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Abstract of Thesis 

 

The focus of research in this thesis is on numerical simulation of airflow around wind turbine 

airfoils (S809, S814 and S1210) under both clean and dusty air conditions by using 

Computational Fluid Dynamics (CFD). The physical geometries of the airfoils and the meshing 

processes are completed in the ANSYS Mesh package ICEM. The simulations and post-

processing are done by ANSYS FLUENT. For cases of clean air condition, Spalart–Allmaras 

(SA), realizable k-ε and Wray-Agarwal (WA) turbulence models are employed in the 

calculations. The results are compared with the experimental data for validation. For dusty air 

condition, simulation of the two-phase flow is conducted using the discrete phase model (DPM) 

for various concentrations of dust particles using the realizable k-ε model and WA turbulence 

models. The results are compared with the clean air simulations to illustrate the effect of dust 

contamination on the aerodynamic performance of the airfoils. Finally, some conclusions are 

drawn on how several factors influence the aerodynamic performance of the airfoils and 

suggestions are made to improve the wind energy conversion efficiency of airfoils under clean 

and dusty air conditions. 
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Chapter 1: Introduction 

1.1 Background and Motivation  

        Due to the environmental concerns related to the increasing carbon dioxide emissions and 

global warming with use of fossil fuels, there is great deal of interest in exploitation of long-

lasting renewable energy sources such as wind energy, biomass, solar energy and ocean energy. 

In the context of wind energy, considerable amount of research has been conducted on the design 

of wind turbines and wind farms to extract maximum possible energy from the wind.  

Currently there are two most popular types of wind turbines---Horizontal Axis Wind Turbines 

(HAWT) and Vertical Axis Wind Turbines (VAWT) [1]. To explain the terminology, horizontal 

axis means the rotating axis of the wind turbine blades is parallel to the ground while vertical 

axis means that it is perpendicular to the ground. Figure 1 provide the illustration of physical 

structure of HAWT and VAWT. Both horizontal and vertical axis wind turbines have advantages 

and disadvantages. For instance, HAWT can generate more electricity from a given amount of 

wind than VAWT. However, the equipment of HAWT is more complex and heavier, which 

increases the cost of production and transportation. Furthermore, experimental results show that 

the aerodynamic performance of HAWT degrades in turbulent wind conditions. Nevertheless, 

horizontal axis wind turbines dominate the power requirement of the wind energy industry while 

vertical axis wind turbines are primarily used in relatively small and residential applications. 

Hence the investigation and optimization of aerodynamic performance of HAWT has been 

significantly pivotal in wind energy industry. Several wind turbine airfoils and blades have been 

studied and newer airfoils/blades are being analyzed in the literature. National Renewable 

Energy Laboratory (NREL) in Colorado and National Advisory Committee for Aeronautics 

(NACA) have led the effort in this research along with industry and academia. The research at 
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Rajshahi University has shown the comparison and difference between NACA and NREL 

families of airfoils. It turns out that NACA airfoils have better average aerodynamic performance 

whereas NREL airfoils demonstrate higher level of stability and durability at higher wind speeds 

[2, 3]. 

In case of HAWT, NREL S-series airfoils are representative of many horizontal axis wind 

turbine airfoils, for example, aerodynamic characteristics of S809 airfoil have been extensively 

studied in literature. There are also other S-series airfoils of different thicknesses and cambers 

with different lift and drag characteristics. This paper focuses on three S-series airfoils, which 

includes S809 airfoil, S814 airfoil and S1210 airfoil. These three airfoils differ in their 

aerodynamic performance. These airfoils have been separately tested in wind tunnels at the Delft 

University of Technology, the Ohio State University and the University of Illinois at Urbana-

Champaign. The experimental results have been published [4-7], which are utilized for 

comparison and validation with the numerical results in this thesis. 

Sand-storm weather and dusty air environment is very common in certain parts of the world, 

e.g. in such as Middle East and the northwest part of China. Wind turbines play a crucial role in 

generating electricity in these regions. However, in spite of the importance of wind turbines, 

until now only a limited number of research studies and publications consider the influence of 

dusty air condition on the aerodynamic performance of wind turbine airfoils, which includes the 

lift coefficient, drag coefficient and pressure coefficient of airfoils. In 2017, Douvi, Margaris and 

Davaris published a paper considering the effect of dusty air effect on the aerodynamic 

performance of S809 airfoil [8]. The goal of this paper was to investigate the detrimental effect 

of dust particles on the aerodynamic performance of S809 airfoil and use the study to suggest 

improvements to increase the energy efficiency of wind turbines under dusty air conditions. 



 3 

 

Figure 1: Horizontal axis wind turbine (left) and vertical axis wind turbine (right) 
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1.2 Scope of the Thesis 

The main focus of this thesis is on the evaluation of the aerodynamic performance of S809, 

S814 and S1210 airfoils under both clean air condition and dusty air condition by numerical 

simulation using the computational fluid dynamics technology. In all simulations, incompressible 

Reynolds-averaged Navier–Stokes (RANS) equations are solved with one-equation Spalart–

Allmaras model, two-equation realizable k-ε model and Wray-Agarwal one-equation model. The 

discrete phase, which consists of tiny dust particles, is injected into the clean air flow by using 

discrete phase model (DPM) and its effect is calculated in ANSYS FLUENT.  

In Chapter 3, a brief introduction to S809 airfoil is given and then compared results and 

contours  of pressure, velocity and turbulence intensity of the airflow are presented. Computed 

results from several tuburlence models, namely the SA model, the realizable k-ε model,  and 

Wray-Agarwal 2017m model and WA 2018 model, are compared with the experimental data for 

validation for both clean and dusty air conditions.  The comparison provides information which 

turbulence model is more suitable for high-Reynolds number 2D airfoil simulations. Chapters 4 

and 5 show the simulation and results for S814 airfoil and S1210 airfoil. Some discussion about 

the effect of the different physical shapes of the airfoils on the aerodynamic performance is given 

in both chapters 4 and 5. In Chapter 5, by comparing and analyzing the results for both clean and 

dusty air conditions for flow past three airfoils, conclusions about the effects of various factors 

on the aerodynamic performance of airfoils are drawn and then the final chapter 6 leads to some 

suggestions about the future work on wind turbine airfoils. 
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Chapter 2: Numerical Methodology  

2.1 Physical Geometry and Mesh Generation 

       The geometry models of three airfoils are constructed by extracting the coordinates data 

from Somers’s report [4,5] and Airfoil Tools website [30]. In current research, the chord lengths 

of all airfoils are taken to be 1m. Geometry construction and mesh generation process are 

completed in ICEM. As shown in Figure 2, the computational domain consists of a semi-circle 

part ahead of the airfoil with radius 25m and a rectangle part in the rear of the airfoil with 50m 

height and 25m width. The airfoil is located at the geometric center of the flow field. Inlet, outlet 

and airfoil are shown in the figure 2 by arrows. Figure 3 shows the zoomed-in-view of the mesh 

near the three airfoils. Figure 4 gives the precise measurement of the whole computational 

domain (x, y) coordinates. Due to the turbulent boundary layer near the surface of the airfoils, 

mesh in this region  is refined, and is much denser than the mesh in the far field, it can be 

observed in the zoomed-in-view of the mesh in Figure 3. ANSYS package ICEM is used for 

generating the computational grid. Figure 5 demonstrates that the mesh is of high quality and can 

be adequate for accurate simulation. The solutions are performed on a series of meshes so that it 

can be ensured that the solution is mesh independent and the distance of first grid point from the 

airfoil surface y+ is less than 1. 
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Figure 2: The whole computational domain and mesh around airfoils. 

 

(a) Zoomed-in-view of mesh near S809 airfoil 
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(b) Zoomed-in-view of mesh near S814 airfoil 

                                                                       

(c) Zoomed-in-view of mesh near S1210 airfoil 

Figure 3: Zoomed-in-view of mesh near different airfoils. 
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Figure 4: Scale of the whole computational domain. 

 

Figure 5: Pre-mesh quality under determinant 2*2*2 criterion. 
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2.2 Numerical Method and Turbulence Models 

        Double precision, pressure-based solver in ANSYS FLUENT is chosen for simulation of 

all cases. For cases of clean air simulations, SA model [9], realizable k-ε turbulence model, WA 

2017m model and WA 2018 model [10] are used with the incompressible RANS equations [10-

12]. All the model constants of SA model and realizable k-ε model are kept as “default” values 

in the FLUENT. For cases of dusty air simulations, realizable k-ε model, WA 2017m model and 

WA 2018 model are chosen for simulations. The discrete phase model (DPM) in FLUENT is 

employed to inject the dust particles into the flow field, this is one of the most significant steps in 

this research. No slip wall condition is used on the airfoil solid surface. The inlet is set as 

velocity-inlet and the outlet is set as pressure-outlet. Coupled scheme for velocity/pressure 

coupling is applied for solutions of both clean and dusty air conditions.  

Spalart-Allmaras (SA) model is a one-equation model developed for aerodynamic flows, such 

as transonic flow over airfoils including boundary-layer separation [13]. SA model is 

computationally simpler than two-equation models, therefore this model is wieldy used in 

industry. The two-equation k-ϵ model is also among the most wieldy used turbulence models to 

compute many internal and external turbulent flows. This model consists of two transport 

equations which are solved for two turbulence quantities, k and ϵ. Wray-Agarwal (WA) 

turbulence model is a one-equation eddy-viscosity model derived from a blended k-ϵ/k-ω 

formulation. The model performance is better than the commonly used SA model and is 

comparable to shear stress transport (SST) model for a wide range of canonical flows in 

aerodynamics [14]. 
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2.3 Discrete Phase Model (DPM) 

        Currently there are two numerical approaches for calculation of multiphase flows: the 

Euler-Lagrange approach and the Euler-Euler approach [15]. In the Eulerian-Eulerian approach, 

the different phases are treated mathematically as interpenetrating continua. Since the volume of 

a phase cannot be occupied by the other phase, the concept of phase volume fraction is 

introduced. These volume fractions are assumed to be continuous functions of space and time 

and their sum is equal to one. In Eulerian-Lagrangian approach, the fluid phase is treated as a 

continuum by solving the time-averaged Navier-Stokes equations, while the dispersed phase is 

solved by tracking a large number of particles, bubbles, or droplets through the calculated flow 

field. The dispersed phase can exchange momentum, mass, and energy with the fluid phase [16]. 

The change in momentum of a sand particle through each control volume can be calculated by 

the following equation: 

𝐹 = ∑ (
18𝜇𝐶𝐷𝑅𝑒

24𝜌𝑝𝑑𝑝
2

(𝑢𝑝 − 𝑢) + 𝐹𝑜𝑡ℎ𝑒𝑟) �̇�𝑝∆𝑡                                                (1) 

 

The integration of the force balance on the particle predicts the trajectory of a discrete phase 

particle. The force balance is written in a Lagrangian reference frame. The forces acting on the 

particle are equal to the particle inertia and, particularly in the x direction, this equality can be 

expressed as: 

𝑑𝑢𝑝

𝑑𝑡
= 𝐹𝑑(�⃑⃑� − �⃑⃑�𝑝) +

�⃑�

𝜌𝑝

(𝜌𝑝 − 𝜌) + �⃑�                                                        (2) 

𝐹𝑑 =
18𝜇

𝜌𝑝𝑑𝑝
2

∙
𝐶𝐷𝑅𝑒

24
                                                                        (3) 
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where 𝐹𝑑(�⃑⃑� − �⃑⃑�𝑝) is the drag force per unit particle mass and �⃑� is an additional acceleration 

term per unit particle mass. Re is the relative Reynolds number defined as 

𝑅𝑒 ≡
𝜌𝑑𝑝|�⃑⃑⃑�𝑝−�⃑⃑⃑�|

𝜇
                                                         (4)  

 

Since the flow is regarded as incompressible and the temperature effects are very small, the 

energy equation is not considered. For setting the parameters in DPM, surface injection is chosen 

which means that the dust particles are released into the domain from the inlet boundary of the 

computational domain and escape from the outlet boundary of the computational domain. The 

particles are considered inert. The diameter of the particles is 0.001m and the distribution is 

considered uniform without any agglomeration. The velocity of the particles is the same as the 

velocity of the air flow. The density of sand particles is ρp = 1500kg/m3. The free stream 

temperature is 300K, same as the environmental temperature [17]. 
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Chapter 3: S809 Airfoil 

3.1 Basic Information of S809 Airfoil 

        NREL S809 airfoil is a 21-percent-thick, laminar-flow airfoil, which was originated from 

the 13.5-percent-thick S805 airfoil. Figure 6 shows the geometry of S809 airfoil. It was designed 

to constrain or limit the maximum lift, reduce the sensitivity to roughness and reduce the 

increase in drag coefficient due to laminar separation bubbles at the leading edge at high angles 

of attack. It is also the widely tested and numerically simulated airfoil among S-series of thick-

airfoil family.  

 

Figure 6: Geometry of S809 airfoil. 

3.2 Initial Conditions of the Air Flow 

       Wind turbine is a typical example of relatively low Reynolds number application. In all 

cases considered, the Reynolds Number of the flow is Re = 1×106, which can be seen as a 

relatively low Reynolds number, except in one special case which is used for the purpose of 

comparison case at different Reynolds number [27]. The density of air is ρair=1.176674 kg/m3 
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and the dynamic viscosity of air is μ=1.7894×10-5 kg/m·s. All the other parameters are kept as 

the default value in FLUENT. Mach number is Ma=0.066. The initial condition in all computed 

cases for S814 and S1210 airfoils are the same as that that for the S809 airfoil. 

3.3 Simulations and Results under Clean Air Condition 

        Figures 7 and 8 show the computed aerodynamics characteristics of S809 airfoil using 

SA model, realizable k-ε model, WA 2017m model and WA 2018 model and their comparison 

with the experimental data [18]. For S809 airfoil, all four turbulence models show reasonably 

good agreement with the experimental data for a range of low angles of attack from 0 to 8°. 

However, as angle of attack increases beyond 8°, it is obvious that there is greater deviation 

between computed results and the experimental data, and the results of realizable k-ε model and 

two WA models show better agreement with the experimental data than the SA model which has 

the largest  error. The critical angle of attack for S809 airfoil for Reynolds number = 1 million is 

about 14°, since at this angle of attack, the lift coefficient reaches its maximum value and then 

drops significantly due to stall. Besides, it can be observed that when angle of attack is small, the 

lift coefficient linearly increases with the angle of attack. As angle of attack increases to some 

larger value, linearly dependence no longer exists and the computed results become more 

significantly different from the experimental data due to the stall effect [19]. Another interesting 

fact to note is that the cl-α curve does not pass through the origin implying that a non-zero lift 

force exists when angle of attack is zero; this is expected since the airfoil is not symmetrical and 

has camber [20].  

Figure 9 shows the difference in lift coefficient of S809 airfoil at different Reynolds numbers. 

Since Reynolds number and free stream velocity are linearly dependent with density, length and 

with viscosity of the fluid being unchanged, different Reynolds numbers imply different free 
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stream velocities faced by the airfoil. From Figure 9, it can be observed that the lift coefficient 

increases slightly when the Reynolds number increases from 1×106 to 1.5×106, which leads to 

change in the lift to drag ratio. This observation has also been mentioned in other papers [21]. 

 

 

Figure 7: Variation in computed lift coefficients of S809 airfoil under clean air condition using SA model, 

realizable k-ε model, WA 2017m model and WA2018 model and comparison with experimental data. 
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Figure 8: Variation in computed drag coefficients of S809 airfoil under clean air condition using SA model, 

realizable k-ε model, WA 2017m model and WA2018 model and comparison with experimental data. 

 

Figure 9: Variation in computed lift coefficient of S809 airfoil with various angle of attack using SA model at 

different Reynolds Numbers. 
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3.4 Simulations and Results for Dusty Air Condition 

        By using discrete phase model(DPM) to inject dust particles into the incoming clean air 

stream, the effect of solid phase is considered and the results for dusty air condition are 

computed with realizable k-ε model and WA 2017m model and are compared with experimental 

data and the  results of clean air condition. Figures 10 and 11 show the difference in results using 

different turbulence models and their agreement with the experimental data. Both turbulence 

models show good agreement; however WA 2017m model has closer agreement than the 

realizable k-ε model with experiment data. The comparison in Figures 10 and 11 were performed 

for concentration of  uniform dust particles of 10% by volume. In reality, the concentration of 

dust particles can vary within a large range depending upon the environment conditions. Hence, 

computations were performed for different concentrations of dust particles. Figures 12 and 14 

illustrate the change in aerodynamic performance under clean air and dusty air with 1%, 10%, 

20% and 30% concentration  of particles in volume. It can be seen that change in cl and cd is very 

small due to dusty air when angle of attack is small. Figure 13 shows more distinct change in lift 

coefficient for angles of attack ranging from 4° to 8°. From these figures, it can be concluded 

that the aerodynamic characteristics of S809 airfoil change depending upon the concentration of 

dust particles; the lift coefficient decreases and drag coefficient increases with variation in 

concentration of dust particles as expected. For 1% concentration of dust particles, the change in 

aerodynamic coefficients is very small and the results are almost the same as the results for clean 

air. However, for higher concentration of dust particles, some changes in aerodynamic 

coefficients can be observed and this change becomes larger as the concentration of dust 

particles increases. 

 



 17 

 

Figure 10: Changes in computed lift coefficient of S809 airfoil under dusty air conditions using realizable k-ε model 

and WA 2017m model and their comparison with experimental data when concentration of dust particles is 10% in 

volume. 

 

Figure 11: Changes in computed drag coefficient of S809 airfoil under dusty air conditions using realizable k-ε 

model and WA 2017m model and their comparison with experimental data when concentration of dust particle is 

10% in volume. 
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Figure 12: Changes in computed lift coefficient of S809 airfoil under clean air condition for different 

concentrations of dust particles using realizable k-ε model. 

 

Figure 13: Changes in computed lift coefficient of S809 airfoil for angle of attack range of 4-8°  under clean air 

condition for different concentrations of dust particles using realizable k-ε model. 
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Figure 14: Changes in computed drag coefficient of S809 airfoil under clean air condition for different 

concentrations of dust particles using realizable k-ε model. 

3.5 Pressure, Velocity and Turbulence Intensity Contours 

and Velocity Vectors  

        Contours in Figures 15 and 16 display the magnitudes and distribution of pressure and 

velocity respectively around S809 airfoil at various angles of attack. As mentioned before, at 

angle of attack = 0, the pressure and velocity distribution on the suction surface (upper surface) 

and the pressure surface (lower surface) of S809 airfoil are not symmetrical leading to non-zero 

lift force as expected. As angle of attack becomes larger, the degree of this asymmetry increases 

resulting in higher lift force. This phenomenon corresponds to the results shown in Figure 8; the 

discussion is provided in section 3.3 and can be explained by the Bernoulli's principle. It is 

interesting to note  that there is a low-speed area at the trailing edge of S809 airfoil and its size 

grows with increase in angle of attack. At higher angles of attack, separation takes place on the 
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upper surface of the airfoil which eventually results in stall and the lift drops [28]. Characteristics 

of flow separation at low Reynolds numbers have been widely studied and investigated for many 

decades [29]. Figure 17 shows the change in turbulence intensity for angles of attack between 0 

and 12°. Figures 18 and 19 demonstrate how the velocity in the flow field changes as angle of 

attack increases and eventually the stall appears. As can be seen from Figure 19, when angle of 

attack is zero, the velocity vectors are almost unidirectional even for near the trailing edge. 

However, from Figures 20 and 21, it can be seen that angle of attack increases towards the 

critical angle of attack at which stall occurs, vortices appear on the upper surface near the trailing 

edge, which increase the turbulence intensity. Figure 20 shows the vortex near the trailing edge 

of S809 airfoil when angle of attack is 15°, which is larger than the critical angle of attack at 

which stall occurs. The zoomed-in-view shows the velocity gradient in the boundary layer which 

also provides a strong evidence that the mesh was adequately refined near the surface of the 

S809 wind turbine airfoil and gives accurate results.  

 

Figure 15: Pressure contours around S809 airfoil at different angles of attack. 
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Figure 16: Velocity contours around S809 airfoil at different angles of attack. 



 22 

 

Figure 17: Percentage of turbulence intensity and its contours around S809 airfoil at two angles of attack 

 

Figure 18: Velocity vectors around S809 airfoil at α=0°. 
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Figure 19: Velocity vectors around S809 airfoil at α=12°. 

 

 

Figure 20: Zoomed-in-view of velocity vectors near the trailing edge of S809 airfoil at α=15°.  
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Chapter 4: S814 Airfoil 

4.1 Basic Information of S814 Airfoil 

         S814 airfoil is a 24-percent-thick airfoil whose geometry is shown in Figure 20. S814 

airfoil was designed to replace S811 airfoil to achieve a transition-free flow with higher 

maximum lift coefficient.  

 

Figure 21: Geometry of S814 airfoil. 

4.2 Simulations and Results under Clean Air Condition 

        Figures 21 and Figure 22 show the computed results for S814 airfoil using SA model, 

realizable k-ε model and WA 2017m model and their comparison with the experimental data. All 

three models show good agreement of lift coefficient with the experimental data at lower angles 

of attack but the deviation between the computed results and experimental data increases when 

angle of attack increases. This is expected in case of most airfoils. Furthermore, the computed 

drag coefficient using the  three models differs considerably from the experimental data which is 

also an expected result from CFD. Drag coefficient is higher than experimental data for the entire 
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range of angles of attack. The reason for large error between computation and experiment could 

also be due to the inadequacy mesh but it is rather unlikely since mesh was shown to be of very 

high quality. Linearly dependence of cl-α at small angle of attack and non-zero lift for angle of 

attack=0° also exist in case of S814 airfoil as was the case with S809 airfoil. 

 

Figure 22: Variation in computed lift coefficients of S814 airfoil under clean air condition using SA model, 

realizable k-ε model and WA 2017m model and their comparison with experimental data. 
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Figure 23: Variation in computed drag coefficients of S814 airfoil under clean air condition using SA model, 

realizable k-ε model and WA 2017m model and their comparison with experimental data. 

4.3 Simulations and Results under Dusty Air Condition 

        Same as S809 airfoil, simulations are performed for S814 airfoil under dusty air 

condition by employing the discrete phase model with realizable k-ε model and WA 2017m 

model; the results are compared with the computations for clean air condition. Figures 24 and 25 

show the difference in results using different turbulence models. In all cases the concentration of 

particles is set at 10% by volume. From these figures, it can be concluded that the trend in 

aerodynamic characteristics of S814 airfoil is similar to that for S809 airfoil, that is the decrease 

in lift coefficient and increase in drag coefficient due to the presence of dust particles. 
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Figure 24: Changes in lift coefficient of S814 airfoil under clean and dusty air conditions using realizable k-ε 

model and WA 2017m model when concentration of dust particle is 10% by volume. 

 

Figure 25: Change in drag coefficient of S814 airfoil under clean and dusty air conditions using realizable k-ε 

model and WA 2017m model when concentration of dust particle is 10% by volume. 
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4.4 Pressure, Velocity and Turbulence Intensity Contours 

        Contours in Figures 26 and 27 show the magnitudes and distribution of the pressure and 

velocity respectively around S814 airfoil at various angles of attack. Figure 28 shows the change 

in turbulence intensity for angles of attack of 0 and 10°. As was the case for S809 airfoil, the 

maximum turbulence intensity is higher for larger angle of attack. 

Figure 26: Pressure contours around S814 airfoil at different angles of attack. 

 

Figure 27: Velocity contours around S814 airfoil at different angles of attack. 
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Figure 28: Percentage of turbulence intensity and its contours around S814 airfoil at two angles of attack   
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Chapter 5: S1210 Airfoil 

5.1 Basic Information of S1210 Airfoil 

         S1210 airfoil is a 12-percent-thick low Reynolds number airfoil, whose geometry is 

shown in Figure 28. This airfoil was designed by Selig at UIUC as one of a series of airfoils 

designed in the late 1990s for remote-control model aircraft applications, providing high-lift at 

low Reynolds Numbers [22-25]. S1210 airfoil is a highly-cambered airfoil, as shown in Figure 

29. Derivatives of S1210 airfoil, such as S1223 airfoil, have also shown improvements in 

operational performance of wind turbines for a range of tip speeds [26].  

 

Figure 29: Geometry of S1210 airfoil.  
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5.2 Simulations and Results under Clean Air Condition 

       Figures 30 and Figure 31 show the computed results for S1210 airfoil using SA model, 

realizable k-ε model and WA 2017m model and their comparison with the experimental data. 

The three turbulence models show good agreement of lift coefficient with the experimental data 

but larger error for drag coefficient as expected in CFD simulations, as was also the case for 

S814 airfoil under clean air condition. 

 

Figure 30: Variation in computed lift coefficients of S1210 airfoil under clean air condition using SA model, 

realizable k-ε model and WA 2017m model and their comparison with experimental data. 
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Figure 31: Variation in computed drag coefficients of S1210 airfoil under clean air condition using SA model, 

realizable k-ε model and WA 2017m model and comparison with experimental data. 

5.3 Simulations and Results under Dusty Air Condition 

Simulations for flow past S1210 airfoil under dusty air condition are performed using the  

discrete phase model with realizable k-ε model and WA 2017m turbulence model and are  

compared with the computed results under clean air condition. Figures 32 and 33 show the 

difference in results using different turbulence models. In all cases, the concentration of dust 

particles is 10% by volume. The variation trends in aerodynamic characteristics of S1210 airfoil 

are the same to those of S809 and S814 airfoils. 
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Figure 32: Changes in lift coefficient of S1210 airfoil under clean and dusty air conditions using realizable k-ε 

model and WA 2017m model when concentration of dust particles is 10% by volume. 

 

Figure 33: Change in drag coefficient of S1210 airfoil under clean and dusty air conditions using realizable k-ε 

model and WA 2017m model when concentration of dust particles is 10% by volume. 
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5.4 Pressure, Velocity and Turbulence Intensity Contours 

        Contours of Figures 34 and 35 show the magnitudes and distribution of the pressure and 

velocity respectively around S1210 airfoil at various angles of attack. Figure 36 shows the 

difference in turbulence intensity at angles of attack of 0 and 10°. It is interesting to note that 

unlike the S809 and S814 airfoils, the maximum turbulence intensity declines for S1210 airfoil 

with larger angle of attack. 

 

Figure 34: Pressure contours around S1210 airfoil at different angles of attack. 

 

Figure 35: Velocity contours around S1210 airfoil at different angles of attack. 
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Figure 36: Percentage of turbulence intensity and its contours of S1210 airfoil at two angles of attack.   
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Chapter 6: Conclusions and Future Work 
     In Chapters 3, 4 and 5, the computational results for S809, S814 and S1210 airfoils were 

presented. In this chapter, the results for these three airfoils are compared. Figures 37 and 38 

show  the difference in lift coefficient and drag coefficient among the three airfoils. From these 

figures, it can be noted that the lift coefficient at same angle of attack for S1210 airfoil is 

significantly larger than that for S809 and S814 airfoils, which implies that S1210 airfoil has the 

best aerodynamic performance among these three airfoils.  

 

Figure 37: Changes in lift coefficients of three airfoils (S809, S814, S1210) using different turbulence models 

under clean air condition 
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Figure 38: Changes in drag coefficients of three airfoils (S809, S814, S1210) using different turbulence models 

under clean air condition 

 

To summarize, several conclusions can be drawn based on this research: 

1. Aerodynamic performance of wind turbine airfoils is influenced by the usual flow and 

geometric parameters such as angle of attack, Reynolds number, thickness and camber as well as 

the conditions of air (clean or dusty). 

2. Injection of dust particles can generate negative effects on the aerodynamic performance of 

the wind turbine airfoils; the drag coefficient increases and the lift coefficient decreases resulting 

in a lower lift to drag ratio and energy efficiency. 

3. Based on the comparison between the results for 1% , 10%, 20% and 30% concentration of 

dust particles by volume in dusty air, it is found that larger concentration of dust particles has 
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more detrimental effect on aerodynamic performance as expected and therefore on the power 

output of the wind turbines. 

4. The wind turbines will not only have erosion effect and degradation of blades in dusty 

environment but also have relatively lower power generation in countries where sand dust is very 

common in the environment e.g. countries in the Middle East. 

Other than dusty air condition, there are also several other aspects which can influence the 

aerodynamic performance of airfoils: 

1. The surface of airfoils can be eroded by the impact of solid particles and the roughness 

resulting from the erosion will have negative effect. 

2. The research from NASA found out that ice accretion on the surface of airfoils, especially 

near the leading edge, can also reduce the efficiency of airfoils. 

3. In spite of the external factors, the material strength and toughness of airfoils are also 

critical for good performance. 

More study and research is needed to determine how these factors influence the aerodynamic 

performance of airfoils so that effective improvements in the blade design can be accomplished 

to better utilize the wind energy. 
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