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Abstract 

Predicting Disease Progression Using Deep Recurrent Neural Networks and Longitudinal 

Electronic Health Record Data 

By 

Seunghwan Kim 

Master of Science in Computer Science 

Washington University in St. Louis, 2020 

Research Advisor: Professor Philip R.O. Payne 

 

Electronic Health Records (EHR) are widely adopted and used throughout healthcare systems 

and are able to collect and store longitudinal information data that can be used to describe patient 

phenotypes. From the underlying data structures used in the EHR, discrete data can be extracted 

and analyzed to improve patient care and outcomes via tasks such as risk stratification and 

prospective disease management. Temporality in EHR is innately present given the nature of 

these data, however, and traditional classification models are limited in this context by the cross-

sectional nature of training and prediction processes. Finding temporal patterns in EHR is 

especially important as it encodes temporal concepts such as event trends, episodes, cycles, and 

abnormalities. Previously, there have been attempts to utilize temporal neural network models to 

predict clinical intervention time and mortality in the intensive care unit (ICU) and recurrent 

neural network (RNN) models to predict multiple types of medical conditions as well as 

medication use. However, such work has been limited in scope and generalizability beyond the 

immediate use cases that have been focused upon. In order to extend the relevant knowledge-

base, this study demonstrates a predictive modeling pipeline that can extract and integrate 
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clinical information from the EHR, construct a feature set, and apply a deep recurrent neural 

network (DRNN) to model complex time stamped longitudinal data for monitoring and 

managing the progression of a disease condition. It utilizes longitudinal data of pediatric patient 

cohort diagnosed with Neurofibromatosis Type 1 (NF1), which is one of the most common 

neurogenetic disorders and occurs in 1 of every 3,000 births, without predilection for race, sex, 

or ethnicity. The prediction pipeline is differentiable from other efforts to-date that have sought 

to model NF1 progression in that it involves the analysis of multi-dimensional phenotypes 

wherein the DRNN is able to model complex non-linear relationships between event points in the 

longitudinal data both temporally and also within the cross-sectional observation. Such an 

approach is critical when seeking to transition from traditional evidence-based care models to 

precision medicine paradigms. Furthermore, our predictive modeling pipeline can be generalized 

and applied to manage the progression and stratify the risks in other similar complex diseases, as 

it can predict multiple set of sub-phenotypical features from training on longitudinal event 

sequences. 
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Chapter 1: Introduction  

Electronic Health Records (EHR) are widely adopted and used throughout healthcare 

systems and are able to collect and store longitudinal information data that can be used to 

describe patient phenotypes. From the underlying data structures used in the EHR, discrete data 

can be extracted and analyzed to improve patient care and outcomes via tasks such as risk 

stratification and prospective disease management. Previously, there have been various attempts 

to utilize machine learning models to predict clinical conditions, monitor risk progression, and 

identify phenotype complexes (Wei et al., 2017; Miled et al., 2020; Dodek et al., 1998; Goldstein 

et al., 2017). This chapter gives a brief summary of the background of temporality in EHR, 

clinical predictions using EHR, and the clinical background of Neurofibromatosis Type 1 as a 

use case. 

Background 

EHR was developed in 1960s, but it was not until the early 2000s when EHR was widely 

adopted throughout the healthcare systems. Since EHR collects longitudinal information data of 

patients throughout the course of visits, temporality in EHR is innately present given the nature 

of these data. Temporality can be present across different scales of time depending on the clinical 

importance of observation, from frequently measured lab tests to visits to annual visits for a 

broader progression monitoring. 

Before the development of EHR, clinicians managed the progression of diseases through 

evidence-based decision from empirical experience. However, many diseases have complex 

multi-dimensional phenotypes and clinicians often lack a standard model for risk management 

because of that clinical variability. Furthermore, incorporating temporal trends across multiple 

dimensions of clinical features was a challenge in traditional medicine.  
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Recently, statistical models have been employed for discovering meaningful insights 

from the complex EHR data (Miled et al., 2020; Dodek et al., 1998; Goldstein et al., 2017). 

Traditional supervised learning approaches were applied to the patient data in EHR, and they 

were successful in disease classification and phenotype comorbidity analyses based on the direct 

observation of discrete set feature vectors (Wei et al., 2017). While they were able to learn from 

high dimensional feature vectors, often the temporal dimension was ignored and multiple feature 

vectors collected over timesteps for a sample were merged to form a discrete feature vector that 

reflects the current observation, thereby limiting for the model to learning only from a cross-

sectional observation of each sample. 

However, finding the temporal patterns is important for progression management in a 

disease with a diverse clinical variability, since the rate of progression for each complex multi-

phenotype may vary tremendously. More recent works have attempted to address the temporality 

by introducing artificial neural networks such as temporal convolutional networks (Cartling et 

al., 2020) and variants of recurrent neural networks (Laksana et al., 2019; Wang et al., 2019). In 

these models, information at each time step is propagated through time in the learning process, 

and the prediction model learns from the entire course of patient’s past states to predict a future 

state. 

Among the diseases that have complex multi-dimensional phenotypes, Neurofibromatosis 

Type 1 exhibits extreme clinical variability. NF1 is one of the most common neurogenetic 

disorders and occurs in 1 of every 3,000 births, without predilection for across race, sex, or 

ethnicity (Friedman, 2002; Friedman, 1999). The clinical variability exists not only in the 

presence of multiple sub-phenotype combinations but also in the progression of such phenotypes 

throughout the pediatric ages. Therefore, it is not possible to have one standardized treatment 
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plan that can fit the entire pediatric NF1 patient cohort, which calls for the use of temporal 

prediction models. 

Outline of Thesis 

Chapter 2 explains the importance of disease progression management modeling, 

describes statistical approaches that are currently used in research, and present our research 

objective. Chapter 3 explains the mechanism of RNN and two gating mechanisms in RNN, 

which are used in this study’s neural network architecture. Then, Chapter 4 describes the data 

preparation methods for the NF1-confirmed pediatric patient cohort. Chapter 5 describes the 

neural network architecture of the model and its implementation details including 

hyperparameter tuning schemes. Chapter 6 details the experiment design and evaluation results 

for this research. Finally, Chapter 7 summarizes the research and discusses its importance in 

clinical research applications. 
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Chapter 2: Disease Progression Management 

Disease progression management is critical in providing precision care for the individuals 

with chronic diseases. Since there are various chronic conditions which can be non-life-

threatening as long as a scheduled treatment is provided throughout the life stages, disease 

progression management is often much more useful for treating those conditions than a simple 

diagnostic system based on a cross-sectional observation. For those conditions, long-term 

progression needs to be monitored and therefore a scalable management model across a large 

range of timesteps is needed. Also, by having such a long-term disease progression management 

plan, clinicians can stratify the risk of each patient and schedule care accordingly.  

Furthermore, disease progression management can be extended to not only provide 

scheduled care for the patients but also identify the temporal development of complex 

phenotypical representations associated with the chronic disease. Especially because modeling 

phenotype progression is a challenge for conditions with extreme clinical variability, a scalable 

management model for high dimensional phenotypical information needs to be developed.  

Fortunately, there are an increasing number of machine learning models that can provide 

investigators and care providers with the tools needed to quickly generate hypotheses concerning 

the relationships between entities found in heterogeneous collections of scientific data — for 

example, exploring potential linkages by a gene, phenotype, and disease management protocols, 

thus enabling the forward engineering of prognostic and therapeutic strategies based on 

knowledge generated via basic science studies (Hood et al., 2004; Hood et al., 2004; Ahn et al., 

2006; Payne et al., 2009; Payne et al., 2005; Schadt et al., 2012). The primary benefit of such 

multi-scale modelling is the ability to create an ensemble of features that maximizes predictive 

power, but is not constrained by data source type or scale. 
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Research Objective 

To handle the limitations of the traditional statistical prediction models on longitudinal 

EHR data, this study demonstrates a predictive modeling pipeline that can predict a complex 

multi-phenotypical representation of the future state by learning temporal patterns across 

multiple dimensions. This predictive pipeline can extract and integrate clinical information from 

the EHR, construct a feature set, and apply a deep recurrent neural network architecture to model 

complex time stamped longitudinal data for monitoring and managing the progression of 

phenotype complexes that are associated with a disease condition. This study was conducted on a 

pediatric patient cohort with confirmed diagnosis of NF1, a chronic disease with extreme clinical 

variability that requires detailed disease progression management in the early life. In particular, 

this study focuses on the scalability of the predictive model for learning temporal clinical trends 

from high dimensional phenotypical feature vectors. For that purpose, long short-term memory 

units and gated recurrent units were chosen in my DRNN architecture to build a scalable 

prediction network. The prediction pipeline is differentiable from other efforts to-date that have 

sought to model NF1 progression, in that it involves the analysis of multi-dimensional 

phenotypes wherein the DRNN is able to model complex non-linear relationships between event 

points in the longitudinal data both temporally and cross-sectionally. Such an approach is critical 

when seeking to transition from traditional evidence-based care models to precision medicine 

paradigms. 
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Chapter 3: Recurrent Neural Networks 

Traditional static neural networks are able to effectively model non-linear relationships 

with large dimension. However, static neural networks are not able to learn from the temporal 

information as it trains. Therefore, in order for the neural network to have the contextual 

information when making a prediction, information from the past states must persist. That led to 

the development of RNN (insert reference), which remembers the information from prior inputs 

throughout the time steps in the training process.  

 

Figure 1. Diagram of the RNN architecture 

As shown in Figure 1, the temporal information is passed through the hidden states across 

the time steps in the hidden layer. In other words, each output of the hidden state of the previous 

time step is used as the input to the hidden state of the next time step. The output of the hidden 

state is calculated using the equation: 

ℎ" = 𝜎(𝑈 ∗ 𝑥")* + 𝑉 ∗ ℎ")*) 

This process simply takes in the input sequence 𝑥")* and the output of the previous hidden state 

ℎ")* and uses a sigmoid activation function to produce the output. We can also see that the 

weights 𝑈, 𝑉, and 𝑊 are shared across time steps in order for the architecture to perform the 

exact same task at each step recurrently, thereby requiring much fewer parameters to train. In 
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such vanilla RNN architecture, we need to backpropagate through time in the weight update 

process using the gradient descent algorithm because all recurrent neurons in the past time steps 

are used to calculate the output. However, because weight V needs repeatedly multiplied to a 

time step in the far past, the gradient of the loss function decays exponentially with time, and we 

may face the vanishing gradient problem. When training a model on large sequences of temporal 

information, this will be problematic because if the difference in gradients is too small, the 

network will not learn anything and will not be able to perform meaningful weight updates. This 

motivated the development of a recurrent unit that can handle long-term dependencies, which is 

called long short-term memory unit (Hochreiter et al., 1997). 

Long Short-Term Memory 

Long short-term memory addresses the vanishing gradient problem by introducing the 

concept of internal memory units. In the RNN shown in Figure 1, weight V, which connects the 

hidden states, was causing the vanishing gradient problem. In LSTM, weight V can essentially 

be fixed to 1, which will not cause the gradient to vanish or explode even after it is multiplied 

across long time steps in the back-propagation process. Instead, a memory cell is present in the 

unit and it controls the propagation of the past information.  

 

Figure 2. Diagram of the LSTM unit architecture 
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As shown in Figure 2, LSTM unit consists of a memory cell 𝑐 and three gates, which are 

forget gate, input gate, and output gate, which control the memory cell state. It has three inputs, 

𝑐")*, ℎ")*, and 𝑥". ℎ")* is the output of the previous hidden state, and 𝑥" is the input vector at 

time step 𝑡. These two input vectors are combined and processed through the sigmoid activation 

function, which produces Boolean output matrix 𝐹" that decides if the forget gate should be 

opened or closed based on the input. Based on the decision, 𝑐")*, the output of the previous 

memory cell state, is passed through. In other words, the forget gate controls how much of the 

value can remain in the memory cell 𝑐. At the same time, the combined input vector goes 

through the tanh activation function and also through another sigmoid function. The outputs of 

these two activation functions decide the input gate. The sigmoid output 𝐼" decides for which of 

the input values the input gate should be opened or closed and to what extent. The tanh output 

decides the candidate values �̃�"that we want to feed into the memory cell. Using the two outputs 

𝐼" and �̃�", we can now update the memory cell state. We take the sum of the leftover information 

of previous memory cell state and the candidate values that are passed through the input gate to 

calculate the new memory cell state 𝑐". The memory cell update process can be mathematically 

expressed as:  

𝑐" = 𝐹" ∗ 𝑐")* + 𝐼" ∗ �̃�" 

Finally, the combined input vector goes through a sigmoid activation function again. The 

sigmoid output 𝑂" decides for which values of the new memory cell state we want to output. 

Then, the new memory cell state 𝑐" goes through a tanh activation function to produce cell state 

values to output. We then multiply outputs 𝑂" and tanh(𝑐") to produce an output ℎ", which also 

becomes the input to the next hidden state: 

ℎ" = 𝑂" ∗ tanh(𝑐") 
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We can observe that LSTM units are very powerful in handling long-term dependencies using 

their internal memory units, especially in a large-scale time series input data. 

Gated Recurrent Unit 

Gated recurrent unit (GRU) is a variant of an LSTM unit with simpler gating mechanism 

(Cho et al., 2014). It was created to overcome the vanishing gradient problem of vanilla RNN, 

just like LSTM. However, GRU is different from LSTM in that it does not have a separate 

memory cell. Instead, it uses gating mechanisms to control the flow of memory within the unit. 

 

Figure 3. Diagram of GRU unit architecture  

As shown in Figure 3, GRU unit consists of two gates: update gate and reset gate. It has 

two inputs, ℎ")* and 𝑥". ℎ")* is the output of the previous hidden state, and 𝑥" is the input vector 

at time step 𝑡. These two input vectors are combined and processed through the sigmoid 

activation function, which produces Boolean output matrix 𝑍" that decides whether the update 

gate should be opened or closed. Based on the decision, ℎ")*, the output of the previous hidden 

state, is passed through the memory. At the same time, a similar mechanism is used to produce a 

Boolean matrix 𝑅", with only different weights for the gate. 𝑅" decides whether the reset gate 

should be opened or closed and which information from the past time steps should be removed. 

Furthermore, we can use the reset gate to calculate the current memory information. 𝑅" is 
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multiplied with ℎ")* to remove unnecessary information from the past time steps. Then, it is 

combined with the input vector 𝑥" and passed through tanh activation function. It can be 

mathematically expressed as: 

ℎ"; = tanh(𝑈𝑥" + 𝑅" ∗ 𝑉ℎ")*) 

where 𝑈 and 𝑉 are weights of the two input vectors. Using this current memory information ℎ";  

and the memory information from past time steps ℎ")*, we can produce the final memory 

information to output, which will be the input to the next hidden state. We can multiply the 

update gate output 𝑍" with ℎ")* to control the flow of past information. We can multiply the 

inverse of the update gate output, 1 − 𝑍", with ℎ";  to control the flow of current information. It 

can be mathematically expressed as: 

ℎ" = 𝑍" ∗ ℎ")* + (1 − 𝑍") ∗ ℎ";  

We can observe that GRU units are also powerful in handling long-term dependencies using their 

gating mechanism, especially in a large-scale time series input data. The major difference 

between GRU and LSTM is that GRU units don’t have output gates and they pass on the entire 

memory information to the future hidden state whereas LSTM units have output gates that 

control the memory information that flows to the future hidden state (Chung et al., 2014).  
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Chapter 4: Dataset 

Neurofibromatosis Type 1 (NF1) exhibits extreme clinical variability, not only among 

unrelated individuals and among affected individuals within a single family but also even within 

a single person at different times in life (Jett et al., 2010). NF1 is one of the most common 

neurogenetic disorders, and occurs in 1 of every 3,000 births, without predilection for race, sex, 

or ethnicity (Friedman, 2002; Friedman, 1999). Therefore, it is not possible to have one 

standardized treatment plan that can fit the entire pediatric NF1 patient cohort. Since the dataset 

of the pediatric NF1 patient cohort has high dimensional phenotypical features and exhibits 

longitudinal visits of the patients, it naturally became our disease cohort of choice.  

Data Collection 

We extracted retrospective clinical data from two sources within the Washington 

University NF Center: the NF1 Clinical Registry and the EHR. From the NF1 Clinical Registry 

data, we extracted 29 unique clinical features in addition to longitudinal data on the development 

of NF1-related clinical features and associated diagnoses. From the EHR, multiple ICD 9/10 

codes associated with NF1 – NF unspecified (ICD 9: 237.70; ICD 10: Q85.00); NF1-like 

syndrome (ICD 9:758.5; ICD 10: Q99.8); and NF1 (ICD 9: 237.71; ICD 10: Q85.01) – were 

extracted in order to account for clinical-level variability in usage of ICD9/10 codes and to 

capture a comprehensive patient cohort. All available diagnosis codes for each individual were 

extracted from the EHR-derived data set and were recorded as 15,890 unique ICD 9/10 codes. 

Given the high number of ICD 9/10 codes, a consistent, concept-level “roll up” of relevant codes 

to a single phenotype description was created by mapping the extracted ICD 9/10 values to 

phenome-wide association (PheWAS) codes called Phecodes (Denny et al., 2010; Denny et al., 

2013), which have been demonstrated to better align with clinical disease compared to individual 
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ICD codes (Wei et al., 2017). Due to necessary privacy and confidentiality measures that were 

implemented during curation of the NF1 Clinical Registry, data sets were merged using first 

name, last name, and date of birth as keys. Full name plus date of birth as a unified linkage 

variable has previously been demonstrated to be an effective method of matching cross-database 

registries with sensitivity of over 87% (Kho et al., 2015).  

Data Preprocessing 

Diagnosis codes recorded in the EHR dataset can be merged onto the clinician-curated 

NF1 Clinical Registry to populate the records of the individuals with more information. Since 

EHR diagnosis codes represent all the encounters and sickness throughout the visits, it can also 

add some information of non-NF1-associated conditions that were present in the patient’s 

history. While the 29 clinical features associated to NF1 from the NF1 Clinical Registry mark the 

most known sub-phenotypical representations of NF1 progression, EHR diagnosis also have the 

potential to capture complex non-linear relationships between the clinical features, which the 

clinicians have yet to discover. Before data from the EHR is merged onto the NF1 Clinical 

Registry data, the former must be transformed first. Data from NF1 Clinical Registry is 

formatted to have a feature vector for each unique visit of the individuals. However, data from 

the EHR is in the unrolled format and is formatted to have a unique diagnosis code for each 

unique visit of the individuals. Therefore, data from the EHR must be converted into a pivot 

table, with patient identification code and visit date as the keys. Upon completion, the 

transformed EHR data can be merged onto data from NF1 Clinical Registry, by an outer join on 

the two keys, patient identification code and visit date. 

Data for 798 individuals were available in the NF1 Clinical Registry. All 798 individuals 

were confirmed patients with NF1. Also, records of 4631 unique individuals from the EHR were 
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extracted for the patient cohort with broader NF diagnosis codes present in the record. In order to 

merge the two datasets by a left join on the NF1 Clinical Registry’s confirmed individuals, the 

overlapping individuals were identified using a map file that maps the unique key of NF1 

Clinical Registry to the unique keys in the EHR data. A total of 734 mappable individuals were 

available in the map file. From the NF1 Clinical Registry, data for 732 individuals were 

mappable using the map file, and among those, 551 individuals had visit records under the age of 

18. From the EHR dataset, data for all 734 individuals from the map file were mappable, and 

among those, 593 individuals had visit records under the age of 18. Because we are merging 

additional diagnosis information extracted from the EHR onto the patient cohort with NF1 

confirmed from the NF1 Clinical Registry, we merge onto all the mappable individuals in the 

NF1 Clinical Registry.  In particular, since our study is focusing on the disease progression 

during the pediatric ages, we only considered the visits under the age of 18, which reduces the 

number of mappable patients in the NF1 Clinical Registry to 551 individuals as described 

previously. Therefore, by filtering the data from the EHR to only include the 551 mappable 

individuals and performing an outer join on two keys, patient identification code and visit date, 

we are able to capture all visit information recorded in the hospital system for the 551 

individuals. 

Data Imputation 

After the merge of the two extracted datasets, we obtain a very sparse comprehensive 

dataset. The addition of EHR data brought in 997 additional features, increasing the total size of 

the feature dimension to 1026. New visits added by the EHR dataset have empty values for the 

29 NF1-associated feature values, and new visits observed by the EHR also have empty values 

for the 997 additional feature values. In order to fill the missing observations, forward imputation 
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method was used. Because a patient visits multiple times, we can propagate information from 

their last recorded visit to fill in the next visit. Since the 29 NF1-associated conditions have a 

slow progression rate, forward imputation from the closest past visit can sufficiently impute the 

missing observations without too many false assumptions. On the other hand, because we have 

no information on how the 997 additional features from the EHR progresses, we have no choice 

but to use the same method for imputing the feature values from the EHR. Missing visit 

information before the first recorded visit of the patient is filled with zeroes, assuming that the 

patient did not have the condition in the past and therefore did not visit the hospital. 

Sequence Generation 

In traditional prediction models, the current dataset is enough to be fed directly as an 

input, as it is already formatted in 2D, with visits as rows and features as columns. For the RNN, 

input is no longer a vector with a length of the feature dimension. Instead, it is a sequence of 

vectors, for which the sequence represents the timesteps and the vector represents the observed 

input vector at a time step.  

 

Figure 4. The input format to the RNN 

As shown in Figure 4, the input the RNN is a 3D matrix, in which each dimension 

represents patients, timesteps, and features. It is quite obvious that each individual will have 

different number of visit records, and that can produce visit sequences with varying lengths.  
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This problem can be addressed by applying a padding across the temporal dimension of 

the input matrix, which pads the patient records to match the patient with the longest visit record 

history. Similarly, the sequences can be trimmed to match the patient with the shortest visit 

record history. While these methods have shown to be effective and have a very small impact on 

the performance of the model, they have less value when it comes to clinical application. In the 

disease progression management of NF1, standard practice is to observe the patient annually, 

because the important NF1-associated features do not have fast progression rates that needs to be 

frequently monitored. Therefore, discretizing the raw visit records into pre-fixed age interval 

bins is much more useful, as the clinicians have the freedom to choose the age intervals from 

which they want to get insight, depending on the particular disease’s standard management 

practice of traditional care. Also, by allowing such freedom, we are able to address the gap 

between machine learning research from the laboratory and clinical practice. A careful design of 

predictive model that incorporates the standard disease management practice is a step closer to 

connecting the gap between two entities and can be extended to enable the forward engineering 

of prognostic and therapeutic strategies based on knowledge generated via basic science studies 

(Hood et al., 2004; Hood et al., 2004; Ahn et al., 2006; Payne et al., 2009; Payne et al., 2005; 

Schadt et al., 2012).  

Using the knowledge from traditional NF1 disease management, we discretized and 

mapped each patient’s visit records into 1 of the 36 age interval bins. Each age bin represents 6 

months of age, and therefore 36 age bins represents the observation of the patient from age 0 to 

18, by every six months. This effectively mimics the traditional management timeline of NF1, 

and by varying the length of training sequence or by varying the target prediction age, we can 

produce a disease progression prediction model with high interpretability and practicality. Any 
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empty bins were imputed by forward propagating the patient’s last recorded visit before the bin. 

If no previous visit record to propagate from is filled with zeroes, assuming that the patient did 

not have the condition in the past and therefore did not visit the hospital. 

This same process was repeated to produce a 3D input matrix to the RNN with just the 

data from the NF1 Clinical Registry. We constructed two sequence matrices, one from EHR-

merged NF1 Clinical Registry data and the other solely from the NF1 Clinical Registry data. 

Both data are temporal, but they differ in the sense that merged dataset has extremely high 

dimensional feature vectors that includes all conditions from the patients’ histories, which often 

may be irrelevant to NF1. On the other hand, the NF1 Clinical Registry only keeps track of 29 

features that are directly related to NF1. Hence, both datasets will be used to compare the 

network’s performance in learning from high-dimensional feature vectors.  
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Chapter 5: Implementation 

To design an RNN architecture that is generalizable to predict the future onset of events 

in longitudinal EHR data, we need a network that can handle various scales of long-term 

dependencies. If the disease condition requires frequent measurement of a certain set of clinical 

features, the temporal dimension will be very large. On the other hand, if the disease condition 

requires a large number of clinical features that are measured sparsely, the feature dimension will 

also be very large. Therefore, our network also needs to be scalable enough to compute high 

dimensional feature vectors and capture the pattern across the feature vector, thereby being able 

to identify progression of complex multi-phenotypical patterns. 

Deep Recurrent Neural Networks Architecture 

 

Figure 5. Simple diagram of 2-layer DRNN architecture with LSTM and GRU 

Figure 5 shows a simplified diagram of the unrolled DRNN. Essentially, there are two 

hidden layers, each constructed with LSTM cells and GRU cells. These two particular RNN units 

were used because of their ability to generalize in scale to capture long-term dependencies across 

the time steps (Hochreiter et al., 1997; Cho et al., 2014). The structures of the two units are very 

similar – they use gating mechanisms to control the flow of memory information between the 
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hidden states. They differ slightly in the number of gates used and by the presence of a memory 

cell unit, and therefore, GRU can achieve a slightly better training time. However, in achieving 

the scalability across the temporal dimension, both architectures have been proven to be effective 

with similar performances (Choi et al., 2016). Even though for our NF1 dataset we have fixed 

the size of the temporal dimension to be 36, it can still exhibit a vanishing gradient problem 

depending on the size of our training sequences. For these reasons, a DRNN with two hidden 

layers consisting of two of the most popular RNN units is created.  

Model Hyperparameters 

Different number of units for each RNN cell, from a single unit to ten and one hundred, 

were tried and tested and the performances were compared to determine that 100 units is the 

optimal number. Similarly, the network was trained with various numbers of epochs: (a) 1, (b) 

10, (c) 100 and the results were compared to decide that 100 training epochs are required for the 

network to train to find the optimal weights. Batch size in the training process was determined by 

comparing the performances of three types of batch gradient descent algorithms: stochastic batch 

gradient descent, mini-batch gradient descent, and batch gradient descent. Mini-batch gradient 

descent with a batch size of 32 was chosen to update the weights relatively frequently while 

avoiding the computational tradeoff of using a stochastic gradient descent. Binary Cross Entropy 

was the loss function of our choice because we are doing a multilabel binary prediction task. 

Adam optimizer was used to tune the learning rate of the network.  
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Chapter 6: Methods 

In the past, we have explored the ability of much simpler classification models in 

predicting a NF1-associate disease condition. Simple logistic regression, support vector 

classifier, random forest algorithm, and gradient boosting algorithms were used to predict the 

presence of a target feature such as optic pathway glioma (OPG), attention deficit hyperactivity 

disorder (ADHD), or plexiform neurofibromas.  

Since the classification models train on each sample’s cross-sectional observation at the 

time of analyses, we obtained poor performance results. For example, a simple logistic 

regression model that predicts OPG had the best F1 score of 0.79 and the best recall of 0.57. The 

same model that predicts ADHD had the best F1 score of 0.71 and the best recall of only 0.44. 

Therefore, we moved on to use the RNN architecture to incorporate temporality and high 

dimensionality. 

Two experiments were designed to directly tackle our goal of learning from the temporal 

progression of a disease cohort. The first experiment tests the performance of the DRNN model 

by varying the length of the training sequences. The next experiment trains the algorithm on the 

training sequences of fixed length, while trying to predict phenotypical representations in 

varying future time steps. 

Experiment Design 

All experiments were repeated on two different input datasets. NF1 Clinical Registry 

input and the EHR-merged input were each split to perform 10-fold cross validation on the 

dataset. The first experiment was designed to analyze the ability of the neural network to learn 

temporal patterns. The length of the training sequences was controlled up to varying age points, 

and the network predicts the sequence of patterns at age 18. By varying the length of the training 
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sequences, DRNN learns temporal patterns across multiple sizes of time steps. Furthermore, the 

traditional approach to NF1 progression management observes patients annually, so training 

sequences of length shorter than one year are not significant. For the network to be able to start 

observing patterns across time, the minimum length of training sequence was set to 3 years, 

which corresponds to 6 time steps. Then, the experiment was repeated with the length of the 

training sequence increased by 3 years until it reaches the age of 15. The algorithm’s 

performance was compared across varying lengths of the training sequences. 

The second experiment was designed to analyze the ability of the neural network to 

predict a state further in time. The length of the training sequences was fixed to be up to age 9 

years, which corresponds to 18 timesteps. The age of choice was determined by analyzing the 

average onset for the 29 NF1-related features from the NF1 Clinical Registry. Most features have 

an average onset age after the age of 6, and by training on the sequence up to age of 9, the 

network should have sufficient temporal information. Furthermore, age of 9 is the midpoint of 

the pediatric life, where we have defined pediatric ages as age of 0 to 18. The DRNN predicts a 

sequence at an arbitrary time point 𝑡, where 𝑡 was determined to be age of 12, 15, and 18. The 

algorithm’s performance was compared across multiple future time points. 

Results and Performances 

The performance of DRNN was compared across training on varying lengths of training 

sequences. The network was trained on the sequences with varying lengths 6, 12, 18, 24, 30, and 

produces output sequence of phenotypes at the age of 18. The metrics used in this evaluation are 

maximum F1 score at validation, accuracy at validation, precision at validation, and recall at 

validation. The results were averaged across the sequence to produce a scalar value, which was 

averaged after the 10-fold cross validation process. 
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Table 1 

DRNN Performance on NF1 Clinical Registry Data 

Length of  

Training Sequence 

Age Range  

in Years 

F1 Score AUC Precision Recall 

6 3 0.62 0.89 0.65 0.59 

12 6 0.74 0.93 0.75 0.73 

18 9 0.84 0.97 0.85 0.84 

24 12 0.91 0.98 0.92 0.89 

30 15 0.95 0.99 0.98 0.92 

 

Table 1 shows the performance of the DRNN when it is trained on various lengths of 

training sequences, only on the NF1 Clinical Registry data, and predicts a sequence of 

phenotypes at age of 18. As we stated in the experiment settings, the predictive ability improves 

significantly when we train the model on sequences up to age of 9. In particular, improvement in 

performance is maximized after observing patient records between age of 6 to 9, which is in line 

with our claim that average onset ages of NF1-associated clinical features are mostly after the 

age of 6. 
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Figure 6. AUC of DRNN output at time step 36, trained on sequences up to age of 9. 

 

Figure 7. F1 Score of DRNN output at time step 36, trained on sequences up to age of 9. 

 



23 

 

Figure 8. Recall of DRNN output at time step 36, trained on sequences up to age of 9. 

 

 

Figure 9. Precision of DRNN output at time step 36, trained on sequences up to age of 9. 

As we can see from Figures 6–9, when trained on sequences up to age of 9, the performance 

metrics converge after 100 epochs of training.  
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Table 2  

DRNN Performance on EHR-merged NF1 Clinical Registry Data 

Length of  

Training Sequence 

Age Range  

in Years 

F1 Score AUC Precision Recall 

6 3 0.61 0.88 0.64 0.59 

12 6 0.68 0.92 0.65 0.70 

18 9 0.76 0.94 0.74 0.79 

24 12 0.83 0.97 0.80 0.86 

30 15 0.90 0.98 0.87 0.92 

 

Table 2 shows the performance of the DRNN when it is trained on various lengths of 

training sequences, on the EHR-merged NF1 Clinical Registry data. Comparing with the results 

in Table 1, with the addition of 1000 more features, Table 2’s results show a decrease in 

predictive performance as a tradeoff learning from complex high dimensional but it is still able 

to capture the complex patterns in a sufficient manner.  

Furthermore, the performance of DRNN was compared across predicting phenotype 

sequence across multiple future time steps. The network was trained on the sequences with fixed 

length of 18 and produces output sequences of phenotypes at the age of 12, 15, and 18. The 

metrics used in this evaluation are maximum F1 score at validation, accuracy at validation, 

precision at validation, and recall at validation. The results were averaged across the sequence to 

produce a scalar value and then averaged after the 10-fold cross validation process. 
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Table 3  

DRNN Performance on NF1 Clinical Registry Data 

Time Steps in the 

Future 

Age  

in Years 

F1 Score AUC Precision Recall 

6 12 0.86 0.97 0.98 0.77 

12 15 0.80 0.96 0.88 0.74 

18 18 0.80 0.96 0.83 0.77 

 

Table 4 

 DRNN Performance on EHR-merged NF1 Clinical Registry Data 

Time Steps in the 

Future 

Age  

in Years 

F1 Score AUC Precision Recall 

6 12 0.77 0.96                           0.83 0.72 

12 15 0.72 0.95 0.72 0.72 

18 18 0.72 0.94 0.68 0.76 

From Tables 3 and 4, we can compare the performance of DRNN outputs in multiple 

target time steps in the future, while trained on fixed training sequence length. Interestingly, in 

predicting time steps after 3 years in the future, the prediction performance converges and does 

not show a significant decrease. Rather, we see an increase in recall with a tradeoff of decrease 

in precision. As the model tries to predict a sequence in the far future, it loses its ability to 

identify correct phenotypes but gains more power in capturing broader phenotypes that are 

relevant. Even after merging the EHR data to the NF1 Clinical Registry data, the DRNN is not 

able to find meaningful patterns in the features from EHR data. 
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Chapter 7: Conclusion 

Hidden temporal trends across the longitudinal EHR are usually challenging to identify 

especially when the temporality exists across large feature dimension. In order to capture the 

temporal patterns that often span across multiple feature dimensions, a temporal prediction 

pipeline using DRNN architecture was developed and proposed in this study. From the datasets 

extracted from multiple sources of EHR, the prediction pipeline was able to merge and 

preprocess the dataset while taking the clinical properties of the longitudinal health data into 

account. Then, it was able to transform and discretize the data across the temporal dimension, 

which gives the researchers the freedom to explore the progression of the disease in the temporal 

scale of their choice. The choice of this deep architecture enabled us to develop a model that can 

outperform the stochastic statistical models. This disease progression management model can be 

applied for early stratification of risk, and furthermore, it has the potential to be utilized to 

stratify temporal progression patterns and rates of diverse clinical representations for diseases 

with extreme clinical variability. 

Discussion 

As we stated in the experiment settings, the predictive ability improves significantly 

when we train the model on sequences up to age of 9. In particular, improvement in performance 

is maximized after observing patient records between the ages of 6 to 9, which is in line with our 

claim that average onset ages of NF1-associated clinical features are mostly after the age of 6. 

Furthermore, incorporating the entire visit histories from the EHR was not effective in disease 

progression management of this particular disease condition. Such behavior can be explained in a 

few ways: (a) high dimensional features are much harder for the model to capture important 

relationships; (b) sparsity is brought in by the merging of EHR, thereby harder to observe 
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temporal trends across bigger feature set; and (c) 29 NF1-associated clinical features are 

sufficiently strong enough to produce a prediction. This result is surprising in that even when we 

incorporate the entire visit history information from the EHR, because of the sparsity paired with 

extremely high dimensional feature representations, the network could not predict the phenotype 

complex as well as how it would just by learning from the directly associated features. Extremely 

variable clinical representations of NF1 were apparent when merged with the high dimensional 

feature vector from the EHR. NF1 patient cohort data was particularly challenging to model, as it 

has small sample size and complex high dimensional sub-phenotypes to learn from. However, 

dimensionality reduction techniques were not explored in this research in order to keep the 

interpretability of the features when the predicted outputs are analyzed by clinicians. On the 

other hand, results leads to a more promising insight in that even with a small set of known 

phenotypical features identified clinically, with sufficient temporal information, the DRNN can 

produce much better predictive results than the stochastic models. Also, this research 

demonstrates a more practical approach of utilizing DRNN in statistical analysis of EHR. By 

utilizing clinical insights to formulate the input and design the experiment, we were able to 

achieve interpretability in analyzing prediction results and its potential to be utilized by the 

clinical researchers and bioinformaticians to model complex relationships between 

heterogeneous data. 
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Appendix A: Onset Age Table for NF1-associated clinical features 
 

Feature 

Total 

Number 

Total Mean 

Onset Age 

Total Median 

Onset Age 

Cafe-au-lait Macules 438 7.8 7.3 

Skinfold Freckling 310 7.6 6.5 

Dermal Neurofibromas 212 9.3 9 

Lisch Nodules 216 8.6 8.2 

Optic Pathway Glioma 67 7.6 6.4 

Scoliosis 69 11.3 12.5 

Orbital Dysplasia 2 11.5 11.5 

Radial or Ulnar or Tibular or Fibular 

Dysplasia or Psuedoarthrosis 29 7 5.2 

Plexiform Neurofibroma 113 8.9 8.6 

MPNST 6 12.1 14.3 

T2 Hyperintensities: Basal Ganglia 90 8.2 7.6 

T2 Hyperintensities: Brainstem 50 8.6 7.7 

T2 Hyperintensities: Cerebellum 91 7.5 6.8 

T2 Hyperintensities: Optic Pathway 14 7.2 6 

T2 Hyperintensities: Other (specify) 114 8.6 7.8 

Autoimmune Systems 7 12 13.8 

Growth Hormone Deficiency 7 11.2 12 

Precocious Puberty 17 9.8 8.9 
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Endocrine Issues: Other (specify) 12 7.7 6 

Heart Murmur (specify) 10 7.5 5.6 

Hypertension 7 11.7 11.3 

ADHD 124 9.5 9.1 

Cognitive Impairment 64 7.8 7.2 

Depression 7 14.6 14.9 

Learning Disability 165 9.4 8.8 

Has or had a Brain Cancer 0 N/A N/A 

Has or had another Cancer 0 N/A N/A 
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