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ABSTRACT OF THE DISSERTATION
Homoglutathione Synthetase and the Plant Thiol-Redox Proteome
by
Ashley Galant
Doctor of Philosophy in Biology and Biomedical Science (Plant Biology)
Washington University in St. Louis, 2011

Professor Joseph M. Jez, Chairperson

In the plant cell, redox regulation and redox responsiveness are governed by a
series of mechanisms that hinge upon the use of small molecule redox-couples and
reversible, thioredoxin- or glutaredoxin-mediated protein disulfides. This work examines
first the structural basis for synthesis of these small molecules and second how plants are
able to adapt and respond to changes in environmental redox state.

Among the major redox-couples, glutathione (GSH) is maintained at the highest
cellular concentrations, and is furthermore employed in a protective capacity as an anti-
xenobiotic and anti-oxidation protein thiol-modification. Almost all eukaryotes utilize
GSH, but some legumes additionally synthesize homoglutathione (hGSH), which is a
GSH analog that contains a terminal -alanine residue instead of a terminal glycine. This
alternate reaction is catalyzed by hGSH synthetase, which is related to GSH synthetase;
however, the specific features that alter substrate specificity are unknown. To understand
the molecular basis for the synthesis of the legume-specific molecule, the three-

dimensional structure of hGSH synthetase from Glycine max (soybean) was solved by x-



ray crystallography in three forms - apoenzyme, bound to y-glutamylcysteine, and with
hGSH, ADP, and a sulfate ion bound in the active site. Comparison of these structures
with those of GSH synthetase suggest that two residues - a leucine and a proline in the
Ala-rich loop region of the enzymes - dictate the use of B-alanine instead of glycine in
hGSH synthetase. Site-directed mutagenesis studies and kinetic analysis further support
this conclusion.

As a means of regulating activity, many plant proteins limit access to their active
sites and control the aggregation of catalytic oligomeric complexes through the formation
of redox-reversible disulfide bonds. In order to identify plant proteins and pathways that
utilize such bonds and/or thiol modifications to modulate oxidation state, an N-
ethylmaleimide- and 5-iodoacetamidofluorescein-based dual-labeling strategy was
employed in conjunction with 2D-gel electrophoresis and LC-MS/MS. Initial
experiments with root protein extracts from B. juncea identified several new proteins that
were differentially expressed and/or oxidized in response to exposure to the glutamate-
cysteine ligase inhibitor buthionine sulfoxide or H2O2. A clear lack of overlap between
the proteins altered by each condition was also noted. To assess oxidative changes to the
plant thiol-redox proteome under agriculturally relevant conditions, soybean plants were
field grown under ambient and elevated tropospheric ozone concentrations. Investigation
into changes in protein expression and oxidation state again yielded numerous novel
protein responses. Intriguingly, many of the largest changes were observed in pathways
involved in core carbon metabolism, a sharp contrast to the changes in redox-centric

pathways seen following acute ozone exposure. This observation, in conjunction with a



comparison of protein responses across several different ozone concentrations, led to the
conclusion that ozone exposure is governed by a threshold effect: a concentration at
which the plants transition from an active redox response toward maintenance of core

processes and metabolism.
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CHAPTER 1

INTRODUCTION



In chemistry, the term “oxidation” describes a means by which an ion, atom, or
molecule loses total possession of one or more of its electrons due to an increase in its
overall oxidation state [[UPAC, 1997]. As a concept, the notion of oxidation arose out of
the Phlogiston theory of the 17th century, which sought to explain the alchemical
processes behind fire and rust, among other transformations. Following the 18th century
work of Antoine Lavoisier, who identified the roles of oxygen and hydrogen in many
chemical reactions, the tenets of modern oxidation theory began to gain traction among
scientists and thinkers [Lavoisier, 1789]. In current parlance, the concept of oxidation
exists in a duality with that of reduction, which (as the exact opposite of oxidation)
describes the gain of total electron possession by an ion, atom or molecule. However,
following Lavoisier’s investigation of oxidation, more than 100 years passed before
scientists in the field of electrochemistry drafted the ionic theory of dissociation, which
defined the paired, yet opposite, nature of oxidation and reduction reactions [Jensen,
2007].

While redox (reduction-oxidation) reactions are traditionally associated with
chemistry, they also perform a number of critical functions in biology, particularly in
plants. For example, the successful production of glucose via photosynthesis relies on
redox reactions for the oxidation of water to molecular oxygen, the reduction of NADP*
to NADPH, and the reversible reduction and oxidation of the protein ferredoxin
[Schurmann and Buchanen, 2008]. As the process complimentary to photosynthesis,
cellular respiration in both plants and animals likewise relies on many of the same

reactions, only driven in the reverse direction (i.e., the reduction of molecular oxygen to



water). Many other reactions utilized by plants, including those associated with
xenobiotic metabolism, light-sensing, and herbivory signaling, also employ redox
chemistry.

Although their reversible nature is a boon in terms of adaptability, the widespread
adoption of redox reactions by biological systems has resulted in a number of difficulties,
both large scale and small. From a macro-scale perspective, most of the earth’s habitable
spaces exist in an atmosphere composed of approximately 78% Nz, 21% Oz, and 1%
argon gas. While both N> and argon are largely inert under the prevailing atmospheric
conditions, O; is more reactive. In the presence of heat and light, O> can degrade and
recombine into a number of free radical species, among them peroxide, superoxide, and
ozone, all of which are effective oxidizing agents [Halliwell, 2006]. In the absence of
either preventive or responsive mechanisms, these radicals, or reactive oxygen species
(ROS), can rapidly permeate cell membranes, abolish redox reaction equilibrium though
large scale generation of oxidized reactants/products, and irreversibly inactivate redox-
sensitive proteins. It is estimated that approximately 1-2% of the O that enters a plant
will either consist of or be converted to ROS [Bhattachrjee, 2005]. On the micro-scale,
many cellular processes also produce local concentrations of hydroxide and peroxide as
reaction byproducts or for use in signaling pathways; without available containment and
decontamination procedures, affected cells will likewise suffer the effects of widespread
oxidative disruption and damage.

Fortunately, cells have evolved a number of different systems by which they

control the relative levels of oxidized and reduced species present at any given time;



these processes are collectively referred to as redox homeostasis. In plants, three major
molecules - NADPH, ascorbate, and glutathione - along with several secondary
molecules, such as NADH, flavins, and quinones, are responsible for maintaining an
appropriate redox state (Figure 1). In solution these compounds exist as redox couples
with a fluctuating ratio of reduced to oxidized molecules. When local cellular conditions
grow too oxidized, these compounds will react with the excess ROS in order to drive the
system back towards homeostasis. In order to then restore the compound’s redox
equilibrium, additional reduced molecules will need to be synthesized or the oxidized
molecules will be reduced via a compound-specific regeneration cycle.

Although all of the major redox couples in plants are capable of buffering against
oxidative conditions, each compound also fulfills a more specialized redox-related role.
NAD(P)H provides essential reducing power for numerous enzymatic reactions including
those associated with photosynthesis; among the major redox couples it has the largest
(most negative) midpoint reducing potential: -320mV at pH 7.0 [Noctor, 2006].
Ascorbate, as the smallest of the three major redox couples, can traverse the plasma
membrane to assist in detoxification of the apoplasm. It also can be stored in an
unconjugated form in the vacuole at relatively high concentrations for future use. Finally,
glutathione, the only major redox player to contain a thiol group, acts as a sulfur sink and
cysteine storage molecule. By virtue of its thiol group, glutathione is also highly
effective at maintaining protein thiol-redox state through the modification of disulfide

bonds, as discussed below.



PART I - HOMOGLUTATHIONE SYNTHETASE AND GLUTATHIONE

BIOSYNTHESIS

Glutathione (GSH) is composed of glutamate, cysteine, and glycine, with a y-
linkage between glutamate and cysteine rendering the peptide immune to degradation by
all but one class of protease, the y-glutamyl transpeptidases (Figure 2). As described
above, glutathione can be found in both a reduced (GSH) and an oxidized (GSSG) form,
with the reduced form favored over the oxidized form by up to 200-fold [Noctor, 2006;
Masip, et. al, 2006]. Due to multiple polar groups, glutathione is exceedingly soluble,
and can be found at a foliar concentration of ~1 to SmM, with local concentrations of 7 to
20mM reported [Mullineaux and Rausch, 2005]. These traits, in combination with a
relatively high reduction potential (-240 mV at pH 7.0), make glutathione both effective
and highly adaptable as a modulator of redox homeostasis [Rouhier, 2008]. Not only can
glutathione spontaneously detoxify reactive oxygen and nitrogen species, but it also can
directly protect proteins against irreversible oxidation through glutathionylation of
critical residues [Gallogly and Mieyal, 2007]. Additional roles for glutathione include
detoxification of peroxides through the ascorbate-glutathione cycle, conversion of toxic
aldehydes like formaldehyde and methylglyoxyl to less harmful variants, and
sequestration of toxic heavy metals such as cadmium [Potters et al., 2002; Dixon et. al,
1998; Rauser, 1995; Skipsey et. al, 2000].

In the event of protein glutathionylation or the formation of an undesirable

disulfide bond, the disulfide-oxidoreductase glutaredoxin is capable, with the assistance



of two GSH molecules, of reducing the residue moiety via either a monothiol or a dithiol
mechanism [Roubhier et. al, 2008]. This activity results in the formation of one GSSG
molecule, which then must be reduced to maintain the buffering capacity of glutathione.
Another oxidoreductase, glutathione reductase, utilizes the greater reducing potential of
NADPH to convert GSSG back to GSH, producing NADP" in the process [Gill and
Tuteja, 2010]. Finally, the regeneration cycle is completed when NADP re-enters the
chloroplast stroma, and is reduced to NADPH by ferredoxin-NADP* reductase as part of
the photosynthetic Z-scheme.

If additional or replacement reducing power is required by the plant cell, more
glutathione may be synthesized in two ATP-dependent steps. In the first reaction, the
enzyme glutamate cysteine ligase (GCL; also known as y-glutamylcysteine synthetase;
EC 6.3.2.2) catalyses the formation of y-glutamylcysteine from glutamate and cysteine.

In the second reaction the enzyme glutathione synthetase (GS; EC 6.3.2.3) adds glycine
to y-glutamylcysteine to produce the complete tripeptide. In Arabidopsis thaliana, GCL
contains a chloroplast-localization sequence and is expressed solely in the plastid, while
GS is primarily cytosolic [Meyer and Hell, 2005]. Expression analysis indicates that of
the two enzymes, GCL functions as the rate-limiting step and is the target of multiple
regulatory controls [Foyer et al., 1995; Arisi et al., 1997].

Because cellular glutathione levels can impact so many different facets of a
plant’s stress response, GCL activity remains at all times tightly regulated via at least
three major mechanisms. 1.) At the substrate level, GCL activity is limited by the

availability of glutamate and cysteine, with the latter being the more limiting of the two.



Because cysteine is derived from serine and acetyl-CoA, its use as a substrate for GCL
drains from carbon reserves that could be instead spent to generate proteins and/or ATP
[Youssefian et al., 2001]. Accordingly, in order to minimize the perturbations of other
pathways, only those resources that are absolutely needed are drawn off in order to
synthesize glutathione. 2.) At the level of redox control, GCL is regulated by a unique
mechanism that was only recently deduced. It has been known for nearly twenty years
that mammalian GCL is heterodimer composed of a larger (MW 70,000 kDa), catalytic
subunit and a small (MW 30,000 kDa) regulatory subunit. Under reducing conditions
and in the absence of the regulatory subunit, catalytic activity is only a fraction of that
found when GCL is present as a holoenzyme [Huang et al, 1993a; Huang et al., 1993b,
Chen et al., 2005]. This data in conjunction with more recent mutagenesis studies led to
the conclusion that formation of a reversible disulfide bond between the catalytic subunit
and the regulatory subunit prompts GCL activation [Fraser et al., 2003]. But while the
human GCL has a regulatory subunit, no comparable protein subunit has been found to be
encoded by a plant genome. Instead, a combination of mutagenic, kinetic, and
crystallographic studies have shown that plant GCL is a homodimer whose activation and
subsequent dimerization under oxidative conditions is controlled by a pair (one on each
monomer) of disulfide bonds [Hicks et al., 2007] (Figure 3). Additionally, access of
substrates to the active site is controlled by a second disulfide bond; only under
sufficiently oxidative conditions does the B-hairpin flap over the active site entrance
swing back to allow uninhibited access [Hothorn et al, 2006]. 3.) Finally, at the level of

expression, transcription of the gene encoding GCL has been shown to increase when



plants are subjected to known sources or signals of oxidative stress, including jasmonic
acid and the heavy metals copper and cadmium [Xiang and Oliver, 1998]. Although the
human GCL promoter has been well characterized, little comparable work has been done
in plants [Soltaninassab et al., 2000]. The Arabidopsis GCL promoter does contain
several possible G-box elements similar to those found in the jasmonic acid sensing
portion of the Pin2 promoter, but no further studies have been done to verify their role
[Xiang and Oliver, 1998]. With additional evidence also suggesting that GCL activity is
regulated by light intensity and/or phosphorylation, (the latter being documented for the
human GCL variant), it is clear that the enzyme requires still a great deal of further
investigation [Ogawa et al., 2004; Sun et al., 1996].

While there remain many unanswered questions with regards to GCL, the second
step in the glutathione synthesis pathway presents an entirely different set of unknowns.
In most plants, y-glutamylcysteine is converted to glutathione through the activity of GS.
Like GCL, eukaryotic GS is catalytically active as a dimer; however, in Escherichia coli,
and other prokaryotes, GS functions as a tetramer. To date, three x-ray crystal structures
of the GS from Saccharomyces cerevisiae, E. coli, and Homo sapiens, as well as a
"loopless" E. coli variant structure, have been solved [ Yamaguchi et. al, 1993; Kato et. al,
1994; Polekhina et. al, 1999; Gogos and Shapiro, 2002]. These structures indicate that
GS falls within the large ATP-grasp superfamily of protein structures [Galperin and
Koonin, 1997]. Members of this protein family are defined by the presence of two sets of
two anti-parallel B-sheets connected by a series of loops. This motif, known as an ATP-

grasp or palmate-grasp for its provision of an ATP-binding pocket, comprises the



majority of the active site in proteins of this family, and also provides the family with its
name. In addition to the shared motif, members of the ATP-grasp superfamily also rely
on a similar mode of action: that is, the ATP-dependent ligation of a carboxyl group
carbon from one reactant with the amino (or imino) group nitrogen of a second reactant
via the formation of an acyl-phosphate intermediate [Meister and Anderson, 1983; Ogita
and Knowles, 1988; Meister 1989; Fan et. al, 1995]. For the GS-catalyzed reaction, y-
glutamylcysteine provides the carboxyl group, while glycine provides the amino group.
With regard to enzyme kinetics, the reaction likely proceeds via a random terreactant
mechanism, with slight preference given to the order of substrate binding [Jez and
Cahoon, 2004]. As an interesting side note, although members of the ATP-grasp
superfamily are structurally and mechanistically similar, their amino acid sequences are
quite divergent and range only from 10%-20% identical across the family [Galperin and
Koonin, 1997]. Other examples of ATP-grasp family members include D-Ala:D-Ala
ligase, biotin carboxylase, and carbamoyl phosphate synthase [Fan et. al, 1994; Artymiuk
et. al, 1996, Thoden et. al, 1997].

Among the branches of life, synthesis of glutathione as a storage agent and redox
buffer is extremely well conserved. Virtually all eukaryotes produce glutathione, as do
many bacteria. Only among the archaea is glutathione synthesis sharply limited, with just
halobacteria known to produce it. Despite its time-tested effectiveness, some eukaryotic
parasites (such as those of the genus Trypanosoma), do not produce glutathione at all,
while many plant species produce it in addition to one or more glutathione homologs

[Muller et al., 2003]. For example, in many legumous plants homoglutathione — in which



the terminal glycine has been replaced by [-alanine, is found with or in place of
glutathione in a tissue-dependent fashion [Moran et al, 2000]. In members of the
Poaceae, except maize, a tripeptide called hydroxymethylglutathione, which contains a
terminal serine instead of glycine, is produced [Klapheck et al, 1994]. In maize, yet
another glutathione-like peptide is synthesized, this one with a terminal glutamate
[Meuwly and Rauser, 1992]. Of these alternate forms of glutathione, the most is known
about homoglutathione. Except for broadbean and lupine, every legume that has been
thus far investigated produces homoglutathione in addition to glutathione [Moran et al.,
2000]. In some tissues, such as alfalfa leaves, homoglutathione completely replaces
glutathione as the dominant thiol compound, while in others they may be found more or
less one-for-one. By contrast, in cowpea leaves glutathione is the dominant tripeptide
and homoglutathione is almost completely absent [Matamoros et al., 1999]. In soybean,
both homoglutathione and glutathione are present, with leaves and seeds containing 50-
to 200-fold and 135-fold more homoglutathione than glutathione, respectively.
[Klapheck, 1988; Matamoros et al., 1999].

For synthesis of both glutathione and homoglutathione, the first reaction -
synthesis of y-glutamylcysteine - is shared. However, while glutathione synthesis
requires the activity of GS to add a terminal glycine to the tripeptide, homoglutathione
synthesis relies on the homologous enzyme homoglutathione synthetase (hGS) for
introduction of B-alanine (Figure 4). Because the genomes of numerous legumes,
soybean included, show evidence for two rounds of genome duplication, it has been

proposed that hGS arose from GS by divergent evolution after the first duplication event
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[Shoemaker et al.,2006; Van et al., 2008; Gill et al., 2009, Frendo et. al, 2001]. In the
soybean genome, as an example, there are two copies each of the genes encoding GS and
hGS, with each pair sharing 87% and 93% sequence identity, respectively. The relative
expression patterns of the various copies remain unknown.

Between legumous GS and hGS genes, the sequence identity is ~60-70%
depending on the species assessed [Frendo et. al, 2001]. Given such a high degree of
identity, it is curious that hGS has managed to evolve a unique, if parallel, function to GS.
From a redox perspective, the benefit of synthesizing homoglutatione instead of, or in
addition to, glutathione is unclear. Both molecules preserve the redox-reactive cysteine
residue that allows conversion from GSH to GSSG; in fact the only obvious difference is
that homoglutathione is effectively one carbon bond-length longer than glutathione
courtesy of B-alanine. But while the difference in substrate size does not shed light on a
defined role for homoglutathione, it does hint at structural differences that have arisen
between hGS and GS. Based on the available GS structures, y-glutamylcysteine occupies
a pocket at one end of the cleft formed by the ATP-grasp motif, while ATP and glycine
occupy the opposing end [Yamaguchi et. al, 1993; Polekhina et. al, 1999; Gogos and
Shapiro, 2002]. The carboxyl tail of glycine contacts two Ala residues (Ala 462 and Ala
463 in the human GS), that are part of a larger alanine-rich loop domain. Based on a
comparison of the yeast apoenzyme and ATP/y-glutamylcysteine-containing GS
structures, it is evident that this domain is capable of movement during the overall
reaction cycle [Gogos and Shapiro, 2002]. However, kinetic studies indicate that AtGS

will not accept B-alanine as a substrate, which thus implies that any domain movement

11



that occurs is simply not enough to accommodate the longer p-alanine molecule in the
glycine binding pocket [Galant et. al, 2009, Jez and Cahoon, 2004].

In addition to the previously mentioned alanine-rich loop, a second domain of the
GS enzyme appears mobile based upon the yeast crystal structure [Gogos and Shapiro,
2002]. This domain, termed the “lid domain” according to the nomeclature associated
with the human GS structure, is composed of residues 355-417 of the yeast enzyme and
makes up one corner of the roughly triangular-shaped overall GS structure. Within the lid
domain is a subdomain, known as the glycine-rich loop, that appears to make extensive
contacts with the bound ATP moiety. Based on the apoenzyme and reactant-bound yeast
GS structures, it appears that this domain’s purpose is to swing inward and lock ATP in
place following its binding within the ATP-grasp cleft. Investigation into the kinetic
mechanism of AtGS has indicated that the GS enzymes favor a semi-specific binding
order for their three substrates: namely, either ATP or y-glutamylcysteine first, and
glycine (or an appropriate homolog) last [Jez and Cahoon, 2004]. Accordingly, the yeast
structure bound with y-glutamylcysteine and an ATP homolog represents the third stage
in the reaction mechanism, with the apoenzyme and enzyme bound with either ATP or -
glutamylcysteine representing the first and second stages, respectively. Among the yeast,
E. coli, and human GS structures, no structure for the y-glutamylcysteine-bound variant
of the second stage exists; thus it is unclear if any movement of the lid domain is
prompted by the binding of y-glutamylcysteine alone. Furthermore, while cumulatively
the available crystal structures provide a visual representation of the reaction mechanism,

snapshots of more than two stages are not available for a single enzyme, leading to
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difficulties in the comparison of domains of different sizes and of different numbering
schemes across the various GS structures.

In order to fill in the gap in the GS-type reaction mechanism as well as provide a
series of snapshots from a single enzyme, I solved three crystal structures of the
homoglutathione synthetase from Glycine max.  The three structures are of the
apoenzyme, the enzyme with y-glutamylcysteine bound, and the enzyme with ADP and
homoglutathione bound, and represent respectively the first, second, and fifth stages of
the reaction mechanism. This series of structures, along with their accompanying
mutagenesis and kinetics data, identify the structural elements that are responsible for the
differences in substrate specificity between GS and hGS. For more information, please

refer to Chaper 2.

PART II - THE THIOL-REDOX PROTEOME - BUTHIONINE SULFOXIMINE (BSO),

H>02, AND BRASSICA JUNCEA (INDIAN MUSTARD)

The example of GCL from Part 1 illustrates that in some cases, the formation of
disulfide bonds is desirable as a means of controlling enzyme activity. In plants, this type
of redox regulation is relatively rare, not because few proteins utilize it, but rather
because only a handful of redox-sensing candidates have been appropriately
characterized. The majority of known redox-regulated proteins are controlled by one of a
half-dozen or so different potential-sensing pairs, among them thioredoxin/ferredoxin,

glutathione/glutaredoxin, and NADP/thioredoxin [Buchanan and Balmer, 2005]. The
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protein components of these redox pairs - namely ferredoxin, thioredoxin, and
glutaredoxin - all utilize a reduction mechanism that necessitates direct contact between
them and the target protein that they are reducing. Accordingly, screens to identify
potential targets of these regulatory proteins have typically been able to employ affinity
chromatography followed by mass spectrometry or N-terminal sequencing; this method
only pulls out proteins that strongly interact with the “bait”, with no regard for the
specific means of redox regulation (disulfide bond, glutathionylation, etc.) utilized by the
individual protein [Balmer et al., 2003; Motohashi et al., 2001; Yano et al., 2001].
Currently, the total number of identified plant redox-regulated proteins identified via
affinity chromatrography stands at several hundred, with the largest subsets shown to
interact with thioredoxin and glutaredoxin, respectively [Buchanan and Balmer, 2005,
Hisabori et al., 2005, Rouhier et al., 2005, Wormuth et al., 2007].  To date, very few
proteins known to use disulfide bonds to regulate their activity have been identified via
this methodology. Besides GCL, one example is NPR1, which was originally studied
because of its essential role in plant systemic acquired resistance (SAR). Under normal
conditions, NPR1 exists as an inactive oligomer; however, reduction of intermolecular
disulfide bonds between the subunits following SAR initiation allows the protein to
achieve its active monomeric form [Mou et al., 2003]. Another example is OxyR, a
peroxide-sensing transcription factor from E. coli and Salmonella typhimurium that is
activated through the formation of an intramolecular disulfide bond and deactivated via

the activity of glutaredoxin [Zheng et al., 1998, Christman et al., 1989].
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While affinity-based methodologies are well established for isolating certain
subsets of the redox-regulated proteome, other more inclusive methodologies exist as
well. One alternative is a two-dimensional (2D)-gel electrophoresis approach that allows
all proteins within a given sample to be separated and fixed. Most 2D-gels rely on
isoelectric point for separation in the first dimension, and denatured molecular weight in
the second dimension, though native molecular weight may also be used [O’Farrell,
1975]. In order to utilize 2D separation for the detection of redox-sensitive proteins, the
protein mixture under scrutiny must first be treated so as to distinguish redox-labile
proteins from the remainder of the proteins in the sample. In a complex protein sample,
many proteins will have solvent-exposed cysteine residues. While some of these residues
may form disulfide bonds or contain thiol modifications such as glutathionylation, others
will be present as free thiol groups that will not and will never be modified naturally.
Because this latter class of cysteine residues is not redox-labile, it is important that they
be chemically blocked to prevent reactions during the subsequent detection of modified
and disulfide-bound cysteines. Thus, a soluble protein extract must first be treated with a
thiol alkylating agent such as N-ethylmaleimide (NEM), iodoacetamide (IAM) or
iodoacetic acid (IAA). Although all of these compounds form an adduct that is almost
impossible to reverse, NEM is perhaps the best choice based on faster reaction speed and
activity under a wider pH range relative to the other two compounds [Rogers et al.,
2006].

Once the non-labile thiols in a complex protein mixture have been blocked, the

next step is to detect the redox-reactive cysteine residues. Because these thiols are either
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involved in disulfide bonds or are blocked by secondary modifications, the protein
mixture must first be treated with a reducing agent such as dithiothreitol (DTT) or tris[2-
carboxyethyl]phosphine (TCEP) so as to reduce the thiol groups. Because the previous
reaction of free thiols with NEM was done via alkylation as opposed to thiol-disulfide
exchange, reducing agents will have no effect on those adducts. With reduction of the
previously oxidized thiols complete, they become available for chemical modification via
one of several fluorescent compounds. The choice of which fluorescent compound to use
depends upon the emission wavelength required, the pH of the protein mixture to be
labeled, and the overall experimental design. Popular thiol-reactive dyes include those of
the bromobimane family (most commonly monobromobimane), iodoacetomide-
fluorescein conjugates (typically 5’-iodoacetomidofluorescein - IAF), and the cyanine
dyes (Cy2, Cy3, and Cy5) [Timms, 2005; Fahey and Newton, 1987; Baty et al., 2002;
Chen et al., 2008].

When labeling of the complex protein mixture is complete, the protein sample
may be loaded onto a 2D gel and separated as previously described. Because the protein
spots will not be visible to the naked eye, the resulting gel(s) must be imaged at the
appropriate wavelength for whichever fluorescent dye was selected in order to see the
spots that contain redox-reactive proteins. For comparison of the relative numbers of
redox-reactive proteins to total proteins across a given pl/mW range, the gels may then
be further stained with a total protein dye and imaged again. There are many sensitive
dyes, including SYPRO Ruby, SYPRO Tangerine, and FOCUS FASTsilver, available;

however, care must be taken to ensure that the dye chosen does not bind covalently (as
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this may interfere with downstream mass spectrometry applications) and that its
excitation and emission wavelengths do not overlap with those of the chosen thiol-
reactive dye.

Depending on the complexity of the protein sample under scrutiny, several
different methods for identifying individual spots from the 2D gels may be available. If a
protein is particularly well characterized, whole protein extraction and verification of
retention time via HPLC may be all that is required. In most cases however, the protein
identification will not be so easy, and a mass spectrometry-based approach will be
necessary. For this method, the protein will need to be digested with a predictable
protease such as trypsin, and the resulting peptides separated via reverse-phase liquid
chromatography. Those peptides will then further fragmented by MS/MS, and the
resulting spectra will be identified via comparison against a known database (NCBI,
SWISSPROT, etc.) of protein sequences.

As stated previously, the 2D gel-based approach, although more time consuming,
presents an advantage over related affinity chromatography methodologies because it
allows for the detection of proteins that do not react strongly with a “doxin” and/or
contain one or more redox-labile disulfide bonds. In plants as well as other eukaryotes, a
number of efforts have already been undertaken in order to identify novel redox-reactive
proteins using 2D-SDS-PAGE. In Alvarez et al. [2009a], the authors dissected shoot
tissue from Arabidopsis thaliana seedlings, and labelled with iodoacetamide and mBBr
before separating the protein in two dimensions. Fifty resulting proteins were then

identified via nano-LC-MS/MS as redox-reactive; five proteins were further identified as
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new members of the thiol-redox proteome. In an effort to tease out the relationship
between redox-regulation and dormancy control, another group isolated protein from
hormone-treated wheat seeds, labeled with mBBr and iodoacetamide (the opposite order
from above), and performed nano-LC-MS/MS and MALDI MS after 2D-gel separation.
Their experiments resulted in the identification of 79 unique redox-modifiable proteins
with possible roles in seed dormancy [Bykova et al., 2011]. Across the literature, there
exist other example of studies seeking to identify redox-labile plant proteins under a
given set of conditions [Zhou et. al, 2011; Tanou et al, 2010; Alvarez et al., 2009b];
Maeda et al., 2005; Rinalducci et al., 2008].

Importantly, compared to the sheer volume of redox-related studies in animal or
microbial systems, the investigation of redox-reactive proteins in plants is still in its
infancy. The majority of studies in plants to date have been furthermore very narrow in
focus, concentrating solely on the effect of a specific compound or growth condition on
the relative abundance or redox state of proteins. While such investigations are necessary
to elucidate the mode of action of the relevant plant-response networks, they do not
address what is happening between the stimuli and the protein that is changing. Namely,
how do specific proteins respond to the ROS that serve as antagonizers and/or signaling
molecules in response to a set change in conditions?

To begin to address this question, I have undertaken a series of experiments
designed to address how different sources of ROS differentially antagonize a redox-
responsive system. Using Brassica juncea (Indian mustard), | treated the roots of potted

plants with buthionine sulfoximine (BSO), hydrogen peroxide, or water (as a control).
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Because BSO, as an inhibitor of GCL, is an indirect source of endogenous ROS [Griffith
and Meister, 1979], and hydrogen peroxide is a direct source of exogenous ROS, I
anticipated that they would affect the expression and redox state of different, though
possibly overlapping, sets of proteins. Furthermore, because only a relatively small body
of work on redox-responsive proteins has originated in field of plant biology, I hoped that
this series of experiments would add to the available body of knowledge, particularly if
they allowed for the identification of new targets of redox-regulation. A more detailed
description of the methodology and results of these preliminary 2D-gel experiments is

presented in Chapter 3.

PART III - THE THIOL-REDOX PROTEOME - OZONE AND GLYCINE MAX

(SOYBEAN)

The use of Arabidopsis thaliana as a model system began as as early as 1907,
when Strasburger and his student Laibach suggested its value for studying chromosomes.
In the mid-forties, the development of Arabidopsis as a platform for mutagenesis began,
and by the 1970s the plant and its close relatives had been widely adopted by biology labs
around the world [www.arabidopsis.org (TAIR); Redei, 1975]. Arabidopsis is an
excellent model system for a number of reasons, including is fast growth rate, genome
plasticity, and extensive family tree. While some members of the Brassicales are widely
cultivated, Arabidopsis itself has no agricultural significance. And while ostensibly the

plant and its cousins occur naturally throughout much of Europe and Asia, the modern
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native habitat of Arabidopsis is very much a petri dish in a lab. Thus, when it comes time
to study how a plant responds to and interacts with real world oxidative conditions and
stimuli, Arabidopsis and its brethen are not necessarily the best choice for further
investigation. But in order to select an appropriate plant, one must first understand the
breadth and scale of the challenge that oxidative damage causes in a more natural
environment.

As described briefly at the beginning of the introduction, one of the largest
sources of naturally occurring ROS stems from the conversion of O to various oxide
radicals. While the availability of Oz does not change significantly, the relative
concentration of another ROS-producing molecule - ozone - is increasing. In its simplest
state, ozone is composed of three charge-stable oxygen atoms; the chemistry that gives
rise to it, however, is somewhat complicated and also depends upon where the ozone is
being produced. In the stratosphere, ultraviolet energy in the form of a photon can split
02 to yield monoatomic oxygen. Monoatomic oxygen is highly unstable, so it rapidly
recombines with Oz to yield Os. In the troposphere, ozone production begins when
carbon monoxide reacts with hydroxide, yielding a proton and carbon dioxide. The
proton then further reacts with Oz to produce the peroxy radical HO2. HOz is also
unstable, and will react quickly with any number of non-methane volatile organic
chemicals (NMVOC:s); their products will then react further with ultraviolet energy to
produce monoatomic oxygen and subsequently ozone as previously described [Tang et
al., 2011; Renaut et al., 2008] (Figure 5). Unlike stratospheric ozone production, the

production of ozone in the troposphere is dependent upon the availability of NMVOCS;

20



these compounds may include nitrogen oxides, sulfur oxides, terpenes, and assorted
aqueous solvents. Many NMVOCS are released into the atmosphere as part of the waste
streams from various industrial processes; others are byproducts of the combustion of
gasoline and diesel in vehicle engines. Unfortunately, as both global averaged industrial
output and vehicle ownership, largely as a result of economic development in China and
Southeast Asia, are rising and predicted to continue doing so, the available global
tropospheric concentrations of NMVOCS, and in turn ozone, are likely to increase as
well [Monks et al., 2009; van Aardenne et al., 2001; Fu et al., 2007; Meagher et al.,
1998].

Historical data indicates that prior to the industrial revolution, tropospheric ozone
concentrations in the northern hemisphere were quite low, averaging only 11 ppb (parts
per billion) with deviation of 5 ppb depending on the season. Even as the pace of
industrialization increased during the first half of the 19th century, ozone concentrations
in the northern hemisphere remained modest at 15 ppb [Volz and Kley, 1988]. However,
during the period between 1950 and 1980, ozone concentrations began to trend upward
by approximately 0.35 ppb per year, and by the mid-1980s were increasing by up to 0.5
ppb per year [Tang et al., 2011; Fuhrer, 2009; Cooper et al., 2010; Hudman et al., 2008].
Perhaps by virtue of a balance in decreasing and increasing emissions between developed
and developing countries respectively, the present day rate of increase is holding steady at
approximately 1-2% of the ambient concentration per year [Morgan et al., 2006;
Chameides et al., 1994]. Currently, the average annual ambient tropospheric ozone

concentration ranges from 20 to 45 ppb over the mid-latitudes of the Northern
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Hemisphere [Vingarzan, 2004; Booker et al., 2009]. As ozone synthesis is dependent
upon available energy levels, ozone concentrations tend to follow a cyclical cycle though
out the year. Thus, during the summer months (June-August depending upon latitude),
local ozone concentrations may peak at an average of 60-80 ppb before tapering off again
in the fall [Fowler et al., 1999; Mauzerall et al., 2000]. Furthermore, due to the earth’s
natural light-dark cycle, ozone concentrations are also diurnally cyclical, with the highest
concentrations coinciding with the brightest/hottest parts of the day [Fuhrer et al., 1997].

Because both historical trends and present-day atmospheric profiling data support
a situation in which tropospheric ozone concentrations will continue to rise over the
course of the next 50-100 years, many different environmental models have been put
forth to help predict likely ozone concentrations and the areas that might be most
affected. One model, taking into account biomass emissions and emissions legislation,
predicts that India and southeast Asia, including southern China, will see large increases
(9-11 ppb) in surface ozone concentrations between now and 2030 while concentrations
over North America remain steady [van Dingenen et al., 2009]. Another prediction,
which averages the results of 10 different modeled scenarios, indicates that the Middle
East, India, and China will see summertime concentrations rise by 45-55 ppb, and that the
southern/eastern United States and Mexico will see increases of 25-35 ppb by 2100
[Prather et al., 2003]. The results of many other modeled scenarios have been published,
and while they tend to utilize different sets of baseline data and differing predictive
criteria, the world regions that are highlighted as being under threat from rising

tropospheric ozone concentrations - namely China, India, and the eastern United States -
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remain largely consistent [Murazaki and Hess, 2006; Liao et al., 2006; Bell et al., 2007,
Ebi and McGregor, 2008; Racherla and Adams, 2006; Nolte et al., 2008]. This is
problematic for several reasons. From a human health perspective, high tropospheric
ozone concentrations are dangerous not only because they can lead to tissue oxidation
and irreversible damage, but also because ozone is one of the primary components of
smog. Because ozone is denser than air, it can trap pollutants close to the earth’s surface,
leading to a variety of respiratory problems. Local geography and population density can
further exacerbate the problem; images of a smog-filled Los Angeles, which sits in a
natural depression, and Beijing, which is home to more than 12 million people, have been
etched into the public consciousness in recent years. Since China and India together
currently account for roughly 45% of the world’s population (a percentage that continues
to rise every year), increasing ozone concentrations in those regions could be particularly
catastrophic for the health of large numbers of people in the future [CIA World Factbook,
https://www.cia.gov/library/publications/the-world-factbook].

Another reason why the predicted increases in ozone concentrations over China,
India, and the United States are problematic stems from the ability of these countries to
produce large volumes of crops for home use and export. While crop production of
course partially correlates with country size (the United States, China, and India are
ranked 3rd, 4th, and 7th respectively by total land area), these three countries are
nonetheless consistently the top producers of many different grains and legumes
including rice, maize, millet, soybeans, and wheat [FAOSTAT]. For these crops and

many others, ozone exposure, much as it does for humans, can cause widespread
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oxidative damage to essential tissues, which in turn negatively affects crop yield. From a
food security perspective, it is easy to predict how widespread devastation of harvest
yield as a result of oxidative damage (coupled of course to ongoing disasters such as
droughts and floods) could rapidly lead to food shortages and famine in highly populated
countries without implementation of preventive measures.

How might a country, and the world at large preemptively avoid widespread crop
loss through oxidative damage? The most obvious option: implementation of widespread
limitations to further industrial emissions, is both politically difficult and slow to yield
fruitful results. Many crops, particularly those grown in regions where summertime
ozone averages top 60 ppb, are currently suffering from oxidative damage and producing
reduced yields. The second option: the utilization of ozone-resistant crop strains, is
arguably much cheaper and politically favorable; however, there is a problem. Because
high tropospheric ozone concentrations are a relatively new phenomenon there are very
few cultivars, natural or engineered, which demonstrate ozone-tolerance or resistance.
While a few crop species - namely plums and strawberries - seem to be partially resistant
to the effects of ozone exposure, most of the major grain and legume crops show
moderate to severe sensitivity [Mills et al., 2007]. Among those major crops, soybean is
the most sensitive to ozone. Across all assayed soybean cultivars, the relationship
between seed yield and seasonal daytime ozone concentration is largely linear, with
ozone concentration in ppb inversely proportional to seed yield in kg/hectare
[Betzelberger et al., 2010]. At concentrations as low as 40 ppb, soybean growth and seed

yield begins to decrease; increasing the atmospheric concentration to 70 ppb accordingly
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results in yield losses of 11-36% [Morgan et al., 2006; Emberson et al., 2009; Heck et al;
1983; Heagle et al., 1998].

While numerous transcriptomic, metabolomic, and proteomic studies have been
undertaken in both soybeans and other crop species to elucidate the mechanism by which
ozone exposure negatively impacts yield, a clear answer has yet to emerge. One
possibility is that irreversible oxidation of key proteins, particularly those involved in
photosynthesis, forces the plant to shift resources destined for starch storage and/or cell
division toward supplemental amino acid and protein synthesis. Another possibility is
that affected plants utilize their resources to upregulate ROS scavenging pathways with
the hope of maintaining the status quo. In either case, one would expect that exposure to
similar ozone concentrations would upregulate similar response pathways in the various
affected crop species. However, there has been very little consensus across crops as to
the transcripts and proteins that are differentially expressed following ozone exposure
[Ahsan et al., 2010; Agrawal et al., 2002; Feng et al., 2002; Bohler et al., 2007; Bagard et
al., 2008; Cho et al., 2008; Sarkar et al., 2010; Torres et al., 2007; Tosti et al., 2006;
Gadjev et al., 2006]. This suggests that either the response mechanisms vary
significantly between different crops (not an unexpected conclusion given the
evolutionary distance between monocots, dicots, etc.), or that plants are very sensitive to
variations in the sets of exposure conditions utilized across the various experiments. The
limited availability of evidence to support either hypothesis indicates that, in order to
shed further light on ozone response pathways and jumpstart the development of ozone-

resistant crop cultivars, further experimentation is necessary.
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In order to identify novel proteins which are differentially regulated and/or
differentially expressed in response to elevated tropospheric ozone concentrations, I have
undertaken a series of proteomics-based experiments based upon the methodology
developed and described in Chapter 3. Instead of utilizing Arabidopsis or Brassica
Jjuncea (as described previously) as my system of inquiry, I opted to conduct my
investigation with soybeans, for several reasons. First, although Brassica juncea is a
minor crop plant, neither it nor Arabidopsis are widely cultivated, meaning - in terms of
sheer scale - neither will greatly contribute to food insecurity due to increasing ozone.
Soybeans, on the other hand, are one of the most widely bred crop species, particularly in
regions of the world most at-risk from rising ozone concentrations. In the United States,
the majority of soybean cultivation occurs in the upper Midwest - specifically in Illinois,
Indiana, and Iowa, as well as in Nebraska - which is within the region where ozone
concentrations are predicted to increase the most in the coming decades (USDA-NASS;
Fishman et al., 2010]. In addition to its localization and practical utility, the
physiological response of soybeans to chronic ozone exposure has already been well
characterized. For Arabidopsis, the majority of experiments have utilized acute exposure
regiments which, while damaging, do not impart the same long-term effects as naturally-
occuring chronic exposure cycles [Chen et al., 2009]. In order to maximize the value of
physiological data imparted from chronic exposure experiments with soybeans, it ideally
should be paired with more in-depth analysis of protein oxidative responses.

Accordingly, in Chapter 4, I present the results of redox proteomics experiments
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comparing protein expression and oxidiation profiles in soybean tissue grown in the field

under ambient and elevated chronic ozone concentrations.
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Figure 1. The three major redox couples found in plants. The relationship between
percentage reduction and redox potential for each redox couple is shown.

From Noctor, 2006.
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Figure 5. Key reactions for synthesizing ozone in the stratosphere and troposphere.

From Tang et al., 2011.
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CHAPTER 2

STRUCTURAL BASIS FOR EVOLUTION OF PRODUCT DIVERSITY IN

SOYBEAN GLUTATHIONE BIOSYNTHESIS
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PREFACE

As described in the introduction, homoglutathione (hGSH) is not the only redox-
labile glutathione homolog that is produced in plants. To date, three such tripeptides -
hGSH (in legumes), hydroxymethylglutathione (in grasses), and gamma-
glutamylcysteinylglutamate (in cadmium-stressed maize), have been isolated. Of these
three, glutamylcysteinylglutamate - isolated in the early 1990s - is the most recent
discovery; by the mid-90s both hGSH and hydroxymethylglutathione (hmGSH) had been
under study for nearly a decade [Meuwly et al., 1993]. While the enzyme activity behind
hGSH synthesis was rapidly identified, early hmGSH work focused on its interactions
with alcohol dehydrogenase and reactive oxygen species (ROS) [Macnicol, 1987; Zopes
et al., 1993; Martinez et al.,, 1996]. In 2002, carboxypeptidase Y was identified as
catalyzing the synthesis of hmGSH in vitro; however, it remains unknown if this activity
has any physiological significance [Okumura et al., 2003]. To date, the source of
glutamylcysteinylglutamate remains unclear. Kinetic characterization has confirmed that
the maize glutathione synthetase is not capable of using glutamic acid in place of glycine
[Skipsey et al., 2005]. Thus, it is likely that unidentified enzyme is responsible for
glutamylcysteinylglutamate synthesis. The chemical diversity of the GSH homologs
suggests that the substrate specificity of the glutathione synthetase (GS)-related enzymes
in these plants differs from the canonical GS, but the origin and exact role of these

enzymes remains obscured.
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Structural Basis for Evolution of Product Diversity in Soybean
Glutathione Biosynthesis™
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The redox active peptide glutathione is ubiquitous in nature, but some plants also synthesize glutathione analogs in
response to environmental stresses. To understand the evolution of chemical diversity in the closely related enzymes
homoglutathione synthetase (hGS) and glutathione synthetase (GS), we determined the structures of soybean (Glycine max)
hGS in three states: apoenzyme, bound to y-glutamylcysteine (yEC), and with hGSH, ADP, and a sulfate ion bound in the
active site. Domain movements and rearrangement of active site loops change the structure from an open active site form
(apoenzyme and YEC complex) to a closed active site form (h\GSH-ADP-SO,2~ complex). The structure of hGS shows that
two amino acid differences in an active site loop provide extra space to accommodate the longer 3-Ala moiety of hGSH in
comparison to the glycinyl group of glutathione. Mutation of either Leu-487 or Pro-488 to an Ala improves catalytic
efficiency using Gly, but a double mutation (L487A/P488A) is required to convert the substrate preference of hGS from p-Ala
to Gly. These structures, combined with site-directed mutagenesis, reveal the molecular changes that define the substrate
preference of hGS, explain the product diversity within evolutionarily related GS-like enzymes, and reinforce the critical role
of active site loops in the adaptation and diversification of enzyme function.

INTRODUCTION are generated and the biological functions of GSH analogs in
plants are poorly understood, but these specialized peptides
likely provide for specific responses to various environmental
stresses.

Although the biosynthetic routes for the Ser- and Glu-containing
peptides are unclear, the two-step pathways leading to GSH
and hGSH are similar and better understood at the metabolic

The tripeptide glutathione (GSH) is found in nearly all eukaryotes
and prokaryotes and functions as a key component in an array of
redox-linked cellular systems (Meister, 1995). In plants, GSH
maintains cellular redox homeostasis, detoxifies harmful xeno-
biotics and heavy metals, and can regulate enzyme activity
through glutathionylation (May et al., 1998; Noctor and Foyer, level. In the first reaction of the pathway, Glu-Cys ligase cata-

19,98; Rouhigr et ,al" 2,008)' AIthgugh GSH is' the predomingnt lyzes the formation of y-glutamylcysteine (YEC) from Glu and Cys
thiol-containing tripeptide found in plants, various plant species (Jez et al., 2004; Hicks et al., 2007). The second step in the

prodqce glutgthion.e h°m°'°93 in .whic.h the terminal Gly is synthesis of either GSH or hGSH depends on the specificity of
substituted with a different amino acid (Figure 1A). For example, the synthetase for the terminal substrate. In nearly all organisms,

Iegumesl makg GSH, in addition to produping homog!utathione glutathione synthetase (GS) catalyzes the addition of Gly to YEC
(hGSH), in which B-Ala replaces Gly, in a tissue-specific manner (Meister, 1995; Jez and Cahoon, 2004; Herrera et al., 2007). In

(Klapheck. et ‘al., 1995; Matamgros et al,, 1999). Synthesis of legumes, homoglutathione synthetase (hGS) uses B-Ala instead
hGSH maintains redox balance in legume nodules (Moran et al., of Gly to form hGSH (Matamoros et al., 1999; Frendo et al., 2001;

2000) and is critical for rhizobia-legume nodulation in roots lturbe-Ormaetxe et al., 2002). Although GS and hGS share similar
(Matamoros et al., 2003; Frendo et al., 2005; Loscos et al., 2008). reaction mechanisms based on biochemical and structural

Similarty, many grasses synthesize GSH and hydroxymethylglu- studies, the molecular basis for the difference in substrate

tathione, with Ser inst?ad of Gly, and eXpOS,ure to cadmium specificity is unclear due to no available structural data for any
activates the production of +y-glutamylcysteinylglutamate in plant GS or hGS
maize (Zea mays; Rauser et al., 1986; Klapheck et al., 1994;

! - Based on sequence similarity, both GS and hGS are members
Meuwly et al., 1995). The molecular details of how these peptides

of the ATP-grasp enzyme superfamily (Galperin and Koonin,
1997). All ATP-grasp family members catalyze the ATP-

1 Current address: Cell and Molecular Biology Program, Duke University, dependent ligation ofthe carboxyl group carbon of one substrate

Durham, NC 27710. to the amino- or imino-nitrogen of another substrate. For exam-
2 Address correspondence to jjez@wustl.edu. ple, hGS catalyzes the transfer of the y-phosphate group of ATP
The author responsible for distribution of materials integral to the to the C-terminal carboxylate of yEC to yield an acylphosphate
findings presented in this article in accordance with the policy described intermediate (Figure 1B). Subsequent nucleophilic attack on this

in the Instructions for Authors (www.plantcell.org) is: Joseph M. Jez . . _ . .
(liez@wustl.edu). intermediate by B-Ala leads to formation of hGSH with release

WOnline version contains Web-only data. of ADP and inorganic phosphate (Figure 1B). The structurally
www.plantcell.org/cgi/doi/10.1105/tpc.109.071183 characterized tetrameric GS from Escherichia coli (Yamaguchi
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Figure 1. Diversity in GSH Biosynthesis.

(A) Chemical structures of GSH and related peptides from plants. Colors
indicate the y-glutamyl (blue), cysteinyl (yellow), and variable amino acid
(peach) residues of each molecule.

(B) Overall reaction catalyzed by hGSH synthetase. This scheme shows
the formation of the acylphosphate intermediate resulting from phos-
phorylation of y-glutamylcysteine and the subsequent addition of B-Ala
to yield hGSH. Note that the release of ADP and P; from the reaction is
not shown.

et al.,, 1993) and the dimeric GS from eukaryotes, such as
humans, yeast, and plants (Polekhina et al., 1999; Gogos and
Shapiro, 2002; Jez and Cahoon, 2004), are unrelated in se-
quence but share the common ATP-grasp fold. The GS from
human, yeast, and Arabidopsis thaliana and the hGS from
soybean (Glycine max) are related, with ~40% sequence iden-
tity.

The evolution of GS-related enzymes in plants led to greater
product diversity; however, the molecular basis for this adapta-
tion is unknown. To understand the structural evolution of hGS
from GS, we determined the x-ray crystal structures of soybean
hGS at three separate points during its reaction sequence: (1) the
apoenzyme in an open active site conformation, (2) an open form
with yEC bound, and (3) a closed form with hGSH, ADP, and a
sulfate ion bound in the active site. These structures, combined
with site-directed mutagenesis, reveal the structural features
that define the substrate preference of hGS, explain the product
diversity within evolutionarily related GS-like enzymes, and rein-
force the critical role of active site loops in the adaptation and
diversification of enzyme function.

RESULTS

Protein Expression and Kinetic Analysis of hGS

Soybean hGS was overexpressed in E. coli as a His-tagged
fusion protein and purified using Ni?*-affinity and size-exclusion
chromatographies. Analysis of the protein by SDS-PAGE
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showed a monomeric molecular mass of 50 kD, which agrees
with the predicted mass based on amino acid sequence (see
Supplemental Figure 1 online). The protein eluted from the gel
filtration column as a 102-kD species corresponding to a dimer
(see Supplemental Figure 1 online). Other eukaryotic GS also are
dimeric (Polekhina et al., 1999; Gogos and Shapiro, 2002; Jez
and Cahoon, 2004). Purified recombinant hGS had a specific
activity of 1.2 wmol min—' mg protein~" and required Mg?* for
activity. Steady state kinetic parameters of hGS for yEC, ATP,
and B-Ala were determined (Table 1). In comparison to the GS
from Arabidopsis (Jez and Cahoon, 2004; Herrera et al., 2007),
hGS displayed a turnover rate (V/E;) fivefold lower but with
comparable K, values for both ATP and yEC. In contrast with
GS, which shows no activity if Gly is substituted with B-Ala, Ser,
or Glu (Jez and Cahoon, 2004), hGS exhibited a 700-fold pref-
erence for B-Ala over Gly as the terminal substrate. Estimates of
the turnover rate and K, values of hGS with Gly should be
considered as approximate because higher concentrations of
Gly, and higher amounts of protein were required to observe
activity. hGS did not accept either Ser or Glu as a substrate.

Overall Structure of hGS

Soybean hGS crystallized under similar conditions in either the
absence or presence of ligands (Table 2). The protein adopts
either a closed active site form (bound with hGSH and ADP) or an
open active site form (apoenzyme and yEC bound). In the closed
form, the unit cell contained two crystallographically indepen-
dent molecules with the physiological dimer formed by crystal-
lographic symmetry. For each open-form structure, the
asymmetric unit contains two monomers that represent the
physiologic dimer.

The overall structure of the closed-form hGS homodimer is
shown in Figure 2A. The core structure of each monomer is a
triangular o/B-fold that is ~60 A x60Ain length and width, in
which binding of hGSH and ADP (Figure 2B) defines features of
the active site. A smaller lid domain (residues 366 to 427) formed
by an antiparallel B-sheet, two a-helices, and a Gly-rich loop
(residues 390 to 398) undergoes major conformational changes

Table 1. Comparison of Kinetic Parameters for Arabidopsis GS and
Soybean hGS

Gss=
VIE, (s7") Km (M) Keat/Km (M~" s77)

YEC 122 £ 0.3 39=*5 312,800
ATP 121 £ 0.3 57 =10 212,300
Gly 12.6 + 0.5 1,510 + 88 8,340
BAla - -

hGs
YEC 25+ 0.1 44+ 6 56,820
ATP 1.7 £ 01 23 =4 73,910
Gly <0.1 >100 mM 1
BAla 2.4 +041 3,390 + 100 708

Values are expressed as a mean =+ SE forn = 3.
2Kinetic parameters for Arabidopsis GS are from Jez and Cahoon (2004)
and are provided here for comparison to soybean hGS.
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Table 2. Crystallographic Statistics

Crystal Open

Open + yYEC Closed + hGSH + ADP

P24
a=6496A b=28055A,
¢ =90.00 A; a = y=90.0°, B = 96.9°

Space Group
Cell dimensions

Data Collection

Wavelength (A) 0.979
Resolution range (A) (highest 28.4-2.0
shell resolution) (2.05-2.0)

Reflections (total/unique)
Completeness (highest shell)
<l/o> (highest shell)

Rsym® (highest shell)

Model and Refinement

132,097/59,099
94.8% (86.8%)
13.7 (3.4)

6.9% (37.9%)

Reryst™/Riree® 19.8/26.9
No. of protein atoms 7108

No. of water molecules 472

No. of ligand atoms -

r.m.s. deviation, bond lengths (A) 0.021
r.m.s. deviation, bond angles ()  2.03
Average B-factor (A?) 26.0

Stereochemistry: most favored,
allowed, generously allowed

88.4, 9.3, 2.3%

P2,
a=64.88A, b=8095A, c=8912A;
o =7y =90.0°p = 95.6°

P3,
a=b=1157A,c=101.8 A;
a=f=900°y=120°

0.979 0.979
19.8-2.1 29.3-1.9
@.16-2.1) (1.95-1.9)

191,449/51,043
96.5% (92.3%)
11.4 (2.4)

10.8% (46.7%)

445,529/116,705
97.2% (93.1%)
17.4 (2.9)

5.1% (45.8%)

20.7/28.8 19.7/25.0
6992 7424

290 4

48 152
0.028 0.047
2.55 3.46

29.3 36.1

86.2,12.2, 1.6% 91.1,8.2,0.7%

ARsym = 3|Ih - <In>|/2ln, where <l> is the average intensity over symmetry.
bRcrys( = 3|F, - <Fs>|/2F,, where summation is over the data used for refinement.
“Riree is defined the same as Rcys: but was calculated using 5% of data excluded from refinement.

between the closed and open active site structures (Figures 3B
and 3C). In addition, a second loop (residues 479 to 491) forms
part of the active site. For consistency with the human and yeast
GS structures (Polekhina et al., 1999; Gogos and Shapiro, 2002),
this second loop is referred to as the Ala-rich loop, even though
the corresponding Ala residues are replaced by a Leu and a Pro
in hGS. Dimerization of hGS occurs through a pseudo-twofold
axis between two helices (a2 and «9) and an antiparallel 3-sheet
(B1 and B2) of each monomer. The closed-form structure of
soybean hGS is similar to those of other ATP-grasp family
proteins, such as human GS (root mean square [r.m.s.] deviation
of 1.6 A2 for 459 Cu atoms) (Figure 2C) and yeast GS (r.m.s.
deviation of 2.2 A2 for 448 Ca atoms). The hGS structure is also
related to the synthetase domains of the bifunctional glutathio-
nylspermidine synthetase/amidase from E. coli (r.m.s. deviation
of 3.8 /3\2; Pai et al., 2006) and trypanothione synthetase/amidase
from Leishmania (r.m.s. deviation of 4.0 Az, Fyfe et al., 2008).

Domain Movements: Open and Closed Active Site Forms

The apoenzyme and yEC-bound structures are nearly identical,
with an r.m.s. deviation of 0.5 A2. Disordered regions include
most of the Gly-rich loop (residues 391 to 396) and other portions
of the lid domain (residues 410 to 420) in each monomer of the
dimer. For both open form structures, the Ala-rich loop is ordered
in one monomer but disordered (residues 480 to 489) in the
second monomer. In the open form, both the lid domain and Ala-
rich loop are positioned away from the active site to reveal the
binding sites for YEC and ATP and allow for substrate binding
(Figures 3A and 3B).

In the closed form, the lid domain, including the Gly-rich loop,
and the Ala-rich loop undergo major rearrangements compared
with the open form (Figures 3A and 3C). With the exception of
residues 410 to 416, the lid domain becomes ordered, with
residues in the Gly-rich loop providing multiple interactions with
the nucleotide. Likewise, the Ala-rich loop shifts to position
residues for contact with both ADP and hGSH. As noted for the
bacterial and eukaryotic GS (Polekhina et al., 1999; Gogos and
Shapiro, 2002; Jez and Cahoon, 2004), nucleotide binding trig-
gers movement of the lid domain and Ala-rich loop through
multiple protein-ligand interactions. Based on the proposed
reaction mechanism for GS (Herrera et al., 2007), enclosure of
the active site likely prevents hydrolysis of the reactive acyl-
phosphate intermediate (Figure 1B).

vy-Glutamylcysteine Binding Site in the Open Form

In the reactions catalyzed by hGS and GS, yEC is a common
substrate, and its binding site is highly conserved in both
sequence and structure between hGS and the GS from human,
yeast, and Arabidopsis. In the yEC binding site of hGS, Ser-176,
Arg-295, Glu-241, and GIn-238 interact with the glutamyl portion
of the molecule (Figure 4A). Of these, the charge—charge inter-
action between the Arg and the carboxylate group is critical for
vEC binding in GS (Herrera et al., 2007), suggesting an analogous
role for this interaction in hGS. Similar to interactions observed in
the structure of yeast GS complexed with yEC and an ATP
analog (Gogos and Shapiro, 2002), Tyr-298 forms a hydrogen
bond to the carbonyl of the glutamyl group and there is a
bidentate charge-charge interaction between Arg-153 and the
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Figure 2. Structure of hGS.

(A) Ribbon diagram of the hGS dimer. Each monomer is colored either
gold or blue. Secondary structure elements that form the dimer interface
are labeled. The locations of the lid domain (dark blue), Gly-rich loop
(cyan), and the Ala-rich loop (red) are highlighted in the gold monomer.
The positions of bound ADP (cyan), sulfate (red), and hGSH (dark blue)
are highlighted in the blue monomer with corresponding ligands colored
gray in the gold monomer. The N- and C-terminal residues of each
monomer observed in the electron density maps are indicated.

(B) Sample electron density. The 2F,-F; omit map (1.0 o) for ADP bound
in the active site of the closed form.

(C) Structural overlay of human GS (tan) and soybean hGS (white). The
ATP-grasp structural motifs in GS and hGS are colored magenta and
cyan, respectively.

carboxylate of the cysteinyl moiety (Figure 4A). Nearly all of these
interactions are conserved when hGSH is bound in the site.

Active Site and Ligand Binding in the Closed Form

To define the active site, hGS was cocrystallized in the
presence of reaction products ADP and hGSH (Figure 4B). In
addition to the reaction products, a sulfate ion and three mag-
nesium ions were identified in the active site of the closed form
structure. Clear tetragonal density for the sulfate, which mimics
binding of the inorganic phosphate product, was observed
(Polekhina et al., 1999). Based on the positional similarity with
the yeast and human GS structures, coordination, and strong
electron density (40), three atoms were modeled as Mg?*.

As with the yEC binding site, the residues forming the nucle-
otide binding site between the lid domain and Ala-rich loop of
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hGS (Figures 3B and 4B) are structurally conserved with those in
the structures of human and yeast GS (Polekhina et al., 1999;
Gogos and Shapiro, 2002). The adenosine ring forms main-chain
contacts with lle-427 and GIn-425 and a hydrogen bond with
Lys-388. The ribose hydroxyl groups interact with Lys-477 and
Glu-450, respectively. A series of polar interactions occur be-
tween the diphosphate tail and Lys-334, Asn-397, and two Mg+
ions. The a- and B-phosphate groups of the nucleotide and Glu-
169 coordinate one Mg?* with a second ion bound by the
B-phosphate group, the sulfate, Glu-169, Asn-171, and Glu-
392. Based on mechanistic studies of Arabidopsis GS, the
magnesium ions and their coordinating residues play critical
roles in stabilizing charges during catalysis (Herrera et al., 2007).
The functional role of the third Mg?* is unclear, as it does not
interact with any of the bound ligands. This ion is coordinated by
interactions with Glu-392 and main-chain contacts with Met-170
and Gly-332 that appear to help orient residues coordinated to
the other Mg2+ ions.

Aa-rich
Loop

Figure 3. Domain and Loop Movements in hGS.

(A) Ribbon diagram comparing the open and closed active site forms.
The active site regions of the YEC bound open form and the closed form
are aligned. Stick drawings show yEC (gold) in the open form and ADP
(green) and hGSH (black) in the closed form. The positions of the lid
domain, including the Gly-rich loop, and the Ala-rich loop in the closed
form are shown in blue and rose, respectively. The locations of the lid
domain and Ala-rich loop in the open form are shown in lighter blue and
red, respectively. In the open form, the Gly-rich loop region is disordered.
(B) Surface rendering of the open form bound with yEC. The lid domain
(blue) and Ala-rich loop (rose) leave the nucleotide binding site open.
(C) Surface rendering of the closed form bound with ADP and hGSH. The
lid domain (blue) and Ala-rich loop (rose) enclose the active site.
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E241

Figure 4. Substrate Binding Sites in the Open and Closed Forms of hGS.

(A) The yEC binding site. Side chains of residues that form hydrogen bonds (dotted lines) with the bound ligand are shown. Atom types are indicated by

colors: red = oxygen; blue = nitrogen; yellow = sulfur.

(B) The active site of hGS. The positions of hGSH (rose), ADP (gray), sulfate (yellow), and magnesium ions (green) and the side chains of interacting
residues are shown. A portion of the Ala-rich loop is shown as a tube with the residues that vary between hGS and GS colored. For clarity, main chain
and water-mediated contacts are not shown. Residues in the nucleotide binding site, the tripeptide binding site, and the Ala-rich loop are labeled white
on gray, black on rose, and white on rose, respectively. Alternate conformers for Ser-176 are shown. Atom types are indicated by colors: red = oxygen;

blue = nitrogen; yellow = sulfur; orange = phosphorus.

Within the peptide binding site, all the interactions of the
glutamyl portion of hGSH are identical to those observed in
the yEC complex with minor differences in interactions with the
cysteinyl group (Figure 4). Ser-176 is observed in alternate
conformations. The side chains of Tyr-298 and Arg-153 are
repositioned in the closed form complex. Tyr-298 rotates away
from the tripeptide, and Arg-153 now interacts with the cysteinyl
carbonyl group and the sulfate. The Arg is essential for catalyzing
formation of the acylphosphate intermediate in the first part of
the catalytic mechanism and in guiding nucleophilic attack in the
second half of the reaction to yield the tripeptide product (Herrera
etal., 2007). The carboxylate of the 3-Ala moiety of hGSH forms a
hydrogen bond with the backbone amide of Val-486 and an ionic
interaction with the guanido group of Arg-475. Additional van der
Waals contacts between the B-Ala-derived portion of hGSH are
made with Leu-487 and Pro-488 in the Ala-rich loop. Interest-
ingly, these two residues differ in hGS compared with GS.

Determinants of Substrate Specificity and Product Diversity

In the active site of hGS, Leu-487 and Pro-488 are the only
residues that differ from the characterized eukaryotic GS se-
quences (Figure 5). In GS, these residues are sequential Ala
residues, which help give the Ala-rich loop its name. Structural
comparison of hGS and human GS shows that the Ala-rich loop
in hGS is shifted ~3 A away from the corresponding position of
the loop in the GS structure to accommodate the larger B-Ala
moiety (Figure 5).

To test the functional significance of Leu-487 and Pro-488 in
determining the specificity of hGS for B-Ala over Gly, we gener-
ated Ala substitutions at each position (L487A and P488A) and
the corresponding double mutant (L487A/P488A). Each mutant
protein was expressed, purified, and assayed to determined
steady state kinetic parameters for 3-Ala and Gly as substrates
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(Table 3). Wild-type hGS displays a specificity ratio 708:1 in
preference of B-Ala. Each point mutation altered substrate
preference to different degrees. Although the L487A mutant
shows a 3.4-fold reduction in catalytic efficiency with B-Alaand a
46-fold improvement using Gly as a substrate, this enzyme still
prefers the hGS substrate by nearly fivefold. The P488A mutation
yields an enzyme with almost equal preference for either sub-
strate, resulting from a 274-fold increase in efficiency with Gly
and a minor 2.3-fold reduction in kca/Km With B-Ala. The L487A/
P488A mutant retains activity with 3-Ala at a 10-fold reduction
compared with the hGS, but this mutant is as effective with Gly as
the parent enzyme is with B-Ala. The combination of substitu-
tions in the double L487A/P488A mutant converts hGS into a GS
with a 950-fold increase in kcat/Km with Gly.

B

GmhGS EGGV. - GFGVVD
AtGS EGGVAAGFGVLD
HsGS DGGVAAGVAVLD
ScGS EGGVAAGFGCLD

Figure 5. Comparison of the Ala-Rich Loops in hGS and GS.

(A) The overlaid structures of soybean hGS (gold) and human GS (rose)
show the similarity of hGSH (gold) and GSH (rose) binding in each
structure. The Ala-rich loop of each structure is shown with the side
chains of the two amino acid differences between the structures shown.
(B) Sequence comparison of the Ala-rich loops of soybean hGS
(GMhGS), Arabidopsis GS (AtGS), human GS (HsGS), and yeast GS
(ScGS). The amino acid differences are highlighted using the color
scheme from (A).



Table 3. Substrate Specificity of Wild-type and Mutant Soybean hGS

B-Ala
Koa/Km
VIE; (s7) Kmn (MM) M-1s-1)
hGS 2.4+ 041 3.4 + 041 708
L487A 0.8 + 0.1 3.8 £ 0.6 211
P488A 25+0.2 8.0+14 313
LP/AA2 1.9 +0.2 248 £ 23 7
Gly
hGS <0.1 >100 1
L487A 0.3 = 0.1 6.5 = 0.5 46
P488A 1.4 = 0.1 51+ 04 274
LP/AA2 21+03 22 *+041 950

Values are expressed as a mean = SE for n = 3.
aDenotes the corresponding double mutant (L487A/P488A).

DISCUSSION

Functional diversity across enzyme families with shared three-
dimensional structures and reaction chemistry is a hallmark in
the evolution of metabolic pathways. Nearly all eukaryotes
and prokaryotes synthesize the multifunctional peptide GSH
(Meister, 1995); however, some plants also synthesize GSH
analogs with substitutions of the terminal Gly (Figure 1A) (Rauser
et al., 1986; Klapheck et al., 1994; Klapheck et al., 1995; Meuwly
etal., 1995; Matamoros et al., 1999). In particular, many legumes
produce hGSH for root nodulation (Matamoros et al., 2003;
Frendo et al., 2005; Loscos et al., 2008). As hGS likely evolved
from GS, we examined the structural basis for adaptation of
product diversity in hGS. Crystallographic analysis of soybean
hGS provides insight on structural changes during the catalytic
cycle of both hGS and GS and, combined with site-directed
mutagenesis, defines active site differences that govern sub-
strate preference. This work reinforces the critical role of flexible
loops in the adaptation and diversification of enzyme function.
Catalysis in hGS and GS requires the orchestration of binding
multiple substrates and the rearrangement of active site features,
including the lid domain, Gly-rich loop, and Ala-rich loop. To-
gether with studies of the kinetic and chemical mechanisms of
GS (Jez and Cahoon, 2004; Herrera et al., 2007), crystal struc-
tures of hGS (Figures 2 and 3) and GS (Polekhina et al., 1999;
Gogos and Shapiro, 2002) now provide views of the progression
through the catalytic cycle from apoenzyme (hGS and yeast GS)
to first substrate complex (hGS-yEC complex) to second sub-
strate complex (yeast GS in complex with yEC and an ATP
analog) to product complex (hGS and human GS). Kinetic
analysis of Arabidopsis GS indicates a mechanism in which
vEC is the preferred first substrate followed by ATP (Jez and
Cahoon, 2004). Within the active site, hGS shares common
structural and chemical features with GS. In both enzymes, the
YEC binding site is structurally static, whereas the ATP and
B-Ala/Gly binding sites are dynamic. The structure of the
hGS+yEC complex in the open active site conformation (Figures
3B and 4A) provides direct evidence for formation of this com-
plex in agreement with the predicted mechanism for GS and
hGS. Binding of ATP, which makes extensive contacts with
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residues in the lid domain, Gly-rich loop, and Ala-rich loop
(Figures 3C and 4B), likely triggers transformation to the closed
active site structure (Gogos and Shapiro, 2002; Gunasekaran
et al., 2003). The closed active site conformation protects the
reactive acylphosphate reaction intermediate from hydrolysis
(Figure 1B) and orders the Ala-rich loop to form the binding site
for either Gly or B-Ala (Figure 4B). Functionally, these conforma-
tional changes provide a cooperative linkage through the reac-
tion cycle as binding of one substrate enhances binding of
the next substrate, as suggested by the interaction factors in
the kinetic mechanism (Jez and Cahoon, 2004). Structural/
functional analysis of hGS and GS also suggests that the dy-
namic nature of the active site is important for catalysis and
substrate recognition.

The structural conservation between the active sites of hGS and
GS implies a shared reaction mechanism (Herrera et al., 2007). In
the first half of the hGS reaction, formation of the acylphosphate
intermediate occurs by transfer of the y-phosphate of ATP to
y-glutamylcysteine. For this step, the Mg?* ions in the active site
orient the phosphate group and Arg-153 likely stabilizes the
transition state. In the second half of the reaction, nucleophilic
attack of the 3-Ala amino group on the acylphosphate intermedi-
ate releases phosphate and yields hGSH. Positioning of Arg-153
and the Mg?*+ bound by Glu-169 and Asn-171 would stabilize the
transition state with the Ala-rich loop and Arg-475 orienting B-Ala
for attack on the reaction intermediate to yield hGSH.

The major difference between hGS and GS is substrate
specificity for B-Ala and Gly, respectively. In each enzyme,
residues in the Ala-rich loop contact the terminal residue of the
tripeptide product (Figure 5). A Leu and Pro in the hGS from
soybean and other legumes replaces the invariant double Ala
sequence of the eukaryotic GS (Moran et al., 2000; Frendo et al.,
2001; lturbe-Ormaetxe et al., 2002; Skipsey et al., 2005). Struc-
turally, the Ala-rich loop of hGS shifts relative to the same loop in
GS to allow space for binding of the larger hGSH product and
B-Ala substrate (Figure 5A). Site-directed mutagenesis of Leu-
487 and Pro-488 demonstrates that changes at both positions are
necessary to convert hGS (koa/KmP22 =708 M~ ' s~ 1) to a GS with
comparable catalytic efficiency Kca/Km3Y =950 M~ s~ ") (Table 3).
Interestingly, the L487A/P488A mutant retains limited activity
with B-Ala (Keat/KmP-2'2 = 77 M~1 s~1). This suggests that addi-
tional changes in the Ala-rich loop, or more subtle allosteric
mutations, may be required to completely shift substrate pref-
erence and product specificity. The mobility of active site fea-
tures in both hGS and GS (i.e., the lid domain and Ala-rich loop)
likely plays a role in determining the rate of catalysis and for
allowing evolutionary changes in these enzymes.

In both hGS and GS, structuring of the lid domain and Ala-rich
loop appears linked to binding of ATP and the terminal substrate
(i.e., B-Ala or Gly). Although the rate constants for each step in
the catalytic cycle of either enzyme are unknown, the crystal
structures of these enzymes suggest that dynamic active site
structures may limit catalysis and explain the different turnover
rates of GS (keat ~12 s77) and hGS (keat ~2 s~ ') (Table 1)
(Gunasekaran et al., 2003; Tokuriki and Tawfik, 2009). Based on
these results, it is possible that the nucleophilic attack of the
terminal substrate is a limiting step in the reaction mechanism.
Presumably, GS is a highly evolved enzyme in eukaryotes
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because of the central role that glutathione plays in regulating
intracellular redox state (Meister, 1995). By contrast, hGS likely
evolved by gene duplication and subsequent mutation (Tokuriki
and Tawfik, 2009), and additional sequence changes in the lid
domain and/or Ala-rich loop may be needed to optimize inter-
actions with substrates and the movement of active site features.

Active site loops are central in the evolution of enzyme func-
tionality (Todd et al., 1999; Penning and Jez, 2001; Gunasekaran
et al., 2003; Tokuriki and Tawfik, 2009). The flexible and mutable
nature of loops allows for the sampling of the new sequences and
localized structures that generate shifts in substrate specificity or
new catalytic activity. Frendo et al. (2001) originally proposed
that legumes evolved hGS from gene duplication of GS after the
divergence of the order Fabales, which includes the legumes,
from other flowering plants. Our results suggest a molecular
mechanism underpinning the evolution of hGS from GS. Al-
though hGS retains the YEC and ATP binding sites and maintains
the positioning of catalytically essential Arg residues (Arg-153
and Arg-475) and key Mg?* ions, two changes in the Ala-rich loop
are sufficient to alter substrate specificity.

While this work helps illuminate the molecular basis for hGS
evolution from an ancestral GS, many questions remain as to the
role hGSH and other GS analogs in plants. Although the interplay
between genomes, protein function, and a plant’s environment
shapes the evolution of new metabolism, it is unclear why
legumes required evolution of hGS and hGSH production in
nodules. Aside from the shared localization of hGS in nodules
(Moran et al., 2000; Frendo et al., 2001; lturbe-Ormaetxe et al.,
2002; Skipsey et al., 2005), there appears to be no correlation
between the presence of hGS in a legume species and the
position of that species in the legume phylogeny (Wojciechowski
et al., 2004). Nonetheless, given the conservation of hGS in the
legumes examined so far, it seems likely that environmental
factors, such as nodulation and/or habitat, contributed to the
diversification of GSH metabolism. In addition, as suggested by
the presence of Ser- and Glu-containing GSH analogs in other
plants (Rauser et al., 1986; Klapheck et al., 1994; Meuwly et al.,
1995), the adaptation of GSH biosynthesis for production of
specialized tripeptides in response to environmental stresses
may be more widespread. Continued genomic and biochemical
explorations of legumes, and other plants, promise new insights
on how these plants evolved more specialized environmental
response systems.

METHODS

Materials

All oligonucleotides were synthesized by Integrated DNA Technologies.
Ni2*-nitrilotriacetic acid (NTA) was from Qiagen. Benzamidine-sepharose
and the HiLoad 26/60 Superdex-200 FPLC column were purchased from
GE/Amersham Health Sciences. The QuikChange site-directed mutagen-
esis kit was from Stratagene. hGSH was from Bachem. All other reagents
were of ACS grade or better and were purchased from Sigma-Aldrich.

Protein Expression, Purification, and Mutagenesis

Soybean (Glycine max) hGS was PCR-amplified from a soybean seed
cDNA library using 5'-dTTTCCATGGCATGGCTCAACCTTTGACC-
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ACC-3' as the forward primer (the Ncol site is underlined, and the start
codon is in bold) and 5'-dTTTGCGGCCGCTCAAGTTAGGTATACAG-
TATCTACCAC-3' as the reverse primer (the Notl site is underlined, and
the stop codon is in bold). The resulting PCR product was digested with
Ncol and Notl and then subcloned into pHIS8 (Jez et al., 2000) for
expression of an N-terminally octahistidine-tagged protein. Automated
nucleotide sequencing confirmed the fidelity of the bacterial expression
construct (Washington University Sequencing Facility).

Transformed Escherichia coli BL21(DE3) cells were grown at 37°C in
Terrific broth containing 50 g mL~" kanamycin until Aggg ~0.8. After
induction with 1 mM isopropy! 1-thio-B-D-galactopyranoside, the cultures
were grown at 20°C for 4 to 8 h. Cells were pelleted by centrifugation
(10,000g; 10 min) and resuspended in 50 mM Tris-HCI, pH 8.0, 500 mM
NaCl, 20 mM imidazole, 5 mM MgCl,, 10% (v/v) glycerol, and 1% (v/v)
Tween 20. Sonication was used to lyse cells. Following centrifugation
(45,000g; 45 min), the supernatant was passed through a Ni2*-NTA
column. The column was then washed with the same buffer minus Tween
20. His-tagged protein was eluted with 50 mM Tris-HCI, pH 8.0, 500 mM
NaCl, 250 mM imidazole, 5 mM MgCl,, and 10% (v/v) glycerol. Incubation
with thrombin (1/1000th the amount of hGS by weight) during overnight
dialysis at 4°C against wash buffer removed the His tag. Dialyzed protein
was reloaded on a mixed benzamidine-sepharose/Ni2*-NTA column. The
flow-through of this step was loaded onto a HiLoad 26/60 Superdex-200
FPLC column equilibrated with 256 mM HEPES, pH 7.5, 5 mM MgCl,, and
100 mM NaCl. Fractions containing purified protein were pooled, con-
centrated to 10 to 12 mg mL~", and stored at —80°C. Protein concen-
tration was determined by the Bradford method (Protein Assay; Bio-Rad)
with BSA as standard.

Site-directed mutants of hGS (L487A, P488A, and L487A/P488A) were
generated using oligonucleotides containing the desired mutations (see
Supplemental Table 1 online) and the QuikChange PCR method with the
pHIS8-hGS vector as template. Introduction of the desired mutation was
confirmed by sequencing of the constructs. Expression and purification
of each mutant protein was performed as described for the wild-type
protein.

Enzyme Assays

The activity of hGS was determined spectrophotometrically at 25°C by
measuring the rate of formation of ADP using a coupled assay with
pyruvate kinase and lactate dehydrogenase. A standard reaction mixture
(0.5 mL) contained 100 mM HEPES, pH 7.5, 150 mM NaCl, 20 mM MgCl,,
2.5 mM yEC, 10 mM B-Ala (or Gly), 2.5 mM disodium ATP, 2 mM sodium
phosphoenolpyruvate, 0.2 mM NADH, 5 units of type Il rabbit muscle
pyruvate kinase, and 10 units of type Il rabbit muscle lactate dehydro-
genase. The rate of decrease in Azqo (X = 6270 M~ cm~") was observed
using a Beckman DU800 UV/Vis spectrophotometer. Steady state kinetic
parameters were determined by initial velocity experiments in which
concentrations for two substrates were fixed at saturating levels and the
third substrate concentration varied (0.2 to 10 times the K, value).
Untransformed data was fit to the Michaelis-Menten equation, v = k¢t [S)/
(Km + [S]), using Kaleidagraph (Synergy Software).

Protein Crystallization and Structure Determination

Crystals of hGS were obtained by the vapor diffusion method in 4-pL
hanging drops of a 1:1 mixture of protein and crystallization buffer (20%
PEG3000, 0.1 M MOPSO, pH 7, and 0.2 M MgSOQ,) at 4°C over a 0.5-mL
reservoir. For cocrystallization with ligands, either 5 mM yEC or 2.5 mM
ADP and 5 mM hGSH was added to the protein before crystallization. All
crystals were stabilized in cryoprotectant (crystallization solution plus
ligands with 15% [v/v] glycerol) before flash freezing in liquid nitrogen.
Data collection (100K) was performed at the Stanford Synchrotron



Radiation Facility (SSRL) on monochromatic beamline 9-1. Diffraction
data was integrated and reduced using XDS (Kabsch, 1993) and scaled
with XSCALE (Kabsch, 1993). The structure of closed-form hGS in
complex with ADP and hGSH was solved by molecular replacement
performed with PHASER (McCoy et al., 2007) using a homology model of
the soybean enzyme generated with SWISS-MODEL (Kopp and
Schwede, 2003) from the structure of human GS (PDB: 2HGS; Polekhina
et al., 1999). Model building was performed in O (Jones et al., 1993), and
all refinements were performed with REFMAC (Murshudov et al., 1997).
Waters were added using ARP (Lamzin and Wilson, 1993). Quality of the
model was evaluated using PROCHECK (Laskowski et al., 1993). Struc-
tures of the open form hGS and open form hGS in complex with YEC were
solved by molecular replacement using the final closed form hGS struc-
ture. Modeling building, refinement, and assessment were performed as
above. Crystal parameters, data collection statistics, and refinement
statistics for the three structures are summarized in Table 2. Atomic
coordinates and structure factors have been deposited in the Protein
Data Bank (www.rcsb.org). All structural figures were generated with
PyMol (http://www.pymol.org).

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL
database under the following accession numbers: soybean hGS (acces-
sion CAB91078), human GS (PDB: 2HGS; accession NP_000169), Sac-
charomyces cerevisiae GS (accession CAA74136), and Arabidopsis
thaliana GS (U22359). Coordinates and structure factors for the soybean
hGS apoenzyme (PDB: 3KAJ), y-glutamylcysteine complex (PDB: 3KAK),
and the hGSH<ADP complex (PDB: 3KAL) have been deposited in the
RCSB Protein Data Bank.

Supplemental Data

The following materials are available in the online version of this article.
Supplemental Figure 1. Protein Expression and Purification Analysis.

Supplemental Table 1. Oligonucleotide Primers Used for Site-
Directed Mutagenesis.
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Supplemental Figure 1. Protein expression and purification analysis. Size-exclusion chromatography of
GmhGS. Purified hGS was chromatographed on a Superdex-200 26/60 FPLC column with 25 mM Hepes (pH
7.5), 5 mM MgCl,, and 100 mM NaCl. The inset graph shows the molecular weight calibration of the column.
The following standards were used: ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin
(44 kDa), carbonic anhydrase (24 kDa), ribonuclease A (13.7 kDa), and aprofinin (6.5 kDa). The arrow
represents the elution volume of soybean hGS. The inset SDS-PAGE shows the purified protein stained with
Coomassie Blue. Arrows correspond to molecular weight markers as indicated.

Supplemental Table 1. Oligonucleotide primers used for site-directed mutagenesis.

L487A 5'-dCTTATGAAGGAGGAGTTGCGCCTGGTTTTGGAGTGGTAG-3'
P488A 5'-dCTTATGAAGGAGGAGTTTTGGCTGGTTTTGGAGTGGTAG-3'
L487A/P488A 5-dCTTATGAAGGAGGAGTTGCGGCTGGTTTTGGAGTGGTAG-3'

For PCR-based mutagenesis, complementary sense and antisense primers were used. The table only shows the
sense sequence. Codons encoding the mutations are in bold type.

Copyright American Society of Plant Biologists.
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CHAPTER 3

REDOX-REGULATORY MECHANISMS INDUCED BY OXIDATIVE STRESS IN

BRASSICA JUNCEA ROOTS MONITORED BY 2-DE PROTEOMICS
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PREFACE

In this chapter, I describe the application of an NEM and [AF-based thiol labeling
strategy to protein extracts from B. juncea roots that had been treated with either ImM
H>02 or 50um BSO. The framework for this series of experiments arose from a 2008
NSF grant application submitted by Dr. Joseph Jez and Dr. Leslie Hicks; that grant was in
turn based upon earlier experiments which determined that GCL utilizes intramolecular
disulfide bonds as a means of redox regulation [Jez et al., 2004; Hicks et al., 2007].
Because at the time only a handful of proteins (only one of which was from plants) which
utilized thiol-based regulatory switches had been identified, the grant, among other
things, proposed the use of a 2D-SDS-PAGE/LC-MS/MS methodology for identifying
additional candidate proteins. The methodology itself was not entirely new - variants had
previously been used for identifying thiol-containing proteins in mammals, yeast, and
bacteria [Yang et al., 2007; Le Moan et al., 2006; Dosanjh et al., 2005]. However, in
plants to date use of the technique had been much more limited, and primarily focused on
the identification of novel thioredoxin targets [Yano et al., 2002; Lee et al., 2004; Yano
and Kuroda, 2005]. Instead of using thioredoxin to reduce protein extracts, in our
approach we opted to use the general reductant DTT. The advantage of this choice was
that we would be able to identify target proteins that are reduced by other “doxins”
besides thioredoxin, or proteins for which the physiological reductant is unknown.

Because dataset briefs published in the journal Proteomics are limited to ~2500

words, the body of this chapter contains only an abbreviated description of the protein
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extraction and labeling methodology employed. Thus, I have included a more detailed

version at the end of the chapter.

Author Contributions: JMJ and LMH designed research; AG performed research; SA,

AG, JMJ, and LMH analyzed data; AG, JMJ, LHM, and SA wrote the paper.
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ROS, including hydrogen peroxide (H,0,), can serve as cellular signaling molecules
following oxidative stress. Analysis of the redox state of proteins in Brassica juncea roots by
2-DE proteomics following treatment with either exogenous H,O, or buthionine sulfoximine,
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which depletes glutathione to cause accumulation of endogenous H,0,, led to the identifi-

cation of different sets of proteins. These data suggest that exogenous and endogenous

oxidative stresses trigger specialized responses.
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Plant proteomics

ROS produced endogenously in response to environmental
changes serve as signaling molecules in communications
within and between cells [1]. Among ROS, hydrogen
peroxide (H,0,) causes reversible and irreversible redox
modifications to proteins during oxidative stress [2, 3].
Although many H,0,-induced protein modifications result
in irreversible oxidative damage, reversible modification of
cysteines (i.e., oxidation of thiols to disulfide bonds, gluta-
thionylation, or S-nitrosylation) is an important mechanism
for regulating protein function. To balance between dele-
terious effects and oxidative signaling, intracellular H,0,
levels are controlled by mechanisms, such as the gluta-
thione-ascorbate system, that maintain concentrations of
key reducing molecules [1]. As a consequence, H,0, has
long been used to elicit oxidative stress responses to study
redox mechanisms and provide insight into the molecular
physiology of adaptive responses.
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In this study, we examine the changes in the redox
proteome of Brassica juncea (Indian mustard) roots using
specific labeling of cysteines by 5-iodoacetamidofluorescein
(IAF) in response to exogenous and endogenous H,0,-
induced oxidative stresses. Application of H,0, to plant roots
provides an exogenous stress and application of buthionine
sulfoximine (BSO), which depletes glutathione, produces an
accumulation of endogenous H,0, [4]. Largely different sets
of proteins regulated by H,0, were identified for each treat-
ment at the redox and abundance levels. Interestingly,
proteins involved in similar biological processes, such as the
brassinosteroid signaling pathway, were differentially regu-
lated by each H,0, source in B. juncea roots.

Wild-type B. juncea seeds were germinated in a growth
chamber at 22°C, 200 pmol/m? light intensity, 50% relative
humidity, during a 16-h light/8-h dark cycle. After 3wk,
seedlings were transplanted to 3.8 L pots in the greenhouse
(same light/dark cycle). After 6 wk, plants were treated with
2 L of distilled water, 1 mM H,0,, or 50 uM BSO, positioned
to allow rapid draining, and after 1h treated again with 1L
of solution. Following draining (2h), roots were washed to
remove soil, flash-frozen in liquid nitrogen, and stored at
—80°C. Concentrations of H,0, and BSO were chosen

*These authors have contributed equally to this study.
Colour Online: See the article online to view Fig. 1 in colour.
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based on a previous experiment, showing that these
compounds alter oxidation state of a redox-sensitive protein
in planta [5].

For each treatment, three biological replicate samples
from three different plants were obtained for processing.
Root tissue (~800mg FW) was ground and suspended
in extraction buffer (100mM Tris-HCl, pH 8.0; 100 mM
N-ethylmaleimide (NEM); 1% CHAPS; 1% protease inhi-
bitor cocktail (Sigma, St. Louis, USA) to 200mg/mL
for protein extraction and alkylation of free sulfhydryl
groups (Fig. 1, step 1). Samples were centrifuged and the
soluble protein fraction was removed, precipitated with
methanol 3 x, resuspended in 150 pL of reduction buffer
(S0mM Tris-HCI, pH 8.0, 7M urea, 2M thiourea, 50 mM
DTT), and incubated for 15min (25°C) to reduce disulfide
bonds (Fig. 1, step 2). Proteins were next precipitated with
methanol 3 x, resuspended in 150 uL of labeling buffer
(40mM HEPES, pH 7.5; 50mM NaCl; 200 uM IAF), and
incubated for 10min (25°C) for the labeling reaction
(Fig. 1, step 3). Proteins were precipitated with methanol
3x and resuspended in destreak rehydration buffer
(GE Healthcare, Waukesha, WI, USA). Protein concentra-
tions were determined by CBX protein assay (G-Biosciences,
St. Louis, USA).

Extracted protein (200 ug) was loaded onto pH strips 4-7
(Bio-Rad, Hercules, CA, USA) and 2-DE performed as
described previously [6]. Gels were imaged with a Typhoon
9410 (GE Healthcare) to detect IAF-labeled proteins (hex =
488nm and A, = 526nm). Gels were then stained with
Sypro Ruby and imaged to detect total proteins (Aex =457
nm and Aen=610nm). Image analysis, including gel
alignment, spot averaging and normalization, and multi-
variate statistics, employed SameSpots software (Nonlinear
Dynamics, Durham, NC, USA) to determine which protein
spots changed in protein abundance and oxidation in
response to H,0, and BSO treatments relative to controls.
Means and standard deviations were calculated from three
replicates and compared between control and treatments
using ANOVA. Spots with a p-value of <0.05 were picked
for protein identification via trypsin digestion and LC-MS/
MS as described previously [6]. The peptide tandem mass
spectra were processed using Analyst QS v1.1 (AB Sciex,

E - E 4
& ) ) i
—8H —5-NEM —5-NEM F—5—NEM
g ] g e
s E_s §_sH £ _s—iaF
g‘s NEM §<é reduction §<‘SH labeding gﬂs IAF
= bigcking om {IAF) =
E_ o o 8 o o § — W8 B g
E 5-5 g Step1 g §-5 é Step2 E SH Step3 E E—IAF
i £ i i
S-mod S=mod —EH S=IAF
g H g i

Figure 1. Redox Proteome Labeling Approach. Proteins with
free thiols (-SH), disulfide bonds (-S-S-), or modified cysteines
(-S-mod) are incubated with N-ethylmaleimide to block free
sulfhydryl groups. Oxidized thiols are reduced with DTT. The
resulting free thiols are fluorescently labeled with IAF and the
proteins separated by 2-DE and identified by LC-MS/MS.
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Foster City, CA, USA) and searched against the NCBInr
database (July 2010, 11368323 sequences) using an in-
house version of MASCOT v2.20 (Matrix Science, Boston,
MA, USA) with the following parameters: tryptic peptides
with <1 missed cleavage site; precursor and MS/MS frag-
ment ion mass tolerances of 0.8 and 0.8 Da, respectively;
variable carbamidomethylation and fluoresceination of
cysteine; and variable oxidation of methionine. The data
were filtered using Scaffold 3 (Proteome Software, Portland,
OR, USA). Positive identification criteria were >2 peptide
sequences, protein probability of 99.9%, and peptide prob-
ability of 80%.

A total of 59 and 50 spots showed significant changes
(p<0.05) in redox-state after H,O, and BSO treatments,
respectively, and 27 and 40 spots differed significantly in
total protein abundance for the H,0, and BSO treatments,
respectively (Table 1 and Supporting Information Table 1).
For the four comparisons (Table 1), the g-values ranged
from 12 to 37% and from 55 to 61% of the spots were
confidently identified by LC-MS/MS using the criteria
described. Of the 103 spots confidently identified, only the
52 spots containing a single protein were used for further
analysis of redox and abundance changes. These proteins
were categorized according to their biological process
(Supporting Information Table 2). The 29 proteins that
change in redox state after H,0, and BSO treatments are
most represented in amino acid biosynthesis, redox home-
ostasis, and glycolysis (Fig. 2). The two main biological
processes in which the 23 proteins change in abundance are
redox homeostasis and defense response (Supporting
Information Table 2 and Supporting Information Fig. 1).
Images from IAF labeling and Sypro staining were overlaid
to identify possible co-regulation of redox and protein
abundance changes (Supporting Information Fig. 2). A
significant number of the protein spots do not overlap and
none of the protein spots showing changes in abundance
overlapped with the ones identified as redox regulated.
Thus, specificity of the post-translational redox change is
largely independent of changes in total protein abundance.
Only the redox changes will be discussed further.

Multiple proteins, such as dehydroascorbate reductase
(DHAR), glutathione-S-transferases (GST), and H-type
thioredoxins (TRXh), involved in redox homeostasis were
identified as changed in oxidation state following each
treatment. In response to H,O, application, DHAR, which
is essential for the glutathione-ascorbate cycle, showed
decreased IAF spot intensity, indicating greater reduction of
the enzyme compared with the control (Fig. 2). Spinach
DHAR contains a thiol group required for reduction of
oxidized glutathione [7]. Thus, a change in the redox state of
DHAR may increase the regeneration of ascorbate from
dehydroascorbate and enhance detoxification of H,0,. Two
GST isoforms showed increased oxidation in response to
BSO and H,0, and one isoform was more reduced only
following BSO treatment (Fig. 2). GSTs catalyze the conju-
gation of reduced glutathione to sulfhydryl groups of

www.proteomics-journal.com
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Table 1. Total number of spots differentially expressed and oxidized (p<0.05) in response to H,0, and BSO

H,0,/Sypro H,0,/IAF BSO/Sypro BSO/IAF Total
Total number of spots detected 235 243 288 250 -
Number of spots differentially expressed or oxidized 27 (37%) 59 (12%) 40 (29%) 50 (16%) 176
Number of spots identified as one protein ID 1 17 12 12 52
Number of spots identified with multiple proteins IDs 4 19 12 16 51
Total number of spots identified 15 (55%) 36 (61%) 24 (60%) 28 (56%) 103

The g-values for each experiment for the number of spots significantly different are indicated in parentheses.
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S.methyltetrahydropteroylti
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dimethylallyl pyrophosphate tesponsive family protein heat shock protein 70-1) [11]
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Figure 2. Differential Protein Redox Changes. Proteins with a change in redox state were grouped by biological function with fold change
in oxidation shown in the bar graph. White and grey bars correspond to H,0, and BSO treatments, respectively. Proteins described for the
first time as redox-altered proteins are indicated in bold. For the proteins previously described as either disulfide-bonded proteins or

S-thiolated protein, the reference numbers are indicated.
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proteins and small molecules; in the case where BSO inhi-
bits the biosynthesis of glutathione, GST activity also likely
decreases in the absence of substrate. The increase in
oxidized state of GST is mainly due to the oxidative condi-
tions from H,0, accumulation. Two TRXh isoforms also
showed greater oxidation following H,0, application, indi-
cating increased disulfide formation and/or thiol modifica-
tion (Fig. 2). TRXhs reduce disulfide bonds in a range of
proteins to provide a mechanism for regulating redox
imbalance [8]. In poplar, mitochondrial TRXh2 contains a
glutathionylation site that modifies the redox potential
of TRXh2 to decrease its activity [7], but in pea TRXh
isoforms can differentially effect redox imbalance
regulation [9]. Increased oxidation of TRXh in B. juncea may
result from elevated demand to modulate H,0, effects.
Overall, exogenous H,0, yields more changes on cellular
antioxidant mechanisms such as the glutathione-ascorbate
cycle and the thioredoxin system than BSO treatment.

Proteins in glycolysis, stress response, carbohydrate
metabolism, and proteolysis also exhibited redox changes
(Fig. 2). As relatively little information (as compared with
mammalian systems) on redox regulation of proteins in
plants is available, it is difficult to define the redox effect on
the biological process according to the treatment since the
reduction/oxidation of a particular protein can cause acti-
vation and/or repression of the protein activity [3]. Several
proteins identified in this study as redox-sensitive are known
targets of thioredoxins and/or glutathionylation (Fig. 2). For
example, triose phosphate isomerase (TPI), a glycolytic
enzyme, was first identified as a target for glutathionylation
in Arabidopsis [10]. TPI requires glutathionylation for
maintaining activity and oxidized glutathione inhibits the
enzyme. TPI is also regulated by thioredoxin in the endo-
sperm during germination of cereal grains [11] and Medi-
cago truncatula seeds [12]. Here, several isoforms of TPI
were identified as changing in redox state following BSO
and H,0, treatment. Two isoforms showed increased
oxidation after BSO treatment, whereas one isoform showed
greater reduction only following H,O, treatment. Decreased
glutathione levels after BSO treatment increases the oxida-
tion state of cells and may trigger the specific oxidation of
TPI to maintain energy production through the thioredoxin
system. Although a specific modification may result from a
treatment, we were not able to determine if the modification
was either formation of a disulfide bridge or glutathionyla-
tion. BSO treatment also increased the oxidation of a second
glycolytic enzyme, fructose-biphosphate aldolase. The
previous studies demonstrate that this enzyme is gluta-
thionylated in Arabidopsis [10] and is a thioredoxin target
during germination of wheat grains [11]. On the contrary,
enolase showed increased reduction in response to H,0,
(Fig. 2). Enolase is also a thioredoxin target and is redox
regulated during germination of wheat grains and M.
truncatula seeds [11, 12]. Additional proteins identified from
carbohydrate metabolism and ATP-coupled proton transport
are known to be redox regulated (Fig. 2) [13-16].
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Potential new disulfide-containing proteins in amino acid
synthesis and proteolytic processing were also identified in
this study, including 3-phosphoshikimate 1-carboxyvinyl-
transferase, cobalamin-independent methionine synthase,
the PAA2 20S proteasome subunit, the CLP protease
proteolytic subunit 2, and 20S proteasome o-subunit C1.
More interestingly, two 14-3-3 proteins involved in brassi-
nosteroid signaling, general regulatory factor 10 (GRF10 or
GFe) and GF14), were identified as increased in oxidation
state in response to BSO and H,0, treatments, respectively
(Fig. 2) [17]. Protein phosphorylation mediates the interaction
of 14-3-3 proteins with target proteins. Redox modification of
14-3-3 proteins may change protein conformation, thus
impairing protein-protein interaction and inactivating
signaling pathways. Brassinosteroids are plant hormones
involved in a range of cellular and physiological processes
including plant growth and tolerance to a variety of abiotic
and biotic stresses [18, 19]. Brassinosteroids induce H,0, in
cucumber leaves and increase oxidative tolerance [20]. In this
study, the application of H,0, and the induction of endo-
genous H,0, may have different effects on 14-3-3 proteins
and possibly alter brassinosteroid signaling involved in the
induction of oxidative stress tolerance.

In conclusion, several new oxidative stress redox-regulated
proteins were identified using a specialized 2-DE proteomics
approach. These results showed that specific redox and
protein induction occurred when H,0, was applied directly,
including changes of specific protein isoforms, and that
different mechanisms can be induced if redox regulation
mechanisms, such as the glutathione-ascorbate cycle, are
blocked to increase endogenous H,O, levels. By resolving
different protein isoforms either from the same gene family
or from differential post-translational modifications, 2-DE
proteomics has proven its utility to decipher the complexity of
redox regulation mechanisms in plants. This approach is
directly applicable to examine biologically relevant stress
situations on agronomic crops, and could significantly impact
the understanding of redox regulation both generally and
specifically to facilitate crop improvement efforts.

Supporting data are accessible in the PRIDE database, login
review33615, password hTXrNqWY, direct link http://www.
ebi.ac.uk/pride/login.do.
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Supplemental Figure 1. Differential Protein Expression Changes. Proteins with a change in
abundance were grouped by biological function with fold change in expression shown in the bar

graph. White and grey bars correspond to H,O, and BSO treatments, respectively.
Supplemental Figure 2. Example of 2D-gel images after IAF-labeling (A) and Sypro staining (B).

The two pictures were overlapped using SameSpots (C) with color pink and green representing

IAF and Sypro, respectively.
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PROTEIN EXTRACTION AND LABELING PROTOCOL

Plant Growth

Wildtype B. juncea seeds were obtained from stocks maintained at the Donald
Danforth Plant Science Center, and allowed to germinate in a growth chamber at 22°C,
200 mmol/m2 light intensity, 50% relative humidity during a 16-hour light/8-hour dark
cycle. Once their second set of true leaves began to emerge (typically two-three weeks
after planting), the seedlings were transplanted to one gallon pots and moved to a
greenhouse with the same light/dark cycle. The plants were grown normally until they
began to flower, at which point they were separated into groups: control, H,O-treated,
and BSO-treated. H»O»-treated and BSO-treated plants were pot-watered with 2 L of 1
mM H>O; and 2 L of 50 uM BSO respectively, and positioned to allow rapid draining.
After 1 hour, an additional 1 L of 1 mM H20; or 1 L of 50 uM BSO was respectively
applied, and the plants again were allowed to drain for an additional hour. Control plants
were irrigated with distilled water, and were otherwise treated identically. At the end of 2
hours, the plant roots were rapidly washed to remove excess soil, flash frozen in liquid

nitrogen, and stored at -80°C

Protein Labeling
For the H»0,, BSO, and control treatments, soluble protein extraction was
completed in triplicate using tissue from three different plants, and all steps were carried

out at 4°C unless otherwise indicated. Approximately 800 mg of root tissue, or 400 mg
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of leaf tissue were ground to a fine powder using liquid nitrogen and a mortar and pestle.
The tissue was suspended in extraction buffer [100 mM Tris-HCI, pH 8.0; 100 mM NEM;
1% CHAPS; 1% plant protease inhibitors (Sigma, P9599)] to 200 mg/mL, and sonicated
for 3 x 15 seconds. In between each sonication the tissue was vortexed briefly and
allowed to sit on ice for 30 seconds. The samples were then centrifuged for 16.1k x g for
15 minutes to precipitate the insoluble debris. Following centrifugation, the supernatant
was mixed with 4 volumes of pre-chilled methanol and stored on ice. In most cases,
protein precipitation was observed almost immediately. After 30 minutes, the samples
were again centrifuged at 16.1k x g for 15 minutes, with the supernatant being discarded
once the spin was complete. The protein pellet was washed twice more (2 x 30 minutes)
with the same volume of methanol, and centrifuged at 16.1k x g for 5 minutes after each
wash. During the washing steps, care was taken to periodically disrupt the pellet by hand
(using a sterile pipette tip) or by vortexing to ensure complete removal of excess NEM.
After the final spin, the pellet was air-dried for several minutes, and then resuspended in
150uL of reduction buffer [SO mM Tris-HCI, pH 8.0, 7 M urea, 2 M thiourea, 50 mM
DTT (added in just prior to use)] per 200 mg of starting tissue. The suspension was
incubated for 15 minutes at room temperature, and then re-precipitated with 4 volumes of
pre-chilled methanol. As described above, the protein was washed 3 times (3 x 30
minutes) with the same volume of methanol and centrifuged after each wash (1 x 15
minutes; 2 X 5 minutes), with care taken to disrupt the pellet. After the final spin, the
pellet was air-dried briefly, and resuspended in 150uL of labeling buffer [40 mM HEPES,

pH 7.5; 50 mM NaCl; 200 uM IAF (added in just prior to use)] per 200 mg of starting
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tissue. Due to the light sensitivity of IAF, this and all subsequent steps were carried out
under dim light. The suspension was incubated for 10 minutes at room temperature, and
then re-precipitated with 4 volumes of pre-chilled methanol. Again, the protein was
washed 3 times (3 x 30 minutes) with the same volume of methanol and centrifuged after
each wash (1 x 15 minutes; 2 x 5 minutes), with care taken to disrupt the pellet. After the
final spin, the pellet was air-dried briefly, and resuspended in a small (<60uL per 200 mg
of starting tissue) volume of destreak buffer (GE Healthcare). The protein concentration

was then determined by CB-X assay (G-Biosciences).

2D-SDS-PAGE

For 2D-SDS-PAGE, 200 pg of extracted protein was resuspended to a total
volume of 180 pL in destreak buffer and absorbed into a pH 4-7 gel strip (Bio-rad)
overnight. Isoelectric focusing in the first dimension was carried out at room temperature
in a Proteon IEF cell using a four-step method: 1) 250 V(olts), linear increase, 30
minutes; 2) 500 V, linear increase, 1 hour; 3) 8000 V, linear increase, 2.5 hours; 4) 8000
V, rapid increase, 35,000 Vhours. Separation in the second dimension was by molecular
weight, and achieved using a standard gel box run at 150 V until the dye front reached the
end of the gel. First dimension gel strips were secured in place relative to the second
dimension gel using 1 mL of agarose. Following the second dimension separation, gels
were removed from their cassettes and imaged (Ex: 488 nm: Em: 520 nm) using a
Typhoon 9410 variable mode imager (Amersham Biosciences) to detect IAF-labeled

proteins. After imaging, gels were bathed for 30 minutes with 100 mL of fixing solution
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[10% methanol 7% glacial acetic acid] using an orbital shaker. The fixing solution was
then poured off, and gels were then bathed overnight in 50 mL of Sypro Ruby protein
stain (Bio-rad). The next day, the protein stain was poured off, and the gels were again
bathed for 30 minutes with 100 mL of fixing solution. Following a washing step with
MilliQ water to remove any excess stain, the gels were imaged again (Ex: 457 nm; Em:
610 nM) to detect total protein. For all gel replicates within a given set or sets to be
compared, the same laser intensity (400 V for IAF images and 650-800 V for Sypro

images) was used.

Spot Analysis and Excision

Replicate gels images were aligned using Progenesis Samespots (Nonlinear
Dynamics). Further alignment of replicate control gel and replicate ozone treatment gel
images was carried out for each for each pairwise comparison. In order to quantify
expression and thiol composition differences between the control and treated samples,
spot volume (as a function of intensity) was calculated and normalized for each spot in
the aligned images. Those spots that different significantly in volume (ANOVA, p<0.05)
between the averaged control and ozone treatment gels were then marked for excision.

Excision of significant spots from their respective gels was performed using a
Gelpix System (Genetix) under high humidity (>85%) to prevent gel distortion or tearing.
Gel plugs were dehydrated with 200 uL of acetonitrile (ACN) for 15 minutes at 900 rpm
(revolutions per minute) using a room-temperature table-top shaker. The ACN was then

removed, and, to remove the Sypro Ruby stain, the plugs were washed 5 x 15 minutes,
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900 rpm, with 200 pL of 50mM NH4HCOs3, 50% ACN, with the liquid discarded after
every wash. Following the last NH4HCO3/ACN bath, the plugs further were washed for
5 minutes, 900 rpm, with 100 pL of ACN; when this step was complete the liquid was
again discarded and the plugs were allowed to air-dry for several minutes. Once dry, the
plugs were submerged in 20 pL of trypsin digestion buffer (5S0mM NH4HCOs3 containing
6 ng/uL trypsin) and rehydrated overnight at 37°C. The next morning, 30 uL of 1%
formic acid, 2% ACN was added to the digests, which were then shaken for 30 minutes at
900 rpm. Following the wash, the supernatant was collected from each plug and
transfered to a new tube. Again, the plugs were shaken for 30 minutes at 900 rpm, this
time in 24 pL of 60% ACN. After this final wash, the supernatant was removed and
added to that collected during the previous step, and the plugs were discarded. Using a
SpeedVac the combined digest from each gel plug was lyophilized to dryness, then finally
resuspended in 7 puL of 1% formic acid, 5% ACN. Identification of the proteins
contained in each digest was carried out by nano-LC-MS/MS as previously described

[Alvarez et. al, 2009].

Alvarez, S., Berla, B., Sheffield, J., Cahoon, R.E., Jez, J.M., Hicks, L.M. (2009).
Comprehensive analysis of the Brassica juncea root proteome in response to
cadmium exposure by complementary proteomic approaches. Proteomics 9:

2419-2431.
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CHAPTER 4

FROM CLIMATE CHANGE TO PROTEINS: REDOX PROTEOMICS OF

OZONE-INDUCED RESPONSES IN SOYBEAN
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PREFACE

This chapter describes the application of the dual-labeling methodology
developed in chapter 2 to protein extracts exposed to either ambient or elevated
tropospheric ozone concentrations. This work was completed in collaboration with the
laboratory of Dr. Lisa Ainsworth at the University of Illinois at Urbana-Champaign
(UIUC), USDA-ARS; without their expertise and facilities, the experiments described

herein would not have been possible.

The SoyFACE Facility

The specific facilities at UIUC are referred to as SoyFACE (Soybean Free Air
Concentration Enrichment), and are one of only a handful of FACE sites worldwide. The
majority of FACE sites focus on the effects of elevated CO> concentrations on plant
growth (in these cases the C in FACE actually stands for CO: instead of concentration);
only SoyFACE and AspenFACE at the Harshaw Experimental Forest in Wisconsin have
investigated the effects of tropospheric ozone in addition to CO,. Regardless of the
specific antagonists and/or species under inquiry however, the basic technology behind
all FACE-type experiments remains the same. At SoyFACE, soybean plots are
surrounded by octagonal rings composed of micropore tubing. The rings are
approximately 16 meters in diameter, and are separated from one another in all directions
by 100 meters of untreated soybean plants to avoid gas cross contamination. In 2009, 16

rings were in active use, and contained various soybean cultivars exposed to target
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concentrations of ozone ranging from ambient (~40 ppb) to 200 ppb. 4 of the 16 rings
were not exposed to ozone, but rather to elevated CO: at a target concentration of 585
ppm. The ozone used for elevated concentrations is produced on site with dedicated
ozone generators, and pumped from the generator housings directly to the various rings,
where its rate and direction of diffusion can be directly controlled. Wind direction, wind
speed, temperature, humidity and host of other factors are monitored in real time for each
ring; these factors will determine the rate at which and direction from which ozone is
released so as to maintain the target tropospheric concentration. As described in the
thesis introduction, natural ozone concentrations are cyclical, with the highest
concentrations observed during the daylight hours and the lowest concentrations at night.
At SoyFACE, this natural cycle is mimicked by only running the ozone generators during
a 9-hour daytime period, and allowing the rings to settle back to the ambient
concentration at night.

Unlike plants grown in a growth chamber or in open-top pots, the plants at the
SoyFACE facility are exposed to all of the elements - including rain, hail, extreme
temperature fluctuations and insect infestations - that a normal soybean crop would
experience. While these competing factors can make the final experimental statistics
more difficult to deconvolute, they nonetheless provide a more accurate picture of how
the sum of expected elements, including ozone exposure, affects crop yield and protein

expression.
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Life Stages of a Soybean Plant
As for Arabidopsis, the life of a soybean plant has been divided into a series of

defined stages [TAIR; http://www.arabidopsis.org/portals/education/growth.jsp]. These

stages are divided into two sets: the “V” stages which mark periods of vegetative growth,
and the “R” stages which chronicle the emergence of the reproductive organs [http://

www.ag.ndsu.edu/pubs/plantsci/rowcrops/all74/all174w.htm#Growth]. An outline of the

stages is provided below:

Vegetative Stages

VE - seedling emergence
VC - cotyledons unfold

V1 - first trifoliate unfolds
V2 - second trifoliate unfolds
V3 - third trifoliate unfolds
V4 - fourth trifoliate unfolds
VS5 - fifth trioliate unfolds

V6 - 6th trifoliate unfolds; flowering will begin if it has not already

Reproductive Stages

R1 - the first flower opens
R2 - all flowers are open or have opened

R3 - the first pod develops
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R4 - pod development extends to the top nodes of the plant

R5%* - seed development beings

R6 - at least one full-size seed is present; Senescence of the lowest leaves begins
R7 - pod browning begins

R8 - 95% of pods are brown.

* Note that vegetative growth continues even after reproductive growth begins. Thus, a

plant that is in stage RS may also be simultaneously in stage V11 or higher.

Author contributions: AG, LMH, and JMJ designed research; AG and RPK performed

research; RPK and EAA contributed new reagents/analytical tools; AG analyzed data;

and AG, LMH, and JMJ wrote the paper.
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ABSTRACT

Ozone (03) is an important atmospheric pollutant with respect to agricultural losses.
Although Os affects a range of crops, soybean yield is extremely sensitive to this
environmental oxidative stress. To understand metabolic alterations in response to
chronic O3 exposure, changes in the total and redox proteomes of soybean plants grown
in the field at the Soybean Free Air Concentration Enrichment (SoyFACE) facility under
ambient (40 ppb), moderate (60 ppb), and high (115 ppb) O3 levels were examined. The
changes in the total and redox proteomes of soybean leaf tissue exposed to chronic high
O3 levels are more widespread and not the same as those resulting from short-term acute
O3 exposure. Compared to the ambient control, the 115 ppb Os leaf sample contained 35
proteins that increased up to 5-fold in expression level, 22 proteins that were up to 5-fold
more oxidized without changes in expression levels, and 22 proteins that increased in
total expression level and became 2- to 9-fold more oxidized. These changes occur in
proteins across carbon metabolism, photosynthesis, amino acid metabolism, specialized
metabolism of flavonoids and isoprenoids, signaling & homeostasis, antioxidant
responses, protein degradation, and nucleic acid pathways. Our data directly
demonstrates that O3 exposure in plants changes the oxidation states of multiple proteins
across metabolic pathways, and may provide a snapshot of metabolic adaptation to long-
term field growth under chronic Os stress. Understanding how environmental O3 affects
redox-sensitive pathways will aid in the development of crops better adapted to global

climate change.
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INTRODUCTION

Global climate change and air pollution pose significant challenges to agriculture and
food production worldwide (1). In the Northern hemisphere, tropospheric ozone (O3) is a
major pollutant that affects agriculture yields of multiple crops (2-4). Since the 19th
century, ground O3 levels have doubled with tropospheric concentrations in industrialized
nations rising 0.5-2.5% per year, and major crop growing regions of the United States,
India, and China facing more rapid changes of up to 10% per year (5-7). The current
global mean O; level of ~60 ppb and higher localized concentrations are already above
the established 40 ppb threshold for crop losses (2, 8-9). Climate models predict that
mean surface O3 concentrations may rise 20-25% globally by 2050 with levels in India
and south Asia reaching comparable levels by 2020 (10-12). Understanding how crops
respond to increasing O3 pollution (and other environmental stresses) is essential for
meeting the growing demands for sustainable food systems as the world faces increasing
population, urbanization, and climate changes.

The negative effects of O3 on crop yield are well documented from both short-term
acute exposure studies and long-term chronic free-air concentration enrichment (FACE)
experiments (2-4; 12-16). Among major food crops, soybean (Glycine max) is one of the
most sensitive to atmospheric O3z levels, which can vary between 50-120 ppb during
summer days (17-18). At concentrations as low as 40 ppb, soybean growth and seed
yield begin to decrease with even modest changes in O3 levels significantly reducing crop
production. For example, in FACE trials with soybean, a 13 ppb increase in O3 from 56

to 69 ppb resulted in a 20% decrease in crop yield (13-14). Comparable reductions in
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yield occur across multiple soybean varieties, suggesting that breeding for O3 tolerance
may be difficult. Economically, annual crop losses to O3 damage at current tropospheric
levels are estimated at $2-4 billion in the US and $3-5.5 billion in China, and will likely
increase in the future (12).

As an environmental stress, O3 acts as an oxidant in crop growth and results in visible
necrotic damage, including chlorophyll loss and decreased seed yields in both mass and
number (3, 14-21). At the molecular level, proteomic studies of rice, wheat, soy, and
poplar exposed to acute, short-term O3 stress in growth chambers reveal drastic
reductions in the major leaf photosynthetic proteins and induction of defense/stress-
related proteins (22-28). Although multiple physiological experiments indicate that acute
and chronic ozone exposures do not induce the same damage mechanisms in plants
(15-16), assessments of proteome changes have not examined crop plants grown in the
field under chronic O3 stress. Moreover, published studies do not probe the possible
effect of O3 on redox-sensitive proteins in plants, as these changes are not observable by
standard proteomic methods (29-30).

Recently, we used a differential labeling and mass spectrometry-based approach (Fig.
S1) to identify plant proteins that respond to changes in redox environment resulting from
exogenous and endogenous oxidative stresses (30). Here we employ this method to
assess the changes that occur in the total and redox proteomes of soybean in response to
growth under chronic elevated O3 levels in the field. Soybean plants were grown at the
Soybean FACE (SoyFACE) facility (U. Illinois/lUSDA) under ambient (40 ppb), elevated

(60 ppb), and high (115 ppb) atmospheric O3 conditions. Soluble protein extracts from
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root and leaf tissues were then isolated for analysis of changes in total and redox-
proteomes using two-dimensional gel electrophoresis (2-DE), differential labeling, and
nano-LC/MS/MS. The data presented here indicates that the changes in the total and
redox proteomes of soybean leaf tissue resulting from chronic exposure to high O3 levels
are more widespread across metabolism than previously reported and are not necessarily
the same as those resulting from short-term acute O3 exposure. In addition, we provide
the first direct demonstration that high O3 exposure in leaf tissue alters the oxidation
states of multiple proteins in different biochemical pathways. These changes may play a

role in the metabolic adaptation to long-term field growth under chronic O3 exposure.

RESULTS
Analysis of 2-DE spots in Os-treated soybean

To identify Os-responsive proteins in soybean, protein extracts of leaf and root tissue
from plants grown at the SoyFACE facility under ambient, 60 ppb, and 115 ppb O3 for
were obtained (16). For each condition, protein extraction was performed in triplicate
using tissue from three different plants. Extracted proteins were incubated with N-
ethylmaleimide (NEM) to block free thiols, reduced with DTT, and then reacted with 5-
iodoacetamidofluorescein (IAF) to label previously oxidized thiols (Fig. S1) (30). After
2-DE, gels were imaged for IAF signal, and then stained with SYPRO Ruby and imaged
for total protein (Fig. 1). Three replicate gels for each of three independent samples were

compared pairwise against the ambient gel images, and spots that significantly changed
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in signal intensity identified. Across the 8 condition permutations (60 ppb or 115 ppb Os;
root or leaf tissue; and SYPRO or IAF), a total of 1455 significant spots were detected, of
which 277 were differentially expressed and/or oxidized (Table S1). Spots were excised,
trypsin digested, and analyzed by nano-LC/MS/MS. The resulting spectra were searched
against the NCBInr database using an in-house version of MASCOT (Tables S2-S5).
From this search, 57 spots contained a single protein match and 83 spots were identified
as containing two or more proteins (Table 1). The 115 ppb Os leaf sample had the largest

numbers of identified proteins that changed in expression and/or oxidation state.

Identification of differentially expressed/oxidized proteins

In the identified spots, a total of 159 proteins were found to change in total expression
and/or oxidation state (Fig. 2A). Of those proteins, 55, 27, 9, and 30 were unique to the
115 ppb O3 leaf, 115 ppb O3 root, 60 ppb Oz leaf, and 60 ppb O3 root samples,
respectively. A further 38 proteins were found to change in multiple tissue-Os treatment
combinations. Within each of the four tissue-ozone combinations varied numbers of
proteins changed in total expression and/or oxidation state (Figs. 2B-2E). For example,
the 115 ppb O3 leaf sample contained a total of 79 unique proteins, of which 35 changed
in total expression, 22 displayed altered oxidation state, and 22 changed in both
expression and oxidation. For each protein identified, total expression level and/or
oxidation state either increased or decreased in the treated tissue relative to the control
(Tables S2-S5). While many proteins were localized to a single spot, some other proteins

could be found in multiple spots, suggesting the presence of multiple isoforms. Where
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these isoforms could not be distinguished from one another via the database search, the

fold change (and associated spot number) is reported for the parent protein.

High Os-induced changes the total and redox proteomes of soybean leaf

Comparison between the four tissue-O3 treatment combinations revealed two distinct
trends in the high Os leaf sample compared to the other samples - increased expression
levels and oxidation of the largest number of proteins (Fig. 3 and Fig. S2). Although
analysis of the 115 ppb O3 root and 60 ppb O3 leaf and root samples showed multiple
proteins either increasing or decreasing in expression level, these changes were generally
less than 2-fold different (Fig. S2). Moreover, both the numbers of protein changes and
the fold changes in these samples were generally less than those observed in the high O3
leaf sample. For example, in the 115 ppb Os root sample, the expression of 6 proteins
increased and 10 proteins decreased, and in the 60 ppb Os; leaf and root samples, fewer
proteins increased in expression than decreased. Overall, the fold changes in total protein
levels observed in the high O3 root, elevated Os leaf and root samples were comparable to
those described in previous studies of plant proteomes following acute O3 exposure in
growth chambers (22-28).

In stark contrast, the 115 ppb O3 leaf sample contained 35 proteins with up to 5-fold
increased expression compared to ambient samples, and only 2 proteins with ~1.5-fold
decreased levels (Fig. 3). Even more striking was the shift in proteins that increased in
oxidation in the high O3 leaf sample compared to the other three samples. 22 proteins

increased in total expression level and became 2- to 9-fold more oxidized. In addition, 22
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other proteins became up to 5-fold more oxidized without significant changes in
expression levels (Fig. 3). In comparison, the high O3 root sample had 11 proteins that
increased in oxidation and 8 that were more reduced (Fig. S2A). In the 60 ppb Os tissue
samples, only a handful of proteins were either more oxidized or reduced than controls
(Figs. S2B & S2C). The observed changes in the total and redox proteomes of leaf tissue
exposed to high O3 occurred across a range of metabolic pathways (Fig. 4), including
redox systems, carbon metabolism, photosynthesis, signaling & homeostasis systems,
amino acid metabolism, specialized metabolism of flavonoids and isoprenoids, protein

degradation, and nucleic-acid systems, and are discussed in more detail later.

Analysis of enzymatic activities in leaf tissue exposed to high Os-treatment

To better examine the activity changes in the 115 ppb O; leaf sample, targeted assays
of the glycolytic/Calvin cycle enzymes phosphoglycerate kinase (PGK), fructose 1,6-
bisphosphate aldolase (FBA), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
malate dehydrogenase (MDH) in the citric acid cycle, and glutamine synthetase (GS) in
amino acid synthesis were performed. All of these enzymes showed increased protein
expression and ~5-fold oxidation changes in the 115 ppb O3 leaf sample. Except for
PGK, each enzyme exhibited increased activity in the high O3 leaf sample compared to
the ambient control with the fold change in enzymatic activity correlated to increased
expression level (Table 1).

In addition to these enzymes, the activity and total expression of ribulose 1,5-

bisphosphate carboxylase oxygenase (RuBisCO) and phosphoenolpyruvate carboxlase
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(PEPC) were examined because O3z exposure can alter levels of these proteins in plants
(2-3; 13-17; 19-21). For RuBisCO, both activity assays (Table 1) and Western blot
analysis of the large subunit (Fig. S3) showed no significant difference between the high
Os leaf sample and the ambient control. Likewise, expression of PEPC in the ambient
and high O3 leaf samples, as determined by Western blot, was not altered (not shown).

In the 115 ppb O3 leaf sample, a glycosyl hydrolase/chitinase showed 4- and 9.4-fold
increases in expression and oxidation state, respectively.  Glycosyl hydrolases are
involved in the degradation of various sugars, but are also mechanistically related to
chitinases, which cleave glycosidic bonds and are typically involved in pathogen
responses to insects or herbivory. Because many glycosyl hydrolases display varied
activities, a fluorescence-based assay was used to evaluate exochitinase, endochitinase,
and chitobiosidase activity in control and high O3 leaf tissues, which were shown to
increase 1.6-, 4.1-, and 11.1-fold, respectively (Table 2). It is unclear if these changes
result from the identified protein or from aggregate changes in multiple glycosyl

hydrolases.

DISCUSSION

Understanding the molecular mechanisms and metabolic consequences of how global
climate changes, such as elevated tropospheric O3 levels, impact crop plants is essential
for efforts to maintain crop performance under increasing environmental stresses.
Although earlier growth-chamber studies describe the effects of acute O3 exposure on the

proteomes of different crops, including soybean (22-28), these reports have neither
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reported on the consequences of chronic O; exposure under field conditions nor
examined the effect of O3 on redox-sensitive proteins. Previous studies, in which
soybean, rice, or wheat were exposed to constant 120 to 200 ppb O3 for 3 to 5 days in
growth chambers, typically identified 20 to 50 proteins that changed in expression level,
either up or down (22-28). Analysis of the total and redox proteomes of leaf and root
tissues from soybean plants grown in the field at SoyFACE under elevated (60 ppb)
chronic daytime exposure to Oz showed similar changes in both number of proteins and
expression levels to earlier growth-chamber experiments (Figs. 2 & S2). In addition, leaf
and root samples of soybean grown under elevated O3 stress exhibited less than 2-fold
differences in redox state for only a handful of proteins (Fig. S2). In contrast, the high O3
soybean leaf sample analyzed here displayed striking increases in both expression levels
and/or oxidation of multiple proteins across different metabolic pathways (Figs. 3 & 4).
This suggests that there is a cross-over point between 60 and 115 ppb O; at which the
expression levels and oxidation state of multiple proteins in leaf tissue dramatically shift,
potentially as a metabolic adaptation to long-term field growth under chronic O;

exposure.

Tropospheric O3 negatively affects soybean growth and yield at concentrations
greater than 40 ppb with decreased shoot and pod biomass, fewer pods produced, and
premature leaf senescence (2-4; 12-18). O3 enters leaves through the stomata and
produces reactive oxygen species (ROS) that subsequently oxidize the plasma membrane
and photosystem components leading to degradation of chlorophyll (2-3).

Physiologically, long-term Os stress leads to reduced photosynthesis and mobilization of
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reserve energy stores by converting leaf starch to sugars (28). Accordingly, sugar
catabolism increases and previous studies identified several primary metabolic proteins,
including MDH and phosphoglycerate mutase, as highly expressed under acute O3 stress
(23). The data presented here indicates that the changes in total and redox proteomes of
soybean leaf tissue resulting from chronic exposure to high O3 levels are more
widespread across metabolism than previously reported and not necessarily the same as
those resulting from acute O3 exposure (Fig. 4).

Decreased photosynthetic efficiency, reduced RuBisCO activity, and elevated PEPC
activity are classic markers for O; damage and senescence; however, these effects vary
with the length, concentration, and type of exposure (2-3; 13-17; 19-21). Here soybean
tissues were harvested at the R3 stage before significant changes in photosynthesis were
observed (13; 16). The increased expression of chlorophyll a/b-binding protein,
ferredoxin reductase, and a chlorophyllase-like protein observed in the 115 ppb O3 leaf
sample (Fig. 4) may help maintain photosynthesis at this growth stage before ozone-
induced senescence occurs. Similarly, RuBisCO (large and small subunits), RuBisCO
activase, a RuBisCO-associated protein, and RuBisCO-binding protein displayed
elevated expression and/or oxidation in the 115 ppb O; leaf sample. Moreover, proteins
related to iron homeostasis (ferredoxin reductase and ferritin) also change in soybean leaf
under high O3 stress. Because the spots containing RuBisCO included multiple proteins,
activity assays and Western blot analysis were used to further examine possible changes
in activity. Both methods showed no significant alteration in RuBisCO at this stage of

soybean growth (Table 1 and Fig. S3). Likewise, the effect of chronic 115 ppb Os
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exposure on PEPC levels in leaf tissue was analyzed by Western blot, which indicated no
significant change in expression compared to ambient O3 exposure at the time of harvest.
These results suggest that major alterations in soybean photosynthesis are likely linked to

senescence and occur later in the growing season for plants under chronic O3z exposure.

Multiple proteins (i.e., PGK, GAPDH, FBA, ribose-5-phosphate isomerase,
phosphoribulokinase, triosephosphate isomerase, MDH, and isocitrate dehydrogenase) in
the reduction and regeneration phases of the Calvin cycle, glycolysis, and the TCA cycle
increase in expression and/or oxidation state in the high O3 leaf sample (Fig 4). In
addition, the total activity levels of FBA, GAPDH, and MDH increased in the 115 ppb Os
leaf sample (Table 1). This is consistent with earlier proteomic studies (22-28), but the
analysis here indicates a wider range of protein changes and for the first time identifies
redox-state alterations resulting from an environmental oxidative stress. All of these
proteins are known to interact with thioredoxin, which is essential for maintaining the
protein redox-state in plants (29). Moreover, phosphoribulokinase and GAPDH form a
protein complex via thioredoxin-mediated redox changes in response to light intensity
(31). Os-related changes in cellular oxidation state may affect this interaction. Similarly,
MDH is a critical regulatory point in the TCA cycle; however, the cytosolic form of the
enzyme is redox-regulated and inactivated under oxidizing conditions (32). In the 115
ppb O3 leaf sample, MDH had 2- and 5-fold higher expression and oxidation compared to
controls with a 1.3-fold increase in total activity (Table 1). It is possible that these
changes reflect the need to maintain MDH in the leaf to supply metabolites to the TCA

cycle.
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In addition to changes in core carbon metabolism, the starch and sugar mobilization
pathways (phosphohexomutase, glucanase, and a glycosyl hydrolase/acid chitinase), the
glycerate and glycolate pathways, and the biosynthesis of isoprenoids, carotenoids, and
(iso)flavonoids display increased expression and/or oxidation state in the high O; leaf
sample (Fig. 4). The changes in enzymes involved with the conversion of starch to sugar
are consistent with a shift in energy demands of crops under O3 stress (23). Of the 79
proteins identified in the 115 ppb Os; leaf sample, a protein annotated as a glycosyl
hydrolase/acid chitinase undergoes the greatest fold changes in both expression and
oxidation state (Fig. 3). Although it is unclear if this protein functions in cell wall
degradation, pathogen response, or sugar mobilization, the overall activity of glycosyl
hydrolases in soybean leaf increase 1.6- to 11-fold in the high O3 samples (Table 1).
These increases may be connected to the mobilization of starch for energy production.

Proteins in three specialized metabolic pathways related to Oz stress were also
identified in the 115 ppb O; leaf sample. In the isoprenoid synthesis pathway,
deoxyxylulose phosphate (DXP) oxidoreductase and isopentenyl diphosphate (IPP)
isomerase are oxidized (Fig. 4); however, the effect of oxidation of these proteins
remains to be determined. Interestingly, volatile isoprenoid emissions, including isoprene
and monoterpenes, may act as an ozone protection mechanism in plants (33). Moreover,
changes in carotenoid and (iso)flavonoid pathways (cartenoid-associateed protein,
chalcone isomerase, isoflavone reductase, and caffeoyl-CoA methyltransferase) suggest
alterations in the synthesis of these compounds, which act as photoprotective compounds

and anti-oxidants (34).
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In leaves exposed to high Os levels, up-regulation and/or oxidation of proteins in
amino acid biosynthesis and/or nitrogen homeostasis were also observed (Fig. 4). The
cytosolic form of GS, a central player in nitrogen sensing, increased in expression and
oxidation in the 115 ppb Os leaf sample, which also corresponded with increased total
activity compared to controls (Table 1). Elevated expression of cytosolic GS is
associated with leaf senescence and the recycling of ammonia during stress conditions
(35).  Aspartate-semialdehyde dehydrogenase is the primary control point for the
biosynthesis of isoleucine, methionine, lysine, and threonine. Although redox-control has
not been described for the plant enzyme, reversible oxidation of a catalytic cysteine in the
bacterial homolog alters activity (36). Likewise, carbamoyl phosphate synthetase, which
becomes more oxidized following high O3 exposure in soybean, is also sensitive to
changes in redox environment (37). Also related to nutrient metabolism, the observed
expression and oxidation changes in 14-3-3 proteins may further modify the activities of
enzymes across the carbon, nitrogen, and sulfur nutrient assimilation pathways and/or

signal transduction systems linked to stress responses (38-39).

The proteomic analysis here supports studies demonstrating that redox-protection
mechanisms play a critical role in plant responses to O3 exposure, and for the first time
directly demonstrates that O3 exposure changes the oxidation states of multiple proteins
in different metabolic pathways. High chronic O3 exposure leads to an oxidative stress
that activates redox protection mechanisms in plants and increases expression and/or
oxidation of proteins in those systems, including ascorbate peroxidase, methionine

sulfoxide reductase, and glutathione-S-transferases (GSTs) (Figs. 3 and 4). In plants, the
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ascorbate-glutathione system is critical for maintaining redox homeostasis and for
scavenging ROS produced by photosynthesis (40). As such, the increased expression and
oxidation of ascorbate peroxidase, which is critical in this system, is directly linked to
cellular responses to attenuate oxidative stress induced by high O3 exposure in leaf tissue.
This is also linked to increased mobilization of sugar stores, which can further enhance
ascorbate synthesis (41). Thus, the up-regulation of glucose catabolism is linked to
energy production and the generation of reducing equivalents for the detoxification of
ROS. The nearly 3-fold increase in oxidation of methionine sulfoxide reductase, which
targets oxidized methionine residues (42), suggests an important role for this protein in
responding to O3 stress. Moreover, the reaction mechanism for the fungal methionine
sulfoxide reductase proceeds through the formation of a thioredoxin-mediated
intramolecular disulfide bond (43); however, it is unclear if the activity of the plant
enzyme is redox-responsive. Likewise, GST isoforms were detected as changing in
expression and/or oxidation across several different tissue-type/ozone concentration
combinations (Tables S2-S5). In plants, GSTs comprise a large family of enzymes that
conjugate glutathione to either small molecules or proteins for xenobiotic detoxification
and redox-modifications (44).

Although the role of O3 as an oxidative environmental stress is well established (2-4,
7), the extent of redox-linked changes in crop plants in the field faced with chronic
exposure to high O3 concentrations has not been examined previously. Analysis of the
soybean redox proteome in the 115 ppb O; leaf sample revealed 44 proteins with 2- to 9-

fold higher oxidation than in control samples. This work is the first report that Os-
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exposure is directly linked to redox changes in plant proteins. Given that 2-DE methods
were used, the observed changes in the redox proteome of soybean leaf are likely only a
small fraction of the total number of proteins that change in oxidation state. Future
targeted efforts using more sensitive isolation/detection strategies promise to reveal a
greater extent of redox-linked changes resulting from Os stress. Because changes in
redox-state of plant proteins can drastically alter activity in response to environmental
and cellular stresses, further work is also required to examine how oxidative stresses
modulate protein activity across plant metabolism. From a physiological perspective, a
better understanding of how above and below ground metabolisms alter is also required.
Os enters leaves via the stomata, but alterations in the expression and/or oxidation state of
proteins in root tissues were observed, albeit not at the same intensity as in leaf tissue.
Nevertheless, it is unclear if these result from systemic changes in metabolism or directly
from O3 exposure in roots. Ultimately, understanding how environmental ozone affects
redox-sensitive pathways will aid in the development of crops better adapted to global
climate change and provide information about how to target the engineering of ozone

protection systems.
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MATERIALS AND METHODS

Plant Growth and SoyFACE O3 Treatment. Soybean (G. max (L.) Merr) were
planted and exposed to ambient (40 ppb), elevated (60 ppb), and high (115 ppb) O3, as
described previously (16). All Os levels are seasonal 9-hour average concentrations. O3

was not added at night or when leaves were wet.

Soluble Protein Extraction. Protein extraction was performed in triplicate using
tissue from three different plants. All steps were carried out at 4 °C, unless otherwise
indicated. Approximately 800 mg of root or 400 mg of leaf tissue were frozen in liquid
nitrogen and ground to a fine powder using a mortar and pestle. The tissue was
suspended in extraction buffer [100 mM Tris-HCI, pH 8.0; 100 mM NEM; 1% CHAPS;
1% plant protease inhibitors (Sigma)] to 200 mg mL-!. For lysis, samples were sonicated
(3 x 15 sec) with the tissue mixed and iced (30 sec) between sonications. Samples were
then centrifuged (16,000 x g; 15 min) to precipitate insoluble debris. The resulting
supernatant was mixed with 4 volumes of pre-chilled methanol and stored on ice for 30
min. Samples were again centrifuged (16,000 x g; 15 min) and the protein pellet
harvested. The pellet was washed twice with methanol (2 x 30 min) and centrifuged
(16,000 x g; 5 min) after each wash. During washing, care was taken to periodically
disrupt the pellet to ensure complete removal of excess NEM. After the final spin, the
pellet was air-dried and resuspended in 150 pL of reduction buffer (50 mM Tris-HCI, pH

8.0, 7 M urea, 2 M thiourea, 50 mM DTT) per 200 mg of starting tissue. The suspension
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was incubated for 15 min at room temperature and then re-precipitated with 4 volumes of
pre-chilled methanol. As described above, the protein was washed 3 times (3 x 30 min)
with the same volume of methanol and centrifuged after each wash (1 x 15 min; 2 x 5
min). After the final spin, the pellet was air-dried and resuspended in 150 pL of labeling
buffer [40 mM HEPES, pH 7.5; 50 mM NaCl; 200 uM IAF] per 200 mg of starting
tissue. Due to the light sensitivity of IAF, this and all subsequent steps were carried out
under dim light. The suspension was incubated for 10 minutes at room temperature, and
then re-precipitated with 4 volumes of pre-chilled methanol. Again, the protein was
washed 3 times (3 x 30 min) with the methanol and centrifuged after each wash (1 x 15
min; 2 x 5 min). After the final spin, the pellet was air-dried and resuspended in a small
volume (~50 pL per 200 mg of starting tissue) of DeStreak buffer (GE Healthcare).

Protein concentration was determined by CB-X assay (G-Biosciences).

Protein Separation by 2-DE. As above, all steps were carried out under dim light.
To begin, 200 ug of extracted protein was resuspended to a total volume of 180 pL in
DeStreak buffer and absorbed into a pH 4-7 gel strip. Isoelectric focusing in the first
dimension was carried out at room temperature in a Proteon IEF cell using a four-step
method: 1) 250 V, linear increase, 30 min; 2) 500 V, linear increase, 1 hr; 3) 8000 V,
linear increase, 2.5 hr; 4) 8000 V, rapid increase to 35,000 until complete. Separation by
molecular weight was in the second dimension at 150 V until the dye front reached the
gel edge. Gels were then removed from their cassettes and imaged (Aex=488 nm and

Aem=520 nm) using a Typhoon 9410 (GE Healthcare) to detect IAF-labeled proteins.
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After imaging, gels were bathed for 30 min in 100 mL of fixing solution [10% methanol;
7% glacial acetic acid] using an orbital shaker. The fixing solution was removed and the
gels bathed overnight in 50 mL of Sypro Ruby (Biorad) protein stain. After staining, the
gels were again bathed for 30 min in 100 mL of fixing solution. Following a wash step
with MilliQ water to remove any excess stain, the gels were imaged again (Aex=457 nm
and Aem=610 nm) to detect total protein. For all gel replicates within a given set or sets to
be compared, the same laser intensity (400 V for IAF images and 650-800 V for Sypro
images) was used. After imaging was complete, gels were stored in MilliQ water at 4 °C

until needed.

Gel Analysis, Spot Extraction and Mass Spectrometry. Replicate gels images
were aligned using Progenesis Samespots (Nonlinear Dynamics). Further alignment of
replicate control and ozone-treatment gel images was carried out for each pairwise
comparison. In order to quantify expression and thiol composition differences between
the control and treated samples, spot volume was calculated and normalized for each spot
in the aligned images. Those spots that different significantly in volume (ANOVA,
p<0.05) between the averaged control and ozone treatment gels were then marked for
identification.

Excision of significant spots from their respective gels was performed using a Gelpix
System (Genetix) under high humidity (>85%) to prevent gel distortion or tearing. Gel
plugs were dehydrated with 200 pL of acetonitrile (ACN) using a room-temperature

table-top shaker (15 min; 900 rpm). ACN was then removed and the plugs washed five
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times with 200 pL of 50mM NH4sHCO3; 50% ACN (15 min; 900 rpm) with the liquid
discarded after every wash to remove the Sypro Ruby stain. Following the last
NH4sHCO3/ACN wash, the plugs further were washed with 100 pL of ACN (15 min; 900
rpm). After this, the liquid was discarded and the plugs air-dried. Once dry, the plugs
were submerged in 20 uL of trypsin digestion buffer (50mM NHsHCO;3 with 6 ng pL-!
trypsin) and rehydrated overnight at 37 °C. Next, 30 pL of 1% formic acid; 2% ACN was
added to the digests, which were then shaken (30 min; 900 rpm). Following this wash,
the supernatant was saved, the plug transfered to a new tube containing 24 pL of 60%
ACN, and the tube shaken (30 min; 900 rpm). After this final wash, the supernatant was
removed and added to that collected during the previous step, and the plugs discarded.
The combined digest from each gel plug was lyophilized to dryness and then resuspended
in 7 pL of 1% formic acid; 5% ACN.

Peptide separation and analysis were carried out as previously described (30). LC-
MS/MS was conducted via an Eksigent nanoLC with a Dionex C18 PepMap100 column
(75 uM 1id) coupled to a QSTARR XL MS/MS-TOF (Applied Biosystems) The peptide
tandem mass spectra were processed using Analyst QS v1.1 (AB Sciex) and searched
against the NCBInr database (July 2010, 11368323 sequences) using an in-house version
of MASCOT v2.20 (Matrix Science) with the following parameters: tryptic peptides
with <1 missed cleavage site; precursor and MS/MS fragment ion mass tolerances of 0.8
and 0.8 Da, respectively; variable carbamidomethylation and fluoresceination of cysteine;

and variable oxidation of methionine. The data was filtered using Scaffold 3 (Proteome
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Software). Positive identification criteria was >2 peptide sequences, protein probability

01 99.9%, and peptide probability of 80%.

Enzyme Assays. Standard spectrophotometric assays were used to determine activity
of PGK (45), MDH (46), GS (47), GAPDH (48), FBA (49), and RuBisCO (50). To
measure chitinase activity, a fluorescence-based kit (Sigma, CS1030) was used. Tissue
extracts were prepared as above, and equal amounts of control and treated tissue extracts
were added to tubes containing assay-appropriate buffer plus 1% plant protease inhibitors

(Sigma).
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Figure 1. Representative 2-DE Gels. The gels shown contain proteins isolated from
roots of soybean exposed to 60 ppb Os. (A) 2-DE gel visualized for IAF-labeling of the
redox proteome. Lines and corresponding numbers indicate spots which significantly
differed (p<0.05) in degree of oxidation as compared to control. (B) The same 2-DE gel
from panel A, but with total proteome visualized with SYPRO ruby. Lines and
corresponding numbers indicate spots which significantly differed (p<0.05) in total

expression as compared to control.
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Figure 2. Venn diagram of proteins that differ in leaf and root tissues under 60 ppb and
115 ppb Os treatments compared to ambient conditions. (A) Distribution of proteins
across all four combinations of tissue and O3 concentration. Numbers in overlapping
regions of the lobes indicate proteins found in more than one set of conditions. (B-E)
Detailed breakdown of numbers of differentially oxidized (IAF) and/or expressed
(SYPRO ruby) proteins between treated samples and controls. In each panel, the
miniature Venn diagram in the top left corner indicates which lobe from panel A is

analyzed.
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Figure 3. Summary of fold changes in total and redox proteomes of leaf tissue exposed
to 115 ppb Os. Fold changes, relative to ambient O3 control, in oxidation state (IAF -
fold change) and expression level (Sypro - fold change) for identified proteins identified
are plotted. Names of representative proteins are shown with highly oxidized (orange
box) and oxidized/expressed proteins (red) indicated. Additional information about the

identified proteins is provided in Tables S2.
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Figure 4. Metabolic Overview of Total and Redox Proteome Changes in Soybean Leaf
Tissue Exposed to 115 ppb O3. A schematic view of the different metabolic pathways
identified is shown. Proteins that change in oxidation state (orange), expression level
(red), or both oxidation state and expression level (red with black outline) are shown.

Detailed information about the identified proteins is provided in Table S2.
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Table 1. Comparison of enzyme activities in leaf tissues exposed to ambient (40 ppb)
and high (115 ppb) Os. All assays were performed as described in the methods section.
Values are averages + standard deviations for n = 4-8. ND - no detected changes.

Abbreviations are as used in the text.

ambient ozone activity high ozone activity activity fold
(umol min* g FW-") (umol min' g FW-') change

total protein
(oxidation) fold

change
PGK 715+ 82 629 + 68 0.9 1.8 (5.7)
FBA 31.6+6.5 721 +99 23 1.8 (4.8)
GAPDH 18375 693 £ 301 3.8 1.7 (4.4)
MDH 72.0+3.3 93.9+104 1.3 2.0 (5.4)
GS 106 £ 9 246 + 25 2.3 1.9 (4.5)
RuBisCO 1.1+26 10.0£41 0.9 ND (ND)
exochitinase 10.5+0.8 17.2+0.3 1.6 4.0 (9.4)
endochitinase 0.34 £ 0.02 1.40 £ 0.08 4.1 4.0 (9.4)
chitobiosidase 0.012 £ 0.046 0.133 £ 0.023 1.1 4.0 (9.4)
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Supporting Information - Galant et al.
Figure S1. Redox Proteome Labeling Approach. Proteins with free thiols (-SH),
disulfide bonds (-S-S-), or modified cysteines (-S-mod) are incubated with N-
ethylmaleimide (NEM) to block free sulthydryl groups. Oxidized thiols are reduced with
dithiothreitol (DTT). The resulting free thiols are labeled with 5-
iodoacetamidofluorescein (IAF), and then the proteins are separated by 2-DE and

identified by LC-MS/MS.
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Figure S2. Additional Total and Redox Proteome Changes. Panels A-C show the fold

changes in oxidation (IAF - fold change) and expression level (Sypro - fold change)

relative to ambient controls for proteins identified by mass spectrometry in root and leaf

tissues exposed to high and elevated Os. Detailed information about the identified

proteins is provided in Tables S2-S5.
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Figure S3. Immunoblot analysis of RuBisCO large subunit expression. Protein extracts
from leaf tissue exposed to ambient (40 ppb) and high (115 ppb) O3 were probed using
anti-RuBisCO large subunit antibody. Lanes 1 and 3 contain 10 pg of total protein

extract and lanes 2 and 4 contain 5 pg of total protein extract.
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Table S1. Total number of spots detected and identified as either differentially expressed
or oxidized across all experimental conditions. Differentially expressed/oxidized spots

are further broken down into those with either single or multiple proteins.

O3 Level, Spots Spots Differentially  Spots with ~ Spots with  Total Spots
Tissue, and Detected Expressed/Oxidized One Protein Multiple Identified
Signal Proteins
115 ppb, leaf 154 29 9 17 26
Sypro
115 ppb, leaf 171 47 9 18 27
IAF
115 ppb, root 208 36 4 10 14
Sypro
115 ppb, root 196 29 5 6 11
IAF
60 ppb, leaf 196 44 7 4 11
Sypro
60 ppb, leaf 195 43 7 3 10
IAF
60 ppb, root 158 21 7 10 17
Sypro
60 ppb, root 177 28 9 15 24
IAF
Total 1455 277 57 83 140
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Tables S2-S5. Data Summary Tables. These tables list peptides that are differentially
expressed and/or oxidized from 115 ppb O3 leaf tissue (Table S2), 115 ppb O3 root tissue
(Table S3), 60 ppb Os leaf tissue (Table S4), and 60 ppb O3 root tissue (Table S5). The
accession number of the protein, molecular weight, fold changes, identified peptides, and
mascot ion scores are indicated. For each protein, the fold change and spot number are
listed as [(spot number) fold change]. The magnitude of the fold change associated with
each protein is indicated by color in the box, as follows: 1.2- to 3-fold, pale green; 3- to
5-fold, medium green; >5-fold, dark green; -1.2- to -3-fold, pale blue; and -3- to -5-fold

medium blue.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS
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The goal of my thesis work was to obtain new insights into plant redox biology,
with an emphasis on novel forms of redox-response due to oxidative stress. Specifically,
I first sought to shed new light on the use of the glutathione homolog homoglutathone in
legumes through structural and kinetic analyses of the substrate specificity responsible
for the different modes of synthesis.  Secondly, I have examined the regulation of the
soybean thiol-redox proteome in response to changes in real-world oxidative conditions,
namely field-exposure to increasing concentrations of tropospheric ozone.

In the preceding chapters, I described the methodologies used and results obtained
in my efforts to meet my experimental goals. Based on my research results, I determined
that synthesis of homoglutathione (hGSH), instead of glutathione (GSH), by the enzyme
homoglutathione synthetase is largely specified by the replacement of two alanine
residues in the alanine-rich loop with a leucine and proline (Chapter 2). In Chapter 3,
preliminary efforts to test the methodology necessary for detecting differences in protein
expression and thiol redox-state led to the conclusion that it was sound for application in
future larger-scale experiments. Additionally, by comparing the changes in protein
expression and thiol redox-state between B. juncea roots treated with BSO and H>O», |
was able to conclude that differing sources of ROS (exogenous versus endogenous) led to
different protein redox responses. The tested methodology was then applied to tissue
from soybean plants grown under various concentrations of tropospheric ozone in natural
field setting (Chapter 4). From the results obtained, I was able to identify widespread and
large-fold changes in the expression of key proteins which, contrary to what has been

shown in acute exposure experiments, are largely involved in carbon fixation and flux
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(glycolysis, Calvin cycle, and the TCA cycle). As indicated by their formatting, Chapter
2 and Chapter 3 were previously published in the journals Plant Cell and Proteomics,
respectively.  Final adjustments to Chapter 4 are currently underway, and it will be

submitted to PNAS shortly.

Homoglutathione Synthetase and Molecular Diversity of Plant Glutathione Biosynthesis

As described in the preface to Chapter 2, it has been known for more than 20
years that some plants - specifically legumes and grasses - produce thiol-containing
tripeptides besides GSH. Of these tripeptides, hGSH (from legumes) has been the most
thoroughly investigated. Metabolite studies on the localization of hGSH indicate that its
distribution varies across different tissue types in a species dependent manner [Moran et
al, 2000; Matamoros et al., 1999]. In nodules, the most common site of localization,
hGSH content further varies as a function of time till senescence and in response to
changes in stressor concentrations [Loscos et al., 2008].

Like GSH, hGSH is synthesized in two ATP-dependent steps. While the first
step’s enzyme, y-glutamylcysteine synthetase, is shared between the GSH and hGSH
biosynthesis pathways, each pathway has a dedicated second enzyme. Although the
activity necessary for hGSH synthesis was easily isolated, very little was known about
the homoglutathione synthetase (hGS) enzyme itself [Macinol, 1987]. Beginning in
1993, a series of glutathione synthetase (GS) crystal structures were solved and
published, indicating that the enzymes fell within the ATP-grasp superfamily of proteins

[Yamaguchi et. al, 1993; Kato et. al, 1994; Polekhina et. al, 1999; Gogos and Shapiro,
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2002]. Because of high homology between hGS and GS sequences, as well strong
structural identity between ATP-grasp family members, it became apparent that hGS
would look quite similar to GS overall. However, hGS used a different substrate (-
alanine) than GS (glycine); the subtle differences in residues and residue placement
required for this shift in substrate specificity could not be determined by homology
modeling and necessitated the acquisition of an hGS crystal structure.

Chapter 2, “Structural Basis for Evolution of Product Diversity in Soybean
Glutathione Biosynthesis”, describes three x-ray crystal structures of hGS: the open-form
apoenzyme, the open-form enzyme with y-glutamylcysteine bound, and the closed-form
enzyme with hGSH, ADP, and a sulfate ion bound. From these structures, in conjunction
with the available hGS and GS sequences, it was concluded that two residues in the
active site are primarily responsible for dictating substrate specificity between the two
types of enzymes. In GS, terminal contacts with the carboxyl tail of glycine are provided
by two alanine residues as part of the larger alanine-rich loop region. However, in
soybean (and most other sequenced species) hGS, these two alanines are replaced by a
leucine and proline; based on the hGS structure, these replacement residues pull the
alanine-rich loop outwards by several A, allowing the larger B-alanine molecule to be
accommodated in the active site. The critical role of the leucine and proline residues in
conferring substrate specificity to hGS was further confirmed by way of site-directed
mutagenesis. Normally, hGS is not capable of catalyzing the synthesis of GSH at a
physiologically relevant rate. However, the presence of one of two mutations - either

leucine to alanine or proline to alanine, improves GSH catalysis by a factor of 10 or 100,
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respectively. With the simultaneous inclusion of both mutations, GSH catalysis improves
by nearly 1000-fold, demonstrating that the two mutations act synergistically to improve
enzyme efficiency. While a 1000-fold improvement is significant, kinetic analysis of the
Arabidopsis GS enzyme reveals a rate of glycine turnover nearly 10-fold higher than that
of the mutated hGS. Thus, while the AA/LP site is clearly important for dictating
substrate specificity, it can be concluded that other, as yet unknown residues also play a
small but significant role in optimizing turnover rate.

A further conclusion obtained from the three solved hGS crystal structures,
centers on the apparent domain movements required for enzyme catalysis. Based upon
“snapshots” of various enzymes with various substrates bound, it was suspected that GS-
type proteins went through some degree of domain movement as part of their catalytic
cycle. However, as structures from a complete cycle were not available for a single
enzyme, this suspicion could not be confirmed. By solving the structure of hGS in three
forms - the apo enzyme, the intermediate enzyme-y-glutamylcysteine complex, and the
post-reaction complex - a more complete picture of the GS-type domain-movement cycle
has been provided. Two regions - the lid domain (which includes the glycine-rich loop)
and the previously described alanine-rich loop, appear to be the most dynamic and mobile
portions of the hGS enzyme. Prior to substrate binding, these two domains are pulled
back and away, allowing exposure of the active site to the surrounding environment. No
change in domain structure is evident following y-glutamylcysteine binding. When all
three of y-glutamylcysteine, ATP (represented here by ADP and a sulfate), and are in the

active site, the lid domain swings inward to cover the ATP moiety, while the alanine rich
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loops provides stabilizing contacts with both B-alanine and ATP. Once the reaction is
complete, ADP and hGSH are released from the active site, and the enzyme resets itself
into the open apoenzyme form.

As described above, x-ray crystal structures of hGS were solved in three forms.
While these three structures represent key points in the reaction cycle, they do not portray
every step in the mechanism. Because GS, and by extension hGS, utilize a random Ter-
reactant mechanism, there are actually nine different possible combinations of reactants
and products [Jez and Cahoon, 2004]. @ While some of these combinations are
energetically unfavorable and unlikely to occur, others are part of the most-likely
mechanism. In particular, the formation of an enzyme-ATP complex, and an enzyme-
ATP-y-glutamylcysteine complex is strongly favored and, in the case of the latter,
necessary for completion of the reaction. In order to fill in the missing pieces of the
reaction mechanism and provide insight into additional domain movements, it would be
beneficial to obtain crystal structures of both of these hGS complexes in addition to those
already solved. Specifically, a structure of the enzymeenon-hydrolyzable ATP analogey-
glutamylcysteine complex could confirm whether, as indicated for the yeast GS,
movement of the lid domain occurs before introduction of -alanine into the active site
pocket [Gogos and Shapiro, 2002].

There also exists the potential for a number of follow-up experiments involving
the hGSH. Because hGSH has only been found in six legume species - none of which are
closely related to one another - an obvious question to ask is whether hGSH is found in

other legumes [Wojciechowski. et al., 2004]. This line of inquiry would necessitate the
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use of HPLC-based profiling methods for various legume tissue types, and leads to
questions regarding the evolutionary origins of hGSH. Because the available legume
genome sequences show signs of at least one duplication event, it is likely that many
other legumes contain multiple GS genes. However, there is no guarantee that these
copies evolved into hGS in every species. For example, in broad bean, which does not
produce hGSH, the evolution may never have occurred and/or the hGS gene(s) may be
silenced. If only some legumes contain hGS genes, then it is likely that either hGS
evolution was an independent event in each species or hGS evolved and then was
subsequently lost in many legumes. The conclusion that hGS evolution was independent
of course leads to a new query: why do all of the independently-evolved hGS enzymes
utilize B-alanine over some other amino acid? This question would require an answer in
two parts. First, it would be necessary to consider the availability of B-alanine (produced
from uracil degradation or from spermine/spermidine) as compared to other amino acids
[plantcyc.org]. Second, the specific properties, such as solubility, effectiveness as a
redox buffer, and transportability, of hGSH versus other (artificially) synthesized
tripeptides would need to be assessed. These experiments will also hopefully shed light

on hGSH’s role relative to GSH in legumes.

Redox Proteomics: Platform development with Brassica juncea (Indian Mustard)
Based on previous experiments [Jez et al., 2004; Hicks et al., 2007], it was
determined that glutamate-cysteine ligase (GCL), the first enzyme in the GSH and hGSH

biosynthesis pathways, is redox-regulated through the formation of two reversible
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intramolecular disulfide bonds. One disulfide bond controls dimerization, while the
second controls access to the active site; together under reducing conditions they
inactivate the enzyme. Although GCL is not the only enzyme to utilize a thiol-based
redox regulatory mechanism, it is one of the first - besides NPR1 - to be identified in
plants. Prior work has largely focused on targets of the redox-regulatory proteins
thioredoxin and glutaredoxin; while the column chromatography-based techniques
employed are sound, they select for proteins with strong interactions, meaning that low
abundance targets or targets that bind to a different redox-regulatory protein are missed
[Balmer et al., 2003; Motohashi et al., 2001; Yano et al., 2001]. To circumvent this
problem, an alternative non-column-based dual redox labeling strategy was developed.
In short: the free thiol groups of proteins from a plant extract are first labeled with an
alkylating agent. Next, oxidized thiols are reduced and labelled with a thiol-labile
fluorescein derivative. The protein mixture is then separated by isoelectric point and
molecular weight via 2D-SDS-PAGE. Protein spots containing oxidized thiols can be
visually identified, as fluorescein derivatives fluoresce under a narrow range of
wavelengths. The gel spots can then be excised, proteins digested, peptides analyzed by
LC-MS/MS, and spectra matched via MASCOT to yield a likely peptide identity. Using
this approach, the effect of different oxidizing treatments upon protein thiol state can be
compared. If the gels are additionally exposed to a total protein stain, then changes in
total protein expression as a result of treatment can be compared as well.

Chapter 3, “Redox-regulatory mechanisms induced by oxidative stress in Brassica

Jjuncea roots monitored by 2-DE proteomics”, describes a series of experiments in which,
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B. juncea roots were exposed to different oxidizing agents, and the resulting redox and
total protein expression changes were measured. Following 2D-SDS-PAGE, treatment of
roots with either BSO or H20: yielded 50 and 59 gel spots, respectively, that differed
significantly in thiol redox-status between the control and treated samples. A further 40
and 27 spots, respectively, displayed significant and non-overlapping changes in protein
expression between the control and treated samples. From these initial results, it was
concluded that both BSO and H>O: directly affect both thiol-redox status and expression
of root proteins. A closer look at the significant spots detected revealed that a subset of
the detected spots - approximately 11-17 depending on the treatment combination -
contained a single protein, while the remainder contained multiple proteins that co-
migrated on the 2D-gel. Because of the difficulty in assigning definitive redox and
expression fold change values to a single protein within a multi-protein spot, only spots
containing a single protein were analyzed in greater detail. Of those 52 single protein
spots, a large number were found to contain proteins involved in maintaining redox
homeostasis. Given that BSO and H>O: are a source of endogenous and exogenous ROS,
respectively, this result was not surprising. Perhaps more surprising however was the
simultaneous identification of proteins involved in pathways less commonly associated
with ROS management: namely glycolysis, carbohydrate metabolism, and amino acid
biosynthesis, among others. Widespread upregulation/increased oxidation of metabolic
enzymes such as O-acetylserine sulthydrylase and malate dehydrogenase suggest that

existing front-line redox mechanisms may be insufficient to combat ROS exposure, and
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that metabolic reallocation may be required to support the synthesis of additional redox
compounds to maintain cellular state.

An additional conclusion from these experiments stems from the identification of
proteins associated with the H2O2 and BSO tissue treatments: of the proteins from the 52
single protein spots, not one was identified in more than one combination of treatments
(H202/BSO) and detection methods (SYPRO/IAF). This result indicates that, in B.
Jjuncea at least, ROS initiates different redox-response mechanisms depending on whether
the source is endogenous or exogenous. The lack of overlap between SYPRO- and IAF-
significant proteins further indicates a disconnect between protein expression changes
and redox state: for the proteins identified, a change in redox-regulation or a change in
expression - never both - may alter flux through their respective redox response
pathways.

Among the proteins identified in this series of experiments, several - including 3-
phosphoshikimate 1-carboxyvinyltransferase (a component of the shikimate pathway
leading to tyrosine, tryptophan, and phenylalanine biosynthesis) and 5-
methyltetrahydropteroyltri-glutamate-homocysteine S-methyltransferase (from the
methionine biosynthesis pathway), have not been previously identified as containing
redox-sensitive thiol groups. Due to the nature of the dual labeling strategy, it is not
possible to determine from the existing data whether these proteins contain reversible
disulfides or are modified by glutathione, etc. As these proteins may represent regulatory
control points in their respective pathways, it would be beneficial to identify possible

redox-regulatory mechanisms through the use of a more targeted functional studies.
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One of the goals of this set of experiments was to develop a methodology that
could be used to probe the thiol-redox proteome in a variety of plant species and tissue
types under varying conditions. Based on the results as previously described, that goal
has been met. The next step, application to different plants under other oxidative stress
conditions has already been initiated, and the first round of results from those

experiments are described in Chapter 4.

Connecting Proteomes and Climate Change: Ozone-Induced Changes in the Total and
Redox Proteomes of Glycine max (Soybean)

Once a suitable thiol-labeling strategy (described in Chapter 3), had been
developed, the next step to employ it with a more agriculturally relevant and redox-
sensitive crop, such as soybean. To do this, we established a collaborative effort with the
laboratory of Lisa Ainsworth in the USDA-ARS group at the University of Illinois-
Urbana-Champaigne. The Soybean Free Air Concentration Enrichment (SoyFACE)
facility at UI-UC uses a ring-based ozone exposure setup to maintain concentrations over
crops by way of a computer controlled system. Because the soybean plants are sown
directly in the soil, problems obtaining sufficient light and water while being exposed are
avoided, and as an added benefit the plants are able to grow in a natural, exposure-
realistic environment.

As described in Chapter 4, “From crops to climate change: redox proteomics of
soybean ozone responses,” soybean plants were field grown under three different ozone

concentrations using FACE technology, and differences in expression and thiol-content
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assessed via 2D-SDS-PAGE and LC-MS/MS. To confirm that the observed expression
changes translated into appreciable changes in protein activity, activity assays were also
conducted for a number of implicated proteins.

Although previous studies have investigated the effects of acute ozone on the
soybean proteome, none have reported on the consequences of chronic exposure over a
growing season. Moreover, this work is the first to use plants grown in the field with
relevant day-night ozone exposure cycles versus growth chamber experiments in which
plants are constantly exposed to high ozone levels for a few days. This work indicates
that a number of proteins, particularly those involved in primary metabolism, redox
homeostasis, and amino acid metabolism, experience large shifts in their expression and
redox-state. While a subset of these proteins have been previously identified in other
ozone experiments, many represent new additions to the redox-responsive proteome in
plants. In this section, I will focus on the protein classifications in which some of the
largest and/or most abundant fold changes in expression and redox-state took place. I

will also discuss observations of both redox-regulation and redox-response.

i._Ozone induces changes in primary metabolism and amino acid biosynthesis

At concentrations greater than 40 ppb, tropospheric ozone begins to negatively
affect soybean growth and yield. =~ Above ground, these changes visibly manifest
themselves as decreased shoot and pod biomass, fewer pods produced, and premature leaf
senescence.  Within the leaves themselves, ozone entering through the stomata is

converted to ROS, which irreversibly oxidizes the plasma membrane and photosystem
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components, and results in the degradation of chlorophyll. Although no comparable work
has been done with soybeans, acute exposure of clover to 75 ppb ozone resulted in slower
root tip formation and elongation [Vollsnes et al., 2010]. Likewise, in potatoes, chronic
exposure to 80-120 ppb O3 resulted in necrosis and vascular damage above ground, and
decreased tuber size and yield below ground [Asensi-Fabado et al., 2010].

Given that the primary site of plant O3 exposure is the leaves, it follows that
many of the largest fold changes in the proteome occur there. Typically, in response to
oxidative damage, photosynthetic output and Calvin cycle activity are downregulated. To
compensate, plants draw on reserve energy stores, resulting in a decrease in leaf starch
concentrations and a corresponding increase in the sucrose concentration [Ahsan et al.,
2010]. Accordingly, enzymes involved in sugar catabolism must also be upregulated;
previous studies have identified several primary metabolism proteins - among them
malate dehydrogenase and phosphoglycerate mutase - that are increasingly expressed
under ozone stress [Bohler et al., 2007]. My results are consistent with this view; in
leaves exposed to 115 ppb O3, there is upregulation and/or increased oxidation of
multiple primary metabolism enzymes including malate dehydrogenase,
phosphoribulokinase (PRK), and glyceraldehyde-3-phosphate dehydrogenase (G3PDH).
The latter two enzymes are thought to form a complex that is redox-regulated by
thioredoxin in response to changes in light intensity [Howard et al., 2008]. Although
ozone-produced ROS damage cellular light-harvesting capacity, they also lend
themselves to an increasingly oxidizing environment. In this work, PRK and G3PDH are

both approximately 4-fold more oxidized in the 115 ppb-treated tissue relative to the
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control. Likewise, activity assays indicate that G3PDH is approximately 3.7-fold more
active in the 115 ppb-treated tissue relative to the control. Like PRK and G3PDH, malate
dehydrogenase (MD) is an important regulatory control point, serving as the rate-limiting
step of the TCA cycle. Previous studies have shown that cytosolic MD is redox-
regulated, with reversible inactivation occuring under oxidizing conditions [Hara et al.,
2006]. In this study, MD was detected in a number of different tissue-O3 concentration
combinations, with the highest upregulation (2-fold) and oxidation (5-fold) occurring in
leaves exposed to 115 ppb ozone. Though oxidation is thought to decrease MD activity,
this study sees greater activity in leaves exposed to 115 ppb ozone as compared to leaves
exposed to ambient conditions. This is likely due to the fact that, even under oxidizing
conditions, reduced protein makes up a much higher percentage of the total protein than
oxidized protein, and thus a 2-fold change in expression results in a proportionally larger
percentage of reduced - and in this case active - protein being available.

As expression of key proteins increases in response to oxidative stress, the
demand for amino acids used in protein synthesis also increases. In leaves exposed to
115 ppb ozone, the upregulation and/or increased oxidation of a number of proteins
involved in amino acid biosynthesis, including aspartate-semialdehyde dehydrogenase
(ASADH), glutamine synthetase (GS), and phosphoglyerate kinase (PK), was observed.

The first enzyme, ASADH, is of particular importance in plants, as it represents
the primary control point in the biosynthetic pathways responsible for the production of
isoleucine, methionine, lysine, and threonine. Experiments conducted in E. coli suggest

that one of the enzyme’s catalytic cysteine residues can be reversibly reduced to control

175



enzyme activity; however no comparable redox analysis has been conducted using a plant
variant of the enzyme [Alvarez et al., 2003]. This study is the first to identify the
soybean enzyme as a possible redox-regulation target, and as a component of the plant
oxidative-response mechanism.

Like ASADH, GS represents a major metabolic control point in plants. The
enzyme, along with its partner enzyme glutamate synthetase, is part of the GS-GOGAT
cycle and is necessary for assimilation of ammonium in plants. GS itself catalyzes the
ATP-dependent fixation of ammonium to glutamate to form glutamine, while glutamate
synthetase catalyzes the synthesis of two molecules of glutamate from one molecule of
glutamine and one molecule of 2-oxoglutarate [Bernard and Habash, 2009]. The active
sites of both cytosolic and plastidic isoforms of GS are known to contain one or more
reaction-critical cysteine residues; redox modification of these residues presents a likely
means for attenuating GS enzyme activity [Bernard and Habash, 2009; Choi et al., 1999].

In the 2D-gel analysis, PK was observed to be upregulated and more oxidized in
response to oxidative stress. Although this enzyme is a key component in the serine
biosynthesis pathway (which leads to production of the redox-critical amino acid
cysteine), I was unable to detect a difference in enzyme activity between the control and
115 ppb ozone-treated extracts. This is likely due to the fact that the isoforms of the
enzyme were all identified in spots containing several other proteins, including fructose-
bisphosphate aldolase (FBA). Since activity assays confirmed a difference in FBA
activity between the control and treated extracts, it is likely that this (and other enzymes)

account for the activity in those spots and that PK is a false positive.
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ii. Ozone affects redox homeostasis and induces stress response proteins

Given that tropospheric ozone is a source of ROS, it is not surprising a number of
proteins involved in maintaining cellular redox homeostasis were differentially regulated
and/or oxidized in response to ozone exposure. Across several different tissue-type/
ozone concentration combinations, multiple different isoforms of glutathione-s-
transferase (GST) were detected. In plants, GSTs comprise a large family of enzymes
that, as their name suggests, conjugate glutathione to a variety of substrates to aid in
xenobiotic detoxification or to serve a redox-protective function (Dixon et al., 1998). In
our study different isoforms were both up or down regulated, more oxidized or more
reduced in the treated tissues relative to the controls, but this is to be expected given the
diversity of reactions that GSTs catalyze. In the roots of soybean plants treated with 60
ppb ozone, I detected an uncharacterized isoform of thioredoxin that was upregulated
relative to the control tissue (Table 2d). By homology (BLAST), this thioredoxin is
likely an m-type, meaning that it is localized to the chloroplasts. Given that the ROS
generated from ozone degradation arguably have their greatest effect against redox-
sensitive chloroplast components, the upregulation of such a thioredoxin is logical. This
thioredoxin was not observed as being differentially regulated/expressed in the roots of
plants exposed to 115 ppb ozone, nor was it observed in leaf tissue, suggesting that its
expression may be tied to the degree of oxidative damage experienced by components of
the “dark reactions” of carbon fixation.

Methionine sulfoxide reductase (MSR) also appears to be an important

component of the soybean ozone response and was observed to be 2.7-fold more oxidized
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in this study following exposure to 115 ppb ozone. This enzyme is responsible for
recycling the limiting amino acid methionine through the reduction of methionine
sulfoxide. The reaction mechanism for the bacterial enzyme proceeds through the
formation of a intramolecular, thioredoxin-mediated, disulfide bond [Antoine et al.,
2003]. Although it follows that the enzyme would be more oxidized in an ozone-rich
environment, additional work is needed with the plant enzyme to confirm that the same
reaction mechanism applies.

Like MSR, the enzyme ascorbate peroxidase (AP) also plays an important redox-
protective/corrective role. Ascorbate, as described in the introduction, is one of the three
major redox couples found in plants; AP, as part of the larger ascorbate-glutathione cycle,
utilizes ascorbate as a substrate in order to detoxify hydrogen peroxide and other
peroxides produced from oxidative bursts [Noctor and Foyer, 1998]. In this study, total
AP (isoform 2) expression was up-regulated approximately 2.5-fold in leaves exposure to
115 ppb ozone, while AP (isoform 1) was down-regulated 1.5-fold in 115 ppb-exposed
roots. The cause of these differing expression profiles in unclear, though it may relate to
the redistribution of resources from more moderately oxidized (roots) to more severely

oxidized (leaves) tissue types.

iii. Ozone induces both a redox response and changes in redox-regulation

Because ozone, as a denser-than-air gas, is ground-hugging but not ground-
penetrating, it follows that the largest effects of high tropospheric ozone concentrations

would be found in aerial plant tissues. In this study, the largest fold-changes in protein
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expression and redox state were found in leaves exposed to 115 ppb ozone, and overall
more than half of the significant proteins were detected in leaf tissue. However, a sizable
minority of proteins were identified exclusively in root tissue. Given that this tissue was
not exposed to ozone, several hypotheses exist concerning why local changes in
expression and redox state were observed. One possibility is that ozone-induced ROS act
as a propagated signaling molecules that directly prompt changes in protein redox state
and regulation. Ozone, besides its capacity for degradation into multiple ROS, is also
known to prompt the rapid release of H>O> into the cell apoplast as a result of even short
term exposure [Rao and Davis, 2001]. H202 is able to diffuse into cells through
oxidative-gated aquaporins, and can function as an intercellular signal for activating the
hypersentitive response and other plant defense mechanisms [Henzler et al., 2004;
Henzler and Steudle, 2000]. In this situation, ROS can not only directly regulate the
activity of anti-oxidation enzymes, but can also instigate a secondary redox response
through the activation of transcription factors and other protein expression machinery.
However, given their high reactivity, it is unlikely that most ROS would be able to diffuse
more than one or two cells from their site of origin before being consumed [Murphy et
al., 2001]. Although it is theoretically possible that ROS could serve as a long-distance
signaling molecule by propagating from cell at a time, the majority of evidence indicates
that it is confined to localized intracellular responses.

Another hypothesis for explaining the observed root response to ozone is that
another small molecule besides the various ROS is responsible for signal transduction.

Out of the other numerous hormones and peptides known to play a role the plant defense
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response, calcium is the most likely candidate. Besides the advantage it gains by being
easily diffused, calcium is also normally maintained in cells for controlling channel flux,
and has previously been implicated as a secondary messenger in several other signal
transduction networks. Prior work in Arabidopsis has indicated that roots and shoots
independently undergo large changes in calcium flux as a result of ozone exposure;
however, it is unclear how much of that flux crosses the shoot/root boundary [Evans et
al., 2005]. Assuming that signal transduction does at least in part proceed from the
exposed shoots to the roots, then the changes in expression we see in soybean root tissue
are likely a secondary redox response, with changes in protein thiol status brought on by
secondary local calcium-induced oxidative bursts.

A third possibility for explaining the observed root response to ozone, is that the
roots themselves are sensing the small amount of ozone able to diffuse from the surface,
and are responding independently of the shoot tissue. Previous studies have confirmed
that exposed roots can mount their own response to ROS independent of the aerial tissue
if the two portions are physically separated [Rentel and Knight, 2004]. If this is the case,
then our observed changes expression and thiol status may again be a result of primary
redox regulation of local proteins, with secondary redox responses occurring beyond the
sites of exposure. In all actuality though, it is likely that a combination of all three
methods of signal propagation are occurring in soybeans as a result of ozone exposure;
further local real-time analysis may be required to fully tease out the differing degrees of

regulation and response observed, particularly in the below-ground tissues.
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iv. Future Work

In chapter 4, 159 proteins were identified that differentially respond and/or are
regulated by changes in tropospheric ozone concentration. Seventy-nine of these proteins
saw significant changes in their expression and/or oxidation state following exposure to
ozone at a concentration of 115 ppb. Many of these proteins (Figure 4 of Chapter 4)
represent critical control points for the maintenance of carbon metabolism. The identities
and distribution of proteins identified in soybean plants exposed to 115 ppb ozone, as
compared to plants exposed to a lower ozone concentration, suggests that the observed
metabolic changes may result from acclimation of the plant to chronic ozone exposure.
Although altered total and redox proteomes were examined in soybean, it is unclear if
these changes correspond to changes in carbon flux and sugar mobilization. That is to
say, are more metabolites being pushed through the system, and from where is the carbon
being obtained?

To examine the effect of chronic ozone exposure on soybean metabolism it would
be beneficial if subsequent analyses of the soybean ozone-redox proteome were carried
out in conjunction with analyses of the soybean metabolome. Using standard GC- and
HPLC-based methodologies, it would be possible to compare the relative pool sizes of
key metabolites (glycolysis, TCA cycle, and amino acid precursors, etc.) from ozone-
exposed and ambient-exposed soybean tissues. To quantify changes in storage
metabolites, fatty acids from crude soybean extract could be converted to fatty acid
methyl esters (so as to make them more polar and volatile), and separated by GC

[www.gerstel.com]. Metabolite identity and quantity could then be determined via
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comparison to the retention time and known make-up of a standard mixture; identity
could also be determined via GS-MS [Lehmann et al., 2009]. For other primary and
secondary metabolites (including amino acids), both polar and non-polar extractions from
the initial tissue would be carried out. Metabolites in the polar phase would be separated
by HILIC (Hydrophobic Interaction Liquid Chromatography) so as to improve their
volatility for downstream electrospray ionization, while metabolites in the non-polar
phase would be separated by traditional reverse phase chromatography [Grumbach et al.,
2004]. As above, metabolite identity and quantity could be determined in both cases
using a standard injection mixture; identifications could also be confirmed via LC-MS.
The resulting data from this series of experiments would indicate whether observed
upregulation of protein expression corresponded to changes in carbon metabolism, and at
what stage of metabolism reallocation of resources was occurring to fuel de novo protein
synthesis.

To complement the above approach, a C'4-based feeding study could also be
carried out. In short, leaf disks from ambient-exposed and high ozone-exposed soybeans
would be soaked in buffer containing one of several C'4-labeled metabolites. At pre-
determined time-points, the leaf disks would then be flash frozen, and leaf metabolites
extracted and fractionated by TLC. The radioactive plates would then be imaged using x-
ray film, and radioactive counts for individual spots would be determined by liquid
scintillation [Katahira and Ashihara, 2009]. Alternately, C'3 could used in place of C'*in
conjunction with fractionation and separation via GS-MS to improve both metabolite

separation and overall sensitivity [Feng et al., 2010, Tang et al., 2010]. Because C13
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occurs naturally at approximately 1 out of every 100 possible carbon atoms, care must be
taken to avoid confusing background C13 with that resulting from labeling. To obtain
absolute quantification, GC metabolite profiles for both ambient- and high ozone-treated
tissues could be compared against a standard injection containing known quantities of
metabolites of interest. By repeating this experiment for different lengths of time and
with different starting metabolites (in particular different sugars, starches, and
photosynthetic precursors), it should be possible to determine not only which metabolic
pools are changing, but also from where the carbon necessary for observed metabolite
and protein changes is being sourced.

For the work described in Chapter 4, tissue from soybean exposed to three
different ozone concentrations (115, 60, and 40 ppb) was harvested at the R3 stage of
development for further analysis; however, acclimation to chronic ozone exposure is
likely a time-dependent process and further analysis should involve investigation of
changes at various soybean developmental stages across the growing season. While the
initial experiments (Chapter 4) provide new insights into ozone-induced changes to the
soybean proteome, in particular the existence of a response threshold between 60 and 115
ppb, the results only reflect a snapshot along a continuum of time- and dose-dependent
responses. By the R3 stage of development, the expression and activity of a number of
metabolomic proteins has been altered, while other ozone-damage marker proteins (in
particular RuBisCO and PEPC) remain as yet unchanged. However, it is unclear how
early during soybean growth and exposure the observed changes are manifested, and

whether or not the changes remain consistent as the growing season progresses. By
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harvesting and analyzing tissue from additional timepoints, a more complete picture of
the soybean temporal redox response, including changes in the specific activities of key
proteins, could be established. As with the additional timepoints, the collection and
analysis of tissues exposed to alternate ozone concentrations, in particular those above
115 ppb and those between 60 and 115 ppb, would provide new and valuable insights.
While the existing data implies the presence of a ozone response threshold between 60
and 115 ppb, it is unclear at what ozone concentration the transition occurs. Better
knowledge of the threshold for changes in the ozone proteomic response may allow
future farmers to enact preventative measures as per predictions for daytime and seasonal
tropospheric ozone concentrations.

Analysis of tissues exposed to ozone concentrations above 115 ppb would allow
for better understanding of how ozone affects the proteome under future-predicted
conditions. Growth chamber studies examining continous or acute exposure to have
indicated that acute exposure to ozone concentrations in excess of 100 ppb results
programmed cell death [Pell et al., 1997; Chen et al., 2009; Overmyer et al., 2003]. A
better understanding of physiological effects resulting from the natural diurnal ozone
cycle and the presence of variable weather conditions may allow field grown soybean to
better mitigate the toxic effects of ozone. Moreover, proteomic and metabolic strategies
may also help in the identification of molecular targets for engineering of ozone tolerant

strains of soybean.
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v. To Build a Better Soybean Plant ...

Because current soybean cultivars are not ozone tolerant, and because traditional
breeding takes more time than can be afforded, biotechnology to engineer soybeans
presents the most reasonable avenue for generating ozone resistant varieties, but this
requires significant understanding of the molecular responses to this abiotic stress. Based
on the completed experiments, it is clear that not just individual proteins, but rather whole
pathways are involved in maintaining the soybean ozone response. While it would be
arguably advantageous to re-engineer all of proteins of glycolysis to increase their
substrate affinities under high stress conditions, it is much more so within the realm of
practicality to focus on one or two proteins at a time. Because many of the proteins
identified in this work are redox regulated, or may yet be identified as such, one possible
avenue is to increase the availability of reducing equivalents to help redox-regulated
proteins maintain an active redox state during exposure to ROS.

The majority of proteins identified as differentially oxidized following ozone
exposure are known targets of thioredoxin or glutaredoxin; thus the “doxins” may
represent a starting point for manipulating the soybean ozone response. Unfortunately,
both thioredoxins and glutaredoxins exist as protein families within a given species (for
example, 4. thaliana has at least 19 and 22 different thioredoxins and glutaredoxins,
respectively), making the choice of one or two to alter difficult in the absence of detailed
interaction data [Buchanan and Balmer, 2005]. Because both glutaredoxins and
thioredoxins ultimately derive their reducing power from NADPH, another option for

increasing the availability of reducing equivalents is to target chloroplast ferredoxin.
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Like the other doxins, ferredoxin is a member of a large protein family; however, plant
species tend to contain relatively few ferredoxin-encoding genes (A. thaliana has 4), a
subset of which encode chloroplast-specific ferredoxins [Hanke et al., 2004; Fukuyama,
2004]. Although NADPH production is ultimately tied to light intensity, the presence of
additional ferredoxin activity may aid in the scavenging of elections that would otherwise
be lost from photosystem I under high light, and additionally help present the formation
of additional ROS.

As an alternative to providing cells with additional reducing equivalents to
combat ozone stress, it may be possible to engineer plants to better neutralize ROS at
their point of entry - prior to the induction of damaging oxidative cascades. Ozone enters
a plant primarily via the stomota, and in the apoplastic space it is rapidly converted to
various toxic ROS. Prior research in broad bean has indicated that ascorbate and
dehydroascorbate concentrations rise rapidly following ozone exposure [Luwe and
Heber, 1995; Kangasjarvi et al., 2005]. As ascorbate is one of the three major redox
couples employed by plants, this observation suggests an effort by the plants to quickly
stave off the creation of damaging ROS. In line with this observation, we also noted the
upregulation of ascorbate perodixase - an enzyme that utilizes ascorbate to detoxify
peroxides - in leaves exposed to 115 ppb ozone. While ascorbate has been implicated as
a major player in apoplasmic detoxification and remains a focus of ongoing studies
[Burkey et al., 2003; Ainsworth et al., 2008], other redox reactive molecules may provide
more subtle contributions. Many other compounds, including flavonols, flavones,

isoflavonoids, and anthocyanins, also display ROS scavenging capabilities, and have
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been found to be localized in part to the apoplast. For example, the presence of the
flavonol quercetin has been noted in the oxidized outer scales of brown onion, and the
isoflavonoids daidzein and sojagol have been identified in ozone-stressed soybean leaves
[Takahama and Hirota, 2000; Keen and Taylor, 1975]. Despite clear benefits associated
with many of these compounds in response to oxidative damage, work in the area has
been slow, due in part to inherent metabolite and metabolite-derivative toxicity at higher
concentrations [Didyk and Blum, 2006; Bais et al., 2003; Parvez et al., 2004].

In the work described in Chapter 4, we noted that expression of two isoforms of
chalcone isomerase were upregulated relative to the control in leaves exposed to 115 ppb
ozone. This enzyme presents an interesting target for improving plant ozone tolerance in
that it is directly upstream of the enzymes responsible for isoflavone, flavonone, and
anthocyanin biosynthesis, among other ROS scavenging metabolites. While based on our
work and available crystal structures chalcone isomerase does not appear to be redox
regulated at the protein level, it is clear that the enzyme responds in some capacity to
oxidative cues [Ferrer et al., 2008]. Limited investigations in duckweed (Lenma gibba)
have indicated that chalcone isomerase trancript accumulation is tied to the inhibition of
chloroplastic electron transport, though it remains unclear whether other signaling factors
are involved [Akhtar et al., 2010]. Accordingly, further investigation of the chalcone
isomerase promotor and its redox responsiveness is warranted. Depending on the motifs
and modes of regulation found during study of the chalcone isomerase promoter, it may
be possible to adjust expression of the enzyme so that its production is more tightly

linked to increases in atmospheric ozone concentration. In that eventuality, the effect of
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greater chalcone isomerase availability on downstream redox metabolite accumulation,
and in turn their ability to disarm invading ozone-based ROS, would also be prime targets
for further investigation.

An additional strategy could be to target the enzymes of carbon metabolism in an
effort to maintain core metabolism at levels that maintain sufficient plant growth and seed
yield. As another target for improving soybean ozone tolerance, RuBisCO at first glance
appears to be an excellent candidate. The enzyme, as the lynchpin of the Calvin cycle, is
responsible for the carboxylation of ribulose-1,5-bisphosphate, and accounts for 30-50%
of the soluble protein present in leaves [Feller et al., 2008]. While higher soluble
RuBisCO concentrations are unlikely to be achievable do to limiting nitrogen, common
sense would dictate that by increasing the enzyme’s catalytic efficiency, it should be
possible to increase overall carbon flux [Parry et al., 2003]. Extensive efforts have been
undertaken to increase CO> specificity via directed evolution, as well as through the
formation of hybrid cross-species holozymes; however, it appears that CO» specificity is
closely tied to Oz specificity (RuBisCO also displays alternate oxygenase activity), and
thus no significant improvements have been made [Parry et al., 2003; Mueller-Cajar and
Whitney, 2008].

In light of these difficulties, efforts to improve carbon flux have also been
directed at key RuBisCO-interactor: RuBisCO activase (RA). RA catalyzes the removal
of the inhibitor carboxyarabinitol 1-phosphate (CA1P) from the RuBisCO active site in
the absence of a key carbamylation modification required for catalysis. As a regulator of

RuBisCO activity, RA is in turn regulated via several distinct mechanisms. Because the
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enzyme displays ATPase activity (as ATP hydrolysis is required for CA1P removal), it is
sensitive to the ratio of ADP:ATP present in the chloroplast. At a ratio of 1:1, common
during the nighttime hours, RA activity is minimal. As the light reactions of
photosynthesis become active however, this ratio increases to 1:2 or 1:3, and RA activity
increases accordingly [Zhang and Portis, 1999; Kallis et al., 2000]. In addition to
ADP:ATP ratio, some isoforms of RA are also regulated by temperature and the
formation of a reversible disulfide bond. In plants, some species contain a gene encoding
only a single, short form of RA, while others produce an additional long form splice
variant or express a longer isoform from a distinct gene [Portis, 2003]. While the larger
isoform appears more sensitive to the ADP:ATP ratio, it is also generally more thermo-
stabile as well [Shen et al. 1991]. The larger isoform additionally is regulated through the
formation of a thioredoxin-mediated disulfide bond at the C-terminus of the protein
[Zhang and Portis, 1999]. The isoforms appear to be co-expressed, and their is limited
evidence to suggest that redox regulation of the larger isoform can effect the activity of
the smaller isoform, though the extent of their interaction remains unclear [Zhang et al.,
2001].

In this study, two different isoforms of soybean RA, (one of which was
differentially oxidized), were identified in leaves treated with 115 ppb ozone. Because
the large isoform is already redox regulated, it presents an excellent target for improving
carbon flux and oxidation tolerance in crop plants. In Arabidopsis, directed evolution of
the small isoform has resulted in several variants that display increased thermo-tolerance

and secondarily improve CO2 assimilation rates and seed yield [Kurek et al., 2007].
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Since tropospheric ozone concentrations are tied to temperature, improvements to the
thermo-tolerance alone of the soybean large RA isoform could confer some benefit.
Using additional directed evolution-based strategies, such as the blending of isoforms
from various species, it may be possible to generate an RA variant that improves soybean

ozone tolerance and helps maintain seed yield.
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Abstract

The methionine chain-elongation pathway required for aliphatic glucosinolate biosynthesis in
plants is thought to have evolved from leucine biosynthesis. In Arabidopsis thaliana, three 3-
isopropylmalate dehydrogenases (AtIPMDHs) play key roles in either methionine chain-
elongation for aliphatic glucosinolate biosynthesis (AtIPMDH1) or in leucine synthesis
(AtIPMDH2 and AtIPMDH3). Here we elucidate the molecular basis underlying the metabolic
specialization of these enzymes. The crystal structure of AtIPMDH2 was solved to provide the
first detailed molecular architecture of a plant IPMDH. Modeling of 3-isopropylmalate binding in
active site of the crystal structure and sequence comparisons of prokaryotic and eukaryotic
IPMDH suggest that substitution of one active site residue in AtIPMDH1 may lead to altered
metabolic function. Site-directed mutagenesis of Phe137 to a leucine in AtIPMDH1 (AtIPMDH1-
F137L) reduced the enzyme activity toward 3-(2'-methylthio)ethylmalate by 200-fold, but
enhanced catalytic efficiency with 3-isopropylmalate to levels observed with AtIPMDH2 and
AtIPMDH3. Conversely, the AtIPMDH2-L134F and AtIPMDH3-L133F mutants enhanced
catalytic efficiency with 3-(2'-methylthio)ethylmalate ~100-fold and reduced activity for 3-
isopropylmalate. Furthermore, the altered in vivo glucosinolate profile of an Arabidopsis ipmdh1
T-DNA knockout mutant could be restored to wild-type levels by constructs expressing
AtIPMDH1, AtIPMDH2-L134F, or AtIPMDH3-L133F, but not by AtIPMDH1-F137L. These results
demonstrate that a single amino acid substitution results in functional divergence of IPMDH in
planta to affect substrate specificity and contribute to the evolution of specialized glucosinolate

biosynthesis from ancestral leucine biosynthesis.
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Introduction

To compensate for their sessile nature, plants evolved mechanisms to cope with rapid
environmental changes and challenges (1). The production of specialized metabolites is one of
the important mechanisms for the survival and fitness of plants (2). The molecular diversity of
these specialized compounds arises from differential modification of common backbone
structures, which necessitates the evolution of homologous enzymes with varied specificities
(1). In plants, glucosinolates constitute a diverse group of sulfur-containing specialized
metabolites (3-4). Biosynthesis of methionine-derived glucosinolates is initiated by the
sequential addition of methylene groups to produce chain-elongated methionine derivatives via
an iterative three-step chain-elongation process that mimics the chemistry of leucine synthesis

(Fig. 1A).

To date, all the genes involved in the methionine chain-elongation process have been
identified and characterized in Arabidopsis thaliana (5-14). The different enzymes of the
methionine chain-elongation pathway for glucosinolate synthesis appear to have evolved from
leucine synthesis either by gene duplication and neo-functionalization of one of the duplicated
genes or by sub-functionalization via differential temporal and spatial expression of gene copies
(14-15). For example, four genes in Arabidopsis encode isopropylmalate synthases (IPMS) with
two (IPMS1 and IPMS2) serving in leucine biosynthesis and the other two genes encoding
methylthioalkylmalate (MAM) synthases (MAM1 and MAM3) catalyzing the committed step in
methionine chain-elongation (5-6, 16). A recent study showed that loss of a C-terminal
regulatory domain and a few amino acid exchanges can covert IPMS into MAM (14).
Specialization of the Arabidopsis isopropylmalate isomerases (IPMI) for different metabolisms

occurs by changes in the oligomeric composition of these enzymes. IPMI are heterodimeric
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enzymes consisting of a large subunit encoded by a single gene and a small subunit encoded
by one of three genes (8-9, 12). Metabolic profiling of the large subunit mutant revealed
accumulation of intermediates in both the leucine pathway and the methionine chain-elongation
pathway, demonstrating the dual function of this subunit in both leucine and glucosinolate
biosynthesis (10). In contrast, the small subunits are specialized to either leucine biosynthesis
or methionine chain-elongation (2, 10, 12). Furthermore, among the six branch-chain
aminotransferases (BCATSs) in Arabidopsis, BCAT4 in the cytosol is specifically involved in
glucosinolate biosynthesis, whereas BCAT3 in the plastids functions in both amino acid and

glucosinolate biosynthesis (7, 9). However, the changes that tailor BCAT activity are unclear.

Previously, we showed that Arabidopsis thaliana isopropylmalate dehydrogenase 1
(AtIPMDH1) catalyzes the oxidative decarboxylation step in the methionine chain-elongation of
glucosinolate biosynthesis and that AtIPMDH2 and AtIPMDH3 are primarily involved in leucine
biosynthesis (Fig. 1B) (11, 13). These studies highlight the functional specialization of these
isoforms, but do not reveal how these activities evolved. Here we examine the molecular basis
for the functional evolution of the IPMDH family in Arabidopsis. The crystal structure of
AtIPMDH2, the first determined for a plant IPMDH, reveals an active site structure similar to that
of the bacterial enzymes and provides a template for modeling substrate binding in the active
site. Analysis of the AtIPMDH2 structure, sequence comparisons, and site-directed mutagenesis
demonstrate that a single residue difference in the active site drastically alters substrate
specificity of the AtIPMDH isoforms both in vitro and in vivo. This work demonstrates the basis
for functional divergence of an AtIPMDH isoform for glucosinolate biosynthesis from those

involved in leucine biosynthesis.

Results
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Sub-functionalization and AtIPMDH Metabolic Specialization. The three IPMDH
genes in Arabidopsis have overlapping, yet distinct expression patterns. AtIPMDH1 (At5g14200)
is highly expressed in leaves and roots; A{IPMDHZ2 (At1g80560) is weakly expressed throughout
the plant; and A{IPMDH3 (At1g31180) is constitutively expressed at high levels in all tissues
(11, 13, 17). To test the possible contribution of differential expression to the specialization of
AtIPMDHs, each gene was placed under control of the native At/IPMDH1 promoter and then
transformed into an atipmdh1 mutant line (11). As shown in Fig. 2, the altered glucosinolate
profile of the atipmdh1 mutant could only be rescued by expression of At/IPMDH1. The results

indicate that subfunctionalization may not be the cause of AtIPMDH specialization.

Structure of AtIPMDH2. To determine the molecular architecture of a plant IPMDH, the
2.25 A resolution x-ray crystal structure of AtIPMDH2 was solved by molecular replacement
(Table S1). AtIPMDH2 is a dimeric protein with each monomer consisting of two domains (Fig.
3A). Domain 1 contains seven a-helices (a1-4 and a9-11) and five B-strands (81-3 and $11-12),
along with the N- and C-termini. Four a-helices (a5-8) and seven B-strands (34-10) comprise
domain 2. Between the two domains, 34 and B5 form the interdomain region. The second
domain also serves as the dimerization interface with 6 and 37 of each monomer as part of an
inter-subunit B-sheet and a7 and a8 of each monomer forming a four-helix bundle at the dimer
interface. The overall structure of AtIPMDH2 is similar to those of the IPMDH from various
bacteria, including Salmonella typhimurium and Thermus thermophilus (18-20), with a root
mean square deviation of 1.3-1.7 A? over ~350 residues. Because the plant and bacterial
IPMDH share ~50% sequence identity, conservation of key residues defines the active site

region situated in a cleft between the two domains of each monomer (Fig. 3A).

The active site (Fig. 3B) is roughly delineated by a8 at the bottom and with a4 of one

monomer and a7 of the adjacent monomer forming opposite sides of the site. Within the active
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site, all of the residues previously identified in structures of bacterial IPMDH in complex with
isopropylmalate and Mg?* are also conserved in AtIPMDH2 (18, 20). Because efforts to obtain a
structure of AtIPMDH2 in complex with ligands did not yield crystals, 3-isopropylmalate and
Mg?" were modeled into the plant enzyme based on the positions of these ligands observed in
the bacterial structures (Fig. 3B and C) (18, 20). This comparison shows that Asp264* (asterisk
denotes adjacent monomer), Asp288, and Asp292 are positioned to interact with a catalytically
essential divalent metal (i.e., Mg?* or Mn?*) and that a trio of arginines (Arg136, Arg146, and
Arg174) is poised to form charge-charge interactions with the carboxylate groups of the
substrate. Residues corresponding to Leu132, Leu133, Tyr181, Lys232*, Asn234*, and Val235*

form a largely hydrophobic region around the isopropyl group of the substrate.

Although all of these amino acids are invariant in the bacterial and plant IPMDH involved
in leucine biosynthesis, the side-chain corresponding to Leu133 is replaced with a
phenylalanine in AtIPMDH1 (Fig. 3D), which is the isoform previously shown to be primarily
involved in glucosinolate synthesis in Arabidopsis (11). Mechanistically, the conversion of 3-
isopropylmalate to 4-methyl-2-oxovalerate in leucine synthesis and the conversion of 3-malate
derivatives (e.g., 3-(2'-methylthio)ethylmalate) to 2-oxo acids (e.g., 5-methylthio-2-oxopentoate)
in glucosinolate synthesis likely use a common metal-dependent reaction (Fig. S1); however,
different substrate side-chains of 3-malate derivatives (Fig. 1B) must fit in the plant IPMDH
active site for production of aliphatic glucosinolates with six different chain lengths (C3-C8).
Thus, we hypothesize that this single amino acid exchange from the leucine found in AtiPMDH2
and AtIPMDH3 to the phenylalanine in the active site of AtIPMDH1 may contribute to the

functional divergence of this isoform for glucosinolate biosynthesis.

Biochemical Analysis of Wild-Type and Mutant AtIPMDH. Previous studies on the

AtIPMDH demonstrate that each isoform accepts 3-isopropylmalate as a substrate (11, 13), but
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a kinetic comparison with a glucosinolate pathway substrate has not been reported. Using both
3-isopropylmalate and 3-(2'-methylthio)ethylmalate, the steady-state kinetic parameters for each
AtIPMDH were determined (Table 1 and Fig. 4). Comparison of the catalytic efficiencies shows
that AtIPMDH2 and AtIPMDH3 favor 3-isopropylmalate over 3-(2'-methylthio)ethylmalate by
14,900- and 29,600-fold, respectively. Moreover, these isoforms were ~20-fold more active with
the leucine biosynthesis substrate than AtIPMDH1. In comparison, AtIPMDH1 accepts both
substrates with comparable k../K, values, but was ~500-fold more efficient with the
glucosinolate substrate than the other two isoforms. These catalytic efficiencies agree with the
observed in vivo roles of the AtIPMDH isoforms in glucosinolate and leucine synthesis pathways

(11-13).

To investigate the significance of the active site difference in the AtIPMDH, a series of
point mutants (AtIPMDH1-F137L, AtIPMDH2-L133F, and AtIPMDH3-L134F) were generated.
Kinetic analysis of these mutants demonstrates the critical role of this active site change in
determining substrate specificity (Table 1 and Fig. 4). In AtIPMDH1, substitution of Phe137 with
a leucine reduced the ke/Km of the mutant for 3-(2'-methylthio)ethylmalate to values
comparable to those observed for AtIPMDH2 and AtIPMDH3. This was also accompanied by
improved catalytic efficiency with 3-isopropylmalate, as the AtIPMDH1-F137L mutant was only
2- to 3-fold less efficient with this substrate than AtIPMDH2 and AtIPMDH3. The complementary
mutation in either AtIPMDH2 (L133F) or AtIPMDH3 (L134F) yields mutant enzymes that were
~30-fold less active with 3-isopropylmalate than the corresponding wild-type proteins, but still
comparable to wild-type AtIPMDH1. Moreover, AtIPMDH2-L133F and AtIPMDH3-L134F
displayed nearly a 100-fold improvement in activity with 3-(2'-methylthio)ethylmalate as a
substrate to kc./Km values that were 4- and 7-fold less than those observed with AtIPMDH1.

These results demonstrate the critical role of the residue at position 133 (AtIPMDH2 numbering)
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in the evolution of AtIPMDH1 for the methionine chain-elongation reactions of glucosinolate

biosynthesis.

In vivo Analysis of AtIPMDH Mutant Function. To test whether the amino acid
substitution that occurred in AtIPMDH1 contributes to its specific function in vivo, atipmdh1
mutant plants were transformed with each of the mutant A{/PMDH genes driven by the
AtIPMDH1 promoter. After isolation of homozygous lines, the glucosinolate profile in each
mutant was examined. In comparison to the results shown in Fig. 1, the pronounced
glucosinolate phenotype in the atipmdh1 mutant could not be rescued by AtIPMDH1-F133L
(Fig. 5), indicating that the active site substitution impaired AtIPMDH1 function for glucosinolate
synthesis in vivo. In contrast, the glucosinolate phenotype could be restored to the wild-type
profile by expression of either AtIPMDH2-L133F or AtIPMDH3-L134F (Fig. 5). The in planta
findings corroborate the conclusion drawn from the biochemical analysis of recombinant
proteins and provide evidence for the evolution of AtIPMDH1 by gene duplication and a single

critical amino acid substitution.

Discussion

The evolution of specialized metabolism from primary metabolism is a common theme
across biochemical pathways in plants (and microbes). Here we explored the molecular basis
underlying the divergence of biological function in the IPMDHs of Arabidopsis. Although all three
AtIPMDH accept 3-isopropylmalate, AtIPMDH1 is less efficient than the other isoforms (11, 13).
Previous work also showed that knockout mutants of A{/IPMDH1 result in reduced levels of C4
to C8 aliphatic glucosinolates (11). In contrast, knockout mutations of the other isoforms did not

alter glucosinolate levels but reduced leucine content (11, 13). Interestingly, a double mutation
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of AtIPMDH?2 and AtIPMDH3 in Arabidopsis plants led to defects in pollen and embryo sac
development, suggesting that leucine synthesis is essential for gametophyte formation. Using a
combination of structural and functional analysis, this work demonstrates that a single amino
acid change in the AtIPMDH active site leads to functional specialization of these enzymes in
leucine synthesis (primary metabolism) and aliphatic glucosinolate synthesis (specialized

metabolism).

Possible sub- and neo-functionalization processes can drive the evolution of specialized
metabolism (14-15). To evaluate if altered expression of At/IPMDH isoforms underlies functional
specialization, each isoform gene was expressed under control of the At/IPMDH1 promoter in an
atimpdh1 mutant background (Fig. 2). Because the glucosinolate profile in the mutant was
rescued only by expression of AtIPMDH1, it appears that neo-functionalization, involving gene
duplication and subsequent mutation to a new function, may be the underlying evolutionary

mechanism.

The three-dimensional structure of AtIPMDH2 (Fig. 3) and functional analysis (Table 1
and Fig. 4) of the AtIPMDH provides insight on the specific changes required to alter the
metabolic roles of these enzymes. A common chemical transformation is required to convert 3-
isopropylmalate to 4-methyl-2-oxovalerate in leucine synthesis and 3-malate derivatives to 2-
oxo acids in glucosinolate synthesis (Fig. 1). The AtIPMDH active site includes invariant
residues for binding of either Mg®* or Mn?* (Asp288, Asp292, Asp264*) and for charge-charge
interactions with the substrate carboxylate groups (Arg136, Arg146, and Arg174). Likewise,
Tyr181 and Lys232*, which are proposed to perform general acid-base chemistry in the reaction
mechanism (21), are conserved. For both 3-isopropylmalate (leucine synthesis) and 3-malate
derivatives (glucosinolate synthesis), the overall reaction (Fig. S1) involves oxidation of the

alcohol by deprotonation and hydride transfer to NAD®. This is followed by spontaneous
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decarboxylation, stabilization of the resulting enolate by the metal ion, and protonation to yield

the final product.

Leucine and glucosinolate synthesis requires the same chemistry, but the AtIPMDH
active site must accommodate reactants with different side-chains (i.e., isopropyl versus
elongated methionine side-chain groups). The AtIPMDH2 structure and sequence analysis
reveals a single amino acid difference of a leucine (AtIPMDH2 and AtIPMDH3) versus a
phenylalanine (AtIMPDH1) in the active site. This difference occurs in the set of residues
proposed to form the substrate interaction surface in the bacterial and plant IPMDH (18-20).
Both in vitro and in vivo functional analysis of AtIPMDH1-F137L, AtIPMDH2-L133F, and
AtIPMDH3-L134F demonstrates that switching this amino acid in each isoform is sufficient to
interconvert catalytic efficiency (Table 1 and Fig. 4) and to change the aliphatic glucosinolate
profiles in transgenic plants (Fig. 5). These results suggest that gene duplication of AtIPMDH
followed by mutation of one active site residue in AtIPMDH1 leads to its specialized role for

glucosinolate synthesis in Arabidopsis.

The structure-function analysis of the AtIPMDH provides insight on the molecular basis
for altered function, but it is unclear how the leucine to phenylalanine mutation allows AtIPMDH1
to accommodate the growing methionine chain in subsequent iterations of the glucosinolate
synthesis reactions (Fig. 1A). Multiple structures of IPMDH from bacteria indicate that the
structural features around the active site are flexible and that active site dynamics likely plays a
potential role in substrate recognition and catalysis (22). Moreover, the effect of the longer side-
chain on the kinetics of the various glucosinolate biosynthesis pathway enzymes (i.e., BCAT,
MAM, IPMI, and IPMDH) has not been explored. In Arabidopsis, multiple lines of evidence
strongly support the evolution of methionine chain-elongation process of glucosinolate

biosynthesis from leucine biosynthesis (5-8, 11); however, the molecular underpinnings for this
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evolution are only beginning to be understood. For example, the substrate specialization of the
heterodimeric IPMI is determined by which small subunit associates with the large subunit (2, 8,
10, 12). More recently, the changes needed to convert IPMS from leucine synthesis into a MAM
was demonstrated to involve the loss of a C-terminal regulatory domain responsible for
feedback inhibition by leucine and a series of amino acid mutations (14). In contrast to large
remodeling of protein structure in IPMS and MAM, the substrate specificity of IPMDH requires

one amino acid difference.

Interactions between Arabidopsis and its environment may have driven the co-evolution
of the pathways needed to synthesize the core glucosinolate structure and the elongation of the
methionine side-chain. The biosynthesis of the glucosinolates has been suggested to have
evolved from the prevalent system of cyanogenic glucoside biosynthesis (23-24). Evidence for
this includes the wide distribution of cyanogenic glucosides in plants and arthropods, and the
conservation of cytochrome P450s in the biosynthesis of glucosinolates and cyanogenic
glucosides. In addition, metabolic engineering using cytochromes P450 involved in cyanogenic
glycoside biosynthesis allows for the generation of acyanogenic plants that also display altered
glucosinolate profiles (24-25). It is evident that when environmental challenges such as insect
herbivores present themselves, specialization of enzymes from different pathways contributes to

the evolution of methionine-derived glucosinolates for plant survival.

In summary, we have determined the molecular changes responsible for the recruitment
of AtIPMDH from leucine biosynthesis for the specialized synthesis of glucosinolates. Future
studies need to explore protein level changes in other glucosinolate enzymes to understand

how the entire glucosinolate pathway evolved.

Materials and Methods
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Plants and Growth. Seeds of Arabidopsis thaliana ecotype Columbia (Col-0) and SALK
mutant atipmdh1 (Salk_063423C) were obtained from the Arabidopsis Biological Resource
Center (ABRC). Seed germination and plant growth conditions were as previously described

(11, 13).

Plasmid Construction and Plant Transformation. Oligonucleotides used in this study are
listed in Table S2. The full-length coding sequences of A{IPMDH1, AtIPMDH2 and AtIPMDH3
were amplified using the Platinum Pfx DNA Polymerase (Invitrogen) with appropriate primer
pairs. PCR products were firstly cloned into pSC-B-amp/kan vector using StrataClone Blunt
PCR Cloning Kit (StrataClone), and then sequenced. Correct fragments were subcloned into the
AtIPMDH1pro::GUS vector (11) to generate constructs for each isoform and/or mutant under
control of the AtIPMDH1 promoter. The resulting constructs were introduced into Agrobacterium
tumefaciens strain C58C1 followed by transformation into atipmdh1 plants. Transgenic plants

were selected for hygromycin resistance and homozygous plants used for subsequent analysis.

Glucosinolate Analysis. Rosette leaves of 4-week-old plants and mature seeds were used
for glucosinolate analysis. Glucosinolates were analyzed using HPLC-mass spectrometry as

previously described (11, 13).

Protein Expression, Purification, Assays, Crystallization, and Structure
Determination. Expression and purification of wild-type and mutant AtIPMDH as histidine-
tagged proteins for functional analysis was performed as previously described (11). IPMDH
assay conditions using either 3-isopropylmalate or 3-(2'-methylthio)ethylmalate as a substrate
and the analysis of steady-state kinetic parameters were as previously described (11). For

crystallization of AtIPMDH2, the histidine-tag was removed by thrombin digestion and the
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protein further purified using size-exclusion chromatography (27). Crystals of AtIPMDH2 were
obtained in 5 uL hanging drops of a 1:1 mixture of protein and crystallization buffer (0.16 M
ammonium sulfate, 0.08 M sodium acetate trihydrate, 20% PEG 4000, 20% glycerol) at 4 °C
over a 0.7 mL reservoir. Data collection (100 K) was performed at the beamline 19-ID at the
Advanced Photon Source Argonne National Laboratory. Diffraction data was integrated and
reduced using HKL3000 (28). The structure of AtIPMDH2 was solved by molecular replacement
performed with PHASER 29) using the structure of IPMDH from Salmonella typhimurium (19) as
a search model. Model building was performed in COOT (30) and all refinements were

performed with Phenix (31).

Site-Directed Mutagenesis. Site-directed mutagenesis was performed using the
QuikChange PCR method (Stratagene). Bacterial expression vectors for each AtIPMDH (11, 13)
were used as templates with specific oligonucleotide pairs (Table S2). Protein expression,

purification, and assays were performed as described above for wild-type protein.
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Figure Legends

Fig. 1. (A) Overview of the methionine chain-elongation pathway of aliphatic glucosinolate
biosynthesis in Arabidopsis thaliana. Note that a chain-elongated 2-oxo acid can serve as a
substrate for MAM1 and MAM3 in subsequent rounds through the pathway to yield longer side-
chain products. (B) IPMDHs catalyze the conversion of 3-isopropylmalate to 4-methyl-2-
oxovalerate in leucine synthesis and the conversion of 3-(2'-methylthio)ethylmalate to 5-

methylthio-2-oxopentoate in glucosinolate synthesis.

Fig. 2. Glucosinolate profiles in seeds (A) and leaves (B) from wild-type, atipmdh1 mutant, and
transgenic plants harboring each AtIPMDH driven by the A{IPMDH1 promoter. Levels of
aliphatic glucosinolates with varied methylene chain length (C3-C8) are shown. All indole

glucosinolates are combined into a single group. Data are mean * standard deviation (n=3).

Fig. 3. Structure of AtIPMDH2. (A) Ribbon diagrams of the AtIPMDH2 dimer. Monomer A is
shown with gold a-helices and blue B-strands and monomer B is drawn with rose a-helices and
green B-strands. Secondary structure features are labeled on the A monomer. The left view
shows the dimer down the 2-fold axis. The right view is rotated 90° to show the two domains of
each monomer. The position of the active site cleft is indicated. (B) Active site view and model
of 3-isopropylmalate (IPM) and divalent metal (M?"). Side-chains of active site residues are
shown with those from the adjacent monomer (grey) indicated by an asterisk. The positions of
the substrate and metal are modeled based on the bacterial structures (18-20). The active site
difference among the AtIPMDH isoforms is highlighted in gold. (C) Schematic of the active site

model. (D) Sequence comparison of the region including residue 133 (AtIPMDH2 numbering).
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Fig. 4. Comparison of the catalytic efficiencies (k.a/Km) of wild-type and mutant AtIPMDH using

3-isopropylmalate (white bars) and 3-(2'-methylthio)ethylmalate (black bars).

Fig. 5. Glucosinolate profiles in seeds (A) and leaves (B) of wild-type, atipmdh1 mutant, and
transgenic plants expressing AtIPMDH1-F137L, AtIPMDH2-L133F and AtIPMDH3-L134F driven
by AtIPMDH1 native promoter. Levels of aliphatic glucosinolates with varied methylene chain
length (C3-C8) are shown. All indole glucosinolates are combined into a single group. Data are

mean + standard deviation (n=3).
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Table 1. Kinetic parameters of wild-type and mutant AtIPMDHs.

3-isopropylmalate 3-(2"-methylthio)malate
Keat K Keatl Km Keat Km Keat! Kim
(min™!) (M) (s (min) (M) (M7sT)
AtIPMDH1 37+4 252+23 24,471 51+5 453+36 18,763

AtIPMDH1-F137L 230+14 11.4+1.7 336,257 2.0+x0.2 323x21 103

AtIPMDH2 373+33 109+1.3 570,336 1.0+0.2 435%32 38.3

AtIPMDH2-L133F 375 30.3+£25 20,352 22+1 77.0+£85 4,761

AtIPMDH3 543+36 9.2+14 983696 1.0+x0.1 502x35 33.2

AtIPMDH3-L134F 44 %5 285+15 25,731 161 103+10 2,589

Data are means * standard error (n = 3).
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