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Abstract 

 

CFD Evaluation of Blood Flow in an Improved Blalock-Taussig Shunt Using Patient 

Specific Geometries 

 

By 

 

Zhenghao Lin 

 

Master of Science in Mechanical Engineering 

Washington University in St. Louis 

 

Research Advisor:  Professor Ramesh K. Agarwal 

Blalock-Taussig (BT) Shunt is a palliative surgical procedure used during a Norwood surgery 

on a new born baby suffering from cyanotic heart defects. The BT Shunt can increase blood 

flow in patients’ pulmonary artery which can ease the “Blue Baby Syndrome.” Currently used 

BT Shunts do not produce a balanced flow distribution to the pulmonary arteries (PAs) 

which can cause high wall shear stress (WSS) and blood flow separation resulting in blood 

clots. A modified BT Shunt is designed to partially solve this problem. It is shown by 

numerical simulations that modified BT Shunt has the ability to better control the flow 

distribution between Innominate Artery (IA) and PA with lower and gradually varying WSS 

and with improved flow balance to the pulmonary artery at the T-junction of the shunt. The 

main goal of this thesis is to computationally evaluate the flow in the modified BT shunt 

model between innominate and pulmonary artery using a patient specific aorta model. The 

simulations are performed using the commercial CFD software ANSYS Fluent. The 

improved modified BT shunt is connected between IA and PA. A change in the length of 

the shunt can be made to fit it under different conditions of actual patients. In numerical 

simulations, a full geometry of patient’s aorta is considered. Results for different length of 

the shunt are compared to determine the length that generates the lowest WSS and 

improved flow distribution to the PAs. It was found that the length of nearly 26mm creates 
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lower WSS as well as flow rate difference between the two sides of PA at the T-junction 

attachment of the shunt. A sophisticated computational model was created using Solidworks 

and Blender software to create the realistic geometry which included the IA, PA and 

modified BT shunt. The numerical simulations provide details of the flow field including 

velocity and pressure field, and WSS. Several parameters in shunt design weigh heavily in 

reducing the thrombosis. This study demonstrates how CFD can be effectively utilized in 

the design of a medical device such as BT shunt to improve the clinical outcomes in patients.
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Chapter 1 Introduction 
 

1.1 Blue Baby Syndrome and Cyanotic Heart 

Disease 
 

The Blue Baby Syndrome refers to a newborn infant (normally less than four weeks of age) 

with a purple or blue skin color. This syndrome is generally caused by the low transport of 

oxygen due to decreased hemoglobin in the blood. There are mainly two causes of the 

syndrome: Cyanotic heart disease (CHD) and Methemoglobinemia. In this thesis, we focus 

on the cyanotic heart disease which results in the Blue Baby Syndrome.  

 

Cyanotic heart disease is an important cause of infant mortality. The cyanosis can occur 

when the infant has pulmonary atresia; pulmonary stenosis; aortic transposition; tricuspid 

atresia; tetralogy of Fallot; permanent arterial stem; ectopic drainage of pulmonary veins and 

sabnormal pulmonary venous return. The cyanosis indicates that hypoxia in the body may 

cause damage to important organs such as the brain, heart, kidney, and lungs of the 

newborns, thereby affecting their and overall physical development.  

 

1.2 Blalock Taussig Shunt Overview 
 

The Blalock-Taussig (BT) shunt provides a surgical solution for infants who suffer from 

“Blue Baby Syndrome” which is due to insufficient blood supply from heart to lungs in a 

newborn baby. The syndrome occurs when there exists an abnormal tunnel between heart 

and lungs and the irregular shape of the vessel can cause a significant decrease in 

transporting blood from heart to lungs. A more serious effect occurs if a newborn baby 

suffers from hypoxia. Unfortunately, a major surgery requiring the rebuilding of the blood 

vessel is nearly impossible for a very young child. Therefore, a palliative procedure is 

employed until definitive repairs can be made by a surgical procedure. 
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Surgery using a BT shunt was first performed by Dr. Helen Brooke Taussig, Dr. Alfred 

Blalock and Dr. Vivien Thomas. The aim of the surgery was to connect either the subclavian 

or the carotid artery to one side of the pulmonary artery as shown in Fig. 1.1. A BT shunt is 

a cylindrical tube made from a bio- material called Gore-Tex. The shunt inflates and shrinks 

due to blood pressure similar to a real blood vessel. The BT shunt typically has a diameter 

from 3 to 4 millimeters depending on the size and age of the child.  

 
Figure 1.2 Blalock-Taussig Shunt: It is attached from Right Innominate Artery to Right 

Pulmonary Artery 

 

1.3 Motivation 
 

This study conducts the numerical simulations of blood flow in a patient-specific geometry 

using a recently modified BT Shunt (mBTS), also called the Hess-Hoganson-Agarwal (HHA) 

shunt[2] to evaluate its performance in achieving the desired blood flow in two lungs. In 

Reference [2], it was shown that the mBTS (HHA Shunt) had excellent properties of 

gradually varying wall-shear-stress (WSS) as well as nearly equal distribution of blood flow in 

right and left pulmonary arteries. This shunt has been used in this study with minor changes 

in its length to fit the innominate and pulmonary arteries. 
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1.4 Brief Review of Literature 
 

Study of the hemodynamics of BT Shunts developed over past several decades has been a 

significant topic of research. In spite of major developments, there is still a need for 

improvement to reduce the morbidity rate. In a 2011 study, 1273 patients’ data were 

analyzed for post operation performance of BT Shunts. It was found that there was an 

overall 13.1% chance of morbidity with 33% of deaths occurring within 24 hours and 75% 

within the first month. The study concluded that the mortality rate after the implementation 

of BT Shunts remained high, especially for infants under the weight of 3 kg or with a 

diagnosis of pulmonary atresia with intact ventricular septum (PA/IVS) [3]. 

 

Modern BT Shunt use Gore-Tex material for creating an artificial vessel, while older 

generation of prosthetic grafts caused in some cases non-physiologic flow resulting in 

stenosis or thrombosis in shunts. The Gore-Tex artificial blood vessels are now used for 

parts that need to be replaced or bridged due to stenosis, hemangioma, trauma, etc. It is also 

used for other types of vascular surgery such as Arteriovenous Fistula (AVF). In a 1982 

study, eight patients used BT Shunts with Gore-Tex. It turned out that the all patients were 

free from morbidity [4]. Recently, umbilical vein segments in place of Gore-Tex material are 

being considered for graft material to provide a closer resemblance to blood vessels in order 

to lower the chance for foreign material rejection by the body. 

 

1.5 Scope of the Thesis 
 

The main goal of the thesis is to evaluate the performance of a newly modified BT Shunt 

(mBTS) – the HHA Shunt by installing in a patient specific geometry and performing the 

numerical simulations. In numerical simulations, several assumptions are made: (1) the walls 

of the model geometry are rigid and smooth, (2) the blood is a Newtonian fluid [5-7] with a 

density of 1060 kg/m3 and viscosity of 0.0035 kg/ms, and (3) the flow boundary conditions 

are set by using the average values from accrued patient data. The flow conditions used are 

also from patient data which are an average of several patients’ data. The aorta model used in 
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the study was provided by the Boston Children’s Hospital group as a 3D scan and the 

assembly of the shunt with aorta model was accomplished by using the Blender software. 

The model was then converted into a rigid body model using AutoDesk Fusion 360 and was 

meshed using ANSYS Workbench. The simulation was conducted using the ANSYS Fluent 

and the numerical data was processed using ANSYS CFD Post. Reynolds-Averaged Navier-

Stokes (RANS) equations with k-kl-𝜔𝜔 transitional flow model were solved using the finite-

volume method in Fluent. PRESTO! numerical algorithm was used for pressure-velocity 

coupling. In Fluent, convection terms in RANS were discretized using a third-order upwind 

scheme while diffusion terns were central–differenced by a second-order scheme. All 

simulation data was recorded using Microsoft Excel and then post-processed using CFD 

Post.
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Chapter 2 Computational Methodology 
 

2.1 Overview 
 

The objective of this thesis is to evaluate the performance of a recently modified BT shunt 

(HHA Shunt) [2] installed in a patient specific model by numerical simulation. A good BT 

Shunt should have (1) a lower overall maximum WSS, (2) a smooth transition between high 

and low WSS, (3) a minimal amount of flow separation, (4) an equivalent effective resistance 

of modern shunts, and (5 )an even flow distribution to the left and right lung. Against these 

performance criteria, the performance of HHA Shunt is studied in a patient specific 

geometry by numerical simulations. 

 

The model was built in Solidworks using CAD files. The four boundary conditions were 

provided by surgery data.  

 

2.2 Computational Fluid Dynamics 
 

Computational fluid dynamics (CFD) is a field of fluid mechanics that employs numerical 

methods and data structures to solve the governing equations of fluid flow that best describe 

the fluid physics for a given application. CFD is a powerful tool for analysis and design of 

fluid systems but requires enormous computing power for complex 3D applications. 

 

Most CFD simulations generally go through three phases: pre-processing, flow field 

simulation, and post-processing of numerical data. During pre-processing the geometry of 

the system is defined by importing a predefined CAD file which needs to be cleaned up to 

define the smooth geometry and the surrounding fluid domain. This fluid domain is then 

divided into discrete cells called the mesh. The mesh can be unstructured or structured 

consisting of pyramidal or polyhedral cells respectively. The mesh is typically finer in areas of 

high gradients of flow variables, e.g. near walls, and swirling flow regions. 
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In the simulation phase, the appropriate governing equations of fluid flow are discretized on 

the generated mesh by utilizing a proper numerical algorithm. The computer then solves the 

discretized equations for the unknown flow variables for each cell of the mesh. A suitable 

algorithm is selected for each equation to ensure accuracy and stability. In the final phase, 

the numerical data is post processed in the form of flow quantities that can be used to 

evaluate the performance of a device/product as well as to display the flow variables in the 

domain in the form of contours.  

 

2.2.1 Governing Equations 
 

In order to describe fluid flow, three partial differential equations are used: the conservation 

of mass (continuity equation), the conservation of momentum, and the conservation of 

energy. When the flow is turbulent additional transport equations for turbulence model are 

also solved. The conservation equations can be written as [8]: 

Continuity equation: 

  ∂𝜌𝜌
∂t

+ 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

(𝜌𝜌𝑢𝑢𝑖𝑖) = 0 (2-1) 

Momentum equation: 

 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝑢𝑢𝑖𝑖) + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗� = − ∂𝑝𝑝
∂𝑥𝑥𝑖𝑖

+ 𝜕𝜕𝜏𝜏𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

  (2-2) 

Energy equation: 

 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌 �ℎ + 1

2
𝑢𝑢𝑖𝑖2�� + 𝜕𝜕

𝜕𝜕𝑥𝑥𝑖𝑖
�𝜌𝜌𝑢𝑢𝑗𝑗 �ℎ +  1

2
𝑢𝑢𝑖𝑖2�� =  ∂𝑝𝑝

∂t
+ ∂

∂𝑥𝑥𝑗𝑗
�𝑢𝑢𝑖𝑖𝜏𝜏𝑖𝑖𝑖𝑖 + 𝜆𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
�(2-3) 

where  𝜏𝜏𝑖𝑖𝑖𝑖 the stress tensor and ℎ the enthalpy given as: 

 𝜏𝜏𝑖𝑖𝑖𝑖 =  μ �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� − 2

3
μ 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

 𝛿𝛿𝑖𝑖𝑖𝑖 (2-4) 

 ℎ =  𝐶𝐶𝑝𝑝𝑇𝑇 (2-5) 

The above governing equations are solved as a coupled system of five non-linear partial 

differential equations with six unknown flow-field variables 𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝑝𝑝, 𝜌𝜌, and 𝑇𝑇. Another 

equation relating temperature, pressure, and density is provided by the equation of state of a 

given fluid.  
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2.2.2 Turbulence Models 
 

Turbulent flow is defined as any fluid motion characterized by chaotic changes in pressure or 

flow velocity [9]. While most of the flows in the real world can be considered as turbulent 

flows, many consist of a combination of laminar, transitional, and turbulent flows. The onset 

of turbulence can be predicted by a dimensionless parameter, the Reynolds number. The 

small fluctuations in velocity, pressure, and temperature fields in turbulent flow result in 

changes in transport quantities such as the momentum and energy of the system.  

 

Since small fluctuations in turbulent flows are difficult to model due to their chaotic nature, 

simplifications are generally made to the governing equations of fluid dynamics in order to 

solve them on currently available computer for 3D industrial applications. One of the most 

widely used approximations is obtained by time-averaging the equations which result in the 

so called Reynolds Averaged Navier Stokes (RANS) equations. Turbulence models are used 

to model the unknown “Reynolds Stresses” in the RANS equations. Unfortunately, no single 

turbulence model can accurately solve all turbulent flow problems. Therefore, a wide variety 

of turbulence models have been proposed in the literature over a century. In this thesis, we 

consider the k-kl-ω model since it is applicable for computing the transitional flows [10]. 

 

 k-kl-ω model is a three-equation eddy-viscosity type turbulence model where the three 

transport equations for turbulent kinetic energy (𝑘𝑘𝑇𝑇), laminar kinetic energy (𝑘𝑘𝐿𝐿) and inverse 

turbulence time scale (𝜔𝜔) are given as: 

 𝐷𝐷𝑘𝑘𝑇𝑇
𝐷𝐷t

= 𝑃𝑃𝑘𝑘𝑇𝑇 + 𝑅𝑅 + 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜔𝜔𝑘𝑘𝑇𝑇 − 𝐷𝐷𝑇𝑇 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��𝑣𝑣 + ∝𝑇𝑇
∝𝑘𝑘
� 𝜕𝜕𝑘𝑘𝑇𝑇
𝜕𝜕𝑥𝑥𝑗𝑗

� (2-6) 

 

 𝐷𝐷𝑘𝑘𝐿𝐿
𝐷𝐷t

= 𝑃𝑃𝑘𝑘𝐿𝐿 + 𝑅𝑅 + 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐷𝐷𝐿𝐿 + 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑣𝑣 𝜕𝜕𝑘𝑘𝐿𝐿
𝜕𝜕𝑥𝑥𝑗𝑗
� (2-7) 

 

𝐷𝐷ω
𝐷𝐷t

= 𝐶𝐶𝜔𝜔1
𝜔𝜔
𝑘𝑘𝑇𝑇
𝑃𝑃𝑘𝑘𝑇𝑇 + �𝐶𝐶𝜔𝜔𝜔𝜔

𝑓𝑓𝑊𝑊
− 1� 𝜔𝜔

𝑘𝑘𝑇𝑇
(𝑅𝑅 + 𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁) − 𝐶𝐶𝜔𝜔2𝜔𝜔2 + 𝐶𝐶𝜔𝜔3𝑓𝑓𝜔𝜔𝛼𝛼𝑇𝑇𝑓𝑓𝑊𝑊2

�𝑘𝑘𝑇𝑇
𝑑𝑑3

+

                                                 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

��𝑣𝑣 + ∝𝑇𝑇
∝𝑘𝑘
� 𝜕𝜕ω
𝜕𝜕𝑥𝑥𝑗𝑗
�   (2-8) 
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The turbulent sheer stresses and thermal stresses are defined by using the Boussinesq 

approximation via the eddy viscosity and turbulent thermal diffusivity as: 

 −𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑣𝑣𝑇𝑇𝑇𝑇𝑇𝑇 �
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑈𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� − 2

3
𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝛿𝛿𝑖𝑖𝑖𝑖 (2-9) 

 −𝑢𝑢𝑖𝑖𝜃𝜃 = 𝛼𝛼𝜃𝜃,𝑇𝑇𝑇𝑇𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

 (2-10) 

The effective length is characterized as: 

 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝜆𝜆𝑑𝑑,  𝜆𝜆𝑇𝑇) (2-11) 

where 𝜆𝜆𝑇𝑇  is the turbulent length scale defined by: 

 λT = √k
ω

  (2-12) 

with the small-scale kinetic energy defined by: 

 𝑘𝑘𝑇𝑇,𝑠𝑠 = 𝑓𝑓𝑠𝑠𝑠𝑠𝑓𝑓𝑊𝑊𝑘𝑘𝑇𝑇 (2-13) 

 𝑓𝑓𝑊𝑊 = 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
𝜆𝜆𝑇𝑇

 (2-14) 

 𝑓𝑓𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− �𝐶𝐶𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣
𝑘𝑘𝑇𝑇

�
2
� (2-15) 

The large-scale energy kinetic is given by: 

 𝑘𝑘𝑇𝑇,𝑙𝑙 = 𝑘𝑘𝑇𝑇 − 𝑘𝑘𝑇𝑇,𝑠𝑠 (2-16) 

The turbulence production term generated by turbulent fluctuations is defined as: 

 𝑃𝑃𝑘𝑘𝑇𝑇 = 𝑣𝑣𝑇𝑇,𝑠𝑠𝑆𝑆2 (2-17) 

where 𝑣𝑣𝑇𝑇,𝑠𝑠 is the small-scale turbulent viscosity given as: 

 𝑣𝑣𝑇𝑇,𝑠𝑠 = 𝑓𝑓𝑣𝑣𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝜇𝜇�𝑘𝑘𝑇𝑇,𝑠𝑠𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 (2-18) 

and 

 𝐶𝐶𝜇𝜇 = 1
𝐴𝐴𝑜𝑜+𝐴𝐴𝑠𝑠(𝑆𝑆/𝜔𝜔) (2-19) 

 𝑓𝑓𝑣𝑣 = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒�−
�𝑅𝑅𝑒𝑒𝑇𝑇,𝑠𝑠

𝐴𝐴𝑣𝑣
� (2-20) 

A damping function defining the turbulence production due to intermittency is given by: 

 𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑘𝑘𝐿𝐿
𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇

, 1� (2-21) 

 𝑅𝑅𝑒𝑒𝑇𝑇,𝑠𝑠 = 𝑓𝑓𝑊𝑊
2 𝑘𝑘𝑇𝑇
𝑣𝑣𝜔𝜔

 (2-22) 
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where 𝑃𝑃𝑘𝑘𝐿𝐿 is the production of laminar kinetic energy by large scale turbulent fluctuations 

given by: 

 𝑃𝑃𝑘𝑘𝐿𝐿 = 𝑣𝑣𝑇𝑇,𝑙𝑙𝑆𝑆2 (2-23) 

The large-scale turbulent viscosity 𝒗𝒗𝑻𝑻,𝒍𝒍 is modeled as: 

 𝑣𝑣𝑇𝑇,𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀 �𝑣𝑣𝑇𝑇,𝑙𝑙
∗ , 0.5�𝑘𝑘𝐿𝐿+𝑘𝑘𝑇𝑇,𝐿𝐿�

𝑠𝑠
� (2-24) 

where 

 𝑣𝑣𝑇𝑇,𝑙𝑙
∗ = 𝑓𝑓𝜏𝜏,1𝐶𝐶11 �

𝛺𝛺𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒
2

𝑣𝑣
��𝑓𝑓𝑇𝑇,1𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛽𝛽𝑇𝑇𝑇𝑇𝐶𝐶12𝜙𝜙𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝛺𝛺2  (2-25) 

A full in-depth information on this turbulence model including the model constants is given 

in ANSYS Fluent 12.0 Theory Guide[8]. 

 

2.2.3 Discretization Methods 
 

Now that the governing equations are defined in section 2.2.1 and 2.2.2, these equations 

need to be solved for a given geometry. However, the governing equations are highly non-

linear and cannot be solved analytically except for a few cases of laminar flow in simple 

geometries. Therefore they are discretized on a given simulation model described in Chapter 

3 and are solved numerically by using a CFD solver. Here we employ ANSYS Fluent. 

 

The methods by which the PDEs are discretized are based on the mathematical character of 

the governing equations whether they are elliptic, parabolic, or hyperbolic. A suitable 

iterative numerical method such as the finite element method (FEM), finite difference 

method (FDM), or finite volume method (FVM) can be chosen to discretize the PDEs to 

obtain a set of algebraic equations. In this dissertation, FVM is employed.  

 

FVM discretizes and solves the governing equations in integral form for each cell in the 

computational domain. The volume integral for each cell is converted into surface integral 

using of the divergence theorem as shown below in Eq. (2-26): 

 

 ∭ (∇ ⋅ F) d𝑉𝑉𝑉𝑉 = ∯ F ⋅ dS𝑆𝑆  (2-26) 
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The surface integrals in Eq. (2.26) are evaluated as flux integrals on the faces of the cells. 

Thus, in FVM, the Navier-Stokes equations, conservation of mass, conservation of energy, 

and turbulence model equations are all discretized and solved for each finite volume in the 

form shown below in Eq. (2-27). 

 

 ∂
∂t∭𝑄𝑄𝑄𝑄𝑄𝑄 + ∬𝐹𝐹𝐹𝐹𝐹𝐹 = 0 (2-27) 

 

where 𝑄𝑄 is the vector of the conserved variables, 𝐹𝐹 is the flux vector, 𝑑𝑑𝑑𝑑 is the volume of 

the cell, and 𝑑𝑑𝑑𝑑 is the surface area of the cell [11]. 

 

2.2.4 Solution of the Discretized Equations 
 

For solution of the discretized equations obtained by FVM, there are several solution 

methods available in a CFD solver such as Fluent. These methods include a choice of 

numerical scheme (non-coupled or coupled) and the order of spatial discretization of 

derivatives in the governing equations for accuracy and stability. 

 

Algorithms can be uncoupled, where momentum equations and pressure corrections are 

solved separately, or coupled where both momentum equations and pressure corrections are 

solved simultaneously. The later requires more memory and CPU but provides higher 

accuracy. The coupled algorithm is chosen in this thesis, which obtains a robust and efficient 

solution for steady-state flows with superior performance compared to the uncoupled 

solution schemes [8]. 

 

In FVM, gradients and derivatives within a cell and cell faces are obtained using a number of 

approaches. Many different gradient solution methods are available including the Green-

Gauss cell-based, Green-Gauss node-based, and Least Squares cell-based methods. In this 

study, the Green-Gauss node-based scheme, or GGNB, is used due to its increased accuracy 

compared to standard cell-based methods. The node-based approach was first proposed by 

Holmes and Connell who constructed the nodal values to be the weighted averages of the 

surrounding face values [12]. This scheme has high accuracy for unstructured meshes, 
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namely the triangular and tetrahedral meshes which are used in this thesis as described in 

Chapter 3. GGNB uses the following equation for computing the gradients: 

 

 𝜑𝜑𝑓𝑓 =  1
𝑁𝑁𝑓𝑓

∑ 𝜑𝜑𝑛𝑛
𝑁𝑁𝑓𝑓
𝑛𝑛   (2-28) 

where 𝜑𝜑𝑓𝑓 is the gradient of scalar calculated at the face, Nf is the number of nodes on the 

face, and φn  is the value calculated at each node. Figure 2.1 illustrates this scheme. 

 

 
Figure 2.3 Green-Gauss Node-Based Gradient Based Solution Scheme [14] 

 

When using a pressure-based solver, several different pressure interpolation schemes are 

available in Fluent such as standard, body-force-weighted, PRESTO!, and second-order 

scheme. These pressure interpolations are used to decide how the pressure gradient term is 

discretized. In this thesis, the PRESTO! scheme is chosen due to its accuracy for computing 

flows through curved domains and rotating flows. This scheme uses the discrete continuity 

balance for a "staggered'' control volume about the face to compute the pressure on the face. 

This procedure is similar in spirit to the staggered-grid schemes used with structured meshes 

[8] [13]. PRESTO! avoids interpolation errors and pressure gradient assumptions near the 

boundaries of the geometry to provide higher accuracy in these areas. Figure 2.2 shows the 

PRESTO! scheme applied to staggered grid.  
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Figure 2.4 PRESTO! Pressure Interpolation Scheme [15] 

 

2.2.5 Description of CFD Solver ANSYS Fluent 
 

In this study the time-averaged Navier-Stokes equations, known as the Reynolds-averaged 

Navier-Stokes (RANS) equations are solved using Fluent, a commercial CFD program 

developed by ANSYS Inc. The Fluent software contains the flow modeling capabilities for 

turbulent flows and flows with heat transfer and chemical reactions for industrial and 

academic applications. The solver is FVM based software used on a collocated grid [8] with 

many different numerical schemes available which can be customizable based on a given 

application. It has several zero-, one- and two-equation turbulence models [11]. Fluent can 

compute both compressible and incompressible flows as well as both steady and unsteady 

flows. It has the option of several constitutive relations for modeling non-Newtonian flows. 

In Fluent, governing equations are solved on a structured or unstructured grid in a 

computational domain. 

 

ICEM CFD is a software package that specializes in geometry modeling and mesh 

generation and is available in the ANSYS Workbench Suite. It is designed specifically for 

aerospace, automotive, and other engineering applications that require modeling and 

simulation of fluid flow using the tools of computational fluid dynamics. It can create 

geometries and excellent meshes automatically based on mesh controls. The meshing control 
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allows the generation of structured, unstructured, or hybrid grids with desired mesh size, 

refinement, inflation, face, and pinch functions. Any type of mesh, simple to complex, can 

be quickly generated using ICEM which is then imported to Fluent for calculation of the 

flow field.  
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Chapter 3 Simulation Models-Geometry 

and Mesh Generation 

3.1 Modified BT Shunt (mBTS) Model  
 

As mentioned before, the goal of this thesis is to simulate the flow in mBTS (HHA shunt) to 

test its hemodynamic performance. Figure 3.1 and Figure 3.2 show the geometry of the 

original mBTS (HHA Shunt) and the extruded mBTS which has been used in this study. The 

original length of the shunt [1] is extruded from 18.54 mm to 24.50mm. 

 

The original model was developed by Hess, Hoganson and Agarwal [HHA] [1]. It turns out 

that the length of the original HHA Shunt was 18.54 mm which is smaller to attach in a 

patient specific geometry which requires a shunt of length 24.5 mm. In order to fit the 

patient specific geometry between Innominate Artery (IA) and Pulmonary Artery (PA), an 

extruded shunt shown in Figure 3.2 was designed. 

 
Figure 3.11 Original mBTS (HHA Shunt) with 18.54mm length [1] 
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Figure 3.12 Extruded HHA Shunt with 24.5mm length 

 

3.2 Construction of Shunt Model from Patient 

Specific Geometry 
 

3.2.1 Patient Specific Geometry 
 

The patient specific geometry, shown in Fig. 3.3, was first imported as a STL file which 

means that the model was generated by vertices and edges. This geometry was provided by 

collaborators at Boston Children’s hospital. It was substantially modified and simplified 

without affecting the evaluation of the performance of the mBTS. 
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Figure 3.13 CT Scan of a Patient's Aorta Geometry 

 

3.2.2 The Connection of Shunt in Geometry of Figure 3.3 
 

The connection of the shunt in a real patient’s aorta model with Innominate Artery (IA) and 

Pulmonary Artery (PA) is accomplished using the Blender software. A horizontal rotation is 

made to fit the shunt with IA and PA arteries as well as to create a better perspective for 

surgical purpose. Figure 3.4 shows how the IA and PA are connected by the shunt in the 

aorta model.  



17 

 

 
Figure 3.14 The Connection of the Shunt with PA and IA 

 

3.2.3 Creation of a Simpler Model from Figure 3.4  
 

As a first step in the flow simulations, a simpler model is created to reduce the complexity of 

the geometry shown in Fig. 3.4 and to study the hemodynamic performance of the shunt in 

a relatively simple model. Figures 3.5-3.10 show several steps employed in simplifying the 

geometry in Fig. 3.4 using the Blender Software. As shown in Fig. 3.9, only parts of the IA 

and PA are left in the original aorta model of Fig. 3.4, which are connected by the mBTS; 

this geometry is used in the numerical simulations reported in this thesis. 

Shunt 
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Figure 3.15 Trimming of the Patient Specific Aorta Model (Step 1 and 2): The Right IA was 

trimmed (Left) and the upper branch of IA was trimmed (Right) 

 

  
Figure 3.16 Trimming of the Patient Specific Aorta Model (Step 3 and 4): The Right PA 

was trimmed (Left) and the Aorta was trimmed (Right) 
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Figure 3.17 Trimming of the Patient Specific Shunt Model (Step 5 and 6): The Left PA was 

trimmed (Left) and the model was extruded from the model created in Step 5 (Right) 

 

3.3 Construction of 3D Aorta Model including BT Shunt 
 

The final 3D geometry of patient specific aorta model, shown in Fig. 3.8, was built to study 

the detailed flow field and other important parameters such as WSS and flow rates in Left 

Pulmonary Artery (LPA) and Right Pulmonary Artery (RPA) with the shunt installed 

connecting PA and IA. The outlet branches of the model were trimmed and were extruded 

for simulation. 
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Figure 3.18 The Final 3D Aorta Model with BT Shunt/ It includes Innominate Artery (IA), 

BT-Shunt, Right Pulmonary Artery (RPA), Ascending Aorta (AAO), Main Pulmonary Artery 

(MPA), Descending Aorta (DAO), Left Pulmonary Artery (LPA), Left Subclavian Artery 

(LSA) and Left Carotid Artery (LCA) 

 

3.4 Mesh Generation 
 

3.4.1 Meshing of Extruded Model of BT Shunt in Fig. 3.7 
 

The maximum dimension of the face during the meshing process was set at 1.3E-04m. 

Inflation layers were included to capture the flow near the boundaries accurately. The first 
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layer thickness from the boundary controls the first inflation layer, the number of layers, and 

the growth rate between each layer. The first layer height was set at 1.5E-6 meters, the 

maximum layers were set to 20, and the growth rate was set as default 1.2. Figure 3.9 shows 

the mesh inside the simple model. The model consisted of 1.8 million nodes and 5.5 million 

elements. 

 
Figure 3.19 Mesh Inside the Simple Extruded Model of BT Shunt in Fig. 3.7 

 

3.4.2 Meshing of 3D Aorta Model with BT Shunt 
 

Three sets of grids were used with number of elements varying from 220 thousand (coarse) 

to 2.2 million (medium) to 5 million (fine) to conduct the mesh independent study of the 
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computed solution. The element size was 9E-04 (coarse mesh) to 3E-04 (fine mesh). The 

density of the mesh in the T-junction area of shunt joining LPA and RPA was increased to 

better capture the WSS distribution in the simulation. The inflation layer was set with a 

thickness of first layer equal to 5E-04 with 20 layers and 1.1 growth rate. Figure 3.10 shows 

the mesh of the model and details of the mesh at the face of Innominate Artery. 
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Figure 3.20 Mesh inside 3-D Aorta Model and zoomed- in view of Innominate Artery 
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Chapter 4 Results and Discussion 

4.1 Mesh Independence Study 
 

There are multiple sources of error that can contribute to inaccuracy in the numerical 

solution: (a) Physical model (b) Turbulence model, (c) Mesh, and (d) Numerical algorithm. 

Once physical model, turbulence model and numerical algorithms have been decided by the 

user, it is very important that the solutions are grid independent since the density of the 

mesh can significantly affect the results of the simulation. The final validation of the 

computed solution is generally done against the experimental data. Since no experimental 

data is available in the present study, we performed the computations on a sequence of grids 

from coarse to fine to determine a suitable grid which gives accurate solutions (grid 

independent) and is also computationally efficient. 

 

For grid independence study, the final 3-D patient specific aorta model was created as 

shown in Fig. 3.8 to run simulations on a sequence of grids and to determine the best grid 

from the point of view of both accuracy and efficiency. The mesh refinement focused 

primarily at the two BT shunt junctions in the model with IA and PA to obtain the WSS 

more accurately, whereas the mesh in the aorta and other parts of the arteries remained 

relatively unchanged from coarse to fine mesh in the mesh independent study. The velocity 

and pressure distribution at three most important parts of the model are shown in Fig. 4.1. 

One can see that the velocity magnitude at the centerline of the shunt is converging (i.e. the 

data of the coarsest mesh is approaching to the second refined mesh), and that difference is 

becoming smaller with the second mesh being further refined. 
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Figure 4.1 The coarsest mesh consists of 4,406,253 nodes and 2,247,165 elements; the first 

refined mesh consists of 8,321,809 nodes and 3,607,562 elements; and the second refined 

mesh consists of 8,986,225 nodes and 4,913,234 elements. The locations in the domain 

indicate that all computational data were taken at the center lines of the Shunt, RPA, and 

LPA. 

 

4.2 Results of Simulation 
 

4.2.1 Analysis of Simple Extruded Model of BT Shunt in Fig. 3.7 
 

Figure 4.2 and Figure 4.3 respectively show the streamlines and Wall Shear Stress (WSS) 

distributions in the Simple Extruded Model of BT Shunt in Fig. 3.7. This simulation shows 

how the flow would distribute in various parts of the shunt and where the maximum WSS 

will appear. One can observe a flow pattern which has high flow rate at the bottom and 

relatively low flow rate on top as shown by the RPA cross-sectional velocity contours in Fig. 

4.4. This flow pattern is generally observed in tubes with a T-junction. The velocity contours 

in the cross-section of LPA also show the same pattern as shown in Fig. 4.4. The velocity 
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contours are evenly distributed in LPA compared to RPA since the diameter of the 

pulmonary artery varies on two sides of the shunt. 

 

 
Figure 4.10 Velocity Streamlines inside the Simple Extruded Model of BT Shunt in Fig. 

3.7 
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Figure 4.11 Wall Shear Stress Contours in Simple Extruded Model of BT Shunt in Fig. 3.7 

 

 
 

Figure4.12 Streamlines and Velocity Contours at Various Cross-Section of the Simple 

Extruded Model of BT Shunt in Fig. 3.7 

 

The newly designed shunt is slightly bent near its intersection with IA in order to reduce the 

WSS; the average WSS reaches 14 Pa and the maximum WSS reaches 372 Pa. This 

improvement successfully eliminates the flow separation problem when blood flow enters 
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the mBT-Shunt (HHA Shunt) compared to the standard shunt which has problem in 

controlling the flow direction. The transition of WSS inside the shunt is also smooth which 

prevents the formation of thrombosis to some extent. In addition, this Simple Model shows 

a balanced flow distribution between RPA and LPA. The percentage difference of flow rate 

between LPA and RPA is 14.6% which is within the acceptable range. In the next section, 

the flow inside the 3D patient specific model shown in Fig. 3.8 is simulated to examine how 

the new shunt performs in a more realistic situation. 

 

4.2.2 Flow Simulations inside Patient Specific 3-D Aorta Model 

with Modified BT Shunt 
 

Table 1 gives the boundary conditions at various inflow and outflow boundaries of 3D 

model shown in Figure 3.8.  

Table 1: Boundary Conditions for the 3-D Model 

Boundary 

Condition 

AAO 

(m/s) 

MPA 

(m/s) 

IA 

(mmHg) 

LCA 

(mmHg) 

LSA 

(mmHg) 

RPA 

(mmHg) 

LPA 

(mmHg) 

DAO 

(mmHg) 

Value 1.2 0.6 77.51 77.46 77.68 31.32 31.32 77.7 

 

Figure 4.5-4.10 show the velocity and WSS contours inside the 3-D Model of Fig. 3.8 with 

boundary conditions given in Table 1. There is higher WSS near the intersection of IA and 

BT-Shunt as expected. Figure 4.5 shows the velocity contours at various cross-sections of 

the Shunt, RPA and LPA. The same flow pattern can be observed in the RPA and LPA as 

was observed in case of Simple Model. In the analysis, we capture a complex swirling flow in 

both Simple Model and 3D Model. This vortex flow is a result of the complex topology of 

the T-junction and the non-uniform flow in the shunt. The size of the pulmonary artery can 

also have an effect on the swirling flow. The LPA, which has a relatively smaller diameter, 

shows a stable flow pattern.  

 

Figures 4.8-4.10 show the WSS distribution inside the geometry with various views. The 3D 

Model demonstrates a similar WSS as in the case of the Simple Model. It can be observed 
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that the variation in WSS in all regions of the model is relatively smooth and the maximum 

value of WSS is also smaller than that in the standard shunt. The distribution regions of high 

WSS decrease, which lower the probability of thrombosis. Thus, the mBTS (HHA shunt) 

has achieved both the objectives required of a good shunt in the simulations 

 
Figure 4.13 Streamlines and Velocity Contours at Various Cross-Sections of the 3-D Model 

 
Figure 4.14 Streamlines inside the 3-D Model-Front View 
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Figure 4.15 Streamlines Inside the 3-D Model-Side View 

 
Figure 4.16 WSS Contours in the 3-D Model-Side View 
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Figure 4.17 WSS Contours in the 3-D Model-Front View 

 

 
Figure 4.18 WSS Contours in the 3-D Model-Bottom View 
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4.3 Discussion 
 

The most common problem in an installed BT-Shunt is the imbalance in the flow in RPA 

and LPA. The large difference in flow rates in LPA and RPA can lead to a possible failure of 

cardiac system due to insufficient blood flow in RPA. In our simulations, the shunt ratio is 

about 24% and the percentage difference in the flow rate between RPA and LPA is 8.96% 

which is acceptable in clinical practice. The blood flow is sufficient to left and right lungs to 

provide the patient enough oxygen. 

 

However, simulation results have identified the non-uniform flow in pulmonary artery which 

is not desirable. The simulation showed a swirling flow in RPA which is also not desirable 

but is unavoidable at T-junction created by the installed shunt. 

 

With the growth of the infants, the diameter of the Pulmonary Artery also changes and the 

inflow boundary condition will also change. The postoperative development of the 

pulmonary artery is of major concern. It is important to consider the development of PA 

after operation and installation of the shunt. It should be noted that the development of the 

pulmonary artery is largely influenced by the operation whereas the present simulation 

mainly focused on the pre-operational structure of the arteries. 

 

Therefore, as a follow-up clinical data should be compared with the current simulation. This 

is critical for the validation of the simulation model and for determining the effectiveness of 

the shunt. In the present simulation, the elasticity of the vessels was neglected; the fluid 

structure interaction should be considered in the future work. Transient simulation with 

actual waveform of the heart should also be considered. 
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Chapter 5 Conclusions 
 

For steady flow simulations considered in this thesis, the mBT shunt (HHA shunt) has 

shown its ability in reducing the WSS with smooth variation throughout the shunt and in 

reducing the percentage difference in flow rate between RPA and LPA both in the Simple 

HHA Shunt Model and the patient specific aorta 3D Model. The main focus of this thesis 

was to improve the design of previously developed modified Blalock-Taussig shunt (mBTS), 

also designated as Hoganson-Hess-Agarwal (HHA) shunt and to evaluate its performance by 

attaching it to a trimmed model of an aorta of an actual patient. Simulation process involved 

multiple CAD software – SolidWorks and Blender for generating and assembling the solid 

parts. Mesh was generated inside the model by ANSYS meshing software. Reynolds-

Averaged Navier-Stokes equations were solved with k-kl-ω turbulence model using the 

second-order accurate finite-volume method in ANSYS Fluent. A mesh independence study 

for the solution was conducted to ensure the accuracy of the computed solution. It was 

shown that the mBTS (HHA shunt) integrated with IA and PA has a smooth variation in 

WSS in the entire shunt with a relative low average WSS value compared to the original 

shunt [1] and also had low difference in flow rates (8.96%) on two sides of PA at the 

attachment junction of the shunt with PA. In the future, a more sophisticated and realistic 

simulation should be conducted to test the performance of the mBTS (HHA shunt) by 

comparing the simulations with available clinical data. 
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Chapter 6 Future Work 
 

In the shunt model used in Chapter 3, the ends of both IA and PA were extended so that 

there was no physically unrealistic reverse flow in the flow field. We also introduced MPA as 

a velocity inlet in Figure 3.8. However, the geometry of the MPA is not given from the CT 

scan, therefore we had to create its geometry separately and install it on the final 3-D Model. 

A more sophisticated model can be introduced with a more realistic model of MPA in order 

to simulate the flow in a more realistic geometry. In addition, a transient pulsatile flow 

simulation should be conducted to simulate the actual wave form of the heart with two 

peaks. All the simulations reported in the thesis consider the model to be rigid, in the future 

work elasticity of the model walls should be considered and simulations should be 

performed taking into account the fluid-structure interaction. 
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