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ABSTRACT OF THE DISSERTATION

Essays on Firm Strategy and Market Outcomes

by

Brady Vaughan

Doctor of Philosophy in Economics

Washington University in St. Louis, 2015

Professor Marcus Berliant, Chair

In the �rst chapter of my dissertation, Aleksandr Yankelevich and I examine the e�ects

of price matching guarantees on duopoly markets. We �nd that a commitment to price-

match raises prices by altering consumer search behavior in three ways. First, price-matching

diminishes �rms' incentives to lower prices to attract consumers who have no search costs.

Second, for consumers with positive search costs, price-matching lowers the marginal ben-

e�t of search, inducing them to accept higher prices. Finally, price-matching can lead to

asymmetric equilibria where one �rm runs fewer sales and both �rms tend to o�er smaller

discounts than in a symmetric equilibrium. These price increases grow with the proportion

of consumers who invoke price-matching guarantees and also in the level of equilibrium

asymmetry.

The second chapter studies the e�ect of the complexity of consumers' preferences over a

product on that product's market structure. I relate complexity of preferences to the num-

ber of dimensions of a Lancasterian characteristic space. Using a novel higher dimensional

Hotelling model, I �nd that a �xed number of �rms are likely to be better o� competing

over products with more complex preferences. Although �rms face more intense compe-

tition in higher dimensional markets, the greater product di�erentiation a�orded to them

allows them to charge higher prices and earn higher pro�ts. This result provides a clear
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theoretical foundation for the observation that goods associated with more complex pref-

erences typically display a greater variety of products sold. Additionally, I show that the

behavior of more than two �rms competing in more than one dimension di�ers wildly from

that of �rms typically studied in models of spatial competition.

The �nal chapter will examine �rms' motives for implementing grandfather clauses that

allow certain consumers to continue to access a service at a favorable, but no longer avail-

able price. Grandfather clauses permit �rms to price discriminate between early adopters

and new consumers in exchange for forfeiting the right to optimally set prices for early

adopters. They may be used to thwart competition following a structural change, to re-

spond to cost shocks, or to retain customers who consume another good from a multi-

product �rm. We analyze under what conditions �rms might choose to o�er grandfather

clauses and what e�ects they have on welfare.
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Chapter 1

Introduction

In my dissertation I seek to extend our knowledge of the ways that �rms compete with one

another in the marketplace. Particularly, I explore a variety of practices other than sim-

ply altering the price or quality of their product that �rms use to gain an edge over their

competition. In much of the economics literature it is supposed that �rms can only gain

long term advantage by selling either a superior product or a product they can produce at

reduced cost. However, in equilibrium we observe that �rms use a huge variety of special

promotions, limited time o�ers, and other sorts of manipulation to gain advantage. Due to

their persistence in equilibrium, it must be supposed that many of these marketing prac-

tices do confer advantages. My work seeks to understand the channels through which these

advantages may be gained and whether or not the practices should be considered poten-

tially harmful.

Each chapter of my dissertation focuses on a di�erent strategy employed by �rms. The

second studies price matching guarantees, the third studies multi-axis product di�eren-

tiation, and the last studies the use of grandfather clauses. The work is theoretical, and

as such is mostly concerned with developing conceptual frameworks in which these phe-

nomenon can be studied. Accordingly almost all of the techniques employed can be found
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in calculus or real analysis. More information on these works' relation to the literature,

scope, and results can be found in the introductory section of each of the chapters.

The second chapter of my dissertation is coauthored with Aleksandr Yankelevich. While

he contributed the majority of the work concerning the construction of the model and the

proof of the main results, I contributed a thorough simulation of the environment over a

restricted parameter space which is used extensively to explain the environment to the

reader as well as forming the meat of section 2.6. Additionally, I helped motivate the model

by referencing the concept of "deal-prone" consumers. Finally, I did signi�cant work in the

writing and editing of the paper.
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Chapter 2

Price-Matching Guarantees

2.1 Introduction

Price-matching guarantees can be found in a variety of markets, including consumer elec-

tronics, o�ce supplies, clothing, groceries and hotels. These guarantees typically come in

the form of an o�er by a �rm to lower its price to that of a cheaper rival selling an iden-

tical good for consumers who can o�er proof of the rival's price. Firms inform consumers

about their price-matching guarantees in television advertisements, using print ads, and

over the Internet. For instance, in one commercial, Walmart tells viewers that it will match

rival prices eighteen times within the span of thirty seconds to remind consumers that its

every day low prices are �Backed by [its] Ad Match Guarantee.�1 In a holiday ad, Toys �R�

Us asks viewers why they would shop anywhere else for toys when �the highest concentra-

tion of the hottest toys is at Toys �R� Us, all with price-match guarantee.�2 Because of

such marketing e�orts, consumers who engage in repeated interactions with price-matching

1See �Walmart Match It Commercial.� youtube.com. May 07, 2011. Retrieved February 28, 2015.
〈http://www.youtube.com/watch?v=CIXOU7DQdS8〉.

2See �Toys �R� Us�Holiday 2012 Commercial�`Toy Tracker Price Match'.� youtube.com. November 04,
2012. Retrieved February 28, 2015.
〈http://www.youtube.com/watch?feature=fvwp&v=3mQ0xmzeSfI&NR=1〉.
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brands, come to expect these guarantees. The expectation of a price-matching guarantee

should in�uence the way a consumer shops, which in turn a�ects �rm pricing. It is already

well known that when consumers have additional information about �rms, their shopping

behavior can change.3 Yet, in spite of the wealth of economics and marketing literature

studying price-matching guarantees, the exploration of their e�ect on consumers' shopping

incentives remains limited.

Economists initially viewed price-matching guarantees as being anti-competitive. This idea

was �rst raised by Hay (1982) and then Salop (1986), who suggest that these guarantees

allow �rms to immediately retaliate against rival price cuts without actually listing lower

prices or expending resources to learn about competitor prices. This can lead to tacit col-

lusion in a non-cooperative equilibrium by removing �rms' incentives to cut prices. Sub-

sequently, this view was formalized in multiple settings: Bertrand oligopoly (Doyle 1988),

di�erentiated products Stackelberg duopoly (Belton 1987), Hotelling duopoly (Zhang 1995),

and di�erentiated products Bertrand duopoly where consumers incur hassle costs of apply-

ing price-matching guarantees (Hviid and Sha�er 1999).4 Such models leave no room for

consumers to make shopping decisions. Tacit collusion occurs because �rms respond to

each other, not to their customers.

An alternate line of reasoning posits that price-matching guarantees allow �rms to price

discriminate between consumers with limited price information and those who are informed

about multiple price quotes. For example, Png and Hirshleifer (1987) show that price-

matching guarantees allow �rms to keep list prices high to extract welfare from uninformed

consumers, while attracting informed consumers by o�ering to price-match the rival �rm

when it o�ers a lower price. Models with heterogeneous consumers have also been used to

3See for instance, Robert and Stahl (1993) and Janssen and Non (2008).
4More recently, Hviid and Sha�er (2010) have shown that price-matching guarantees can complement

the price-increasing e�ect of a most-favored-customer clause when both are o�ered unilaterally by a single
�rm.
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suggest that price-matching guarantees can lead to pro-competitive e�ects. For instance,

Corts (1996) and Chen, Narasimhan, and Zhang (2001) show that when �rms use price-

matching guarantees to price discriminate, some or all consumers may end up paying lower

prices and consumer welfare can increase. Using surveys of potential consumers, Jain and

Srivastava (2000) and Srivastava and Lurie (2001) argue that consumers perceive stores

that o�er price-matching guarantees to have lower prices. Moorthy and Winter (2006)

and Moorthy and Zhang (2006) build on this argument by constructing models of price-

matching with respectively, horizontal and vertical �rm di�erentiation, where consumers

consider their location or service preferences when choosing where to purchase and con-

sumers who are uninformed about prices use price-matching as a signal that in�uences

their price expectation for a particular �rm. They show that when the di�erence in pro-

duction costs between the two �rms is su�ciently large and the uninformed population

is su�ciently small, price-matching guarantees can be used to signal a low price and con-

sumer welfare improves for a range of parameters.

While each of the aforementioned models has shown that price-matching can alter �rm

pricing behavior, as Moorthy and Winter point out, and as we explore in detail in this ar-

ticle, another allocative e�ect of price-matching is its impact on consumers' incentive to

invest in information about prices (i.e., to price shop). Price-matching models of tacit col-

lusion preclude this e�ect by assuming that all consumers are perfectly informed about

�rm pricing decisions. Consequently, in these models, either price-matching leads to a

symmetric monopolistic outcome, or in order to avoid the monopoly result, the authors

assume that products are somehow di�erentiated. However, �rms generally will not honor

price-match guarantees on products that are not identical.5 Price-matching models based

5An alternative interpretation casts product di�erentiation in terms of di�erences in �rm location. But
this interpretation is at odds with the idea of perfect price information unless all consumers can travel
freely from store to store. Although this is conceivable in an on-line retail environment, price-matching
guarantees often stipulate that on-line prices will not be matched.
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on price discrimination assume that consumers are heterogeneous with respect to the amount

of price information that they possess. However, di�erences in price information are exoge-

nously imposed and consumers may be assumed to act in a way that is in contrast to what

they would do were they allowed to engage in optimal shopping behavior.

We depart from the earlier literature by endogenizing the incentive to acquire price infor-

mation and allowing consumers to engage in optimal price search using a duopoly version

of Stahl's 1989 model of sequential consumer search in which �rms �rst have an option

to o�er a price-matching guarantee before setting prices for a homogeneous good. There

are two types of consumers in the market: those who face no opportunity cost of search-

ing (referred to as shoppers) and those who do (non-shoppers). In Stahl-type models, it

is well established that consumers follow a reservation price rule�continue searching only

if the last price observed is greater than an endogenously determined reservation price�

while �rms randomize over lower prices to attract shoppers and over higher prices to real-

ize greater pro�ts from non-shoppers.

In this framework, we �nd that price-matching guarantees bring about a number of price-

increasing changes in consumer search behavior. First, because shoppers freely observe

every price, in Stahl's original model, the �rm with the lowest listed price captures all of

them. However, when consumers know that �rms price-match, some shoppers can use a

price-matching guarantee to obtain the lowest price at a �rm listing a higher price. This

option diminishes �rms' incentive to lower prices because the lowest listed price no longer

guarantees a �rm will capture all shoppers. Recognizing this price-increasing e�ect, non-

shoppers anticipate higher prices in �rms they have not sampled. Hence, a second price-

increasing e�ect arises from non-shoppers' willingness to pay a higher maximal price at

the �rm where they begin their search rather than pay the search cost to sample another

�rm's price.

As in Stahl's model, in equilibrium only shoppers sample the prices of both �rms. Conse-

6



quently, consumers who use price-matching guarantees (the shoppers) never expect them

to yield a lower price. This stands in particular contrast to the Chen, Narasimhan, and

Zhang (2001) model of consumer heterogeneity and competitive price-matching guaran-

tees, where price-matching alters prices via information gains on the part of previously

uninformed consumers, who may use the guarantees to secure lower prices. The fact that

optimal searchers cannot realize such gains in our model seems to us rather sensible: price-

matching can be a time consuming activity which only price conscious consumers with a

lower opportunity cost of using their time should be expected to engage in. Moreover, be-

cause search is endogenous in our model, price-matching guarantees not only have the po-

tential to diminish �rm incentives to lower prices, but also to inhibit search activity in a

way that raises prices even further.

In a recent article, Janssen and Parakhonyak (2013) also found that price-matching guar-

antees raise prices through their e�ects on consumer search. However, there are a num-

ber of important di�erences between this article and Janssen and Parakhonyak (2013), the

foremost of which is that whereas we analyze a setting where price-matching policies are

advertised by �rms and invoked by consumers prior to purchase, Janssen and Parakho-

nyak explore the impact of posterior price-matching in which some consumers can get a

discounted price if after having purchased from a �rm that turns out to o�er a price-match

guarantee, these consumers acquire additional price information (e.g., from friends) that a

di�erent �rm o�ers a lower price.

Unlike in our model (or that of Chen, Narasimhan, and Zhang 2001), Janssen and Parakho-

nyak cannot analyze how �rms such as Walmart or Best Buy, with a reputation for price-

matching, in�uence consumer behavior. Because in the model of Janssen and Parakho-

nyak, consumers do not learn whether or not a �rm o�ers to price-match until they have

sampled its price, price-matching guarantees do not a�ect search order. Moreover, Janssen

and Parakhonyak suppose that price sensitive shoppers, whom we believe are natural can-

7



didates to invoke price-matching guarantees, never use these guarantees. Instead, as in

Chen, Narasimhan, and Zhang (2001), price-changes in Janssen and Parakhonyak (2013)

occur when uninformed consumers react to information gains that crop up because of

price-matching guarantees�though unlike in Chen, Narasimhan, and Zhang (2001), con-

sumers are �punished� with this additional information.

We �nd that the more informed consumers (shoppers) invoke price-matching guarantees,

the more powerful the price-increasing e�ects of price-matching. In particular, we study

what happens when a proportion of shoppers chooses not to invoke guarantees, possibly

as a result of hassle costs of doing so. As this proportion decreases in number, average

prices increase, and if both �rms o�er price-matching guarantees, prices can reach the

monopoly level in the limit where all shoppers invoke the guarantees. This result lends

theoretical support to the empirical �nding by Dugar and Sorensen (2006), that the mar-

ket price varies inversely with the number of positive hassle cost buyers. Thus, as Dugar

and Sorensen point out, �rms that advertise price-match guarantees, but at the same time

make them di�cult to invoke, may be using them primarily to price discriminate among

consumers rather than to achieve tacit collusion. Conversely, a regulator observing a trend

in ease of use of price-matching guarantees might be concerned that they are being used to

facilitate collusion.6

Finally, an additional �nding in this article is that price-matching guarantees may lead to

a multitude of asymmetric equilibria where otherwise homogeneous �rms have di�erent

pricing strategies. In such equilibria, one �rm sells to more shoppers, whereas the other

plays a pricing strategy that leads it to sell to more non-shoppers. As the disparity in the

proportion of each consumer segment that �rms serve grows, �rm pro�ts increase at the

6Recently, certain brick and mortar businesses have begun matching on-line competitors. For instance,
Toys �R� Us states that it will match Walmart.com, Amazon.com, and other selected online competitors.
Moreover, the increasing use of smartphone technology makes it easier to o�er proof of a rival's lower
price.
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expense of consumers. The higher the proportion of non-shoppers a �rm serves, the more

pro�t it will lose from these �captive� consumers by lowering its price to attract shoppers,

and the less inclined it is to do so. The upward shift in this �rm's price distribution im-

plies that the �rm that focuses on catering to shoppers does not need to lower prices as

much to expect to capture the same proportion of them and its price distribution shifts

upward as well. Hence, the more asymmetry that price-matching entails, the greater the

welfare loss to consumers.

The remainder of this article is organized as follows. Section 2.2 sets up the model and

equilibrium concept. Section 2.3 characterizes consumer search behavior. Section 2.4 solves

for equilibrium when price-matching is imposed exogenously. Section 2.5 characterizes the

complete market equilibrium when shoppers do not direct their search (that is, shoppers'

search path is random). Section 2.6 numerically examines the consequences of asymmetric

equilibria that prevail when shopper search is �directed� (and asymmetric). Section 2.7

concludes. All formal proofs are contained in a Supplemental Appendix.

2.2 Model and Equilibrium

With the exception of the framework for the acquisition of price information, our model-

ing assumptions are standard in the price-matching literature. Two �rms, labeled 1 and

2, sell a homogeneous good. Firms face no capacity constraints and have an identical con-

stant cost of 0 of producing one unit of the good. There is a unit mass of almost identical

consumers with inelastic (unit) demand and valuation v > 0 for the good.

Consumers are a priori uninformed about prices, but they can learn about them through

search. Following Stahl (1989), we assume that a proportion µ ∈ (0, 1) of the consumers

have 0 search cost. These consumers are viewed as having no opportunity cost of time

and are henceforth referred to as shoppers. The remaining 1 − µ consumers, called non-

9



shoppers, pay search cost c ∈ (0, v) for each �rm they visit with the exception of the

�rst.7 Search is sequential with costless revisits. After observing the price at the �rst �rm

for free, consumers decide whether or not to search the next one or to exit the market al-

together. Consumers who have visited both �rms may freely choose the cheapest price ob-

served.8

In a model without price-matching, shoppers freely sample both prices and always buy

from the �rm with the lower listed price, but in a model where �rms publicly announce

o�ers to price-match, after sampling both prices, shoppers might choose to invoke a price-

matching guarantee to purchase the product from a �rm with the higher listed price. A

shopper might, for instance, wish above all to procure the product at the lowest price,

but given the opportunity, to do so at a particular �rm (perhaps because of store brand

preference or favorable store characteristics that are unrelated to the product being pur-

chased). Such a shopper could then �rst sample the competing price and if necessary,

invoke a price-match guarantee at the preferred �rm rather than going back to the com-

petitor. Alternatively, certain shoppers who have ended their shopping trip at the higher-

priced �rm may be deal-prone (e.g., Lichtenstein, Netemeyer, and Burton 1990; DelVecchio

2005), valuing not only the ability to secure the lowest price, but also the opportunity to

purchase a good at a discount o� the listed price. These shoppers strictly prefer the price-

match �deal� to a return trip to the lower priced �rm.9

7The assumption that the �rst visit is free is standard in the literature and we interpret it to mean
that the non-shopper initially believes that he must have the good and treats the cost of the �rst visit as
sunk. Janssen, Moraga-Gonzàlez, and Wildenbeest (2005) analyze a sequential search model with costly
initial visits.

8One way to interpret the search cost is as a cost of �nding out the price in a particular �rm for the
�rst time rather than as the cost of traveling there. Janssen and Parakhonyak (2014) show that when sec-
ond visits are costly in a Stahl oligopoly search model, �rms nevertheless use pricing strategies that are
identical to the perfect recall case.

9A third explanation for invoking price-matching guarantees follows if instead of interpreting shoppers
as having no opportunity cost of time, we treat them as individuals who read sales ads (Varian 1980) or as
users of price-comparison sites (Janssen and Non 2008). In this case, if we think of some shoppers as grav-
itating toward their local �rm unless its competitor o�ers the lower price, then such shoppers could use a
price-matching guarantee to avoid traveling to the non-local �rm. We thank a reader for this suggestion.
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However, in reality, not all shoppers would choose to price-match given the opportunity.

Regardless of how di�erent consumers value their time, some simply do not pay attention

to price-matching announcements,10 whereas others may �nd the act of keeping and track-

ing price ads or the additional other activity needed to procure a price-match in some way

distasteful�or as the literature often terms it, a hassle. Moreover, even if all shoppers ob-

serve price-matching announcements and �nd the application of a price-matching guaran-

tee to be a hassle free activity, some shoppers may be unable to invoke a guarantee due

to the discretion of a store worker who is unwilling to provide the match even though her

employer has announced a price-matching policy.11

In order to account for the possibility that some shoppers would prefer to invoke a price-

matching guarantee at the last store visited while others would prefer to purchase at a

store that lists the lower price, we assume that when the two �rms o�er di�erent prices,

θS ∈ [0, 1] of shoppers face some impediment to using price-matching guarantees (e.g.,

they are unaware that the guarantees are available or �nd price-matching a hassle) and al-

ways purchase from the �rm with the lower listed price instead.12 The remaining 1 − θS

shoppers will invoke a price-matching guarantee at the last �rm they stopped in when one

is available and necessary to obtain the lower price there and purchase from the �rm with

the lower listed price otherwise.13

10It is not uncommon in the advertising literature to assume that some portion of consumers will re-
main unaware of certain attributes of a product or �rm even when they are familiar with the product's
price. For instance, Meurer and Stahl (1994) assume that buyers are aware of the prices of all existing
products, but may not know which product o�ers the best match. Firms may advertise to inform con-
sumers whether the product is a good match, but some consumers remain uninformed in equilibrium.

11For instance, Bloomberg has reported that workers at certain chains known for their price-matching
policies, nevertheless may not execute the policies consistently. See Dudley, R., Rupp, L. �Price Matching
Criticized From Wal-Mart to Toys `R' Us: Retail.� Bloomberg. April 30, 2013. Retrieved February 28,
2014. 〈http://bloom.bg/ZhGPis〉.

12We may, as done in Hviid and Sha�er (1999), treat this impediment as a hassle cost z ≥ 0 of invoking
a price-matching guarantee. However, because no shopper would ever pay z�it does not appear in any
equation�it su�ces to treat θS as a type of tie-breaking rule.

13In principle, when one �rm charges a lower price and its competitor o�ers a price-matching guar-
antee, 1 − θS represents the proportion of shoppers who are indi�erent between these two �rms (the re-
maining θS strictly preferring the �rm charging a lower price due to impediments to price-matching). Our
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When θS = 1 (no shoppers invoke price-matching guarantees), it is easy to show that the

equilibrium outcome reduces to that in Stahl (1989), such that we will generally limit our

analysis to θS < 1. Although we analyze equilibrium when θS = 0 (see Proposition 4),

there is reason to believe that empirically, θS is higher.14 Therefore, throughout our analy-

sis, we often focus on equilibria where θS ∈ (0, 1).

In order to capture the idea that a �rm may develop a reputation for price-matching, we

suppose that the game proceeds in three stages, as follows:

1. In stage one, �rms simultaneously decide whether to adopt a price-matching guaran-

tee. A �rm that has adopted such a guarantee pre-commits itself to sell the good at

the minimum listed price to consumers who have observed both prices and are hence

able to invoke the guarantee. A �rm that has not committed to price-match at this

stage does not o�er customers a price-matching guarantee in the price search stage.15

2. In the second stage, each �rm's price-matching decision is known to all agents in the

model. Firms then simultaneously choose prices, taking into consideration their be-

liefs about rival �rm strategies as well as consumer search behavior. A pricing strat-

tie-breaking rule presumes that such shoppers purchase from the last �rm they visit as long as they can
obtain the lower price there. One may rationalize this assumption by supposing that θS subsumes not only
those shoppers who face an impediment to invoking a price-matching guarantee, but also indi�erent shop-
pers who always purchase from the �rm listing the lower price. Alternatively, we could assume that 1− θS
shoppers obtain some additional �deal value� from invoking a price-matching guarantee. Doing so would
require certain modi�cations to our pro�t equations that would nevertheless preserve all of our �ndings.

14To our knowledge, Moorthy and Winter (2006) provide the only published data measuring the fre-
quency with which price-matching guarantees are invoked in a retail setting. They �nd that redemption
rates rarely surpass 10 percent in their retailer survey and average 5.8 percent, with a median of 5 per-
cent. In contrast, recent empirical studies which seek to estimate search costs �nd that the percentage of
consumers who search more than one �rm is signi�cantly higher than 10 percent. For instance, Moraga-
Gonzàlez and Wildenbeest (2008) estimate that between 70 and 78 percent of consumers in the market
for personal computer memory chips search more than once. De los Santos (2012) �nds that 24 percent of
searches leading to a transaction in the on-line book market visit more than one bookstore. This suggests
that not all shoppers would invoke price-match guarantees when they could.

15In practice, some �rms may o�er price-matching guarantees without advertising an intent to price-
match, in which case some consumers may unexpectedly happen upon the guarantees during the search
process. Such �rms are outside the scope of this article. Janssen and Parakhonyak (2013) study �rms that
make their price-matching decisions simultaneously with their pricing decisions, exclusively focusing on
price-matching �rms that don't announce their intent to price-match.
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egy consists of a price distribution Fi, where Fi (p) represents the probability that

�rm i o�ers a price no higher than p. The lower bound and upper bound of the sup-

port of the distribution for �rm i are denoted as p
i
and p̄i, respectively.

3. After prices have been realized, consumers choose optimal search strategies given

their beliefs about each Fi.

Throughout, parameters v, c, µ, and θS, as well as the rationality of all agents in the model

are commonly known.

The equilibrium concept used is Sequential Equilibrium. Intuitively, we can think of con-

sumers who observe an o�-equilibrium price at the �rst �rm they sample as treating such

deviations as mistakes when forming beliefs about the remaining �rm's strategy. That is,

consumers believe that unsampled �rms play their equilibrium strategies at all information

sets.

2.3 Consumer Search Behavior

Shoppers freely search both �rms before making their purchase decision. For non-shoppers,

it is well known that in models such as the one we have set up, the optimal search rule is

to sample �rms in ascending order of magnitude of the reservation price associated with

searching each �rm, with equal reservation prices implying indi�erence (this is known

as Weitzman's 1979 Pandora's Rule). Moreover, the optimal stopping rule is for a non-

shopper who has freely observed the price at �rm j to continue search if and only if the

observed price is higher than a reservation price, ri, which makes him indi�erent between

searching �rm i and stopping. This reservation price is then de�ned as the solution to16∫ ri

p
i

(ri − p)dFi(p) =

∫ ri

p
i

Fi(p)dp = c (2.1)

16The �rst equality follows from integration by parts as long as there is no mass at p
i
, which according

to Proposition 1 below, is always the case.
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Note that reservation price ri corresponds to non-shoppers who begin their search at �rm

j and vice versa because non-shoppers who begin at �rm j must decide whether or not

to search �rm i based on the price they observed at �rm j and their beliefs about �rm i's

pricing strategy.

Suppose that r1 = r2 in equilibrium�that is, non-shoppers are indi�erent regarding the

search order. If both �rms choose the same action in the �rst stage�both match, or nei-

ther does�in the absence of additional a priori information about the �rms, it is natural

to suppose that the initial search would be random and that half of each type of consumer

would visit each �rm �rst. However, if one �rm matches while the other does not and all

consumers randomize their �rst search, as will be seen in Section 2.4, �rms will set prices

such that non-shoppers would prefer to search the non-matching �rm �rst, a contradiction.

Therefore, indi�erence requires some consumers to place greater probability on sampling

the non-matching �rm in equilibrium. Moreover, even if both �rms choose the same �rst

stage action, equilibria where heterogeneous consumers who are indi�erent sample the two

�rms with di�erent probabilities may exist (such as where one �rm ends up selling to more

shoppers and the other to more non-shoppers). To account for such asymmetries, we sup-

pose that in equilibrium, shoppers and non-shoppers search �rm 1 with respective proba-

bilities βS and βN , where βS, βN : B → [0, 1] and where B = [0, v] × (0, 1) × [0, 1] is the

Cartesian product of the intervals that contain parameters c, µ, and θS. For concision, go-

ing forward, we omit the arguments on βS and βN . We note that in an equilibrium where

r1 6= r2, so that non-shoppers strictly prefer to begin search at a particular �rm, βN equals

0 or 1.

Because shoppers will obtain the lowest price regardless of where they begin their search,

to add structure to our model, in a number of propositions below we focus on equilibria

where shoppers' search path is random (βS = 1/2). Moreover, from Propositions 1 to 6,

we focus on equilibria where r1 = r2 (non-shoppers are indi�erent between which �rm to
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sample �rst, though the search path is not necessarily random), whereas in Proposition 7

we characterize equilibria where r1 6= r2. In Section 2.6 we examine equilibria where βS 6=

1/2.

2.4 Firm Pricing Strategies

Working backwards, in this section, we derive equilibria in the four possible subgames that

follow �rms' price-matching decisions: the subgame where neither �rm price-matches,

the subgame where both �rms price-match, and the two subgames where only one �rm

matches. In Section 2.5, we compare the outcomes that prevail in each of the pricing sub-

games to determine �rms' optimal price-matching policies.

Proposition 1 below states that in general, �rms do not play pure pricing strategies in

equilibrium.17 It also places limitations on the way that �rms may price in equilibrium,

and consequently on the way that consumers search. It tells us that regardless of �rms'

price-matching decisions, �rms will generally not o�er a price higher than the largest pos-

sible price of their competitors, nor a price high enough to induce non-shoppers to search

more than one �rm. The proof, which borrows heavily from standard mass shifting argu-

ments found in Narasimhan (1988), Stahl (1989) and Janssen and Non (2008), is highly

involved. Therefore, in the Supplemental Appendix, we provide a sketch of the intuition

that references these articles in addition to a complete proof.18

Proposition 1. Suppose that all consumers are indi�erent regarding which �rm to sample

�rst and that in the event that both �rms o�er price-matching guarantees, θS 6= 0. Then

in equilibrium, �rms play mixed pricing strategies over the same supports. The supports do

not contain any breaks, they are bounded from above by p̄ = min {v, r} where r = r1 = r2,

17The lone exception occurs when both �rms o�er price-matching guarantees on the equilibrium path
and θS = 0. This is explored in Proposition 4.

18As is discussed in footnote 24, the quali�cation that consumers are indi�erent regarding which �rm to
sample is not technically necessary, but is useful for the purpose of exposition.
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and at most one �rm may have one mass point at p̄. If a mass point exists in equilibrium,

then non-shoppers who sample �rm i �rst, must stop searching after observing a price of rj

unless v < rj.

As will be seen below, the equilibrium outcome is symmetric if and only if all consumers

choose their �rst price sample at random (βS = βN = 1/2). In this case, because ac-

cording to Proposition 1, at most one �rm may have a mass point in equilibrium, when

the equilibrium outcome is symmetric, there are no mass points and both �rms always run

sales�that is, they price below p̄ with probability 1. Alternatively, the equilibrium may

be asymmetric, in which case one �rm has a mass point at p̄. Note that because accord-

ing to Proposition 1 a price equal to r and strictly higher than v is only observed o� the

equilibrium path, in equilibrium, non-shoppers whose �rst observation equals r (and who

are hence indi�erent between stopping and searching the next �rm) stop. Therefore, be-

cause �rms never price above r, as in Stahl (1989), non-shoppers only sample one price in

equilibrium. This means that in equilibrium, price-matching can only impact non-shoppers

indirectly because a consumer cannot use a price-matching guarantee without observing a

second price.19

In the following two subsections, we analyze equilibria in subgames where both �rms make

the same price-matching decision. We conclude that in a subgame where both �rms o�er

price-matching guarantees, consumers expect higher prices and �rms expect higher pro�ts

than in a subgame without price-matching.

19In this respect, we di�er from Janssen and Parakhonyak (2013), who assume that an exogenous pro-
portion of non-shoppers discovers the rival �rm's price post-purchase without further search. These non-
shoppers are then assumed to invoke a price-matching guarantee at the �rst store if the rival's price is
lower.
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2.4.1 Neither Firm Price-Matches

Following Stahl (1989), Astorne-Figari and Yankelevich (2014) show that in the subgame

without matching, there is a unique Sequential Equilibrium where both �rms distribute

prices over support [(1− µ) p̄/(1 + µ), p̄] with distribution F (p) = (1 + µ)
(
1− p/p

)
/ (2µ),

where p̄ = min {v, r∗} and r∗, the equilibrium reservation price, is de�ned as

r∗ =

r (µ, c) = c
(

1− 1−µ
2µ

ln 1+µ
1−µ

)−1

if r (µ, c) ≤ v

∞ otherwise
(2.2)

In equilibrium, regardless of shoppers' search order, shoppers will always purchase from

the �rm with the lower listed price. On the other hand, non-shoppers randomly choose to

sample one �rm and because p̄ = min {v, r∗}, they purchase from the �rst �rm sampled

without observing the price of the other �rm.20 Thus, as in Stahl (1989) �rms randomize

over lower prices to attract shoppers, and over higher prices to extract greater pro�ts from

captive non-shoppers.

2.4.2 Both Firms Price-Match

When both �rms o�er price-matching guarantees, the expected pro�t that each �rm ob-

tains from shoppers di�ers markedly from that when price-matching is not available. Con-

sider the expected pro�t equation for �rm 1 when both �rms o�er to price-match:

E[π1 (p1, F2 (p1))] = (1− µ) βNp1

+µ {p1 (βSθS + 1− βS) [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}
(2.3)

20Hence, the equilibrium outcome is the same for all βS ∈ [0, 1] (βS is absent in Equation (2.2) and
F (p) above), whereas βN = 1/2 in equilibrium. Suppose this were not the case. From Astorne-Figari and
Yankelevich (2014), we know that when βN 6= 1/2 (λ in their article), the price distribution of the �rm
that more non-shoppers choose to sample �rst, �rst order stochastically dominates that of its rival. This
would imply that the reservation price associated with the rival �rm is lower, such that all non-shoppers
would prefer to sample the �rm with the dominated distribution �rst, a contradiction.
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Suppose that �rm 1 sets price p1. From Proposition 1, we know that the (1 − µ)βN non-

shoppers who sample �rm 1 �rst stay there and pay p1. When neither �rm o�ers to price-

match, with probability 1 − F2(p1), p1 < p2 and �rm 1 sells to every shopper in the mar-

ket. Otherwise it does not sell to shoppers. However, when both �rms o�er price-matching

guarantees, as can be observed by decomposing the second line of Equation (2.3), the or-

der in which �rms are sampled matters and �rm 1 cannot expect to capture every shopper

by listing a lower price.

When p1 < p2, �rm 1 captures µ(1 − βS) shoppers who previously sampled �rm 2 and

discovered a lower price in �rm 1 as well as µβSθS shoppers who �rst sample the price of

�rm 1 and upon learning the price of �rm 2, purchase from �rm 1 rather than invoke a

price-matching guarantee at �rm 2. Each of these shoppers pay p1 to �rm 1. The remain-

ing shoppers invoke a price-matching guarantee at �rm 2. However, although �rm 1 may

lose some shoppers that it would have captured with a lower price sans price-matching

guarantees, by o�ering to price-match, it hedges its losses when it ends up with a higher

price than �rm 2 because some shoppers will invoke a price-match guarantee at �rm 1. In

particular, with probability F2(p1), we know that p1 ≥ p2. In this case, shoppers who sam-

ple p1 �rst all purchase from �rm 2, but the µ(1−θS)(1−βS) shoppers who visit �rm 2 �rst

will invoke a price-matching guarantee upon sampling �rm 1 and paying �rm 2's expected

price to �rm 1 (that is, E [p2|p2 < p1]).

In Proposition 2 we characterize the Sequential Equilibria for the subgame where both

�rms o�er price-matching guarantees and θS ∈ (0, 1]. The proposition indicates that

price-matching can in�uence prices in three ways: (i) directly by altering �rms' price dis-

tribution functions, (ii) indirectly via the reservation price, and (iii) through its e�ect on

the sampling order of individual consumers, as represented by βS and βN . Proposition 2

characterizes equilibria where βS ≥ 1/2. Equilibria where βS < 1/2 follow analogously.
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Proposition 2. Suppose that �rms are exogenously required to o�er price-matching guar-

antees, all consumers are indi�erent regarding which �rm to sample �rst, and θS ∈ (0, 1].

Then in equilibrium, both �rms distribute prices over support

[
p, p̄
]

=

[
min {v, r∗}

[
(1− µ) βN

µ (βSθS + 1− βS) + (1− µ) βN

] θS
βSθS+1−βS

, min {v, r∗}

]
and the equilibrium reservation price, r∗ = r∗1 = r∗2 equals

r∗ =

r (µ, θS, c, βS, βN) if r (µ, θS, c, βS, βN) ≤ v

∞ otherwise
,

r (µ, θS, c, βS, βN) = c

{
1− [(1− µ) βN ]

θS
βSθS+1−βS

µ (1− βS) (1− θS)

×
{

[µ (βSθS + 1− βS) + (1− µ) βN ]
(1−βS)(1−θS)
1−βS(1−θS) − [(1− µ) βN ]

(1−βS)(1−θS)
1−βS(1−θS)

}}−1

Suppose that �rm 1 has a mass point at p̄. Then it distributes prices according to

F1 (p) =

{
1 +

(1− µ) (1− βN)

µ [(1− βS) θS + βS]

}1−
(
p

p

) (1−βS)θS+βS
θS


over

[
p, p̄
)
, while �rm 2 distributes prices according to

F2 (p) =

[
1 +

(1− µ) βN
µ (βSθS + 1− βS)

] [
1−

(
p

p

)βSθS+1−βS
θS

]
In equilibrium, the expected prices for the two �rms equal each other.

Following Stahl (1989), the proof of this proposition proceeds by using �rms' indi�erence

between all actions in the supports of their distribution functions to solve for distribu-

tions F1 and F2 and then by applying the distributions to non-shoppers' optimal stop-

ping rule (Equation (2.1)) to solve for the reservation price. The di�erence in this article

is that when �rms o�er to price-match, the changes in consumer shopping behavior fol-

lowing Equation (2.3) substantively alter �rms' indi�erence conditions via their expected

pro�t equations. This changes �rms' price distributions as well as non-shoppers' reserva-
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tion price.

Non-shopper indi�erence between which �rm to sample �rst leads to the following set of

equations: ∫ r2

p

F2(p)dp =

∫ r2

p

F1(p)dp

⇔
∫ r2

p

pdF2(p) = lim
x→r2−

∫ x

p

pdF1(p) + p̄

[
1− lim

x→r2−
F1 (x)

] (2.4)

The �rst equation follows from Weitzman's (1979) Pandora's Rule and non-shoppers' indif-

ference (so r2 = r1 = r); the second, which sets the expected price of the two �rms equal

to each other, follows from integration by parts together with the fact that p̄ =min {v, r}

in equilibrium. Using the expected price equality, E1 [p] = E2 [p], we can now implicitly

solve for βN as a function of the remaining parameters.

If βS = 1/2, it is readily seen that the unique value of βN ∈ [0, 1] that solves E1 [p] =

E2 [p] also equals 1/2. In this case, E1 [p] = E2 [p] = E [p] where

E [p] =
p̄ (1− µ)

2θS
1+θS

µ (1− θS)

[
(1 + µθS)

1−θS
1+θS − (1− µ)

1−θS
1+θS

]
(2.5)

It also follows that, F1 (p) = F2 (p), and consequently, that neither �rm has a mass point

at p̄. This establishes existence. Although the symmetric equilibrium is perhaps the most

natural one when both �rms price-match�consumers choose the �rst price sample at ran-

dom in the absence of any information di�erentiating the two �rms�the equilibrium is

not unique, and in Section 2.6, we numerically explore the existence of equilibria where

βS > 1/2 (and as a consequence, βN > 1/2).

Our next two results�Propositions 3 and 4�make more precise the e�ect that price-matching

has on �rms' price distribution functions and non-shoppers' reservation price.
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Proposition 3. Suppose that �rms are exogenously required to o�er price-matching guar-

antees and βS = βN = 1/2.

1. Then in equilibrium, a �rm price distribution with a lower proportion of shoppers µ

or lower proportion of shoppers who ignore price-matching guarantees θS dominates

one with a higher proportion in the sense of �rst-order stochastic dominance.

2. If r∗ < v, then r∗ is decreasing in µ and in θS.

Because p̄ = min {v, r∗}, as was the case when �rms did not o�er price-matching guaran-

tees, in any equilibrium described in Proposition 2, non-shoppers choose a �rm to search

�rst and make a purchase there, whereas all shoppers search both �rms and obtain the

lower price. However, contrary to the subgame without matching, the lower price is not al-

ways obtained at the �rm with the lower listed price. For instance, as noted above, if �rm

1 has the lower listed price, the µ(1 − βS) shoppers who search �rm 2 �rst all purchase

from �rm 1, but of the µβS shoppers who search �rm 1 �rst, µβSθS purchase from �rm 1

while µβS(1 − θS) obtain a price-match at �rm 2. This inability to capture all shoppers at

the lower listed price diminishes �rms' incentive to set lower prices�and more so the lower

θS.

The �rst-order stochastic dominance relationship in Part (1) of Proposition 3 together

with Equation (2.1) imply that the lower θS, the higher the equilibrium reservation price.

When βS = βN = 1/2, a simple application of l'Hôpital's rule will show that Equa-

tion (2.2) is the limit of the equilibrium reservation price in Proposition 2 as θS approaches

one (as the proportion of shoppers who invoke a price-matching guarantee goes to zero).

According to Proposition 3, Part (2), for any θS < 1, the latter reservation price is never

lower than the former. This means that a price that could induce a non-shopper to search

in an equilibrium without price-matching might no longer do so in an equilibrium with

matching�that is, non-shoppers may be willing to accept higher prices in lieu of search in
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a symmetric equilibrium with price-matching. Thus, when consumers engage in optimal

search, the price increasing e�ect of price-matching guarantees is exacerbated�search is

inhibited over a wider range of prices for a subset of the population.

Together, Propositions 2 and 3 tell us that price-matching guarantees do not o�er a price

bene�t to consumers because a portion of consumers never uses them, while the remain-

der could procure the lower listed price with or without them.21 This stands in contrast

to existing studies such as those of Chen, Narasimhan, and Zhang (2001) and Janssen and

Parakhonyak (2013), in which price-matching guarantees potentially allow consumers who

would otherwise remain relatively uninformed to pay a lower listed price. Our �ndings ap-

pear to us more cogent because individuals who �nd search costly are likely to �nd satisfy-

ing the non-pecuniary requirements that many �rms impose on price-matching customers

costly as well, so we would not expect such individuals to rely on price-matching guar-

antees (one might for instance suppose that in addition to paying search cost c, all non-

shoppers �nd price-matching a �hassle,� though this is unnecessary because non-shoppers

observe a single price in equilibrium). Conversely, an individual who does not �nd the use

of a price-matching guarantee a hassle is also likely to be an individual who is willing to

shop around for price.

More generally, Proposition 3 tells us that the greater the proportion of shoppers who in-

voke price-matching guarantees, the higher the price that any consumer is likely to face.

This is consistent with the experimental results of Dugar and Sorensen (2006), who �nd

that as the number of positive hassle cost buyers in the market is reduced, average market

price approaches the monopoly price in a monotonic fashion. The next proposition says

that when θS = 0�that is, all shoppers invoke price-matching guarantees when they are

available�price-matching leads to a unique monopolistic equilibrium.

21The only potential bene�t accrues to deal-prone shoppers who invoke price-matching guarantees in
terms of any intrinsic value that they derive from the deal.
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Proposition 4. Suppose that �rms are exogenously required to o�er price-matching guar-

antees and θS = 0. Then there exists a unique Sequential Equilibrium where both �rms set

price v and r∗1 = r∗2 = v + c.22

Intuitively, when θS = 0, lower prices do not attract additional customers. In particu-

lar, shoppers who encounter a higher price at the second �rm they search will use a price-

matching guarantee at the second �rm rather than go back to the �rst �rm to obtain a

lower price. As a result, �rms extract all consumer welfare by pricing at v.

At the opposite extreme, when θS = 1, no one invokes price-matching guarantees. In this

case, if we set βS = βN = 1/2 and substitute θS = 1 into Equations (2.3) and �rms' price

distribution functions in Proposition 2, we obtain respectively, �rms' pro�ts and price dis-

tributions in the subgame without matching. Proposition 3 shows that the distribution

when θS = 1 is strictly dominated by any symmetric distribution where some shoppers

invoke price-matching guarantees. This immediately leads to the following result:

Corollary 1. In a symmetric equilibrium where both �rms o�er price-matching guarantees

and some shoppers invoke them, expected prices and pro�ts are higher than in an equilib-

rium without price-matching.

2.4.3 Only Firm 1 Price-Matches

In this subsection we examine equilibria that arise when �rm 1 is exogenously required to

o�er price-matching guarantees while �rm 2 is required not to. The analysis when only

�rm 2 is exogenously required to o�er price-matching guarantees is analogous.

22We note that the assumption of costless �rst visits is not innocuous here. Janssen, Moraga-Gonzàlez,
and Wildenbeest (2005) show that when non-shoppers have to pay for every price quote, full participation,
which is presumed here, requires v to be no lower than �rms' reservation prices.
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Proposition 5. Suppose that �rm 1 is exogenously required to o�er price-matching guar-

antees while �rm 2 is required not to and that all consumers are indi�erent regarding which

�rm to sample �rst. Then in equilibrium, both �rms distribute prices over support[
p, p̄
]

=

[
min {v, r∗}

{
(1− µ) (1− βN)

µ [(1− βS) θS + βS] + (1− µ) (1− βN)

}
, min {v, r∗}

]
and the equilibrium reservation price, r∗ = r∗1 = r∗2 equals

r∗ =

r (µ, θS, c, βS, βN) if r (µ, θS, c, βS, βN) ≤ v

∞ otherwise
,

r(µ, θS, c, βS, βN) = c{1− (1− µ)(1− βN)

µ[(1− βS)θS + βS]
× ln{1 +

µ[(1− βS)θS + βS]

(1− µ)(1− βN)
}}−1

Firm 1 distributes prices according to

F1 (p) =

{
1 +

(1− µ) (1− βN)

µ [(1− βS) θS + βS]

}(
1−

p

p

)
while �rm 2 distributes prices according to

F2 (p) =

[
1 +

(1− µ) βN
µ

][
1−

(
p

p

) 1
βS+θS−βSθS

]
over

[
p, p̄
)
with a mass point at p̄. In equilibrium, the expected prices for the two �rms

equal each other.

As in the equilibria described in Proposition 2, non-shoppers randomly choose a �rm to

search �rst and make a purchase there. We continue our focus on equilibria where shop-

pers randomly choose their initial price sample (βS = 1/2). When βS = 1/2, it must be

that βN < 1/2�implying that more non-shoppers purchase from the non-matching �rm.

Suppose this were not the case. Then, �rm 1, which o�ers price-matching guarantees, ex-

pects to sell to more shoppers than �rm 2, and to at least as many non-shoppers. But this

would lead �rm 1 to place greater probability on higher prices than �rm 2, breaking the

equality between reservation prices (or alternatively, expected prices) needed to make con-

sumers indi�erent between which �rm to sample �rst.

Even assuming βS = 1/2, the equilibrium value of βN cannot be solved for explicitly as
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a function of µ and θS by using expected price equality E1 [p] = E2 [p] (the expressions

for E1 [p] and E2 [p] are written in full in the proof of Proposition 5 in the Supplemental

Appendix). However, because E1 [p] and E2 [p] are both smooth functions in µ and θS,

we are able to verify existence of an equilibrium value of βN ∈ [0, 1/2) numerically on a

grid. To do so, we compute βN for 10,000 (µ, θS) pairs spaced evenly over the parameter

space µ × θS ⊂ (0, 1) × (0, 1). We employ this approach in Figures 2.1 through 2.4.23

The shaded region in Figure 2.1 represents the set of µ and θS such that βS = 1/2 and

the equilibrium described in Proposition 5 exists, whereas Figure 2.4(a) displays the value

of βN that leads to equilibrium for each of the (µ, θS) pairs in Figure 2.1. Figure 2.4(a)

makes apparent that βN ∈ [0, 1/2), and moreover that βN increases in θS, but decreases in

µ. When θS grows or µ shrinks, �rm 1's ability to maintain higher prices via shoppers who

invoke price-matching guarantees diminishes. In equilibrium, βN must then grow to make

consumers indi�erent between which �rm to sample �rst.
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Figure 2.1: Set of µ and θS Such That Equilibrium With βS = 0.5 and βN ∈ (0, 0.5)
Exists When Only Firm 1 Matches.

23An annotated program that performs these calculations is available upon request from the authors.
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(a)
βN

(b)
r (µ, θS, c, βS, βN)

Figure 2.2: (a) βN and (b) r (µ, θS, c, βS, βN)

Because �rm 2 has a mass point at p̄, it may be thought of as running fewer sales than

�rm 1�for instance, p̄ may be interpreted as a manufacturer's suggested retail price and a

discount from that price could be called a sale. However, even though �rm 2 runs sales less

frequently than �rm 1, because expected prices are equal in equilibrium, when �rm 2 does

run sales, it will tend to o�er greater discounts than �rm 1. In the next section, we will

consider how �rm pro�ts (and hence expected prices) in the equilibria of this subsection

compare to pro�ts when neither or both �rms price-match.

Proposition 6 represent the comparative static counterpart to Proposition 3 when only

�rm 1 o�ers a price-matching guarantee.

Proposition 6. Suppose that �rm 1 is exogenously required to o�er price-matching guar-

antees while �rm 2 is required not to, βS = 1/2, and βN ∈ (0, 1/2).

1. Then in equilibrium, for �rm 1 a price distribution with a lower proportion of shop-

pers, µ, dominates one with a higher proportion in the sense of �rst-order stochas-
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tic dominance if and only if ∂βN
∂µ

> − 1−βN
µ(1−µ)

. A distribution with a lower proportion

of shoppers who ignore price-matching guarantees, θS, dominates one with a higher

proportion if and only if ∂βN
∂θS

> −1−βN
1+θS

. Moreover, expected prices for both �rms

are decreasing in µ if and only if ∂βN
∂µ

> − 1−βN
µ(1−µ)

and decreasing in θS if and only

if ∂βN
∂θS

> −1−βN
1+θS

.

2. If r∗ < v, then r∗ is decreasing in µ if and only if ∂βN
∂µ

> − 1−βN
µ(1−µ)

and decreasing in

θS if and only if ∂βN
∂θS

> −1−βN
1+θS

.

By applying the implicit function theorem to E1 [p]− E2 [p] = 0, we can determine ∂βN
∂µ

and

∂βN
∂θS

. Unfortunately, this yields a pair of highly unwieldy equations, and as an alternative,

we numerically compute the reservation price over the set of µ and θS for which an equi-

librium of the type described in Proposition 5 exists (the shaded region in Figure 2.1) to

determine whether or not the inequalities in Proposition 6 hold. These computations are

displayed in Figure 2.2(b), which shows the equilibrium reservation price decreasing over

all µ and θS, as in Proposition 3, Part (2). Because r (µ, θS, c, βS, βN) is a smooth func-

tion in µ and θS, Figure 2.2(b) tells us that the inequalities in Proposition 6 always hold in

the shaded region in Figure 2.1, so that the equilibrium reservation price is increasing with

the proportion of shoppers who invoke price-matching guarantees and moreover, according

to Proposition 6, Part (1), so is the expected price.

Although our focus thus far has been on equilibria where consumers who have no price in-

formation are indi�erent between which �rm to sample �rst, as can be observed in Figure

2.1, assuming βS = 1/2, there is a subset of µ and θS where such an equilibrium does not

exist. In Proposition 7, we characterize the equilibrium that prevails throughout the re-

mainder of the µ × θS parameter space when βS = 1/2. We then show that the equilibria

characterized in Propositions 5 and 7 partition this space.
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Proposition 7. Suppose that �rm 1 is exogenously required to o�er price-matching guar-

antees while �rm 2 is required not to and βS = 1/2.

1. An equilibrium in which non-shoppers all prefer to sample �rm 1 �rst does not exist.

2. For su�ciently low θS and su�ciently high µ, there exists an equilibrium where all

non-shoppers prefer to sample �rm 2 �rst, in which both �rms distribute prices over

support [
p, p̄
]

=

[
min {v, r∗2}

[
2 (1− µ)

2− µ (1− θS)

]
, min {v, r∗2}

]
and the equilibrium reservation, r∗2, equals

r∗2 =

r2 (µ, θS, c) if r2 (µ, θS, c) ≤ v

∞ otherwise
,

r2 (µ, θS, c) = c
1− θS
1 + θS

{[
2 (1− µ)

2− µ (1− θS)

] 2
1+θS

+
2µ

2− µ (1− θS)
− 1

}−1

Firm 1 distributes prices according to

F1 (p) =
2− µ (1− θS)

µ (1 + θS)

(
1−

p

p

)
while �rm 2 distributes prices according to

F2 (p) = 1−
(
p

p

) 2
1+θS

over
[
p, p̄
)
with a mass point at p̄. In equilibrium, �rm 1's reservation price and ex-

pected price is no lower than those of �rm 2.

Regarding Part (1), we already knew that when βS = 1/2, it must be that βN < 1/2, so

we should not expect an equilibrium where non-shoppers all prefer to sample �rm 1 �rst

to exist (which would imply βN = 1). With regard to Part (2), it is worth noting that

the price distributions in Proposition 7 are the limits of the price distributions in Propo-

sition 5 as βN → 0, holding βS = 1/2. Additionally, assuming that v is not binding, in
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equilibrium, r1 (µ, θS, c) equals

r1 (µ, θS, c) = c+ r2 (µ, θS, c)
2 (1− µ)

µ (1 + θS)
ln

[
2− µ (1− θS)

2 (1− µ)

]
(2.6)

As a consequence, r1 (µ, θS, c) > r2 (µ, θS, c) occurs if and only if

c > r2 (µ, θS, c)

{
1− 2 (1− µ)

µ (1 + θS)
ln

[
2− µ (1− θS)

2 (1− µ)

]}
(2.7)

where it can be observed that c divided by the bracketed expression in the right hand

side of Inequality (2.7) is the limit of the equilibrium reservation price in Proposition 5

as βN → 0, holding βS = 1/2. This means that when βS = 1/2, the equilibria in Proposi-

tions 5 and 7 partition the space µ× θS ⊂ (0, 1)× (0, 1). That is, when shopper sampling

order is random in an equilibrium where only �rm 1 o�ers to price-match, non-shoppers

are either indi�erent regarding which �rm to sample �rst or they strictly prefer to sample

�rm 2 �rst. In the latter case, Equation (2.4) indicates that non-shoppers expect to pay a

lower price at the non-matching �rm, so that for a subset of parameters, the non-matching

�rm behaves like a �low price� competitor to its price-matching rival.24

2.5 Market Equilibrium

In the �rst stage of the game, �rms must decide whether or not to make a price-matching

announcement. For each �rm, this decision depends on a comparison of the pro�ts that

it expects to obtain in each of the pricing subgames discussed in the previous section. In

this section, we continue to focus on equilibria where βS = 1/2; that is, shoppers ran-

domly choose which �rm's price to sample �rst before moving on to the second �rm. This

24The claims proving Proposition 1 in the Supplemental Appendix suggest that when βN = 0, ad-
ditional equilibria may exist on the set µ × θS when the assumption regarding consumer indi�erence is
omitted from the proposition. These equilibria can be ruled out numerically. For instance, if �rm 1 is the
matching �rm and βN = 0, Proposition 1 sans the indi�erence assumption posits an equilibrium in which
r2 < r1 in which both �rms have a mass point at the upper bound of their supports. However, numeri-
cally, we have found that for any value of Pr (p2 = p̄2) ∈ (0, 1), r1 < r2 in such an equilibrium, a contra-
diction (additional detail is available upon request from the authors). Thus, when βS = 1/2, we need only
to concentrate on the equilibria described in Propositions 5 and 7.
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follows naturally if shoppers observe either that both �rms o�er price-matching guaran-

tees, or that neither one does, in which case there is no information about the prices of the

individual �rms to be gleaned from the �rst stage. However, even if one �rm announces

its guarantee to match the other �rm's price, while the other does not, at the end of their

search, shoppers will nevertheless procure the lowest price available, so that randomization

is a reasonable search strategy. Going forward, we assume that v is large enough not to

be binding on �rm supports (and thus, as a result of Proposition 4, we must assume that

θS 6= 0).

Fortunately, when βS = 1/2, because the stage-two pricing equilibria when both �rms

make the same stage-one matching decision are symmetric, as displayed in the payo� ma-

trix labeled Table 2.1, our analysis boils down to a pair of pro�t comparisons over the set

µ × θS: (i) a comparison of the matching �rm's expected pro�t when only one �rm of-

fers a price-matching guarantee E πMN
M = EπNMM against the symmetric expected pro�t

when neither �rm price-matches E πNN , and (ii) a comparison of the non-matching �rm's

expected pro�t when only one �rm o�ers a price-matching guarantee E πMN
N = E πNMN

against the symmetric expected pro�t when both �rms price-match E πMM . Because all

expected pro�t functions are smooth, we can follow the approach of Chen, Narasimhan,

and Zhang (2001) by numerically comparing the di�erence between E πNN and E πMN
M as

well as the di�erence between E πMN
N and E πMM over the range of relevant parameters�

in this case, parameter space µ×θS�to derive all possible equilibria of the complete game.
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Table 2.1: Stage-One Pro�t Comparison

Match Don't Match

Match E πMM , E πMM E πMN
M , E πMN

N

Don't Match E πNMN , E πNMM E πNN , E πNN

As should be expected from Figure 2.1, the expressions for the expected pro�ts of �rms

in equilibria where only one �rm o�ers a price-matching guarantee vary depending on

whether non-shoppers are indi�erent regarding which �rm to sample �rst (as in Proposi-

tion 5) or all prefer to sample the non-matching �rm �rst (as in Proposition 7). Suppose

that, only �rm 1 announces a price-matching guarantee. The expected pro�ts of �rm 1 in

these two cases are respectively,

E πMN
M =

2 (1− µ) (1− βN) [µ+ (1− µ) βN ] p̄MN

2 (1− µ) (1− βN) + µ (1 + θS)
, (2.8)

E πMÑ
M =

2µ (1− µ) p̄MÑ

2− µ (1− θS)
(2.9)

where the superscript MN (MÑ) refers to equilibria where non-shoppers are indi�er-

ent regarding which �rm to sample �rst (prefer to sample the non-matching �rm �rst).

In contrast, the symmetric expected pro�t when neither �rm price-matches is E πNN =

(1− µ) p̄NN/2.
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Figure 2.3: E πNN − E πMN
M over µ× θS ⊂ (0, 1)× (0, 1) (assuming c = 1).

Figure 2.3 maps the di�erence between E πNN and E πMN
M (or E πMÑ

M as appropriate) over

parameter space µ × θS. From the �gure, it can be observed that E πMN
M (or E πMÑ

M as

appropriate) is always greater than E πNN in the interior of µ × θS: that is, the price-

matching �rm never wants to deviate to not matching when its rival does not match (or

conversely, the situation where neither �rm matches is not an equilibrium of the complete

game). Moreover, as the �gure makes evident, the di�erence in pro�t grows in the propor-

tion of shoppers who invoke price-matching guarantees. The one exception to E πMN
M , E πMÑ

M >

E πNN occurs when θS = 1. In this case, even though a �rm may o�er a price-matching

guarantee, consumers do not invoke it, and as a result, consumer search and �rm pricing

are precisely the same as if price-matching were not an option.
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Figure 2.4: µ × θS ⊂ (0, 1) × (0, 1): (a) Shaded Region Implies E πMN
N − E πMM ≥ 0 ;

(b) E πMM − E πMN
N or E πMM − E πMÑ

N (assuming c = 1).

Like Figure 2.3, Figure 2.4(a), which compares the expected pro�t of the non-matching

�rm when only one �rm o�ers a price-matching guarantee with the symmetric expected

pro�t when both �rms price-match, shows that price-matching is usually�though not

always�a best response to a competitor's price-matching announcement. The non-matching

�rm analogues of Equations (2.8) and (2.9) are respectively, E πMN
N = 2 (1− µ) (1− βN) p̄MN

and E πMÑ
N = (1− µ) p̄MÑ . Comparing these to the symmetric expected pro�t when both

�rms price-match,

E πMM =

(
1− µ

1 + µθS

) 2θS
1+θS (1 + µθS)p̄MM

2
, (2.10)

we observe that with the exception of a small region in which both µ and θS are close to

1, E πMM is greater than E πMN
N (or E πMÑ

N as appropriate) over µ × θS.
25 In particular,

with regard to equilibria where non-shoppers prefer to sample the non-matching�and in

25Smoothness of the pro�t functions thereby implies a subset of parameter values over which one �rm
strictly prefers to price-match while the other �rm is indi�erent between o�ering and not o�ering price-
matching guarantees. The subset is a curve that partitions µ× θS .
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that case, lower expected price��rm, Figure 2.4(a) tells us that because for most µ and

θS, E πMM > E πMÑ
N , announcing a price-matching guarantee is generally a pro�table al-

ternative to being a non-matching, �low price� competitor to a price-matching �rm. Figure

2.4(b), which maps the actual pro�t di�erence compared in Figure 2.4(a), shows that the

di�erence is decreasing in θS. When θS grows, fewer shoppers invoke price-matching guar-

antees, narrowing the distinction between o�ering and not o�ering these guarantees.

The following result summarizes the discussion above.26

Market Equilibrium. Suppose that shoppers sample prices at random and θS ∈ (0, 1).

In the equilibrium of the complete game, either both �rms will o�er price-matching guaran-

tees or only one �rm will o�er a price-matching guarantee on the equilibrium path. In any

equilibrium outcome where �rms are given the option of o�ering price-matching guaran-

tees, �rm pro�ts and expected prices are higher than when price-matching is not an option.

2.6 Asymmetric Equilibria (Numerical Analysis)

Although equilibria where βS = 1/2 are intuitively appealing and mathematically tractable,

because βS and βN are endogenously determined, equilibria where βS 6= 1/2 also exist,

even if both �rms announce an intent to price-match on the equilibrium path. Although a

complete investigation of such equilibria would be quite lengthy, they warrant some discus-

sion, particularly when only a single �rm announces an intent to price-match. To simplify

the exposition, we restrict the discussion to equilibria where non-shoppers are indi�erent

regarding which �rm to sample �rst.

26The �nal sentence in the result below relies on the comparison of EπNN and EπMN
M along with

Corollary 1.
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Figure 2.5: Both Firms Match and µ = θS = 0.5: (a) Equilibrium βS > 0.5 and βN > 0.5;
(b) Equilibrium Pro�ts (assuming c = 1).

Mathematically, multiple βS and βN pairs may prevail for any combination of the exoge-

nous parameters because in each equilibrium involving subgames played after at least one

�rm reveals an intent to price-match, the solution for βS and βN is obtained using the sin-

gle equation that sets the expected prices in the two �rms equal to each other, making all

consumers indi�erent between which �rm to search �rst. For instance, in the subgame

where both �rms o�er price-matching guarantees, Figure 2.5(a) shows the set of all equi-

librium βS > 1/2 and βN > 1/2 in the case that µ = θS = 1/2 while Figure 2.5(b) repre-

sents the expected pro�ts of �rms 1 and 2 for combinations of βS and βN in Figure 2.5(a).

From 1.5(b), we can observe that as the equilibrium becomes more asymmetric from the

standpoint that the absolute value di�erence between βN and 1 − βN increases, so do the

pro�ts of the two �rms. Table 2.2 presents additional evidence of pro�ts rising with the

amount of asymmetry in the subgame where both �rms o�er price-matching guarantees for

various combinations of µ and θS. In particular, for each combination of µ and θS, both

�rms' expected pro�ts are higher when βN = 0.55 (and βS is endogenously determined
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accordingly) than when βN = 0.5, assuming an equilibrium where non-shoppers are in-

di�erent regarding which �rm to sample �rst exists when βN = 0.55. Likewise, expected

pro�ts are higher when βN = 0.6 than when βN = 0.55.27

Table 2.2: Firm Pro�ts When Both Firms Matcha, b

βN = 0.50 βN = 0.55 βN = 0.60 βS = 0.999
µ θS π1 = π2 π1 π2 π1 π2 π1 π2

.20 .20 10.75 10.79 11.75 N/A N/A 10.80 12.03

.50 .20 3.12 3.15 3.37 3.18 3.62 3.24 4.32

.80 .20 1.06 1.09 1.13 1.11 1.20 1.23c 1.71c

.20 .50 4.27 N/A N/A N/A N/A 4.29 4.59

.50 .50 1.19 1.20 1.29 1.22 1.38 1.23 1.46

.80 .50 0.35 0.36 0.38 0.37 0.40 0.42 0.57

.20 .80 2.65 N/A N/A N/A N/A 2.66 2.73

.50 .80 0.71 0.72 0.77 N/A N/A 0.72 0.77

.80 .80 0.19 0.19 0.20 0.20 0.22 0.21 0.23

aµ consumers have no cost of search (shoppers), while 1 − µ have search cost

c = 1 (non-shoppers). θS shoppers always ignore price-matching guarantees. βS

and βN respectively represent the fraction of shoppers and non-shoppers who

begin search at �rm 1. Non-shoppers' valuation for the good is assumed to be

strictly higher than their equilibrium reservation price.

bEquilibrium βS varies with µ and θS for a given value of βN and vice versa.

N/A implies that an equilibrium where non-shoppers are indi�erent regarding

which �rm to sample �rst does not exist for the given value of βN . Rightmost

column gives results for βS = 0.999 to approximate pro�ts with highest level of

asymmetry.

cNo equilibrium with βS = 0.999. Results given are for βN = 0.999 and

βS = 0.80.

27Moreover, as might be expected from Proposition 3, Table 2.2 suggests that expected pro�ts decrease
in µ and θS for each realization of βN .
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When βN , βS > 1/2, as can be inferred from Equation (2.3), �rm 1 will capture a higher

proportion of non-shoppers while �rm 2 expects to capture more shoppers. Firm 1 sets

higher prices and has fewer sales than in the symmetric case because when it serves a

higher proportion of non-shoppers, it loses more pro�t from these captive consumers when-

ever it lowers its price. Even though �rm 2 has fewer non-shoppers than in the symmetric

case, it will tend to have higher prices as well because it no longer needs to lower prices as

much to have the same probability of capturing the bulk of the shoppers as it did in the

symmetric case. Thus, both �rms have higher prices and expected pro�ts than in the sym-

metric case.

Intuitively, an asymmetric equilibrium may result in the presence of price-matching be-

cause more shoppers may prefer to purchase at a particular �rm (and so �rst sample the

price of its rival), but are lexicographic, valuing a purchase at a lower price over a pur-

chase at a preferred �rm. Price-matching will allow some shoppers to purchase at a pre-

ferred �rm at the lower price even when that �rm does not list the lower price. For in-

stance, if �rm 2 ends up setting the higher price ex-post, µβS (1− θS) shoppers neverthe-

less purchase there. The higher βS, the greater the number of shoppers that end up mak-

ing a purchase at �rm 2. Ex-ante, given µ and θS, �rms set prices to make non-shoppers

indi�erent between which �rm to sample. A higher βS entails a higher βN in order that

Equation (2.4) may hold.

Table 2.3, which corresponds to Table 2.2 for a subgame with a single matching �rm, also

suggests that expected pro�ts are increasing in the absolute value di�erence between βN

and 1 − βN for both the matching and non-matching �rm. In Section 2.5 we learned that

when βS = 1/2, price-matching (whether by one �rm or both) always led to higher �rm

pro�ts and prices relative to a regime where price-matching is forbidden. Tables 2.2 and

2.3 suggest that asymmetry in the search behavior of consumers will exacerbate these ef-

fects. Moreover, because we know that shoppers always obtain the lowest price in equilib-
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rium whereas non-shoppers never invoke price-matching guarantees, �rm pro�t increases

must come at the expense of consumer welfare.

Table 2.3: Firm Pro�ts When Only Firm 2 (Firm 1) Matchesa, b

βN = 0.55(0.45) βN = 0.60(0.40) βS = 0.999(0.001)

µ θS π1(π2) π2(π1) π1(π2) π2(π1) π1(π2) π2(π1)

.20 .20 5.78 6.29 N/A N/A 10.75 11.99

.50 .20 0.71 0.76 0.94 1.07 3.23 4.30

.80 .20 0.16 0.16 0.18 0.19 0.45c 0.63c

.20 .50 N/A N/A N/A N/A 4.29 4.58

.50 .50 0.71 0.76 0.94 1.07 1.23 1.46

.80 .50 0.16 0.16 0.18 0.19 0.42 0.57

.20 .80 N/A N/A N/A N/A 2.66 2.73

.50 .80 0.71 0.76 N/A N/A 0.72 0.77

.80 .80 0.16 0.16 0.18 0.19 0.21 0.23

aµ consumers have no cost of search (shoppers), while 1 − µ have search cost

c = 1 (non-shoppers). θS shoppers always ignore price-matching guarantees. βS

and βN respectively represent the fraction of shoppers and non-shoppers who

begin search at �rm 1. Non-shoppers' valuation for the good is assumed to be

strictly higher than their equilibrium reservation price.

bEquilibrium βS varies with µ and θS for a given value of βN and vice versa.

N/A implies that an equilibrium where non-shoppers are indi�erent regarding

which �rm to sample �rst does not exist for the given value of βN . Rightmost

column gives results for βS = 0.999 (βS = 0.001) to approximate pro�ts with
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highest level of asymmetry.

cNo equilibrium with βS = 0.999 (βS = 0.001). Results given are for βN =

0.999 (βN = 0.001) and βS = 0.657 (βS = 0.343).

From Section 2.4, we know that when βS = 1/2, beliefs regarding βN must vary on and

o� the equilibrium path because whereas the unique value of βN is 1/2 when either both,

or neither �rm announces an intent to price-match, as seen in Figure 2.2(a), it turns out

that βN 6= 1/2 when one �rm o�ers a price-matching guarantee while the other does not.

In a subgame where both �rms price-match, consumers cannot make any inference about

�rm pricing behavior ahead of the search process, so that randomization regarding the �rst

sample seems to be the most reasonable approach. This is not necessarily the case after

consumers have observed �rms making opposite matching decisions. Thus, it seems sensi-

ble to think that beliefs regarding βN might be more symmetric in an equilibrium where

both �rms match relative to one where only one does so. An insightful comparison then

arises if we juxtapose the expected pro�ts in the leftmost pro�t column in Table 2.2 with

the rightmost column in Table 2.3, the former representative of (symmetric) randomization

when both �rms match and the latter approximating the �highest level of asymmetry� that

might arise when only one �rm matches. Among the (µ, θS) pairs in the two tables, we

observe that only in the case of µ = 0.80 and θS = 0.20, is expected pro�t higher when

both �rms o�er price-matching guarantees. As such, within the context of this model,

there are two ways to interpret the real world observation that only a fraction of the �rms

producing the same good tend to o�er price-matching guarantees: (i) most consumers are

shoppers who do not invoke price-matching guarantees28 or (ii) �rms that choose not to

price-match believe that a more symmetric (and potentially less pro�table) equilibrium

might prevail were they to o�er price-matching guarantees.

28This interpretation proceeds from Figure 2.4(a), which shows that when βS = 1/2 in all subgames,
both �rms o�er price-matching guarantees in equilibrium unless µ and θS are both very high.
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2.7 Conclusion

This article explores the e�ects that price-matching guarantees have on �rms and con-

sumers when consumers optimally search for price after learning �rms' price-matching

policies. Price-matching guarantees alter the shopping behavior of both types of consumers

in our model in a way that encourages �rms to raise prices. When consumers who have no

cost of price search invoke price-matching guarantees at �rms that list higher prices, �rms

are discouraged from lowering prices in order to attract such consumers. Understanding

this price-increasing e�ect, consumers who face an opportunity cost of searching for price

accept higher prices at already sampled �rms because they anticipate that further search

is less likely to yield a lower price. In addition, because consumers with no search costs

may be able to obtain the lower price at either �rm, there is a multiplicity of asymmetric

equilibria where more asymmetry leads to higher expected prices and �rm pro�ts.

While the underlying mechanism driving the e�ects of price-matching in our model is new,

this article is not orthogonal to the previous literature. The e�ect that price-matching has

on consumer search leads to both welfare diminishing tacit collusion and price discrimi-

nation. Tacit collusion occurs because �rms understand that a rival's �threat� to match a

lower price entails a smaller bene�t from any incremental price cut. This threat increases

the greater the percentage of consumers who have observed both prices that invokes price-

matching guarantees. Price discrimination occurs because consumers who have no cost of

price search may use a price-match to secure a lower price from the �rm listing the higher

price while the �rm's remaining customers pay the higher listed price. However, contrary

to the result in signaling models of price-match, where ex-ante asymmetries persist ex-

post, we �nd that price-matching alone is enough to generate an asymmetric equilibrium.

In the model presented, asymmetries increase �rm pro�ts at the expense of consumer wel-

fare, but it would be interesting to see how di�erences in �rm production costs or brand-
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ing in�uence search behavior when price-matching guarantees are in place. This is not im-

mediately obvious from the above analysis. Ex-ante asymmetries have the potential to re-

duce asymmetries ex-post, but it is unclear if this is a good thing because it may entail

more purchases from the higher cost �rm.29

This study has implications for future empirical work. Recent empirical literature has

focused primarily on comparisons of price observations between �rms with and without

price-matching guarantees and arrived at opposite results (Moorthy and Winter 2006; Ar-

batskaya, Hviid, Sha�er 2006). The results in this article suggest that such cross-sectional

�ndings point purely to underlying cost or other di�erences between �rms without telling

us the overall welfare e�ect of adopting a matching policy. Under most combinations of

parameters, the expected prices among otherwise homogeneous �rms that di�er in the

adoption of a price-matching guarantee remain the same in our model. This suggests that

what is really necessary is a welfare comparison of �rms over time�before any have adopted

price-matching policies, and after some or all have (see Hess and Gerstner 1991); although

even this may not be foolproof, as the adoption of a matching policy may follow a change

in production costs.

A survey test of our model could ask individuals who use price-matching guarantees to se-

cure the lowest price if they would obtain that price regardless by purchasing somewhere

else. An a�rmative answer would validate the model by telling us that price-matching

guarantees can keep consumers out of �rms with lower listed prices.

29In an experimental study, Biswas et al. (2002) �nd that when consumers have preconceived notions
of a store's price image, low-price guarantees may lead to heightened (lowered) intentions to sample the
prices of other stores when the price image is high (low). In another, Mago and Pate (2009) show that
increases in market prices brought about by price-matching guarantees are curtailed by �rms' cost asym-
metries.
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Chapter 3

Preference Complexity and

Multidimensional Competition

3.1 Introduction

Economists have studied the e�ects of product complexity on market structure for some

time. There is a wide variety of papers that explore the consequences of complexity on

such topics as international trade, innovation, and �rm organization. However, all of these

models treat complexity as an artifact of the good's creation; more complex goods are

those which are more di�cult or complicated to produce. In other words, economists have

considered complexity solely from the point of view of the producer. In this paper I in-

vestigate another form of complexity which stems from the variation in consumers' pref-

erences over the god. From this perspective, some goods, like forks, are simple. What

consumers want from them is straightforward and there are not many di�erent ways to

achieve that goal. Preferences over other goods, like automobiles, are complex because

consumers want many things from them which can be delivered in a variety of distinct

ways.

42



To distinguish technical complexity from Preference complexity, consider food products.

Typically, food products are technically simple, but preference-complex. There is a great

variety of characteristics that consumers care about in their food including the taste, health

value, presentation, and ethical consequences of the production of their food, and each of

these properties can be broken down into numerous sub categories. Health value, for in-

stance, can be divided into fat content, cholesterol content, sodium content, as well as the

presence of a variety of allergens. All of these characteristics apply to a good as techni-

cally simple as bread, which has been produced for thousands of years. For the rest of the

paper, assume that complexity refers to preference complexity unless otherwise noted.

Consider the markets for milk and cheese. Whereas these goods are overall similar, there

are many, many more individual varieties of cheese for sale than varieties of milk. A simi-

lar observation can be made about the markets for �our and bread. I argue that the most

salient inherent di�erence in the markets for milk and cheese is the fact that cheese is

much more complex. In this paper I make the case that more complex goods generate a

greater variety of products in equilibrium. While it seems immediate to claim that more

potential products should lead to more actual products, there's no guarantee that the de-

mand will exist for all of the individual varieties. In section 4 I provide evidence that in-

creasing the complexity of a good raises the price of all of the products in the market, al-

lowing more to coexist in equilibrium.

To get this result, I embed a characteristic space (Lancaster 1966) inside a model of spa-

tial competition. This creates a hypercube over which a number of �rms compete, similar

to the framework used by Irmen and Thisse (Irmen and Thisse 1998). Then the complex-

ity of the product space can be represented by the number of dimensions of the hypercube.

While Irmen and Thisse �nd that the number of dimensions in their model is largely ir-

relevant, this is a direct result of only studying a duopoly. I allow many �rms to operate

simultaneously and compare the nature of their competition as I vary the dimension of the
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space. Because this model is the �rst to study the decisions of more than two �rms com-

peting over more than one dimension, I initially restrict attention to an exogenous location

pricing game.

I �nd that the behavior of the model is markedly di�erent from standard Hotelling models.

Neither the principle of minimum di�erentiation (Hotelling 1929) or principle of maximum

di�erentiation from (d'Aspremonte et. al. 1979) hold. In addition, I �nd that �rms' prices

decline directly in the number of their neighbors. I obtain these unusual results because

my model allows for interactions between a �rm's competition with each of its neighbors.

In other multi-�rm Hotelling models, such as the circular road (Salop 1979) or the hyper-

pyramid (Von Ungern-Sternberg 1991), consumers live only on the edges between �rms, so

the results of competition have no direct e�ect on each other. Finally, when I relax the as-

sumption of exogenous location on a square, I �nd that the standard location choice game

for four �rms does not have a symmetric pure strategy equilibrium.

The rest of the paper is organized as follows. Section 2 describes the model and provides

a brief example. The basic case of the model is solved in section 3. An alternate speci-

�cation of the model, useful for interdimensional comparisons, is solved in Section 4. In

section 5, I depart from my previous work to study an endogeonus location model in 2 di-

mensions. Section 6 concludes.

3.2 The Model

The model I study is a variant of Hotelling's famous model. Hotelling conceived of the sin-

gle axis of competition in his original model as location along a main street in a town.

Most recent uses of Hotellings model have reimagined the axis of competition as a mea-

sure of product di�erentiation along a single characteristic. The model I study poses the

question of what happens when �rms compete over many characteristics of a good simulta-
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neously and whether or not the number of individual characteristic is important.

There exists a good with n characteristics. As an example, consider pizza with its charac-

teristics �Thin crust vs. deep dish� and �greasy vs. non-greasy�. Each of these can be nor-

malized to a spectrum [0,1] and varied independently of each other. Then, every possible

type of pizza can be represented by a square. More generally, I look at an n-cube de�ned

by Z = [0, 1]n. In order to exploit the high degree of inherent symmetry in a cube, I as-

sume that 2n symmetric �rms compete on Z. Order the �rms arbitrarily and label them

�rm 1 through �rm 2n. To avoid confusion, a good refers to the total market, where a

product is a speci�c instance of the good given by a particular location vector.

There is a mass of consumers, normalized without loss to 1, distributed uniformly across

the interior of the hypercube, with their location giving the exact con�guration of the

good that they most prefer. Consumers su�er quadratic disutility from consuming a prod-

uct that deviates from their ideal with a standard, Euclidean notion of distance. Each

agent purchases exactly one good from one of the �rms. An agent located at x receives

indirect utility according to ux(y, p) from purchasing good y at price p.

ux(y, p) = −p− t
n∑
i=1

(xi − yi)2

Above, t denotes equivalently the size of the hypercube or the intensity of preferences,

while the summation is merely the square of the Euclidean distance from x to y. An agent

at x will prefer �rm A to �rm B if and only if ux(A, pA) ≥ ux(B, pB).

Let �rm i be located at point zi and charge price pi. De�ne p = (p1, p2, p3...) as the vector

of prices. The set of consumers that purchase from �rm i is given by the set of consumers

that individually prefer �rm i to each other �rm j. De�ne

Si(p) := {y ∈ Z| pi + t
n∑
k=1

(zik − yk)2 ≤ pj + t
n∑
k=1

(zjk − yk)
2 ∀j}
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Then the demand of �rm i, Di(p) is the volume of this set, or Di(p) = V (Si(p)). It does

not matter whether or not Si is de�ned through weak or strict preference, as the set of in-

di�erent consumers has no volume as long as �rms are distinct. I assume that any product

may be produced at the same constant marginal cost, which is normalized to zero without

loss of generality, so the �rms' pro�t function is given by πi(p) = piDi(p).

Since all �rms are ex-ante symmetric and competing in a symmetric environment, I wish

to restrict attention to symmetric equilibria. Towards that end, assume that �rms position

themselves in a re�ectively symmetric arrangement.

De�nition 1. An set of points A = {zi}2n is called re�ectively symmetric if ∀i,j∃zk∈A such

that zk = (zi1, z
i
2...z

i
j−1, 1− zij, zij+1, ...z

i
n).

If a set of points is re�ectively symmetric, the position of all other points is uniquely de-

termined by the position of a single point. Call that point z1. Any re�ectively symmetric

set of points containing z1 can be alternately de�ned by
∏n

i=1{z1
i , 1 − z1

i }, the set of every

possible vector zk such that zki = z1
i or z

k
i = 1 − z1

i . For example, when n=2, every re�ec-

tively symmetric positioning can be characterized by ((a, b), (1−a, b), (1−a, 1−b), (a, 1−b))

for some a and b. Geometrically speaking, points in a re�ectively symmetric arrangement

form a hyperrectangle, invariant to re�ections over the coordinates.

Notice that z1
i <

1
2
if and only if 1 − zii > 1

2
. Then if I bisect each coordinate of the cube

to create 2n subcubes, exactly one point from each re�ectively symmetric set of points will

fall into each subcube. Relabel the point closest to the origin to be z1 such that z1 ≤ 1
2
.

Like every point in a re�ectively symmetric set, z1 will have n neighbors that di�er from it

in only one coordinate. The distance between any two neighbors, or the side length of the

hyperrectangle that the set de�nes, will be δj = 1− 2z1
j for the relevant coordinate j.

For most of the paper, with the exception of section 5, I will assume an exogenous loca-

tion. Firms are forced to locate in some re�ectively symmetric positioning which can be
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summarized by the representative member, z1. In the next section, I will solve a simple

example in this model to give the reader a clear notion of how the model works.

3.2.1 An Example

Take n=2, t=1. Four �rms locate in a re�ectively symmetric manner on a square. Let

their positioning be de�ned by z1 = (0, 0), so that �rms position on the vertices of the

square. Due to symmetry, it su�ces to solve the problem of a single �rm. Without loss

of generality, consider �rm 1. It is safe to assume that all other �rms are choosing a uni-

form price, p. The set of consumers indi�erent between �rm 1 and �rm 2, located at point

(1, 0), is given by the equation (3.1), which simpli�es to (3.2).

p1 + (x1 − 0)2 + (x2 − 0)2 = p+ (1− x1)2 + (x2 − 0)2 (3.1)

x1 =
1− p1 + p

2
(3.2)

Both x1 and x2 must be weakly positive to lie in Z. To lie in S1(p), a point (x1, x2) must

satisfy 3 constraints, one for each of �rm 1's competitors. In the set of constraints that

de�ne S1(p) below, the �rst three are the constraints from �rms located at (1,0), (0,1),

and (1,1) respectively.

x1 ≤
1− p1 + p

2

x2 ≤
1− p1 + p

2

x1 ≤
2− p1 + p

2
− x2

x1 ≥ 0

x2 ≥ 0
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Figure 3.1: Possible shapes of S1 − S4

There are three possible con�gurations for S1(p) presented by Figure 3.1. Represented

from left to right are the cases in which �rm 1 charges a higher, equal, or lower price rel-

ative to the other three.

As you can see, the formula determining V (S1(p)) depends on whether or not p1 < p.

If p1 < p : D1(p) =
(1− p1 + p)2

4
− (p− p1)2

8

If p1 ≥ p : D1(p) =
(1− p1 + p)2

4

Recall that �rm 1's pro�t is given by π1(p) = piDi(p). Since the expressions are the

same when p = p1, the pro�t function is certainly continuous, but it is possibly non-

di�erentiable at p = p1, which must hold in equilibrium. For now, assume that the func-

tion is di�erentiable. In order to solve for p1, I take the derivative of the pro�t function,

set it equal to zero, and then impose that p = p1. Although there may be di�erent ex-

pressions for the right and left hand derivatives at p = p1, di�erentiability assures us that

they are equivalent. I use the right hand derivative for our calculations since it is simpler.

Following this process, in a symmetric equilibrium p = 1
2
.
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3.3 Price Equilibrium

Consider a product space with n characteristics. There are 2n �rms. In a symmetric equi-

librium, all �rms will charge the same price and capture the 1
2
x1

2
x1

2
... hypercube that con-

tains them.

Lemma 1. The pro�t function, πj(p) is everywhere di�erentiable in p1.

Proof. See Appendix B.

I'd like to take a moment to discuss the general strategy of �nding equilibria in this envi-

ronment. Because I am interested in symmetric equilibria, I can assume that all �rms are

choosing the same price and then consider the problem of a potential deviant. Without

loss, I can assume that the potential deviant is �rm 1, located closest to the origin. Then,

I must �nd �rm 1's pro�t function in terms of the candidate price, p, and his deviation,

p1. Due to the di�erentiability of the pro�t function, I always assume that the price of the

�rm whose problem is being considered is greater than or equal to the price of other �rms,

as this greatly simpli�es the expressions involved. Knowing the pro�t function, I can take

the �rst order condition with respect to p1, then set p = p1 and solve to �nd the equilib-

rium price.

The only di�cult part of this process is �nding an expression for D1(p). Recall that S1(p)

is a region de�ned by the constraints 0 ≤ xi for each i and also, for each j, (3.3).

p1 + t
n∑
k=1

(xk − z1
k)

2 ≤ pj + t
n∑
k=1

(xk − zjk)
2 (3.3)

zjk can take one of two forms: either z1
k, or (1 − z1

k). Letting Ij = {k ∈ |z1
k − z

j
k 6= 0}, I can

simplify (3.3) to (3.4), and further to (3.5) with a change of variables.
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0 ≤ pj − p1 + t
∑
i∈Ij

(1− 2z1
j )− 2(1− 2z1

j )xj (3.4)

0 ≤ pj − p1 + t
∑
i∈Ij

δj − 2δjxj (3.5)

In order to �nd the volume of S1(p) I must to �nd out which of those constraints are re-

dundant and which bind. De�ne a type j constraint to be a constraint imposed by a �rm k

such that |Ik| = j. Geometrically speaking, type j constraints are imposed by type j �rms,

which di�er from z1 in j coordinates.

Lemma 2. In equilibrium, only type one constraints bind.

Proof. See Appendix B.

This means that �rms only compete directly with their neighbors in equilibrium, so the

region that a �rm captures is just a hyperrectangle. Thus, for p1 ≥ p, the pro�t of �rm 1

is given by equation (3.6).

π1(p) = p1(
n∏
i=1

δit+ p− p1

2δit
) (3.6)

For a set of number, A, let hm(A) be the harmonic mean of A.

Theorem 1. If 2n �rms locate in a re�ectively symmetric positioning on an n-cube and

compete in prices, there exists a unique symmetric equilibrium in which �rms charge p∗ =

t hm({δi}ni=1)

n
and earn pro�ts equal to π∗ =

t hm({δi}ni=1)

2nn
.

Proof. See Appendix B.

In general, both prices and pro�ts decrease with dimension. Pro�ts obviously decline in

n, since the same volume must be split among more and more �rms. In an n-cube, each
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�rm has n neighbors with which it competes directly. More neighbors lead to a decrease

in prices because the measure of consumers that a �rm captures from one of its neighbors

interacts positively with the measure of consumers that it captures from each of its other

neighbors. This gives �rms a strong incentive to cut prices to expand their market share,

leading to more savage competition and a lower equilibrium price. This e�ect scales with

each additional direct competitor.

A cursory examination of other multi-�rm Hotelling models such as the circular road or

Von Ungern-Sternberg's pyramid shows that the number of �rms has no impact on pric-

ing behavior as long as the distance between any two �rms is preserved. In those models,

in which consumers only live on one dimensional edges between �rms, �rms compete in-

dependently with each of their neighbors. More �rms are either irrelevant, as in Salop, or

enter the pro�t function as a linear multiplier, as in Von Ungern-Sternberg.

Note that both prices and pro�ts increase in each δj, the distance between neighbors. As

is common in Hotelling models, �rms can charge higher prices whenever they are located

further apart. The δj's cannot be greater than 1, so the re�ectively symmetric arrange-

ment that maximizes �rm pro�ts is given by z1 = 0, or a �rm located on each vertex. Call

this positioning of �rms the basic positioning. At �rst glance, the basic positioning appears

to follow the principle of maximal di�erentiation, as it represents the arrangement of 2n

�rms on an n-cube that maximizes the distance between �rms. However, the principle

of maximal di�erentiation is a statement about equilibrium behavior in a location choice

game and, thus far, I have only worked with an exogenous location game.

3.4 O�sets

In this section I will introduce an alternate positioning so that I can partially divorce the

number of dimensions from the number of �rms. I show, using this alternate positioning,
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that there exists an arrangement of 2n �rms on an m-cube such that each �rm earns more

pro�ts than any �rm in any re�ectively symmetric positioning of 2n �rms on an n-cube

whenever m > n. While increasing the dimensions of the hypercube generally exposes each

�rm to more axes of competition which drive prices down, it also allows �rms to locate

further from one another, driving prices up. Given the results of this section, the latter

e�ect dominates.

Consider a collection of m �rms on an n-cube in some symmetric positioning, A. In a sym-

metric equilibrium, each �rm will earn the same pro�t, and that pro�t will be determined

by m, n, and the location of the �rms. Let the function π̃(m,n,A) give such pro�ts.

Proposition 1. There exists an arrangement of �rms B such that π̃(m,n + 1, B)

≥ π̃(m,n,A).

Proof. To get the result, simply replicate the positioning given by A on one of the n di-

mensional sides of the (n+1)-cube. The regions captured by the �rms will be the same as

on the n-cube, but prismed with length 1. Then, �rms will face the same pro�t functions,

make the same decisions and earn the same pro�t.

With this proposition, I need only show that 2n �rms can be made to be strictly better

o� in an (n+1)-cube than they can be in an n-cube. Recall that the basic positioning will

generate the most pro�t of any re�ectively symmetric arrangement. In the basic position-

ing, δi = 1 for every i, and so the pro�t of each �rm is given by t
n2n

. Therefore, it su�ces

to construct a positioning of 2n �rms on an (n+1)-cube that dominates the basic position-

ing on an n-cube.

The positioning I would like to examine is such that there is a distance of at least
√

2 be-

tween any two �rms, or that no �rms are neighbors in the sense of the previous section. In

order to do this, position a �rm at every vertex zi such that < zi, zi >= 2k for some inte-

ger k. It is easy to verify that this takes exactly 2n �rms in an (n+1)-cube. To verify that
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Figure 3.2: The o�set positioning on a 3 cube

there are no adjacent �rms, note that it's a collection of type 2 k �rms for some k. Obvi-

ously a type 2 �rm cannot be adjacent to a type 4 �rm. If two type 2 �rms are distinct,

one of them must have a zero where the other has a 1 and, to compensate, must have a 1

somewhere that the other has a zero. Therefore, we have a positioning of exactly 2n �rms

such that no two �rms are adjacent. Refer to this arrangement as the o�set positioning.

Figure 3.2 shows the o�set positioning in three dimensions, with the black dots represent-

ing the location of �rms.

Once again, I can appeal to symmetry and consider only the problem of �rm 1, located at

the origin, and assume that all other �rms charge a uniform price. Suppose that �rm 1's

price, p1 is at least as large as the competitors price, p. When p1 ≥ p in the basic case last

section, only type 1 constraints bound. Here, there are no type 1 constraints, and so only

type 2 constraints bind. The argument for this is extremely similar to Proposition 2 from

the last section and is omitted. Type 2 constraints are of the form

53



xi ≤
2t− p1 + p

2t
− xj

Because every type 2 vertex is occupied, there is a constraint of this form for every i,j.

Theorem 2. There exists a symmetric arrangement of 2n �rms on an (n+1) cube such

that each �rm earns more pro�t in equilibrium than it is possible for any �rm to earn in a

re�ectively symmetric equilibrium of 2n �rms on an n-cube.

Proof. See Appendix B.

Theorem 2 allows me to compare two markets that di�er only in their Preference complex-

ity. Suppose that there are n characteristics of good A and some m > n characteristics of

good B. If the markets have the same number of consumers and the same number of �rms

competing, theorem 2 says that each �rm in the market for good B ought to make more

pro�t. Suppose, instead, that there is a uniform �xed cost, F, of entering either market A

or market B. Then, each �rm must earn a pro�t of at least F in equilibrium in order to

survive. Since �rms in market B earn more than those in market A, if entry is allowed,

there should be more �rms in market B than in market A.

Here, I should clarify what is meant by a �rm in this model. Each �rm is located at a sin-

gle bundle of characteristics, which means that they sell a product. What the model ac-

tually suggests is that the more complicated a product space is, the more individual prod-

ucts should be observed in equilibrium. This claim can be con�rmed by a variety of ob-

servations like the milk/cheese comparison that was made in the introduction. While it is

intuitive to claim that the more kinds of products that are possible, the more should exist,

Theorem 2 provides concrete theoretical grounding for why this should be true even in the

case of �xed demand for the overall good.
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3.5 Endogenous Location

While the dominance of the o�set positioning over the basic positioning is indicative that

�rms ought to be better o� in higher dimensions, it is not a concrete proof. Firms can po-

sition themselves to make higher pro�ts in higher dimensions but it remains to be seen if

they would. Suppose that 2n �rms can choose both their price and their location on an n-

cube and on an (n+1)-cube. The natural question is which of the two set ups will yield a

higher pro�t for �rms. Unfortunately, as I will show in this section, the question is gen-

erally unanswerable. There is no symmetric pure strategy equilibrium for four �rms on a

square, and no reason to believe that there is such an equilibrium in higher dimensions.

To show that there is no pure strategy symmetric equilibrium, let Z be the square [0, 1]x[0, 1]

and �x t=1. As before, a mass 1 of consumers are uniformly distributed on Z. The utility

of a consumer located at x and purchasing a product from �rm located at y that charges

price p is given by ux(y, p) = −d(x, y)2 − p, where d is the Euclidean distance. Each con-

sumer will maximize their utility by purchasing one unit of the good from the �rm which

gives them the least disutility.

There are four �rms, labeled �rm 1 through �rm 4. Each �rm may choose its location in

Z, zi = (ai, bi), and its price, pi ∈ R+. In the �xed location case, symmetry simply meant

that all �rms charged the same price. With endogenous location, I need to extend sym-

metry to location decisions as well. There are two basic ways for four points to exhibit

symmetry on a square. They may be rotationally symmetric, invariant to a rotation of the

square, or re�ectively symmetric, invariant to re�ections of the square. Given a location

(a,b), there exists a unique rotationally symmetric positioning for the other three �rms,

given by h(a, b) = ((a, b), (1 − b, a), (1 − a, 1 − b), (b, 1 − a)). Similarly, for a given (a,b),

g(a, b) = ((a, b), (1− a, b), (1− a, 1− b), (a, 1− b)) provides the unique re�ectively symmet-

ric positioning. Given the symmetry of the square, I can assume without loss of generality
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that a ∈ [0, 1
2
], and b ∈ [0, a].

As in the �xed location model, de�ne Ti and π
e
i such that

Ti(z,p) := {y ∈ Z| pi + d(y, zi) ≤ pj + d(y, zj) ∀j}

πei (z,p) := piV (Ti(z,p))

In this model, a symmetric pure strategy equilibrium is de�ned as follows.

De�nition 2. A symmetric Nash equilibrium is a vector of prices, (p1, p2, p3, p4), a vector

of locations (z1, z2, z3, z4) and a map F : [0, 1]2 → {1, 2, 3, 4} such that:

1. (z1, z2, z3, z4) = g(z1) or (z1, z2, z3, z4) = h(z1).

2. F(x)=i if ∀j, pi + td(x, zi)2 < pj + td(x, zj)2 and only if ∀j, pi + td(x, zi)2 ≤ pj +

td(x, zj)2.

3. Ti = {y ∈ Z|F (y) = i}.

4. For each i, pi maximizes piV (Ti).

5. pi = pj ∀i,j.

At �rst, consider only rotationally symmetric equilibria. Any candidate equilibrium can

be summarized by the actions of one �rm, since prices are uniform and the location can be

fed through h(.). To check if any candidate equilibrium is actually an equilibrium, I must

�nd the pro�t function of a potential deviant in terms of his deviation and the actions of

his competitors according to the candidate. Let the potential equilibrium be (a,b,p) and

the deviation be (â, b̂, p̂). If a potential deviant, �rm 1 for simplicity, maximizes his pro�t

at (a,b,p), then (a,b,p) is an equilibrium. In the case of a symmetric allocation, each �rm

charges the same price and is located symmetrically about the square, inducing them to

56



aaaaaaaaaaaaaaaaaa   
   

   
   

   
   

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD

r

r(γ, δ)

z1

T1

(0, β)r

r(α, 0)

l1,2

l1,3

l1,4

aaaaaaaaaaaaaaaaaa

   
   

   
   

   
   

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
DD

r z1

T1

(0, β)r

r(α, 0)

l1,2

l1,3

l1,4
r r(ρ, σ)

(φ, ω)

Figure 3.3: (a) T1 when l1,3 does not bind, (b) T1 when l1,3 binds

split the consumers evenly. Then the pro�t from any symmetric allocation summarized by

(a,b,p) will simply be p
4
.

T1 is made up of three constraints, one for each of the deviant's competitors. The sets be-

low are the consumers that prefer �rm 1 to �rms 2, 3, and 4 respectively.

{(x, y) ∈ Z|x ≤ 1 + a2 − â2 − 2b+ b2 − b̂2 + p− p̂− 2ay + 2b̂y

2(1− â− b)
} (3.7)

{(x, y) ∈ Z|y ≤ 2 + a2 − â2 − 2b+ b2 − b̂2 + p− p̂− 2a(1− x)− 2x(1− â)

2(1− b− b̂)
} (3.8)

{(x, y) ∈ Z|y ≤ 1 + a2 − â2 − 2a+ b2 − b̂2 + p− p̂− 2âx+ 2bx

2(1− a− b̂)
} (3.9)

Call the line of consumers that are indi�erent between purchasing from �rm 1 and �rm 2

(constraint (3.7), but holding with equality) l1,2, and likewise for the other lines of indif-

ference. Figure 3.3 shows the [0, 1]x[0, 1] square from the perspective of the �rst �rm: each

of the constraints represented by l1,j is plotted, bounding the region that �rm 1 captures,

T1. Figure 3.3(a) shows the case in which l1,3 is non-binding, while Figure 3 (b) shows the

binding case.
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As indicated by the �gure, de�ne the point (α, 0) to be the intersection of l1,4 and the y-

axis. Let the other variables, (β, γ, δ, φ, ω, ρ, σ) be de�ned similarly in keeping with the

�gures1. V (T1) can be derived from basic geometry in each of the cases. In the case in pic-

ture 1, π1 = p̂V (T1) = p̂αγ+βδ
2

, while in picture 2, π2 = p̂V (T1) = p̂αφ+ωρ−σφ+βσ
2

, where the

superscripts refer to forms of the pro�t function rather than the pro�t function for di�er-

ent �rms.

Clearly the crossover point from the �rst expression to the second occurs when φ = ρ.

Thus, the full pro�t function is given by the following:

πe(a, b, p, â, b̂, p̂) =

 p̂αγ+βδ
2

if ρ ≥ φ,

p̂αφ+ωρ−σφ+βσ
2

if ρ < φ.
(3.10)

Let a triple (a∗, b∗, p∗) be said to be a local (global) maximum at itself with respect to πe

if πe(a∗, b∗, p∗, â, b̂, p̂) is maximized locally (globally) over (â, b̂, p̂) at (a∗, b∗, p∗).

Then, in this model, a rotationally symmetric pure strategy equilibrium will be a triple,

(a∗, b∗, p∗) that is a global maximum at itself with respect to πe. The process for investi-

gating re�ectively symmetric equilibria is similar, but using g(.) to determine the location

of the deviant's competitors rather than h(.). All of the methodology remains the same in

the re�ective case.

Theorem 3. There is no symmetric pure strategy equilibrium of this game.

Proof. To show that there are no pure strategy symmetric equilibria in this game, I must

show that there are no pure strategy re�ectively symmetric equilibria and also no pure

strategy rotationally symmetric equilibria. In appendix B, I formally prove that there are

no pure strategy rotationally symmetric equilibria. The proof for the re�ective case is sim-

ilar.

1Full expressions for (α, β, γ, δ, ρ, σ, φ, ω) as well as the full pro�t function and calculations are omitted
for clarity, but are available upon request.
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3.6 Conclusions and Extensions

This paper introduces a model of product di�erentiation that considers the complexity

of a product from a consumer's perspective rather than a �rm's. This is the �rst model

to explicitly model preference complexity and investigate its e�ect on market structure.

My main result is that in an exogenous location setting, more individual products can be

supported in a more complex product space. In other words, the more potential kinds of

products that can exist in a market, the more products ought to exist in equilibrium. This

result meshes well with stylized facts from many markets. While it makes sense that prod-

ucts with more potential variance ought to support more realized variance, I provide clear

theoretical grounding for this idea.

Further, I �nd that allowing �rms to compete with each other over many axes of product

di�erentiation radically alters the nature of competition. Unlike previous Hotelling models,

I �nd that �rms' pricing depends on the number of direct competitors because capturing

consumers from one �rm has a positive e�ect on the measure captured from others. I also

�nd a weak version of the principle of maximum di�erentiation: that �rms would be better

o� locating as far from each other as possible, but that �rms would not realize that allo-

cation. Investigating a proper, endogenous location version of the model, I �nd that there

need not be a symmetric, pure strategy equilibrium for more than two �rms in more than

one dimension. All of these results combine to call into question the practice of using one

dimensional Hotelling models to characterize competition between many �rms in a poten-

tially complex product space.

To extend my work further, I would like to do more with the endogenous location game. If

there is a way to perturb the game so that an equilibrium exists, I could investigate sev-

eral interesting lines of research. Most immediately, I could address whether or not four

�rms would be better o� competing in two dimensions or one, to generate or negate a
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much more powerful version of the main result of this paper. I suspect that they would

be, as �rms in any of the local equilibria of the game that I solved are, in fact, better o�

in two dimensions. Further, I could investigate how the equilibrium changes in response

to changing travel costs, or if it's invariant. Lastly it would be interesting to compare ro-

tationally and re�ectively symmetric equilibria, to see which is easier to achieve or more

pro�table.

To develop the contributions of my framework further, a natural next step is to examine

the e�ects of coalitions on the pricing behavior and pro�ts of �rms in a hypercube set up.

A coalition in this setting would represent either a merger between two �rms or a single

�rm selling multiple products. If individual �rms behave in a qualitatively di�erent way on

a hypercube than they do on a circular road, then it makes sense that coalitions would as

well. Additionally, unlike the circular road, a hypercube framework allows for large coali-

tions that treat every member �rm symmetrically.
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Chapter 4

Grandfather Clauses and Consumer

Complacency

4.1 Introduction

A grandfather clause allows a certain group of people to be exempt from a wider change

in circumstances. They are mostly found in legislation, these days often included to reduce

opposition to the changes that a bill imposes from special interests. However, �rms have

been known to use grandfather clauses to reward their loyal customers. In economics, this

practice typically takes the form of exempting existing subscribers of a service from a price

hike, or allowing them to keep consuming the service but no longer o�ering it to new cus-

tomers. These practices, while hardly widespread, have been a feature of telecom markets

for decades. More recently, in May of 2014, the popular media streaming service Net�ix

o�ered a grandfather clause to all of its current customers shortly after announcing a gen-

eral price hike. Despite this, there is no literature on either �rms' motivations for o�ering

grandfather clauses, or their e�ects on welfare. This is likely the case because it is di�cult

to imagine a world in which grandfather clauses make economic sense.
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When a �rm raises its price for new customers only, it must be responding to a spike in

demand. Otherwise, it would not expect to attract any new customers, especially not at a

higher price. Even assuming a demand spike, there must be some other force which drives

�rms to o�er a grandfather clause instead of raising the price for everyone. Firms could

do so as a tool for price discriminating between long term and short term customers, but

there are a number of reasons that this is unlikely. Typically when price discriminating,

a �rm will want to charge a higher price for customers that value its products more. In

this case, that means that �rms would expect its preexisting customers to be less likely

to enjoy their product than a newcomer. Alternatively, if there is an intrinsic value to the

�rm of having longstanding customers, such as word-of-mouth, then using longstanding

contracts would be a more sensible approach. Even supposing that a price discrimination

makes sense, a grandfather clause would generically be non-optimal. This is because the

optimal discount would have to precisely balance out the increase in price generated by

the demand shock.

In order for grandfather clauses to be optimal, there must be some qualitative di�erence

between keeping a price and naming the same price two periods in a row. Consider two

competing �rms that o�er a subscription service, such as Net�ix and Amazon Prime. Since

these two services are constantly adding new shows and services, as well as losing them,

people's idiosyncratic tastes are changing each period. However, because their customers

are engaged in hundreds if not thousands of markets, they do not typically search to dis-

cover their preferences each time they change. It is a rare Net�ix subscriber that reconsid-

ers whether or not they want to change services every month. However, consumers can be

induced to search if something draws their attention to the market. There are two changes

that can grab consumers' attention: 1) the price of their service increases, or 2) the non-

idiosyncratic quality of the competition increases. In this way, when a �rm develops an

average improvement to the quality of its service, it will induce its competitor's consumers
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to search. Ordinarily, a �rm that has markedly improved its quality would also raise its

price. Here, however, they may wish to o�er a grandfather clause in order to prevent their

consumers from searching and �nding out that their idiosyncratic tastes have shifted far

enough such that they prefer the competition, despite the upswing in quality.

4.2 Model

4.2.1 A One Period Game

There are two �rms that o�er di�erentiated but competing subscription services. There is

a mass one of consumers that have idiosyncratic tastes over these services. That is, each

consumer values consuming product i at some average quality µi plus an iid preference

shock εi with mean zero. Each consumer also su�ers disutility equal to the price she paid,

or:

ui(pi) = µi + εi − pi (4.1)

Then, a consumer will buy from �rm 1 only if

µ1 + ε1 − p1 ≥ µ2 + ε2 − p2 (4.2)

De�ne ε = ε2 − ε1 and let ε ∼ F (x). To avoid having a positive measure of indi�erent con-

sumers, let F (x) have no point masses. Then, the quantity of consumers that prefer �rm 1

is equal to F (µ1 − µ2 + p2 − p1). Assuming that the µi are high enough to ensure market

coverage, only the di�erence, µ1 − µ2, has an impact on the model. Call this di�erence ∆.

Lastly, assume that �rms produce their services at a constant marginal cost, which can be

safely normalized to zero. Then, �rm pro�t functions are given by
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π1(p1; p2,∆) = p1F (∆ + p2 − p1) (4.3)

π2(p2; p1,∆) = p2(1− F (∆ + p2 − p1)) (4.4)

Then there will be an equilibrium whenever the �rst order conditions are satis�ed. For a

simple example, suppose that ε ∼ U [−a, a]. Then trivial calculations will show that

p1 = a+
∆

3
(4.5)

p2 = a− ∆

3
(4.6)

q1 =
1

2a
(a+

∆

3
) (4.7)

q2 =
1

2a
(a− ∆

3
) (4.8)

π1 =
1

2a
(a+

∆

3
)2 (4.9)

π2 =
1

2a
(a− ∆

3
)2 (4.10)

4.2.2 A Two Period Game

For the two period game, let a superscript denote a time period, either 1 or 2. For this

section, bear in mind that consumer search decisions are exogenous. Suppose that initially

both �rms have the same average quality so that ∆1 = 0. In the �rst period of the game,

both �rms enter the market and set their prices. Then, consumers search each �rm and

choose their favorite and the game plays out in the same manner as the previous subsec-

tion. Each month, the �rms lose contracts and add content and generally change their par-

ticular product. Consumers tastes, then, migrate with new ε's being drawn. However, in

each of these periods, nothing draws consumers' attention to the market and they do not
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search. After the �rst period, there are customers that would bene�t from switching ser-

vices, but aren't paying enough attention to realize this.

After a long period of time has passed, consumers original preferences and hence the ser-

vice that they subscribe to no longer carries any meaningful information about their cur-

rent tastes. That is, their second period ε's are uncorrelated with the �rst period's. Sup-

pose that in this second period �rm 1 announces a general improvement in the quality of

its product, either through higher de�nition streaming, producing its own shows, or a par-

ticularly large addition of new content. Let the value of this improvement to the average

customer be called ν. Then, in the second period, ∆2 = ν. For the purposes of this paper,

suppose that ν is exogenous and costless.

Because �rm 1 has a very noticeable upswing in average quality and, presumably, adver-

tised this, some of the customers from �rm 2 will search both �rms and possibly switch

to �rm 1. If �rm 1 does not change its price, its consumers from the previous period will

see no reason to search. Thus, �rm 1 could attempt to hold onto its current customer base

while attracting new customers by not increasing its price. Alternatively, it could name

a higher price to re�ect its competitive edge, and count on its improved quality to keep

most, if not all, of its previous customers. Finally, it could try to get the best of both

worlds by maintaining its previous price for loyal customers so that they do not search,

while naming an optimal price for any newcomers. Obviously, the third option dominates

the �rst, but in some cases the second may be best.

If the �rm raises its price globally, all consumers will search. Then the situation is the

same as in the previous one period case, but using ∆ = ν instead. If the �rm o�ers a

grandfather clause, then its loyal customers are e�ectively out of the market and the �rms

are competing only over the remaining mass 1
2
of consumers that search. Once again, this

competition will take the same form as in the single period model. Let superscripts de-

note the period and recall that ∆1 = 0. Let Π be the maximum pro�t a �rm can achieve
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by naming a single price, and Πgfc be the similar maximum if the �rm uses a grandfather

clause. Putting this all together, �rm 1 faces the choice between the following pro�ts:

Πgfc = p1
1q

1
1 + q1

2(p2
1q

2
1) (4.11)

=
a

2
+

1

2
(

1

2a
(a+

ν

3
)2) (4.12)

Π = p2
1q

2
1 (4.13)

=
1

2a
(a+

ν

3
)2 (4.14)

4.2.3 Equilibrium Behavior

Firm 1 will want to o�er a grandfather clause when Πgfc > Π, which simpli�es to

ν < 3a(
√

2− 1) (4.15)

When the increase in quality is large enough to completely drive a competing �rm out of

the market ν ≥ 3a, then a �rm has no motivation at all to o�er a grandfather clause.

There's no need to prevent its consumers from searching, since they'll stay with the �rm

anyway. When the increase in quality is tiny, �rms have a large incentive to try to prevent

their consumers from searching, since they can expect to lose approximately half of the

ones that do. Then, �rms will want to o�er grandfather clauses when their average quality

improvements are relatively small. This result does not depend on the unrealistic assump-

tion that all of �rm 2's customers search regardless of the size of �rm 1's quality improve-

ment. If there were some scaling function, β(ν), that determined the proportion of �rm

2's customers that searched in terms of the size of �rm 1's improvement, it would have no

e�ect on �rm 1's incentives to o�er a grandfather clause or not, it would only reduce the

overall pro�tability of making the improvement in the �rst place.
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4.2.4 Welfare

In this model, grandfather clauses are unambiguously bad for total welfare. This can be

seen without any explicit calculations, and applies beyond the simple example that I have

worked through thus far. First, since �rm and consumer welfare are both linear in transfer

payments, money is a zero sum a�air which can be discounted in total welfare calculations.

Then, the only thing that matters is the matching values for consumers to �rms. Grand-

father clauses act to distort these by preventing some of �rm 1's customers from searching

and �nding out that they would be better matched with �rm 2. Furthermore, it is plain to

see that grandfather clauses are uniformly bad for �rm 2 by e�ectively reducing the size of

its market. Grandfather clauses will be good for �rm 1's welfare in the cases discussed in

the previous subsection.

The most interesting question is whether or not grandfather clauses are good for consumer

welfare. On the one hand, they reduce the average price paid by consumers. On the other

hand, they cause some consumers to be matched poorly and receive a service that they do

not enjoy very much. It bears asking then, is there a range of parameters in which �rm 1

has an incentive to o�er a grandfather clause that hurts consumers?

Returning to the simple, uniform example, the answer to this question can be calculated.

In a case without grandfather clauses, we know that the market will behave as outlined

in equations (4.5)-(4.10). Then, using equation (4.1), the total consumer welfare in such a

world is given by

W =

∫ ν
3

−a
(µ+ ν − (a+

ν

3
))

1

2a
dx+

∫ a

ν
3

(µ+ x− (a− ν

3
))

1

2a
dx (4.16)

where the �rst integral is for �rm 1's consumers and the second is for �rm 2's. This ex-

pression simpli�es to

67



W = µ− a+
a

4
+
ν

2
+

ν2

36a
(4.17)

Now, in the case with a grandfather clause, half of the market is content to remain with

�rm 1, paying a price of a, while the other half of the market behaves exactly as above.

Then,

W gfc =
1

2
(µ+ ν − a) +

1

2
W (4.18)

Clearly, W gfc > W if and only if µ + ν − a > W , which occurs when ν > 3a(3 − 2
√

2).

When ν is su�ciently small relative to a, the price savings (proportional to ν) are small

relative to the forgone gains through search (proportional to a). Recall that �rm 1 will

only wish to o�er a grandfather clause when ν < 3a(
√

2− 1). In this range, there are some

ν's where a grandfather clause is detrimental to consumer welfare, and others in which it

would enhance consumer welfare.

4.2.5 Investment

Hitherto, I have treated �rm 1's improvement in overall quality, ν as exogenous. However,

it is more realistic to suppose that �rm 1 is able to invest in some research and develop-

ment process in order to determine the magnitude of ν. Then, the natural question to in-

vestigae is whether a �rm's ability to o�er a grandfather clause would encourage or dis-

courage investment.

Suppose that there exists a convex, increasing, and di�erentiable function c(ν) that gives

the investment cost required to improve the average quality of the product by ν. Then,

the �rm will choose ν such that ∂π
∂ν

= ∂c
∂ν
. Let νGFC be the optimal level of improvement

when the �rm institutes a grandfather clause, and let ν∗ be the optimal level of investment

when a �rm does not o�er a grandfather clause.
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Recall from equation (4.11) that in the case of a grandfather clause, the �rm's pro�ts are

given by p1
1q

1
1 + q1

2(p2
1q

2
1). In the case without grandfather clauses, equation (4.13) pro-

vides the pro�ts as p2
1q

2
1. Since the �rst period quantities do not depend on ν in any way,

∂ΠGFC

∂ν
= q1

2
∂Π
∂ν
. Since q1

2 < 1 and c(ν) is convex, then νGFC < ν∗.

So far in this section, the �rm's actual decision to o�er a grandfather clause has been treated

exogenously for clarity of exposition. Recall that, generally speaking, there exists some

ν̂ such that a �rm will want to o�er a grandfather clause if and only if ν < ν̂. Then, if

ν∗ ≥ ν̂, the option to o�er a grandfather clause will have no e�ect on the equilibrium level

of investment. However, if ν∗ < ν̂ then the �rm will want to o�er a grandfather clause and

will instead only invest to the level of νGFC . That is, depending on the functions c and F,

the ability to o�er a grandfather clause will either reduce investment or have no e�ect.

4.3 Extensions

This paper is a very preliminary exploration of a hitherto unstudied phenomenon. A proper

treatment of this question would need to do away with the exogenous consumer search

behavior that I imposed in this model. If consumers' taste shocks were correlated period

to period and search were costly, this model could use the tools developed by the ratio-

nal inattention literature (Sims, 2003). Remember that consumers are perfectly informed

of prices and average quality, but remain uncertain about their own, speci�c tastes. Con-

sumers would optimally search infrequently, but would take into account changes to price

and non-idiosyncratic quality. Then the measure of consumers who search would be a

function that depended on the size of the change in average quality as well as the size of

the price di�erential between competitors. The basic forces of the model, which encourage

a dominant �rm to o�er a grandfather clause in order to discourage its consumers from

searching, would still have traction without the draconian assumptions imposed in this pa-
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per.

An alternative, and less ambitious, reform to this paper would be to assume that there

was some exogenous, but continuous and increasing, function α(p2
1 − p1

1) which deter-

mined the measure of consumers that searched as a function of the increase and prices.

It is likely that in such a model a grandfather clause would not generally be optimal. In-

stead, �rm 1 would probably like to name a cheaper price for its loyal customers than new

customers, but still higher than the initial price. In this case, the behavior would less re-

semble a grandfather clause and more a rewards program, like those o�ered by airlines and

credit cards. The strength of this e�ect would depend on the exact shape of the function

α.

Last, by adding an element of research and development to the model and allowing both

�rms to innovate, I could examine what e�ects the potential for grandfather clauses has

on a �rms desire to innovate. They may make �rms want to innovate more by yielding

a higher potential reward. However, given the rival's ability to do the same, it's possible

that grandfather clauses would lead to a prisoners' dilemma situation and actually reduce

�rm pro�ts from innovation.

4.4 Conclusions

In this paper, I have given a recent, high pro�le example of a �rm instituting a grandfa-

ther clause. I have shown the theoretical di�culties in explaining this behavior using obvi-

ous, existing models. To rectify this gap in our understanding, I propose a model in which

grandfather clauses can be used to manipulate consumer search behavior to the bene�t

of a �rm o the detriment of its competitors. Using a simple example, I explore the conse-

quences of this behavior and �nd several interesting outcomes.

I �nd that even in an environment explicitly designed to promote them, grandfather clauses
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are not universally pro�table. This may help explain why, while unquestionably present in

market behavior, grandfather clauses seem rare. I �nd that grandfather clauses are most

likely to be o�ered when the increase in quality that drives a spike in demand is modest. I

also �nd that, while grandfather clauses are unambiguously harmful to total welfare, they

have an ambiguous e�ect on consumer welfare. They help consumers when the increase

in quality is relatively large, although there exists a range of parameters in which a �rm

would want to o�er a grandfather clause and consumers would bene�t on net from such an

o�er.
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Appendices

A Proofs for Chapter 1

We �rst de�ne some useful notation. As with shoppers, for non-shoppers who have searched

both �rms, we assume that θN ∈ [0, 1] will ignore price-matching guarantees and always

purchase from the �rm with the lower listed price. The remaining 1 − θN will invoke a

price-matching guarantee at the last �rm they stopped in when one is available and neces-

sary to obtain the lower price there and purchase from the �rm with the lower listed price

otherwise. Let αS(N) ∈
[
0, θS(N)

]
be the proportion of shoppers (non-shoppers) who buy

from the �rst �rm they searched after having observed the same price listed in both �rms.1

Let γ be the proportion of non-shoppers who do not search after freely observing a price of

rj at �rm i.

De�nition 1. We say that �rms have a mutual mass point when each �rm has a mass

point at the same price. We say that �rms have a mutual break when each �rm's equilib-

rium support has a break over the same price interval.

Proof of Proposition 1

The proposition follows directly from the proof of Claims 1A and 1B below and from Weitz-

man's (1979) Pandora's Rule, which implies that non-shoppers' reservation prices asso-

ciated with each �rm must be the same when consumers are indi�erent regarding which

�rm's price to sample �rst. In particular, Pandora's Rule rules out support types 3 and

4 in Claims 1A and 1B. The proofs of Claims 1A and 1B follows in the same vein as the

proofs of Propositions 2 through 5 in Narasimhan (1988). However, various complications

1The restriction αS(N) ≤ θS(N) is used for mathematical tractability. It says that when a �rm under-
cuts a tie, it cannot lose customers.

77



arise because consumers in our model follow an optimal search rule and �rms have the

ability to price-match. Therefore, in order to aid the reader, we �rst outline the intuition

behind each of the �ve steps used to prove Claims 1A and 1B.

Step 1.1. v ≥ min {p̄1, p̄2} ≥ p
1

= p
2

= p ≥ 0.

Proof intuition. A �rm, i, that prices below its rival's lowest price, p
j
, captures the same

number of consumers everywhere on [p
i
, p

j
), such that its pro�t is increasing in price over

this interval, a contradiction. Prices below zero result in negative pro�ts. A �rm i that

prices above v can only pro�t from consumers who accept an o�er to match a price no

higher than v from �rm j. Firm i cannot lose money from such consumers by shifting

mass above v down to v, but now expects to make sales if �rm j prices above v.

Step 1.2. There are no mutual mass points.

Proof intuition. This claim follows via a standard mass point undercutting argument (in

this case, borrowed from a draft version of Janssen and Non 2008).

Step 1.3. The only possible breaks in the equilibrium supports are:

(i) If p̄i < p̄j, there is a break at (p̄i, p̄j).

(ii) If r = ri = rj < p̄i = p̄j, there may be a mutual break with lower bound r.

(iii) If ri 6= rj and �rm i has a mass point at rj, there may be a mutual break with lower

bound rj.

Proof intuition. Because a �rm's price distribution function is constant over a break, in

general, it's rival's pro�t will be higher at one end of the break than the other, or other-

wise be increasing in price along the break, which cannot be the case in a mixed strat-

egy equilibrium. The potential exceptions to this argument are items (i) to (iii) listed

above.
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Step 1.4. Firm i does not have a mass point in the lower bound or the interior of �rm j's

equilibrium support, except possibly at rj.

Proof intuition. The proof of this step follows in a similar fashion to that of Step 1.2, but

relies on the convexity of �rm supports away from rj such that continuous mass above a

rival mass point can be shifted below it for a gain in pro�t.

Step 1.5. If p̄ = p̄1 = p̄2 then either

(i) p̄ = min {v, r1, r2}, the supports have no breaks, and at most one �rm can have a

mass point at p̄, or

(ii) p̄ = min {v, max {r1, r2}}, there is a mutual break above min {r1, r2} < p̄, �rm i has

a mass point at rj, and �rm j has a mass point at p̄.

Proof intuition. Using Steps 1.1 to 1.4, this step rules out item (ii) in Step 1.3 and places

restrictions on item (iii). Additionally, when �rms have the same convex support, this

claim entails that p̄ = min{v, r1, r2}. At p̄, �rm i only sells to those shoppers who invoke

price-matching guarantees to attain �rm j's price. When p̄ < min{v, r1, r2}, �rm i can

increase pro�t by raising prices paid by captive non-shoppers without decreasing shopper

pro�t. When p̄ > min{v, r1, r2}, �rm i can do better by lowering p̄ to the point that it sells

to non-shoppers.

Step 1.5 allows us to narrow down the possible supports to item (i) in Step 1.3 and the

two items in Step 1.5. By supposing that all consumers are indi�erent regarding which

�rm to sample �rst, we can rely on Weitzman's (1979) Pandora's Rule to further narrow

the supports to item (i) in Step 1.5. Finally, if �rm i prices with a mass point at rj in

equilibrium, but some non-shoppers searched upon observing rj, �rm i would have an in-

centive to shift the mass point slightly below rj, a contradiction. We next proceed to the

complete proof.
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Claim 1A. Suppose that �rms are exogenously required to o�er price-matching guarantees

and that θS ∈ (0, 1]. In equilibrium, �rms play mixed pricing strategies with p
1

= p
2

= p <

min{p̄1, p̄2}. The supports of the �rm pricing distributions can only take one of the four

following forms:

1. Completely symmetric, no breaks: p̄1 = p̄2 = p̄ = min {v, r1 = r2}.

2. Single mass point, no breaks: �rm i has a mass point at p̄1 = p̄2 = p̄ = min {v, rj},

rj ≤ ri.

3. Two mass points, mutual break: �rm j has a mass point at ri < min {v, rj}; mutual

break over (ri, p
u) for pu ∈ (ri, p̄); p̄1 = p̄2 = p̄ = min {v, rj}, �rm i has a mass

point at p̄.

4. Two mass points, single break: �rm j has a mass point at p̄j = ri < min {v, rj}; �rm

i has a break over (ri, p̄i) for p̄i = min {v, rj} and a mass point at p̄i.

The following steps complete the proof of Claim 1A.

Step 1A.1. v ≥ min {p̄1, p̄2} ≥ p
1

= p
2

= p ≥ 0.

Proof. Suppose p
1
< p

2
≤ v. Then, for p1 ∈

[
p

1
, p

2

)
, �rm 1's expected pro�t is

p1 {µ [θS + (1− βS) (1− θS)]

+ (1− µ) {βN + (1− βN) {[1− F2 (r1)] + (1− γ) Pr (p2 = r1)}}}
(19)

(because p
2
< r2 by de�nition), which is increasing in p1, contradicting the equilibrium. If

p
1
≤ v < p

2
, for p1 ∈

[
p

1
, v
)
, �rm 1's expected pro�t is given by Expression (19), which

is increasing in p1, so it must be the case that p
1

= v. But if v = p
1
< p

2
, then F1 (v) = 1

(because �rm 1 does not make any pro�t at prices above v) and �rm 2 expects pro�t of

µβS (1− θS) v everywhere on its support. For su�ciently small ε > 0, �rm 2 bene�ts by

shifting its mass to v−ε for expected pro�t of (v − ε) {µ [θS + βS (1− θS)] + (1− µ) (1− βS)}.
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Finally, if v < p
1
≤ p

2
, then both �rms make zero pro�ts and either can increase pro�t by

shifting mass to v, so p
2
≤ p

1
. By a similar argument, p

2
≤ p

1
and v ≥ p

1
= p

2
= p.

Because prices below zero result in negative pro�t, p ≥ 0.2

Suppose v < min {p̄1, p̄2}. Then, for pi > v, �rm i expects no pro�t with probability

Pr (pj > v) > 0 and because consumers never purchase at prices above v, �rm i will only

pro�t from consumers who accept its price-match o�er after they had rejected a price no

higher than v at �rm j. Thus, �rm i cannot lose money from such consumers by shift-

ing mass above v down to v. However, by doing so, it now also expects to earn a positive

pro�t with probability Pr (pj > v), a contradiction.

Step 1A.2. There are no mutual mass points.

Proof. Suppose that there is a mutual mass point at p. Firm 1's expected pro�t at p when

�rm 2 charges p as well is

p {µ [βSαS + (1− βS) (1− αS)]

+ (1− µ) {βN [Ip<r2 + [γ + αN (1− γ)] Ip=r2 + αNIp>r2 ]

+ (1− βN) (1− αN) [(1− γ) Ip=r1 + Ip>r1 ]}}

(20)

where I is an indicator function. Suppose instead that �rm 1 deviates to p− ε while �rm 2

maintains its price at p. Firm 1's expected pro�t will be

(p− ε) {µ [βSθS + (1− βS)]

+ (1− µ) {βN [Ip−ε<r2 + [γ + θN (1− γ)] Ip−ε=r2 + θNIp−ε>r2 ]

+ (1− βN) [(1− γ) Ip=r1 + Ip>r1 ]}}

(21)

Expression (20) is smaller than Expression (21) provided that ε is su�ciently small.

Suppose �rm 2 chooses a price other than p. Lowering the price charged never reduces the

number of sales so the loss to �rm 1 from lowering the price by ε is at most ε. However,

when p is charged with positive probability, lowering the price by ε will with positive prob-

2If p = 0, then there must be zero density at p = 0 because at pi = ε < min {rj , v}, �rm i will make
money o� its non-shoppers.
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ability lead to a gain and with the complementary probability at worst lead to a loss of ε.

Therefore, by shifting its mass point at p to p−ε for su�ciently small ε �rm 1 increases its

expected pro�t, a contradiction. For the case αS = θS, αN = θN , and βN = βS = 1, �rm 1

cannot pro�tably undercut the mutual mass point, but �rm 2 can.

Step 1A.3. The only possible breaks in the equilibrium supports are:

(i) If p̄i < p̄j, there is a break at (p̄i, p̄j) ∈ Sj.

(ii) If r = ri = rj < p̄i = p̄j, there may be a mutual break with lower bound r.

(iii) If ri 6= rj and �rm i has a mass point at rj, there may be a mutual break with lower

bound rj.

Proof. Let S1 and S2 be respectively, the equilibrium supports for �rms 1 and 2. De�ne

H =
(
pd, pu

)
∈ int(S1 ∩ S2).

Suppose �rst, without loss of generality, that in equilibrium, �rm 2 has no support over H,

but that �rm 1 does. Firm 1's expected pro�t at some p1 ∈ H is

µ {p1 (θSβS + 1− βS) [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) {p1βN {Ip1<r2 + {γ + θN (1− γ) [1− F2 (p1)]} Ip1=r2

+ θN [1− F2 (p1)] Ip1>r2}

+ (1− βN) {p1 [1− F2 (r1) + (1− γ) Pr (p2 = r1)] Ip1<r1 + p1 [1− F2 (r1)] Ip1=r1

+ {p1 [1− F2 (p1)] + r1 (1− θN) (1− γ) Pr (p2 = r1)

+ (1− θN) E [p2|r1 < p2 < p1] [F2 (p1)− F2 (r1)]} Ip1>r1}}

(22)

As �rm 1 raises p1 along H, its expected pro�t is increasing because F2 (p1) is constant

along H (and equal to F2 (r1) if r1 ∈ H). Thus, if r2 /∈ H, �rm 1 could increase expected

pro�ts by shifting all its mass in H slightly below pu (to pu if �rm 2 does not have a mass

point there), a contradiction. If r2 ∈ H, �rm 1 can increase expected pro�ts by shifting

all mass in
(
pd, r2

)
slightly below r2, and all mass in (r2, p

u) either slightly below r2 or
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to pu, again contradicting the equilibrium. A similar argument applies when �rm 1 has no

support over H, but �rm 2 does. This tells us that any breaks in S1 ∩ S2 are mutual.

Now suppose that neither �rm randomizes over H in equilibrium. Suppose �rst that pd 6=

r1, p
d 6= r2 and that neither �rm has a mass point at pd. Then either �rm 1 has a strictly

higher expected pro�t at pu (or slightly below r2 if r2 ∈ H) than at pd, or �rm 2 has a

strictly higher expected pro�t at pu (or slightly below r1 if r1 ∈ H) than at pd, or possibly

both, if neither �rm has a mass point at pu, contradicting the equilibrium.

Suppose that �rm i has a mass point at pd 6= rj. Because there are no mutual mass points,

�rm i could increase pro�ts by shifting its mass point to pu (or slightly below pu if �rm j

has a mass point there, or slightly below rj if rj ∈ H).

If pd = rj 6= ri and �rm i has no mass point at pd, �rm j's expected pro�t will be strictly

higher at pu (or slightly below pu if �rm i has a mass point there, or slightly below ri if

ri ∈ H) than at pd. But if �rm i does have a mass point at pd, then it is possible that

pro�ts are the same at pd and pu for each �rm. If γ 6= 1, �rm i can pro�tably deviate by

shifting its mass point slightly below pd. In doing so, it retains 1 − γ non-shoppers who

search after observing a price of rj and have a positive probability of purchasing from �rm

j. However, if γ = 1, neither �rm may have a pro�table deviation. This may also be the

case if, pd = r1 = r2.

From Step 1A.1, we know that both S1 and S2 have the same lower bound, p, so S1∆S2 ∈

(min {p̄1, p̄2} , max {p̄1, p̄2}]. Suppose, without loss of generality, that p̄1 > p̄2. At p1 ∈

(p̄2, p̄1], �rm 1's expected pro�t is

µ (1−θS) (1−βS) E [p2] + (1−µ) {p1βN (Ip1<r2 + γIp1=r2) Ip1≤v

+ (1−θN) (1−βN) {E [p2|r1 < p2] [1− F2 (r1)] + r1 (1−γ) Pr (p2 = r1)}}
(23)

If p̄2 < r2, then for βN 6= 0, �rm 1's expected pro�t is increasing in p1 along (p̄2, min {v, r2})

and is strictly greater anywhere in (p̄2, min {v, r2}) than at any price above min {v, r2}.

As a result, for ε > 0 su�ciently small, �rm 1 can increase pro�t by shifting mass in
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(p̄2, p̄1] to min {v, r2} − ε (likewise if p̄2 = min {v, r2}). Therefore, when p̄2 ≤ r2, ei-

ther S1∆S2= {p̄1}= {min {v, r2}}, or S1∆S2 = ∅. Suppose S1∆S2 = {p̄1}. If �rm 2 has

no mass point at p̄2, this means that �rm 1's expected pro�t at p̄1 is strictly higher than

its expected pro�t at p̄2, a contradiction. If �rm 2 has a mass point at p̄2 6= r1, Because

there are no mutual mass points, �rm 2 can pro�tably shift the mass point to slightly be-

low p̄1 (or slightly below r1 if r1 ∈ (p̄2, p̄1]). However, if γ = 1, �rm 2 has a mass point

at p̄2 = r1, and F1 (r1) is large enough, then neither �rm may have a pro�table deviation.

Following the proof of Step 1A.5, we will discuss why an equilibrium where r2 < p̄2 < p̄1

cannot exist. A similar argument applies when p̄2 > p̄1.

Corollary 1A.1. The equilibrium supports are the same except if p̄i = rj < p̄j = min {v, ri}.

Step 1A.4. Firm i does not have a mass point in the lower bound or the interior of �rm

j's equilibrium support, except possibly at rj.

Proof. Suppose, without loss of generality, that �rm 2 has a mass point at p ∈ S1\ {p̄1},

and suppose that p 6= r1. Firm 1's expected pro�t at p − ε when �rm 2 charges p is given

by Expression (21), whereas its expected pro�t at p+ ε is

µp (1− θS) (1− βS) + (1− µ) {(p+ ε) βN (Ip+ε<r2 + γIp+ε=r2)

+p (1− θN) (1− βN) [(1− γ) Ip=r1 + Ip>r1 ]}
(24)

Expression (24) is smaller than Expression (21) provided that ε is su�ciently small. Sup-

pose �rm 2 chooses a price other than p. Lowering the price charged never reduces the

number of sales so the loss to �rm 1 from lowering the price by 2ε or less is at most 2ε.

However, when p is charged with positive probability, lowering the price by 2ε or less will

with positive probability lead to a gain and with the complementary probability at worst

lead to a loss of 2ε. Therefore, by shifting its mass between p and p + ε to p − ε for suf-

�ciently small ε, �rm 1 increases its expected pro�t, a contradiction. By a similar argu-

ment, �rm 1 cannot have a mass point at p ∈ S2\ {p̄2}, except possibly if p = r2.
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Step 1A.5. If p̄ = p̄1 = p̄2 then either

(i) p̄ = min {v, r1, r2}, the supports have no breaks, and at most one �rm can have a

mass point at p̄, or

(ii) p̄ = min {v, max {r1, r2}}, there is a mutual break above min {r1, r2} < p̄, �rm i has

a mass point at rj, and �rm j has a mass point at p̄.

Proof. Suppose that p̄ = p̄1 = p̄2 and neither �rm has a mass point at p̄. From Steps

1A.1 and 1A.4 we know that p < p̄ ≤ v. Suppose, without loss of generality, that p̄ <

min {v, r2}. At p̄, �rm 1's expected pro�t is given by Expression (23) (with p1 = p̄),

which is increasing in p1 along (p̄, min {v, r2}) when βN 6= 0, a contradiction. Suppose

instead that p̄ > min {v, r2} = r2. For any p1 ∈ (r2, p̄), in equilibrium, E π1 (p̄) =

E π1 (p1, F2 (p1)). E π1 (p̄) is given by Expression (23) (with p1 = p̄). If r2 ≥ r1, for

p1 ∈ (r2, p̄), E π1 (p1, F2 (p1)) equals

µ {p1 (θSβS + 1− βS) [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) {p1βNθN [1− F2 (p1)] + (1− βN) {r1 (1− θN) (1− γ) Pr (p2 = r1)

+ p1 [1− F2 (p1)] + (1− θN) E [p2|r1 < p2 < p1] [F2 (p1)− F2 (r1)]}}

(25)

Setting Expression (23) equal to Expression (25) and di�erentiating with respect to p1

yields
[µ (θSβS + 1− βS) + (1− µ) (θNβN + 1− βN)] [1− F2 (p1)]

− [µθS + (1− µ) θN ] p1F2
′ (p1) = 0

(26)

Solving the di�erential equation given by Equation (26) using the initial value F2 (p̄) = 1

gives us F2 (p1) = 1 for all p1 ∈ (r2, p̄], a contradiction. Similarly, if r1 ∈ (r2, p̄), then

Expression (25) represents �rm 1's expected pro�t at (r1, p̄) and F2 (p1) = 1 for all p1 ∈

(r1, p̄], a contradiction. If on the other hand, r1 ≥ p̄, E π1 (p̄) becomes µ (1− θS) (1− βS) E [p2]

while E π1 (p1, F2 (p1)) at p1 ∈ (r2, p̄) becomes

µ {p1 (θSβS + 1− βS) [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) βNθNp1 [1− F2 (p1)]
(27)
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Setting µ (1− θS) (1− βS) E [p2] equal to Expression (27) and solving the resulting di�er-

ential equation using the initial value F2 (p̄) = 1 again gives us F2 (p1) = 1 for all p1 ∈

(r2, p̄], a contradiction. Hence, for βN 6= 0, p̄ = min {v, r2}. By a similar argument, for

βN 6= 1, p̄ = min {v, r1}, so when neither �rm has a mass point at p̄, p̄ = min {v, r1, r2}.

From Step 1A.2, we know that at most one �rm can have a mass point at p̄, say �rm j. If

γ = 1 or v < ri, then following the argument in the paragraph above, p̄ = min {v, ri}.

Otherwise, �rm j cannot have a mass point at p̄ (using reasoning similar to that in the

proof of Step 1A.3). Moreover, if rj ≥ ri, then p̄ = min {v, r1, r2} and from Step 1A.3, we

know that the �rm supports have no breaks. Conversely, suppose rj < ri (and therefore,

rj < v). Without loss of generality, let i = 1. From Step 1A.4, we know that �rm 2 cannot

have a mass point at r2. At r2, �rm 1 expects pro�t of

µ {r2 (θSβS + 1− βS) [1− F2 (r2)] +

(1− θS) (1− βS) E [p2|p2 < r2]F2 (r2)}+ (1− µ) βNr2

(28)

whereas at p1 ∈ (r2, p̄), E π1 (p1, F2 (p1)) is given by Expression (27). By de�nition, for

p1 ∈ (r2, p̄), 0 < F2 (r2) ≤ F2 (p1), so for p1 close enough to r2, Expression (28) is strictly

greater than Expression (27). Therefore, r2 must be the lower bound for a break in S1 and

we are in Case (iii) of Step 1A.3).

Notice that Step 1A.5 rules out Case (ii) in Step 1A.3. Moreover, following the same pro-

cedure used in Step 1A.5, it is easy to show that an equilibrium where rj < p̄j < p̄i cannot

exist. In particular, by setting E πi (p̄i) = Eπi (pi, Fj (pi)) for pi ∈ (rj, p̄j] and solving for

Fj, we see that Fj (pi) = 1 for all pi ∈ (rj, p̄j], a contradiction.

Claim 1A: Support Type 4. Without loss of generality, suppose that βN is such that

p̄1 = r2 < min {v, r1}= p̄2. Then a complete solution to an equilibrium with support type

4, if one exists, requires the following set of equations to hold.
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E π1

(
p
)

= Eπ1 (p1, F2 (p1)) ⇔ p [µ (βSθS + 1− βS) + (1− µ) βN ]

= µ {p1 (βSθS + 1− βS) [1− F2 (p1)]

+ (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}+ (1− µ) βNp1

(29)

E π1

(
p
)

= Eπ1 (r2, F2 (r2)) ⇔ p [µ (βSθS + 1− βS) + (1− µ) βN ]

= µ {r2 (βSθS + 1− βS) Pr (p2 = p̄2)

+ (1− θS) (1− βS) E [p2|p2 < r2]F2 (r2)}+ (1− µ) βNr2

(30)

E π2

(
p
)

= Eπ2 (p2, F1 (p2))

⇔ p {µ [(1− βS) θS + βS] + (1− µ) (1− βN)} = (1− µ) (1− βN) p2

+ µ {p2 [(1− βS) θS + βS] [1− F1 (p2)] + (1− θS) βS E [p1|p1 < p2]F1 (p2)}

(31)

E π2

(
p
)

= Eπ2 (p̄2) ⇔ p {µ [(1− βS) θS + βS] + (1− µ) (1− βN)}

= µ (1− θS) βS E [p1] + (1− µ) (1− βN) p̄2

(32)

∫ r2

p

F1(p)dp+ r1 − r2 = c (33)

∫ r2

p

F2(p)dp = c (34)

Pr (p1 = r2) = 1− lim
ε→0−

F1 (r2 − ε) ∈ (0, 1) (35)

In addition to Equations (29) to (35), �rm 2 must have an expected price which is strictly

lower than that of �rm 1. Moreover, the inequality, E π1 (r2, F2 (r2)) > E π1 (p̄2 − ε, F2 (p̄2 − ε))

must hold for all ε ∈ (0, p̄2 − r2). That is, �rm 1 must not wish to deviate above r2.

We can use the following procedure to look for equilibrium. First, we use Equation (29)

and (31) to solve for F2 and F1 respectively, in terms of p. Plugging F2 into Equation (34)

and using Equation (30) to solve for p we obtain r2 in terms of Pr (p2 = p̄2). Plugging F1

into Equation (35) yields Pr (p1 = r2) in terms of Pr (p2 = p̄2). Rewriting F1 in terms of

Pr (p2 = p̄2) and plugging into Equation (33) yields r1 in terms of Pr (p2 = p̄2). Finally,

using Equation (32) to solve for p and setting this equal to the solution obtained from

Equation (30) we can rewrite r1 as an alternate function of Pr (p2 = p̄2). Setting the two
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expressions for r1 equal to each other, we can now solve for Pr (p2 = p̄2) in terms of the ex-

ogenous parameters. An equilibrium exists only if there is a solution to Pr (p2 = p̄2) in the

interval [0, 1] such that non-shoppers strictly prefer to search �rm 2 �rst and �rm 1 does

not wish to deviate above r2.

Claim 1B. Suppose that �rm 1 is exogenously required to o�er price-matching guarantees

while �rm 2 is required not to. In equilibrium, �rms play mixed pricing strategies with p
1

=

p
2

= p < min{p̄1, p̄2}. The supports of the �rm pricing distributions can only take one of

the four following forms:

1. Completely symmetric, no breaks: p̄1 = p̄2 = p̄ = min {v, r1 = r2}.

2. Single mass point, no breaks: �rm i has a mass point at p̄1 = p̄2 = p̄ = min {v, rj},

rj ≤ ri.

3. Two mass points, mutual break: �rm j has a mass point at ri < min {v, rj}; mutual

break over (ri, p
u) for pu ∈ (ri, p̄); p̄1 = p̄2 = p̄ = min {v, rj}, �rm i has a mass

point at p̄.

4. Two mass points, single break: �rm j has a mass point at p̄j = ri < min {v, rj}; �rm

i has a break over (ri, p̄i) for p̄i = min {v, rj} and a mass point at p̄i.

The following steps complete the proof of Claim 1B.

Step 1B.1. v ≥ min {p̄1, p̄2} ≥ p
1

= p
2

= p ≥ 0.

Proof. Suppose p
1
< p

2
≤ v. Then, for p1 ∈

[
p

1
, p

2

)
, �rm 1's expected pro�t is

p1 {µ+ (1− µ) {βN + (1− βN) {[1− F2 (r1)] + (1− γ) Pr (p2 = r1)}}} (36)

which is increasing in p1, contradicting the equilibrium. If p
1
≤ v < p

2
, for p1 ∈

[
p

1
, v
)
,

�rm 1's expected pro�t is given by Expression (36), which is increasing in p1, so it must be
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the case that p
1

= v. But if v = p
1
< p

2
, �rm 2 makes no pro�t on its support and for

su�ciently small ε > 0, it bene�ts by shifting its mass to v − ε. Finally, if v < p
1
≤ p

2
,

then both �rms make zero pro�ts and either can increase pro�t by shifting mass to v, so

p
2
≤ p

1
. Suppose p

2
< p

1
≤ v. Then, for p2 ∈

[
p

2
, p

1

)
, �rm 2's expected pro�t is

p2 {µ [θS + βS (1− θS)]

+ (1− µ) {(1− βN) + βN {[1− F1 (r2)] + (1− γ) Pr (p1 = r2)}}}
(37)

(because p
1
< r1 by de�nition) which is increasing in p2, again contradicting the equilib-

rium. If p
2
≤ v < p

1
, for p2 ∈

[
p

2
, v
)
, �rm 2's expected pro�t is given by Expression (37),

which is increasing in p2, so it must be the case that p
2

= v. But if v = p
2
< p

1
, then

F1 (v) = 1 (because �rm 2 does not make any pro�t at prices above v) and �rm 1 expects

pro�t of µ (1− βS) (1− θS) v everywhere on its support. For su�ciently small ε > 0, �rm 1

bene�ts by shifting its mass to v−ε for expected pro�t of (v − ε) {µ [θS + (1− βS) (1− θS)] + (1− µ) βS}.

Thus, v ≥ p
1

= p
2

= p. Because prices below zero result in negative pro�t, p ≥ 0.3

The proof that v ≥ min {p̄1, p̄2} follows precisely that in Step 1A.1.

Step 1B.2. There are no mutual mass points.

Proof. Suppose that there is a mutual mass point at p. Firm 1's expected pro�t at p when

�rm 2 charges p as well is given by Expression (20). Suppose instead that �rm 1 deviates

to p− ε while �rm 2 maintains its price at p. Firm 1's expected pro�t will be

(p− ε) {µ+ (1− µ) {βN + (1− βN) [(1− γ) Ip=r1 + Ip>r1 ]}} (38)

Expression (20) is smaller than Expression (38) provided that ε is su�ciently small.

Suppose �rm 2 chooses a price other than p. Lowering the price charged never reduces the

number of sales so the loss to �rm 1 from lowering the price by ε is at most ε. However,

when p is charged with positive probability, lowering the price by ε will with positive prob-

3If p = 0, then there must be zero density at p = 0 because at pi = ε < min {rj , v}, �rm i will make
money o� its non-shoppers.
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ability lead to a gain and with the complementary probability at worst lead to a loss of ε.

Therefore, by shifting its mass point at p to p−ε for su�ciently small ε �rm 1 increases its

expected pro�t, a contradiction.

Step 1B.3. The only possible breaks in the equilibrium supports are:

(i) If p̄i < p̄j, there is a break at (p̄i, p̄j) ∈ Sj.

(ii) If r = ri = rj < p̄i = p̄j, there may be a mutual break with lower bound r.

(iii) If ri 6= rj and �rm i has a mass point at rj, there may be a mutual break with lower

bound rj.

Proof. Let S1 and S2 be respectively, the equilibrium supports for �rms 1 and 2. De�ne

H =
(
pd, pu

)
∈ int(S1 ∩ S2).

Suppose �rst that in equilibrium, �rm 2 has no support over H, but that �rm 1 does.

Firm 1's expected pro�t at some p1 ∈ H is

µ {p1 [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) {p1βN {Ip1<r2 + {γ + (1− γ) [1− F2 (p1)]} Ip1=r2 + [1− F2 (p1)] Ip1>r2}

+ (1− βN) {p1 [1− F2 (r1) + (1− γ) Pr (p2 = r1)] Ip1<r1 + p1 [1− F2 (r1)] Ip1=r1

+ {p1 [1− F2 (p1)] + r1 (1− θN) (1− γ) Pr (p2 = r1)

+ (1− θN) E [p2|r1 < p2 < p1] [F2 (p1)− F2 (r1)]} Ip1>r1}}

(39)

As �rm 1 raises p1 along H, its expected pro�t is increasing because F2 (p1) is constant

along H (and equal to F2 (r1) if r1 ∈ H). Thus, if r2 /∈ H, �rm 1 could increase expected

pro�ts by shifting all its mass in H slightly below pu (to pu if �rm 2 does not have a mass

point there), a contradiction. If r2 ∈ H, �rm 1 can increase expected pro�ts by shifting

all mass in
(
pd, r2

)
slightly below r2, and all mass in

(
r2, p

d
)
either slightly below r2 or to

pu, again contradicting the equilibrium.

Conversely, suppose that �rm 1 has no support over H, but that �rm 2 does. Firm 2's ex-

pected pro�t at some p2 ∈ H is
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µp2 [(1− βS) θS + βS] [1− F1 (p2)] + (1− µ) p2

×{(1− βN) {Ip2<r1 + {γ + θN (1− γ) [1− F1 (p2)]} Ip2=r1

+ θN [1− F1 (p2)] Ip2>r1}

+ βN {[1− F1 (r2) + (1− γ) Pr (p1 = r2)] Ip2<r2

+ [1− F1 (r2)] Ip2=r2 + [1− F1 (p2)] Ip2>r2}}

(40)

As �rm 2 raises p2 along H, its expected pro�t is increasing because F1 (p2) is constant

along H (and equal to F1 (r2) if r2 ∈ H). Thus, if r1 /∈ H, �rm 2 could increase expected

pro�ts by shifting all its mass in H slightly below pu (to pu if �rm 2 does not have a mass

point there), a contradiction. If r1 ∈ H, �rm 2 can increase expected pro�ts by shifting all

mass in
(
pd, r1

)
slightly below r1, and all mass in (r1, p

u) either slightly below r1 or to pu,

again contradicting the equilibrium. Thus, any breaks in S1 ∩ S2 are mutual.

The remainder of this proof follows similarly to that in Step 1A.3.

Corollary 1B.1. The equilibrium supports are the same except if p̄i = rj < p̄j = min {v, ri}.

Step 1B.4. Firm i does not have a mass point in the lower bound or the interior of �rm

j's equilibrium support, except possibly at rj.

Proof. The proof to show that �rm 2 does not have a mass point at p ∈ S1\ {p̄1} pro-

ceeds precisely as that in Step 1A.4. Suppose instead that �rm 1 has a mass point at p ∈

S2\ {p̄2} and that p 6= r2. Firm 2's expected pro�t at p− ε when �rm 1 charges p is

(p− ε) {µ [(1− βS) θS + βS] + (1− µ)

×{(1− βN) [Ip−ε<r1 + [γ + θN (1− γ)] Ip−ε=r1 + θNIp−ε>r1 ]

+ βN [(1− γ) Ip=r2 + Ip>r2 ]}}

(41)

whereas its expected pro�t at p+ ε is

(1− µ) (p+ ε) (1− βN) (Ip+ε<r1 + γIp+ε=r1) (42)

Expression (42) is smaller than Expression (41) provided that ε is su�ciently small. Sup-
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pose �rm 1 chooses a price other than p. Lowering the price charged never reduces the

number of sales so the loss to �rm 2 from lowering the price by 2ε or less is at most 2ε.

However, when p is charged with positive probability, lowering the price by 2ε or less will

with positive probability lead to a gain and with the complementary probability at worst

lead to a loss of 2ε. Therefore, by shifting its mass between p and p + ε to p − ε for su�-

ciently small ε, �rm 2 increases its expected pro�t, a contradiction.

Step 1B.5. If p̄ = p̄1 = p̄2 then either

(i) p̄ = min {v, r1, r2}, the supports have no breaks, and at most one �rm can have a

mass point at p̄, or

(ii) p̄ = min {v, max {r1, r2}}, there is a mutual break above min {r1, r2} < p̄, �rm i has

a mass point at rj, and �rm j has a mass point at p̄.

Proof. Suppose that p̄ = p̄1 = p̄2 and neither �rm has a mass point at p̄. From Steps 1B.1

and 1B.4 we know that p < p̄ ≤ v. Suppose that p̄ < min {v, r2}. At p1 ∈ [p̄, min {v, r2}),

�rm 1's expected pro�t is

µ (1− θS) (1− βS) E [p2]

+ (1− µ) {βNp1 + (1− θN) (1− βN) {E [p2|r1 < p2] [1− F2 (r1)]

+ r1 (1− γ) Pr (p2 = r1)}}

(43)

which is increasing in p1 when βN 6= 0, a contradiction. Suppose instead that p̄ > min {v, r2}=

r2. For any p1 ∈ (r2, p̄), in equilibrium, E π1 (p̄)= Eπ1 (p1, F2 (p1)). E π1 (p̄) equals

µ (1− θS) (1− βS) E [p2]

+ (1− µ) (1− θN) (1− βN) {E [p2|r1 < p2] [1− F2 (r1)]

+ r1 (1− γ) Pr (p2 = r1)}

(44)

If r2 ≥ r1, for p1 ∈ (r2, p̄), E π1 (p1, F2 (p1)) equals
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µ {p1 [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) {p1βN [1− F2 (p1)] + (1− βN) {r1 (1− θN) (1− γ) Pr (p2 = r1)

+ p1 [1− F2 (p1)] + (1− θN) E [p2|r1 < p2 < p1] [F2 (p1)− F2 (r1)]}}

(45)

Setting Expression (44) equal to Expression (45) and di�erentiating with respect to p1

yields

1− F2 (p1)− [µ (θS + βS − θSβS) + (1− µ) (θN + βN − θNβN)] p1F2
′ (p1) = 0 (46)

Solving the di�erential equation given by Equation (46) using the initial value F2 (p̄) = 1

gives us F2 (p1) = 1 for all p1 ∈ (r2, p̄], a contradiction. Similarly, if r1 ∈ (r2, p̄), then

Expression (45) represents �rm 1's expected pro�t at (r1, p̄) and F2 (p1) = 1 for all p1 ∈

(r1, p̄], a contradiction. If on the other hand, r1 ≥ p̄, E π1 (p̄) becomes µ (1− θS) (1− βS) E [p2]

while E π1 (p1, F2 (p1)) at p1 ∈ (r2, p̄) becomes

µ {p1 [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) βNp1 [1− F2 (p1)]
(47)

Setting µ (1− θS) (1− βS) E [p2] equal to Expression (47) and solving the resulting dif-

ferential equation using the initial value F2 (p̄) = 1 again gives us F2 (p1) = 1 for all

p1 ∈ (r2, p̄], a contradiction. Hence, for βN 6= 0, p̄ = min {v, r2}. Now suppose that p̄ <

min {v, r1}. At p2 ∈[p̄, min {v, r1}), �rm 2's expected pro�t is (1− µ) (1− βN) p2, which

is increasing in p2 when βN 6= 1, a contradiction. Suppose instead, that p̄ > min {v, r1}.

But then, at p̄, �rm 2 expects no pro�t, a contradiction. Thus, p̄ = min {v, r1}, so when

neither �rm has a mass point at p̄, p̄ = min {v, r1, r2}.

From Step 1B.2, we know that at most one �rm can have a mass point at p̄, say �rm j. If

γ = 1 or v < ri, then following the argument in the paragraph above, p̄ = min {v, ri}.

Otherwise, �rm j cannot have a mass point at p̄ (using reasoning similar to that in the

proof of Step 1B.3). Moreover, if rj ≥ ri, then p̄ = min {v, r1, r2} and from Step 1B.3, we

know that the �rm supports have no breaks. Conversely, suppose rj < ri (and therefore,
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rj < v). First, let i = 1. From Step 1B.4, we know that �rm 2 cannot have a mass point at

r2. At r2, �rm 1 expects pro�t of

µ {r2 [1− F2 (r2)] + (1− θS) (1− βS) E [p2|p2 < r2]F2 (r2)}+ (1− µ) βNr2 (48)

whereas at p1 ∈ (r2, p̄), E π1 (p1, F2 (p1)) is given by Expression (47). By de�nition, for

p1 ∈ (r2, p̄), 0 < F2 (r2) ≤ F2 (p1), so for p1 close enough to r2, Expression (48) is strictly

greater than Expression (47). Therefore, r2 must be the lower bound for a break in S1 and

we are in Case (iii) of Step 1B.3. Now let j = 1. From Step 1B.4, we know that �rm 1

cannot have a mass point at r1. At r1, �rm 2 expects pro�t of

r1 {µ [(1− βS) θS + βS] [1− F1 (r1)] + (1− µ) (1− βN)} (49)

whereas at p2 ∈ (r1, p̄), E π2 (p2, F1 (p2)) is given by

p2 {µ [(1− βS) θS + βS] + (1− µ) (1− βN) θN} [1− F1 (p2)] (50)

By de�nition, for p2 ∈ (r1, p̄), 0 < F1 (r1) ≤ F1 (p2), so for p2 close enough to r1, Expres-

sion (49) is strictly greater than Expression (50). Therefore, r1 must be the lower bound

for a break in S2 and we are again in Case (iii) of Step 1B.3.

Notice that Step 1B.5 rules out Case (ii) in Step 1B.3.

Proof of Proposition 2

Proof. In equilibrium, a �rm must be indi�erent between any price in its support. There-

fore, for any pi in the support of Fj, E πi
(
p
)
= E πi (pi, Fj (pi)). Then for �rm 1, the pro�t

equality condition is given by

µ {p1 (βSθS + 1− βS) [1− F2 (p1)] + (1− θS) (1− βS) E [p2|p2 < p1]F2 (p1)}

+ (1− µ) βNp1 = p [µ (βSθS + 1− βS) + (1− µ) βN ]
(51)

Di�erentiating Equation (51) with respect to p1 and rearranging gives
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µ {(βSθS + 1− βS)F2 (p1) + θSp1F2
′ (p1)− βSθS − 1 + βS} − (1− µ) βN = 0 (52)

Solving the di�erential equation given by Equation (52) using the initial value F2

(
p
)

= 0

gives

F2 (p) =

[
1 +

(1− µ) βN
µ (βSθS + 1− βS)

] [
1−

(
p

p

)βSθS+1−βS
θS

]
(53)

We can similarly solve for F1 (p) to get

F1 (p) =

{
1 +

(1− µ) (1− βN)

µ [(1− βS) θS + βS]

}1−
(
p

p

) (1−βS)θS+βS
θS

 (54)

Without loss of generality, suppose that �rm 1 is the one with the mass point at p̄. Setting

F2 (p̄) = 1 to solve for p in terms of p̄ gives

p = p̄

[
(1− µ) βN

µ (βSθS + 1− βS) + (1− µ) βN

] θS
βSθS+1−βS

(55)

Substituting Equation (55) into Equation (53) gives

F2 (p) =

[
1 +

(1− µ) βN
µ (βSθS + 1− βS)

]
×

[
1− (1− µ) βN

µ (βSθS + 1− βS) + (1− µ) βN

(
p̄

p

)βSθS+1−βS
θS

] (56)

When r2 ≤ v, p̄ = r2. Optimal search requires that Equation (2.1) holds. Substituting

Equation (56) into Equation (2.1) yields[
1 +

(1− µ) βN
µ (βSθS + 1− βS)

]
×
∫ r2

p

[
1− (1− µ) βN

µ (βSθS + 1− βS) + (1− µ) βN

(
r2

p

)βSθS+1−βS
θS

]
dp = c

(57)

Integrating to solve for r2 in terms of µ, θS, c, βS and βN , we get

r2 (µ, θS, c, βS, βN) = c

{
1− [(1− µ) βN ]

θS
βSθS+1−βS

µ (1− βS) (1− θS)

×
{

[µ (βSθS + 1− βS) + (1− µ) βN ]
(1−βS)(1−θS)
1−βS(1−θS) − [(1− µ) βN ]

(1−βS)(1−θS)
1−βS(1−θS)

}}−1 . (58)

By assumption, non-shoppers are indi�erent between which �rm to sample �rst. Weitz-
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man's (1979) Pandora's Rule implies∫ r2

p

F2(p)dp =

∫ r2

p

F1(p)dp

⇔
∫ r2

p

pdF2(p) = lim
x→r2−

∫ x

p

pdF1(p) + p̄

[
1− lim

x→r2−
F1 (x)

] (59)

The �rst equation follows from Pandora's Rule and non-shoppers' indi�erence (so r2 =

r1 = r); the second, which sets the expected price of the two �rms equal to each other,

follows from integration by parts together with the fact that p̄ =min {v, r} in equilib-

rium. By setting the expected price of �rm 1 equal to that of �rm 2, we can solve for βN

in terms of βS and the other parameters. To obtain an expression for the expected price of

each �rm we proceed as in Janssen, Moraga-Gonzàlez, and Wildenbeest (2005). For �rm 2,

we solve for p using Equation (56) to get

p = p̄

{
(1− µ) βN

(1− µ) βN + µ (βSθS + 1− βS) [1− F2 (p)]

} θS
βSθS+1−βS

(60)

Using a change of variables with u = F2 (p), we can write E2 [p] =
∫ 1

0
pdu. Substituting in

p from Equation (60) gives

E2 [p] = p̄

∫ 1

0

[
(1− µ) βN

(1− µ) βN + µ (βSθS + 1− βS) (1− u)

] θS
βSθS+1−βS

du (61)

Integrating and rearranging yields

E2 [p] =
p̄[(1− µ) βN ]

θS
βSθS+1−βS

µ (1− βS) (1− θS)

×
{

[µ (βSθS + 1− βS) + (1− µ) βN ]
(1−βS)(1−θS)
1−βS(1−θS) −[(1− µ) βN ]

(1−βS)(1−θS)
1−βS(1−θS)

} (62)

Proceeding similarly for �rm 1, we get
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rclE1 [p] = p̄

[
1− lim

x→p̄−
F1 (x)

]

+
p̄{µ [(1− βS) θS + βS] + (1− µ) (1− βN)}

θS
(1−βS)θS+βS

µβS (1− θS)

×
[

(1− µ) βN
µ (βSθS + 1− βS) + (1− µ) βN

] θS
βSθS+1−βS

(63)

×

{
{µ [(1− βS) θS + βS] + (1− µ) (1− βN)}

βS(1−θS)
(1−βS)θS+βS

−
{
µ [(1− βS) θS + βS]

[
1− lim

x→p̄−
F1 (x)

]
+ (1− µ) (1− βN)

} βS(1−θS)
(1−βS)θS+βS

}

where

lim
x→p̄−

F1 (x) =

{
1 +

(1− µ) (1− βN)

µ [(1− βS) θS + βS]

}
×

1−
[

(1− µ) βN
µ (βSθS + 1− βS) + (1− µ) βN

] (1−βS)θS+βS
βSθS+1−βS

 (64)

We can now implicitly solve for βN as a function of the remaining parameters using E1 [p] =

E2 [p].

De�ne r∗1 and r∗2 as the equilibrium reservation prices. If r2 (µ, θS, c, βS, βN) ≤ v, r∗2 is

de�ned by Equation (58). Because �rms are not concerned with prices above v, if r2 (µ, θS, c, βS, βN) >

v, we de�ne r∗2 as positive in�nity. According to Equation (59), we can set r∗1 = r∗2.

Proof of Proposition 3

Proof. We proceed to prove Part (2) of the proposition �rst:

2. Plugging βS = βN = 1/2 into Equation (61) gives

E [p] = r∗
∫ 1

0

[
1− µ

1− µ+ µ (1 + θS) (1− u)

] 2θS
1+θS

du (65)

where r∗ = p̄ by assumption. To see that r∗ is increasing in c, observe that the inte-
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grand in Equation (65) is less than 1 for all values of of u ∈ [0, 1), µ ∈ (0, 1), and

θS ∈ (0, 1]. Because the limits of integration are 0 and 1, this implies that E [p] < r∗

and r∗ > 0. Thus, the derivative of r∗ with respect to c is clearly positive as well.

The derivatives of the right hand side integrand in Equation (65) with respect to µ

and θS are both negative, implying that E[p]/r∗ is decreasing in µ and θS and ac-

cording to Equation (2.1) (rewritten as r∗ − E[p] = c using p̄ = min {v, r∗}), so is

r∗.

1. De�ne F (µ, θS, c; p) as the equilibrium distribution function when p̄ = r∗ < v and

F (µ, θS, v; p) as the equilibrium distribution function when p̄ = v < r∗. From Equa-

tion (56) and Part (2), we have

∂F (µ, θS, c; p)

∂µ
=

1

1 + θS

{
1

µ2

[(
r∗

p

) 1+θS
2θS

− 1

]

−(1 + θS) (1− µ)

2µθSp

(
r∗

p

) 1−θS
2θS ∂r∗

∂µ

}
> 0,

(66)

∂F (µ, θS, v; p)

∂µ
=

1

µ2 (1 + θS)

[(
v

p

) 1+θS
2θS

− 1

]
≥ 0. (67)

∂F (µ, θS, c; p)

∂θS
=

1− µ
µ (1 + θS)2

{
−1 +

(
r∗

p

) 1+θS
2θS

{
1 +

1 + θS

2θS
2

[
ln

(
r∗

p

)
− (1 + θS) θS

r∗
∂r∗

∂θS

]}}
> 0,

(68)

∂F (µ, θS, v; p)

∂θS
=

1− µ
µ (1 + θS)2

×

{(
v

p

) 1+θS
2θS

[
1 + ln

(
v

p

)
1 + θS

2θS
2

]
− 1

}
≥ 0.

(69)

The inequalities in Equations (67) and (69) are strict for all p ∈ [0, v).
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Proof of Proposition 4

Proof. We begin by showing that p ≥ min {v, r1, r2}. Suppose conversely that p < min {v, r1, r2}.

At any p1 ∈
(
p, min {v, r1, r2}

)
, �rm 1 captures 1−βS shoppers, who pay min {p1, p2}, and

βN , βN+ (1− γ) (1− βN), or all non-shoppers, depending on whether �rm 2 prices below,

at, or above r1, where γ is the proportion of non-shoppers who do not search after freely

observing a price of r1 at �rm 2. Non-shoppers who buy from �rm 1 end up paying p1.

Thus, �rm 1's pro�t is increasing in p1, a contradiction.

It is straightforward to show that v ≥ min {p̄1, p̄2} ≥ p≥ min {v, r1, r2}.4 Moreover, from

Equation (2.1) we know that min {r1, r2} > p, so min {p̄1, p̄2}= v = p. Suppose, without

loss of generality, that p̄2 > p̄1. At any p2 ∈ (p̄1, p̄2], �rm 2 expects pro�t of µβSv. By

shifting its mass in (p̄1, p̄2] to v, �rm 2 expects an additional pro�t of (1− µ) (1− βN) v, a

contradiction. Using a similar argument we can rule out p̄1 > p̄2. Thus, v= p̄1 = p̄2 = p̄ =

p. Because the unique equilibrium is symmetric and employs pure strategies, we can de�ne

F1 (p) = F2 (p) = F (p) as 0 for p < v and as 1 for p ≥ v. But then, using Equation (2.1)

we get r∗1 = r∗2 = v + c.

Proof of Proposition 5

Proof. This proof follows very similarly to that of Proposition 2. In equilibrium, a �rm

must be indi�erent between any price in its support. Therefore, for any pi in the support

of Fj, E πi
(
p
)
= Eπi (pi, Fj (pi)). Di�erentiating this pro�t equality with respect to pi for

i = 1, 2, rearranging, and solving the ensuing di�erential equation gives us F1 and F2 in

the statement of the proposition.

A comparison of F1 and F2 will reveal that when βN < 1/2, it must be that lim
x→p̄−

F2 (x) <

0, such that �rm 2 is the one with the mass point at p̄. As discussed in the body of the

4See Claim 1A, Step 1A.1, which holds for all θS .
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article, when βS = 1/2, consumer indi�erence regarding the �rst sample requires βN < 1/2.

Therefore, we may set F1(p̄) = 1 to solve for p in terms of p̄. Substituting into F1 gives

F1 (p) =

{
1 +

(1− µ) (1− βN)

µ [(1− βS) θS + βS]

}
{

1− (1− µ) (1− βN)

(1− µ) (1− βN) + µ [(1− βS) θS + βS]

p̄

p

} (70)

When r1 ≤ v, p̄ = r1. Optimal search requires that Equation (2.1) holds. Substituting

Equation (70) into Equation (2.1) and integrating in order to solve for r1 in terms of µ, θS,

c, βS and βN , we get r (µ, θS, c, βS, βN) in the statement of the proposition.

By assumption, non-shoppers are indi�erent between which �rm to sample �rst. As per

the proof of Proposition 2, Weitzman's (1979) Pandora's Rule implies that r1 = r2 = r

and E1 [p] = E2 [p] in equilibrium. Using the expected price equality, we can now implicitly

solve for βN as a function of the remaining parameters. Following the same procedure as

in Proposition 2, we obtain the following expressions for �rms' expected prices:

E1 [p] =
p̄ (1− µ) (1− βN)

µ [(1− βS) θS + βS]
ln

{
1 +

µ [(1− βS) θS + βS]

(1− µ) (1− βN)

}
(71)

and

E2 [p] = p̄

[
1− lim

x→p̄−
F2 (x)

]
+ p̄

{
(1− µ) (1− βN)

µ [(1− βS) θS + βS] + (1− µ) (1− βN)

}
[µ+ (1− µ) βN ]βS+θS−βSθS

µ (1 + βSθS − θS − βS)

×

{
[µ+ (1− µ) βN ]1+βSθS−θS−βS

−
{
µ

[
1− lim

x→p̄−
F2 (x)

]
+ (1− µ) βN

}1+βSθS−θS−βS
}

(72)

where

lim
x→p̄−

F2 (x) =

[
1 +

(1− µ) βN
µ

]
×

{
1−

{
(1− µ) (1− βN)

µ [(1− βS) θS + βS] + (1− µ) (1− βN)

} 1
βS+θS−βSθS

} (73)
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De�ne r∗1 and r∗2 as the equilibrium reservation prices. If r1 (µ, θS, c, βS, βN) ≤ v, r∗1

is de�ned by r (µ, θS, c, βS, βN) in the statement of the proposition. Because �rms are

not concerned with prices above v, if r1 (µ, θS, c, βS, βN) > v, we de�ne r∗1 as positive

in�nity. According to Equation (59), we can set r∗1 = r∗2.

Proof of Proposition 6

Proof. The crux of this proof relies on the fact that for all A ∈ (0, ∞), the function

A ln (1 + 1/A), is strictly increasing in A. Moreover, lim
A→0

A ln (1 + 1/A) = 0 and lim
A→∞

A ln (1 + 1/A) =

1. We again prove Part (2) of the proposition �rst.

2. Let A = [2 (1− µ) (1− βN)] / [µ (1 + θS)]. Substituting βS = 1/2 into r (µ, θS, c, βS, βN)

in Proposition 5 yields r (·) = c/ [1− A ln (1 + 1/A)]. This expression is clearly pos-

itive and we can see that it is increasing in A. Moreover, it can be seen that r (·) is

decreasing (increasing) in µ or θS as A decreases (increases) in µ or θS. Some straight-

forward algebraic manipulation of ∂A/∂µ and ∂A/∂θS completes the proof.

1. De�ne F1 (µ, θS, c; p) as the equilibrium distribution function when p̄ = r∗ < v and

F1 (µ, θS, v; p) as the equilibrium distribution function when p̄ = v < r∗. Addition-

ally, substituting βS = 1/2 and p̄ into the expression for F1 (p) in Proposition 5 and

manipulating algebraically gives us F1 (p) = 1 + A (1− p̄/p).

Suppose that p̄ = v < r∗. Because 1− p̄/p ≤ 0 for all p, F1 (µ, θS, v; p) is decreas-

ing in A (and strictly so for all p ∈ [0, v)). From the proof of Part (2), it follows

that F1 (µ, θS, v; p) is increasing in µ if and only if ∂βN
∂µ

> − 1−βN
µ(1−µ)

and increasing in

θS if and only if ∂βN
∂θS

> −1−βN
1+θS

.

Suppose instead that p̄ = r∗ < v. Because r∗ is increasing in A, for any p ∈

[0, r∗), 1 − p̄/p strictly falls in A, becoming more negative. As in the paragraph
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above, the remainder of the proof is now a direct consequence of the proof of Part

(2).

Weitzman's (1979) Pandora's Rule (see in particular, Equation (59)) then im-

plies the relationships regarding expected prices.

Proof of Proposition 7

Proof. This proof follows very similarly to that of Proposition 5, but with βN set to one or

zero as appropriate.

1. Solving the usual pro�t equality condition, E πi
(
p
)
= E πi (pi, Fj (pi)) for F1 and F2

yields

F1 (p) = 1−
p

p
<

1

µ

[
1−

(
p

p

) 2
1+θS

]
= F2 (p) (74)

for all p ∈
(
p, p̄
)
. This implies that �rm 1 has a higher reservation price and ex-

pected price, contradicting the assumption that non-shoppers prefer to sample it

�rst.

2. The solution to the pro�t equality condition now gives us F1 and F2 in the second

part of the statement of the proposition. Comparison of F1 and F2 will reveal that

when βN = 0, it must be that lim
x→p̄−

F2 (x) < 0, such that �rm 2 is the one with

the mass point at p̄. Therefore, we may set F1(p̄) = 1 to solve for p in terms of p̄.

Substituting into F2 gives

F2 (p) = 1−
{

2(1− µ)p̄

[2− µ(1− θS)]p

} 2
1+θS

(75)

When r2 ≤ v, p̄ = r2. Optimal search requires that Equation (2.1) holds. Substi-

tuting Equation (75) into Equation (2.1) and integrating in order to solve for r2 in

terms of µ, θS, and c, we get r2 (µ, θS, c) in the statement of the proposition. De-
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�ne r∗2 as the equilibrium reservation price. If r2 (µ, θS, c) ≤ v, r∗2 is de�ned by

r2 (µ, θS, c). Because �rms are not concerned with prices above v, if r2 (µ, θS, c) >

v, we de�ne r∗2 as positive in�nity.

B Proofs for Chapter2

Proof of Lemma 1

Lemma1: πi(p) is di�erentiable at ∀i, pi = p.

Proof. I want to show that, if a �rm expects all other �rms to charge a uniform price, that

�rm's pro�t function is everywhere di�erentiable in its own price. First note that π(p) =

(p1)V (S1(p)). Since the product of two di�erentiable functions is di�erentiable, then it

su�ces to show that V (S1(p)) is di�erentiable in p1. S1(p) is equal to the intersection of

the sets of consumers that prefer �rm 1 to �rm j, for each j. Suppose that all other �rms

charge a uniform price p. The region S1(p) is given by the set of x satisfying constraints

(76) and (77).

∀i, 0 ≤ xi (76)

∀j≥1, 0 ≤ p− p1 + t
n∑
k=1

(zjk − xk)
2 − t

n∑
k=1

(z1
k − xk)2 (77)

De�ne α = p − p1. Suppose that p1 > p and α < 0. From Lemma 2, only type one con-

straints bind. Then, S1(p) is merely a hyperrectangle with side length δit+α
2t

.

If α < 0, V (S1(p)) =
n∏
i=1

δit+ α

2t
:= F (α)

F (α) is clearly di�erentiable in both alpha and p1. For the other case, suppose that p1 <

p. Every type of constraint will bind in this case. Once more consider the hypercube de-
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�ned by the type 1 constraints. Let

Aj := {x ∈ Rn|xi ≤
δit+ α

2t
∀i and 0 ≥ α + t

∑
i∈Ij

δj − 2δjxj}

This is the set of points that constrant j excludes from the region de�ned by the type 1

constraints. Consider a constraint from �rm j of type k, 0 ≤ α + t
∑k

i=1 δj − 2δjxj. To �nd

the measure of Aj, it will be helpful to de�ne some notation. Let x̄i = δit+α
2δit

, so type one

constraints are merely of the form 0 ≤ x̄i. Let σi =
∑k

j=i+1(1 − 2xj)δj if i < k and zero

else. Then the measure of Aj is given by the following integral:

∫ x̄n

0

. . .

∫ x̄k

1
2

. . .

∫ x̄i

δi+σi
2δi

. . .

∫ x̄1

α+δ1t+tσ1
2δ1t

1 dx1 dx2 . . . dxn

Since neither the constant function being integrated nor any of the bounds of integration

depend on xk+1 through xn, their only contribution to the integral will be to multiply by a

constant. So the above reduces to

(
n∏

i=k+1

x̄i)

∫ x̄k

1
2

. . .

∫ x̄i

δi+σi
2δi

. . .

∫ x̄1

α+δ1t+tσ1
2δ1t

1 dx1 dx2 . . . dxk

The region Aj is, geometrically speaking, a hyperpyramidal hyperprism. That is, it is a k

dimensional hyperpyramid that has been prismed into n-k other dimensions. Picturing the

regions Aj for a three dimensional cube may make it clearer why this must be the case,

and why such a shape would lead to the above integral. Evaluating the integrals yields a

much simpler expression:

(k − 1)k−1αk

2kk!tk
∏k

i=1 δi

n∏
i=k+1

(
α + tδi

2tδi
)

It should be noted that V (Aj) = V (Ai) if �rms i and j are both type k. This is true be-
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cause the hypercube may be rotated to move �rm i into the position of �rm j while pre-

serving �rm zero at the origin. Lastly, note that there are
(
n
k

)
type k �rms. Consider the

function

H(α) :=
2n∑
j=2

V (Aj) =
n∑
k=2

(
n

k

)
(k − 1)k−1αk

2kk!tk
∏k

i=1 δi

n∏
i=k+1

(
α + tδi

2tδi
)

H ′(α) ≥ 0 by inspection. If α > 0, then V (S1(p)) = F (α) − V (
⋃2n−1
j=1 Aj). If all of the Aj

were pairwise disjoint, then the above would be equal to F (p) −H(α). However, since the

sets are not disjoint, construct the following sets.

E2 := {x ∈ Rn|∃i,j such that x ∈ Ai ∩ Aj}

E3 := {x ∈ Rn|∃i,j,k such that x ∈ Ai ∩ Aj ∩ Ak}
...

In general, let Ei be the set of x such that x is in the intersection of at least i Aj. De�ne

G(α) :=
∑2n−1

k=2 V (Ek). Then:

V (S0(p)) = F (α)−H(α) +G(α)

G′(α) ≥ 0, since each Aj is strictly increasing in α, it must also the case that each Ei is

also strictly increasing in α. Looking at the functional form of H(α), it is obvious that

H ′(α) ≥ 0. Since H(α) is a polynomial in α where each term is of degree at least two,

H ′(α)|α=0 = 0. Now, note that G(α) would grow fastest relative to H(α) in α if all of the

new volume were in the intersection of every Aj. Suppose, for a moment, that that is the

case. H ′(α) = (2n − 1) ∂
∂α
Aj, while G(α) = (2n − 2) ∂

∂α
Aj. So even in this most ideal case,

G′(α) ≤ H ′(α). Finally, the chain rule tells us that ∂
∂p1
F (α) = F ′(α), and likewise for

H(α). From the above, ∂
∂p1
V (S1(p)) is bounded between ∂

∂p1
F (α) and ∂

∂p1
(F (α) − H(α)).
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Thus the left derivative of the demand function is bounded above and below by ∂
∂p1
F (α).

This is also the right hand derivative of V (S1(p)) at p1 = p, and so V (S1(p)) is di�eren-

tiable at p1 = p. It is di�erentiable everywhere else by inspection.

Proof of Lemma 2

Lemma 2: If 2n �rms are positioned in a re�ectively symmetric arrangement on an n-cube,

only type one constraints bind.

Proof. We may assume that the price charged by the �rm we are considering, p, is weakly

larger than that it expects its competitors to charge, p̂. This is safe due to the di�erentia-

bility of the pro�t function and the fact that, in equilibrium, they will all charge the same

price. I wish to show that it is impossible for a vector to satisfy 2tδjxj ≤ δjt − p1 + p

for all j, but violate a constraint of the form
∑k

i=1 2tδixi ≤ p − p1 + t
∑k

i=1 δi. It suf-

�ces to show that, for x2 through xk as large as they can be, the latter constraint is still

looser than the type one constraint for x1. Plugging these in, the type k constraint reduces

to x1 ≤ δ1t+(k−2)(p1−p)
2δ1t

, whereas the type one is given by x1 ≤ δ1t−p1+p
2δ1t

. Since p1 ≥ p

by assumption and in equilibrium, this holds and the type k constraint is, in fact, redun-

dant.

Proof of Theorem 1

If 2n �rms locate in a re�ectively symmetric positioning on an n-cube and compete in

prices, there exists a unique symmetric equilibrium in which �rms charge p∗ =
t hm({δi}ni=1)

n

and earn pro�ts equal to π∗ =
t hm({δi}ni=1)

2nn
.

Proof. Recall that there are two forms of the pro�t function for a potential deviant, π1

for when p1 < p and π2 when p1 ≥ p. The di�erence stems from the fact that more con-

straints on the set of consumers captured may bind when p1 < p, so that D1 is weakly
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smaller in this case. Thus π1(p) ≤ π2(p)∀p. In a candidate symmetric equilibrium, p1 = p,

so the pro�t function follows π2(p). Then, since π2 is more optimistic, if �rm 1 does not

wish to deviate if it assumes that the pro�t function always follows π2, it will never wish

to deviate taking π1 into account. For the rest of the proof, then, I will focus on π2(p) =

p1(
∏n

i=1
δit+p−p1

2δit
).

Any best response to an opposing strategy of p must either be on the boundary of the fea-

sible set or satisfy a �rst order condition. The boundaries are easily ruled out because set-

ting p1 = 0 earns zero pro�t in equilibrium and cannot be optimal, and an extremely large

p1 ensures that D1 = 0 = π. Therefore, the best response must satisfy the �rst order con-

dition (78).

n∏
i=1

δit+ p− p1

2δit
+ p1

n∑
i=1

−1

2δit

∏
j 6=i

δjt+ p− p1

2δjt
= 0 (78)

It is safe to assume that δi + p− p1 6= 0∀i, otherwise π = 0. Then, dividing (78) through by∏n
i=1

δit+p−p1
2δit

and rearranging, the �rst order condition simpli�es to (79).

p1 =
1∑n

i=1
1

δit−p1+p

(79)

Then the unique candidate symmetric equilibrium obeys p1 = p and yields

p∗ =
t∑n
i=1

1
δi

To ensure that this candidate equilibrium is actually an equilibrium, note that proposition

3 of Caplin and Nalebu� (Caplin and Nalebu�, 1991) guarantees that π is quasiconcave

in p1. As long as p∗ represents a local maximum, quasiconcavity guarantees that it is the

global maximum. Brute computation shows that
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∂2

∂2p1

π2(p)|p=p∗ = −
n∑
i=1

1

δi
−

n∑
i=1

1

δ2
i

< 0

Since the candidate equilibrium satis�es the �rst order condition at a locally concave point,

it is a local and hence global maximum. It is the unique symmetric equilibrium because no

other symmetric pairing can satisfy the �rst order condition for π2, a necessary condition

due to the di�erentiability of π.

Proof of Theorem 2

Proof. Since the basic positioning dominates any re�ectively symmetric positioning of 2n

�rms on an n-cube, it su�ces to show that the o�set positioning dominates the basic posi-

tioning. Recall that each �rm in the basic positioning on an n-cube earns π∗ = t
2nn

. Then

this proof is simply a matter of showing that in any pricing equilibrium of the o�set posi-

tion on an (n+1)-cube �rms earn pro�ts greater than π∗.

First I must �nd the pro�t function of a potential deviant when �rms are located in the

o�set positioning. De�ne τ = 2t−p1+p
2t

and consider an (n+1)-cube. In any symmetric

equilibrium, only type 2 constraints bind. The argument for this is similar to the proof

of Lemma 1, and is thus omitted. I must �nd the volume of a region bounded by the fol-

lowing constraints

xi ≤ τ − xj ∀i,j

xi ≥ 0 ∀i

To clean up notation a bit, de�ne Mi,j,k as Max{xi, xj, xk}. Then, the volume of this re-

gion can be given by
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∫ τ

0

∫ τ−xn

0

∫ τ−Mn−1,n

0

...

∫ τ−M1,2,...n

0

1dx1dx2...dxn+1 (80)

Due to all of the maxima in the bounds of this integral, it is tiresome to evaluate directly.

Instead, consider the volume of the subregion in which xn+1 = M1,2,...n+1. This volume is

given by (81) which simpli�es to (82).

∫ τ

0

∫ Min[xn+1,τ−xn+1]

0

∫ Min[xn+1,τ−xn+1]

0

...

∫ Min[xn+1,τ−xn+1]

0

1dx1dx2...dxn+1 (81)

∫ τ

τ
2

∫ τ−xn+1

0

...

∫ τ−xn+1

0

1dx1dx2...dxn+1 +

∫ τ
2

0

∫ xn+1

0

...

∫ xn+1

0

1dx1dx2...dxn+1 (82)

If xn+1 is the largest coordinate, any other coordinate that satis�es xj ≤ τ − xn+1 will

satisfy all constraints. However, for xn+1 to be the largest coordinates, all others must be

smaller than it, meaning they can be no larger than Min[xn+1, τ − xn+1]. Then, after split-

ting the integral to get rid of the minima in the bounds, it is trivial to evaluate the inte-

grals and get

τn+1

(n+ 1)2n+1
+

τn+1

(n+ 1)2n+1
=

τn+1

(n+ 1)2n
(83)

The labeling of coordinates is arbitrary, here. The overall region can be partitioned into

n equal pieces, where each coordinate, in turn, is the largest. The total volume, therefore,

must be n times the volume I just found, or D1 = τn+1

2n
. Expanding τ , D1 = (2t−p1+p)n+1

2n+1tn+12n
.

Multiply D1 by p1 to get

π0(p) = p1
(2t− p1 + p)n+1

2n+1tn+12n

Consider the �rst order condition (84).
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(2t− p1 + p)n+1

2n+1tn+12n
− (n+ 1)p1

(2t− p1 + p)n

2n+1tn+12n
= 0 (84)

With the symmetry condition, (84) easily reduces to (85).

2t = (n+ 1)p1 (85)

Then our candidate equilibrium for the o�set positioning is p = 2t
n+1

. The proof that this

is actually equilibrium follows the argument from the proof of Theorem 1 almost exactly.

There can be no symmetric equilibria with p < 2t
n+1

because every �rm would have a prof-

itable deviation to an incrementally higher price. Then each �rm will earn at least 2t
2n(n+1)

in equilibrium which is equal to π∗ when n=1 and strictly greater for n ≥ 2.

Proof of Theorem 3

Proof. In order for an allocation (a,b,p) to be an equilibrium, it must be the case either

that it is a local maximum at itself with respect to π or that it lies on the boundary of the

feasible set. Otherwise, the deviant would have a local pro�table deviation.

First, consider the cases in which (a,b,p) is a local maximum at itself with respect to π.

In order to use calculus, the derivatives of π(a, b, p, a, b, p) with respect to the fourth, �fth,

and sixth variables must exist at any feasible, interior (a,b,p). At any point (a,b,p,a,b,p),

ρ = φ , which means that the derivatives of the two halves of the pro�t function, π1and π2,

must agree at such points. Taking the derivatives and simplifying, we obtain that:
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Figure 1: Pro�ts from various location strategies

∂π1(a, b, p, a, b, p)

∂â
=

(1− 2a)(3− 4a− 4b)p

8(1− a− b)2
=
∂π2(a, b, p, a, b, p)

∂â
(86)

∂π1(a, b, p, a, b, p)

∂b̂
=

(1− 2b)(3− 4a− 4b)p

8(1− a− b)2
=
∂π2(a, b, p, a, b, p)

∂b̂
(87)

∂π1(a, b, p, a, b, p)

∂p̂
=

1− a− b− 2p

4(1− a− b)
=
∂π2(a, b, p, a, b, p)

∂p̂
(88)

The derivatives clearly exist, so by taking the above expressions, setting them equal to

zero and solving, I �nd that an interior (a,b,p) is a local maximum at itelf with respect

to π only if:

(a, b, p) = (a,
3

4
− a, 1

8
) (89)

Recall that it is assumed that a ≥ b, so I restrict scrutiny on the above expression to

a ∈ (3
8
, 1

2
). Below is a picture with three graphs. The downward sloping graph is π(a, 3

4
−

a, 1
8
, 1

2
, .278, .12), the upward sloping graph is π(a, 3

4
− a, 1

8
, .357, .357, .117), and the �at

graph is π(a, 3
4
− a, 1

8
, a, 3

4
− a, 1

8
). All graphs are over the range a ∈ [3

8
, 3

4
].

It is clear that at least one of the sloped graphs is above the �at graph at every point in
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the continuum de�ned by (24). This means that at every point, a �rm may make higher

pro�t by deviating to one of (.357,.357,.117) or (.5,.278,.12) rather than staying in equi-

librium. Then no point on the continuum is a global maximum at itself with respect to π

and no such point is an equilibrium. It su�ces to show that there are no boundary points

with global maxima at themselves with respect to π.

First, consider the boundary in which p=0. If p=0, then �rms cannot make any pro�t.

Unless all �rms are piled on top of each other, a �rm may make positive pro�t by charging

a extremely small but positive amount. If all �rms are on top of each other, any �rms will

have incentive to move away so that they may make positive pro�t by charging a positive

price. Therefore, there can be no equilibria with p=0.

Consider the boundary de�ned by b=0. The interior of this boundary is a ∈ (0, 1
2
) and

p ∈ R+. Suppose that �rms have their choices restricted to this boundary and de�ne

π̂(a, p, â, p̂) = π(a, 0, p, â, 0, p̂). For there to be an equilibrium on the interior of this bound-

ary, there must be an (a∗, p∗) that is a local maximum at itself with respect to π̂. Taking

derivatives and setting them equal to zero, it is easy to see that no such (a∗, p∗) exists on

the interior of this boundary.

Using a similar technique for the a=1
2
boundary, we can �nd that such a point does exist.

The candidate equilibrium is (1
2
, 1

4
, 1

8
). Note, however, that this point is on the continuum

scrutinized previously and cannot be an equilibrium.

Our last boundary is characterized by a=b. The local self optimum of this boundary is

given by (3
8
, 3

8
, 1

8
), which is also on the continuum and not an equilibrium.

We have now ruled out equilibria at all points except those of the form (0, 0, p), (1
2
, 0, p),

and (1
2
, 1

2
, p). For the reasoning explained earlier, all �rms at (1

2
, 1

2
) cannot be an equi-

librium, as it would be impossible to make a positive pro�t. Again, by ruling out locally

pro�table deviations along the boundary, we need only examine the points (0, 0, 1
2
) and

(1
2
, 0, 1

4
). It is pro�table to deviate from (0, 0, 1

2
) to (1

2
, 1

2
, 9

20
), and from (1

2
, 0, 1

4
) to (.373, .373, .221).
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