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ABSTRACT OF THE DISSERTATION 

Functional Identification and Characterization of cis-Regulatory Elements 

By Christopher M Fiore 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2015 

Professor Barak A. Cohen, Chair 

 

Transcription is regulated through interactions between regulatory proteins, such as 

transcription factors (TFs), and DNA sequence. It is known that TFs act combinatorially in some 

cases to regulate transcription, but in which situations and to what degree is unclear. 

I first studied the contribution of TF binding sites to expression in mouse embryonic stem 

(ES) cells by using synthetic cis-regulatory elements (CREs). The synthetic CREs were 

comprised of combinations of binding sites for the pluripotency TFs Oct4, Sox2, Klf4, and Esrrb. 

A statistical thermodynamic model explained 72% of the variation in expression driven by these 

CREs. The high predictive power of this model depended on five TF interaction parameters, 

including favorable heterotypic interactions between Oct4 and Sox2, Klf4 and Sox2, and Klf4 

and Esrrb. The model also included two unfavorable homotypic interaction parameters. These 

homotypic parameters help to explain the fact that synthetic CREs with mixtures of binding sites 

for various TFs drive much higher expression than multiple binding sites for the same TF. I then 

found that the expression of these synthetic CREs largely changes as ES cells differentiate down 



x 
  

the neural lineage. However, CREs with no repeat binding sites drove similar levels of 

expression, suggesting that heterotypic interactions may be similar in the two conditions.  

In a separate set of experiments I interrogated the determinants of expression driven by 

genomic sequences previously segmented into classes based on chromatin features. A set of 

these sequences was assayed in K562 cells. As expected, we found that Enhancers and Weak 

Enhancers drove expression over background, while Repressed elements and Enhancers from 

another cell type did not. Unexpectedly, we found that Weak Enhancers drove higher expression 

than Enhancers, possibly based on their lower H3K36me3 and H3K27ac, which we found to be 

weakly associated with lower expression. Using a logistic regression model, we showed that 

matches to TF binding motifs were best able to predict active sequences, but chromatin features 

contributed significantly as well.  

These results demonstrate that interactions between certain combinations of pluripotency 

TFs, but not all combinations, are important to transcriptional regulation. Furthermore, 

chromatin modifications can still contribute to predictions of expression even after accounting 

for binding site motifs. Better understanding of the process of cis-regulation will allow us to 

predict which sequences can drive expression and how perturbations affect this expression. 
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Chapter 1: Introduction 
Transcriptional regulation helps control the processes that run the cell and is essential for 

the proper development of multicellular organisms. We know that some complex rules guide this 

regulation, but it is unclear to what extent these rules operate and what effect they have. It is 

therefor necessary to study transcriptional regulation from a mechanistic viewpoint in order to 

learn in which situations these rules apply. In this dissertation, I use this approach to move us 

closer to understanding the processes behind regulation of transcription. 

Importance of transcriptional regulation 
The control of the gene expression is essential to the proper functioning of the cell and the 

development of multi-cellular organisms. Every cell in an organism has the same genes encoded 

in its genome, but the activity level of these genes varies wildly between cells and across time. A 

gene’s expression level is often tightly controlled, and transcription is the first step in gene 

regulation. By one estimate, transcriptional regulation is responsible for 73% of a gene’s protein 

level (Li and Biggin 2015). Various processes can influence transcriptional regulation, including 

external stimuli, developmental stage, and general cellular processes such as cell cycle. The 

regulation of transcription is thus a key process controlling a cell’s identity and its proper 

function. 

It is clear from a number of different approaches that a large amount of non-coding 

sequence in mammalian genomes is functional. Tests for selection over evolution can give us an 

idea of the how much non-coding sequence is functional. A number of groups have estimated 

that 3-10% of the human genome is under selection, the majority of which is non-coding 

(Bernstein et al. 2012; Meader et al. 2010; Rands et al. 2014; Cooper et al. 2005). Additionally, a 
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large proportion of so-called ultra conserved elements, with 100% sequence identity between 

mammalian species, are non-coding and thought to be regulatory regions (Bejerano et al. 2004). 

Even when the sequence identity of two orthologous non-coding sequences differ, their function 

may still be conserved due to turnover of transcription factor binding sites (Meader et al. 2010; 

Moses et al. 2006). Furthermore, about 93% of peaks from genome-wide association studies 

(GWAS) are in non-coding regions, implying that a good deal of disease-associated variation is 

operating through non-coding regions (Maurano et al. 2012). Thus, there is a significant amount 

of non-coding sequence with important function, which often operates to regulate transcription. 

Non-coding sequence works to regulate transcription in many developmental processes. 

Transcription factors (TFs) drive the expression of developmental genes in species from sea 

urchins to mammals, helping to specify cell fate and pattern whole organisms (Davidson et al. 

2002; Arnosti 2003; Kranz et al. 2011; Novershtern et al. 2011; Oliveri et al. 2008; Zinzen et al. 

2009; Segal et al. 2008; Odom et al. 2004). The regulation of TFs varies across developmental 

stages, leading to changes in the regulation of downstream genes, which is critical for proper 

development. This underlies the need to study the function of the non-coding regions of 

mammalian genomes that regulate transcription, especially in developmental systems.  

Mechanisms of transcriptional regulation 
Many years of research have shown that regulation of transcription takes place through 

regulatory proteins recognizing specific DNA sequences and acting through interactions with 

other proteins. Initial work into transcriptional regulation focused on bacteria and in particular 

the lambda phage genes. Jacob and Monod’s early work into the lac and lambda phage genes 

showed that the protein working to regulate transcription, the lambda repressor, acted to repress 

transcription (Jacob and Monod 1961). They thus posited that active transcription was the default 
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state and regulation worked through repressors to turn off transcription. Later work showed that 

this situation is not always the norm, as the lambda repressor could also activate transcription 

and the basal level of transcription was relatively low. Further work suggested that interactions 

between proteins might mediate their ability to activate transcription (Hochschild et al. 1983; 

Keegan et al. 1986; Ptashne 2005). This established the basic role of these regulatory proteins, 

referred to as transcription factors (TFs), in regulating transcription. 

The mechanisms by which TFs regulate transcription follow general principles of binding 

and activation. The DNA-binding function of TFs is largely decoupled from the regulatory 

function of the TF, allowing different TFs to bind the same DNA sequence but have different 

regulatory functions, or to bind different DNA sequences but have similar regulatory functions 

(Brent and Ptashne 1985; Keegan et al. 1986). This modularity opens the door for complex 

regulatory networks. The DNA binding of TFs helps guide these regulatory proteins to proper 

genomic locations and works through degenerate binding sites, meaning that each TF can 

recognize a number of different but similar DNA sequences. The mechanism of binding usually 

operates through hydrogen bonding of the TF with the major or minor groove of the DNA along 

with general non-specific interactions (von Hippel and Berg 1986). The sequence specificity of a 

TF can then be used to predict other binding sites and the activity of promoters (von Hippel and 

Berg 1986; Stormo and Fields 1998). While this is easier in simpler systems, such as bacteria, it 

becomes much harder in larger genomes. 

After binding to DNA, TFs work with other TFs and proteins to regulate transcription. 

TFs can recruit transcriptional complexes that begin the process of transcription, as well as 

chromatin remodeling complexes to improve accessibility of other TFs and the general 

transcriptional machinery. TFs can also interact with each other to help recruit these complexes, 
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demonstrating the great breadth of possible complexity with which TFs can regulate transcription 

(Cosma et al. 1999; Malik and Roeder 2000; Dröge and Müller-Hill 2001; Arnosti et al. 1996). 

Furthermore, these interactions can occur over long distances through looping of the DNA 

(Fullwood et al. 2009; Hochschild and Ptashne 1986). This means both that the potential 

regulatory region of a gene could lie far from its location and that the gene a specific regulatory 

element regulates may not be the nearest one. These potentially complex interactions indicate 

that there may be some specific logic or order with which TFs operate. Two possible scenarios 

exist to describe TF activity: either they act regardless of the surrounding context, or their action 

depends on interactions with other proteins and specific spatial requirements. There are examples 

by which specific arrangements of TFs are important in activating transcription through synergy 

between the proteins bound at the regulatory element (Thanos and Maniatis 1995; Kim and 

Maniatis 1997; Arnosti et al. 1996).  This cooperativity between TFs could be mediated either at 

the level of binding or at the level of recruitment of transcriptional machinery (Harbison et al. 

2004). Other examples however, show more flexibility in the arrangement and nature of the 

proteins bound at the regulatory DNA (Kulkarni and Arnosti 2003). An important problem in 

genetics has been to identify scenarios in which cooperativity, and thus a more detailed cis-

regulatory logic, plays an important role in transcriptional regulation. 

Discovery and modeling of cis-regulatory elements 
Many studies have attempted to predict the cis-regulation of genomic sequences using 

combinations of sequence features, protein binding, and chromatin features. The hope is that 

these predictive models can teach us something about the mechanisms of cis-regulation. 

Predictions can be done either at the level of single genes or across the whole genome. Single-

gene studies tend to focus on more minute details of regulation, whereas whole genome studies 
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abstract away some detail in order to obtain a comprehensive picture. Since large genomes, such 

as those of mammals, consist primarily of intergenic space, it can be difficult to determine which 

regions have cis-regulatory function at all. We know that TFs have sequence specificity (von 

Hippel and Berg 1986), so we can predict their binding sites across a large genome. However, 

only a small fraction of these are bound by a TF and fewer still have cis-regulatory function (Li 

et al. 2008; Zhang et al. 2005; Whiteld et al. 2012; White et al. 2013). Thus, computational tools 

are needed to discover functional cis-regulatory elements and discern their effect on 

transcription. 

Many studies focus on individual promoter elements in organisms with smaller genomes 

to gain a mechanistic view of the regulation of transcription. Examining the lac operon in E. coli, 

Uri Alon’s group found that the concentrations of small molecule inducers can perform a 

computation-like logic to regulate the expression of the gene, suggesting that transcription is 

regulated by a set of rules (Setty et al. 2003). Another study in E. coli examined the expression 

driven by mutated versions of the lac promoter to infer interactions between TFs and RNA 

Polymerase and their relationship to expression (Kinney et al. 2010). These studies were done in 

E. coli, which is a simpler system to study transcription but lacks some of the elements of 

eukaryotes, such as nucleosomes. A study in yeast incorporated nucleosomes into a kinetic 

framework to model transcription at the PHO5 promoter. This allowed them to predict 

expression driven by this promoter and interactions between TFs and nucleosomes (Kim and 

O’Shea 2008). These studies are good at working out the mechanisms at a single locus, but it’s 

unclear how often they can be generalized to the whole genome.  

A number of statistical and computational strategies have been implemented to 

investigate the general mechanisms of cis-regulation that occur across the genome. Most work 
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has used sequence features, such as matches to TF binding motifs (Stormo and Fields 1998), to 

predict expression. Simple linear models using sequence motifs in the promoters of yeast genes 

can be effective in predicting relative expression across conditions and learning sequence motifs 

relevant to certain cellular conditions (Bussemaker et al. 2001). More complex models, such as 

Bayesian networks, allow known TF binding motifs to be combined with combinatorial logic. 

They have been used to predict expression of yeast genes across conditions and find possible TF 

interactions (Beer and Tavazoie 2004). When examining genomes larger than yeast, it becomes 

important to select amongst many potential cis-regulatory regions. In Drosophila, a common 

strategy has been to use cis-regluatory modules (CRMs), which are distinct regulatory regions 

and can act independently to regulate transcription. A logistic regression framework using 

binding motifs in CRMs and the concentration of TFs in each cell has been used to predict 

expression patterns along the anterior-posterior (A-P) axis in the developing Drosophila embryo 

(Kazemian et al. 2010). A similar model in mammalian cells used TF binding motifs to predict 

promoter sequences active in a reporter assay using a support vector machine (SVM) (Landolin 

et al. 2010). Rather than using TF binding motifs, another group used all possible 6bp sequences 

to predict sequences bound by P300, a transcriptional co-activator and marker of enhancers, 

using an SVM (Lee et al. 2011a). While these modeling frameworks can be useful in predicting 

expression and coming up with basic features that contribute to cis-regulatory activity, a more 

mechanistic model may uncover determinants of regulation that explain the functional activity of 

transcriptional regulators. 

Statistical thermodynamic models of transcription allow for mechanistic explanations of 

cis-regulatory features using information about cooperativity between TFs. These models 

incorporate parameters that are related to the change in free energy of interactions on a cis-
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regulatory element to explain the thermodynamic stability of protein complexes on a potential 

regulatory DNA sequence. This model makes the assumption that the proteins are in 

thermodynamic equilibrium and that any kinetic terms are wrapped up in the thermodynamic 

parameters. A key assumption of these models is that the probability that RNA Polymerase II 

(RNAP) is bound at the regulatory element is proportional to the expression driven by the 

regulatory element. Importantly, these models can incorporate parameters of interaction between 

TFs, both providing a model of cis-regulatory logic and a potential mechanism. Shea and Ackers 

first used this framework to describe the mechanisms of regulation of the lambda OR control 

system. They modeled the binding of the cI dimer, the cro dimer, and RNAP at three Or binding 

sites. Using a thermodynamic modeling framework and the expression of two promoters during 

induction of lysis, they were able to show that cooperativity between cI repressors is an 

important element in regulation of these genes (Shea and Ackers 1985). Buchler and colleagues 

extended the model to a more general framework to show that a thermodynamic model can be 

used to flexibly encode a number of different types of cis-regulatory logic (Buchler et al. 2003). 

These works laid the groundwork for other applications of the model in new systems. 

A common use of the thermodynamic framework has been used to demonstrate the 

degree to which proteins cooperate on a cis-regulatory element. In the Drosophila embryo, 

thermodynamic modeling has been used to show that homotypic interactions between TFs are 

important features of the regulation of gene expression patterns across the anterior-posterior axis 

(Segal et al. 2008). Another group extended this study to show that this cooperativity is best 

explained by simultaneous interaction of TFs with RNAP (He et al. 2010). Synthetic or mutated 

cis-regulatory elements (CREs) have also been used in Drosophila to show that cooperativity 

between TFs can explain expression patterns of individual CREs (Parker et al. 2011; Erceg et al. 
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2014). One of the advantages of the thermodynamic model framework is its flexibility. It can be 

modified to incorporate proteins such as nucleosomes, with one group showing that nucleosomes 

dynamics could create the appearance of cooperativity between TFs in yeast (Raveh-Sadka et al. 

2009). These examples demonstrate the flexibility of statistical thermodynamic models in 

learning about cis-regulatory mechanisms such as cooperativity between TFs. 

Previous work in the Cohen lab has used thermodynamic modeling to explain the 

expression driven by synthetic promoters and learn about cis-regulatory logic in yeast. These 

synthetic promoters are comprised of chains of binding sites for a few TFs, providing a great 

system for discovering interactions between TFs in a controlled sequence environment. The 

expression driven by hundreds of synthetic promoters was measured in various conditions in 

yeast. Expression was best explained by incorporating interactions between TFs into a 

thermodynamic modeling framework and allowing TF concentration to vary across conditions 

(Gertz et al. 2009; Gertz and Cohen 2009). Additional modifications to the thermodynamic 

model further demonstrate the flexibility that it provides. The same features in the model 

predicted expression even in the face of changes in the strength of the TATA box, showing that 

the TATA box does not affect the combinatorial TF interactions (Mogno et al. 2010). The model 

can also incorporate measured TF occupancy, which allows for the discovery of additional TF 

interactions (Zeigler and Cohen 2014). While these important studies laid the groundwork for 

using thermodynamic models with synthetic sequences, they were restricted to yeast. Applying 

this flexible model framework to a mammalian system will allow us to determine the extent to 

which TF interactions play a role in important developmental processes.  
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Regulation of Pluripotency 
Embryonic stem (ES) cells are one of the more important model systems used to study 

development, cellular biology, and genomics. ES cells are formed from the inner cell mass of the 

developing mammalian embryo, and have the ability to self-renew almost indefinitely when 

plated in culture (Chambers and Tomlinson 2009; Martin 1981; Evans and Kaufman 1981). They 

are able to differentiate into many different cell types in culture, form teratomas in vivo, and even 

contribute to whole animals (Martin 1981; Evans and Kaufman 1981; Nagy et al. 1993). 

Pluripotency is the property that gives ES cells these abilities of differentiation. Formally, it is 

defined as the ability to differentiate into any of the three primary germ layers (Solter and Solter 

2006). ES cells are thus a great model system for studying mammalian development. 

Pluripotency is also an excellent model for studying combinatorial regulation of 

transcription. Pluripotency is tightly regulated through a transcriptional network that is essential 

to maintaining the ES cell fate. A set of pluripotency TFs including Oct4, Sox2, Nanog, Esrrb, 

Klf2, Klf4, Klf5, and c-Myc are important for the maintenance of pluripotency and self-renewal 

of ES cells (Masui et al. 2007; Chambers et al. 2007; Niwa et al. 2000; Li et al. 2005; Ema et al. 

2008; Yeo et al. 2014; Ivanova et al. 2006; Nishiyama et al. 2013). Oct4 is a Pou-domain 

containing TF, Sox2 is from the HMG family of TFs, and Esrrb is an orphan nuclear receptor 

(Ambrosetti et al. 2000; Feng et al. 2009). Klf2, Klf4, and Klf5 are all zinc finger TFs from the 

same family (Jiang et al. 2008). These TFs work to transcriptionally regulate a network that both 

activates genes important to the self-renewal of ES cells as well as represses genes that would 

lead to differentiation. This network includes a significant amount of cross-regulation, in which 

the pluripotency TFs themselves are frequent targets of regulation (Chambers and Tomlinson 

2009; Chen et al. 2008c; Kim et al. 2008; Boyer et al. 2005; Ivanova et al. 2006; Loh et al. 2006; 



10 
 

Liu et al. 2008; Nishiyama et al. 2009, 2013). Underscoring their importance, the knockdown of 

many of these TFs, including Nanog, Oct4, Sox2, and Esrrb, leads to loss of self-renewal in ES 

cells (Ivanova et al. 2006). In addition to their role in maintaining the ES cell state, some of these 

TFs also help guide differentiation down certain developmental pathways, and overexpression of 

some of these TFs can lead to differentiation (Thomson et al. 2011; Teo et al. 2011; Niwa et al. 

2000). This demonstrates the importance of the action of the whole pluripotency network to 

maintaining pluripotency and shows that precise transcriptional regulation is key to maintaining 

the ES cell state. These features make pluripotency, and by extension ES cells, a great model 

system for studying transcriptional regulation. 

Not only are most of these TFs necessary for pluripotency and self-renewal of ES cells, 

some of them are even sufficient to induce pluripotency in other cell types. This was first shown 

by converting fibroblasts to induced pluripotent stem (iPS) cells through ectopic expression of 

Oct4, Sox2, Klf4, and c-Myc in both mouse and human (Takahashi and Yamanaka 2006; 

Takahashi et al. 2007). These iPS cells posses all the features that make ES cells pluripotent, 

including the ability to contribute cells to an entire animal. iPS cells can be generated from a 

number of cell types from all three germ layers, including hematopoietic cells at various stages 

of differentiation (Eminli et al. 2009), pancreatic β cells (Stadtfeld et al. 2008), and adult neural 

stem cells (Kim et al. 2008). Later studies refined the picture of what sets of TFs could induce 

pluripotency. c-Myc was found to be unnecessary for iPS cell generation. Esrrb could be paired 

with Oct4 and Sox2 to generate iPS cells, and either Klf2 or Klf5 could increase the efficiency of 

iPS generation when paired with Oct4, Sox2, and Klf4 (Nakagawa et al. 2008; Feng et al. 2009). 

Oct4 has even been shown to induce pluripotency by itself when paired with a small molecule 
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(Li et al. 2010; Yuan et al. 2011). This evidence all points to the central role that TFs play in 

regulating the property of pluripotency. 

The TFs that maintain the property of pluripotency often work together to regulate gene 

expression in ES cells. Groups of these TFs tend to bind common genomic loci to regulate the 

expression of the same genes important to maintaining pluripotency (Chen et al. 2008c; Kim et 

al. 2008; Boyer et al. 2005; Loh et al. 2006). For instance, Oct4, Sox2, and Nanog bind a distinct 

set of loci, with Klf4 and Esrrb joining them in many locations (Boyer et al. 2005; Chen et al. 

2008c; Kim et al. 2008). In addition to binding common targets, clusters of bound pluripotency 

TFs are also associated with transcriptional regulatory signals. P300, a transcriptional co-

activator, is associated with clusters of bound pluripotency TFs, and knocking down these TFs 

can lead to lower P300 binding (Chen et al. 2008c). Furthermore, ES cell gene expression is 

associated with groups of pluripotency TFs bound at a gene’s promoter (Kim et al. 2008). For 

certain sets of these TFs, there is even evidence of cooperation or physical interaction in 

regulating genes. Oct4 and Sox2 are known to physically interact and bind a joint sequence motif 

to regulate transcription in ES cells (Ambrosetti et al. 2000; Chew et al. 2005; Kuroda et al. 

2005; Ng et al. 2012; Rodda et al. 2005). Additionally, there is some evidence of cooperativity of 

Nanog with Sox2 (Gagliardi et al. 2013), Klf4 with Sox2/Oct4 (Nakatake et al. 2006; Wei et al. 

2009), Oct4 with Esrrb (van den Berg et al. 2008, 2010), and Klf4 with Oct4 (Wei et al. 2013). 

These previous observations suggest that cis-regulatory logic is important to specify the 

transcription driven by the pluripotency TFs. A new method is necessary in order to gain the 

statistical power to fully assay the degree to which these interactions play a role. Synthetic cis-

regulatory elements coupled with high-throughput assays give us this opportunity. 
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High-throughput reporter assays and synthetic CREs 
In order to study the cis-regulatory properties of regulatory elements at a general level, it 

is necessary to study many hundreds to thousands of sequences in order to gain enough statistical 

power. In the case of combinatorial regulation, the sequences need to sample many different 

binding sites combinations. This necessitates an assay that can be used to measure expression 

driven by many sequences. Recent work by a number of groups, including the Cohen lab, has led 

to the development of massively parallel reporter assays to more easily assay the cis-regulatory 

potential of up to thousands of sequences in one experiment (Arnold et al. 2013; Kwasnieski et 

al. 2012; Melnikov et al. 2012; Sharon et al. 2012; Smith et al. 2013a; Patwardhan et al. 2012a). 

The ease of using these assays has allowed for more high-throughput work into transcriptional 

regulation of mammalian systems. Most of these assays use a reporter gene with a barcoded 

transcript to read out the expression level driven by a set of cis-regulatory elements using next-

generation sequencing. This has been used in a number of systems including yeast, mammalian 

cell culture, and mouse tissues. The flexibility of these assays makes them ideally suited for a 

study into the mechanisms of cis-regulation. 

Focus of Dissertation 
My dissertation has focused on the determinants of cis-regulation. Gene regulation is 

essential to proper development of multicellular organisms; as such, mammalian systems are a 

great for studying how important transcriptional processes. In general, predictions of expression 

driven by a given sequence can use two types of data: 1) the DNA sequence of the region in 

question, and 2) measured biochemical features at the given region. Predictions based on 

sequence often use TF binding motifs but can also use k-mers or simpler features such as GC 

content. Predictions based on measured biochemical features usually use the presence of histone 
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modifications or open chromatin at the region of interest. In Chapters 2 and 3 I use sequence 

features, specifically TF binding sites and combinations of these sites, to learn about the 

regulation of expression by pluripotency TFs in ES cells. In Chapter 4, I make predictions of 

expression based on both histone modifications and sequence features. These complementary 

approaches allow for a picture to emerge of mechanisms of cis-regulation. 

The technical basis of much of my thesis is the ability to measure expression driven by a 

large library of sequence elements. This is made possible by a massively parallel reporter assay 

developed in the Cohen lab, CRE-seq (Kwasnieski et al. 2012). It allowed me to easily assay the 

expression in two cell types using mostly the same protocol. I used both ES cells and K562 cells, 

a leukemia cell line. I was also able to measure expression in differentiated ES cells. Large 

numbers of measurements such as those made possible by CRE-seq are essential to learning 

about mechanisms of transcriptional regulation, especially given the complex picture that is 

emerging. 

In Chapter 2 I used the ES cell system to investigate the degree to which interactions 

between TFs in the pluripotency network determine the expression driven by cis-regulatory 

elements (CREs) in ES cells. In this work, I assayed the expression of a library of synthetic 

CREs comprised of many combinations of binding sites for TFs in the pluripotency network. 

Using a statistical thermodynamic model I found that TF interactions are important for 

specifying cis-regulation in ES cells. This was followed up by bioinformatic analysis of genomic 

binding sites to support the interactions between TFs. I further investigated homotypic 

interactions through a small library of CREs comprised of chains of Klf4 sites in various 

overexpression conditions. I found that competition between Klf factors helps determine 

expression driven by these chains. I conclude that interactions between certain pluripotency TFs, 
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but not all, help specify expression level, and that exact grammar is important in regulation in 

some cases. 

In Chapter 3, I continued examining the expression of combinations of binding sites for 

pluripotency TFs in a new condition. I treated ES cells with retinoic acid (RA), which causes 

them to differentiate down the neural lineage. I then measured the expression of the library of 

synthetic CREs from Chapter 2 in these cells and compared to the expression in ES cells. I found 

that CREs with complex mixtures of binding sites had similar expression in both cell types 

whereas other CREs did not. This indicates that heterotypic interactions are largely consistent 

between cell types but that homotypic interactions tend to change. 

The work in Chapter 4 looked at genomic sequence elements and biochemical features 

that were associated with high cis-regulatory potential. A set of genomic segmentation 

predictions for enhancers or repressed elements was assayed for their ability to drive expression 

in K562 cells. Each class drove a distinct expression level, and Enhancers and Weak Enhancers 

drove expression over background. Interestingly, Weak Enhancers drove higher expression than 

Enhancers, potentially due to lower H3K27ac. Additionally, I built a logistic regression model 

using this expression data to predict expression based on chromatin and sequence features, 

finding that matches to TF binding motifs are best at explaining expression. From these results, 

we can conclude that both features relating to sequence and biochemical modifications are 

needed to fully explain gene expression. 

The work in this dissertation lays out important principles of cis-regulation relating to the 

role of TFs and chromatin modifications. It lays the groundwork for deciphering the cis-

regulatory code from the features that we believe have some effect but are unsure of their exact 
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function. Specifically, it investigates the degree to which interactions between TFs regulate 

expression and the relative contribution of biochemical signals and sequence to expression. As 

others build upon this work, we will be able to get closer to the goal of quantitative 

understanding of gene regulation. 
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Chapter 2: Interactions between 
transcription factors help specify cis-

regulation in pluripotency 
A core set of transcription factors (TFs) maintain the pluripotent state in embryonic stem 

(ES) cells, and a number of these TFs bind to similar regions of the genome. We investigated the 

degree to which interactions between these TFs affect cis-regulation in embryonic stem (ES) 

cells. To this end, we measured the expression of a library of hundreds of synthetic cis-

regulatory elements (CREs) comprised of binding sites for Oct4, Sox2, Klf4, and Esrrb in ES 

cells. CREs with mixtures of unique types of TF binding sites drive the highest expression. A 

statistical thermodynamic model that incorporates interactions between TFs explains a large 

portion (72%) of the variance in expression of these CREs. These interactions include favorable 

interactions between Oct4 and Sox2, Klf4 and Sox2, and Klf4 and Esrrb, and are supported by 

genomic binding data. Interestingly, an unfavorable homotypic interaction was also a strong 

component of the model, helping to explain the finding that CREs with many unique binding 

sites drive the highest expression. We went on to investigate the expression driven by CREs 

comprised of homotypic chains of Klf4 sites, which can be bound by Klf2, Klf4, and Klf5 in ES 

cells. Our results show that each of the Klf TFs has a unique contribution to regulation by these 

CREs. This suggests that competition between Klf2, Klf4, and Klf5 for binding at the Klf4 

binding site is an important element of regulation by chains of these sites. 
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Introduction 
Transcription is regulated primarily through the action of sequence-specific transcription 

factors (TFs), which help direct cis-regulatory programs and guide mammalian development. 

TFs bind DNA at specific degenerate sequences. These sequences can be modeled using position 

weight matrices, which can be used to predict TF binding sites (Stormo and Fields 1998). In 

mammalian systems, few of these predicted sites are actually bound by TFs and fewer still 

regulate transcription. As such, we lack a general method to quantitatively predict expression 

level driven by TFs. There are a few mechanisms that may affect TF activity at predicted binding 

sites, including chromatin accessibility, DNA methylation, and combinatorial interactions 

between TFs. Combinatorial regulation has been shown to be important in specifying cis-

regulation in a number of systems (Gertz et al. 2009; Smith et al. 2013a; Thanos and Maniatis 

1995; Kim and Maniatis 1997; Yáñez-Cuna et al. 2012; Sharon et al. 2012). However, 

interactions only occur between certain pairs of TFs, and its unclear what combinatorial 

interactions exist in which systems. A better understanding of combinatorial regulation would 

allow us to better predict which cis-regulatory elements (CREs) are active, what expression level 

they drive, and the effect of perturbations on their expression. 

TFs play an essential role in the specification of cell fate through regulation of 

developmental genes. Pluripotency, the property that allows embryonic stem (ES) cells to 

differentiate into any of the three primary germ layers, is maintained by a core set of TFs 

including Oct4, Sox2, Klf2, Klf4, Klf5, c-Myc, Nanog, and Esrrb (Chen et al. 2008c; Boyer et al. 

2005; Loh et al. 2006; Ivanova et al. 2006). The ectopic expression of certain combinations of 

these TFs is able to alter the state of differentiated cells back to pluripotency, a process known as 

induced pluripotency (Takahashi and Yamanaka 2006). This demonstrates the importance of 
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these TFs to pluripotency. There is also evidence that the pluripotency TFs act cooperatively in 

ES cells. They often bind in clusters at common genomic loci to regulate a core set of genes, and 

a set of 25 tested regions bound by three of these TFs all have enhancer activity in ES cells 

(Chen et al. 2008c; Kim et al. 2008). However, the expression level driven by these regions 

varied over a 25-fold range, suggesting that there may be some unknown combinatorial rules 

dictating the expression level of these regions. In fact, some of these TFs, most notably Oct4 and 

Sox2, have been shown to physically interact to regulate transcription (Chew et al. 2005; Kuroda 

et al. 2005; Rodda et al. 2005). It’s likely that combinatorial regulation plays a role in the 

pluripotency network, but the rules of this regulation need to be determined. 

Synthetic cis-regulatory elements (CREs) are useful tools for investigating cis-regulatory 

mechanisms, especially when coupled with high-throughput expression assays (Gertz et al. 2009; 

Smith et al. 2013b; Sharon et al. 2012; Mogno et al. 2013). Controlling the arrangement and 

numbers of TF binding sites in a controlled sequence background provides substantial power to 

discover interactions between TFs. In addition, massively parallel reporter assays using next-

generation sequencing can be used to determine the cis-regulatory potential of many sequences 

in a number of systems (Kinney et al. 2010; Kwasnieski et al. 2012; Melnikov et al. 2012; 

Patwardhan et al. 2012b; Sharon et al. 2012; Arnold et al. 2013). Here we demonstrate the use of 

a massively parallel reporter assay, CRE-seq, to measure the expression of hundreds of synthetic 

CREs in mouse ES cells. We then used this expression data along with a statistical 

thermodynamic model to discover interactions between pluripotency TFs and their effect on 

transcriptional regulation. 
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Results 
We first designed a synthetic CRE library to investigate combinatorial cis-regulation by 

pluripotency TFs. Our goal was to test two possible cis-regulatory scenarios: 1) TFs each act 

independently to regulate transcription, or 2) interactions between TFs help guide regulation. We 

used synthetic CREs comprised of between one and four high-affinity binding sites for the 

following TFs central to pluripotency: Oct4, Sox2, Klf4, and Esrrb. Each binding site is in a 

20bp building block with at least 8bp of constant sequence surrounding it (Figure 2.S1a). We 

designed a library (OSKE library) of 599 of these synthetic CREs and measured their expression 

in ES cells using CRE-seq, a massively parallel reporter assay (Kwasnieski et al. 2012). The 

synthetic CRE library was cloned into a plasmid vector, upstream of the Pou5f1 basal promoter 

and the dsRed gene (Figure 2.S1b). Each CRE is associated with 10 unique sequence barcodes 

(BCs) situated in the 3’ UTR of the dsRed gene. We transfected the OSKE plasmid library into 

mouse ES cells and measured the expression of the CREs 26 hours later using CRE-seq. After 

filtering, expression data was obtained for 3567 BCs and 415 CREs. The expression 

measurements were reproducible across three biological replicates (R2 range=0.88-0.91, Figure 

2.S1c). 

We first investigated whether simple additivity could explain the expression driven by the 

CREs. CREs with more transcription factor binding sites (TFBS) tended to be more highly 

expressed; however, the number of binding sites could not explain all of the expression 

(R2=0.14), and the expression of CREs with four TFBS varied over a 13-fold range. This 

suggests that there is regulation by these TFs that involves more complex effects than simple 

additivity.  
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To investigate whether interactions between TFs could explain the expression of the 

synthetic CRE library, we modeled the expression using a statistical thermodynamic framework 

(Shea and Ackers 1985; Buchler et al. 2003; Gertz et al. 2009; Kinney et al. 2008; He et al. 2010; 

Zeigler and Cohen 2014; Brewster et al. 2014). This model framework relates the change in free 

energy of interactions between proteins and DNA on a CRE to the expression driven by that 

CRE. Specifically, it includes parameters for the interactions between TFs, RNA Polymerase II 

(RNAP), and DNA. The probability that RNAP is bound at the CRE is assumed to be 

proportional to the expression driven by that CRE, connecting the TF-TF interactions and 

expression. For a specific CRE, the probability that RNAP is bound is calculated by summing 

the weights of all permutations of bound TFs (Fig 2.S2). This model framework also allows for 

specific rules about how TFs may interact, and we have used two basic rules for TF-TF 

interactions: the “neighboring” interactions rule and the “all-across” interactions rule (Materials 

and Methods). By finding a set of parameters that best predicts expression, we can determine 

which TFs may interact in this system.  

We tested whether a thermodynamic model incorporating interactions between TFs could 

explain the expression of the CREs better than a model without any TF interactions. We first 

used a baseline thermodynamic model including only four TF-RNAP interaction parameters, one 

for each TF, and no TF-TF interaction parameters. This model predicted expression with an R2 

of 0.50 (Figure 2.1a). In order to determine whether any TF interactions contribute to expression 

in this system, we added TF-TF interaction parameters to the model to see if they could improve 

the predictive power of the model. To guard against overfitting, we monitored the AIC and 

sensitivity of the parameter values and used five-fold cross validation. The best model with TF-

TF interactions (‘Full Model’) includes nine total parameters and explains the expression with an 
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R2 of 0.72 (Figure 2.1b). The Full Model includes the four TF-RNAP interaction parameters, as 

well as five parameters for interactions between TFs: Sox2-Oct4, Klf4-Sox2, Klf4-Esrrb, 

homotypic (an interaction between any TF and another copy of itself) on the same strand, and 

homotypic on the opposite strand (Fig 2.1b, Table 2.S1). Analysis of genomic ChIP-seq binding 

data (Chen et al. 2008c) for the Klf4-Esrrb pair and the Klf4-Sox2 pair suggests that they bind 

cooperatively in the genome (Figure 2.S3). Notably, the homotypic interaction parameters are 

strongly unfavorable, with some of the largest parameter values in the model (Table 2.S1). 

Despite this, the other TF-TF interaction parameters still significantly contribute to the model. 

This is best demonstrated by the fact that the Full Model explains 36% of the variance in 

expression of the 20 CREs that have one binding site for each of the four TFs, despite the fact 

that these CREs all have the same total TF-RNAP interactions and do not utilize the homotypic 

interaction parameters. Thermodynamic modeling has shown that interactions between TFs help 

determine the expression driven by CREs in the pluripotency network. 

The unfavorable homotypic interaction parameters suggest that CREs regulated by a 

variety of TFs, rather than multiple copies of the same TF, are best able to activate transcription. 

Indeed, among synthetic CREs with four total TFBS, higher expression is strongly associated 

with the number of unique types of binding sites in the CRE (Figure 2.2). In other words, CREs 

with one binding site for each of the four TFs in the library drive much higher expression than 

CREs with four copies of a binding site for a single TF. In addition, of those CREs with binding 

sites for two TFs and four total binding sites, the expression is higher when there are two binding 

sites for each TF than when there are three sites for one TF and one site for the other TF (Figure 

2.S4). Interestingly, the model also finds that two copies of the same binding site in the opposite 

orientation produce a more unfavorable interaction than two copies in the same orientation 
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(Table 2.S1). While it is clear that reduced expression of homotypic chains plays a role in cis-

regulation, the mechanism by which this occurs is unclear.  

We hypothesized that the expression driven by homotypic chains of TFBS is regulated by 

competition and interactions between TFs that bind the same binding site. To test this hypothesis, 

we assayed the expression of CREs comprised of chains of binding sites for Klf4, the site most 

associated with activation in the original CRE library. Klf2, Klf4, and Klf5 all regulate 

pluripotency in ES cells and are known to bind to the Klf4 binding site (Jiang et al. 2008). We 

created a small CRE library (KBS library) with 7 synthetic CREs, comprised of between zero 

and six Klf4 sites.  We measured the expression of the KBS library in ES cells in the context of 

overexpression of each of the three Klf TFs as well as a control gene (GFP). 

The expression profile of the CREs in the KBS library was unique in each TF 

overexpression condition (Figure 2.3). Each CRE with 3 or more binding sites drives higher 

expression in the Klf2 overexpression condition than in the control overexpression condition. 

Interestingly, Klf4 and Klf5 overexpression leads to lower expression from CREs with 5 or 6 

binding sites compared to the control overexpression condition. Furthermore, under Klf5 

overexpression, a CRE with 6 binding sites drives lower expression than one with 5 binding 

sites. We also measured the expression level of the Klf genes in the overexpression conditions by 

qPCR and found that Klf4 was up-regulated in the Klf5 overexpression condition (Fig 2.S5). 

This data suggests that each Klf TF has a unique effect on the expression of these CREs and that 

competition between them is an important factor in regulation by these binding sites. 

We then used a statistical thermodynamic model to learn what mechanisms could explain 

the expression driven by chains of Klf4 binding sites. We attempted to fit a model using 
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homotypic and heterotypic interactions between the Klf factors. The model that best explained 

the data without overfitting used four parameters: one for each TF-RNAP interaction, and a Klf4 

homotypic interaction parameter (Table 2.S1). This model could capture most of the overall 

variation in expression (R2=0.93) and explained the data significantly better than a model with 

no TF-TF interactions (by AIC) (Figure 2.S6). All interactions were found to be favorable, but 

Klf2-RNAP and Klf4-RNAP were very weak and their 95% confidence interval spanned 0 

(Table 2.S1). This suggests that Klf4 may be a weak activator with strong self-cooperativity that 

can prevent Klf2 and Klf5 from binding, especially on longer chains of binding sites and when it 

is highly expressed. 

We next investigated whether clusters of many Klf4 binding sites in the genome are 

associated with activity and could be regulated by a similar mechanism as our synthetic CREs. 

We used a sliding window approach to learn the relationship between the number of Klf4 

binding motifs in a window and biochemical activity. We found a positive trend between the 

number of Klf4 binding sites and both DNase hypersensitivity signal and RNA Polymerase II 

binding signal, up to six binding sites (Figure 2.S7). This effect is not due to GC-content, as 

demonstrated by permuted Klf4 binding matrices, and is stronger within 10kb of a TSS. This 

demonstrates that genomic clusters of Klf4 binding sites have biochemical activity that is 

associated with the number of binding sites, up to six binding sites. Thus, these clusters may 

regulate transcription in a similar manner as the synthetic CREs, namely through competition 

and interactions among the Klf factors. 

Discussion 
Here we describe an investigation into the cis-regulatory activity of TFs in the 

pluripotency network. Using a statistical thermodynamic model, we show that interactions 
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between TFs play a large role in explaining the expression driven by synthetic CREs (22% of the 

variation in expression after accounting for basic TF-RNAP interactions). We further 

characterized regulation by homotypic chains of one particular binding site, Klf4, and found that 

Klf2, Klf4, and Klf5 each have unique effects on transcription from these sites. 

Two principal observations lead us to believe that there is cis-regulatory logic in the 

pluripotency network. First, the expression of synthetic CREs with one binding site for each of 

the four TFs varies over a 3-fold range. Second, TF-TF interactions parameters make important 

contributions to the thermodynamic model. These interaction parameters included three 

favorable heterotypic interactions and two strong unfavorable homotypic interactions. The Oct4-

Sox2 interaction found by the model is a well-known and characterized interaction (Chew et al. 

2005; Kuroda et al. 2005; Rodda et al. 2005). There is some previous evidence for the Klf4-Sox2 

interaction (Nakatake et al. 2006; Wei et al. 2009; Xie et al. 2008), while the Klf4-Esrrb 

interaction is mostly novel. The expression of the synthetic CREs shows that these interactions 

are indeed important to determining the expression driven by binding sites for these TFs. We 

have provided a framework demonstrating the quantitative contribution of these interactions to 

expression.  

Our work builds on previous studies showing that homotypic clusters of TF binding sites 

have unique cis-regulatory properties. Homotypic clusters have been associated with 

conservation and function, as well as reduced ability to drive expression compared to heterotypic 

clusters (Gotea et al. 2010; Ridinger-Saison et al. 2012; Sharon et al. 2012; Smith et al. 2013b). 

Our results from the OSKE library also show that homotypic chains of binding sites drive lower 

expression than heterotypic chains (Fig 2.2). This agrees with another finding that ES cell 

promoters that are bound by only one pluripotency TF tend to be off and those that are bound by 
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multiple TFs tend to be on (Kim et al. 2008). Interestingly, homotypic chains of Klf4 binding 

sites from the KBS library drove higher expression than homotypic chains of other binding sites 

from the OSKE library. This may be explained by the fact that competition between Klf factors 

(Klf2, Klf4, and Klf5), each of which has a unique effect on expression, plays a role in regulation 

from these CREs. Our thermodynamic modeling suggests that Klf4 may cooperatively bind with 

itself, and in the process work to prevent binding by Klf2 and Klf5, which may be the strongest 

activator. While this model can explain most of the variation in the expression, it cannot capture 

all of the trends in the expression (Figure 2.S6). For instance, it was unable to capture the lack of 

increase in expression from five to six binding sites. These results combined with previous 

studies show that homotypic chains of binding sites are important to cis-regulation but their 

effect may vary based on the binding site and system.  

A network of TFs regulates pluripotency in ES cells, and we show here that interactions 

between these TFs are necessary to specify their cis-regulation. The evidence suggests that 

knowledge of which binding sites are present is not enough to determine the expression driven 

by a CRE. The ability to fully understand gene expression, and any perturbations to it, will 

depend on knowing the effect of interactions between TFs. 

Materials and Methods 
Design of CREs 

For the OSKE library, the binding sites were comprised of consensus binding sites for the 

following four TFs: Oct4, Sox2, Esrrb, and Klf4 (Supplemental Info). These 12bp binding sites 

were inserted into a larger 20bp building block sequence, of which the other 8bp were constant. 

For CREs with multiple binding sites, the building blocks were concatenated together. For the 
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KBS library, a alternate Klf4 binding site with high affinity was used to facilitate cloning 

(Supplemental Info). 

Cloning of plasmid libraries and overexpression plasmids 
Plasmid pCF10 was constructed from pGL4.23 (Promega), first by inserting the dsRed-

Express2 gene between the Acc65I and FseI sites. Then, the Pou5f1 basal promoter was inserted 

between the NcoI and HindIII sites. pCF10 served as the basic plasmid backbone. Array 

synthesized oligos (6,500 unique sequences of 150bp long) were ordered from Agilent through a 

limited licensing agreement. The oligos were comprised of two primer sequences, a CRE, a 9bp 

barcode (BC), and multiple restriction enzyme sites (see Supplemental Information). The OSKE 

library comprised of 599 CREs, each associated with 10 BCs, and the basal promoter alone, 

associated with 30 BCs. The rest of the array contained CREs not used in this study. The array 

synthesized oligos were prepared as previously described (Kwasnieski et al. 2012), except using 

primers CF159 and CF160 with an annealing temperature of 55C for the initial PCR step, and 

then purified from a polyacrylamide gel as described previously (White et al. 2013). These were 

cloned into plasmid pCF10 at the ApaI and ScaI sites. The Pou5f1 basal promoter and dsRed 

were then amplified from pCF10 using primers CF121 and CF122 and then inserted into the 

plasmid library from the previous step at the XbaI and HindIII sites. Plasmids without the basal 

promoter and dsRed were filtered out by cutting in the backbone at the SpeI site and gel 

extracting the band at the appropriate size. This formed the OSKE library. 

The Klf4 binding sites (KBS) library was formed by cloning individual CREs into the 

reporter plasmid. CREs with Klf4 binding sites were ordered from IDT (oligos BS300-BS308, 

Supplemental Data 2.1). Oligonucleotides (oligos) were cloned into pCF10 at sites HindIII and 

ApaI, upstream of the basal promoter and dsRed gene in the same location as the CREs in the 
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OSKE library. Two control plasmids were also constructed, with the hsp68 promoter and the 

SV40 promoter. pGL-hsp68 was constructed as described previously from pCF10 (Kwasnieski et 

al. 2014). A plasmid with the SV40 promoter was cloned by inserting the SV40 promoter from 

the pbDonor-tdTomato plasmid (a gift of the Rob Mitra lab) using primers CF134 and CF135 at 

the NcoI and HindIII sites of pCF10. Oligos with BCs were then inserted into the plasmids 

containing the CRE inserts. First, oligos CF48 and CF49, containing random 12bp BCs, were 

annealed. Next, these annealed oligos were cloned into the plasmids with CRE inserts at the 

XbaI and SacI sites. 12 colonies containing random BCs for each CRE plasmid were picked and 

used to comprise the KBS library. The BCs in the plasmids were then sequenced by Sanger 

sequencing, and only those plasmids with a BC insert were retained. 

Overexpression constructs were constructed based on the pCX-OKS-2A plasmid. The 

individual TF genes for Klf2, Klf4, Klf5, and GFP were inserted between the EcoRI sites of the 

pCX-OKS-2A plasmid. Klf4 sequence was taken from the pCX-OKS-2A plasmid, Klf2 was 

taken from the pMXs-ms-Klf2 plasmid, and Klf5 was taken from the pMXs-ms-Klf5 plasmid. 

pCX-OKS-2A (Addgene plasmid #19771), pMXs-ms-Klf2 (Addgene plasmid #50786), and 

pMXs-ms-Klf5 (Addgene plasmid #50787) were gifts from Shinya Yamanaka. 

Cell culture and transfection 
RW4 ES cells were cultured as described previously (Chen et al. 2008b; Xian et al. 

2005), on gelatin coated plates and in media comprised of: DMEM, 10% fetal bovine serum, 

10% newborn calf serum, nucleoside supplement, 1000 U/ml leukemia inhibitory factor (LIF), 

and 0.1uM β-mercaptoethanol. For transfection of OSKE library, ES cells in a 6-well plate were 

transfected using 10ul Lipofectamine 2000 (Life Technologies), 3ug plasmid library and 0.3ug 

CF128 (GFP plasmid control) per well. For transfection of KBS library and the Klf 
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overexpression plasmids, ES cells in a 6-well plate were transfected with 10ul Lipofectamine 

2000 (Life Technologies), 2.25ug Klf overexpression plasmid (CF127, CF128, CF131, or 

CF136), 0.75ug KBS library, and 0.3ug CF128. The cells were passaged 6 hours post-

transfection, and RNA was extracted 26 hours post-transfection using the PureLink RNA mini 

kit (Life Technologies). Three replicates of each sample (OSKE library and the KBS library in 

each overexpression condition) were transfected and processed. 

CRE-seq 
Expression measurements of each CRE were determined using CRE-seq as described 

previously, using Illumina sequencing of both the RNA and original plasmid DNA pool 

(Kwasnieski et al. 2014). Briefly, excess DNA was removed from the RNA using the TURBO 

DNA-free kit (Applied Biosystems). cDNA was then prepared using SuperScript RT II (Life 

Technologies) with oligo dT primers. Both the cDNA and the plasmid DNA pool were amplified 

using primers CF150 and CF151b, using 21 cycles. The PCR amplification products were 

digested using XbaI and XhoI (NEB), and the resulting digestion products were ligated to 

custom Illumina adapter sequences P1_XbaI_BCX (where X is 7 through 15) and P2_XhoI, each 

of which is comprised of a forward (F) and reverse (R) strand that were annealed. An enrichment 

PCR step of 20 cycles with primers CF52 and CF53 was then used, and the resulting product was 

sequenced on one lane of the Illumina HiSeq for the OSKE library, and part of a lane on the 

Illumina MiSeq for the KBS library.  

Sequencing reads were filtered to ensure that the first 13 nucleotides perfectly matched 

the expected sequence. For the OSKE library, this resulted in 64.3 million reads combined for 

the three RNA samples, and 24.5 million reads for the DNA sample. For the KBS library, this 

resulted in 1.79 million reads combined for the 12 RNA samples and 181,000 reads for the DNA 
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sample. The expression of each barcode (BC) in each sample was calculated as (RNA read 

count)/(DNA read count), and only BCs passing a read count threshold were included for further 

analysis. The read count thresholds were 2000 reads in the OSKE library DNA sample, 50 reads 

in the KBS library DNA sample, and 3 reads in the RNA samples. The expression of each CRE 

in each replicate was calculated as the mean of the expression of each BC it was associated with, 

and only CREs with at least 3 BCs passing the read count filter in each replicate were included in 

the analysis. The overall expression of each CRE was the mean of its expression in each 

replicate. For the KBS library, the expression of each CRE in each overexpression condition was 

normalized to the expression of the SV40 CRE in that condition. 

qPCR of Klf genes 
For quantification of gene expression level of Klf2, Klf4, and Klf5 in overexpression 

conditions, RW4 cells were transfected as before but using 2.25ug Klf overexpression plasmid 

and 0.75ug CF128 (GFP reporter plasmid). 26 hours post-transfection, the cells were 

resuspended in PBS and sorted on GFP signal using the BD FACSArias III machine into 

RNAprotect (Qiagen). Cells with the GFP plasmid (CF128) mimic the cells with the KBS library 

in the previous transfections, as they were each transfected with the same amount of either the 

GFP plasmid or the KBS library. RNA was extracted using RNeasy Mini Kit (Qiagen), excess 

DNA removed using TURBO DNA-free kit (Applied Biosystems), and cDNA synthesized using 

SuperScript RT II (Life Technologies). qPCR was performed using Absolute SYBR Green, low 

ROX (Life Technologies), with primers listed in Supplemental Table 2.2. 

Thermodynamic modeling 
The statistical thermodynamic model was implemented as described previously (Buchler 

et al. 2003; Gertz et al. 2009; Gertz and Cohen 2009; Zeigler and Cohen 2014). The model 



30 
 

incorporates parameters for interactions between TFs, RNAP, and binding sites on the DNA. 

These parameters are proportional to the free energy of interaction. The probability that RNAP is 

bound at the promoter is assumed to be proportional to the expression driven by that 

promoter/CRE. For a given CRE, the statistical weight of each possible binding configuration is 

calculated, and the probability of RNAP being bound is the sum of the weights of all 

configurations in which RNAP is bound over the sum of the weights of all configurations. See 

supplementary information for more details. 

TF interaction rules dictate when two TFs are allowed to interact. Only when TFs are 

allowed to interact does the interaction parameter contribute to the statistical weight of a given 

binding configuration. We have used two basic rules for TF-TF interactions based on whether 

two TFs can interact if another protein in bound in between. The “neighboring” interaction rule 

only allows TFs to interact if no other TFs are bound in between them in a particular binding 

state. The “all-across” interaction rule allows TFs to interact with any other TF bound in that 

particular binding state (Figure 2.S2). The functional consequence of the neighboring interaction 

rule is to impart dependence on the order of the binding sites in the CRE. The all-across 

interaction rule does not distinguish between different orders of binding sites for a particular 

combination of sites on the CRE. 

The model was fit with custom Python scripts (see supplemental information) using 

SciPy. The fitting routines used for the OSKE library minimized the sum of squared error of the 

expression measurements, using log-transformed expression (both observed and predicted). The 

initial starting values for each parameter were set to 0, but the fit was robust to different starting 

parameter values. Five-fold cross validation was used by splitting the data into a training set of 

4/5 of the data and a test set of 1/5 of the data. Each partition of the data was used in the test set 
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exactly once. 95% confidence intervals for the parameter values were calculated using a 

sensitivity measure based on the asymptotic normal distribution for the parameter estimate. See 

supplemental information for further details. 

For the KBS library, the initial starting parameter values were based on an initial screen 

of many possible parameter values. The predicted expression of each CRE in the KBS library 

was calculated using a model with each of 2 million sets of random parameter values, taken from 

a normal distribution with mean of zero and standard deviation of 1. Each set of parameter 

values consisted of a value for each of the three TF-RNAP parameters and three of the six 

possible TF-TF interactions (three homotypic and three heterotypic), with all other parameter 

values set to zero. Each of the 20 possible configurations of the three TF-TF interaction 

parameters was sampled one hundred thousand times. The parameter set that predicted 

expression with the lowest error (using a modified objective function, see below) was used as the 

starting value to a fitting routine, with only those parameters with non-zero values allowed to be 

fit. After this fitting routine, insignificant parameters were removed from the model, and a final 

fitting routine was run. 

For the KBS library, a modified objective function was used to take into account the 

relative expression in each condition as well as the overall expression. The sum of squared error 

of overall expression for each CRE was calculated as usual, as well as the sum of squared error 

of the fraction of the maximal expression in the given condition. The geometric mean of both 

sources of error was calculated as the objective function for fitting. This allows for better 

predictions of the patterns of expression. 
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Other statistical analysis and data sources 
RNA Polymerase II ChIP-seq and DNaseI hypersensitivity signal data for the mouse 

genome are from the ENCODE Consortium and were downloaded from the ENCODE UCSC 

web portal (http://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixMouse.html). TF 

ChIP-seq data is from Chen et al. 2008. All genome coordinates were converted to mm9.  

Binding matrices were taken from Jaspar (Mathelier et al. 2014). The Sox2 binding matrix was 

trimmed after the 8th position to exclude the part corresponding to the Oct4 binding site. 

Similarly, the Oct4 (Pou5f1) binding matrix was trimmed before the 8th position to exclude the 

part corresponding to the Sox2 binding site. Permuted PWMs were created by randomly 

permuting the positions in the matrix (thus retaining the nucleotide content). FIMO (Grant et al. 

2011) was used for to find predicted binding sites using default options with P-value threshold of 

10-4. Bedtools (Quinlan and Hall 2010) was used for manipulations and analysis of bed files. 

Custom scripts were used for other analysis. The sliding window approach used 200bp windows 

in the genome with a 100bp step size. For each window we counted the number of Klf4 predicted 

binding sites by matches to the Klf4 PWM and the mean signals of RNA Polymerase II binding 

and DNase I hypersensitivity. 
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Supplemental information 
Thermodynamic modeling of transcription 

Statistical thermodynamic models of transcription are based on the statistical weights of 

the binding configurations of cis-regulatory elements (CREs). They are calculated as described 

previously (Buchler et al. 2003; Gertz et al. 2009), and are additionally described here. The 

weight (W) of any given binding configuration is given as: 

𝑊 = 𝑒!(!!!!!) (1) 

ω is the interaction parameter between any two proteins (either two TFs or a TF and RNAP) 

bound in that binding configuration and allowed to interact. q is the interaction of a TF or RNAP 

and DNA. It incorporates both affinity and concentration, and is: 

𝑞 = 𝑘 − ln 𝑇𝐹  (2) 

where k is a constant equal to Δ𝐺! 𝑅𝑇. q was fixed at 0 for each TF in the reference condition 

(no overexpression of any TF for the OSKE library, or overexpression of GFP condition for the 

KBS library). The relative concentrations of the TFs in the TF overexpression conditions are 

used to calculate relative q values and these are fixed. The weight of the empty DNA binding 

state (no TFs or RNAP bound) is set as 1.  

For a given CRE, the weights for all possible binding configurations are calculated, and 

the probability that RNAP is bound is: 

𝑃!"#$% =
!!!"#$%

!!!"#$%!!!!"#$!"%
 (3) 

where Wbound is the weight of states in which RNAP is bound, and Wunbound is the weight of states 
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in which RNAP is unbound. The probability that RNAP is bound is converted to an expression 

measurement by scaling it so that the mean expression is the same as in the observed expression 

measurements. 

Competition between Klf TFs in the KBS library was modeling by assuming that all three 

TFs could bind the Klf4 binding site. A further assumption for simplicity was made that all three 

TFs bound the site with the same affinity (somewhat supported by (Jiang et al. 2008)) and are 

present at the same concentration in the cell. While these assumptions may be violated, in 

practice the model would predict the same trends regardless. The relative concentration of each 

TF in each overexpression condition was set based on the qRT-PCR measurements in the 

overexpression conditions. When modeling competition, the possible binding states include each 

possible Klf TF bound to each Klf4 binding site. 

Thermodynamic model fits were done with custom Python scripts using SciPy 

(scipy.optimize.minimize function). The parameters were fit to minimize the objective function 

using the L-BFGS-B and SLSQP optimization algorithms in alternating fashion until the 

parameter values converged. The objective function used was the sum of squared errors of the 

expression measurements, using the log of the observed expression and the log of the predicted 

expression. Five-fold cross-validation was used, and the predicted expression value of each CRE 

in the test sets was used to determine the cross-validation R2. 95% confidence intervals for the 

parameter values were calculated using the asympototic normal distribution for the parameter 

estimate. More details can be found in (Bates and Watts 1988). A set of parameter values was 

deemed significant if the confidence intervals for all of the parameters were significantly 

different than zero. 
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Array sequence and binding sites used in synthetic CREs 
The array ordered from Agilent through a limited licensing agreement consisted of 150bp 

oligos with the following sequence: 

ACTACAAGGGCCCA[CRE]AAGCTTCT[FILL]CGTCTAGAC[BC]TGAGCTCTGCAACTC

CTACG 

Where [CRE] is the CRE comprised of concatenated building blocks of binding sites described 

below, [FILL] is random filler sequence to bring the length of the sequence up to 150bp (the 

filler is of variable length depending on the length of the CRE), and [BC] is a random 9bp 

barcode. 

Each building block consisted of 20bp with a binding site sequence in the middle. The 

binding site sequences, described below, consist of a 12bp sequence. The central 10bp sequences 

(underlined below) are based on binding sites from the literature or ChIP-seq data. The first 

position is set as a ‘G’ in every binding site for consistency, and the last position is set as a ‘C’ in 

all binding sites except for Klf4, in which it is set as a ‘G’ to avoid a restriction site needed in the 

cloning.  

Building Block: AGCTACXXXXXXXXXXXXGT. The 12 Xs are where the binding site 

sequence goes. 

Sox2: GCTCATTGTTTC. Based on the canonical binding site “CATTGTT” (Chen 2008), with 

“CT” added before from the UTF1 promoter and the “T” added after from the FGF4 promoter 

(Remenyi 2004). 

Oct4: GGGATGCTAATC. Based on the canonical binding site “ATGCTAAT” (Chen 2008), 
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with the “GG” added before from the FGF4 promoter (Remenyi 2004). 

Esrrb: GTTCAAGGTCAC. Based on consensus binding sites “TCAAGGTC”A (van den Berg 

2008), with the second position (‘T’) from the P2 binding site in the Pou5f1 promoter (X. Zhang 

2008). 

Klf4 (OSKE library): GGGGCGGGGCCG. Based on the most common binding site matching 

the Klf4 PWM from Klf4 ChIP-seq peaks (Chen 2008). 

Klf4 (KBS library): GGGGTGGGGCCG. Same as above, but with the fifth position changed to 

‘T’ to facilitate cloning. The fifth position can be either a ‘T’ or a ‘C’ according to the PWM. 
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Figures 
 

 

 

Figure 2.1. Thermodynamic model of OSKE library. In dot plots, observed expression of 
each CRE from CRE-seq experiment is plotted on the x-axis, and the predicted expression of 
each CRE by the model is on the y-axis. In depictions of models, solid lines represent 
interactions only between TFs that are neighboring in a given binding state, and dashed lines 
represent interactions occurring between any TFs bound on the CRE. A) Model with only four 
TF-RNAP interaction parameters predicts expression with R2 of 0.39. B) Full model with five 
TF-TF interaction parameters in addition to four TF-RNAP interaction parameters predicts 
expression with R2 of 0.70. 
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Figure 2.2. Expression by unique types of binding sites. Expression of CREs in the OSKE 
library with four total TFBS by the number of unique types of binding sites in the CRE. 
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Figure 2.3. Expression of CREs with only Klf4 binding sites. Expression of the basal 
promoter and CREs with one to six Klf4 binding sites in each of the four overexpression 
conditions. 
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Supplemental Tables 
 

OSKE library 

Parameter Value 95% C.I. 

Esrrb-RNAP 0.8915 0.7788, 1.004 

Klf4-RNAP 1.06 0.9294, 1.19 

Oct4-RNAP 0.5807 0.4729, 0.6884 

Sox2-RNAP 0.366 0.2515, 0.4805 

Homotypic same orientation (A) -1.132 -1.476, -0.7874 

Homotypic opposite orientation (A) -2.468 -3.29, -1.65 

Klf4-Esrrb (A) 1.119 0.739, 1.499 

Oct4-Sox2, only with Oct4 closer to TSS (N) 0.981 0.1595, 1.802 

Klf4-Sox2 (N) 1.336 0.8047, 1.867 

 

KBS Library 

Parameter Value 95% C.I. 

Klf2-RNAP 0.1593 -0.2326, 0.5511 

Klf4-RNAP 0.2306 -0.05295, 0.5142 

Klf5-RNAP 2.169 1.063, 3.274 

Klf4-Klf4 (N) 2.369 1.344, 3.393 

 

Table 2.S1: Fit parameter values from thermodynamic models. (N) indicates an interaction 
with the neighboring interactions rule, (A) indicates an interaction with an all across interaction 
rule. Positive values are favorable, negative values are unfavorable. 
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Name Sequence 

BS300_KK_upper CAAGCTACGGGGTGGGGCCGCTAGCTACGGGGTGGGGCC
GCT 

BS301_KK_lower AGCTAGCGGCCCCACCCCGTAGCTAGCGGCCCCACCCCG
TAGCTTGGGCC 

BS302_K_lower AGCTAgcggccccacccCGTAGCTTGGGCC 

BS302_K_upper caagctacgGGGTGGGGCCGCt 

BS303_KKKK_lo
wer 

agctaGCGGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGC
GGCCCCACCCcgtagctaGCGGCCCCACCCcgtagcttgggcc 

BS303_KKKK_up
per 

caagctacgGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctac
gGGGTGGGGCCGCtagctacgGGGTGGGGCCGCt 

BS306_KKK_low
er 

agctaGCGGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGC
GGCCCCACCCcgtagcttgggcc 

BS306_KKK_upp
er 

caagctacgGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctac
gGGGTGGGGCCGCt 

BS307_Kx5_lower agctaGCGGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGC
GGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGCGGCCCC
ACCCcgtagcttgggcc 

BS307_Kx5_upper caagctacgGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctac
gGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctacgGGGT
GGGGCCGCt 

BS308_Kx6_lower agctaGCGGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGC
GGCCCCACCCcgtagctaGCGGCCCCACCCcgtagctaGCGGCCCC
ACCCcgtagctaGCGGCCCCACCCcgtagcttgggcc 

BS308_Kx6_upper caagctacgGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctac
gGGGTGGGGCCGCtagctacgGGGTGGGGCCGCtagctacgGGGT
GGGGCCGCtagctacgGGGTGGGGCCGCt 

CF48 CTAGACTNNNNNNNNNNNNCCGAGCT 
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CF49 CGGNNNNNNNNNNNNAGT 

CF52 AATGATACGGCGACCACCGAG 

CF53 CAAGCAGAAGACGGCATACGA 

CF84 CGAAGTCTGAAGCCAGGTGT 

CF90 TCGACGTCaagcttATTGGCACACGAACATTCAA 

CF121 TAGCGTCGAGGACATCAAGA 

CF122 TGGTTTGTCCAAACTCATCAA 

CF134 TCATGTATaagcttTAATGCATGGCGGTAATACG 

CF135 TTAGTTtcatgaTGATCAGATCCGAAAATGGA 

CF150 TACACCGTGGTGGAGCAGTA 

CF151b AGCGTActcgagTTGTTAACTTGTTTATTGCAGCTT 

CF159 ACTACAAGGGCCCAAGC 

CF160 CGTAGGAGTTGCAGAGCTC 

P1_XbaI_BC7_R /5Phos/C*TAGAGACTGAAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC8_R /5Phos/C*TAGCTTGGAAAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC9_R /5Phos/C*TAGCCGATTAAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC10_R /5Phos/C*TAGGGCAGCGAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC11_R /5Phos/C*TAGCCATCATAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC12_R /5Phos/C*TAGTAACAAGAGATCGGAAGAGCGTCGTGTAGG
GAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC13_R /5Phos/C*TAGTCGTAACTAGATCGGAAGAGCGTCGTGTAG
GGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 
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P1_XbaI_BC14_R /5Phos/C*TAGGCAGCTATGAGATCGGAAGAGCGTCGTGTA
GGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC15_R /5Phos/C*TAGCAATCAAGTCAGATCGGAAGAGCGTCGTGT
AGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

P1_XbaI_BC7_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTTCAGTCT 

P1_XbaI_BC8_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTTTCCAAG 

P1_XbaI_BC9_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTTAATCGG 

P1_XbaI_BC10_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCGCTGCC 

P1_XbaI_BC11_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTATGATGG 

P1_XbaI_BC12_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCTTGTTA 

P1_XbaI_BC13_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTAGTTACGA 

P1_XbaI_BC14_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCATAGCTGC 

P1_XbaI_BC15_F AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTGACTTGATTG 

P2_XhoI_F /5Phos/T*CGAAGATCGGAAGAGCTCGTATGCCGTCTTCTGC
TTG 

P2_XhoI_R CAAGCAGAAGACGGCATACGAGCTCTTCCGATCT 

 

Table 2.S2: Sequences used. Sequences for primers and other oligos used in this study. 
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Supplemental Figures 
 

 

 

Figure 2.S1: OSKE CRE-seq library. A) Layout of the 20bp sequence building blocks 
containing the TF binding sites. B) Schematic of the members of the CRE-seq plasmid library. 
C) Representative dot plot of the reproducibility of the CRE-seq expression between two 
biological replicates. 

  

Sox2!

20bp(

Klf4!

12bp(
Esrrb!

Oct4!

A)(

B)( CRE(
Basal(

promoter( dsRed(
C)(

-4

-2

0

2

-4 -2 0 2

Log expression replicate 1

Lo
g 

ex
pr

es
si

on
 re

pl
ic

at
e 

2

BC(

…!



45 
 

 

Figure 2.S2: Interaction rules in statistical thermodynamic model of transcription. The 
weights of each possible binding state of a CRE are based on the possible interactions between 
TFs. Interaction rules dictate which TFs are allowed to interact, as shown here for a CRE with 
three TFBS and a subset of possible binding states. Each oval is one TF. 
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Figure 2.S3: Enriched TF binding near interacting partners. Binding of TFs determined by 
genomic ChIP-seq data (Chen et al 2008) are likely to be close to predicted binding sites based 
on a PWM for interacting partners. The red lines represent binding based on distance to nearest 
PWM for each TF. The black lines represent binding based on distance to nearest permuted 
PWMs for reach TF, with the line representing the mean over 10 shuffled PWMS and the ribbon 
representing the standard deviation. Shown for A) Sox2 binding by Klf4 sites, B) Klf4 binding 
by Sox2 sites, C) Esrrb binding by Klf4 sites, and D) Klf4 binding by Esrrb sites. 
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Figure 2.S4: Expression of CREs with two types of binding sites. The expression of CREs 
with four total binding sites and two types of binding site varies based on whether the binding 
sites are split 2-2 or 3-1. 
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Figure 2.S5: Expression of Klf genes in overexpression conditions. The expression level of 
Klf2, Klf4, and Klf5 was measured by qRT-PCR in four overexpression conditions. 
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Figure 2.S6: Predicted expression of KBS library. The observed CRE-seq expression of each 
CRE in the KBS library in each overexpression condition, along with the expression predicted by 
the thermodynamic model. 
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Figure 2.S7: Clusters of Klf4 binding sites function in the genome. The number of Klf4 
binding motifs was measured in 200bp genomic windows. The mean RNAP binding signal (A) 
and DHS signal (B) by number of Klf4 sites in all genomic windows, and in only those genomic 
windows within 10kb of a TSS (C) and (D).  The red line indicates the number of sites found 
using the Klf4 PWM, and the blue line indicates the number of sites found using 10 permuted 
Klf4 PWMs. For each color, the middle line is the median and the ribbon represents the upper 
and lower quartile (the top and bottom of the box in a boxplot). 
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Chapter 3: Changes in cis-regulatory rules 
during differentiation 

Abstract 
Transcriptional regulation plays an important role in development.  In Chapter 2 we 

showed that interactions between TFs help dictate cis-regulation in embryonic stem (ES) cells. In 

this chapter we investigated how these rules of interaction change as ES cells are differentiated 

down the neural lineage using retinoic acid (RA). We measured the expression of a library of 

synthetic cis-regulatory elements (CREs) comprised of transcription factor (TF) binding sites for 

Oct4, Sox2, Klf4, and Esrrb in ES cells treated with RA. Comparing this expression to the 

expression driven by these CREs in ES cells, we found that the CRE library as a whole drives 

very different expression in the two cell types. However, the subset of CREs without any repeat 

TF binding sites drove similar expression in ES cells and RA-treated cells. Furthermore, a 

statistical thermodynamic model of transcription trained on expression data from ES cells 

predicts the expression in RA-treated cells only for CREs without repeat binding sites. This 

suggests that heterotypic interactions between TFs are similar in both cell types, but the effect of 

binding sites for individual TFs and homotypic interactions may vary. 

 

Precise regulation of transcription is key to the proper development and maintenance of 

cell fate. Each cell type has a set of transcription factors (TFs) that play a key role in maintaining 

cell fate and regulating the genes in that cell. Embryonic stem (ES) cells are regulated by a core 

set of TFs that work to maintain the pluripotent state through transcriptional regulation. These 

TFs often work in concert by binding similar locations in the genome and in some cases working 
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cooperatively to regulate transcription (Chen et al. 2008c; Kim et al. 2008; Boyer et al. 2005; 

Loh et al. 2006). For instance, Oct4 and Sox2 physically interact to regulate transcription in ES 

cells (Ambrosetti et al. 2000; Chew et al. 2005; Kuroda et al. 2005; Ng et al. 2012; Rodda et al. 

2005). Through a synthetic cis-regulatory element (CRE) approach, we found cooperative 

interactions between Klf4 and Sox2, Klf4 and Esrrb, and Oct4 and Sox2 in ES cells (Chapter 2). 

We also found a negative homotypic interaction. Thus, interactions between TFs play an 

important role in the expression driven by binding sites for pluripotency TFs in ES cells. 

While we have shown the cis-regulation of binding sites for pluripotency TFs in ES cells, 

it is unknown how this regulation changes as ES cells differentiate. In addition to their roles in 

maintaining pluripotency, some of the pluripotency TFs also regulate differentiation into other 

cell types (Thomson et al. 2011; Teo et al. 2011). In particular, Oct4 can promote the 

mesendoderm state while repressing the neural ectoderm state; and Sox2 can promote the neural 

ectoderm state while repressing the mesendoderm state (Thomson et al. 2011). Thus, these two 

TFs, which work together in ES cells to promote pluripotency, have opposing roles in other 

lineages. To complicate things further, most of these TFs, including Oct4, Sox2, and Klf4 are 

part of TF families in which other members can bind very similar binding sites (Ferraris et al. 

2011; Jiang et al. 2008; Ng et al. 2012). Therefore, it is unclear how cis-regulation will change as 

ES cells differentiate. The interactions and rules could be constant, or they could change 

completely. The real answer is likely a mix of both options, and our goal was to determine which 

interactions change and which stay mostly the same during neural differentiation. 

We measured the expression driven by a set of synthetic CREs in ES cells differentiated 

down the neural pathway to determine if the principles of cis-regulation in ES cells are 

maintained. We used a library of synthetic CREs comprised of binding sites for the pluripotency 
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TFs Oct4, Sox2, Esrrb, and Klf4 that was previously built in Chapter 2. For this new experiment, 

we first transfected the CRE library into ES cells and then differentiated the ES cells to measure 

the expression of the synthetic CRE library in this new condition. We treated the transfected ES 

cells with media without leukemia inhibitory factor (LIF), a pluripotency promoting factor, and 

with retinoic acid (RA). RA is required in vivo for normal neurogenesis, and RA treatment of ES 

cells can lead to differentiation into a number of cell types, including neurons and glial cells 

(Jacobs et al. 2006; Soprano et al. 2007). Thus, RA treatment of these transfected cells leads 

them away from pluripotency and towards the neural pathway. 41 hours after the change to RA 

media, the expression of the CREs was assayed and reproducible expression was detected (381 

CREs with quality expression measurements, range of R2 between biological replicates: 0.61-

0.67, Fig 3.1). This is lower expression quality than we see in ES cells in pluripotency media, 

perhaps due to the heterogeneity of the differentiated cell population. 

We next investigated how the expression of the CREs in RA media compared to the 

expression of the ES cells in LIF media, originally measured in Chapter 2. As the expression of 

the pluripotency TFs studied in the library changes during this treatment (Ivanova et al. 2006), 

we expected the expression driven by binding sites for these TFs to change as well. The 

expression could change in two ways: 1) by a simple scaling factor in which the relative 

expression of the CREs in each condition is very similar, or 2) by complex dynamics in which 

the relative expression of the CREs in the library changes. We found that there is a poor 

correlation between the expression in LIF and RA when looking at all CREs (n=304 CREs, 

R2=0.24, Fig 3.2a). However, for CREs with no repeat binding sites, the expression between the 

two conditions is much more similar (n=87, R2=0.62, Fig 3.2b). This suggests that the similarity 

of expression between the two conditions is dependent on the complexity of the CRE (i.e. how 
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much of a variety of binding sites there is). In CREs with four total binding sites, the expression 

in RA media trends with the number of unique types of binding sites, as we saw in LIF media 

(Fig 3). However, the effect is not as strong in RA as LIF, suggesting that the homotypic chains 

of binding sites, which drive this effect, are not as repressive in RA. Thus, there are likely some 

changes in the cis-regulatory code that drive the differential expression between the two 

conditions. 

To further investigate how cis-regulation changed between the LIF and RA conditions, 

we used a statistical thermodynamic model to learn how the cis-regulatory interactions varied 

between the two cell types. We tested how well the model that fit the expression data in LIF, the 

LIF Model, explained the RA expression. Over the whole CRE library (n=323), the 

thermodynamic model explains the RA expression data poorly (R2=0.178 vs. R2=0.73 for LIF) 

(Fig 4A). However, if the measured relative concentration of the pluripotency TFs in RA media 

is input into the model, the model explains the expression of the CRE library in RA somewhat 

better (R2=0.25). This implies that the changing TF concentrations do have an effect on the 

expression, as one would expect. Furthermore, when only those CREs without repeats of 

individual binding sites are included (n=90), the model does a much better job at explaining the 

expression (R2=0.49) (Fig 4B). This confirms the previous assertion that CREs with repeats of 

binding sites behave differently in the two treatments. Modeling these CREs does not use the 

homotypic parameter, as there are no repeats binding sites in them. It is thus likely that the 

homotypic parameters are behaving differently in the two conditions. The heterotypic interaction 

parameters, which dominate the predictions from CREs with no repeat binding sites, may be 

more constant between conditions. 
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Here we show a comparison of the expression driven by synthetic CREs in two cell 

types: ES cells in LIF (pluripotency) media, and ES cells differentiated down the neural pathway 

using RA. Overall, the CREs show different expression between the two cell types, but certain 

principles seem to be consistent. Interestingly, in RA-treated cells, the expression of CREs with 

combinations of unique binding sites (i.e. no repeats of binding sites) are well explained by the 

thermodynamic model found using the LIF-treated cells, whereas the library of CREs as a whole 

is not explained well. It is known that many of the TFs in ES cells are down regulated upon 

differentiation and RA treatment (Thomson et al. 2011; Wu et al. 2014; Ivanova et al. 2006). 

However, it’s possible that other family members of these TFs may be up regulated and could 

bind the same binding sites. This suggests two models for how TFs are acting during RA-

induced differentiation: 1) different TF family members bind to these sites and recruit 

polymerase with different effect but interact with TFs at other sites in a similar manner, or 2) 

other TF family members are not relevant and the only changes are in the activity level of the 

pluripotency TFs, which alters the effect of the homotypic interactions. The fact that the simple 

adjustment of TF concentrations in the thermodynamic model improves its ability to explain 

expression in RA suggests that the second option is at least partly true. Either way, it is apparent 

that the manner in which binding sites drive expression as cells differentiate is affected by 

changing cis-regulatory rules. 

 

Methods 
Cell culture 

ES cell line RW4 was cultured as described previously (Chapter 2). To differentiate the 

cells and perform transfections of the CRE-seq library, ES cells in a 6-well plate were first 
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transfected with 3ug of the OSKE plasmid library and 0.3ug of GFP reporter plasmid CF128. 6 

hours post-transfection, the ES cells were passaged into media without LIF but with retinoic 

acid, with half of the transfected cells being passaged. RNA was harvested from the cells 48 

hours post-transfection, using the PureLink RNA mini kit (Life Technologies). RNA was 

prepared for Illumina sequencing using the CRE-seq protocol as described previously (Chapter 

2). 

Statistical analysis 
The CRE-seq data from RA was processed as described previously (Chapter 2), except 

using a DNA read filter of 50. The data was further filtered for those CREs with a standard error 

of the mean (SEM) less than 0.4 of the mean expression of the CRE. The CRE-seq expression 

from the ES cell conditions are from Chapter 2, using a DNA read filter of 2000 reads. All 

statistical analysis and thermodynamic modeling was performed as described previously 

(Chapter 2). All expression comparisons were done using the log expression values. 
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Figures 
 

 

 

Figure 3.1: Reproducibility of expression measurements in RA. The expression of CREs by 
CRE-seq from two representative replicates in cells treated with RA. 
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Figure 3.2: Expression of CREs in LIF vs. RA media. The expression of CREs is compared 
between ES cells in LIF media and in ES cells treated with RA. A) Expression of all CREs. B) 
Expression of CREs with no repeat TFBS. 
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Figure 3.3: Expression of CREs by unique sites. The expression of CREs with exactly four 
total TF binding sites by number of unique types of binding sites, in A) ES cells in LIF media, B) 
ES cells treated with RA. 
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Figure 3.4: Thermodynamic model predictions of RA expression. The thermodynamic model 
fit on CRE expression in ES cells was used to predict the expression of CREs in RA. A) All 
CREs. B) CREs with no repeat TFBS. 
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Chapter 4: High-throughput functional 
testing of ENCODE segmentation predictions  

 

The histone modification state of genomic regions is hypothesized to reflect the 

regulatory activity of the underlying genomic DNA. Based on this hypothesis, the ENCODE 

consortium measured the status of multiple histone modifications across the genome in several 

cell types and used these data to segment the genome into regions with different predicted 

regulatory activities (Dunham et al. 2012; Hoffman et al. 2012b). We measured the cis-

regulatory activity of more than 2000 of these predictions in the K562 leukemia cell line. We 

tested genomic segments predicted to be Enhancers, Weak Enhancers, or Repressed elements in 

K562 cells, along with other sequences predicted to be Enhancers specific to the H1 human 

embryonic stem cell line (H1-hESC). Regions annotated as Repressed in K562 cells and 

Enhancer elements in H1-hESC did not show cis-regulatory activity in K562 cells greater than 

that produced by negative controls. In contrast, both Enhancer and Weak Enhancer sequences in 

K562 cells were more active than negative controls, although surprisingly, Weak Enhancer 

segmentations drove higher expression than Enhancer segmentations. Lower levels of the 

covalent histone modifications H3K36me3 and H3K27ac, thought to mark active enhancers and 

transcribed gene bodies, associate with higher expression and partly explain the higher activity of 

Weak Enhancers over Enhancer predictions, suggesting that our understanding of these particular 

modifications is incomplete. While DNase hypersensitivity (HS) is a good predictor of active 

sequences in our assay, transcription factor (TF) binding models need to be included in order to 

accurately identify highly expressed sequences. Overall our results show that a significant 
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fraction (~26%) of the ENCODE enhancer predictions have regulatory activity suggesting that 

histone modification states can reflect the cis-regulatory activity of sequences in the genome, but 

that specific sequence preferences, such as transcription factor binding sites, are the causal 

determinants of cis-regulatory activity. 

 

This chapter was written as a paper, High-throughput functional testing of ENCODE 

segmentation predictions, with Jamie Kwasnieski, Hemangi Chaudhari, and Barak Cohen that 

was published in Genome Research (2014, Volume 24: 1595-1602). Jamie and I were joint first 

authors and both contributed to the writing of the paper along with Barak Cohen. Jamie, 

Hemangi, and I performed the experiments and analyzed the data. It is available under a Creative 

Commons License (Attribution-NonCommercial 4.0 International). 
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Introduction 
It is widely reported that specific combinations of covalent histone modifications reflect 

the regulatory function of underlying genomic DNA sequence (Strahl and Allis 2000). As part of 

the ENCODE project the genomic locations of a variety of covalent histone modifications were 

determined by chromatin immunoprecipitation sequencing (ChIP-seq) in a number of cell types 

and cell lines. Two studies used these data to train computational models that predict different 

functional regions of the human genome. These unsupervised learning algorithms, Segway 

(Hoffman et al. 2012a) and ChromHMM (Ernst and Kellis 2010, 2012), take functional 

genomics data as input (DNase-seq; FAIRE-seq; and ChIP-seq of histone modifications, RNA 

Polymerase II large subunit (POLR2A), and CTCF) and return segmentation classes, which are 

then assigned a hypothesized function using current knowledge of histone modification function. 

As part of the ENCODE project, these two sets of predictions were consolidated to create a 

unified annotation of the entire human genome with seven functional classes in multiple cell 

types. These segmentations include Transcription Start Site, Promoter Flanking, Transcribed, 

CTCF-bound, Enhancer, Weak Enhancer, and Repressed or Inactive segments (Dunham et al. 

2012; Hoffman et al. 2012b). If histone modifications accurately reflect the regulatory activity of 

their associated DNA, then these segmentation classes should have measurably different cis-

regulatory activities.  

In this study we tested whether the segmentation classes determined by ENCODE have 

different effects on gene regulation in their predicted cell type. We used the accepted operational 

definition of enhancer activity as the ability to modulate expression of a reporter gene under 

control of a basal promoter. We used CRE-seq, a massively parallel reporter assay, to determine 

whether 1) sequences in the Enhancer, Weak Enhancer and Repressed classes drive expression 
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that is different from that produced by negative controls, 2) sequences in different segmentation 

classes drive different levels of gene expression, and 3) sequences control gene expression levels 

consistent with their predicted segmentation labels. We find that segmentation predictions drive 

distinct levels of expression. In particular, enhancer predictions drive expression that is different 

than the expression levels driven by negative control sequences. We find that chromatin features 

can distinguish highly expressed sequences with some accuracy, but transcription factor binding 

preferences better identify the most highly expressed sequences.  

Results 
CRE-seq Library and Measurements 

We used a high-throughput multiplexed reporter assay (Kwasnieski et al. 2012; Melnikov 

et al. 2012; Patwardhan et al. 2012b; Sharon et al. 2012) to characterize the regulatory activity of 

2100 randomly chosen sequences annotated as Enhancer, Weak Enhancer, or Repressed. 

Specifically, we tested sequences with the following annotations in the K562 cell line: 600 

Enhancer regions, 600 Weak Enhancer regions, and 300 Repressed regions. In order to test the 

cell-type specificity of the segmentation predictions, we also tested 600 Enhancer predictions 

from the H1-hESC cell line that are not annotated as Weak Enhancers or Enhancers in K562 

cells. 

We sought to establish an empirical null distribution as a negative control for activity in 

this assay, against which to compare the activities of sequences from the different segmentation 

classes. We randomly selected 284 sequences from each class of predictions and scrambled the 

nucleotide sequence of each while maintaining dinucleotide content, in order to preserve basic 

sequence features of the segment such as CpG frequency and nucleosome favoring signals. We 

designed our experiment to compare the expression distribution for each segmentation class to 
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the expression distributions from their corresponding scrambled negative controls. Including 

predicted cis-regulatory elements (CREs) and scrambled negative controls, our final 

experimental design included 3237 distinct reporter gene constructs (Supplemental Data 4.1).  

We used CRE-seq, a massively parallel reporter gene assay (Kwasnieski et al. 2012) to 

simultaneously measure the expression of all constructs. We first synthesized 13,000 unique 200-

mer DNA sequences using array-based oligonucleotide (oligo) synthesis (LeProust et al. 2010). 

Each predicted CRE was replicated four times on the array, and each replicate was tagged with a 

unique nine basepair (bp) barcode, providing redundancy in the expression measurements. The 

200 bp limit of oligonucleotide synthesis, along with the requirement to include priming sites 

and restriction enzyme sites, limited our tested CREs to 130 bp of each segmentation prediction. 

For the Enhancer and Weak Enhancer classes, we selected the entire region of 300 short (121-

130 bp) genomic segments, and the central 130 bp of 300 longer genomic segments (>130 bp). 

As only a small fraction of Repressed segments are less than 130 bp in length, we tested only 

central sequences from this class. We chose the center because it is an unbiased portion that does 

not incorporate additional histone or sequence features beyond the algorithms’ output. This 

allows us to appropriately test the predictive power of the segmentations. Finally, we used the 

array-synthesized oligos to create a library of these CREs cloned upstream of the Hsp68 minimal 

promoter in which each reporter construct contains a unique sequence barcode in its 3’ UTR 

(Kwasnieski et al. 2012). The resulting plasmid library was then transfected into K562 cells, and 

RNA was isolated after 22 hours.  

To measure CRE activity, we quantified the level of each barcode in the transfected cells 

using RNA-seq, and normalized the RNA barcode counts by the abundance of each barcode in 

the plasmid DNA pool. The RNA/DNA ratio of barcode counts is a quantitative measure of the 
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expression driven by each CRE in the library (Kwasnieski et al. 2012) (Supplemental Data 4.2, 

Supplemental Data 4.3). We performed four independent transfections in K562 cells and found 

that our expression measurements are precise, displaying high reproducibility between biological 

replicates (Figure 4.1A, R2 range: 0.95-0.97). To test the robustness of our measurements, we 

used a luciferase assay to measure expression driven by twelve individual CREs upstream of the 

minP basal promoter. Expression in the luciferase assay exhibits strong agreement with the batch 

CRE-seq expression measurements upstream of the hsp68 promoter (R2=0.70, Figure 4.1B, 

Figure 4.S1), demonstrating that our assay accurately measures cis-regulatory activity and that 

our results have little dependence on the choice of minimal promoter.  

Expression of Segmentation Classes 
We compared the activity of each class of segmentation prediction to the activity of its 

corresponding negative control distribution of scrambled sequences. We used two metrics to 

classify individual segmentations as “active” or “inactive” with respect to this negative control 

expression distribution (Table 4.1). First, we computed the fraction of CREs within a 

segmentation class that drive expression higher than that of the 95th percentile of the matched 

scrambled expression distribution. We recognized that CREs may be active even if they drive 

expression below the 95th percentile of the control, so we also used a second metric to capture 

some of these sequences. We compared the sixteen replicate measurements for each CRE (four 

barcodes per CRE in four independent experiments) with the distribution of all of the scrambled 

controls (Wilcoxon Rank Sum Test, one-tailed, P<0.05, Bonferroni correction with N=3236). 

We conducted the same test for each scrambled CRE to estimate the fraction of scrambled 

sequences that drive activity (Table 4.1, square brackets). By both of these metrics, a significant 

number of Enhancer and Weak Enhancer CRE predictions are active (Figure 4.1C, 4.1D, Table 
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4.1). In contrast, neither the K562 Repressed regions nor the H1-hESC Enhancer regions show 

activity that is significantly different from their scrambled negative controls (Figure 4.1E, 1F, 

Table 4.1). Enhancer and Weak Enhancer regions show distinct levels of activity from both the 

K562 Repressed and H1-hESC Enhancer regions (Wilcoxon Rank Sum, p<0.01). Moreover, 

segmentations from the Repressed category did not repress expression below the 5th percentile of 

their matched scrambled controls, suggesting that these sequences are transcriptionally inactive 

and not repressive (Table 4.S1). We get the same results regardless of whether the sequences are 

short segmentations included in their entirety, or longer predictions from which we included only 

the central 130 bp (Figure 4.S2). This result indicates that our expression measurements are not 

biased by the method of choosing 130 bp sequences for testing. Taken together, we conclude that 

sequences annotated as Enhancer and Weak Enhancer segments have increased levels of activity 

over their corresponding null distributions, and that different segmentation classes produce 

distinct median levels of activity in our assay.  

Our previous work (White et al. 2013) showed that CRE-seq can detect repression below 

basal promoter activity, particularly when the minimal promoter has detectable expression on its 

own. In this experiment we chose the Hsp68 promoter as it drives expression in the 48th 

percentile of the library of genomic sequences. Many sequences, both segmentation predictions 

and scrambled sequences, drove expression that was significantly lower than the scrambled 

distribution, indicating that we can detect repression in this assay. However, we observed no 

significant increase in the number of sequences with repressive activity in the segmentations as 

compared to the scrambled sequences suggesting that the segmentations do not repress 

expression below what is expected by chance (Table 4.S1, Wilcoxon Rank Sum Test, P<0.05, 
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Bonferroni correction). We conclude that Enhancer, Weak Enhancer, and Repressed 

segmentations do not have the ability to repress the Hsp68 promoter. 

Unexpectedly, we found that sequences classified as Weak Enhancers drive a higher 

median level of activity than sequences classified as Enhancers (Figure 4.S3, p=3.7e-4 by 

Wilcoxon Rank Sum). The difference between the two classes is even greater when comparing 

the fraction of CREs we designated as “active” relative to their matched scrambled sequences 

(Table 4.1). Compared to Weak Enhancers, segmentations in the Enhancer class have higher GC 

content (Figure 4.4B), a sequence feature associated with higher cis-regulatory activity (Landolin 

et al. 2010; Nili et al. 2010; White et al. 2013). Indeed scrambled sequences derived from the 

Enhancer class drive higher expression than scrambled sequences from the Weak Enhancer class 

(Figure 4.S4A). Therefore, despite having higher GC content, a feature associated with higher 

expression, the Enhancer predictions drive lower expression than the Weak Enhancer 

predictions. This suggests that some additional determinant is responsible for the higher 

activation of segments labeled as Weak Enhancers. 

We asked whether differences in covalent histone modifications correlate with the 

difference in expression between Weak Enhancers and Enhancers. We compared the levels of all 

histone modifications (Hoffman et al. 2013) that were measured in K562 cells between the two 

classes. Weak Enhancers were segmented from Enhancers by their lower levels of the histone 

modification H3K27ac (Creyghton et al. 2010) (Figure 4.2B), thought to signify active 

enhancers, and H3K36me3 (Barski et al. 2007) (Figure 4.2D), often thought to signify a 

transcribed gene body but recently also found in silenced genes (Chantalat et al. 2011). 

Surprisingly, lower levels of both of these covalent histone modifications are associated with 

higher expression of enhancers in our assay (Wilcoxon Rank Sum Test, p<10-5, Figure 4.2A, 
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4.2C), even within the Enhancer or Weak Enhancer classes (Figure 4.S5). We did not find an 

association of H3K27ac signal in the larger context (up to 500bp surrounding the selected 

regions). In one study “dips” in the levels of H3K27ac correlated with enhancer activity 

(Kheradpour et al. 2013), which is consistent with our observation that lower levels of H3K27ac 

are more predictive of enhancer activity. However, in our data we did not see correlation 

between the H3K27ac “dip score” and cis-regulatory activity (data not shown). Thus, Weak 

Enhancers may have more activity than Enhancers in part because they have lower enrichment of 

H3K27ac and H3K36me3, which associate with higher activity in our assay. These histone 

modifications do not fully explain the expression differences between these two classes 

indicating that other sequence features must explain the higher activity of Weak Enhancers. 

Sequence and Chromatin Features 
We searched for sequence and chromatin features that could predict activity across all 

segmentation classes in our assay. Two primary sequence features (GC content and minor groove 

width as estimated by ORChID2 (Rohs et al. 2009; Bishop et al. 2011) score) and six chromatin 

features (Dunham et al. 2012; Hoffman et al. 2012b) (DNase HS from Duke; DNase HS from 

University of Washington [UW]; Faire-seq; and ChIP-seq of H3K4me1, H3K36me3, and RNA 

POLR2A) are significantly enriched in sequences that drive high expression in our assay (Table 

4.S2, Wilcoxon Rank Sum test, P<0.05 Bonferroni correction with N=16). We used these data to 

develop a quantitative model that distinguishes active CREs from inactive CREs. Of these eight 

features, DNase HS (UW) signal best separated the active from inactive sequences (Figure 4.3A, 

3B, AUC=0.685), suggesting that DNA accessibility is a good indicator of the cis-regulatory 

potential of a sequence (Thurman et al. 2012). No other single feature performed as well as 

DNase HS signal and all other single features had AUC lower than 0.6 (Table 4.S2). A logistic 
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regression model with the above-mentioned six chromatin features and two primary sequence 

features (PSF), improves the classification of active sequences (Figure 4.3A, AUC=0.733), but 

only marginally above that of DNase HS alone. However, even amongst those CREs with a high 

DNase HS score (UW DNase HS score>5, 685/2096 CREs pass this threshold), the active CREs 

are enriched for seven chromatin features, suggesting that there is some additional information in 

the histone modifications beyond DNase HS despite the fact that DNase HS is by far the most 

predictive feature (Table 4.S3). As chromatin and primary sequence features can only classify 

active sequences to a moderate level, we hypothesized that additional sequence-specific binding 

features, such transcription factor binding motifs, may better explain expression.  

We investigated whether the inclusion of transcription factor (TF) binding specificities 

improved our ability to explain the expression differences we observed in our assay. Using 

several libraries of TF binding models (Newburger and Bulyk 2009; Jolma et al. 2013; Mathelier 

et al. 2014), we searched for motifs enriched or depleted in activated CREs and found 50 

significant, non-redundant motifs (Table S4). A logistic regression model that incorporated these 

binding models performs better at distinguishing active sequences than the chromatin and PSF 

model (Figure 3A, AIC (Akaike 1974): 1881 vs. 1729 for model with motifs; AUC=0.802). We 

performed 5-fold cross-validation on all of the models and observed little decrease in predictive 

power, suggesting that our model is not over-fit (Table 4.S5). The predicted motif for Activator 

Protein 1 (AP1), a heterodimer of TFs in the FOS and JUN families (Hess et al. 2004), is the 

most significantly enriched motif in highly expressed CREs. In addition, the most significant 

motif found in a discriminative de novo motif analysis (Bailey 2011) was highly similar to the 

AP1 motif (E=0.0041) (Gupta et al. 2007). Amongst segmentations with a predicted AP1 motif, 

DNase HS (Duke) is the only chromatin feature significantly enriched in those that are active 
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(Table 4.S3), suggesting that DNase HS provides some additional information beyond the 

presence of the AP1 motif. The expression driven by CREs with predicted AP1 motifs is 

significantly higher than the expression driven by sequences without the motif (Figure 4.3C, log2 

ratio of 0.96, p<2.2x10-16). Furthermore, highly expressing CREs are significantly enriched for 

sequences that are bound by FOS and JUN family TFs in K562 cells (Dunham et al. 2012) 

(Figure 4.3D; p=8.8x10-10 by Fisher’s exact test, odds ratio=4.2). These data suggest that AP1 is 

responsible for the activity of many enhancers in K562 cells, as previously reported 

(Muthukrishnan and Skalnik 2009; Kheradpour et al. 2013), and, as a consequence, the 

enhancers’ histone modification state.  

Discussion  
In this study we directly tested the cis-regulatory activity of segmentation predictions 

based on histone modification data from the ENCODE project. We found that these predictions 

were cell type-specific in K562 cells and could accurately distinguish enhancer sequences from 

non-enhancer sequences. Our results suggest that combinations of TF binding preferences, not 

histone modifications alone, are most predictive of actively expressing genomic sequences, a 

result supported by other attempts to define the sequence features of enhancers (Heinz et al. 

2010; Lee et al. 2011b; Arvey et al. 2012; Gorkin et al. 2012; Smith et al. 2013b). These results 

support a model where TF binding and subsequent transcriptional regulation configure the 

immediate chromatin environment (Struhl and Segal 2013), leading to the constellation of 

histone modifications observed in segments with high cis-regulatory activity. However, even our 

model incorporating all of the available features is only moderately predictive (AUC=0.84) and 

cannot quantitatively predict expression level. This suggests that more complex features 

determine the quantitative expression levels controlled by enhancers.  
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We conclude that the Repressed segmentation class consists mostly of sequences with no 

transcriptional activity rather than cis-regulatory sequences that actively repress transcription. 

We have previously shown transcriptional repression by short enhancers (White et al. 2013), 

indicating that the length of CREs we tested cannot explain the lack of observed repression. 

There are two possible explanations for why we did not see repression in this assay. First, the 

Repressed segmentation class contains mostly sequences with predicted low activity by either the 

ChromHMM or Segway algorithms, with only a small fraction of the sequences predicted to 

have repressive activity by these algorithms. Second, it is possible that we are unable to predict 

combinations of histone modifications that signal repression such that no segmentation 

successfully defines repressive activity. Because a large fraction of regulated gene expression 

works through the activity of transcriptional repressors, identifying combinations of histone 

modifications that reflect repression is still an important challenge. 

Only a small fraction (~26%) of predicted enhancer sequences had activity in this assay. 

It is therefore possible that a large fraction of the predictions in ChromHMM/Segway are false 

positives. Alternatively, many sequences might score as false negatives in this assay. The short 

length and episomal nature of the expression assay could contribute to false negatives, although 

we emphasize that the accepted operational definition of an enhancer is a sequence that 

modulates the activity of an episomal reporter gene. In addition, our comparison of 

segmentations to scrambled controls does not allow us to find active sequences that express at 

low levels. Finally, it is possible that some sequences might only be active in the context of the 

genome or when paired with a different minimal promoter sequence. While the relative number 

of active sequences between classes in our assay should be accurate, as the same experimental 
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design was utilized for all sequences, our estimates should be taken as a lower bound of the 

number of active sequences. 

Finally, we conclude that combinations of histone modifications often identify functional 

enhancers, but our interpretation of these combinations needs to be refined. In particular, high 

levels of the covalent histone modifications H3K27ac and H3K36me3 are thought to mark active 

enhancers and transcribed gene bodies or even heterochromatic regions (Barski et al. 2007; 

Creyghton et al. 2010; Chantalat et al. 2011). Among segments marked as Enhancers or Weak 

Enhancers, lower enrichment of these modifications is found at segments with high activity in 

this assay. This finding suggests that the precise function of these modifications needs to be 

explored, as it is clear that there is no simple linear relationship between the level of these 

modifications and expression.  

Methods 
CRE-seq Library Construction 

A pool of 13,000 unique 200-mer oligos was ordered through a limited licensing 

agreement with Agilent Technologies. Oligos were structured as follows: 5’ priming sequence 

(GTAGCATCTGTCC)/NheI site/CRE/HindIII site/XhoI site/SphI site/ barcode/SacI site/3’ 

priming sequence (CGACTACTACTACG). A more detailed diagram of array sequence is 

provided in Figure 4.S6. 

The plasmid library was prepared as described (Kwasnieski et al. 2012), except using 

primers CF166 and CF167 (Table 4.S6) and an annealing temperature of 57C. The amplified 

library product was purified on a polyacrylamide gel as described (White et al. 2013). The 

library plasmid backbone, CF10, was created from the plasmid pGL4.23, by cloning dsRed-
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Express2 between the Acc65I and FseI sites. Purified library amplicons were cloned into CF10 

using NheI and SacI. We prepared DNA from 100,000 colonies to generate PL7_1. We then 

cloned the Hsp68 promoter driving DsRed into PL7_1. A cassette containing the Hsp68 

promoter was amplified from pGL-hsp68 with primers CF121 and CF168 (Table 4.S6). pGL-

hsp68 was created by amplifying the hsp68 promoter from hsp68LacZ (kind gift of M. de Bruijn, 

Oxford Stem Cell Institute, Oxford, UK) using primers JKO25F and JKO25R (Table 4.S6). The 

hsp68 DsRed amplicon was cloned into library PL7_1 by using HindIII and SphI, creating 

library PL7_2. 

Cell culture and Transfection 
K562 cells were maintained in Iscove's Modified Dulbecco's Medium (IMDM) medium 

with 10% Fetal Bovine Serum and 1% Amino Acids (Life Technologies). The plasmid library 

was purified by phenol-chloroform extraction and ethanol precipitation before transfection. The 

Neon transfection system (Life Technologies) was used to transfect the plasmid library. For each 

replicate, 1.2 million cells were pelleted by centrifugation, washed with PBS and resuspended in 

100µl of Buffer R. 27µg plasmid library DNA along with 3 µg of pMax-GFP as a positive 

control was transfected into the cells by using three 10ms pulses at 1450V. The transfected cells 

were seeded into T-25 flasks with 5ml of the growth medium and incubated at standard 

conditions. Transfection efficiency was greater than 90% (data not shown). 

Selection of Segmentation Predictions  
Segmentation predictions (Dunham et al. 2012; Hoffman et al. 2012b) were downloaded 

from the Ensembl genome browser (Flicek et al. 2013) and converted to UCSC notation. We 

filtered predictions that overlapped with the ENCODE DAC Blacklisted Regions 

(http://moma.ki.au.dk/genome-mirror/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability) or 
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RepeatMasker regions (http://www.repeatmasker.org/species/homSap.html). We also removed 

predictions that contained restrictions site sequences that we intended to use for cloning 

sequences into a plasmid library. To select H1-hESC Enhancer predictions, we removed H1-

hESC Enhancer predictions that overlapped with K562 Enhancer or Weak Enhancer predictions. 

Next we sorted predictions by chromosome, and separated them by length into long (>130 bp) 

and short (121-130 bp). To choose the predictions to test, we selected lines of this file at regular 

intervals, so the tested CREs span all chromosomes of the human genome. Genomic and 

scrambled CRE sequences are listed in Supplemental Data 1. All genomic coordinates used are 

from hg19. 

Preparing Samples for RNA-Seq 
RNA was extracted from K562 cells 22 hours after transfection using the PureLink RNA 

mini kit (Life Technologies) and then excess DNA was removed using the TURBO DNA-free kit 

(Applied Biosystems), following manufacturer’s instructions. First strand cDNA was synthesized 

from the RNA using SuperScript II Reverse Transcriptase (Life Technologies). Both the cDNA 

samples and the DNA from the original plasmid library were prepared for sequencing using a 

custom protocol as described (Kwasnieski et al. 2012). Briefly, we used PCR amplification of 

the sequence surrounding the barcode in the RNA transcript or plasmid using primers CF150 and 

CF151b (Table 4.S6). We then digested the PCR product using SphI and XhoI and ligated 

Illumina adapter sequences (MO576/582, MO577/583, MO578/584, MO579/585, Supplemental 

Table 4.6) to these amplified sequences. Two lanes of the Illumina HiSeq machine were used to 

sequence this barcode region from the cDNA and DNA, and reads that perfectly matched the 

first 13 expected nucleotides were counted, regardless of quality score. This resulted in 77.5 

million reads from the cDNA, across 4 biological replicates, and 34.8 million reads from the 
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DNA. Only barcodes with >=50 reads in the DNA pool and >=3 reads in the cDNA pool were 

used for downstream analysis. The expression of each barcode was calculated as (cDNA 

reads)/(DNA reads) and then normalized to the expression of the basal promoter alone 

(Supplemental Data 4.2). The expression of each CRE in each biological replicate was calculated 

as the mean of the expression of each BC associated with it, and the overall expression of each 

CRE was calculated as the mean of its expression in each biological replicate. The standard error 

of the mean (SEM) was calculated as described previously (Kwasnieski et al. 2012) 

(Supplemental Data 4.3). 

Luciferase assays 
Plasmid pGL-CBR was created by inserting the click-beetle red (CBR) luciferase gene 

(from pCBR-Control Vector [Accession Number AY258592], Promega) into pGL4.23 

(Promega) at the XbaI and NcoI sites. pGL-CBR contains the minP basal promoter from 

pGL4.23. 12 individual CREs from the oligo library were amplified by PCR and inserted into 

pGL-CBR at the NheI and HindIII sites to form individual pGL-CBR-CRE plasmids. The 46-bp 

cis-regulatory element containing the HS II enhancer from Ney et. al.(1990)  was also cloned 

into pGL-CBR using annealed oligos POS1 and POS2 (Table 4.S6), also at the NheI and HindIII 

sites of pGL-CBR, to create a positive control pGL-CBR-CRE plasmid. Each pGL-CBR-CRE 

plasmid, along with the original pGL-CBR, was then transfected into K562 cells individually in 

triplicate using the Neon transfection system. Each transfection used 4ug pGL-CBR-CRE 

plasmid with 0.4ug Renilla control plasmid (pRL-CMV, Promega) and 2 x 105 cells. Transfected 

cells were then seeded into 12-well plates with 1ml of growth media. 26 hours later, each well 

was split into two wells, each in a separate 24-well plate (Krystal 24 Well Black Assay Plate, 

MidSci). These were then immediately imaged using I IVIS 50 (Caliper, Hopkinton, MA; 
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exposure time 10-60 seconds, binning 8, field of view 12, f/stop 1, open filter), with one plate 

imaged for CBR-luciferase using 150 µg/mL D-luciferin (Gold Biotech), and one plate imaged 

for Renilla using 1 µg/ml Coelenterazine (Biotium Inc.). The CBR-luciferase signal of each 

transfection sample was normalized by the corresponding Renilla signal, and the expression of 

each CRE was determined by the mean of the three transfections (Supplemental Data 4.4). 

Data sources 
We used the normalized chromatin ChIP-seq, Faire-seq, and DNase-seq data used in the 

integrated segmentation of the genome by Hoffman et al. (Hoffman et al. 2012b), which can be 

accessed at https://sites.google.com/site/anshulkundaje/projects/wiggler. These included (all 

from K562 cell line): CTCF, Duke DNase, UW DNase, Faire, H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H4K20me1, RNA Pol2, and Control. 

This data was produced by the ENCODE consortium (Dunham et al. 2012). The signal 

associated with each CRE we analyzed was the average signal over that segment. 

The TF binding matrices were taken from three databases: JASPAR vertebrate (146 

matrices) (Mathelier et al. 2014), uniPROBE (757 matrices) (Newburger and Bulyk 2009), and 

high-throughput SELEX (820 matrices) (Jolma et al. 2013). FIMO (Grant et al. 2011) was used 

to find binding sites in the CREs used in the assay (both genomic and scrambled), using the 

default options with a P-value threshold of 10-4. The AP1 binding matrix that was enriched in 

highly expressed sequences in our assay was from JASPAR (MA0099.2). DREME (Bailey 2011) 

was used for discriminative motif finding, using the sequences activated over the 90th percentile 

of the scrambled distribution as the positive group and all other sequences as the negative group, 

with the maximum motif length set at 12bp and all other default options. The TOMTOM web 

module (http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi) (Gupta et al. 2007) was used to find 
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similar motifs, using default options. TF ChIP-seq data was obtained from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/. 

GC-content and ORChID2 (Rohs et al. 2009; Bishop et al. 2011) scores were calculated from the 

nucleotide sequences of the CREs.  

Logistic regression models 
A logistic regression model was developed to predict sequences activated over the 

scrambled 90th percentile. The parameters for the model were chosen from a filtered list of 

available genomic data and sequence features. Each of the three sets of parameters was filtered 

separately: histone data including primary sequence features (GC-content and ORChID2 scores), 

binding matrices, and a set of peaks from TF ChIP-seq. Those scores that had a significantly 

different distribution of values in the active CREs (expression greater than the 90th percentile of 

the matched scrambled distribution) vs. the inactive CREs passed the filter. For the parameter set 

with histone data and primary sequence features (PSF) and the parameter set with binding 

matrices we used Wilcoxon rank sum test (two-tailed, P<0.05, corrected using Bonferroni with 

N=16 for histone and N=1687 for binding matrices). For the TF ChIP-seq peak data (which is in 

binary form) we used Fisher’s exact test (P<0.05, corrected using Bonferroni with N=16). 73 

binding matrices, 8 histone with PSF parameters (including GC-content and ORChID2 scores), 

and 8 TF ChIP-seq parameters passed the filter. The binding matrices were further filtered to 

remove ones that showed nearly identical binding patterns across the CREs (>=99% similar), 

resulting in 50 binding matrices.  

A logistic regression model for predicting actively expressed CREs was created for each 

of the three sets of parameters separately and with all sets of parameters together (66 total 

parameters). Only additive terms were used. We then created receiver operating characteristic 



79 
 

(ROC) curves attempting to correctly predict the activated CREs (over 90th percentile of the 

matched scrambled distribution). The area under the curve (AUC) was calculated for each model 

as well as the best performing histone parameter (UW DNase), GC-content, and ORChID2 

scores. Additionally, five-fold cross validation was used to ensure our models were not over-fit. 

The CREs were split into five training groups, and the model was trained on the data holding out 

each group in turn (beginning with the filtering of the parameters) and tested on the group held 

out. AUC was calculated for each of these sets, and the mean AUC from the five sets was 

calculated (Table 4.S5). 
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Tables 
 

Segmentation Prediction Active over 95% scrambled Active by Wilcoxon 

K562 Enhancer 11.3% [5.30%] 26.0% [12.68%] 

K562 Weak Enhancer 25.7% [5.32%] 39.17% [15.1%] 

K562 Repressed 5.35% [4.98%] 7.00% [7.39%] 

H1-hESC Enhancer 4.34% [5.30%] 11.33% [14.1%] 

 

Table 4.1. Percentage of active CREs by segmentation class. For each ENCODE 
segmentation class, the table shows the percentage of all genomic CREs that are active with the 
percentage of matched scrambled controls that are active in square brackets. Activation was 
determined by comparing CRE expression to the 95th percentile of matched scrambled controls 
(Active over 95% scrambled) or by statistically comparing replicate measurements of expression 
to matched scrambled control distribution (Active by Wilcoxon, Wilcoxon Rank Sum test, 
P<0.05, corrected using Bonferroni method with N=3236). 
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Figures 

 

Figure 4.1. Reproducible expression measurements show differences in expression by 
segmentation class. A) Representative scatterplot showing expression of each CRE in two 
biological replicates (R2=0.95, range of R2 between all replicates: 0.95-0.97). Dashed black line 
is line of equality and blue line is best fit. B) Correlation between CRE-seq and luciferase assays. 
Twelve CREs measured in individual luciferase assay (upstream of minP promoter, x-axis) and 
batch CRE-seq assay (upstream of hsp68 promoter, y-axis). Error bars represent the standard 
error of the mean. Blue line is best fit. R2=0.70  C-F) Histograms of genomic CRE expression 
measurements in K562 cells. Each class is compared to scrambled controls with equivalent GC 
and dinucleotide content (grey). Dashed lines are the 5th and 95th percentiles of the scrambled 
distributions. C) K562 Enhancer class (blue), D) K562 Weak Enhancer class (green), E) K562 
Repressed class (red), F) H1-hESC Enhancer class (orange). 
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Figure 4.2. Lower H3K27ac and H3K36me3 signal are associated with higher Weak 
Enhancer expression. Boxplots showing that (A) H3K27ac signal and (C) H3K36me3 signal 
are depleted in active CREs compared to inactive CREs. B) H3K27ac signal and (D) H3K36me3 
signal are also depleted in Weak Enhancers (green) compared to Enhancers (blue). Active CREs 
are those above 95th percentile of scrambled distribution (Table 4.1).  
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Figure 4.3. Chromatin features and sequence-specific binding identify active sequences.  

A) Receiver operating characteristic (ROC) curve shows that a logistic regression model 
(“Model comprehensive”) incorporating sequence-specific binding motifs, chromatin features, 
primary sequence features (PSF), and TF ChIP data is best able to identify active sequences. Of 
logistic regression models with fewer features, one with sequence-specific binding motifs 
(“Model motifs”) does best, followed by a model incorporating chromatin and primary sequence 
features (“Model chromatin and PSF”), a model with only significant TF-ChIP features (“Model 
TF-ChIP”). Minor groove width as predicted by ORChID2 score, GC content and DNase HS are 
also shown. Area under the curve (AUC) is indicated in legend. B) Boxplot showing that active 
CREs are enriched in high DNase HS signal over inactive CREs. C) Boxplot showing that CREs 
with at least 1 predicted AP-1 motif drive higher expression than CREs with no AP-1 predicted 
motifs. D) CREs overlapping with ChIP-seq peaks for a FOS (FOS or FOSL1) family member 

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−4

−2

0

2

0 1 or more
Number of AP1 predicted 

motifs

lo
g 2(e

xp
re

ss
io

n)

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

Unbound Bound
FOS and JUN ChIP-seq 

of CREs

lo
g 2(e

xp
re

ss
io

n)

C

A

D

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

UW DNase (AUC= 0.69)
GC content (AUC= 0.61)
ORChID2 score (AUC= 0.62)
Model TF−ChIP (AUC= 0.62)
Model chromatin and PSF (AUC= 0.73)
Model motifs (AUC= 0.8)
Model comprehensive (AUC= 0.84)

B

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

−3

−2

−1

0

1

2

1 2 3 4 5
Expression quantile (1=low, 5=high)

DN
as

e 
HS

 S
ig

na
l (

lo
g1

0)



84 
 

and a JUN (JUNB or JUND) family member, the constituent proteins of AP-1, drive higher 
expression than unbound CREs.  
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Supplementary Figures and Tables 
 

Segmentation Prediction Repressed under 5% scrambled Repressed by 
Wilcoxon 

K562 Enhancer 6.02% [5.30%] 6.83% [9.86%] 

K562 Weak Enhancer 4.00% [5.32%] 7.33% [9.51%] 

K562 Repressed 3.52% [4.98%] 7.67% [6.34%] 

H1-hESC Enhancer 2.50% [5.30%] 10% [10.21%] 

 

Table 4.S1. Percentage of repressed CREs by segmentation class. For each ENCODE 
segmentation class, the table shows the percentage of all genomic CREs that are repressed, with 
the percentage of matched scrambled controls that are repressed in square brackets. Repression 
was determined by comparing CRE expression to the 5th percentile of matched scrambled 
controls (Repressed under 5% scrambled) or by statistically comparing replicate measurements 
of expression to matched scrambled control distribution (Repressed by Wilcoxon, Wilcoxon 
Rank Sum test, one-tailed, P<0.05, corrected using Bonferroni method with N=3236). 
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Chromatin Modification or Dataset AUC Wilcoxon p-value 

Control 0.523 0.135 

CTCF 0.504 0.807 

Duke DNase 0.680 7.93x10-30 

FAIRE 0.591 9.84x10-9 

H3K27ac 0.523 0.150 

H3K27me3 0.523 0.142 

H3K36me3 0.553 8.34x10-4 

H3K4me1 0.551 1.32x10-3 

H3K4me2 0.536 0.0239 

H3K4me3 0.507 0.670 

H3K9ac 0.517 0.274 

H3K20me1 0.531 0.0436 

Pol2 0.596 1.28x10-9 

UW DNase 0.685 2.27x10-31 

 

Table 4.S2: Predictive capability of single chromatin features. The AUC was calculated for 
ROC curves created to classify active CREs vs. inactive CREs (see methods for details) using 
individual chromatin features. A Wilcoxon rank sum test (two-tailed, P<0.05, Bonferroni 
correction with N=14 for p-value threshold of 0.00357) was used to test for differences in the 
chromatin feature scores between activate CREs and inactive CREs. 
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Chromatin Modification or Dataset p-value in high 
DNase segments 

p-value in segments 
with predicted AP1 
motif 

Control 2.70x10-5 0.819 

CTCF 9.49x10-3 0.400 

Duke DNase 1.24x10-6 0.00258 

FAIRE 0.0392 0.669 

H3K27ac 1.18x10-4 0.827 

H3K27me3 0.131 0.0606 

H3K36me3 8.74x10-5 0.0163 

H3K4me1 0.0124 0.0890 

H3K4me2 5.58x10-3 0.189 

H3K4me3 2.83x10-5 0.879 

H3K9ac 1.86x10-7 0.598 

H3K20me1 1.48x10-4 0.160 

Pol2 0.236 0.107 

UW DNase 0.134 0.0241 

 

Table 4.S3: Enrichment of single chromatin features in subsets of CREs. Differences in the 
chromatin feature scores were calculated between active CREs and inactive CREs within subsets 
of the CREs (Wilcoxon Rank Sum Test, two-tailed, P<0.05, Bonferroni correction with N=14 for 
p-value threshold of 0.00357). CREs with high DNase HS scores (UW DNase HS score>5) or 
with a predicted AP1 motif were analyzed. 
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Motif Database p-value 

AP1 (MA0099.2) Jaspar 7.68E-39 

Myc (MA0147.1) Jaspar 1.36E-07 

SPI1 (MA0080.2) Jaspar 1.14E-07 

Mycn (MA0104.2) Jaspar 1.19E-05 

ELF5 (MA0136.1) Jaspar 3.31E-06 

NFE2L2 (MA0150.1) Jaspar 5.99E-15 

Klf4 (MA0039.2) Jaspar 5.44E-12 

GABPA (MA0062.2) Jaspar 1.25E-15 

FEV (MA0156.1) Jaspar 9.86E-09 

Tal1:Gata1 (MA0140.1) Jaspar 1.12E-13 

SP1 (MA0079.2) Jaspar 7.04E-12 

Zfx (MA0146.1) Jaspar 7.17E-06 

ELF3 High-throughput SELEX 3.67E-09 

ZNF740_v2 High-throughput SELEX 8.38E-08 

SP8 High-throughput SELEX 1.29E-06 

SP1 High-throughput SELEX 1.88E-12 

SP3 High-throughput SELEX 1.06E-11 

SP4 High-throughput SELEX 6.36E-10 

EHF^ High-throughput SELEX 2.83E-11 

JDP2_v3 High-throughput SELEX 5.88E-15 

ELF5_v2 High-throughput SELEX 5.69E-12 

ERG High-throughput SELEX 2.89E-07 

ERF High-throughput SELEX 3.04E-07 
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Jdp2 High-throughput SELEX 8.40E-21 

Elk3 High-throughput SELEX 8.05E-07 

ELK3^ High-throughput SELEX 4.31E-07 

ELK4^ High-throughput SELEX 1.23E-07 

ELK1^ High-throughput SELEX 1.75E-06 

ETS1_v3^ High-throughput SELEX 3.51E-08 

ERG_v3^ High-throughput SELEX 2.38E-10 

ETS1^ High-throughput SELEX 6.28E-09 

ELF3_v2 High-throughput SELEX 1.53E-07 

Klf12 High-throughput SELEX 1.00E-05 

ELK1_v2^ High-throughput SELEX 1.90E-07 

EGR3 High-throughput SELEX 2.59E-05 

NFE2 High-throughput SELEX 2.50E-25 

GABPA High-throughput SELEX 5.65E-09 

KLF16 High-throughput SELEX 3.58E-11 

FLI1_v3^ High-throughput SELEX 2.64E-07 

FLI1^ High-throughput SELEX 1.03E-06 

ETV6_v2 High-throughput SELEX 3.48E-10 

Elf5^ High-throughput SELEX 4.16E-08 

ETV1^ High-throughput SELEX 2.43E-05 

ETV2 High-throughput SELEX 7.74E-10 

ETV4^ High-throughput SELEX 3.51E-07 

ELF1_v2 High-throughput SELEX 5.34E-07 

FEV^ High-throughput SELEX 2.55E-05 
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JDP2 High-throughput SELEX 1.22E-20 

ELF1 High-throughput SELEX 1.60E-11 

ELF5 High-throughput SELEX 5.79E-12 

ELF4 High-throughput SELEX 6.94E-09 

Ehf UniPROBE 5.30E-06 

Sp4 UniPROBE 1.15E-05 

Klf7 UniPROBE 1.56E-12 

Ehf_v2^ UniPROBE 9.53E-06 

Jundm2_v3 UniPROBE 3.75E-30 

Jundm2_v4^ UniPROBE 3.75E-30 

Gabpa UniPROBE 5.49E-08 

Pho4.primary UniPROBE 2.12E-06 

Gcn4.DBD.primary UniPROBE 2.17E-27 

HLH.27 UniPROBE 1.28E-05 

Zfp281 UniPROBE 1.11E-07 

Ascl2_v3 UniPROBE 3.85E-09 

Ascl2_v4^ UniPROBE 3.85E-09 

Sp4_v2^ UniPROBE 2.39E-05 

Egr1_v2 UniPROBE 2.60E-08 

Sfpi1 UniPROBE 1.82E-05 

Egr1^ UniPROBE 2.99E-08 

Klf7_v2^ UniPROBE 5.47E-13 

MXL.3 UniPROBE 2.86E-07 

Gabpa_v2^ UniPROBE 2.82E-09 
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Zfp281_v2^ UniPROBE 1.09E-07 

MXL.3_v2^ UniPROBE 2.86E-07 

 

Table 4.S4: Enriched Motifs in Activated Sequences. These predicted motifs (see methods for 
sources) were found to have a significantly different distribution of appearances in the active 
CREs vs. inactive CREs by Wilcoxon test (P<0.05, two-tailed, Bonferroni correction with 
N=1687). ^ symbol indicates that the motif was subsequently removed for further analysis 
because it was highly redundant with another motif. 
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Model Number of 
Parameters 

AIC AUC Mean AUC 
from 5x cross-
validation 

Histone and PSF 8 1881.5 0.733 0.722 

TF ChIP 8 2007 0.622 0.5974 

Binding 50 1728.9 0.802 0.758 

Comprehensive 66 1643.3 0.841 0.798 

 

Table 4.S5: Logistic Regression Models. The four logistic regression models used to predict 
active CREs from our assay: “Histone and primary sequence features (PSF)” includes histone 
features, GC-content, and ORChID2 score; “TF ChIP” includes peaks from TF ChIP-seq; 
“Binding” includes predicted binding models for TFs; and “Comprehensive” includes parameters 
from all of the models. Akaike Information Criteria (AIC), area under the curve (AUC) using the 
full data for training and testing, and the mean AUC from 5-fold cross-validation (CV) are listed 
for each model.  
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Name Sequence 

Primer CF121 TAGCGTCGAGGACATCAAGA 

Primer CF150 TACACCGTGGTGGAGCAGTA 

Primer CF151b AGCGTACTCGAGTTGTTAACTTGTTTATTGCAGCTT 

Primer CF168 ATGCATGCCTAGAATTACTACTGGAACA 

Primer JKO25F CATCAAGCTTCTCCTCCGGCTCGCT 

Primer JKO25R CGTTGTAAAACGACGGGATC 

Adapter MO576 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTGCTCGATCATG 

Adapter MO577 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTTAGACTATCATG 

Adapter MO578 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTCGCTACCCTCATG 

Adapter MO579 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTAC
ACGACGCTCTTCCGATCTATAGTGGACACATG 

Adapter MO582 ATCGAGCAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTG
TAGATCTCGGTGGTCGCCGTATCATT 

Adapter MO583 ATAGTCTAAGATCGGAAGAGCGTCGTGTAGGGAAAGAGT
GTAGATCTCGGTGGTCGCCGTATCATT 

Adapter MO584 AGGGTAGCGAGATCGGAAGAGCGTCGTGTAGGGAAAGA
GTGTAGATCTCGGTGGTCGCCGTATCATT 

Adapter MO585 TGTCCACTATAGATCGGAAGAGCGTCGTGTAGGGAAAGA
GTGTAGATCTCGGTGGTCGCCGTATCATT 

POS1 CTAGCCTCAAGCACAGCAATGCTGAGTCATGATGAGTCA
TGCTGAGGCTTAA 

POS2 AGCTTTAAGCCTCAGCATGACTCATCATGACTCAGCATTG
CTGTGCTTGAGG 
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Table 4.S6: Oligonucleotide sequences used in this study.  
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Figure 4.S1: Luciferase assay expression measurements. Barplot showing the expression by 
luciferase assay of CREs from the CRE-seq library and controls. The 12 CREs from the library 
are grouped by CRE-seq expression (Low, Middle, High). “Pos” is the positive control from the 
HS II enhancer; “minP” is the minimal promoter with no enhancer; and “Neg” is the no vector 
control. The x-axis is sorted by CRE-seq expression, with the exception of “Pos”, which was not 
measured by CRE-seq. Error bars represent the standard error of the mean of up to three 
transfections per CRE. 
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Figure 4.S2. Computing the fraction of active sequences does not depend on the method of 
choosing short segments. Histograms showing the distribution of expression for each class; A) 
Enhancers (blue), B) Weak Enhancers (green), C) H1-hESC Enhancers (orange); either for the 
sequences from the center of longer segments (“Center”), or from whole short segments 
(“Short”), compared to their matched scrambled controls (grey). The dashed lines indicate the 
5th and 95th percentiles of the scrambled distribution. The percentage of elements with 
expression greater than the scrambled 95th percentile is indicated. 
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Figure 4.S3. Weak Enhancers control higher median expression than Enhancers. Histogram 
of expression measurements, showing the distribution of Weak Enhancers (green) shifted to the 
right of that of Enhancers (blue). Lines show median expression for Enhancers (dotted) and 
Weak Enhancers (dashed). 
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Figure 4.S4. Expression and GC Fraction of Scrambled CREs. A) Histograms showing the 
expression controlled by each set of scrambled sequences. B) Boxplots show the distribution of 
GC fraction for each category of scrambled sequences.  
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Figure 4.S5. Active Weak Enhancer and Enhancer CREs have lower levels of H3K36me3 
and H3K27ac. Boxplots showing that H3K27ac signal and H3K36me3 signal are depleted in 
active CREs compared to inactive CREs. Plots are similar to 2A and 2C except data is separated 
by segmentation class. Active CREs are those above the 95th percentile of the scrambled 
distribution (Table 4.1).  
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Figure 4.S6. Diagram of 200-mer Oligos Used to Construct the CRE-seq Library. Red 
sequences are used for PCR priming and blue sequences are restriction enzyme sites. The CRE is 
the 121-130bp sequence from the genomic predictions or scrambled controls. The FILL is 0-9bp 
of random sequence to bring the length of the whole oligo sequence up to 200bp. The length of 
the FILL sequence is calculated as 130-length of CRE. The BARCODE is a 9bp sequence that 
will label the 3’ UTR of the mRNA transcript. 

 

  

GTAGCATCTGTCCGCTAGCGT CRE AAGCTT FILL CTCGAGGCATGCC BARCODE TGAGCTCCGACTACTACTACG

Primer CF166 Primer CF167NheI HindIII SphIXhoI SacI
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Chapter 5: Discussion 
My thesis has focused on the determinants of cis-regulation. A better understanding of 

the biology underlying transcriptional regulation will allow us to predict the expression driven by 

potential regulatory elements across conditions and cell types. My work in Chapters 2 and 3 

focused on interactions between TFs in the pluripotency network in ES cells and cells 

undergoing the early stages of differentiation. Using the expression driven by synthetic cis-

regulatory elements (CREs), I was able to show that interactions and competition between TFs 

help dictate this expression.  Chapter 4 demonstrated that chromatin modifications and sequence 

features can distinguish genomic regions with cis-regulatory potential, and that combining both 

types of data is necessary for the best predictions. This work shows that progress can be made in 

predicting expression from DNA regulatory features and that mechanisms of TF activity will 

continue to be imperative for this understanding. 

Synthetic CREs and TF interactions 
I have extended the use of synthetic CREs, a tool for studying TF interactions, to a 

mammalian system. Combining synthetic CREs with a massively parallel reporter assay, such as 

CRE-seq, provides the means to assay the expression of hundreds to thousands of patterns of 

binding sites in any transfectable cell type. I have used this system in mouse embryonic stem 

(ES) cells, a previously intractable system for high-throughput testing of CRE expression. 

Previous groups have measured the expression of many promoters in human cell types, but this 

was done using one-at-a-time luciferase assays that are extremely labor and time intensive 

(Landolin et al. 2010). Previous work in the Cohen lab has tested the expression driven by many 

synthetic CREs in yeast (Gertz et al. 2009; Gertz and Cohen 2009; Mogno et al. 2010; Zeigler 

and Cohen 2014), which is easier to work with than mammalian systems. This work also 
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required expression measurements in separate cell populations, a method that does not scale 

well. Furthermore, while measuring gene expression in yeast can take advantage of different 

growth conditions (Gertz and Cohen 2009), gene expression in mammalian cells can shed light 

on the regulatory mechanisms important to development. For these reasons, extending the assay 

of synthetic CREs to mammalian cells using CRE-seq represents significant progress. 

I have demonstrated the continued utility of thermodynamic models in learning about the 

mechanistic basis of cis-regulation. Using thermodynamic models with synthetic promoters in 

yeast can provide for high predictive power, explaining 60-75% of variation in expression (Gertz 

et al. 2009; Gertz and Cohen 2009; Mogno et al. 2010). Other groups have used thermodynamic 

models in mammalian systems. These studies usually attempt to model gene expression of 

endogenous genes based on large intergenic sequences for the purpose of identifying gene 

regulatory networks, which rarely provide the power to learn rules of cis-regulation (Chen and 

Zhong 2008; Chen et al. 2008a). The thermodynamic modeling described in my dissertation both 

obtained very high predictive power (72%) and demonstrated the importance of TF interactions 

to a mammalian developmental system, adding to the body of literature on interactions between 

TFs (Gertz and Cohen 2009; Parker et al. 2011; Erceg et al. 2014; Smith et al. 2013b; Beer and 

Tavazoie 2004; Kaplan et al. 2011; Segal et al. 2008). The TFs I worked with in ES cells are 

important for pluripotency and self-renewal, and many of them also contribute to cancer, as 

proliferation is important to both ES cells and cancer cells. The interactions between 

pluripotency TFs will improve our ability to predict the impact of changes to cis-regulatory 

sequence or TF activity, as changes that affect a TF interaction will result in a different effect 

size than changes that do not. Furthermore, this could help researchers determine which of the 
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large intergenic regions of mammalian genomes are functional, as those with clusters of binding 

sites for known interacting TFs are more likely to regulate expression. 

My findings have shown that some, but not all, interactions between TFs help specify cis-

regulation. Within the four pluripotency TFs I studied, there are six possible pairwise heterotypic 

interactions. I found that half of these interactions (three) contribute significantly to expression in 

the thermodynamic model. While this is a small sample size, it demonstrates that a significant 

number of possible interactions between TFs known to regulate similar genes may be important. 

However, these interactions follow additional rules. I found two possible mechanisms for how 

these interactions could operate based on the arrangement of the binding sites. One of the 

interactions worked regardless of how the binding sites were arranged, whereas the other two 

interactions only operated when the TFs were bound with no other TFs bound in between. 

Additionally, one of the interactions depended on the order in which the TFs were bound in 

relation to the basal promoter. This suggests that there may be even more interactions between 

TFs that are only relevant in contexts that I did not assay. I also found that as cells differentiate, 

some of the interactions likely remain constant, whereas others seem to change. Thus, the cis-

regulatory picture that is emerging will be a complex one in which certain TFs interact in certain 

contexts and certain cell types. 

One of the most interesting TF interactions to come out of the thermodynamic modeling 

was the negative homotypic interaction that applies to any TF. This interaction is consistent with 

the findings of other groups showing that homotypic chains of TF binding sites saturate in 

expression (Smith et al. 2013b; Sharon et al. 2012). I found this effect to be strongest for Oct4, 

Sox2, and Esrrb, in which four sites for any one factor drives expression barely over basal. 

However, when I investigated the expression driven by many Klf4 sites, I saw that these could 
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drive high expression, possibly due to the fact that multiple Klf factors can bind to the site. This 

is more consistent with others observations that certain TFs show self-cooperativity and that 

homotypic clusters of some binding sites are important to enhancers (Pan and Nussinov 2009; 

Segal et al. 2008; Gotea et al. 2010). From these results, I can conclude that homotypic chains of 

binding sites possess unique cis-regulatory properties that depend on the binding site. 

Predicting active genomic regulatory elements 
In Chapter 4 I have shown that prediction of which genomic sequences show cis-

regulatory potential based on chromatin and sequence features do have some accuracy, but also 

need to be improved. We showed that given the best segmentation algorithms developed by other 

groups based on chromatin features (Ernst and Kellis 2012; Hoffman et al. 2012a, 2012b), some 

active cis-regulatory elements can be found above background. Furthermore, logistic regression 

models I used suggest that regions with binding sites for known activators, along with some 

chromatin signals that correspond with activation (such as DNase HS), are most likely to have 

cis-regulatory function. However, two main observations suggest that our understanding of the 

mechanisms of histone modifications needs refinement. First, H3K27ac, a mark commonly 

association with activation, was not associated with active regulatory regions, and may even be 

weakly associated with inactive regions. Second, sequences classified by the other groups as 

Weak Enhancers based on chromatin features actually drove higher expression than Enhancers. 

The continued development of methods to predict cis-regulatory potential from genomic features 

should focus on elements whose activity in our assay did not match the predicted activity. 

This work may also improve predictions of which genomic regions have regulatory 

function that could impact human disease. The ability to find active regions in mammalian 

genomes is very important, as only a subset of non-coding regions have important function. 
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Despite this, there is a lot of genomic space that does have function, as evidenced both by 

selection on non-coding regions and the fact that many areas associated with disease in GWAS 

fall in non-coding regions (Dunham et al. 2012; Meader et al. 2010; Rands et al. 2014; Cooper et 

al. 2005; Maurano et al. 2012). Better predictions of active regulatory sequences may improve 

our ability to find variants that are casual in disease.  

The expression data of these genomic regions also makes suggestions on how much of 

the intergenic region of the human genome is functional. We found around 26% of predicted 

enhancer regions drive expression over that of random DNA in K562 cells. About 1.2% of the 

genome was predicted to be an enhancer (Hoffman et al. 2012b) in K562 cells, suggesting that 

only about 0.3% of the intergenic region of the human genome can activate transcription in K562 

cells. However, there are many cell types and tissues in the human genome, each of which use 

unique cis-regulatory regions. It’s also likely that some of the repressed elements may have 

function, working to keep the region off and expression low. Regardless, this suggests that in any 

given cell type, the amount of the genome working to actively regulate transcription is rather 

small. 

Future Directions 
While I have made progress in understanding cis-regulation, there is significant room for 

improvement. My thermodynamic model of expression in ES cells achieved very high predictive 

power with an R2 of 0.72 between observed and predicted expression levels. This may be close 

to the upper limit of the ability of the model to explain expression without exhausting all possible 

measurements. However, I believe there is still potential for better understanding of the 

expression driven by CREs with all four TF binding sites, of which there were only 20 in my 

original library. Since these CREs contain exactly one binding site for each factor, differences in 
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the relative ability of each binding site to recruit polymerase cannot explain the variation in 

expression driven by these CREs, nor can any homotypic interaction parameters, which were a 

major component of my model. Regardless, the thermodynamic model explains 36% of the 

variation in expression of these CREs using two TF interactions. This is good, but still 

substantially below the level seen in the whole library. Thus, more specific rules incorporating 

order or orientation of the binding sites may improve the predictions and our understanding of 

cis-regulation.  

The fact that interactions between TFs play an important role in dictating the expression 

level driven by CREs means that more in-depth studies will be needed. My synthetic CREs used 

a fixed sequence background with fixed spacing between TF binding sites and only one 

consensus site per TF. It’s possible that changes in the sequence background, spacing, and 

affinity would alter the TF interactions or cis-regulatory dynamics. Furthermore, I only looked at 

four TFs, a tiny fraction of the number of TFs in a mammalian genome. More work on 

evaluating other TF binding sites in different combinations and contexts would help shed light on 

what TF interactions exist and their importance in predicting expression. Testing short genomic 

regions with binding sites could help determine how robust TF interactions are to new contexts. 

While the thermodynamic model based on expression of my synthetic CREs is able to predict 

which genomic windows (with at least one binding site for one of the four TFs in my library) 

have a RNA Polymerase II (RNAP) binding peak with a reasonable degree of accuracy 

(AUC=0.74), there is still substantial room for improvement. The model is unable to 

quantitatively predict either RNAP binding or expression of endogenous genomic genes. A 

natural next step would be to expand this model to genomic CREs. 
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My work into the cis-regulatory principles of RA-treated cells leaves substantial room for 

progress. I showed that as cells differentiate, the relative effect of a set of binding sites changes. 

This means that studies into a number of relevant cell types will need to be done, as each cell 

type has a different set of TFs with their own interactions. Despite learning this general principle, 

I was unable to model with much accuracy the expression of CREs in RA-treated cells using a 

thermodynamic model. There are a few possible reasons to explain this. RA-treated cells display 

much more heterogeneity in their morphology than ES cells, which would lead to more 

heterogeneity in their gene expression and lower reproducibility of CRE-seq data. This could 

possibly be overcome by enriching the cell population for cells in a certain state, thus reducing 

the heterogeneity and improving the CRE-seq data quality. It’s also possible that the plasmids 

with the CREs are lost during differentiation. Integrating the CREs into the genome of ES cells, 

especially at a fixed locus, and then differentiating them may increase the signal. Lastly, these 

CREs may have lower absolute expression in the RA-treated cells, as the CREs are comprised of 

binding sites known to be important in ES cells and not necessarily as important in RA-treated 

cells. The lower expression could lead to lower expression quality simply due to lower signal. 

Using a library with new binding sites thought to be more active in RA-treated cells could help 

with this problem. Alternatively, it is possible that the cis-regulation in RA-treated cells is 

controlled by processes that are simply not captured by my thermodynamic modeling. More 

work into learning the rules of cis-regulation during the process of differentiation is warranted, 

and solving some of these problems would help towards that aim. 

Despite the gains made in identifying active cis-regulatory elements in the genome, there 

is still a lot of progress to be made before accurate predictions can be made. We found that at 

best about 26% of predicted enhancers from the ENCODE group (Hoffman et al. 2012b) were 
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active over background. Using my best logistic regression model to identify active CREs, I found 

an area under the receiver operating characteristic curve (AUC) with cross-validation of 0.8, 

which is good but still leaves substantial predictive power left. It also does a poor job of 

predicting quantitative expression level (rather than just classifying active sequences). In order to 

improve this predictive ability, expression measurements of more sequences will be needed. 

These sequences could be selected to test more specific hypothesis (such as whether dips in 

H3K27ac signal are predictive of expression) or general predictions of enhancer regions. 

Additionally, it will help to measure the chromatin signals in the same context as the expression 

measurements are made. In my case, the chromatin signal was measured in a genomic context, 

and the expression measurements were made in a plasmid-based transient assay in a different 

sequence context. One option would be to measure the chromatin signal from the plasmid 

reporter gene. Alternatively, a reporter assay could be performed in an integrated genomic 

context at a fixed location and the chromatin signal measured from there. This is likely to be the 

most relevant measure, as its unclear how well chromatin on a plasmid recapitulates the 

chromatin in the genome. We found sequence features to be the best predictor of expression, and 

these should be easier to work with using the sequence data currently available. In this work, I 

used known binding motifs for TFs to identify sequences with enhancer activity, and others have 

used k-mers to identify sequences bound by enhancer proteins (P300) (Lee et al. 2011b). Both 

types of features point to TF binding as the determinant of expression. More work into cis-

regulatory logic, such as my work in Chapter 2, will help to elucidate how these sequence 

features control expression. 
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Conclusions 
It has become clear through my dissertation work that predictions of expression from 

sequence are possible but that more understanding of the underlying processes are needed. 

Transcriptional regulation is a vital process that if disrupted, can have major consequences for 

disease and development. It involves the work of many proteins interacting with each other and 

with DNA. As such, it is a complicated process to work out. I have helped show that it is 

possible to ascertain some rules for transcriptional regulation, and that mechanistic models can 

help us learn these rules. It is imperative that work continues in this area, so that we can gain a 

better understanding of this process and how it affects larger biological processes. 
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