost SAT instance Φc = (V,C, µ), we construct a weighted partial Max-SAT instance
Φa = (V,C,Cs, w). The hard clause set is equivalent to the clause set in the original MinCost SAT

problem. The soft clause set Cs is constructed as: Cs = {¬x | x ∈ V }. For each clause p ∈ Cs, its
weight is consequently defined as: w(p) = µ(x), where p = ¬x.

According to Definition 27, given a variable assignment Γ, the objective function of the weighted

partial Max-SAT instance is:

weight(Γ) =
∑

∀p∈Cs

w(p)Γ(p)

=
∑
∀x∈V

µ(x)Γ(¬x) (∵ Cs = {¬x | x ∈ V })

=
∑
∀x∈V

µ(x)(1− Γ(x))

=
∑
∀x∈V

µ(x)−
∑
∀x∈V

µ(x)Γ(x)

=
∑
∀x∈V

µ(x)− cost(Γ).

Hence, maximizing weight(Γ) is equivalent to minimizing cost(Γ). Since cost(Γ) is the objective
function of the MinCost SAT problem Φc, solving a MinCost SAT problem is equivalent to solving

the corresponding Max-SAT problem Φa. To take an example, let us consider a MinCost SAT

103

problem Φc = (V,C, µ):

C : x1 ∨ x2; x2 ∨ ¬x3

c : µ(x1) = 5; µ(x2) = 10; µ(x3) = 7

The corresponding weighted partial Max-SAT problem Φa = (V,Ch, Cs, w) will be:

Clause w(p)

Ch : x1 ∨ x2 ∞

x2 ∨ ¬x3 ∞

Cs : ¬x1 5

¬x2 10

¬x3 7

The optimal solution to Φc is Γ(x1) = 1, Γ(x2) = 0, Γ(x3) = 0, and the objective function

cost(Γ) = 5. The optimal solution to Φa is the same Γ, and weight(Γ) = 17. By solving any of the
two problems, we have the solution to the other. Since Max-SAT has been extensively studied [132,

43, 110, 113, 28, 81, 96], we can make use of the existing Max-SAT solvers to solve the MinCost
SAT instances.

7.3 A Branch-and-Bound Algorithm

In this section, we develop a specialized branch-and-bound based DPLL (BB-DPLL) algorithm for

a MinCost problem encoded from a CSTE planning task. Based on the standard branch-and-bound
procedure, we introduce two key planning specific techniques: a cost bounding mechanism based on

relaxations (Section 7.3.1) and a variable branching scheme based on action costs (Section 7.3.2).
These two techniques together improve the problem solving efficiency.

Here we give an overview of the BB-DPLL procedure (Algorithm 9), which integrates branch and

bound search strategy into the DPLL procedure. It uses a propagation queue that contains all literals
that are pending for propagation and also contains a representation of the current assignment.

104

Algorithm 9: BB-DPLL(Φc)
Input: MinCost SAT problem Φc

Output: a solution with minimum cost
cost init() ;1
τ ←∞, num← 0;2
while true do3

conflict ← propagate();4
if conflict then5

learnt ← analyze(conflict);6
if conflict is of top-level then return num > 0 ? SAT:UNSAT;7
add learnt to the clause database and backtrack();8

else9
cost propagate() ;10
g(Γ)←cost(Γ) ;11
if g(Γ) + h(Γ) ≥ τ then backtrack();12
if all variables are assigned then13

num++ ;14
τ ← cost(Γ) ;15
backtrack();16

else17
decide();18

BB-DPLL repeatedly propagates the literals in the propagation queue and returns a conflict if there
is any (Line 4). Once a conflict occurs, the procedure analyze() checks the conflict to generate a

learned clause (Line 6); after that, it calls backtrack() to undo the assignment until exactly one of
the literals in the learned clause becomes unassigned (Line 8). If no conflict occurs, it calls the

cost propagate() procedure to estimate the lower bound of current assignment (Line 10). It prunes
a search node if the lower bound of its cost exceeds τ , the cost of the incumbent (currently best)

solution (Line 12), or calls decide() to select a unassigned variable, assigns it to be true or false,
and inserts it into the propagation queue (Line 18).

Each time a satisfying solution is found when there is no unassigned variable any more, BB-DPLL

updates the incumbent solution, including solution number num and threshold τ , and then back-
tracks (Line 14-16). BB-DPLL keeps searching the whole space until all satisfiable solutions are

either visited or pruned, in order to find the one that minimizes cost(), the objective function of the
MinCost SAT problem. The procedure stops when a top level conflict is found.

7.3.1 Lower Bounding Based on Relaxed Planning

The lower bounding function is a key component in a branch-and-bound algorithm. Given a partial
variable assignment Γ, we can compute a lower bound of the costs of any solutions based on this

105

f1

a2

a1

f4

f5

f2

f3

a1

a2

f1

f2

f3

f4

f5

f1

f2

f3

a3

a4

f6

f7

Time 0 0 1 1 2 2 3

initial

facts
actions facts actions facts actions

goal

facts

Max/Sum

Min

Max/Sum

Max/Sum

Max/Sum

Min

Figure 7.1: A relaxed planning graph for a simple example with 4 actions and 7 facts. For
simplicity, no-ops are represented by dots and some action nodes in time steps 1 and 2 are
ignored. µ(a1, a2, a3, a4) = (10, 10, 15, 5).

partial assignment. A typical lower bounding function is f(Γ) = g(Γ) + h(Γ), where g(Γ) is the
total action costs of those variables already assigned to be true in Γ, and h(Γ) is a lower bound on

the pending cost that will incur by those variables unassigned in Γ. In a basic BB-DPLL algorithm,
we simply set h(Γ) to zero. In such a setting, the lower bound is exactly g(Γ).

However, the lower bound by this basic scheme produces is too loose. Our lower bounding func-

tion is based on the idea of integrating max-heuristic rule with additive/sum-heuristic rule when
facts are additive/independent. These heuristics have been extensively studied in state space search

planners (such as HSP-r [9] and AltAlt [93]) and SAT solvers (such as MinCostChaff [44] and
DPLLBB [80]). The implementation of the max-sum bounding function is customized for CSTE

planning based on the relaxed planning graph [10, 62].

We first construct a relaxed planning graph [92] and compute the lower bound cost h(x) of each
variable x in the graph. Then, we compute h(Γ) for a partial assignment based on h(x). We also

prove that this lower bounding function is admissible. That is, h(Γ) is always a lower bound of the
pending cost of any Γ. Figure 7.1 shows a running example of relaxed planning graph.

Let us define two sets, contribution set and additive set, which are useful for defining an accurate

bounding function. Then, we define a lower bounding function h(x) for each variable x and a
function h(Γ) for any partial assignment Γ. After that, we prove that h(Γ) is always a lower bound

of the pending cost of any Γ.

106

For each variable x ∈ V , the contribution set cont(x) (formally defined below) is the set of all

possible actions in any solution plan that reaches the assignment vΓ(x) = 1 from the initial state I .

Definition 28 (Contribution Set). Given a problem Πs = (Fs,As, φI , φG) transformed from a

CSTE problem Π = (F ,A, φI , φG), and the corresponding MinCost SAT problem Φc = (V,C, µ)

with makespan N , the contribution set cont(x) of variable x is defined as:

• if x = xf,t ∈ V (0 ≤ t ≤ N):

cont(xf,t) =


∪

{a|f∈add(a)}
cont(xa,t−1), t > 0

∅, t = 0

• if x = xa,t ∈ V (0 ≤ t < N):

cont(xa,t) =


∪

f∈pre(a)
cont(xf,t), if a is a no-op action∪

f∈pre(a)
cont(xf,t) ∪ {a}, otherwise

The above definition gives rise to an effective algorithm for computing cont(x) for every variable
x ∈ V in a preprocessing phase.

Definition 29 (Additive Set). A variable set X = {x1,t1 , x2,t2 , ..., xn,tn} is an additive set, de-

noted as adt(X), if for each variable pair (xi,ti , xj,tj), xi,ti , xj,tj ∈ X and i ̸= j, we have
cont(xi,ti) ∩ cont(xj,tj) = ∅.

Since the contribution set of a variable x contains all actions in any possible plan that reaches x

from the initial state, for an additive set X = {x1,t1 , x2,t2 , ..., xn,tn}, there is no common action

in any two plans reaching xi,ti and xj,tj , respectively. In other words, given an additive set X and
two variables xi,ti , xj,tj ∈ X(i ̸= j), if there exists an action a as a common action in two plans

reaching xi,ti and xj,tj , then a ∈ cont(xi,ti) ∩ cont(xj,tj), which contradicts Definition 29. For
example, in Figure 7.1, we cont(xf4,2) ∩ cont(xf5,2) = {a1} ∩ {a2} = ∅, thus {xf4,2, xf5,2} is an

additive set.

At each decision point (corresponding to a partial assignment Γ) during the search, for each variable
x, h(x) is a lower bound of the following quantity: the minimum total action costs of any solution

plan that: 1) reaches the assignment Γ(x) = 1 from the initial state φI , and 2) is consistent with the
partial assignment Γ.

107

Definition 30 Given a partial assignment Γ, for each variable x ∈ V , if Γ(x) = 0, we let lower

bounding function h(x) to be∞. If Γ(x) = 1 or x is unassigned, we check x is either a fact variable
or an action variable, and define h(x) accordingly as follows:

h(xf,t) =


min

{a|f∈add(a)}
h(xa,t−1), t > 0

0, t = 0 and f ∈ φI

∞, t = 0 and f /∈ φI

h(xa,t) = µ(xa,t)α(xa,t) +


∑

f∈pre(a)
h(xf,t), if adt({xf,t|f ∈ pre(a)})

max
f∈pre(a)

h(xf,t), otherwise

where α(xa,t) = 0 if Γ(xa,t) = 1, otherwise α(xa,t) = 1.

For a variable x assigned to be false, since no solution plan satisfying Γ can reach vΓ(x) = 1,
we have h(x) = ∞. The lower bound of a non-false assignment fact variable xf,t is the minimum

estimated value of action variables {xa,t−1|f ∈ add(a)}. The necessary condition for xa,t to be true
is that all of a’s precondition variables are true. Thus, a lower bound for h(xa,t) is the maximum

of the h values of a’s precondition variables. Further, if a’s precondition set is additive, the lower
bound can be improved by summing up the h values of a’s precondition variables. α(x) makes the

variable cost µ(x) only be counted once in h(x) or g(Γ).

Based on the h values for variables, we now define the lower bounding function h(Γ) for any
partial assignment Γ. h(Γ) is computed as

h(Γ) =


∑
f∈G

h(xf,N), if adt({xf,N |f ∈ φG})

max
f∈G

h(xf,N), otherwise
(7.1)

For example, in Figure 7.1, since adt({xf4,2, xf5,2}), h(xa3,2) = µ(xa3,2)α(xa3,2) + h(xf4,2) +

h(xf5,2) and h(xa4,2) = µ(xa4,2)α(xa4,2) + h(xf4,2) + h(xf5,2). At the beginning of search,

α(xa,t) = 1 for all xa,t ∈ V . Then, h(xa3,2) = 35 and h(xa2,2) = 25. h(Γ) is max{h(xf6,3),
which is h(xf7,3)} = max{h(xa3,2), h(xa2,2)} = 35. Note that we would get a worse lower bound

without considering additive set, in which case we will get h(xa3,2) = 25, h(xa2,2) = 15 and
h(Γ) = 25.

Let us prove that h(Γ) is a lower bound of the actual minimum pending cost. Given a partial

assignment Γ and an arbitrary variable x ∈ V , we use µp(x) to represent the pending cost (the total

108

cost of all action variables that are unassigned in Γ) of any solution plan that assigns Γ(x) = 1, and

otherwise exactly the same to Γ. µp(x) is unbounded if Γ(x) = 1 cannot be reached in any solution
within the predefined makespan bound consistent with Γ, denoted as µp(x) =∞; otherwise, µp(x)

is bounded.

Lemma 5 Given a partial assignment Γ, for each fact variable xf,t ∈ V (0 ≤ t ≤ N) such that

µp(xf,t) is bounded, we have µp(xf,t) ≥ h(xf,t) .

Proof We prove this lemma by induction.

Basis. When t = 0, for each fact variable xf,0, we have

µp(xf,0) =

{
0, f ∈ φI

∞, f /∈ φI

Thus, both µp(xf,0) and h(xf,0) are 0. The claim is satisfied.

Induction. Suppose that µp(xf,t) ≥ h(xf,t) for all bounded µp(xf,t) when t ≤ k, we will prove

cp(xf,k+1) ≥ h(xf,k+1), for any xf,k+1 ∈ V with bounded µp(xf,k+1).

For each action variable xo,k with bounded µp(xo,k), to make xo,k true, all fact variables {xf,k|f ∈
pre(o)} have to be true and each µp(xf,k) must also be bounded. We thus have

µp(xo,k) ≥ µ(xo,k)α(xo,k) + max
f∈pre(o)

µp(xf,k)

≥ µ(xo,k)α(xo,k) + max
f∈pre(o)

h(xf,k)

We use maximum instead of summation over all precondition variables since there may be some

common action variables counted more than once in different µp(xf,k) for different precondition
variables xf,k. But in the special case when {xf,k|f ∈ pre(o)} is an additive set, we have

µp(xo,k) = µ(xo,k)α(xo,k) +
∑

f∈pre(o)

µp(xf,k)

≥ µ(xo,k)α(xo,k) +
∑

f∈pre(o)

h(xf,k)

According to Definition 30, we have µp(xo,k) ≥ h(xo,k) for any o ∈ Os with bounded µp(xo,k).

109

For each fact variable xf,k+1 with bounded µp(xf,k+1), to make xf,k+1 true, at least one action

variable xo,k|f∈add(o) has to be true. We consequently have:

µp(xf,k+1) ≥ min
{o|f∈add(o)}

µp(xo,k)

≥ min
{o|f∈add(o)}

h(xo,k)

≥ h(xf,k+1).

This lemma is thus proved. �

For any solution plan p reaching all goal variables {xf,N |f ∈ φG} from the initial state φI and

satisfying the current partial assignment Γ, we denote the pending cost of the plan as µp(Γ), which

is the total cost of all the actions that are not assigned in Γ. The minimum pending cost for any
partial assignment Γ, denoted as hr(Γ), is the minimum µp(Γ) over all possible solution plans that

are consistent with Γ, i.e. hr(Γ) = minp µ
p(Γ).

Theorem 4 Given a planning task Πs = (Fs,As, φI , φG) transformed from a CSTE planning

task Π = (F ,O, φI , φG), and the corresponding MinCost SAT problem Φc = (V,C, µ), for any

partial assignment Γ of Φc, we have h(Γ) ≤ hr(Γ).

Proof If there is no solution plan satisfying Γ, we have hr(Γ) = ∞ ≥ h(Γ). Otherwise, hr(Γ)

is bounded and there exists some bounded µp(Γ). Consider any solution plan p reaching all goals

and satisfying Γ, we have

µp(Γ) ≥ max
f∈φG

µp(xf,N)

≥ max
f∈φG

h(xf,N) (Lemma 5)

Furthermore, if the goal variables {xf,N |f ∈ φG} form an additive set, then we have

µp(Γ) =
∑
f∈φG

µp(xf,N)

≥
∑
f∈G

h(xf,N) (Lemma 5)

According to equation (7.1), we see that µp(Γ) ≥ h(Γ). Since hr(Γ) is the minimum µp(Γ) over

all solution plans, we have hr(Γ) = minp µ
p(Γ) ≥ h(Γ). �

Theorem 4 shows that h(Γ) is indeed a lower bound of the pending cost. Hence, during the search,
we can use g(Γ) + h(Γ) as a admissible heuristic to guide the search.

110

Algorithm 10: cost init()
Input: Ψs = (Fs,As, φI , φG), Φc = (V,C, µ), N
for all xf,0 ∈ V do1

set h(xf,0) = 0 if f ∈ φI and h(xf,0) =∞ otherwise ;2

for t=0 to N do3

for all xa,t ∈ V do4

compute h(xa,t) using Definition 30;5

for all xf,t+1 ∈ V do6

compute h(xf,t+1) using Definition 30;7

Implementation

The algorithms for initializing and maintaining the h(x) values for all x ∈ V are shown in Al-

gorithms 10 and 11, respectively. To initialize the cost function h(x), we first set h(xf,0) = 0 if
f ∈ φI and h(xf,0) = ∞ otherwise. Then, we set the initial values for variables from time step 0

to N following Definition 30. In addition, for each action variable xa,t, we pre-compute whether its
precondition variables are additive. We also pre-compute whether all the goal variables are additive.

Then we decide whether to use max or
∑

, according to Definition 30 and Equation (7.1).

Algorithm 11 updates the h values if no conflict occurs during the search. It uses a priority queue
Q to store all variables whose h values need to be updated after a constraint propagation. Since

the variables in Q are ordered by the time step t, the variables will be updated in an increasing
order of t. When h(x) values are properly maintained, h(Γ) for any partial assignment Γ can

be computed easily using Equation (7.1). The updated h(Γ) will be used in Line 17 of the BB-
DPLL() procedure. For the example in Figure 7.1, if xa1,1 is assigned a value, then the h values of

xf4,2, xa3,2, xa4,2, xf6,3 and xf7,3 will be updated.

7.3.2 Action Cost Based Variable Branching

In the BB-DPLL procedure, the variable branching scheme is the same to that in MiniSat [134, 34],

a variant of VSIDS [88], which works as follows:

1. Each variable x has a priority value p(x), initialized to 0. δp is a priority increment that is

initialized to 1.

111

Algorithm 11: cost propagate()
Input: Ψs = (Fs,As, φI , φG), Φc = (V,C, µ)
initialize Q as a priority queue sorted by t;1

while Q ̸= ∅ do2

get x from Q, Q← U\{x};3

if x = xa,t ∈ V then4

if Γ(xa,t)=false then newcost←∞;5

else6

compute newcost using Definition 30;7

if newcost ̸= h(xa,t) then8

h(xa,t)← newcost;9

for all f ∈ add(a) do10

U ← U ∪ {xf,t+1};11

else if x = xf,t ∈ V then12

if Γ(xf,t)=false then newcost←∞;13

else compute newcost using Definition 30;14

if newcost ̸= h(xf,t) then15

h(xf,t)← newcost;16

for all a such that f ∈ pre(a) do17

Q← Q ∪ {xa,t};18

2. In decide(), with a constant probability P0, randomly select an unassigned variable x, and
with probability 1−P0, select the unassigned variable with the highest priority value. Assign

the selected variable to true .

3. Whenever a learnt clause is generated by analyze() in BB-DPLL, for each variable x in the
new learnt clause, we update the priority values p(x) by p(x) = p(x)+δp. After that, multiply

δp by a constant θ > 1.

4. Periodically divide all priority values by a large constant γ and reset δp to 1.

VSIDS is widely used in most SAT algorithms. We present a planning specialized branching scheme

that is more effective. Essentially, we use an estimated total action costs when branching. The rules
are as follows:

1. Each variable x has a priority value p(x). Initialize p(x) as follows:

p(x) =

{
µ(a), if x = xa,t ∈ V

0, otherwise

112

2. δp is a priority increment that is initialized to 1.

3. In decide(), with a constant probability P0, randomly select an unassigned variable x, and

with probability 1−P0, select the unassigned variable with the highest priority value. Assign
the selected variable to false .

4. Whenever a learnt clause is generated by analyze() in BB-DPLL, for each variable x in the

new learnt clause, update the priority values p(x) as follows:

p(x) =

{
p(x) + µ(a)δp, if x = xa,t ∈ V

p(x) + δp, otherwise

After that, multiply δp by a constant θ > 1.

5. Periodically divide all priority values by a large constant γ and reset δp to 1.

Note that we keep the parameters setting exactly the same to MiniSat. That is, P0 = 0.02, θp = 1.2,

and γ = 100. Comparing with the VSIDS heuristic, our BB-DPLL heuristic is often a better
estimation, which gives higher priorities to variables with higher costs.

7.4 Experimental Results

We test seven temporal expressive planners. Sun Java 1.6 and Python 2.6 run-time systems are used.

The time limit, for each instance, is set to 3600 seconds. We have four domains in this experiments,
which are the same to the instances in Chapter 6.

Seven planners are tested and compared. We test four temporally expressive planners: Crikey2 [23],

Crikey3 [24] (statically-linked binary for x86 Linux), LPG-c [48] and Temporal Fast Downward
(TFD) [38]. SCP is the basic SCP framework without minimizing action costs, which in fact the

same to PET that is introduced in Chapter 6. We use a different name here because to compare with
our planning specialized algorithm. The SAT solver is changed to MiniSAT2 [34]. SCP does not

optimize total action costs. The planners that use the methods that we proposed are called SCPmax

(Section 7.2) and SCPbb (Section 7.3), respectively. SAT4J [113], the winner of weighted partial

Max-SAT (industrial track) in the Max-SAT 2009 Competition [125] is used in SCPmax.

113

P Crikey3 SCP SCPmax SCPbb

T H C T H C T C T C
1 0.1 22 4110 4.9 22 1980 21.5 520 60.4 520
2 0.1 32 5190 19.1 32 3560 233.2 800 157.5 900
3 0.2 40 7340 134.0 40 6000 514.0 1830 1156.8 1160
4 1.4 72 12110 4.2 27 2000 15.2 1320 12.0 1320
5 7.2 100 20190 10.5 34 3310 76.4 2200 253.3 2320
6 111.5 150 30290 22.5 39 4650 618.3 3300 193.2 3550
7 TLE 61.6 54 6360 3513.6 4300 1121.9 4550
8 287.7 200 35340 122.1 49 5430 2624.2 4060 3475.4 4180
9 TLE 662.9 60 6960 2340.7 5470 454.8 6120
10 TLE 757.8 32 4010 388.2 3610 228.2 3500
11 TLE 45.1 20 3200 210.9 2700 58.2 2700
12 TLE 88.9 23 4190 162.4 3610 114.0 3600
13 TLE 1675.4 31 5370 2714.2 4720 1056.8 4500
14 TLE 3303.0 29 6770 2141.8 5720 2788.0 5600
Σ n/a 6911.9 492 63790 15574.6 44160 11130.3 44520

Table 7.1: Experimental results in the P2P domain. Column ‘P’ is the instance ID. Columns ‘T’,
‘H’ and ‘C’ are the solving time, makespan and total action costs of solutions, respectively.

The P2P domain

We first experiment on a collection of instances in the P2P domain. The results are shown in
Table 7.1. If a planner is able to solve every instance, we present in Column ‘Σ’ the summation

of the solving time, makespan, and total action costs over all instances. ‘Timeout’ means that the
solver runs out of the time limit of 3600s and ‘-’ means no solution is found. This is for an easier

comparison of different metrics between the solvers. Crikey2, LPG-c and TFD are not included
because they all fail to solve any instance. We do not show makespan (“H”) for SCPbb and SCPmax

since they give the same makespans as SCP.

Instances 1 to 9 have simple topologies. Crikey2 fails to solve any instance in this category. Crikey3
solves 7 out of 14 instances. It is faster on two simpler instances but slower than SCP on two other

larger instances. Overall, the makespans of solutions found by Crikey3 are up to five times longer

than those found by SCP. SCP also outperforms Crikey3 by up to 7 times in terms of the total action
costs. Instances 10 to 14 have more complicated network topologies. Both Crikey2 and Crikey3 fail

to solve any of these instances. Crikey3 times out and Crikey2 reports no solution found. It may be
due to their incompleteness.

SCP, SCPbb and SCPmax solve all the instances. In general, SCPbb runs longer than the other two.

The total action costs by SCPmax and SCPbb are consistently lower (by up to 4 times) than that
of SCP. Overall, SCPbb has comparable, if not better, performance than SCPmax in this domain;

the former has a slightly worse total action costs (0.8% more) but much shorter solving time (28%
shorter).

114

P Crikey2 Crikey3 LPG-c TFD SCP SCPmax SCPbb

T H C T H C T H C T H C T H C T C T C
1 3.0 13 332 0.1 18 312 0.1 17 352 0.0 13 332 2.6 13 1052 5.2 332 2.6 332
2 0.7 11 150 0.3 14 130 12.6 9 160 0.1 9 110 1.8 9 900 3.1 110 1.8 110
3 2.9 23 352 0.1 28 332 - 0.0 23 352 6.8 22 2032 16.0 352 8.0 352
4 9.6 19 452 0.1 34 432 - 0.0 19 452 7.2 18 1792 15.0 452 7.3 452
5 52.8 35 644 0.1 43 524 - 0.0 25 644 13.2 24 1664 29.9 644 24.1 644
6 24.4 39 906 1.4 47 584 - 8.3 34 1096 20.6 25 1936 49.7 566 42.8 566
7 131.9 37 804 0.4 58 684 - 1.2 42 1008 88.3 31 2316 195.5 704 241.3 704
8 73.8 42 854 1.9 58 734 - 20.8 35 1154 131.0 30 2566 400.3 856 307.6 856
9 60.4 39 644 0.1 43 624 - 7.3 39 1144 26.7 26 1884 65.9 844 68.6 844
10 234.1 28 936 0.1 58 714 - 0.0 30 734 55.6 28 2144 109.4 734 162.4 734
11 376.7 47 1005 0.7 58 684 - 0.0 33 804 152.0 31 2334 265.7 804 413.0 804
Σ 970.4 333 7079 5.3 459 5754 - 37.8 292 7830 505.9 257 20620 1155.6 6398 1279.4 6398

Table 7.2: Experimental results on the Matchlift domain.

The Matchlift domain

The results on the Matchlift domain are in Table 7.2. On all instances, Crikey3 is the fastest, but with
the lowest quality in terms of makespan. Surprisingly, Crikey3 finds the solutions with minimum

action costs because for this problem domain lower costs can be achieved under a longer makespan.
TFD is the second fastest. The solution quality by TFD is comparable to Crikey2, with slightly

larger action cost but shorter makespan.

SCP is the second fastest, with the optimal makespans, but higher total action costs than Crikey3.
Crikey2 is slightly faster, but also has worse makespan and total action costs than SCPmax and

SCPbb. The solutions by SCPmax and SCPbb have comparable speed and exactly the same quality.
They give optimal makespan and only slightly worse action costs. LPG-c is the worst in this domain,

with only two instances solved.

The Matchlift-Variant domain

As shown by Table 7.3, SCP finds optimal makespan on all instances tested, whereas Crikey2 and
Crikey3 run out of time on most instances and generate suboptimal plans on a few instances they

finish. For the instances they solve, Crikey3 has the worst makespan. Except on very small in-
stances, we can see that SCP not only finds the optimal solutions, but also runs faster than Crikey2

and Crikey3. Both LPG-c and TFD are not good in this domain, with only three instances solved.

In this domain, SCPbb runs slightly slower than SCP, but finds solutions with significantly lower
total action costs than the latter. Although on certain instances SCPmax can find solutions with

exactly the same quality, it runs up to six times slower than SCPbb to reach those solutions.

115

P Crikey2 Crikey3 LPG-c TFD SCP SCPmax SCPbb

T H C T H C T H C T H C T H C T C T C
1 10.9 14 220 5.1 17 200 - - 2.5 13 840 8.1 220 2.4 220
2 147.7 13 374 7.5 16 334 0.4 13 354 - 1.7 13 1294 4.2 254 1.7 254
3 6.1 19 392 0.1 23 372 - 0.5 19 414 5.7 18 1336 12.3 392 5.7 392
4 106.0 25 444 41.8 27 424 460.9 21 354 - 6.9 21 1624 22.8 342 6.7 342
5 20.3 23 482 0.1 33 462 - 5.9 29 492 9.4 22 1962 23.1 482 16.0 482
6 121.6 25 464 42.0 27 444 0.1 33 362 - 5.9 21 1454 22.7 362 7.2 362
7 - TLE - - 9.9 16 1636 37.1 396 10.0 396
8 167.1 17 290 TLE - - 53.3 16 1484 292.7 290 52.8 290
9 TLE TLE - 104.7 33 734 22.8 22 1668 2582.7 534 52.5 534
10 TLE TLE - - 94.3 20 1726 488.7 416 94.6 416
11 TLE TLE - - 361.4 16 1398 543.2 476 366.1 476
12 TLE TLE - - 3.1 13 1008 8.9 358 2.3 358
Σ n/a n/a n/a n/a 576.9 211 17430 4046.3 4522 618.1 4522

Table 7.3: Experimental results in the Matchlift-Variant domain. ‘TLE’ means that the solver runs
out of the time limit of 3600s and ‘-’ means no solution is found.

P Crikey2 Crikey3 LPG-c SCP SCPmax SCPbb

T H C T H C T H C T H C T C T C
1 16.7∗ 122 2850 0.1 224 2600 336.7 712 4650 182.7 102 2660 306.4 2700 216.0 1760
2 4.0 122 1450 0.1 122 1400 2.2 244 2750 202.6 122 2670 500.0 1450 551.8 775
3 18.8 122 4450 0.1 225 3200 712.5 346 4900 232.1 122 4505 451.5 3900 231.8 1935
4 19.8 122 3950 0.2 323 3700 365.3 122 4600 233.9 122 3575 450.0 4050 233.3 1935
5 38.3 102 3900 0.1 238 3600 653.0 224 4100 241.7 102 1940 589.7 3900 629.4 2010
6 10.4∗ 122 2700 0.1 326 2500 85.8 224 4300 217.8 118 6020 402.1 3700 218.7 1930
7 201.4 102 6400 0.2 102 4700 9.3 102 5000 432.5 102 3330 693.2 5800 422.6 3020
8 180.4 102 7500 0.2 125 5050 2.2 102 5150 443.5 102 7330 678.6 5900 423.8 2530
9 159.5∗ 102 6900 0.2 125 5050 15.9 102 4600 443.5 102 4940 677.3 6100 434.0 3080
Σ 649.3 1018 40100 1.3 1810 31800 2183.01 2178 40050 2630.4 994 36970 4748.8 37500 3361.3 18975

Table 7.4: Experimental results in the Driverslogshift domain. The result marked with a ‘∗’ means
that the solution is invalid.

The Driverslogshift domain

Crikey3 again is the fastest among all planners. Its makespans, however, are much worse than that of

all others. As shown in Table 7.4, the optimal makespans of the instances tested, provided by SCP,
SCPmax and SCPbb, are typically much shorter than those by Crikey3. For example, the optimal

makespan for Instance 4 in Table 7.4 is about one third of the makespan reported by Crikey3. LPG-c
finds solutions with solving times that are similar to SCP’s, which is much slower than Crikey2 and

Crikey3. Its solution quality is however the worst: its makespans are comparable to Crikey3, and
the total action costs are about the same to Crikey2. TFD is not included because it fails to solve

any instance in this domain.

116

In terms of action costs, SCPbb is by far the best, much better than the plans found by Crikey2,

Crikey3, SCP, and SCPmax, have similar quality. In this domain, SCPbb is also much more efficient
than SCPmax.

7.5 Summary

We have extended the SAT-based temporally expressive planning approach to further handle action

costs. Two approaches are studied: one is to compile CSTE tasks into Max-SAT problems and take
advantage of existing Max-SAT solvers; the other is a planning specialized branch and bound al-

gorithm. By comparing our approaches with the state-of-the-art planners, both approaches are very
competitive not only in plan quality but also in performance. In particular, the BB-DPLL algorithm

is competitive with, if not better than, the Max-SAT approach for SAT-based CSTE planning.

117

Chapter 8

Conclusions and Future Research

The contribution of this dissertation is devising new methods accommodating to the recent advances
in planning formulations. The recent introduced SAS+ formulism induces interesting structures

such as domain transition graph. We have developed an abstraction search method that conducts
search directly on domain transition graphs. We also have recognized that the information enforced

by domain transition graphs can be used as additional constraints to boost state-of-the-art SAT-
based planners. The new encoding scheme SASE fully exploits the potentials of SAS+, and it

greatly improves the efficiency of planning as SAT method. We study the search space induced by
SASE from both theoretical and empirical perspectives. In particular, our study has explained and

revealed why SASE is more efficient. Finally we extend the planning as Satisfiability approach to
handle temporal and action costs.

Our study strongly suggests the advantage of applying SAS+ in planning algorithms. In particu-

lar, the state space induced by the transition make the resulting problem naturally have a hierarchy
between transitions and actions. Various planning algorithms may benefit from capturing this prop-

erty.

8.1 Future Works

Formulation is so significant in planning algorithms that our research may inspire new techniques

in various fields. Below, we review some related works and discuss a few directions for future
research.

118

8.1.1 Adaptive Search Strategies for Abstractions

DTG-Plan performs faster than the state-of-the-art with less memory consumption. Being greedy is
however a double blade, which makes DTG-Plan fail in certain instances. Therefore, the incremental

abstraction strategy needs improvements, although in theory it is complete. In the high level, the
algorithm for extending the abstractions is still not flexible enough. Right now our approach is

straightforward. We randomly pick those DTGs that are not included yet, but depended by the
abstraction. If there are too many candidates, random decisions are made. We believe it is promising

to have more guidances.

In addition, by having multiple layers of decisions, DTG-Plan leaves us great opportunities to devise
better strategies. In each individual component, it is possible to have adaptive methods to help

GIR make better decisions, when certain patterns in the historical data are observed. For example,
while searching for a set of facts (i.e. search fact set()), we use heuristics such as forced ordering

to pick facts. Nevertheless, as a heuristic, it may not always make correct decisions. If some
ordering always lead to a dead-end, it could be reasonable to override current ordering and try with

alternatives.

8.1.2 Other Semantics and Encodings

Many enhancements have been developed for SAT based planning since it was first introduced [71].
The split action representation [71, 35] uses a conjunction of multiple variables to represent an

action. The optimality of parallelism is however lost. Robinson proposes a new way of doing split-

ting without sacrificing the optimality [109]. The results show that this method has advantages and
improvements over SatPlan06 [74]. There are many literatures with thorough analysis, or improve-

ments along this line of research on SatPlan family encodings. In particular, the power of mutual
exclusion, in the context of planning as SAT, has attracted interests [20, 116]. A new encoding

scheme called SMP is proposed, which preserves the merits of londex and shows certain advantages
over exiting encoding schemes [116].

The research along the line of SatPlan are all for optimal makespans. This makespan optimal se-

mantics, along with another parallel semantics, are studied and formalized as ∀-step and ∃-step,
respectively [30, 107]. ∃-step enforces weaker mutual exclusions than ∀-step does, thus may lead

to faster overall problem solving by having fewer rounds of SAT tests. As a trade-off, it loses the
optimality of time steps. The semantics in both SatPlan06 and SASE are ∀-step. The research on

various kinds of semantics are orthogonal to our contribution in SASE, and the idea of SASE can
be migrated to new semantics.

119

Since SAT based planning is also applied in sequential planning, we believe the idea of SASE can

also be extended to this field. The first planner of this kind is MEDIC [35]. It implements the idea
of splitted action representation, combined with several other new methods such as those handling

the frame axioms. This study shows that in the case of sequential planning, splitting yields very
competitive encodings. Some research also proposes to utilize the advantages of both sequential

and parallel planning [17]. As an anytime algorithm, it optimizes the number of actions in addition
to makespans.

8.1.3 Additional Techniques for Planning as SAT

The tremendous amount of two-literal clauses (such as those mutual exclusion clauses in the case

of planning) is a key challenge to approaches based on satisfiability tests. Some research proposed
to mitigate the burden of encoding them by recognizing certain structures [12]. In traditional SAT

planning systems like SatPlan06, the mutual exclusions are encoded in a quadratic manner. Rin-

tanen proposes a log size technique [104], called clique representation, for the mutual exclusion
constraints, and later a linear size one [107]. The mutual exclusions in SASE are represented by the

clique representation. The log size of the clique representation is supposed to be less compact than
the linear encoding. Our results, however, have shown that SASE is in general more compact. We

believe the major reason is the compactness of SAS+ formalism. It is, certainly, an interesting open
question whether the linear size encoding technique can be applied to further improve SASE.

There are also techniques beyond encoding to boost SAT-based planning. Rintanen introduces how

to incorporate symmetry information into SAT instances [103]. MaxPlan [131] does a planning
graph analysis to find an upper bound on the optimal make span and then does SAT queries using

decreasing time steps, until it meets a unsatisfiable SAT instance. A lemma reusing method is
proposed in [91] to reuse the learnt clauses across multiple SAT solvings. In [99], a multiple-step

query strategy is introduced, which however asks for modified SAT procedures. In this method, only
a single call to a SAT solver is needed to handle multiple time steps. All these boosting methods are

proposed in the context of STRIPS based planning. Therefore, it is interesting to incorporate them
into SASE and study if they can further improve the performance of SASE.

8.1.4 More Understanding of Structures in General SAT Instances

As one of the most intensively studied problems in computer science, SAT is hard from a complex-

ity perspective. Modern solvers, however, are quickly improving their efficiency. It is therefore

120

interesting and important to understand why SAT solvers work so well on certain instances, and fur-

thermore, what makes a SAT instance easy or hard. There is much prior research that tries to make
such understanding, including backdoor set [130] and backbone [87]. Backdoor set variables are

a set of variables, such that when these variables are assigned, other variables’ assignments can be
derived in polynomial time. Backbone variables are those variables that have the same assignment

in all valid solutions.

It will be interesting to see if there are connections between SASE’s problem structure and those
proposed theories in the literature. For example, is the improvement of SASE because it can lead to

a smaller backdoor set? Second, we have shown that the efficiency of SASE is a result of transition
variables’ significance, and there is strong correlation between the speedup from SASE and the

transition index. It is interesting to investigate if similar variable set and predictive index can be
automatically found for general SAT solving.

8.1.5 SAS+ in More Advanced and Expressive Planning Models

As mentioned in Chapter 6, the SAT-based temporally expressive planning approach has the clear
advantage that it handles concurrency in a stronger form. It however does not support numerical

durations. Theoretically, any temporal information can always be compiled into a discrete space,
thus this limitation is easy to overcome. In that case, our approach can handle durations of real

values, as long as we can recompile the unit using a smaller unit. Nevertheless, doing this way
may lead to unnecessarily large planning task formulas. Besides using explicit time for temporal

information, there are also partial order style models [1] in temporal reasoning research. These
could be an alternative to support numerical durations.

Another limitation is that we assume action durations are constants. To resolve this might be more

difficult. We believe it is possible to have multiple copies of the same action, each has a distinct
duration. By doing this, the resulted encoding again might be very large.

In addition to the future research directions discussed above, given the efficiency of SASE, it is

promising to apply it to other SAT-based planning approaches, such as those for complex planning
with preferences [50] and temporal features [64]. On the other hand, given the strong connection

between planning as SAT and planning as CSP, the ideas in SASE can be migrated to those CSP
based planning approaches.

121

References

[1] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM,
26:832–843, 1983.

[2] F. Bacchus. The power of modelling - a response to PDDL2.1. Journal of Artificial Intelli-
gence Research, 20:125–132, 2003.

[3] F. Bacchus and M. A. Winter. Planning with resources and concurrency a forward chaining
approach. In Proceedings of International Joint Conference on Artificial Intelligence, 2001.

[4] C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational Intelli-
gence, 11:625–655, 1996.

[5] D. Bauer and A. Koller. Sentence Generation as Planning with Probabilistic LTAG. In Proc.
of Int’l Conference on Tree Adjoining Grammars and Related Formalisms, 2010.

[6] A. R. Benaskeur, F. Kabanza, and E. Beaudry. CORALS:a real-time planner for anti-air
defense operations. ACM Transactions on Intelligent Systems and Technology, 1(2):1–20,
2010.

[7] A. Bhattacharya and S. Ghosh. Self-optimizing peer-to-peer networks with selfish processes.
In Proceedings of International Conference on Self-Adaptive and Self-Organizing Systems,
2007.

[8] A. Biere. Pr{e,i}coSAT. In SAT’09 Competition, 2009.

[9] B. Blai and G. Hector. Planning as heuristic search. Artificial Intelligence, 129:5–33, 2001.

[10] A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. Artificial Intelli-
gence, 90:1636–1642, 1997.

[11] B. Bonet and H. Geffner. Planning as Heuristic Search. In Artificial Intelligence, 2001.

[12] R. I. Brafman. A simplifier for propositional formulas with many binary clauses. In Proceed-
ings of International Joint Conference on Artificial Intelligence, 2001.

[13] L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[14] M. Briel, T. Vossen, and S. Kambhampati. Reviving Integer Programming Approaches for AI
Planning. In Proceedings of International Conference on Automated Planning and Schedul-
ing, 2005.

[15] D. Bryce, M. Verdicchio, and S. Kim. Planning interventions in biological networks. ACM
Transactions on Intelligent Systems and Technology, 1(2), 2010.

122

[16] E. Burns, S. Lemons, R. Zhou, and W. Ruml. Best-First Heuristic Search for Multi-Core
Machines. In Proceedings of International Joint Conference on Artificial Intelligence, 2009.

[17] M. Büttner and J. Rintanen. Satisfiability Planning with Constraints on the Number of Ac-
tions. In Proceedings of International Conference on Automated Planning and Scheduling,
2005.

[18] M. Carman, L. Serafini, and P. Traverso. Web service composition as planning. In ICAPS
Workshop on Planning for Web Services, 2003.

[19] C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in complex domains:
concurrency, constraints and nondeterminism. Artificial Intelligence, 147:85–117, 2003.

[20] Y. Chen, R. Huang, Z. Xing, and W. Zhang. Long-distance mutual exclusion for planning.
Artificial Intelligence, 173:197–412, 2009.

[21] Y. Chen, R. Huang, and W. Zhang. Fast Planning by Search in Domain Transition Graphs.
In Proceedings of AAAI Conference on Artificial Intelligence, 2008.

[22] M. Cirillo, L. Karlsson, and A. Saffiotti. Human-aware task planning: an application to
mobile robots. ACM Transactions on Intelligent Systems and Technology, 1(2), 2010.

[23] A. Coles, M. Fox, K. Halsey, D. Long, and A. Smith. Managing concurrency in temporal
planning using planner-scheduler interaction. Artificial Intelligence, 173:1–44, 2008.

[24] A. Coles, M. Fox, D. Long, and A. Smith. Planning with problems requiring temporal coor-
dination. In Proceedings of AAAI Conference on Artificial Intelligence, 2008.

[25] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on the Theory of Computing, pages 151–158, 1971.

[26] W. Cushing, S. Kambhampati, Mausam, and D. S. Weld. When is temporal planning really
temporal? In Proceedings of International Joint Conference on Artificial Intelligence, 2007.

[27] W. Cushing, S. Kambhampati, K. Talamadupula, D. S. Weld, and Mausam. Evaluating tem-
poral planning domains. In Proceedings of International Conference on Automated Planning
and Scheduling, 2007.

[28] S. Darras, G. Dequen, L. Devendeville, and C. Li. On inconsistent clause-subsets for Max-
SAT solving. In Proceedings of International Joint Conference on Principles and practice of
constraint programming, pages 225–240, 2007.

[29] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
munications of the ACM, 5:394–397, 1962.

[30] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in nonmonotonic
logic programs. In Proceedings of the Fourth European Conference on Planning, pages 169–
181. Springer-Verlag, 1997.

[31] M. Do and S. Kambhampati. SAPA: A Multi-objective Metric Temporal Planner. Journal of
Artificial Intelligence Research, 20:155–194, 2003.

123

[32] M. B. Do, W. Ruml, and R. Zhou. On-line planning and scheduling: An application to con-
trolling modular printers. In Proceedings of International Conference on Automated Planning
and Scheduling, 2008.

[33] S. Edelkamp and M. Helmert. MIPS: The model-checking integrated planning system. AI
Magazine, 22, 2001.

[34] N. Een and N. Sörensson. An Extensible SAT-solver, 2003.

[35] M. Ernst, T. Millstein, and D. Weld. Automatic SAT-compilation of planning problems. In
Proceedings of International Joint Conference on Artificial Intelligence, 1997.

[36] K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressivity. In Proceed-
ings of AAAI Conference on Artificial Intelligence, 1995.

[37] The Fifth Max-SAT Evaluation. http://maxsat.ia.udl.cat/rules/, 2010.

[38] P. Eyerich, R. Mattmüller, and G. Röger. Using the context-enhanced additive heuristic for
temporal and numeric planning. In Proceedings of International Conference on Automated
Planning and Scheduling, 2009.

[39] M. Fox and D. Long. The automatic inference of state invariants in TIM. Journal of Artificial
Intelligence Research, 9:367421, 1998.

[40] M. Fox and D. Long. The detection and exploitation of symmetry in planning problems. In
Proceedings of International Joint Conference on Artificial Intelligence, 1999.

[41] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

[42] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial Intelligence, 58:21–
70, 1992.

[43] Z. Fu and S. Malik. On solving the partial Max-SAT problem. In Proceedings of Theory and
Applications of Satisfiability Testing, pages 252–265, 2006.

[44] Z. Fu and S. Malik. Solving the minimum-cost satisfiability problem using SAT based
branch-and-bound search. In Proceedings of International Joint Conference on Computer-
aided design, pages 852–859, 2006.

[45] M. Gavanelli. The log-support encoding of CSP into SAT. In Proceedings of Principles and
Practice of Constraint Programming, pages 815–822, 2007.

[46] A. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning with numerical fluents
and multi-criteria plan quality. Artificial Intelligence, 172(8-9):899–944, 2008.

[47] A. Gerevini, A. Saetti, and I. Serina. Temporal planning with problems requiring concur-
rency through action graphs and local search. Proceedings of International Conference on
Automated Planning and Scheduling, 2010.

124

[48] A. Gerevini and I. Serina. LPG: a planner based on local search for planning graphs with
action costs. In Proc. of the Sixth Int. Conf. on AI Planning and Scheduling, pages 12–22.
Morgan Kaufman, 2002.

[49] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning. Morgan Kaufmann, 2004.

[50] E. Giunchiglia and M. Maratea. Planning as satisfiability with preferences. In Proceedings
of AAAI Conference on Artificial Intelligence, 2007.

[51] P. Hansen and B. Jaumard. Algorithm for the maximum satisfiability problem. Computing,
44:279–303, 1990.

[52] P. Haslum. Reducing accidental complexity in planning problems. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence, 2007.

[53] P. Haslum and H. Geffner. Heuristic planning with time and resources. In Proc. IJCAI-01
Workshop on Planning with Resources, 2001.

[54] M. Helmert. The Fast Downward planning system. Journal of Artificial Intelligence Re-
search, 26:191–246, 2006.

[55] M. Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial In-
telligence, pages 503–535, 2008.

[56] M. Helmert and C. Domshlak. Landmarks, critical paths and abstractions: What’s the dif-
ference anyway? In Proceedings of International Conference on Automated Planning and
Scheduling, 2009.

[57] M. Helmert, P. Haslum, and J. Hoffmann. Flexible abstraction heuristics for optimal se-
quential planning. In Proceedings of International Conference on Automated Planning and
Scheduling, 2007.

[58] M. Helmert, P. Haslum, and J. Hoffmann. Explicit-State Abstraction: A New Method for
Generating Heuristic Functions. In Proceedings of AAAI Conference on Artificial Intelli-
gence, 2008.

[59] M. Helmert and G. Röger. How Good is Almost Perfect? In Proceedings of AAAI Conference
on Artificial Intelligence, 2008.

[60] J. Hoffman. The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research, 20:291–341, 2003.

[61] J. Hoffmann, H. Kautz, C. Gomes, and B. Selman. SAT encodings of state-space reachability
problems in numeric domains. In Proceedings of International Joint Conference on Artificial
Intelligence, 2007.

[62] J. Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

[63] Y. Hu. Temporally-expressive planning as constraint satisfaction problems. In Proceedings
of International Conference on Automated Planning and Scheduling, 2007.

125

[64] R. Huang, Y. Chen, and W. Zhang. An Optimal Temporally Expressive Planner: Initial
Results and Application to P2P Network Optimization. In Proceedings of International Con-
ference on Automated Planning and Scheduling, 2009.

[65] R. Huang, Y. Chen, and W. Zhang. A novel transition based encoding scheme for planning
as satisfiability. In Proceedings of AAAI Conference on Artificial Intelligence, 2010.

[66] P. Jonsson and C. Bäckström. State-variable planning under structural restrictions: Algo-
rithms and complexity. Artificial Intelligence, 100(1-2):125–176, 1998.

[67] R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. 1972.

[68] M. Katz and C. Domshlak. Optimal admissible composition of abstraction heuristics. Artifi-
cial Intelligence, 174:767–798, 2010.

[69] H. Kautz. SATPLAN04: Planning as Satisfiability. In Abstracts IPC4, 2004.

[70] H. Kautz, D. McAllester, and B. Selman. Encoding plans in propositional logic. In Proceed-
ings of Principles and Knowledge Representation and Reasoning, 1997.

[71] H. Kautz and B. Selman. Planning as satisfiability. In Proceedings of European Conference
on Artificial Intelligence, 1992.

[72] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and stochastic
search. In Proceedings of AAAI Conference on Artificial Intelligence, 1996.

[73] H. Kautz, B. Selman, and J. Hoffmann. Unifying sat-based and graph-based planning. In
Proceedings of International Joint Conference on Artificial Intelligence, 1999.

[74] H. Kautz, B. Selman, and J. Hoffmann. SatPlan: Planning as Satisfiability. In Abstracts
IPC5, 2006.

[75] A. Kishimoto, A. Fukunaga, and A. Botea. Scalable, Parallel Best-First Search for Optimal
Sequential Planning. In Proceedings of International Conference on Automated Planning
and Scheduling, 2009.

[76] C. A. Knoblock. Automatically generating abstractions for planning. Artificial Intelligence,
68:243–302, 1994.

[77] J. Koehler and J. Hoffmann. On reasonable and forced goal orderings and their use in an
agenda-driven planning algorithm. Journal of Artificial Intelligence Research, 12:338–386,
2000.

[78] A. Koller and M. Stone. Sentence Generation as a Planning Problem. In Annual Meeting of
the Association for Computational Linguistics, 2007.

[79] J. Kvarnström and M. Magnusson. TALplanner in IPC-2002: Extensions and control rules.
Journal of Artificial Intelligence Research, 20:343–377, 2003.

126

[80] J. Larrosa, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell. Branch and bound
for boolean optimization and the generation of optimality certificates. In Proceedings of
International Conference on Theory and Applications of Satisfiability Testing, pages 453–
466. Springer-Verlag, 2009.

[81] C. Li, F. Manya, N. Mohamedou, and J. Planes. Exploiting cycle structures in Max-SAT.
In Proceedings of 12th International Joint Conference on the Theory and Applications of
Satisfiability Testing, pages 467–480, 2009.

[82] C. Li, F. Manya, and J. Planes. New inference rules for Max-SAT. Journal of Artificial
Intelligence Research, 30:321–359, 2007.

[83] X. Y. Li. Optimization algorithms for the minimum-cost satisfiability problem. PhD Thesis,
Department of Computer Science, North Carolina State University, North Carolina, 2004.

[84] D. Long and M. Fox. Exploiting a graphplan framework in temporal planning. In Proceedings
of International Conference on Automated Planning and Scheduling, 2003.

[85] R. Mattmüller and J. Rintanen. Planning for temporally extended goals as propositional
satisfiability. In Proceedings of International Joint Conference on Artificial Intelligence,
2007.

[86] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL:the planning domain definition language. Technical Report TR-98-003,
Yale University, 1998.

[87] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining com-
putational complexity from characteristic ‘phase transitions’. Nature, 400(8):133–137, 1999.

[88] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. In 39th Design Automation Conference, 2001.

[89] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of Design Automation Conference, 2001.

[90] J. L. Myers and A. D. Well. Research Design and Statistical Analysis. Routledge, 2nd edition,
2003.

[91] H. Nabeshima, T. Soh, K. Inoue, and K. Iwanuma. Lemma reusing for SAT based planning
and scheduling. In Proceedings of International Conference on Automated Planning and
Scheduling, 2006.

[92] X. Nguyen and S. Kambhampati. Extracting effective and admissible heuristics from the
planning graph. In Proceedings of AAAI Conference on Artificial Intelligence, 2000.

[93] X. Nguyen, S. Kambhampati, and R. S. Nigenda. Planning graph as the basis for deriving
heuristics for plan synthesis by state space and csp search. In Artificial Intelligence, volume
135(12), pages 73–123, 2002.

[94] J. Penberthy and D. Weld. Temporal planning with continuous change. In Proceedings of
AAAI Conference on Artificial Intelligence, pages 1010–1015, 1994.

127

[95] D. Pham, J. Thornton, and A. Sattar. Modelling and solving temporal reasoning as proposi-
tional satisfiability. Artificial Intelligence, 172:1752–1782, 2008.

[96] K. Pipatsrisawat and A. Darwiche. Clone: solving weighted Max-SAT in a reduced search
space. In Proceedings of the 20th Australian joint conference on Advances in artificial intel-
ligence, pages 223–233, 2007.

[97] J. Porteous, M. Cavazza, and F. Charles. Applying planning to interactive storytelling: Narra-
tive control using state constraints. ACM Transactions on Intelligent Systems and Technology,
1(2):111–130, 2010.

[98] J. Rao and X. Su. A survey of automated web service composition methods. In Proceedings
of the First International Workshop on Semantic Web Services and Web Process Composition,
pages 43–54, 2004.

[99] K. Ray and M. L. Ginsberg. The complexity of optimal planning and a more efficient method
for finding solutions. In Proceedings of International Conference on Automated Planning
and Scheduling, 2008.

[100] I. Refanidis and N. Yorke-Smith. A constraint based approach to scheduling an individual’s
activites. ACM Transactions on Intelligent Systems and Technology, 1(2), 2010.

[101] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, 2001.

[102] S. Richter, M. Helmert, and M. Westphal. Landmarks Revisited. In Proceedings of AAAI
Conference on Artificial Intelligence, 2008.

[103] J. Rintanen. Symmetry Reduction for SAT Representations of Transition System. In Pro-
ceedings of International Conference on Automated Planning and Scheduling, 2003.

[104] J. Rintanen. Biclique-based representations of binary constraints for making SAT planning
applicable to larger problems. In Proceedings of European Conference on Artificial Intelli-
gence, 2006.

[105] J. Rintanen. Complexity of concurrent temporal planning. In Proceedings of AAAI Confer-
ence on Artificial Intelligence, 2007.

[106] J. Rintanen. Complexity of concurrent temporal planning. In Proceedings of International
Conference on Automated Planning and Scheduling, 2007.

[107] J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: parallel plans and algo-
rithms for plan search. Artificial Intelligence, 12-13:1031–1080, 2006.

[108] N. Robinson, C. Gretton, D. Pham, and A. Sattar. A compact and efficient sat encoding for
planning. In Proceedings of International Conference on Automated Planning and Schedul-
ing, 2008.

[109] N. Robinson, C. Gretton, D. Pham, and A. Sattar. SAT-Based Parallel Planning Using a
Split Representation of Actions. In Proceedings of International Conference on Automated
Planning and Scheduling, 2009.

128

[110] N. Robinson, C. Gretton, D. N. Pham, and A. Sattar. Cost-optimal planning using weighted
MaxSAT. In ICAPS workshop on Constraint Satisfaction Techniques for Planning and
Scheduling Problems, 2010.

[111] A. Rudenko. Automated Planning for Open Network Architectures. PhD thesis, UCLA, 2002.

[112] W. Ruml, M. B. Do, and M. P. J. Fromherz. On-line planning and scheduling for high-
speed manufacturing. In Proceedings of International Conference on Automated Planning
and Scheduling, 2005.

[113] SAT4J solver. http://www.sat4j.org/, 2004.

[114] B. Selman, H. Kautz, and D. McAllester. Ten Challenges in Propositional Reasoning and
Search. In Proceedings of International Joint Conference on Artificial Intelligence, 1997.

[115] J. Shin and E. Davis. Continuous time in a SAT-based planner. In Proceedings of AAAI
Conference on Artificial Intelligence, 2004.

[116] A. Sideris and Y. Dimopoulos. Constraint propagation in propositional planning. In Proceed-
ings of International Conference on Automated Planning and Scheduling, 2010.

[117] D. Smith. The case for durative actions: A commentary on PDDL2.1. Journal of Artificial
Intelligence Research, 20:149–154, 2003.

[118] D. Smith and D. Weld. Temporal planning with mutual exclusion reasoning. In Proceedings
of International Joint Conference on Artificial Intelligence, 1999.

[119] M. Soos, K. Nohl, and C. Castelluccia. Extending sat solvers to cryptographic problems. In
International Conference on Theory and Applications of Satisfiability Testing, 2009.

[120] K. Talamadupula, J. Benten, S. Kambhampati, P. Schermerhorn, and M. Scheutz. Planning
for human-robot teaming in open worlds. ACM Transactions on Intelligent Systems and
Technology, 1(2), 2010.

[121] The 5th International Planning Competition. http://zeus.ing.unibs.it/ipc-5/, 2006.

[122] The 6th International Planning Competition. http://ipc.informatik.uni-freiburg.de/homepage,
2008.

[123] The Fifth International Planning Competition. http://zeus.ing.unibs.it/ipc-5/, 2006.

[124] The Fourth International Planning Competition. http://ls5-www.cs.uni-
dortmund.de/∼edelkamp/ipc-4/, 2004.

[125] The Fourth Max-SAT Evaluation. http://maxsat.ia.udl.cat/09/, 2009.

[126] The Sixth International Planning Competition. http://ipc.informatik.uni-freiburg.de/, 2008.

[127] The Third International Planning Competition. http://planning.cis.strath.ac.uk/competition/,
2002.

129

[128] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based
on constraint programming. Artificial Intelligence, 170:98–335, 2006.

[129] B. W. Wah and Y. Chen. Constraint partitioning in penalty formulations for solving temporal
planning problems. Artificial Intelligence, 170:187–231, 2006.

[130] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceedings
of International Joint Conference on Artificial Intelligence, 2003.

[131] Z. Xing, Y. Chen, and W. Zhang. MaxPlan: Optimal Planning by Decomposed Satisfiability
and Backward Reduction. In 5th International Planning Competition Booklet, International
Conference on Automated Planning and Scheduling, 2006.

[132] Z. Xing and W. Zhang. Maxsolver: An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence, 164:47–80, 2005.

[133] H. L. S. Younes and R. G. Simmons. Vhpop: Versatile heuristic partial order planner. Journal
of Artificial Intelligence Research, 20:405–430, 2003.

[134] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proceedings of
the 14th Internatioal conference on computer-aided verification, volume 2404, pages 17–36.
Springer, 2002.

130

Vita

Ruoyun Huang

Date of Birth June 29, 1982

Place of Birth Yixing, China

Degrees Ph.D. Washington University in St. Louis, August 2011
B.S. Donghua University, Computer Science, May 2003

Publications R. Huang, Y. Chen, and W. Zhang, “A Novel Transition Based Encoding
Scheme for Planning as Satisfiability”, Proceedings of AAAI Confer-
ence on AI (AAAI’10), 2010. Outstanding Paper Award

Y. Chen, R. Huang, Z. Xing, and W. Zhang, “Long-Distance Mutual
Exclusion for Planning”, Artificial Intelligence Journal, Volume 173,
Issue 2, Pages 197-412, 2009.

R. Huang, Y. Chen, and W. Zhang, “An Optimal Temporally Expressive
Planner: Initial Results and Application to P2P Network Optimization”,
Proceedings of International Conference on Automated Planning and
Scheduling (ICAPS’09), 2009.

Y. Chen, R. Huang, and W. Zhang, “Fast Planning by Search in Domain
Transition Graphs”, Proceedings of AAAI Conference on AI (AAAI’08),
2008.

C. Hsu, B. Wah, R. Huang, and Y. Chen, “Constraint Partitioning for
Solving Planning Problems with Trajectory Constraints and Goal Prefer-
ences”, Proceedings of International Joint Conference on AI (IJCAI’07),
2007.

August 2011

131

Automated Planning Formulations, Huang, Ph.D. 2011

	Efficient Automated Planning with New Formulations
	Recommended Citation

	tmp.1333720445.pdf.fRMzm

