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ABSTRACT OF THE DISSERTATION  

Development and Application of Fluxomics Tools for Analyzing Metabolisms in 

Non-Model Microorganisms  

by 

Xueyang Feng 

Doctor of Philosophy in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2012 

Professor Yinjie Tang, Chair 

 

Decoding microbial metabolism is of great importance in revealing the 

mechanisms governing the physiology of microbes and rewiring the cellular 

functions in metabolic engineering. Complementing the genomics, 

transcriptomics, proteinomics and metabolomics analysis of microbial 

metabolism, fluxomics tools can measure and simulate the in vivo enzymatic 

reactions as direct readouts of microbial metabolism. This dissertation develops 

and applies broad-scope tools in metabolic flux analysis to investigate metabolic 

insights of non-model environmental microorganisms.  

13
C-based pathway analysis has been applied to analyze specific carbon 

metabolic routes by tracing and analyzing isotopomer labeling patterns of 

different metabolites after growing cells with 
13

C-labeled substrates. Novel 

pathways, including Re-type citrate synthase in tricarboxylic acid cycle and 
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citramalate pathways as an alternate route for isoleucine biosynthesis, have been 

identified in Thermoanaerobacter X514 and other environmental 

microorganisms. Via the same approach, the utilizations of diverse 

carbon/nitrogen substrates and productions of hydrogen during mixotrophic 

metabolism in Cyanothece 51142 have been characterized, and the medium for a 

slow-growing bacterium, Dehalococcoides ethenogenes 195, has been optimized. 

In addition, 
13

C-based metabolic flux analysis has been developed to 

quantitatively profile flux distributions in central metabolisms in a green sulfur 

bacterium, Chlorobaculum tepidum, and thermophilic ethanol-producing 

Thermoanaerobacter X514. The impact of isotope discrimination on 
13

C-based 

metabolic flux analysis has also been estimated.  

A constraint-based flux analysis approach was newly developed to 

integrate the bioprocess model into genome-scale flux balance analysis to 

decipher the dynamic metabolisms of Shewanella oneidensis MR-1. The sub-

optimal metabolism and the time-dependent metabolic fluxes were profiled in a 

genome-scale metabolic network. A web-based platform was constructed for 

high-throughput metabolic model drafting to bridge the gap between fast-paced 

genome-sequencing and slow-paced metabolic model reconstruction. The 

platform provides over 1,000 sequenced genomes for model drafting and diverse 

customized tools for model reconstruction. The in silico simulation of flux 

distributions in both metabolic steady state and dynamic state can be achieved via 
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flux balance analysis and dynamic flux balance analysis embedded in this 

platform.  

Cutting-edge fluxomics tools for functional characterization and metabolic 

prediction continue to be developed in the future. Broad-scope systems biology 

tools with integration of transcriptomics, proteinomics and fluxomics can reveal 

cell-wide regulations and speed up the metabolic engineering of non-model 

microorganisms for diverse bioenergy and environmental applications. 
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Chapter 1 

Introduction 

1.1 Systems biology of microbial metabolism 

Microbial metabolism is a complex biological system that involves the 

interactions of thousands of genes, proteins and metabolites (1). Toward a system-

level investigation of microbial metabolism, high-throughput “omics” tools are 

being developed and applied to capture the behaviors of different metabolic 

components. Transcriptomics, proteomics and metabolomics tools have been used 

to characterize the responses of gene expressions, protein productions and 

metabolite concentrations, respectively, to metabolic perturbations. In 

complementary to the aforementioned omics tools, fluxomics analysis has become 

instrumental in the systems biology of microbial metabolism. In fluxomics study, 

the metabolite turnover rates (i.e. metabolic fluxes) are measured or predicted as a 

direct readout of the functional output of metabolism (2). By developing and 

applying diverse fluxomics tools, the novel metabolic features in environmental 

microorganisms can be revealed and the knowledge-based rewiring of cellular 

functions can be achieved in metabolic engineering.  

Fluxomics tools are often categorized into two groups based on the 

principles of design: constraint-based metabolic flux analysis and 
13

C-based 

pathway and flux analysis (Figure 1.1). Constraint-based metabolic flux analysis 
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profiles the “optimal” microbial metabolisms for in silico simulations and 

predictions. Three components are utilized to find intracellular fluxes in this 

fluxomics approach: the stoichiometry of the metabolic reactions in a 

reconstructed metabolic model, an objective function based on prior knowledge of 

microbial metabolism, and a series of boundary conditions imposed on metabolic 

reactions (3). In comparison, 
13

C-based pathway and flux analysis measures in 

vivo operation of a metabolic network. It is carried out by culturing microbes with 

defined 
13

C-labeled carbon source, tracing the transitional paths of the labeled 

atoms between metabolites in the biochemical network, and analyzing the 

labeling profiles in various metabolites both qualitatively and quantitatively. 
13

C-

based pathway and flux analysis provides the most accurate readouts of microbial 

metabolisms (4).  

1.2 Constraint-based metabolic flux analysis 

Flux balance analysis (FBA) is commonly used for constraint-based 

metabolic flux analysis. To formulate a FBA problem, the metabolic model of a 

target microorganism, often in genome scale, needs to be reconstructed (3). A 

draft metabolic model is first constructed based on genome annotation, which is 

then iteratively refined by adjusting the metabolic functionality to fill the gaps 

between model simulations and experimental observations (5). From the 

reconstructed metabolic model, the stoichiometry matrix S is generated in FBA, 

with each row in S representing one metabolite and each column in S representing 
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one metabolic flux. The vector of metabolic fluxes, v, follows S ∙ v = 0 under 

metabolic steady state and is constrained within feasible ranges identified from 

the physical, chemical and biological characteristics (e.g., thermodynamic 

directionality, and enzyme capacity). Since the FBA problem is normally 

underdetermined with a larger number of variables (i.e., reactions) than that of 

equations, an objective function (e.g., maximizing growth rate) is assumed for the 

microbial metabolism to pinpoint the unique flux distributions in the metabolic 

network. The FBA is constructed as a linear programming (3,6): 

 ubvlb      

0vS   s.t.

c max T v

 

where c is a vector that represents the objective function in FBA. 

As a mathematical approach for in silico simulation of microbial 

metabolism, FBA is equipped with a strong predictive capability to prove or 

disprove various assumptions in systems biology of microbial metabolism. 

However, since FBA relies on a biologically appropriate objective function to 

quantify the flow of metabolites through metabolic network, it cannot always give 

realistic metabolic readouts due to the lack of a priori knowledge of microbial 

metabolism (7).  

1.3 
13

C-based metabolic pathway and flux analysis  
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The 
13

C-based metabolic pathway analysis aims at qualitative elucidation 

of metabolic pathway activity by applying isotopic labeling approaches (8). In 

general, the microbes are cultured using a carbon source with a known 

distribution of 
13

C isotopomers. As the 
13

C-labeled carbon source is being used 

for different metabolic pathways, the metabolites synthesized in microbial 

metabolism (e.g. amino acids) acquire unique labeling patterns, which are 

measured by gas chromatography–mass spectrometry (GC-MS). To elucidate the 

route for metabolites synthesis, the “fingerprinting” labeling patterns of 

metabolites are generated by tracing the 
13

C carbon transitions in the proposed 

pathway; and compared with the corresponding experimental measurements to 

reveal whether the metabolic pathway is active.  

The 
13

C-based metabolic flux analysis (
13

C-MFA) is a quantitative 

approach to identify the metabolic flux distributions under metabolic and isotopic 

steady state, in which the pool size and the 
13

C-labeling patterns of intracellular 

metabolites are invariable (4,9). By integrating isotopic labeling approach and in 

silico computation, 
13

C-MFA is formulated as an inverse problem to find a set of 

fluxes that leads to the best match of the experimentally measured isotopomer 

abundances. The nonlinear programming of 
13

C-MFA is formulated as follows 

(10,11): 
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 ubvlb       

0vS   s.t.

)(
)(min 

2

0

n

i i

nii
n

vNM
v

 

where vn are the unknown fluxes to be optimized in the program, Mi are the 

measured isotopomer labeling patterns of metabolites from GC-MS, Ni are the 

corresponding model-simulated labeling patterns of metabolites, and δi are the 

corresponding standard deviation in GC-MS measurement. The unknown 

metabolic fluxes are searched to minimize ε. 

The method of 
13

C-based pathway and flux analysis allows for precise 

determinations of metabolic states in a particular growth condition. Compared to 

FBA, 
13

C-based pathway and flux analysis cannot directly predict the metabolic 

behaviors. However, it provides a physiologically reliable description of 

microbial metabolism.  

1.4 Recent advances in fluxomics 

Fluxomics study is an emerging area in systems biology. In the past 

decade, various approaches have been developed and improved to investigate the 

cellular metabolic behaviors in response to environmental and genetic 

perturbations; which yield significant achievements in both mechanistic studies of 

cell physiology and rational designs in metabolic engineering. 
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1.4.1 Advances in constraint-based metabolic flux analysis   

By integrating genome annotations, gene-protein-flux (GPR) correlations, 

and experimental validations, genome-scale metabolic models are powerful 

platforms in constraint-based flux analysis and have been constructed and applied 

for various microorganisms (5). Simulations from genome-scale FBA have been 

widely used in a number of studies (12), including interpreting various “omics” 

data (13), directing hypothesis-driven discoveries (14), investigating metabolic 

network properties (15), and predicting dynamic metabolisms of microorganisms 

(16,17). Advanced computational approaches, such as MOMA (18), OptKnock 

(19), and OptStrain (20), have been developed to guide the in silico design of 

genetic manipulations in metabolic engineering. Additionally, the multi-species 

relationships in mixed cultures are starting to be analyzed by constraint-based 

metabolic flux analysis (21).  

1.4.2 Advances in 
13

C-based pathway and flux analysis   

State-of-the-art mass spectrometry technologies, such as liquid 

chromatography–mass spectrometry (LC-MS), have been developed to directly 

measure the 
13

C-labeling patterns of low-abundant and fast-turnover metabolites. 

Mass spectrometry technologies could take the snapshot of transient metabolism 

and can be used for novel pathways identification (22) and kinetic flux profiling 

(23). As an improvement to conventional 
13

C-MFA under metabolic and isotopic 

steady state, an advanced experimental and computational framework has been 
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proposed and employed to quantitatively investigate intracellular metabolism 

under metabolic steady state but isotopic non-steady state (24,25). To unravel the 

time profiles of metabolic fluxes under metabolic non-steady state, several 

approaches have been developed by tracing and analyzing the 
13

C-labeling 

patterns of either fast-turnover intracellular metabolites (26), or slow-turnover 

proteinogenic amino acids (27). Additionally, pioneering fluxomics studies have 

recently been achieved to provide subpopulation-specific metabolic pathway 

usage in mixed cultures via 
13

C-MFA of reporter proteins (28).  

1.4.3 Advances in fluxomics software development   

Multiple software toolboxes have been developed to facilitate fluxomics 

studies. The hallmark of software development in constraint-based metabolic flux 

analysis is the COBRA toolbox (29), which provides a computational platform for 

model constructions and FBA studies. Other toolboxes, such as OptFlux (30), 

have facilitated advanced FBA approaches for microbial strain design. A few 

software tools for 
13

C-MFA are also available, including OpenFLUX (31) and 

FiatFlux (32). Moreover, web-based platforms have been constructed for 

metabolic model generations and FBA. For example, BioMet Toolbox is a web-

based resource for FBA and transcriptome analysis (33). Webcoli supplies diverse 

approaches for users to reconstruct a genome-scale E.coli metabolic model (34). 

Model SEED (35) has been developed to automatically generate genome-scale 

metabolic models for different microbes.  
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1.5 Scope of dissertation 

Decoding microbial metabolisms is of great importance in revealing the 

mechanisms governing the physiology of microbes and rewiring the microbial 

metabolism for bioenergy and biomaterial production. As one of the fundamental 

approaches to characterize microbial metabolism, the fluxomics tools have not yet 

been developed or applied as extensively as the other omics approaches in 

systems biology. Noteworthy hurdles are also present in fluxomics study of 

industrial biotechnology (Chapter 2). During my Ph.D. training, the 
13

C-based 

pathway analysis has been applied to a wide range of environmental 

microorganisms, including Cyanothece 51142 (36,37), Thermoanaerobacter 

X514 (38), Mycobacteria smegmatis (39), Shewanella oneidensis MR-1 (40), 

Roseobacter denitrificans (41), Heliobacterium modesticaldum (42), and 

Dehalococcoides ethenogenes 195 (43), with a cluster of novel metabolic features 

uncovered to enrich the knowledge of microbial metabolisms (Chapter 3). The 

metabolic flux distributions in a green sulfur bacterium, Chlorobaculum 

tepidumgreen (10), have been investigated by 
13

C-MFA to reveal the functionality 

of reversed TCA cycle; and the impact of isotope discrimination on 
13

C-MFA has 

been rigorously evaluated using flux analysis of heterotrophic metabolism in 

E.coli (Chapter 4). A novel computational approach has been developed to 

decipher the dynamic metabolism of Shewanella oneidensis MR-1 by integrating 

the bioprocess model with dynamic flux balance analysis (Chapter 5). In addition, 
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MicrobesFlux, a web-based platform for metabolic model drafting has been 

constructed to bridge the gap between fast-paced genome-sequencing and slow-

paced metabolic model reconstruction (Chapter 6). Several broad-scope studies 

have also been accomplished to supplement the systems biology of microbial 

metabolism; and advanced fluxomics tools are expected to be developed in future 

investigations (Chapter 7). 
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Figure 1. Fluxomic analysis of microbial metabolisms.  
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2.1 Abstract 

Metabolic flux analysis is a vital tool used to determine the ultimate output 

of cellular metabolism and thus detect biotechnologically relevant bottlenecks in 

productivity. 
13

C-based metabolic flux analysis (
13

C-MFA) and flux balance 

analysis (FBA) have many potential applications in biotechnology (1). However, 

noteworthy hurdles in fluxomics study are still present. First, several technical 

difficulties in both 
13

C-MFA and FBA severely limit the scope of fluxomics 

findings and the applicability of obtained metabolic information. Second, the 

complexity of metabolic regulation poses a great challenge for precise prediction 

and analysis of metabolic networks, as there are gaps between fluxomics results 

and other omics studies. Third, despite identified metabolic bottlenecks or sources 

of host stress from product synthesis, it remains difficult to overcome inherent 

metabolic robustness or to efficiently import and express non-native pathways. 

Fourth, product yields often decrease as the number of enzymatic steps increases. 

Such decrease in yield may not be caused by rate-limiting enzymes, but rather is 

accumulated through each enzymatic reaction. Fifth, high throughput fluxomics 

tool hasn’t been developed for characterizing non-model microorganisms and 

maximizing their application in industrial biotechnology. Refining fluxomics 

tools and understanding these obstacles will improve our ability to engineer 

highly-efficient metabolic pathways in microbial hosts.   
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2.2 Introduction 

Numerous chemical compounds, ranging from the anti-malaria drug 

artemisinin (2) to the “biofuel” butanol (3,4), have been produced with the aid of 

synthetic biology tools. The ability to efficiently synthesize natural or unnatural 

products requires a systems-level understanding of metabolism. Functional 

genomics tools such as genome sequencing, profiling of mRNA transcripts, and 

proteomics, are widely used to attain a comprehensive knowledge of how 

metabolic components (genes, proteins and metabolites) are regulated. In contrast 

to traditional omics tools, flux analysis (measurement of metabolite turnover 

rates) has become instrumental for physiological prediction and enzymatic rate 

quantification in metabolic networks (5). This technology also allows for the 

identification of metabolic interactions and the knowledge-based design of 

cellular functions. As such, one can utilize this tool to rationally modify biological 

hosts and analyze global physiological changes resulting from genetic 

modifications.  

Fluxomics, the cell-wide quantification of intracellular metabolite turnover 

rates, was first performed via Flux Balance Analysis (FBA). This method uses the 

stoichiometry of the metabolic reactions in addition to a series of physical, 

chemical and biological characteristics (thermodynamics, energy balance, gene 
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regulation, etc.) to constrain the feasible fluxes under a given objective function 

(e.g., maximal biomass production). FBA is an underdetermined model (the 

number of constraints is smaller than the number of reactions in the metabolic 

network), which may give unrealistic metabolic readout.  In spite of this 

limitation, FBA provides a useful framework for predicting a wide variety of 

cellular metabolisms. A complementary approach, 
13

C-based metabolic flux 

analysis (
13

C-MFA) allows for precise determinations of metabolic status under a 

particular growth condition. The key to 
13

C-MFA is isotopic labeling, whereby 

microbes are cultured using a carbon source with a known distribution of 
13

C.  By 

tracing the transition path of the labeled atoms between metabolites in the 

biochemical network, one can quantitatively determine intracellular fluxes.  

Flux analysis can not only provide genetic engineers with strategies for 

“rationally optimizing” a biological system, but also reveal novel enzymes useful 

for biotechnology applications (5). However, flux analysis platforms are still not 

routinely established in biotechnology companies. This review paper addresses 

current developments and challenges in the field of fluxomics, which may guide 

future study to bridge the gap between systems analysis of cellular metabolism 

and application in biotechnology. 

2.3 Advances and limitations in metabolic flux analysis 

2.3.1 Steady-state flux model 
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FBA and 
13

C-MFA concentrate on the stoichiometric (rather than kinetic) 

properties of metabolic networks. FBA has been widely applied to predict cell 

growth rate, product yield using different feedstocks, lethality of gene knockouts, 

and advantageous pathway modifications (6). Such a model provides general 

guidelines for metabolic engineering and thus is a viable first step towards 

improving biosynthetic yield (7). The hallmark of large scale FBA is the 

COnstraint-Based Reconstruction and Analysis Toolbox (COBRA) (8), which 

provides a general platform for fluxomics studies. 

A number of optimization algorithms and computational strategies for 

resolving in silico and in vivo inconsistencies have been proposed to improve the 

applicability of FBA (7,9). For example, incorporation of thermodynamic 

principles into FBA can constrain solution space (i.e., energy balance analysis) 

and obtain both stoichiometrically and thermodynamically feasible fluxes (1). To 

describe the “non-optimal” metabolic behaviors, FBA can use a bi-level 

optimization approach to estimate the potential trade-off between biomass 

accumulation and the yield of a desired product (10). FBA can also relax the 

objective function for maximization of the biomass and apply a Minimization of 

Metabolic Adjustment Algorithm to solve fluxes in mutant strains (1). Such an 

algorithm calculates fluxes by minimizing the difference between the wild-type 

flux distributions and the knockout-strain fluxes. Furthermore, FBA can be 

integrated with metabolic pathway analysis (MPA). MPA is a qualitative 
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technique that examines functional routes existing in a metabolic network without 

requiring knowledge of reaction rates (11). Combining MPA with FBA can 

quantitatively trace the plausible paths for optimal product synthesis, calculate 

cellular metabolism, and predict phenotypes under genetic manipulations or 

culture conditions (12). One main advantage of FBA is its capability for genome-

scale modeling (including thousands of reactions), which bridge genomic 

annotation and functional metabolic output. Accordingly, the number of FBA 

models has increased exponentially since 1999 (13).  

13
C-MFA aims to rigorously quantify pathway activities in intracellular 

metabolism by using both the isotopic labeling approach and in silico 

computation. 
13

C-MFA is accomplished by feeding microbes a 
13

C-labeled carbon 

source, measuring the enrichment pattern of the isotopomer in metabolites (e.g. 

amino acids), and deciphering the fluxes via computational routines (14). Since 

carbon fluxes through a metabolic network generate unique labeling patterns in 

metabolites, the overall flux distributions can be determined using isotopomer 

information. Advances in 
13

C-MFA, including mass spectrometry-based 

metabolomics and isotopomer modeling approaches (such as novel algorithm 

using elementary metabolite units), have been discussed in recent papers 

(5,15,16).  

Furthermore, open-source software has recently been published that 

facilitates in silico modelling. For example, WEbcoli is web-based software for 
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flux balance analysis of E.coli (17). In addition, OpenFLUX is computationally 

efficient software for 
13

C-MFA (15), which incorporates the Elementary 

Metabolite Unit (EMU) framework for calculation of isotopomer balances (18). 

User-friendly software such as this allows biologists to perform fluxomics studies 

with little programming knowledge. 

Methodologies for FBA and 
13

C-MFA share two key characteristics: the 

use of a metabolic network and the assumption of a steady metabolic state (for 

internal metabolites). However, the two techniques have different purposes. FBA 

profiles the “optimal” metabolism for the desired performance; 
13

C-MFA 

measures in vivo operation of a metabolic network. The two approaches to flux 

analysis are complementary when developing a rational metabolic engineering 

strategy. By comparing existent metabolic fluxes which were empirically 

determined via 
13

C-MFA to the optimal metabolisms predicted by both FBA and 

other “omics” tools (such as transcription analysis), one can deduce gene targets 

for solving biotechnologically relevant productivity bottlenecks (19). Figure 2.1 

shows that iterative flux analysis and genetic engineering of microbial hosts can 

remove competitive pathways or toxic byproducts, amplify genes encoding key 

metabolites, and balance energy metabolism (7). 

2.3.2 Metabolic control and dynamic flux analysis 

FBA and 
13

C-MFA disregard dynamic intracellular behavior. This avoids 

the difficulties in developing kinetic models and performing intracellular 
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experimental measurements. However, many biological systems may not maintain 

a meaningful metabolic (or isotopic) steady state during the fermentation process 

(20,21,22). The description of metabolic perturbation and regulatory mechanisms 

requires kinetic modeling and control theories. For example, metabolic control 

analysis (MCA) couples local enzyme kinetics with systematic behavior to predict 

the control exerted on the targeted pathways by different components (e.g. 

transcription, enzymes) (23). Although MCA is not a quantitative measurement of 

flux, MCA can pinpoint bottle-neck enzymes (enzymes having the largest effect 

on the desired flux) in a pathway and allow the analysis of steady-state 

metabolism in response to changes in the cellular environment (24). In addition to 

MCA, the cybernetic approach (a model based on process dynamics and control) 

has been introduced for study of multi-enzyme systems and metabolic regulation 

(25). By incorporating both the enzyme kinetics in pathways and the enzyme 

synthesis kinetics, the cybernetic approach emphasizes microbial process 

dynamics and control during complicated fermentations (26).  

Both MCA and the cybernetics approach focus on a simplified pathway 

network. To perform cell-wide quantitative analysis of a dynamic system, it is 

necessary to integrate the kinetic modeling with FBA and 
13

C-MFA. Dynamic 

FBA (dFBA) has been developed to illuminate changing global enzyme activities 

(27,28). To avoid ordinary differential equations and dynamic optimization for 

describing intracellular metabolism, dFBA can use the Static Optimization 
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Approach (SOA) (29) which divides the time-course into numerous small 

intervals. At each time interval, a steady-state flux is calculated under the 

assumption of fast intracellular dynamics. By combining stoichiometric FBA for 

intracellular metabolism with dynamic mass balances on extracellular substrates 

and products, it is possible to reconstruct dFBA model for genome-scale analysis 

of microbial metabolisms in industrial fermentations, where product synthesis is 

often under dynamic control (30,31).  

Recently, 
13

C-dMFA (dynamic metabolic flux analysis) has been 

developed for isotopically nonstationary cultures. To profile the flux distributions 

for fed-batch cultures (slow dynamic metabolism), isotopic pseudo-steady state 

was assumed and two dilution parameters were introduced to account for isotopic 

transients. Another approach (Kinetic Flux Profiling) for solving intracellular 

fluxes is to create
 
a sudden increase of the portion of 

13
C in the substrate feed, 

then measure time-course samples as 
13

C moves from the substrate into the 

metabolites (32). The fluxes can be calculated based on the rates of isotopic 

enrichment multiplied by the intracellular metabolite concentrations. A similar 

principle has been proposed for the flux analysis of photoautotrophic 

microorganisms (33) and E. coli in an isotopic transient phase (34). If the culture 

is under both metabolic and isotopic non-stationary state, exploratory and 

sophisticated 
13

C-dMFA (dynamic 
13

C-MFA) models have to be used to calculate 

both metabolic and isotopic kinetics (20,35,36). To solve the 
13

C-dMFA problem 
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efficiently, a set of computational algorithms have been developed for tracing 

non-stationary isotopomer labeling in response to in vivo flux distributions 

(20,35,36). The EMU (elementary metabolite unit) framework has also been 

applied in 
13

C-dMFA (18,37), because such algorithm can significantly improve 

computational times for tracing the labeling information (38). To avoid extensive 

simulation of dynamic isotopomer patterns, the SOA has to be applied by dividing 

the growth period into small time intervals (30~60 min), then the “mini” quasi-

steady state 
13

C-MFA can be applied at each time interval based on constraints 

from simultaneous isotopomer analysis of the fast turnover metabolites (39). By 

examining flux profiles over all time intervals, one can resolve the metabolic 

transients during the entire cultivation period. 

2.3.3 Technical limitations of fluxomics  

Cell-wide fluxomics tools (i.e., FBA and 
13

C-MFA) have technical 

limitations. In genome-scale FBA models, the number of constraints (i.e., the 

availability of quantitative metabolite data) is much smaller than the number of 

reactions in the metabolic network. The calculation of such underdetermined 

systems depends on objective functions where one assumes that the metabolism 

optimizes its native ‘‘goals’’ (such as biomass or co-factor production) (40). This 

optimization principle has been questioned for several reasons. First, biological 

systems (e.g., Bacillus subtilis) seem to display sub-optimal growth performance 

(41). Second, a previous study examined 11 objective functions in E. coli and 
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found no single objective function that can perfectly describe flux states under 

various growth conditions (42). For example, unlimited aerobic growth on 

glucose is best described by a nonlinear maximization of the ATP yield per flux 

unit, but nutrient-limited continuous cultures favor biomass yield as the objective 

function. Third, some native cellular processes cannot be simply described by 

FBA. For example, cyanobacterial species (i.e., Cyanothece 51142) maintain their 

circadian rhythms (e.g., nitrogen fixation and light dependent reaction activities) 

under nutrient-sufficient and continuous light conditions (43,44).  

The application of 
13

C-MFA in industrial biotechnology also has several 

bottlenecks. The most prevalent constriction occurs because current techniques 

are insufficient for measuring large-scale metabolic networks. Obtaining labeling 

information of free metabolites rather than amino acids and solving large-scale 

nonlinear flux models pose two key challenges. As a result, most obtained flux 

information is limited to central metabolism. To date, only two large-scale 
13

C-

MFA (>300 reactions) have been reported, but many fluxes in their reports cannot 

be precisely determined due to insufficient constraints (45,46). The genome-scale 

13
C-MFA is still in its infancy and requires further development of the relevant 

experimental techniques and computational tools (47). A second issue is that 
13

C-

dMFA is still poorly developed for determining dynamic metabolic behavior. It is 

difficult for rapid sampling and precise measurements of metabolites at short time 

intervals throughout the entire culture period. For example, to measure absolute 



. 

26 

 

intracellular metabolite concentrations, one has to grow cell in fully 
13

C-labeled 

medium, then the labeled cells are extracted with quenching solvent containing 

known concentrations of unlabeled internal standards (the concentrations of 

metabolites are calculated using the isotope ratio-based approach) (48). Such 

measurement requires extremely high cost of analytical efforts including quick 

sampling, rapid metabolite extraction, and a high resolution LC-MS instrument. 

Furthermore, the time-dependent model includes ordinary differential equations 

and significantly increases the computational complexity (20,34). Third, flux 

determination assumes that enzymatic reactions are homogenous inside the cell 

and that there are no transport limitations between metabolite pools. However, 

eukaryotes have organelles (compartments) that may have diffusion limitations or 

metabolite channeling (14,49). Compartmentalization of amino acid biosynthesis 

further clouds the obtained amino acid-based labeling information (50). 

Therefore, confident 
13

C-MFA for eukaryotes not only requires the combination 

of different analytical tools (GC-MS, LC-MS and NMR) to obtain extensive 

labeling information (51), but also adequate sample processing and extraction 

methods (e.g. separation of compartments by ultracentrifugation). A fourth 

problem is that some industrial hosts and the great majority of environmental 

microbes resist cultivation in minimal media, and introducing other nutrient 

sources often significantly complicates metabolite labeling measurements and 

flux analyses (52). Finally, a microbial community demonstrates complex 

metabolic interactions between species. To date, only a few FBA models have 
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been developed for community studies (53,54). The exchange of metabolites 

among species is nearly impossible to unravel by 
13

C-MFA because complete 

separation and measurement of metabolites from a single species in a microbial 

community is impossible (5). These technical limitations in both FBA and MFA 

models are responsible for the gap between fluxomics and its applicability in 

biotechnology. 

2.4 Integration of fluxomics with other “omics” 

It is desirable to integrate the concepts of systems biology (which 

combines the readouts from transcription as well as protein/metabolite profiling) 

with fluxomics (Figure 2.2) (47). For example, 
13

C-MFA, enzyme activity assays, 

and RT-PCR analysis can be used together to study E.coli mutants’ metabolism 

(55). Additionally, the responses
 
of E. coli to genetic modification have been 

systematically examined by utilizing multiple high-throughput “omics” methods 

(56). The results illuminate relatively small changes in mRNA and proteins in 

response to genetic disruptions, which allow the cell to maintain a stable 

metabolic
 
state under changing growth conditions. A similar approach to the study 

of Synechocystis 6803 has shown that the regulation of some enzymes is sensitive 

to light conditions (57). Many other regulatory mechanisms, however, still remain 

unknown. Furthermore, global regulators in industrial microorganisms have been 

successfully identified by correlating transcript/transduction levels and metabolic 
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fluxes (58,59,60,61). The discovery of functioning regulators provides insight to 

the entire regulation in metabolic network. 

On the other hand, challenges in integrated “omics” studies are also 

present. The lack of understanding of metabolic regulation at different metabolic 

levels complicates the rational design of biological systems, which is a major 

barrier in industrial biotechnology. For example, post-transcriptional regulation 

poses a significant challenge in integrating fluxomics with other “omics” studies. 

It is well known that transcript and protein data correlate relatively well for 

specific pathways, yet this correlation can be poor in cell-wide analyses (62). 

Furthermore, most mRNA expression studies insufficiently predict enzyme 

activities or flux changes in many E. coli pathways (63). In studies on the 

adaptation of E. coli to environmental perturbations, the tricarboxylic acid cycle is 

found to correlate well with molecular changes at the transcriptional level, but 

flux alterations in other central metabolic pathways seem to be uncorrelated to 

changes in the transcriptional network (64). Because of the complexity of 

regulatory mechanisms spanning multiple cellular processes, fluxomics and other 

“omics” studies may have inconsistent observations which complicate systems-

level analyses. 

2.5 Fluxomics of microbes for industrial biotechnology  

FBA allows in silico simulations of metabolism in “industrial 

workhorses,” from which desired strains or targeted mutations can be identified. 
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13
C-MFA can assess in vivo metabolism of engineered strains under specific 

growth conditions and validate FBA results. Here, we summarize recent 

applications of FBA and 
13

C-MFA for commonly-used industrial chassis (i.e., E. 

coli, B. subtilis and S. cerevisiae) and for non-model microorganisms (i.e., less-

characterized or newly-discovered microorganisms). 

2.5.1. Escherichia coli model   

E. coli is the most commonly utilized species in fermentation industry. E. 

coli flux models were reported as early as the 1990s (65,66). For biotechnology 

applications, the Liao group first applied metabolic pathway analysis (MPA) to 

guide the genetic manipulation of E.coli strains and channel the metabolic fluxes 

from carbohydrate to the aromatic amino acid pathway (67). The Maranas group 

has integrated cell growth and product synthesis in the OptKnock toolbox (10) 

and applied it to construct high performance mutants. The computer-aided designs 

have shown improved lactic acid, succinate, and 1,3-propanediol production (68). 

FBA can predict lethality in a metabolic network where deletions of more than 

one non-essential gene mutants may trigger the death of the organism. For 

example, the Maranas group (69) analyzed the gene/reaction essentiality in a 

genome-scale model of E. coli and systemically identified possible pairs of 

synthetic lethals: non-essential genes whose simultaneous knockouts would have 

a potentially lethal effect. Incorporating information about synthetic lethality into 

the new model will curb the construction of ill-designed biological systems for 
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biotechnology. Furthermore, FBA can be used to find rate-limiting steps for 

product synthesis. For example, FBA revealed gene targets, and modification of 

those genes (i.e., knocking out the genes for pyruvate forming enzymes, over-

expression of the glyoxylate shunt and glucose transport system) resulted in more 

than a ten-fold increase in succinate production (70,71,72). FBA has also been 

used to improve genetic strategies for the overproduction of secondary 

metabolites, such as amino acids (73) and lycopene (74).  

Besides genetic strategies, FBA can provide useful information for the 

design of optimal fermentation conditions. For example, an FBA model was used 

to identify nutrient limitations during recombinant interleukin-2 (IL-2) production 

in E. coli. By supplementing specific amino acids, IL-2 production increased two-

fold in fed-batch fermentation (75). Recently, a reactor-scale dFBA model was 

developed via a Static Optimization Approach to analyze E. coli metabolism for 

the production of a biopharmaceutical drug (27). dFBA contains a steady state 

FBA model embedded within a dynamic kinetic model that describes the time 

evolution of fermentation process variables (e.g., biomass growth, glucose 

consumption and products synthesis). Such a model provided guidelines for the 

optimization of fermentations at the scale of a 1000L process. 

The 
13

C-MFA model was first used to investigate metabolic regulation in 

E.coli under different genetic and environmental conditions (76). 
13

C-MFA has 

also been used to examine various biotechnological processes involved in the 
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production of pharmaceuticals, amino acids and polymers. A large scale 
13

C-MFA 

with over 300 reactions was successfully developed for amorphadiene (a 

precursor of the anti-malaria drug) producing E. coli strains (45). Another study 

revealed a growth phase-dependent metabolic shift in a lysine-producing E. coli 

strain (77).  This work was performed in a fed-batch culture with rich medium 

(containing yeast extract), and metabolic fluxes in both exponential growth and 

stationary phases were estimated by measuring free metabolites. Metabolic 

analysis of the stationary phase is important since many products are synthesized 

during a non-growth phase. In a third example, 
13

C-MFA of a 1,3-propanediol 

producing E. coli strain was conducted in fed-batch fermentation  (78). The 
13

C-

MFA results showed a decrease in the split ratio between glycolysis and the 

pentose phosphate pathway over the time-course of the culture in response to 

increasing 1,3-propanediol fluxes.  

2.5.2 Bacillus subtilis model 

B. subtilis is the industrial organism of choice for the production of 

vitamins, antibiotics, enzymes, and nucleosides. The FBA model for B. subtilis 

was constructed based on a combination of genomic, biochemical, and 

physiological information (79). The FBA model was iteratively corrected and 

improved using information from high-throughput phenotypic screens of mutants, 

substrate utilization, gene essentiality, and sequence analyses. The B. subtilis flux 

model is mostly studied for riboflavin production, focusing on four aspects: 
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investigating phenotypes of wild type and knock-out strains, assessing production 

capacity, identifying the impact of different carbon sources on biosynthesis, and 

characterizing the cellular response to different culture conditions. The Sauer 

group has extensively investigated riboflavin-producing strains. They first used an 

FBA model to quantify growth maintenance coefficients, the maximum growth 

yield, and the specific riboflavin production rate in continuous cultivation (80). 

Later on, they applied 
13

C-MFA to the same strain and found that genetic 

manipulations should target the NADPH balance and riboflavin biosynthetic 

pathways (81). In other studies on B. subtilis, they revealed several guidelines for 

high yield riboflavin production: 1. they compared the metabolic flux 

distributions and maintenance energy of eight Bacillus strains and discovered that 

B. licheniformis was the most suitable for industrial biotechnology (82); 2. they 

found that using malate as a substrate resulted in a suppressed respiratory TCA 

cycle and an enhanced overflow metabolism (83); 3. they found the pentose 

precursors of riboflavin were mainly synthesized via the non-oxidative pentose-

phosphate pathway, so any suggested genetic modification should decrease the 

activity of the oxidative pentose phosphate pathway (84). Recently, they 

developed a 
13

C-dMFA model for B. subtilis to identify the metabolic response of 

riboflavin overproduction under a glucose-limited fed-batch culture (39). This 

dynamic flux analysis was obtained by recording changes in labeling patterns of 

intracellular amino acids under a metabolic pseudo-steady state assumption. 
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2.5.3 Saccharomyces cerevisiae model 

S. cerevisiae is a robust eukaryotic chassis used for the expression of a 

wide range of products. For example, flux analysis revealed target genes in two 

native pathways for the over-expression of succinate: the TCA and glyoxylate 

cycles (85). Another study showed the enhancement of sesquiterpene production 

via in silico driven metabolic engineering (86). Additionally, flux analysis has 

been extensively applied for improving ethanol production. First, a number of 

strategies were developed for the metabolic engineering of redox processes in S. 

cerevisiae, resulting in a decrease in the yield of glycerol by 40% and an increase 

in ethanol production under both glucose and xylose/glucose growth conditions 

(87). Second, Dikicioglu et al. (88) applied a genome-scale FBA model to analyze 

respiration-deficient mutants of S. cerevisiae for ethanol production. They found 

that many genetic manipulation strategies (e.g., the overexpression of the 

glutamate synthase gene) were unnecessary in a respiration-deficient metabolic 

background. This indicates that the rate limiting steps for ethanol production can 

change after the initial genetic manipulations of targeted genes. Third, a
 13

C-MFA 

model was used to screen ethanol production in 14 hemiascomycetous yeast 

strains (50). This study suggests that S. cerevisiae is the ideal ethanol production 

candidate due to a strong NADPH-driven pentose phosphate pathway. Other 
13

C-

MFA studies characterized the metabolic shift between oxidative growth and 

fermentative growth with ethanol production (89), investigated alternative carbon 
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substrate (xylose) metabolisms (90), revealed key factors influencing biomass 

growth on xylose (91), and examined the consumption of ethanol and other 

storage carbohydrates in a glucose-limited chemostat culture (92). 

Furthermore, a genome-scale FBA indicates an apparent enzyme 

dispensability, i.e., 80% of yeast genes seem to be non-essential for viability 

under laboratory conditions (93). The FBA illustrated the influence of non-

essential genes on metabolic robustness and environmental fitness due to genetic 

buffering through alternative genes, while a 
13

C-MFA (consisting of over 700 

reactions) revealed a similar effect of metabolic network robustness on null 

mutations (46). Understanding the role of these redundant genes is important for a 

valid and efficient genetic modification.   

2.5.4 Non-model microorganisms 

Fluxomics is an important tool for the rigorous study of metabolism in 

less-characterized microbes that provides novel insights for application of these 

species to biotechnology. However, fluxomics have not been sufficiently applied 

to non-model microorganisms as compared to model microbial hosts. Table 2.1 

summarizes some milestone papers in fluxomics studies on non-model species 

that are potentially useful for synthetic biology. Compared to the work done in the 

field of fluxomics for industrial workhorses, far fewer studies have been 

performed on non-model microorganisms.  This is due to the complicated growth 

conditions, poorly-understood metabolic networks, and significant lack of genetic 
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and molecular biology tools. However, non-model environmental microorganisms 

are also important for industrial biotechnology because they often possess native 

biochemical pathways for chemical synthesis or the ability to utilize cheap 

substrates (94). Furthermore, flux analysis can be used to discover novel enzymes 

that can be cloned into industrial microbes to improve their capacity for product 

synthesis. For example, 
13

C-MFA revealed a citramalate pathway for isoleucine 

biosynthesis (independent of the common threonine ammonia-lyase pathway) 

(95,96). Citramalate synthase, which has also been detected in some 

environmental bacteria (97,98,99), can be engineered into E. coli for 1-propanol 

and 1-butanol production. The new pathway bypasses threonine biosynthesis and 

represents the shortest keto-acid-mediated pathway; as such, it improved biofuel 

yield 9 to 22-fold (100). Currently, high-throughput genome sequencing methods 

are mapping genomes in novel microbes at a pace that far exceeds the pace of 

functional characterization of these species. Therefore, a high throughput 
13

C-

MFA technique is required for screening non-model microorganisms for new 

enzymes and maximizing their application in industrial biotechnology (5). 

2.6 Finding bottlenecks for Industrial Biotechnology 

One of the main goals of fluxomics is to indentify bottlenecks for 

industrial biotechnology and thereby assist in the creation of rational engineering 

strategies. Simple measurements of metabolism, however, are not enough to 

overcome unpredictable challenges in industrial biotechnology. Metabolic 
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regulation is very complex, and systems biology tools are incapable of revealing a 

general strategy for synthetic biology (101).  

Bottlenecks in industrial biotechnology can be explained from the view of 

fluxomics. First, metabolic robustness (the ability to maintain metabolic 

performance under genetic or environmental perturbations) is a long-recognized 

key property of microbial systems (102). This basic mechanism is often 

responsible for the gap between computationally aided design and final 

experimental outcomes. For example, a 
13

C-MFA study indicates that E. coli 

shows remarkable robustness in the central carbon metabolism in the presence of 

genetic variation, and is even more flexible in response to altered environmental 

conditions (e.g., different nutrients or oxygen levels) (76). Analyses of E.
 
coli 

components at multiple “omics” levels also reveal unexpectedly
 
small changes in 

messenger RNA, proteins and metabolite levels for most genetic disruptions.
 
This 

is because E.
 
coli actively regulates enzyme levels to maintain a stable metabolic

 

state in the presence of perturbations (56,64). Similarly, B. subtilis shows rigidity 

and suboptimal performance for its flux regulation in over 137 genetic 

backgrounds (41). Furthermore, gene essentiality and pairwise genetic 

interactions have been investigated in S. cerevisiae (93,103). It has been found 

that a gene’s function is buffered by duplication in S. cerevisiae genomic DNA or 

by an alternative biochemical pathway. Although only 13% of genes were 

suggested to be essential by single knockout experiments, simultaneous deletion 
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of pairs of non-essential genes (>70% of the total metabolic genes) were found to 

inhibit growth. Invariability of metabolic flux under mutagenic genotypes seems 

to be an important feature in many biological systems, and thus successful 

metabolic strategies highly depend on an understanding of robust cellular nature 

(104,105,106).  

Metabolic engineering of industrial chassis is based on the premise that 

the yield of a desired product can be increased by identifying and over-expressing 

the enzymes that catalyze the rate-limiting steps in a given metabolic pathway. 

However, a method based on over-expressing rate-limiting enzymes will only 

work if these rate-limiting enzymes exist and remain rate-limiting when their 

activities are increased. Previous studies have shown that the commonly-believed 

“rate-limiting” enzymes may not exist in some industrial microbes and an 

increase in productivity has to be achieved by coordinated expression of entire 

pathways (107). Furthermore, rate-limiting steps in a metabolic network often 

shift after initial targets have been engineered. For example, phenotypic data in S. 

cerevisiae mutants revealed that some FBA-predicted gene targets for ethanol 

production are invalid if the cell’s respiratory genes have been knocked-out (88). 

Another example of this phenomenon is highlighted by the metabolic 

consequences of the deletion of the methionine and cysteine biosynthesis 

repressor protein (McbR) in Corynebacterium glutamicum, which yielded no 

overproduction of methionine but drastic accumulation of homolanthionine (108). 
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The above evidence indicates that rate-limiting steps often shift after initial targets 

have been engineered. Additionally, simultaneous importation and expression of a 

few heterologous genes to improve the rate-limiting pathway may fail if the non-

native pathway is incompatible with the host. These efforts often lead to 

metabolic imbalance and accumulation of toxic metabolites (3,4).  

Based on the recent publications, we have constructed a linear regression 

model which shows that the yield of biosynthetic products decreases 

exponentially as a function of the steps away from central metabolism in S. 

cerevisiae (Figure 2.3). It is easier to achieve high carbon fluxes to the central 

metabolites, possibly because enzyme efficiency in central metabolism is usually 

high (109). However, the yields of secondary metabolites are smaller because 

each additional enzymatic step may not be perfectly efficient (model regression 

shows an average of ~67% efficiency in each enzymatic step in secondary 

metabolisms). This loss of yield is unavoidable due to the metabolism channeling 

the intermediates away from the desired product. Potential solutions to this 

problem include: 1. designing host-compatible enzymes with high product 

specificity (110); 2. feeding intermediates to the cell to reduce the number of 

enzymatic steps to final product (111); 3. creating synthetic protein scaffolds, 

which significantly improve intermediate conversion efficiency and overall 

biosynthetic yield (112). 
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In conclusion, fluxomics studies enable the quantification of intracellular 

metabolism.  However, this tool is not fully developed, and it remains difficult to 

deduce cell-wide pathway bottlenecks and to provide effective strategies for 

biotechnology applications. Numerous technical difficulties in developing flux 

analysis methods and complicated metabolic regulatory mechanisms have 

severely limited the scope of fluxomics in industrial biotechnology. It is necessary 

for the future development of flux analysis to combine other advanced “omics” 

analysis and molecular biology techniques to resolve challenges in the fluxomics 

fields.   
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Figure 2.1. An iterative approach of fluxomic analysis and rational metabolic 

engineering 
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Figure 2.2. 
13

C-assisted cellular metabolism analysis 
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Figure 2.3. Product yields as a function of enzymatic steps from central 

metabolism. The solid line is the regression of published product yields by S. 

cerevisiae as a function of reaction steps from intermediate metabolites in central 

metabolism (including glycolysis, TCA cycle and pentose phosphate pathways).  

The yield declines exponentially as the number of reaction steps increases. The 

dotted lines are boundary curves with yield efficiencies of 30% and 70% 

respectively.  All yield data from initial carbon sources are estimated from recent 

papers using our best judgment. The synthesized products and reaction steps are: 

Poly(R-3-hydroxybutyrate) (113) (steps=3); Glycerol (114) (steps=2); 

Artemisinic acid (2) (steps=10); Amorphadiene (115) (steps=9); Pyruvate (116) 

(steps=0); Geranylgeraniol (117) (steps=10); Hydrocortisone (118) (steps=19); 

Squalene (119) (steps=9); β-carotene (120) (steps=12); Lycopene (120) 

(steps=11); Phytoene (120) (steps=10); p-hydroxycinnamic acid (121) (steps=12); 

Naringenin (122) (steps=14); Pinocembrin (122) (steps=14); Xylitol and Ribitol 

(123) (steps=3); Ethanol (124) (steps=2); L-ascorbic acid (125) (steps=8). 
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Table 2.1. Recent application of fluxomics of non-model microbes to bio-product 

synthesis 

Species Product Substrate 
Model 

description 
Results from study Reference 

Corynebacterium 

glutamicum 
Lysine 

Glucose 

(sucrose, 

fructose) 

13C-MFA 

 

MFA models 

(combining 

transcriptome, 

metabolome 

analysis) have been 

developed to study 

fluxes under 

different cultivation 

modes (mini-

bioreactor, batch, 

fed-batch) using 

various carbon 

sources. 

 

(126) 

Corynebacterium 

glutamicum 
Methionine Glucose 

13C-MFA 

only focuses 

on flux 

distribution 

in the 

methionine 

pathway. 

The C. glutamicum 

mutant (mcbR) 

showed no 

overproduction of 

methionine, but 

accumulation of 

homolanthionine. 

 

(108) 

Corynebacterium 

glutamicum 
Glutamate Glucose 

13C-MFA 

(focus on 

anaplerotic 

pathways) 

The flux from 

phosphoenolpyruvat

e to oxaloacetate 

catalyzed by 

phosphoenolpyruvat

e carboxylase 

(PEPc) was active in 

the growth phase, 

whereas pyruvate 

carboxylase was 

inactive.  

 

(127) 

Actinobacillus 

succinogenes 

 

Succinate 

formate and 

acetate 

Glucose 

NaHCO3 

13C-MFA 

(via NMR 

and GC-MS) 

and enzyme 

assay 

The model indicated: 

1. NADPH was 

produced primarily 

by transhydrogenase 

and/or by NADP-

dependent malic 

enzyme; 2. 

oxaloacetate and 

malate were 

converted to 

pyruvate; 3. the 

effects of NaHCO3 

and H2 on metabolic 

fluxes were 

quantified. 

(128,129) 
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Geobacillus 

thermoglucosidasiu

s 

Ethanol Glucose 
FBA and 13C-

MFA 

The model 

characterized the 

ethanol production 

under three oxygen 

conditions. The FBA 

analysis pointed out 

several gene targets 

for improving 

ethanol production.  

 

(19) 

Clostridium 

acetobutylicum 
Butanol Glucose 

Genome 

scale-FBA 

The engineered 

strain was able to 

produce 154 mM 

butanol with 9.9 mM 

acetone at pH 5.5, 

resulting in a butanol 

selectivity (a molar 

ratio of butanol to 

total solvents) of 

0.84. 

 

(130) 

Penicillium 

chrysogenum 

 

Penicillin 
Gluconate 

/glucose 

13C -MFA 

(focus on 

pentose 

phose phase 

pathway and 

glycolysis) 

 

The model 

determined the 

pentose phosphate 

pathway split ratio 

and estimated 

NADPH 

metabolism.  

 

(131) 

Synechocystis sp. 

PCC6803 
Hydrogen CO2 FBA 

The results included 

H2 photoproduction, 

strategies to avoid 

oxygen inhibition, 

and analysis of 

hetero-, auto-, and 

mixotrophic 

metabolisms. 

 

(132,133) 

 

Synechocystis sp. 

PCC6803 

Light energy 

& Biomass 
Glucose/CO2 

13C-MFA and 

dynamic 13C -

MFA 

The model analyzed 

heterotrophic, 

autotrophic and 

mixotrophic 

metabolisms. 

 

(33,57) 

 

Chlamydomonas 

reinhardtii 

Light energy 

& Biomass 
CO2 

FBA model 

including 

three 

metabolically 

active 

compartment

s 

The model indicated 

that heterotrophic 

growth had a low 

biomass yield on 

carbon, while 

mixotrophical and 

autotrophical growth 

had higher carbon 

utilization 

efficiency. 

 

(134) 

Zymomonas mobilis Ethanol Glucose/ FBA with Model analyzed the (135) 



. 

58 

 

xylose various 

biological 

objectives 

metabolic 

boundaries of Z. 

mobilis. The study 

indicated that 

ethanol and biomass 

production depend 

on anaerobic 

respiration 

stoichiometry and 

activity. 

 

Zymomonas mobilis Ethanol 

Glucose 

/frucose/ 

xylose 

13C–MFA via  

1H-NMR 

31P-NMR 

spectroscopy 

The model 

characterized the 

intracellular 

metabolic state 

during growth on 

glucose, fructose and 

xylose in defined 

continuous cultures. 

 

(136) 

Coculture 

(Desulfovibrio 

vulgaris and 

Methanococcus 

maripaludis) 

CH4 Lactate 

FBA analysis 

of microbial 

consortia 

The model predicted 

the ratio of D. 

vulgaris to M. 

maripaludis cells 

during growth. It 

was possible to 

eliminate formate as 

an interspecies 

electron shuttle, but 

H2 transfer was 

essential for 

syntrophic growth. 

(54) 

Community 

(oxygenic 

phototrophs, 

filamentous 

anoxygenic 

phototrophs, and 

sulfate-reducing 

bacteria). 

Biomass and 

nitrogen 

fixation 

CO2 

FBA and 

elementary 

mode 

analysis 

The model predicted 

and described 

relative abundances 

of species, by-

products, and the 

metabolic 

interactions. 

(53) 

 

Phaffia rhodozyma 

and Haematococcus 

pluvialis 

 

Astaxanthin 

Glucose with 

(peptone & 

yeast extract) 

FBA analysis 

of mix 

culture 

The two major 

astaxanthin-

producing 

microorganisms 

exhibited elevated 

yields (2.8-fold) 

under mixed culture 

conditions compared 

to pure culture. 

 

(137) 
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Chapter 3 

 
13

C-Pathway Analysis of Environmental Microorganisms  

3.1 
13

C-pathway analysis protocol 

Novel metabolic features of environmental microorganisms can be 

revealed by 
13

C-pathway analysis. As a complementary method to transcriptomics 

and proteomics studies, 
13

C-pathway analysis can be used to uncover novel 

enzymes, investigate mixotrophic metabolism, and optimize the medium for slow-

growing microbes. A protocol for 
13

C-pathway analysis of environmental 

microorganisms is attached in Appendix 1. In general, 
13

C-pathway analysis has 

three major steps.  

 The first step is to grow microbes on 
13

C-labeled carbon substrates. Three 

key factors affect the 
13

C-pathway analysis: medium composition, 
13

C-labled 

carbon substrate, and culture modes. To avoid measurement noises from non-

labeled carbon in nutrient supplements, a minimal medium with only one 
13

C-

labeled carbon source is required in tracer experiments. To collect the 

“fingerprinting” labeling patterns of metabolites synthesized from different 

pathways, singly labeled carbon substrates (>98% pure) are normally 

recommended in 
13

C-pathway analysis. To guarantee both metabolite and 

isotopomer steady state are achieved in 
13

C-pathway analysis, microbes can either 
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be cultured under chemostat mode, using typical bioreactors with continuous 

feeding, or batch mode, using shake flasks or small-scale mini-batch reactors. 

The second step is to analyze amino acid labeling patterns using GC-MS. 

Amino acids are abundant in protein and thus can be obtained from biomass 

hydrolysis. To make the amino acids volatile enough for GC separation, amino 

acids are derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide 

(TBDMS) prior to analysis. The TBDMS-derivatized amino acids can be 

fragmented by MS and result in different arrays of fragments, including four 

characteristic arrays of fragments that can reflect the 
13

C-labeling patterns of 

amino acids: fragment (M-15)
+
, which contains the entire amino acid but has lost 

a 15 MW methyl group; fragment (M-57)
+
, which contains the entire amino acid 

but has lost a 57 MW tert-butyl group; fragment (M-159)
+
, which has lost a 159 

MW group that contains the 1
st
 carbon (α carboxyl group) of the amino acid; and 

fragment (f302)
+
, which consists of a 302 MW group containing the amino acid 

without its R group. The final isotopic labeling patterns of proteinogenic amino 

acids are reported as mass fractions, such as M0, M1, M2, M3 and M4, to 

represent the percentage of fragments containing zero to four 
13

C labeled carbons.  

The third step is to trace 
13

C carbon transition in the proposed pathways 

and to verify whether the labeling patterns in key metabolites are consistent with 

the annotated enzymatic reactions. Since errors or gaps within annotated 

pathways are common for poorly characterized microorganisms, the pathway 
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activity uncovered from 
13

C-pathway analysis can be useful in functional 

characterization of metabolic pathway activities. Derived from the isotopic 

analysis of amino acids, labeling information about eight metabolites in the 

central carbon metabolism is provided and is used to reflect the functions of 

associated metabolic pathways.  

  13
C-pathway analysis is a powerful tool to probe active carbon metabolic 

pathways in vivo. Table 3.1 illustrates several carbon metabolic pathways that can 

be revealed by 
13

C-labeled proteinogenic amino acids. In cooperation with in vivo 

physiological studies, transcription assays, and in vitro biochemical 

characterizations, new insights to carbon metabolisms of organisms can be 

illustrated. 
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Table 3.1 Fingerprinting 
13

C-labeling patterns of amino acids for identifying 

novel metabolic pathways and enzymes.  

Pathways and 

enzymes  

13
C-carbon 

substrate 

Key amino 

acids 

“Fingerprinting” 

labeling patterns 

The Entner-

Duodroff (ED) 

pathway 

[1-
13

C] glucose, or                   

[6-
13

C] glucose 
Ser & Ala  

Notably lower (with [1-
13

C] glucose) or higher 

(with [6-
13

C] glucose) 
13

C abundance in Ser  

The reductive 

TCA cycle 

Non-labeled CO2 

with [3-
13

C] 

pyruvate 

Ala, Asp, & 

Glu 

Notably lower 
13

C 

abundance in Asp and 

Glu than in Ala 

The branched 

TCA cycle 

[3-
13

C] pyruvate, 

or 

[2-
13

C] glycerol 

Asp & Glu 

Different labeling 

patterns in Asp versus in 

Glu 

 (Re)-citrate 

synthase in TCA 

cycle 

[1-
13

C] pyruvate Glu 
Non-labeled α-carboxyl 

group of Glu 

The citramalate-

pathway in 

isoleucine 

biosynthesis 

[2-
13

C] pyruvate 

 or [1-
13

C] acetate 
Leu & Ile 

Identical labeling 

patterns in Leu and Ile 

The Calvin-

Benson cycle 

Non-labeled CO2 

with labeled 

organic carbon 

His & Ser  

Significantly low 
13

C 

abundance in Ser and 

His  

The oxidative 

pentose phosphate 

pathway 

[1-
13

C] glucose Ala  non-labeled Ala >50% 

The CO2-

anaplerotic 

pathways 

13
C-bicarbonate 

with non-labeled 

organic carbon 

Ala & Asp 
Enriched 

13
C abundance 

in Asp 
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3.2.1 Abstract 

The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 

51142 (Cyanothece 51142), is able to grow aerobically in nitrogen-fixing 

conditions under alternating light-dark cycles or continuous illumination. This 

study investigated the impacts of carbon and nitrogen sources on Cyanothece 

51142 metabolism via 
13

C-assisted metabolite analysis and biochemical 

measurements. Under continuous light (50 µmol photons/m
2
/s) and nitrogen-

fixing conditions, we find glycerol addition promoted aerobic biomass growth (by 

twofold) and nitrogenase-dependent hydrogen production (up to 25 µmol H2/mg 

chlorophyll/hr), but strongly reduced phototrophic CO2 utilization. Under 

nitrogen-sufficient conditions, Cyanothece 51142 was able to metabolize glycerol 

photoheterotrophically, and the activity of light dependent reactions (e.g., oxygen 

evolution) was not significantly reduced. In contrast, Synechocystis sp. PCC 6803 

showed apparent mixotrophic metabolism under similar growth conditions. 

Isotopomer analysis also detected that Cyanothece 51142 was able to fix CO2 via 

anaplerotic pathways, and to uptake glucose and pyruvate for mixotrophic 

biomass synthesis. 

Key words: 
13

C-assisted, anaplerotic pathway, CO2 utilization, glycerol, 

hydrogen, nitrogenase 
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3.2.2 Introduction 

Rising concerns about global warming due to the greenhouse effect have 

renewed research focused on biological capture of CO2. Cyanobacteria have 

versatile metabolic capabilities, which allow them to grow under autotrophic, 

heterotrophic, and mixotrophic conditions (1,2,3). More importantly, some 

cyanobacteria can capture solar energy to fix nitrogen and generate H2, thereby 

serving as a source of biofertilizer and biofuel, while simultaneously consuming 

atmospheric CO2 (4,5,6,7,8,9). Cyanothece 51142, a unicellular diazotrophic 

cyanobacterium, is able to grow aerobically under nitrogen-fixing conditions and 

has been recognized for contributing to the marine nitrogen cycle. The recent 

sequencing of the Cyanothece 51142 genome and its transcriptional analysis 

uncovered the bacterium’s diurnally oscillatory metabolism in alternating light-

dark cycles (photosynthesis during the day and nitrogen fixation at night) 

(10,11,12). In general, cyanobacteria use spatial or temporal separation of the 

oxygen-sensitive nitrogen-fixation and the oxygen-evolving photosynthesis as a 

strategy for diazotrophic growth (9,13). Interestingly, Cyanothece 51142 

demonstrates simultaneous N2 fixation and O2 evolution under continuous light 

conditions, though it appears to be unicellular (14,15). For example, a recent 

study on transcriptional and translational regulation of continuously-illuminated 

Cyanothece has revealed strong synthesis capability for nitrogenase and circadian 

expression of 10% of its genes (10,11).  Furthermore, Cyanothece strains usually 



. 

66 

 

utilize exogenous carbon substrates for mixotrophic growth under light and for 

heterotrophic growth under dark conditions (16). Carbon substrates are key 

factors controlling the efficiency of cyanobacterial aerobic growth and hydrogen 

production (7,16,17,18,19). Genome analysis studies have revealed that 

Cyanothece 51142 has a unique gene cluster on its linear chromosome containing 

key genes involved in glucose and pyruvate metabolism (12). However, the 

ability of this strain to metabolize glucose or pyruvate remains unknown.  

To quantitatively examine the effect of carbon and nitrogen sources on 

Cyanothece central metabolism, this study investigated the impact of three carbon 

sources (glucose, glycerol, and pyruvate as representatives of sugar, lipid 

derivatives, and organic acids from central metabolic pathways, respectively) on 

Cyanothece 51142 growth and metabolism. Two nitrogen sources other than N2, 

ammonia and nitrate, were also examined. Precise readouts on metabolic state and 

activity were based on
 13

C-assisted metabolite analysis integrated with 

biochemical assays and the gene expression patterns obtained by reverse 

transcription PCR (RT-PCR) (20,21,22,23,24,25). Superior to the traditional 
14

C 

method (1), the non-radioactive 
13

C method can provide rich information about 

which carbons within a metabolite are labeled, and thus enable an in-depth 

understanding of carbon utilization and metabolic regulation in Cyanothece 

51142.   

3.2.3 Materials and methods 
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Bacterial strains and growth conditions. Cyanothece 51142 were first 

grown in 150 mL Erlenmeyer flasks fed with ASP2 medium (16) without nitrate. 

Ambient carbon dioxide provided the sole carbon source. For experiments 

examining the effect of nitrogen sources, 18 mM NaNO3 or 17 mM NH4Cl was 

added into the medium. Cultures were grown aerobically under continuous light 

(50 µmol photons∙m
-2

∙s
-1

) on a shaker at 150 rpm and 30°C. Cells at late mid-log 

phase were sub-cultured into different cultural media with various nitrogen and 

carbon sources. Isotopically-labeled carbon substrates (Cambridge Isotope 

Laboratories, Andover, MA) were used for mixotrophic growth, including 54 mM 

glycerol (2-
13

C, >98%), 26 mM glucose (U-
13

C, >98%) and 11 mM sodium 

pyruvate (3-
13

C, >98%). For tracer experiments, a 3% inoculum from unlabeled 

stock culture was used to inoculate a 50 mL medium containing labeled carbon 

sources. At the mid-log phase of growth, a 3% inoculum from the first isotopic 

labeled culture was used to inoculate 50 mL sub-cultures with the same medium 

to remove the effect of unlabeled carbon introduced from the initial inoculum. 

Cell growth was monitored by a UV-Vis spectrometer (Genesys, Thermo 

Scientific, USA) at 730 nm. To perform a comparative study, a glucose tolerant 

Synechocystis strain PCC 6803 (a model cyanobacterium for studying 

fundamental processes of photosynthetic metabolism) was also cultured in BG11 

medium (pH=7.6) under the same growth conditions (continuous light and 30 
o
C, 

(26). The BG11 medium was supplemented with 6 mM glucose (U-
13

C, >98%) to 

support mixotrophic growth. Synechocystis PCC 6803 were also sub-cultured in 
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the same labeled medium twice before sampling for 
13

C-labeled metabolite 

analysis. 

Metabolite and photosynthetic activity analysis. To analyze metabolites 

in Cyanothece 51142, biomass was harvested at the middle-log phase of growth 

(~90 hours) by centrifugation at 7,000 rpm for 15 min at 10˚C. The concentrations 

of pyruvate, glucose and glycerol were analyzed with enzymatic assay kits (R-

Biopharm, Germany). To measure hydrogen produced by Cyanothece 51142, 20 

ml of culture solution was taken from the culturing flask after three days and 

transferred into 35.2 ml glass vials sealed with rubber septa and kept under 

continuous light (50 µmol photons∙m
-2

s
-1

). A modified protocol was used to 

quantify hydrogen (27).  Briefly, hydrogen that accumulated in the headspace of 

the sealed culture vials (for 5 hours) was withdrawn with a Hamilton gas-tight 

syringe and quantified on an Agilent 6890N Gas Chromatograph with a molseive 

5A 60/80 column (inner dimensions 6’×1/8”) and Thermal Conductivity Detector.  

Injection, oven, and detector temperatures were 100°C, 50°C, and 100°C, 

respectively. Argon was the carrier gas (flow rate of 65 ml∙min
-1

). All 

measurements included three biological replicates. 

Photosynthesis activities were determined based on measurements of 

chlorophyll fluorescence and oxygen evolution. Chlorophyll fluorescence profiles 

of photosystem II (PSII) of Cyanothece 51142 under different nutrient conditions 

were detected by a FL100 fluorometer (Photon Systems Instruments, Brno, Czech 
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Republic) as detailed before (28). All samples taken for measurement were 

diluted to OD730 ~0.2 using cell-free ASP2 medium. The samples were first 

adapted for 3 min in total darkness. During the measurement (performed at room 

temperature), the fluorometer emitted saturating light pulses to determine 

samples’ fluorescence yield. The photosynthesis activity was derived by the 

maximum quantum yield (Fv/Fm) according to the formula Fv/Fm = (Fm - F0)/Fm, 

where F0 is initial fluorescence and Fm is maximum fluorescence at the beginning 

of measurement (29).  

Oxygen evolution rates of Cyanothece 51142 grown under different 

nutrient conditions were measured with a Hansatech oxygen electrode. Assays 

were performed at 30 °C on whole cells in ASP2 media with a saturating light 

intensity of 8,250 μmol photons∙m
-2

s
-1

 for 2 mins in a 2.5-mL reaction volume. 

For each reaction, the chlorophyll concentration of each sample was diluted to ~6 

μg∙ml
-1

. The oxygen evolution rates (μmol O2•mg chlorophyll
-1

•hr
-1

) were then 

measured and normalized based on chlorophyll concentration.  

RNA extraction and reverse transcription PCR (RT-PCR). The 

bacteria grown under different cultural conditions were harvested at mid-log 

phase according to the corresponding growth curves. The total RNA was 

extracted by using a PureLink™ RNA Mini Kit (Invitrogen, California), 

following the manufacturer’s instruction. cDNA was synthesized from ~2 μg 

RNA by using a High-Capacity cDNA Reverse Transcription Kit (Invitrogen, 
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California). The primers for RT-PCR reactions were designed using Primer 

Premier 5 software (PREMIER Biosoft) and analyzed by OligoAnalyzer 3.0 

software (Integrated DNA Technologies, Coralville, USA). The forward primer 

(AGCGGTGGAGTATGTGGT) and reverse primer 

(GGCTGGGTTTGATGAGATT) were employed to amplify a 16S rRNA gene as 

a control. The forward primer (CCGACTACACTCCGAAAG) and reverse primer 

(ACGTAACGCCCGTAATGC) were used to amplify the Rubisco (rbcL) gene 

and the forward primer (TAATCACGAAACGGGAG) and reverse primer 

(CACCACATCAGCGTATTG) to amplify the prk gene. The PCRs were 

conducted with the following cycle conditions: 2 min of activation of the 

polymerase at 94 °C followed by 30 cycles consisting of 1 min at 94 °C, 30 s at 

53 °C and 2 min at 72 °C; finally, a 10 min extension process was performed at 

72 °C. The final PCR product was observed directly on 2% agarose gels after 

electrophoresis. 

 Isotopic analysis. The preparation and isotopic analysis of proteogenic 

amino acids were performed as previously described (30,31). In brief, 

exponentially growing biomass from ~20 ml culture was collected by 

centrifugation (8,000×g, 10 min, 4˚C) and hydrolyzed in 6 M HCl at 100°C for 24 

h. The amino acid mix was dried and derivatized in tetrahydrofuran (THF) and N-

(tert-butyl dimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich, St. Louis, 

MO) at 70°C for 1 h. A gas chromatograph (GC) (Hewlett-Packard, model 
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7890A, Agilent Technologies Inc., Ballwin, MO) equipped with a DB5-MS 

column (J&W Scientific, Folsom, CA) and a mass spectrometer (MS) (5975C, 

Agilent Technologies Inc., Ballwin, MO) were used for analyzing amino acid 

labeling profiles. The ion [M-57]
+
 from unfragmented amino acid was detected 

and mass fractions of key amino acids were calculated (32). The substrate 

utilization ratios R (reflecting the degree of mixotrophic metabolism) were 

calculated from the labeling patterns of proteogenic amino acids:  

Amino acid X: 
C

Mi

VVm

VVn

C

i

i

COsub

COsub 1

2

2

)(
01.098.0

             
2CO

sub

V

V
R  (1) 

where the ratio R indicated the utilization of labeled carbon substrate over 

unlabeled CO2 for producing an amino acid X (and its precursors). Mi was the 

GC-MS isotopomer fraction for the given amino acid X (i.e., M0 was the 

unlabeled fraction, M1 was the singly labeled fraction, M2 was the doubly labeled 

fraction, M3 was the triply labeled fraction, etc). C was the total number of carbon 

atoms in the amino acid molecule. Vsub was the carbon flux from 
13

C labeled 

substrate, VCO2 was the carbon flux from CO2; 0.98 was the purity of the labeled 

carbon substrate; 0.01 was the natural abundance of 
13

C, m was the total number 

of carbons in the substrate molecule, and n was the total number of labeled 

carbons in the substrate molecule. The ratio R indicated the amount of labeled 

carbon that percolated through the central metabolic networks (Figure 3.2.1).  
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3.2.4 Results 

Cell growth with different carbon and nitrogen sources. Figure 3.2.2 

and Supplementary Figure 3.2.S1 shows the effect of carbon and nitrogen 

substrates on the growth of Cyanothece 51142 under continuous light. Biomass 

growth was significantly enhanced by addition of glycerol to ASP2 medium. For 

example, glycerol addition doubled the specific growth rate from 0.28 day
-1

 to 

0.63 day
-1

 under N2 fixing conditions. These results are consistent with an earlier 

report on two Cyanothece strains (16). On the other hand, Cyanothece growth was 

not apparently enhanced by either glucose or pyruvate (Supplementary Figure 

3.2.S1), and high concentration pyruvate (64 mM) inhibited Cyanothece growth. 

Compared to nitrogen fixing cultures, the presence of nitrate salts in the growth 

media increased Cyanothece autotrophic growth rates from 0.28 day
-1

 (N2 fixation 

condition) to 0.37 day
-1

 (nitrate-sufficient condition). Similarly, the presence of 

glycerol enhanced growth rate by two-fold (from 0.60 day
-1

 to 1.02 day
-1

). As 

expected, high concentrations of ammonium salts (17 mM) fully inhibited growth 

(data not shown) because of its well-known deleterious effect on photosystems of 

cyanobacteria (33,34). 

Isotopic analysis of amino acids. 
13

C enrichment patterns in key 

metabolites were used to estimate the relative utilization of labeled carbon 

substrates (i.e., glucose, pyruvate, or glycerol) and CO2 for metabolite synthesis 

under mixotrophic growth. Figure 3.2.1 shows the central metabolic pathways in 
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Cyanothece 51142 (http://www.genome.jp/kegg/). Five amino acids were 

analyzed for their labeling: histidine (precursor: ribose-5-phosphate and 5,10 

methyl-THF), synthesized from the Calvin Cycle and pentose phosphate pathway; 

serine (precursor: 3-phosphoglycerate, a product from the Calvin Cycle); alanine 

(precursor: pyruvate, originated from carbon substrate or CO2 fixation); and 

aspartate and glutamate (precursors: oxaloacetate and 2-oxoglutarate, 

respectively, synthesized from the citric acid cycle). Under nitrate-sufficient 

conditions, glycerol could be used as the sole carbon source for synthesis of 

alanine, serine, and histidine (as indicated by approximately infinite R values). 

This indicates that the cell was undergoing completely heterotrophic metabolism. 

R values of some key amino acids in glucose and pyruvate cultures were positive 

and thus the two carbon sources were actually utilized for biomass synthesis 

(Table 3.2.1). However, their measured R values were between 0 and 0.3, which 

indicated that CO2 was the main carbon source for metabolite synthesis. This 

result was consistent with the fact that glucose and pyruvate did not apparently 

improve the biomass growth. Compared to nitrogen-sufficient conditions, 

nitrogen fixing conditions further limited glucose and glycerol utilization, as 

shown by the decreased labeling fractions of three key amino acids (i.e., alanine, 

serine, and histidine) (Table 3.2.1).  

Nitrogenase-dependent hydrogen production, photosynthesis and 

Calvin Cycle activity. Hydrogen production under continuous light with different 

http://www.genome.jp/kegg/
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carbon substrates (N2 as the sole nitrogen source) was measured in the 

exponential (day 4) and stationary (day 9) growth phases, respectively 

(Supplementary Figure 3.2.S2). In the exponential growth phase under nitrogen 

fixing conditions, hydrogen production rates were as follows: for glycerol (25±6 

µmol H2/mg chlorophyll/hr); for glucose (13±9 µmol H2/mg chlorophyll/hr); for 

pyruvate (4±2 µmol H2/mg chlorophyll/hr); and in the photoautotrophic condition 

(5±1 µmol H2/mg chlorophyll/hr). Under all nitrate or ammonium chloride 

conditions, hydrogen production was not detected regardless of the carbon 

substrate.  

The measurement of photosynthetic parameters (Figure 3.2.3) suggested 

that, compared to photoautotrophic conditions, addition of an exogenous carbon 

source (glycerol, glucose, or pyruvate) did not strongly suppress the maximal 

quantum yield of PSII (Fv/Fm) or the oxygen evolution rate. Nitrate-sufficient 

conditions enhanced the oxygen evolution rates by 2~3 fold compared to 

nitrogen-fixing conditions, while the change of quantum yields of PSII were much 

less significant (10~30%). Gene expression in the carbon fixation pathway was 

also determined (Figure 3.2.4). Reverse transcription PCR (RT-PCR) results 

indicated that two key enzymes in Calvin Cycle (ribulose-1,5-bisphosphate 

carboxylase oxygenase (Rubisco, rbcL) and phosphoribulokinase (prk)) were 

functional under growth conditions with glycerol or glucose. The above 

measurements confirm that the light dependent reactions were active under all 
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culture conditions, even though carbon substrates reduced the relative amount of 

CO2 fixation for biomass synthesis.  

3.2.5 Discussion  

Carbon substrate utilization and regulation.  In continuous light, 

Cyanothece 51142 can efficiently utilize glycerol for aerobic growth. Based on 

the measurement of carbon substrates in the culture medium during the 

exponential growth phase, the uptake rates of glycerol were 0.22±0.05 g∙(g dry 

biomass•day)
-1

 under nitrogen fixing and 0.35±0.06 g∙(g dry biomass•day)
-1

 under 

nitrate-sufficient conditions. Glycerol promoted Cyanothece 51142 growth 

because it provided carbon and energy sources. Under nitrate-sufficient 

conditions, the unlimited large value of R from serine, alanine and histidine 

labeling data indicated that 3-phosphoglycerate node, pyruvate node and ribose-5-

phosphate node in the central metabolic pathways (Figure 3.2.1) were completely 

originating from glycerol, while the contribution of CO2 photofixation to those 

metabolite nodes was negligible. As a comparison, a glucose-tolerant strain of 

Synechocystis sp. strain 6803 was cultured with fully labeled glucose under 

continuous light and nitrogen-sufficient conditions (Supplementary Figure 3.2.3). 

The measured R values (Table 3.2.1) for serine (0.87), alanine (0.92) and histidine 

(1.73) indicated that Synechocystis 6803 had a typical mixotrophic growth. In 

general, cyanobacterial heterotrophic growth has been reported only under three 

conditions: complete darkness, dim light, and pulses of light (35,36). When the 
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light is sufficient for photoautotrophy, Cyanothece photoheterotrophic growth 

was only achieved by addition of photosystem II inhibitors (16). This study shows 

that rapidly-growing Cyanothece 51142 cells can shift their metabolic strategies 

from mixotrophic or autotrophic growth to photoheterotrophic growth, possibly 

because maximal utilization of energy-rich carbon substrate (glycerol) can reduce 

energy costs related to CO2 fixation (fixation of one CO2 consumes two ATP and 

one NADPH) and building block synthesis so that maximal biomass growth can 

be achieved.  

On the other hand, glucose was not apparently consumed by Cyanothece 

51142 (the consumed concentrations were below 1mM in all experiments). In the 

[U-
13

C] glucose experiments (Table 3.2.1), all five amino acids contained labeled 

carbons, which indicated that the labeled glucose had percolated through the 

entire central metabolic pathways, thereby confirming the ability of Cyanothece 

51142 to metabolize glucose. The R values of all key amino acids were below 

0.05 for both nitrogen fixation and nitrate-sufficient conditions, suggesting that a 

large fraction of the carbon in the biomass had originated from CO2 fixation. In 

contrast, glucose was the most favorable carbon source for Synechocystis species 

(3), and the R values (Table 3.2.1) from key amino acids were around (0.4~1.7). 

While both Synechocystis 6803 and Cyanothece 51142 have completely annotated 

central pathways for glucose metabolism, Synechocystis 6803 contains a glucose 

transporter (gene code Sll0771) that shares a sequence relationship with 
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mammalian glucose transporters (1,37,38). So far, the presence of a glucose 

transporter in Cyanothece 51142 has not been rigorously verified. From the 

genome database (DOE Joint Genome Institute, www.jgi.doe.gov/), a gene 

(cce_3842) was identified as a glucose transport protein that shared weak (25%) 

amino acid identity with the Sll0771 protein of Synechocystis PCC6803. Based on 

the glucose-dependent growth data, we conclude that the enzymes involved in 

glucose transport or utilization in Cyanothece 51142 may not be as efficient as 

those of Synechocystis PCC6803. 

Analysis of labeled pyruvate-grown Cyanothece cells showed that serine 

(whose precursor is 3-phosphoglycerate) and histidine (whose precursor is ribose-

5-phosphate) were completely unlabeled (R=0). Such labeling profiles suggest 

that CO2 was used as the sole carbon source for synthesis of metabolites in 

glycolysis and the pentose phosphate pathway (i.e., there was no gluconeogenesis 

activity). Pyruvate was used only to synthesize alanine (R=0.3~0.6) and 

metabolites in the TCA Cycle: (pyruvateoxaloacetateAsp) (pyruvateacetyl-

CoAcitrate2-oxoglutarateGlu), as reflected by the labeled carbon present 

in glutamate and aspartic acid. Interestingly, the R values of alanine (=0.60) and 

glutamate (=1.25) were higher under nitrogen-fixing conditions compared to the 

nitrate-sufficient conditions, indicating that relatively more labeled pyruvate was 

used for glutamate synthesis under these conditions. The nitrogen fixation was via 

nitrogenase: N2 + 6 H
+
 + 6 e

−
 → 2 NH3, and the nitrogenase-generated 

http://www.jgi.doe.gov/
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ammonium was assimilated into amino acids through the glutamine 

synthetase/glutamate synthase pathway (39). Utilization of supplemented 

pyruvate for glutamate synthesis could facilitate the nitrogen fixation process.  

The enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) 

is known to be the rate-limiting factor in the Calvin Cycle for capturing CO2 to 

synthesize three-carbon sugar (glycerate 3-phosphate) (40,41,42). We examined 

Rubisco (rbcL) and phosphoribulokinase (prk) gene expression to reveal the 

metabolic regulation in the Calvin Cycle at the transcriptional level. Under 

photoautotrophic, mixotrophic, and heterotrophic growth conditions, the 

expression of the two genes encoding ribulose-1,5-bisphosphate carboxylase 

oxygenase (rbcL) and phosphoribulokinase (prk) were clearly observed. Although 

Calvin Cycle genes were expressed, Cyanothece 51142 still grew 

heterotrophically in the presence of glycerol and nitrate based on the isotopomer 

data (no apparent incorporation of CO2 from Calvin Cycle). These inconsistencies 

indicate that 
13

C-assisted metabolite analysis provides direct readout on actual 

metabolic status, while gene expression results cannot be solely relied upon as 

there are many possible post-transcriptional regulations involved.   

Furthermore, Cyanothece 51142 can fix CO2 via anaplerotic pathways 

(i.e., C4 carbon fixation) (43). In the presence of glycerol and nitrate-sufficient 

conditions (Table 3.2.1), R ratios for aspartate synthesis were 1.53, much smaller 

than the R ratios (R=∞) of Ala, Ser, and His. This indicates the utilization of CO2 
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for the synthesis of C4 metabolites in the TCA Cycle via anaploric pathways, 

even though phototrophic CO2 fixation was significantly inhibited: (1) 

PEP+CO2oxaloacetate (catalyzed by phosphoenolpyruvate carboxylase or 

phosphoenolpyruvate carboxykinase) or (2) pyruvate+CO2malate (catalyzed by 

malic oxidoreductase). Such anaplerotic pathways synthesized key TCA Cycle 

metabolites like oxaloacetate and succinate (precursors for chlorophyll).  

Meanwhile, CO2 was generated by two reactions (i.e., 

pyruvateacetylCoA+CO2; isocitrate2-oxoglutarate+CO2), which are essential 

steps for glutamate synthesis. These catabolic processes cause the loss of 

unlabeled carbon when 2
nd

 position labeled glycerol is used as the main carbon 

source. Therefore, the coefficients VCO2 (CO2 utilization flux) and R (carbon 

utilization ratio) were both negative for glutamate synthesis (Equation 1) in 

glycerol supplemented cultures (both nitrogen fixation and nitrate-sufficient 

conditions) (Table 3.2.1). 

Photosynthesis activity. Photosynthesis activity was estimated by the 

Fv/Fm parameter (maximum quantum efficiency of photosystem II) (44). When 

glycerol or glucose were utilized, the maximum quantum yield Fv/Fm (i.e, 

efficiency of photosystem II) in Cyanothece 51142 was not significantly affected 

(changes are within ~30%, Figure 3.2.3a). Although chlorophyll fluorescence 

estimation is not an accurate method for determination of absolute PSII activity 

(45,46), we have used it in our study as a tool only to confirm active photon 
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capture in the light-harvesting antenna complexes of photosystem II under both 

heterotrophic and mixotrophic conditions.  

Oxygen evolution was measured as one molecule of the pigment 

chlorophyll absorbs one photon and uses its energy to generate NADPH, ATP, 

and O2 in the light-dependent reactions (47). The oxygen evolution rates in 

Cyanothece 51142 rose by 2~3 fold under all nitrate-sufficient conditions 

compared to corresponding nitrogen fixation conditions (Figure 3.2.3b). The 

significantly higher rates of oxygen evolution indicated that the photosynthetic 

process of water splitting was more active and provided more energy (ATP and 

NADPH) to support biomass growth under nitrate-sufficient conditions.  

Finally, precise determination of the photosynthetic activity is difficult for 

Cyanothece 51442, since the metabolic behavior of Cyanothece 51442 fluctuates 

under continuous light due to its circadian rhythm (10,15). The photoreaction 

activities in Figure 3.2.3 are only qualitative (not quantitative) evidences to 

support the presence of active light-dependent reactions under all culture 

conditions.  

Nitrogen utilization and nitrogenase-dependent hydrogen production. 

Under anaerobic condition (using argon gas to flush the culture), hydrogen 

production rates of Cyanothece 51142 were as high as 100 µmol/mg 

chlorophyll/hr (data not shown). Under aerobic conditions, hydrogen production 

enzyme (hydrogenase) was completely inactivated by oxygen (7). Cyanothece 
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51142 used nitrogenase for both nitrogen fixation and hydrogen production. 

Nitrate, ammonium or some amino acids inhibit nitrogenase activity and thus 

fully prohibit aerobic hydrogen production by cyanobacteria (48). Furthermore, 

NH4
+
 is a direct nitrogen source (nitrate is reduced to NH4

+
) that can be 

incorporated into biomass via glutamine / glutamate synthase (49).  Cyanothece 

51142, however, only grows with low concentration NH4
+
 (below 1 mM) because 

of an observed inhibition effect (48,50). Nitrogen fixation is an energy demanding 

process (N2+8H
+
+8e

-
+16ATP→2NH3+H2+16ADP +16Pi). Addition of glycerol 

reduces CO2 fixation via the Calvin Cycle, so more energy (ATP and NADH) can 

be directed to nitrogen fixation and thus improve hydrogen production by 4~5 

fold (4,5). Glucose and pyruvate cannot significantly promote hydrogen 

production because their utilization is very low and their effect on energy 

economy is limited. Hydrogen production rates dropped for all mixotrophic 

cultures of Cyanothece 51142 after 9 days, suggesting that inhibitory metabolites 

accumulated during the cultivation which reduced nitrogenase activities 

(40,41,42). Finally, the coexistence of oxygen-evolving photosynthesis and 

oxygen-sensitive nitrogen fixation (indicated by hydrogen evolution) is an 

attractive characteristic in some cyanobacteria (13,14). Unlike filamentous 

cyanobacterial species where nitrogen fixation and oxygenic photosynthesis are 

spatially segregated (51), Cyanothece 51142 is able to maintain activities for N2 

fixation, respiration, and photosynthesis within the same cell under continuous 

light. The strain not only has a strong ability to scavenge intracellular oxygen and 
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synthesize nitrogenase (9,15), but also develops a highly circadian mechanism for 

nitrogen fixation (52). 

  This study improves our understanding of Cyanothece 51142 physiology 

under different carbon and nitrogen sources as well as its potential application for 

hydrogen production applications. In general, exogenous carbon substrates may 

improve cellular growth, but have strong negative effects on CO2 fixation. 

Continuously illuminated Cyanothece 51142 shows simultaneous oxygen 

evolution and nitrogenase-dependent hydrogen production, while hydrogen 

production can be significantly enhanced by the addition of glycerol. A 

comparison of metabolic status under autotrophic, mixotrophic and heterotrophic 

growth conditions indicated that Cyanothece 51142 has an inherent metabolic 

strategy for maximal biomass production at low energy cost. Finally, this study 

has further confirmed that 
13

C-assisted metabolite analysis is a high throughput 

method which can provide new and precise information to understand a biological 

system. 
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Figure 3.2.1. Central metabolic pathways of Cyanothece 51142 with glucose, 

glycerol, and pyruvate as carbon substrates. The dashed line shows the metabolic 

pathway with glycerol as carbon substrate; the bold line indicates glucose; the 

solid line shows the common pathway for all carbon conditions.  Abbreviations: 

ACCOA, acetyl-coenzyme A; Ala, alanine; E4P, erythrose-4-phosphate; F6P, 

fructose-6-phosphate; G6P, glucose-6-phosphate; GAP, glyceraldehyde 3-

phosphate; 3PG, 3-phosphoglycerate; GLY, glycerol; GLU, glucose; His, 

histidine; ICIT, citrate/isocitrate; MAL, malate; OAA, oxaloacetate; OXO, 2-

oxoglutarate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, ribose-5-

phosphate (or ribulose-5-phosphate); R15P, ribulose-1,5-bisphosphate; S7P, 

sedoheptulose-7-phosphate; Ser, serine; Xu5P: xylulose-5-phosphate. 
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Figure 3.2.2. Cyanothece 51142 growth curves under different nitrogen and 

carbon sources (biological replicates, n=3). ◊: Glycerol+Nitrate; □: Glycerol+N2; 

Δ: CO2+ Nitrate; ○: CO2+N2. The error bars are smaller than the symbols.   
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Figure 3.2.3. Maximum quantum yields (Figure 3.2.3a) of PSII and oxygen 

evolution rates (Figure 3.2.3b) in Cyanothece 51142 under different growth 

conditions (biological replicates, n=3). All samples were taken at the exponential 

growth phase based on the growth curve. Black column, N2 as nitrogen source; 

white column, NaNO3 as nitrogen source; Error bars, SD. 

 

(a) 

 

(b) 
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Figure 3.2.4. Reverse transcription PCR (RT-PCR) study for ribulose-1,5-

bisphosphate carboxylase oxygenase (rbcL) and phosphoribulokinase (prk) under 

different mixotrophic growth conditions. (a) CO2+N2; (b) CO2+NaNO3; (c) 

glycerol+NaNO3; (d) glucose+NaNO3. The 16S rRNA gene was used as the 

internal reference; the no template control (NTC) was added under each 

mixotrophic growth conditions. 
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Supplementary Figure 3.2.S1. The growth of Cyanothece 51142 in the presence 

of different carbon and nitrogen substrates under continuous light (n=3). (a) N2 as 

nitrogen source; (b) NaNO3 as nitrogen sour □, glucose 

(26 ▲, pyruvate (9 mM). The error bars are smaller 

than the symbols. 
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Supplementary Figure 3.2.S2. Hydrogen production under mixotrophic 

conditions. Open bars, hydrogen production at day 4; filled bars, hydrogen 

production at day 9. The asterisk indicates that hydrogen production was below 

the minimum detectable level. 
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Supplementary Figure 3.2.S3. Growth of Synechocystis 6803 in the presence of 

glucose (6 mM) under continuous light (n=3). 
13

C-labelled samples were taken in 

the midexponential phase (~80 h), when there was still sufficient glucose in the 

medium. The error bars are smaller than the symbols. 
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Table 3.2.1. Isotopic analysis of the labeling profiles of amino acids in 

Cyanothece 51142 and Synechocystis 6803 under different growth conditions (the 

standard error for GC-MS measurement was below 0.02, technical replicates, 

n=2)  
 

Amino  
[M-57]+ 

N2 NaNO3 

Synechocystis 

6803 (nitrate-
medium) 

Acids Glucose R1 Pyruvate R Glycerol R Glucose R Pyruvate R Glycerol R Glucose R 

Ala 

M0 0.67  

0.032 

0.41  

0.597 

0.19  

4.2 

0.61  

0.042 

0.51  

0.327 

0.07  

+∞ 

0.04  

M1 0.19 0.55 0.71 0.19 0.48 0.85 0.05 0.92 

M2 0.11 0.03 0.10 0.17 0.01 0.07 0.28  

Ser 

M0 0.65  

0.033 

0.98  

0 

0.20  

3.7 

0.58  

0.046 

0.97  

0 

0.08  

+∞ 

0.04  

    

0.87 

M1 0.22 0.02 0.72 0.22 0.03 0.81 0.06 

M2 0.10 0 0.09 0.16 0 0.10 0.28 

Asp 

M0 0.58  

0.030 

0.54  

0.195 

0.10  

2.2 

0.59  

0.032 

0.94  

0.005 

0.07  

1.53 

0.04  

0.44 M1 0.24 0.43 0.64 0.20 0.06 0.78 0.05 

M2 0.11 0.04 0.25 0.17 0 0.15 0.19 

 M3 0.06  0  0.01  0.03  0  0  0.47 

Glu2 

M0 0.43  

0.041 

0.15  

1.25 

0.02  

- 

1.78 

0.38  

0.051 

0.47  

0.170 

0.01  

- 

2.11 

0.02  

0.76 M1 0.26 0.44 0.14 0.22 0.49 0.15 0.02 

M2 0.21 0.37 0.62 0.27 0.04 0.74 0.04 

M3 0.07 0.04 0.21 0.09 0 0.10 0.07 

 M4 0.02  0  0.01  0.03  0  0  0.53 

His 

M0 0.44  

 

0.032 

0.91  

 

0 

0.05  

 

2.83 

0.33  

 

0.049 

0.92  

 

0 

0.01  

 

+∞ 

0.01  

 

1.73 

M1 0.28 0.08 0.28 0.24 0.08 0.21 0.01 

M2 0.17 0 0.50 0.22 0 0.55 0.02 

M3 0.07 0 0.16 0.12 0 0.20 0.03 

 M4 0.03  0  0  0.07  0  0.03  0.06 

 M5 0  0  0  0.01  0  0  0.22 

 

Note: 1. Bold values were the carbon substrate (glycerol, pyruvate, or glucose) utilization 

ratios (substrate/CO2 fixation) for amino acid synthesis calculated according to Equation 

(1). 2. The glutamate synthesis pathway involved the loss of two carbons from pyruvate 

to α-ketoglutarate. Such a microbial process changed the labeling enrichment, and the 

negative value indicated the net loss of unlabeled CO2. 
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3.3 Characterization of the central metabolic pathways in 
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LM, Xu J, Zhou J, Tang YJ. Characterization of the central metabolic pathways in 

Thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis. 

Appl Environ Microbiol. 2009, 75(15):5001-8. 

3.3.1 Abstract 

Thermoanaerobacter sp. X514 has great potential in biotechnology due to 

its capacity to ferment a range of C5 and C6 sugars to ethanol and other 

metabolites under thermophilic conditions.  This study investigated the central 

metabolism of strain X514 via 
13

C-labeled tracer experiments using either glucose 

or pyruvate as both the carbon and energy source. X514 grew on a minimal 

medium and thus contains complete biosynthesis pathways for all macromolecule 

building blocks. Based on genome annotation and isotopic analysis of amino 

acids, three observations can be obtained about the central metabolic pathways in 

X514.  First, the oxidative pentose phosphate pathway in X514 is not functional, 

and the TCA cycle is incomplete under fermentative growth conditions. Second, 

X514 contains (Re)-type citrate synthase activity, although no gene homologous 

to the recently characterized (Re)-type citrate synthase of Clostridium kluyveri 

was found. Third, the isoleucine in X514 is derived from acetyl-CoA and 

pyruvate via the citramalate pathway rather than being synthesized from threonine 

via threonine ammonia-lyase. The functionality of the citramalate synthase gene 

(CimA, Teth514_1204) has been confirmed by enzymatic activity assay, while the 
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presence of intracellular citramalate has been detected by mass spectrometry. This 

study demonstrates the merits of combining 
13

C-assisted metabolite analysis, 

enzyme assays, and metabolite detection not only to examine genome sequence 

annotations but also to discover novel enzyme activities.  

 Key words: ethanol, 
13

C, (Re)-type citrate synthase, isoleucine, citramalate 

3.3.2 Introduction 

Rising global energy demand and the depletion of fossil energy resources 

have resulted in significant environmental, economic, and social impacts. 

Production of renewable, biomass-derived energy sources has been suggested as a 

partial solution to this problem. Among renewable energy sources, ethanol is an 

attractive short-term solution owing to its strong research foundation and its ready 

integration with the current petroleum-based infrastructure (53,54). Plant-based 

cellulose is the most attractive raw material for bioethanol production (55). 

However, the use of anaerobic cellulosic bacteria in consolidated bioreactors has 

been proposed as an efficient means of rapid conversion of cellulosic biomass to 

ethanol (56). Thermophilic bacteria of the genus Thermoanaerobacter have the 

ability to naturally ferment a wide variety of monomeric and polymeric 

carbohydrates, including D-xylose, into ethanol (57,58,59). While not cellulose-

utilizing themselves, Thermoanaerobacter species in co-culture with thermophilic 

cellulose-utilizing Clostridium species have significantly higher yields of ethanol 

from both cellulose and hemicellulose than from monoculture alone (60,61). 
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Therefore, the investigation of carbon metabolism in Thermoanaerobacter sp. 

X514 has implications for understanding X514’s potential in bioenergy 

production.  

Despite the potential importance of X514 in biofuel production, a rigorous 

investigation of the central metabolic pathways in X514 has yet to be conducted. 

Although an array of functional genomics tools has been applied in predicting this 

species’ metabolism (62,63,64), a precise description of cellular metabolism is 

complicated by misannotation and by post-transcriptional regulation of protein 

synthesis (20,65). The complete genome sequence of X514 from the KEGG 

database (http://www.genome.jp/kegg/) suggests a few gaps in several essential 

pathways involved in the biosynthesis of amino acids (e.g. isoleucine) and in the 

TCA cycle (e.g., citrate synthase). Therefore, X514 would not survive without 

supplements of isoleucine or other essential nutrients. However, X514 can 

actually grow in a completely minimal medium. Hence, the metabolism of X514 

cannot be precisely revealed by genome sequence annotation alone. At this time, 

one of the most physiologically reliable methods for determining cell metabolism 

remains 
13

C-based isotopic analysis (20,21,22,66). Based on 
13

C-labeling patterns 

in key amino acids, the active pathways can be traced back, and new enzymes can 

be revealed. In this study, 
13

C-based isotopic analysis was applied to accurately 

examine the annotated pathways in X514 and to investigate gaps in key 

biosynthetic pathways (22,31,67). Specifically, glucose (1
st
 or 6

th
 carbon labeled) 
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and pyruvate (1
st
 carbon labeled) were used respectively as the sole source of 

carbon to grow X514. By analyzing the mass spectra of different fragmentations 

in proteogenic amino acids derived from various pathways, we have determined 

the active fluxes of intracellular pathways (e.g., the pentose phosphate pathway 

and citric acid cycle). Meanwhile, misannotations in the genome sequence were 

checked and unknown enzymes involved in the pathway were identified. The 

isotopomer analysis linked the genome annotation to the final enzyme-functional 

output and thus significantly improved our understanding of the regulation of the 

central metabolism of X514. 

3.3.3 Materials and methods 

Medium and cultivation conditions. Thermoananerobacter sp. X514 

was grown anaerobically at 60°C without shaking (68). The minimal medium 

contained (per liter) 1 g of NaCl, 0.5 g of MgCl2, 0.2 g of KH2PO4, 0.3 g of 

NH4Cl, 0.3 g of KCl, 0.015 g of CaCl2, 0.25 mg of resazurin, 0.031 g of L-

cysteine-HCl, 0.048 g of Na2S,  2.52 g of NaHCO3 and 1 ml trace element 

solution. One liter of trace element solution included: 10 ml 25% w/w HCl 

solution, 1.5 g of FeCl2, 0.19 g of CoCl2, 0.1 g of MnCl2, 70 mg of ZnCl2, 6 mg of 

H3BO3, 36 mg of Na2MoO4, 24 mg of NiCl2, 2 mg of CuCl2, 6 mg of Na2SeO3, 8 

mg of Na2WO4, and 0.5 g of NaOH. The pH of the medium was adjusted with 

NaOH to 7.2-7.3. The vitamin solution was prepared according to the method 

developed by Wolin et al. (69). The rich medium was prepared by adding 0.1% 
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yeast extract to the minimal medium. Three types of 
13

C-labeled carbon substrates 

were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA) and 

used for cell culture:  pyruvate ([1-
13

C], 98%), glucose ([1-
13

C], 98%), or glucose 

([6-
13

C] , 98%). The medium was flushed with N2 and was filter-sterilized. All 

gases, including nitrogen and a nitrogen-CO2 mixture, were obtained from Airgas, 

Inc. (Radnor, PA). The strain was initially grown in a 50-ml culture medium with 

an unlabeled carbon source (glucose or pyruvate). At the mid-log phase of 

growth, a 3% inoculum was added to a 50-ml culture containing one of the 

following carbon sources: 2.1 g/L of [1-
13

C] glucose, 2.1 g/L of [6-
13

C] glucose, 

or 2.2 g/L 1
st
-position labeled pyruvate. At the mid-log phase of growth in this 

culture, 3% inoculum from the first 
13

C-labeled culture medium was used to 

inoculate a 50-ml sub-culture (with the same labeled carbon source), which 

reduced the effect of unlabeled carbon from the initial stock. 

Analytical methods. Biomass was harvested at the late-log phase of 

growth by centrifugation at 8,000 g for 15 min at 10°C.  The concentrations of 

glucose, acetate, ethanol, and lactate were analyzed with a high performance 

liquid chromatography apparatus (Agilent Technologies, CA) equipped with a 

variable wavelength (190-600 nm) detector (VWD) (the UV absorption at 245 

nm), and an ion exclusion column (Aminex HPX-87H, 300 mm × 7.8 mm, Bio-

Rad Laboratories, CA) operating at 55°C. The mobile phase consisted of 0.025 % 

sulfuric acid at a flow rate of 0.6 ml/min. 
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Isotopic analysis. The preparation and isotopic analysis of proteogenic 

amino acids were performed as previously described (30,67).  In brief, biomass 

was hydrolyzed in 6 M HCl at 100°C for 24 h.  The amino acid solution was dried 

under air flush overnight, and amino acid samples were derivatized in 

tetrahydrofuran (THF) and N-(tert-butyl dimethylsilyl)-N-methyl-

trifluoroacetamide (Sigma-Aldrich, St. Louis, MO) at 70°C for 1 h.  A gas 

chromatograph (GC) (Hewlett-Packard, model 7890A, Agilent Technologies, CA) 

equipped with a DB5-MS column (J&W Scientific, Folsom, CA) and a mass 

spectrometer (MS) (model 5975C, Agilent Technologies, CA) was used for 

analyzing amino acid labeling profiles.  Three types of charged fragments were 

detected by GC-MS for most amino acids: the [M-57]
+
 group, which contained 

unfragmented amino acids; the [M-159]
+
 group, which contained amino acids 

losing α carboxyl group; and the [f302]
+
 group, which contained only 1

st
 (α 

carboxyl group) and 2
nd

 carbons in an amino acid backbone. (However, [f302]
+
 

cannot be detected in some amino acids.) Published algorithms were used to 

correct the effects of natural isotopes on the mass distributions of amino acids 

(32), and the final isotopomer distribution was shown in Tables 3.3.S1 and 3.3.S2. 

Ion mass fractions in Tables 3.3.S1 and 3.3.S2 were given for the amino acid 

fragments. M0, M1, M2… were fractions of unlabeled, singly labeled, and doubly 

labeled amino acids, respectively.  

Confirmation of citramalate synthase. The citramalate synthase activity 
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was assayed by monitoring the pyruvate-dependent production of CoA over time 

(70,71). In brief, X514 cells from a 10-ml culture in the mid-log phase were 

centrifuged (19,000 g for 10 min, 4°C). The total protein content in the biomass 

was estimated using Bradford protein assay (Bio-Rad Laboratories, Inc, CA). 

X514 cell extracts were then prepared by sonication of X514 pellets for 3 minutes 

(30 sec on / 20 sec off) in 2 ml of a 0.1 M TES [N-tris (hydroxymethyl) methyl-2-

aminoethanesulfonic acid, pH 7.5] buffer. Samples to be measured were brought 

to a final volume of 1000 μl by mixing with cell extracts (100 μl), the TES buffer 

(0.2 M, pH 7.5, 500 μl), pyruvate (10 mM, 100 μl), acetyl-CoA (50 mM, 20 μl), 

and distilled water. The resulting solutions were then incubated in the oven at 

60°C for 2 h. At intervals of 20 min, 100 μl of either test samples or blank 

samples were taken from the oven and mixed with a 900-μl stop solution. The 

stop solution was prepared in distilled water with 50 μl of 10 mM DTNB [5, 5’-

dithio-bis (2-nitrobenzoic acid)] in 0.1 M Tris-HCl and with 70 μl of 1 M Tris-

HCl. The absorbance at 412 nm was recorded immediately and blanked against an 

identical incubation sample without pyruvate. The micromoles of HS-CoA 

produced were calculated from a standard curve generated with known 

concentrations (0 to 1 mM) of 2-mercaptoethanol and based on the linear function 

between the product formation and the amount of enzyme added over the 2-hour 

time period of the assay. All the chemicals employed in this measurement were 

from Sigma-Aldrich (MO, USA). 
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LC-MS/MS was further applied to confirm the presence of citramalate in 

X514. In this study, the free intracellular metabolites were extracted with a cold 

methanol-water solution (60%, v/v) and chloroform mixture (1:1), held at -20°C 

overnight. Subsequently, cold water was added to separate free metabolites from 

those components that might interfere with the results. The extracts were then 

lyophilized. After being dissolved with 1% formic acid in water, 50 µL samples 

were injected into the LC-MS/MS for separation and detection. The LC-MS/MS 

system was composed of a Shimadzu LC system (Shimadzu Corporation, Japan, 

http://www.shimadzu.com), a LEAP CTC PAL autosampler (LEAP 

Technologies, USA, http://www.leaptec.com), and an Applied Biosystems 4000 

QTRAP mass spectrometer (Applied Biosystems, USA, 

http://www.appliedbiosystems.com) equipped with a TurbolonSpray electrospray 

ion source. 5 µM of citrate, malate, and citramalate standards (Sigma, MO, USA) 

in water were separately infused into the mass spectrometer to optimize 

compound-dependent parameters for multiple reaction monitoring (MRM) 

detection and to obtain corresponding MS/MS spectra. LC separation was 

achieved by coupling three 4.6×300 mm Onyx Monolith C18 columns 

(Phenomenex, CA) in tandem. The LC gradient was delivered at 1 ml/min with 

Solvent A: 0.1% formic acid in water, and Solvent B: 0.1% formic acid in 

methanol. The gradient started from 5% B and was kept isocratic for 4 min, then 

ramped to 20% within 7 min, and increased to 95% B within 1 min. Finally, after 

being held at 95% B for 8 min, the gradient was ramped down to 5% B, where it 
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remained for 4 min to re-equilibrate the column. 

3.3.4 Results  

Growth and metabolite curves. When X514 was cultivated in the 

minimal medium, the lag phase for X514 in the 
13

C labeled glucose was 12 hours 

and was followed by an exponential growth phase with a doubling time of ~15-19 

hours (Fig. 3.3.1a). This rate was much slower than X514’s growth rate in the rich 

medium (with 0.1% yeast extract), which was measured a doubling time of 6 

hours.  Fig. 3.3.1b shows both the glucose consumption and the production of 

ethanol, acetate, and lactate when X514 was grown in the minimal glucose 

medium. No formate was detected during the culturing.  The ability to grow in the 

minimal medium using glucose (or pyruvate, data not shown) indicates that X514 

contains the necessary biosynthetic pathways for all macromolecule building 

blocks (i.e., for synthesizing amino acids).  

Confirmation of amino acid biosynthetic pathways. According to the 

genome annotation from the KEGG resource (http://www.genome.jp/kegg/), two 

amino acid biosynthetic pathways (isoleucine and proline) were incomplete. To 

examine biosynthetic pathways in X514, the labeling profiles of 14 proteogenic 

amino acids were analyzed (Tables 3.3.S1 and 3.3.S2). Since pyruvate is the key 

metabolite in the central pathway (i.e., glycolysis, pentose phosphate pathway, 

and TCA cycle), the labeling profiles of amino acids from tracer experiments that 

use 1
st
-position labeled pyruvate as the carbon source can easily identify the 
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precursors of several key amino acids (Table 3.3.S2). For example, alanine, 

valine, and serine demonstrated the same carbon molecule-labeling pattern as that 

of pyruvate (Table 3.3.S2), which confirms that pyruvate is the common precursor 

of these three amino acids (Fig. 3.3.2). The aromatic amino acids phenylalanine 

and tyrosine were derived from phosphoenolpyruvate (also synthesized from 

pyruvate). The labeling patterns of the [f302]
+
 group (containing the 1

st
 and 2

nd
 

carbons of fragmented amino acids) for alanine, phenylalanine, and tyrosine were 

all identical. This fact indicates that the 1
st
 and 2

nd
 carbons of all three amino 

acids are originally derived from the 1
st
 and 2

nd
 carbons of pyruvate. 

In tracer experiments using the 1
st
-position labeled pyruvate, the similar 

labeling patterns of aspartate, methionine, and threonine in Table 3.3.S2 suggest 

the same precursor (oxaloacetate) for the three amino acids. Based on the KEGG-

generated pathway map, oxaloacetate is expected to be synthesized from pyruvate 

(labeled at its first position), and CO2 (labeled because it is cleaved from the 1
st
 

carbon of pyruvate), leading to the labeling of two carbons in oxaloacetate and 

aspartate (both α- and β- carboxyl group) (Fig. 3.3.2).  In tracer experiments using 

[1-
13

C] or [6-
13

C] glucose as the carbon source, the labeling percentage of 

methionine was higher than that of aspartate from the same experiment, as a result 

of the addition of 
13

C-enriched C1 pool (5, 10 methyl-THF) into the carbon 

backbone of methionine (synthesis route: aspartate + C1 poolmethionine). The 

labeled carbon entered the C1 pool via the glucoseserineglycine+C1 pool 
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(Fig. 3.3.2), which caused more methionine to be labeled. 

Alternate isoleucine pathway. Anaerobic bacteria such as 

Methanococcus jannaschii and Leptospira can biosynthesize isoleucine from 

citramalate by direct condensation of acetyl-CoA and pyruvate (70,72). Recently, 

Risso et al. (71) first used 
13

C-assisted metabolic flux analysis and biochemistry 

assays to discover an alternate isoleucine pathway in Geobacter sulfurreducens. 

Interestingly, X514 may also contain a similar alternate isoleucine pathway. The 

labeling patterns of leucine and isoleucine in both glucose and pyruvate tracer 

experiments were similar. For example, the pyruvate experiment demonstrated 

that the M0 ([M-159]
+
, without the carboxyl group) of both leucine and isoleucine 

was >91%, indicating that the C2~C6 carbons in both leucine and isoleucine were 

mostly unlabeled. Such labeling patterns in isoleucine are unexpected unless 

isoleucine shares the same precursors (pyruvate and acetyl-CoA) as leucine. 

According to the genome annotation, X514 lacks threonine ammonia-lyase (EC 

4.3.1.19), which is necessary for the biosynthesis of isoleucine from threonine; 

this result is supported by our labeling data: when [1-
13

C] pyruvate was used as 

the carbon source, threonine was labeled with two carbons (M2 [M-57]
+
 >93%), 

while isoleucine (C2~C6) was not labeled (note: the GC-MS could not detect the 

labeling information for the first carbon of isoleucine due to the peak overlap 

(73)). We propose an alternate isoleucine synthesis pathway via the citramalate 

pathway that uses pyruvate and acetyl-CoA as precursors (Fig. 3.3.3). The key 
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enzyme regulating the citramalate pathway (citramalate synthase, CimA) is 

annotated in X514 (gene: Teth514_1204) (22,71).  

In order to determine whether the citramalate pathway was active in X514, 

crude soluble extracts from mid-log phase cells were tested for the presence of 

citramalate synthase activity (about 27±9 nmol/mg protein/min). Furthermore, we 

applied high sensitivity mass spectrometry to detect whether there was any 

intracellular citramalate in X514. Fig. 3.3.S1 indicates that malate, citrate, and 

citramalate were clearly detected in the X514 soluble extracts by LC/MS/MS in 

the MRM mode. The retention time and the ratio of multiple MRM transitions 

selected for each of the three targeted compounds are in agreement with those of 

the respective authentic standards. Although CID spectra signals for the three 

targeted compounds in X514 soluble extracts were lower than the spectra signals 

of authentic standards, the major fragments and their relative abundance agreed 

with their corresponding standards (Fig. 3.3.S2).  This result provides additional 

evidence to prove the presence of citramalate synthase in X514. 

(Re)-type citrate synthase. In spite of the production of citrate by X514 

(Fig. 3.3.S1), the genome annotation indicates that the enzyme in the first step of 

TCA cycle, i.e. the (Si)-type citrate synthase, is missing. Interestingly, the 

isotopomer data from the 1
st
-position labeled pyruvate experiment suggests that 

the α-carboxyl group of glutamate is not labeled (Table 3.3.S2). Such an 

observation of the labeling pattern of glutamate is consistent with the main 
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characteristics of (Re)-type citrate synthase, which has been discussed in detail in 

our previous study on (Re)-type citrate synthase in Desulfovibrio vulgaris 

Hildenborough (22). Due to the lack of a regular (Si)-type citrate synthase, X514 

may employ the (Re)-type citrate synthase. Fig. 3.3.2 shows the proposed carbon 

transition routes from labeled pyruvate (α-carboxyl group) to doubly labeled 

oxaloacetate (both α- and β- carboxyl group). The β-carboxyl group of 2-

oxoglutarate and the β-carboxyl group of glutamate were ultimately derived from 

the β-carboxyl group of oxaloacetate.  

Pentose phosphate pathway. About 50% of alanine was not labeled ([M-

57]
+
, M0 =0.51) when the [1-

13
C] glucose was used as the carbon source (Table 

3.3.S1). The glucose carbon backbone loses the first
 
carbon as CO2 when it is 

metabolized via the oxidative pentose phosphate pathway (PP pathway) to 

synthesize 5-carbon sugars (C5P) (Fig. 3.3.2). If the oxidative pentose phosphate 

pathway is not active, one glucose molecule (with either 1
st
 or 6

th
 carbon labeled) 

converts to two pyruvate molecules, and thus ~50% of pyruvate (inferred from 

alanine) is expected to be unlabeled.  The fact that the fraction of unlabeled 

alanine was 51±2% indicates the very low activity of the oxidative pentose 

phosphate pathway, i.e., the carbon flux split ratio between G6PC5P (oxidative 

pentose phosphate pathway) and G6PG3P (glycolysis) was <3% (the algorithm 

for calculating the split ratio was provided in the supplementary material). Since 

the oxidative pentose phosphate pathway was not active, the isotopomer labeling 
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patterns of most amino acids in the [1-
13

C] glucose experiment were identical to 

those in the [6-
13

C] experiments (Table 3.3.S1). 

3.3.5 Discussion 

This study has examined the pentose phosphate pathway, amino acid 

biosynthesis and TCA cycle in Thermoanaerobacter sp. X514 by 
13

C labeling 

experiments. X514 shows very low activity in the oxidative phase of the pentose 

phosphate pathway under glucose fermentation conditions. Such an observation is 

consistent with the missing of 6-phosphogluconolactonase (EC 3.1.1.31) gene, 

which catalyzes 6-phospho-D-glucono-1,5-lactone to 6-phospho-D-gluconate. 

Considering the important role of the oxidative pentose phosphate pathway in 

providing NADPH for biosynthesis, alternate NADPH pathways should be 

present in X514. Some bacteria utilize transhydrogenase
 
PntAB or UdhA for 

NADPH generation (74), but a BLASTP search (75) indicates that neither of the 

two transhydrogenases is encoded in the X514 genome (Fig. 3.3.S3). Although 

NADPH-dependent isocitrate dehydrogenase is annotated in X514 

(Teth514_0327), it may provide only limited NADPH since the TCA cycle is 

branched and is mainly used for biosynthesis. On the other hand, ferredoxin-

NADP
+
 reductase (e.g., Teth514_0652) and pyruvate:ferredoxin oxidoreductase 

(e.g., Teth514_0781, the enzyme that catalyzes the production of ferredoxin from 

pyruvate) are annotated in the X514 genome and may be key sources of NADPH 
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in X514. Ferredoxin-NADP
+
 reductase activity has been well documented in 

certain thermophilic anaerobes for NADPH production (76).  

The discovery of an alternative pathway for isoleucine synthesis and (Re)-

type citrate synthase activity demonstrates the unique metabolism of X514. 

Isoleucine is synthesized from the citramalate pathway so that both leucine and 

isoleucine share the same precursors (pyruvate and acetyl-CoA). Multiple lines of 

evidence support an alternate isoleucine biosynthesis pathway via citramalate in 

X514: 1) labeling patterns in key amino acids, 2) genomic evidence (i.e. presence 

of citramalate synthase gene but absence of threonine deaminase gene), 3) 

detection of citramalate synthase activity, 4) detection of citramalate via LC-

MS/MS. In some organisms, citramalate is used for reactions other than 

isoleucine biosynthesis. For example, during Rhodospirillum rubrum phototrophic 

growth on acetate and CO2, citramalate (formed via the condensation of acetate 

and pyruvate) can be degraded to glyoxylate and propionate (77). This pathway 

allows R. rubrum to assimilate acetate and synthesize intermediates in TCA cycle 

(i.e., succinate).  On the other hand, Atsumi and Liao (78) introduced citramalate 

synthase (CimA) to E.coli and successfully evolved a new 2-oxobutanoate 

synthetic pathway for both 1-propanol and 1-butanol production (9- and 22-fold 

higher production, respectively). Therefore, the citramalate pathway in X514 

could be potentially utilized in bio-butanol production.   
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A (Re)-type citrate synthase was recently reported in both Clostridium 

kluyveri (CKL 0973) and Desulfovibrio spp. (79). (Re)-type citrate synthase and 

(Si)-type citrate synthase are phylogenetically unrelated. (Re)-type citrate 

synthase is O2 sensitive and thus restricted to anaerobic microorganisms. Using a 

JGI genome database search by May 2009 (http://img.jgi.doe.gov, with the 

BLAST search score >400 and with identity of amino acid sequences >40%), we 

found that ~200 microbial species may be annotated with citramalate synthase (a 

key step for an alternate isoleucine synthesis pathway), while ~40 stains may have 

(Re)-type citrate synthase (with the BLAST search score >290 and with identity 

>40%). A few species may contain both citramalate synthase and the (Re)-type 

citrate synthase (Table 3.3.1), including Desulfovibrio desulfuricans and 

Desulfovibrio vulgaris Hildenborough. Thermoanaerobacter sp. X514, 

Dehalococcoides ethenogenes and Pelotomaculum thermopropionicum species 

contain neither (Si)-type citrate synthase nor the documented (Re)-type citrate 

synthase, but all encode citramalate synthase. Table 3.3.1 indicates that the 

citramalate pathway and (Re)-type citrate synthase may be more widespread in 

microorganisms than originally thought. 

 (Re)-type citrate synthase-like activity was observed in X514. A 

candidate (Re)-type citrate synthase gene in X514 should be identifiable through a 

BLAST search of the polypeptide amino acid sequences (Fig. 3.3.S4). However, 

no gene candidate is identical to the reported (Re)-type citrate synthase in 

http://img.jgi.doe.gov/
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Clostridium kluyveri (CKL 0973), and thus, X514 may contain an undocumented 

(Re)-type citrate synthase. However, X514 contains homocitrate synthase 

(Teth514_0415: 2-oxoglutarate+acetylCoAhomocitrate) and isopropylmalate 

synthase (Teth514_0014: 3-methyl-2-oxobutanoate+acetylCoA2-

isopropylmalate), which are phylogenetically related to the reported (Re)-type 

citrate synthase (oxalacetate+acetylCoAcitrate). More importantly, 

Teth514_0416 is annotated as aconitate hydratase (citrateisocitrate), and this 

gene is in the same operon with homocitrate synthase (Teth514_0415). Therefore, 

homocitrate synthase (Teth514_0415) can be a potential (Re)-type citrate synthase 

candidate, and further experimentation is required to test this hypothesis. 

Interestingly, citramalate synthase (Teth514_1204: pyruvate+acetyl-

CoAcitramalate) condenses acetyl-CoA and organic acids to form metabolites 

structurally similar to citrate. This enzyme also belongs to the isopropylmalate 

synthase/homocitrate synthase family.  

In summary, 
13

C isotopic analysis is a powerful tool to examine the 

metabolic networks of sequenced species and to predict novel enzymes. Our 

results suggest an inactive pentose phosphate pathway and an alternate isoleucine 

biosynthesis pathway via citramalate in X514. Furthermore, X514 also 

demonstrates the (Re)-type citrate synthase activity. A comprehensive 

understanding of metabolism in Thermoanaerobacter sp. X514 could have dual 

significance for both rational genetic engineering of microorganisms in biofuel 
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production (78) and the investigating of the evolution for phylogenetically related 

pathways.  

3.3.6 Supporting information 

Flux calculations in oxidative pentose phosphate pathway. The flux 

directed into the oxidative pentose phosphate (PP) pathway can be measured 

using the labeling profile of alanine. We assume that the flux through glycolysis is 

v1 and that the flux through oxidative pentose phosphate pathway is v2. The 

replenished route from the oxidative pentose phosphate pathway to glycolysis is 

v3. Hence, the percentage of fluxes directed into the pentose phosphate pathway 

would satisfy: 

%100
21

2

vv

v

.

 

In pure [1-
13

C]-glucose experiments, the flux to unlabeled alanine through 

glycolysis is 0.5 v1, while the flux to unlabeled alanine through pentose phosphate 

pathway is v3. Hence, the percentage of unlabeled alanine satisfies: 

1 3

1 3

0.5
100%ala

v v

v v
 

When G6P enters the pentose phosphate pathway, the first carbon is lost 

as CO2. Hence, only five carbons from the six-carbon glucose flow into C5P. C5P 

is then re-formed to synthesize G3P. Based on the mass balance, the equilibrium 
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should satisfy: 

23
6

5
vv

.
 

From the [M-57]
+
 data in GC-MS, the percentage of unlabeled alanine is 

51%. Hence, 

%51%100
5.0

31

31

vv

vv
ala

.

 

With all the equations above, the percentage of flux directed into the 

pentose phosphate pathway is 2.4%. 

Note: when the 6
th

 carbon of glucose was labeled, the labeled carbon 

incorporated into E4P (the precursor of phenylalanine) via the reductive PP 

pathway.  However, when the 1
st
 carbon of glucose was labeled, the resulting E4P 

was not labeled via PP pathway, so the labeling percentage of phenylalanine was 

lower when the 1
st
 carbon of glucose was used as carbon source (Table 3.3.S1). 
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Figure 3.3.1. Thermoanaerobacter sp. X514 growth and metabolite secretion. (a) 

Growth curves of Thermoanaerobacter sp. X514 in minimal glucose medium 

(symbol: ○) and rich medium (with 1g/L yeast extract) (symbol: □). (b) Glucose 

consumption and metabolite production by Thermoanaerobacter sp. X514 in 

minimal glucose medium: glucose (symbol: ■); acetate (symbol: ◊); lactate 

(symbol: □); ethanol (symbol: ○). 
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Figure 3.3.2. Proposed scheme of central metabolic pathways in 

Thermoanaerobacter sp. X514. 
13

C labeled positions in metabolites are marked 

with an asterisk (*) for the 1
st
-position labeled pyruvate experiment. The inactive 

pathways are marked with dashed lines. Based on the genome annotation in 

KEGG database, some genes that are missed in the pathways are marked by 

dashed boxes. C5P: ribulose 5-phosphate, ribose 5-phosphate and xylulose 5-

phosphate. 
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Figure 3.3.3. Proposed scheme of isoleucine biosynthesis in Thermoanaerobacter 

sp. X514 (using 1
st
-position labeled pyruvate as the carbon source). 

13
C labeled 

positions are marked with asterisks. The inactive pathway is marked by dashed 

line.  
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Figure 3.3.S1. Separation and detection of malate, citrate and citramalate in 

Thermoanaerobacter sp. X514 sample by LC-MS/MS in MRM mode. The 

multiple MRM transitions used for confident detection of the three target 

compounds in the sample are: 1) malate: 133/89, 133/71, 133/73, 133/43; 2) 

citrate: 191/129, 191/111, 191/87, 191/85; 3) citramalate: 147/87, 147/85, 147/57, 

147/43, 147/41; 4) UN: unidentified compounds. The colors represent different 

transitions used in this method.  Malate eluted at 5.6 min, citrate at 7.6 min and 

citramalate at 8.5 min. The peak at 9.0 min was an uncharacterized compound that 

shared the same MRM transitions as malate, but with different ratios. 
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Figure 3.3.S2. Comparison of CID mass spectra of authentic standards with target 

compounds in sample X514. Left panel: CID mass spectra of authentic standards. 

Right panel: corresponding CID mass spectra in sample X514 after background 

subtraction to remove background noise. 
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Figure 3.3.S3. The BLASTP (80) result of transhydrogenase
 
PntA and UdhA in 

the genome of Thermoanaerobacter sp. X514. Neither gene was annotated. 
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Figure 3.3.S4. Protein sequences of (Re)-type citrate synthase (CKL0973) were 

compared against the strain X514 genome (http://www.jgi.doe.gov) using BLAST 

search. The resulting polypeptide amino acid sequence identity was low: 27% for 

homocitrate synthase and 23% for 2-isopropylmalate synthase.   
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Table 3.3.1. BLAST searches (May, 2009) for the key genes in an alternate 

isoleucine synthesis pathway (citramalate synthase, GSU 1798), for (Si)-type 

citrate synthase (EC 2.3.3.1 from E.coli K12) and for (Re)-type citrate synthase 

(CKL 0973 from Clostridium kluyveri) in the Joint Genome Institute 

(http://img.jgi.doe.gov).  

Species 
EC 2.3.3.1 EC 2.3.3.3 (CKL 0973) EC 2.3.1.182 

(Si)-type citrate synthase  (Re)-type citrate synthase  GSU1798 

*Thermoanaerobacter sp. X514 (B)[F] 0% 27% 49% 

Anaerocellum thermophilum DSM 6725 (B)[D] 0% 68% 51% 

Caldicellulosiruptor saccharolyticus DSM 8903 (B)[F] 0% 68% 51% 

Caldivirga maquilingensis IC-167 (A)[F] 39% 41% 47% 

Candidatus Kuenenia stuttgartiensis (B)[F] 0% 55% 54% 

Clostridium acetobutylicum ATCC 824 (B)[F] 0% 65% 50% 

Clostridium botulinum A ATCC 3502 (B)[F] 0% 73% 22% 

Clostridium kluyveri DSM 555 (B)[F] 28% 100% 29% 

Clostridium cellulolyticum H10 (B)[F] 30% 60% 50% 

Clostridium thermocellum ATCC 27405 (B)[F] 30% 60% 51% 

Clostridium phytofermentans ISDg (B)[F] 30% 62% 25% 

Desulfovibrio desulfuricans G20 (B)[F] 0% 48% 55% 

Desulfovibrio vulgaris Hildenborough (B)[F] 0% 48% 55% 

Desulfovibrio vulgaris DP4 (B)[F] 0% 48% 55% 

Desulfovibrio vulgaris Miyazaki F (B)[F] 0% 49% 55% 

*Dehalococcoides ethenogenes 195 (B)[F] 0% 28% 53% 

Syntrophus aciditrophicus SB (B)[F] 0% 49% 55% 

Syntrophobacter fumaroxidans MPOB (B)[F] 32% 50% 59% 

*Pelotomaculum thermopropionicum SI (B)[F] 0% 29% 56% 

Ignicoccus hospitalis KIN4/I (A)[F] 0% 50% 45% 

 

Note:   

1. Domains: (B)acteria, (A)rchaea. 

2. Genome Completion: [F]inished, [D]raft. 

3. Both (Si)- and (Re)-type citrate synthases in the species (with “*” in front) 

may be missing due to the low identity (<30%) of polypeptide amino acid 

sequences to the documented (Si)- and (Re)-type citrate synthases.  

 
 

 

http://img.jgi.doe.gov/
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Table 3.3.S1. Isotopic analysis of amino acids in Thermoanaerobacter X514  

Amino Acids Precursors Ions 
[M-57]

+ 

[1-
13

C]/[6-
13

C] 

[M-159]
+
 

[1-
13

C]/[6-
13

C] 

[f302]
+
 

[1-
13

C]/[6-
13

C] 

Ala 

 

Pyruvate 

 

M0 0.51/0.49 0.51/0.49 ND 

M1 0.47/0.50 0.45/0.47  

M2 0.01/0.01 0.04/0.03  

Gly 

 

Serine 

 

    

M0 0.95/0.96 0.97/0.97  

M1 0.05/0.03 0.03/0.03 ND 

M2 0/0   

      

Val 

 

Pyruvate 

 

M0 0.26/0.24 0.26/0.24 0.90/0.91 

M1 0.49/0.49 0.49/0.48 0.08/0.06 

M2 0.24/0.26 0.24/0.26 0.02/0.03 

      

Leu 

 

Pyruvate 

Acetyl-CoA 

 

M0 Overlap 

Peak with  

f302 

0.14/0.12  

M1 0.38/0.37 ND 

M2 0.36/0.37  

M3  0.12/0.13  

      

Ile 

 

Pyruvate 

Acetyl-CoA 

 

M0 
Overlap 

Peak with 

f302 

0.18/0.17  

M1 0.41/0.41 ND 

M2 0.32/0.33  

M3 0.08/0.09  

      

Met 

 

Aspartate 

Methy-THF 

 

M0 0.35/0.32 0.35/0.36  

M1 0.48/0.51 0.49/0.48 ND 

M2 0.16/0.16 0.15/0.14  

M3 0/0.01 0.01/0.02  

      

Ser 

 

G3P 

 

M0 0.54/0.52 0.55/0.53 0.96/0.99 

M1 0.44/0.48 0.45/0.47 0.04/0 

M2 0.02/0 0.01/0 0/0.01 

      

Thr 

 

Aspartate 

 

M0 0.51/0.47 0.52/0.46 
 

 

M1 0.47/0.52 0.48/0.51  

M2 0.02/0 0/0.02  

      

Phe 

 

PEP 

E4P 

 

M0 0.19/0.05 0.20/0.06 0.97/0.98 

M1 0.42/0.29 0.42/0.29 0.03/0.02 

M2 0.30/0.44 0.30/0.43 0/0 

M3 0.08/0.21 0.08/0.21  

M4 0.01/0.01 0/0.01  

      

Asp/Asn OAA M0 0.50/0.47 0.50/0.48 0.97/0.98 
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  M1 0.48/0.52 0.48/0.49 0.03/0.02 

M2 0.02/0.01 0.01/0.02 0/0 

      

Glu/Gln 

 

OXO 

 

M0 0.26/0.24 0.27/0.24 ND 

M1 0.49/0.49 0.49/0.49  

M2 0.25/0.26 0.23/0.26  

M3 0.01/0.01 0/0  

      

Tyr 

 

 

PEP 

E4P 

 

M0 0.19/0.05 0.20/0.08 0.97/0.97 

M1 0.42/0.32 0.41/0.31     0.03/0.03 

M2 0.30/0.41 0.310.38 0/0 

M3 0.08/0.21 0.08/0.21  

M4 0.01/0.01 0.01/0.02  

 

Notes for Table 3.3.S1 ~ 2:  

1. Ion mass values represent amino acid molecules with specific 

fragmentation patterns: ([M-57]
+
: No loss); ([M-159]

+
: Loss of α carboxyl 

group); ([f302]
+
: 1

st
 and 2

nd
 carbons in amino acids). ([M-159]

+
: Loss of α 

carboxyl group) of threonine was replaced by ([M-85]
+
: Loss of α 

carboxyl group) because the later ion had clearer signals.  

2. [f302]
+
 peaks of some amino acids overlapped with other peaks, so [f302]

+
 

only qualitatively reflects the labeling status in amino acids. 

3. Asparagine and glutamate were converted into aspartate and glutamine 

during the protein hydrolysis.  

4. Abbreviations: E4P, erythrose-4-phosphate; OAA, oxaloacetate; OXO, 2-

ketoglutarate; PEP, phosphoenolpyruvate; G3P, 3-phosphoglycerate. 

5. The standard deviations for measurement (n=2) of mass fractions are 

below 2%. 
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Table 3.3.S2. Isotopic analysis of amino acids in Thermoanaerobacter sp. X514 

and their labeling positions ([1-
13

C] pyruvate) 

Amino 

Acids 
Precursors Ions [M-57]+ [M-159]+ [f302]+ 

Proposed 13C enriched 

positions 

Ala 

 

Pyruvate 

 

M0 0.02 0.93 0.03 
C-C-*COOH 

 M1 0.96 0.02 0.95 

M2 0.02 0.04 0.02 

       

Gly 

 

Serine 

 

M0 0.03 0.99  
C-*COOH 

 M1 0.96 0.01 ND 

M2 0.01   

       

Val 

 

Pyruvate 

 

M0 0.01 0.95 0.12 
C-C-C-C-*COOH 

 M1 0.94 0.04 0.87 

M2 0.04 0 0.01 

       

Leu 

 

Pyruvate 

Acetyl-

CoA 

 

M0  0.93  

C-C-C-C-C-COOH 

C2~C6 were not labeled. 

M1 Overlap 0.06 ND 

M2 

Peak 

with f302 0.01  

M3  0.00  

       

Ile 

 

Pyruvate 

Acetyl-

CoA 

 

M0  0.91 ND 

C-C-C-C-C-COOH 

C2 ~C6 were not labeled 

M1 Overlap 

Peak 

with f302 

0.08  

M2 0.01  

M3 0  

       

Met 

 

Aspartate 

Methy-

THF 

 

M0 0 0.03  

C-S-*C-C-C-*COOH 

 

M1 0.03 0.93 ND 

M2 0.92 0.03  

M3 0.04 0  

       

Ser 

 

G3P 

 

M0 0.02 0.97 0.03 
C-C-*COOH 

 M1 0.96 0.02 0.95 

M2 0.01 0 0.02 

       

Thr 

 

Aspartate 

 

M0 0.01 0.03  
*C-C-C-*COOH 

 M1 0.02 0.95 ND 

M2 0.93 0  

       

Phe 

 

PEP 

E4P 

 

M0 0.01 0.01 0.02 
C-C-C-C-C-C-C-C-*COOH 

1st carbon was labeled. The other 

two carbons’ labeling positions 

could not be determined. 

M1 0.01 0.37 0.97 

M2 0.38 0.56 0.01 

M3 0.56 0.05  

M4 0.04 0.01  
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Asp/Asn 

 

OAA 

 

M0 0 0.02 0.02 

*C-C-C-*COOH M1 0.03 0.95 0.98 

M2 0.96 0.02 0 

       

Glu/Gln 

 

OXO 

 

M0 0.02 0.02 0.82 

*C-C-C-C-COOH 
M1 0.93 0.94 0.18 

M2 0.05 0.03 0 

M3 0 0  

       

Tyr 

 

 

 

PEP 

E4P 

 

 

M0 0 0.02 0.02 
C-C-C-C-C-C-C-C-*COOH 

1st carbon was labeled. The other 

two carbons’ labeling positions 

could not be determined 

M1 0.02 0.37 0.98 

M2 0.37 0.54 0 

M3 0.56 0.05  

M4 0.04 0.01  
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3.4 
13

C-pathway analysis of environmental microorganisms 

13
C-pathway analysis has been applied to a number of environmental 

microorganisms, including 1) Cyanothece 51142, a unicellular diazotrophic 

cyanobacterium (81); 2) Heliobacterium modesticaldum, a Gram-positive 

photosynthetic bacterium (82); 3) Roseobacter denitrificans OCh114, an aerobic 

anoxygenic phototrophic bacterium (83); 4) Dehalococcoides ethenogenes Strain 

195, an important member of bioremediation communities to detoxify 

chloroethenes into the benign end product ethane (84); and 5) Mycobacterium 

smegmatis, a non-virulent bacterium that is often used to study the metabolism of 

a pathogenic bacterium, Mycobacterium tuberculosis (85). Novel metabolic 

features have been uncovered for the aforementioned environmental 

microorganisms via 
13

C-pathway analysis. Diverse analytical methods were 

utilized to confirm the discoveries from 
13

C-pathway analysis, including 

biochemical assays to detect in vitro enzyme activities, quantitative RT-PCR to 

profile the gene expressions, and LC-MS/MS to measure fast-turnover 

metabolites.    

3.4.1 Cyanothece 51142 

Based on the identical labeling patterns of isoleucine and leucine in [2-

13
C] glycerol cultures, an alternative isoleucine biosynthesis pathway via 

citramalate synthase was discovered in Cyanothece 51142. Instead of using 

threonine as the precursor, Cyanothece 51142 applied the citramalate pathway to 



. 

126 

 

induce isoleucine biosynthesis by using the same precursors (i.e., pyruvate and 

acetyl-CoA) as those used in leucine biosynthesis pathway. The presence of 

citramalate pathway was confirmed by measuring the in vitro enzymatic activity 

of citramalate synthase via biochemical assays and by detecting the key 

intermediate in citramalate pathway, citramalte, via LC-MS/MS. A report about 

applications of 
13

C-pathway analysis to identify citramalate pathway in 

Cyanothece 51142 is attached in Appendix 2. 

3.4.2 Heliobacterium modesticaldum 

Heliobacteria are the only cultured Gram-positive photosynthetic bacteria. 

The isotopomer data from proteinogenic amino acids was collected to probe the 

central carbon metabolism of Heliobacterium modesticaldum. The CO2-

anaplerotic pathway was found to be active during phototrophic growth and the 

citramalate pathway was employed by Heliobacterium modesticaldum for 

isoleucine biosynthesis. Furthermore, the oxidative TCA cycle was operative by 

using a putative (Re)-citrate synthase to produce citrate. The presence of (Re)-

citrate synthase was confirmed by measuring activity of citrate synthase via an 

activity assay. The report of 
13

C-pathway analysis for Heliobacterium 

modesticaldum is attached in Appendix 3. 

3.4.3 Roseobacter denitrificans OCh114 
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Roseobacter denitrificans OCh114 is a model organism to study aerobic 

anoxygenic photosynthesis in bacteria. Through measurements of 
13

C-isotopomer 

labeling patterns of proteinogenic amino acids in a series of tracer experiments, 

the metabolic routes for carbohydrate utilization, CO2 assimilation, and amino 

acid biosynthesis were studied in Roseobacter denitrificans OCh114. The 

anaplerotic pathways, mainly via the malic enzyme, were used to fix CO2 by R. 

denitrificans. The Entner-Doudoroff (ED) pathway and the non-oxidative pentose 

phosphate pathway were employed by R. denitrificans in carbohydrate 

metabolism. The Embden-Meyerhof-Parnas (EMP, glycolysis) pathway was 

found to be inactive, which was confirmed by the absence of in vitro enzyme 

activity of 6-phosphofructokinase (PFK). In addition, isoleucine synthesis in R. 

denitrificans used both threonine-dependent (20% total flux) and citramalate 

pathway (80% total flux). The report of 
13

C-pathway analysis for Roseobacter 

denitrificans OCh114 is attached in Appendix 4. 

3.4.4 Dehalococcoides ethenogenes Strain 195 

Dehalococcoides ethenogenes 195 is the only known bacteria that can 

fully degrade PCE to ethane (86,87). Isotopomer-based dilution analysis was 

applied to differentiate the amino acids in Dehalococcoides ethenogenes from two 

pathways: de novo synthesis from acetate, and amino acids import from 

environment. It was found that glutamate/glutamine and aspartate/asparagine 

were almost exclusively synthesized by Dehalococcoides ethenogenes, even when 
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provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine, 

and methionine were identified as the four amino acids that were most highly 

imported from environment. Adding either phenylalanine or the four highly 

imported amino acids to the defined mineral medium enhanced the growth rates, 

dechlorination activities, and yields of strain 195 in a similar level to 

supplementation with 20 amino acids. The transcriptional regulations of ABC-

type amino acids transporters were also analyzed by qRT-PCR. The report of 
13

C-

pathway analysis for Dehalococcoides ethenogenes Strain 195 is attached in 

Appendix 5. 

3.4.5 Mycobacterium smegmatis  

Mycobacterium smegmatis is phylogenetically related to Mycobacterium 

tuberculosis (MTB) and is often used as a model for studying MTB metabolism 

since it is non-virulent. Isotopomer-assisted metabolite analysis was used to 

investigate the metabolic transition from normal growth to a non-replicating state 

under a hypoxic environment. The glyoxylate pathway and glycine 

dehydrogenase were induced as the bacillus encountered hypoxic stress. 

Meanwhile, the relative amount of acetyl-CoA entering the TCA cycle was 

doubled, whereas little entered the glycolytic and pentose phosphate pathways. 

The report of 
13

C-pathway analysis for Mycobacterium smegmatis is attached in 

Appendix 6. 
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Chapter 4 

13
C-Metabolic Flux Analysis of Central Carbon Metabolisms  

4.1 
13

C-metabolic flux analysis (
13

C-MFA) protocol 

13
C-MFA integrates the isotopomer measurements and the computational 

optimization to quantify fluxes through a metabolic network. In general, 
13

C-MFA 

is formulated as a nonlinear inverse problem, in which mass balance equations 

and isotopomer balance equations are used to find an optimal set of metabolic 

fluxes that has the smallest lack-of-fit between the simulated and measured 

isotopomer labeling patterns in proteinogenic amino acids (1). 
13

C-MFA is 

usually applied to quantify the flux distributions in central metabolic network, 

including glycolysis, Entner–Doudoroff pathway, pentose phosphate pathway, the 

TCA cycle, futile pathways, and the glyoxylate shunt. At metabolic and isotopic 

steady state, labeling information of proteinogenic amino acids that are 

synthesized from these central metabolic pathways is collected for 
13

C-MFA. The 

substrate uptake rates and products secretion rates are measured as the inflow and 

outflow fluxes in 
13

C-MFA. 

To quantify the intracellular metabolic fluxes, both mass and isotopomer 

balance equations are applied. At metabolic steady state, there is no net 

accumulation of the intracellular metabolites in the metabolic network. The mass 

balance in the given metabolic network is hence represented as S ∙ v = 0, where S 
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is the stoichiometric coefficients matrix and v is the flux distribution vector. For 

an intracellular metabolite synthesized from two reactant molecules at isotopic 

steady state, i.e. A+B→C, the isotopomer distribution of the product molecule can 

be represented as IDVC = (IMMA→C ∙ IDVA)  (IMMB→C ∙ IDVB); where IDV is 

the isotopomer distribution vector for a metabolite,  represents element-wise 

multiplication, and IMMA→C represents the isotopic mapping matrix that 

describes the isotopomer transitions from the precursor to the product. The 

isotopomer balance equations can be derived as 
n

j

n

j

jjj IDVvvIDV
1 1

; 

where IDV are the isotopomer distributions for the target metabolite, vj is the jth 

reaction that produces the target metabolite, and IDVj are the isotopomer 

distributions of the target metabolites synthesized from vj. 

To simulate the isotopomer labeling patterns of amino acids that are 

measured by GC/MS, the isotopomer distributions are converted to mass 

distribution vectors (MDV) by the following MDV = M ∙ IDV equation, where M 

is the conversion matrix. The difference between the simulated and measured 

MDV in proteinogenic amino acids is minimized by using a series of 

computational optimization algorithm, such as simulated annealing and 

evolutionary algorithms. Multiple sets of metabolic fluxes are tested and the flux 

distribution that best match the simulated data with the experimental data is 

provided by 
13

C-MFA. The flowchart of 
13

C-MFA is illustrated in Figure 4.1. 
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Figure 4.1. Framework for 
13

C-metabolic flux analysis. 
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4.2.1 Abstract 

The photosynthetic green sulfur bacterium, Chlorobaculum (Cba.) 

tepidum, assimilates CO2 and organic carbon sources (acetate or pyruvate) during 

mixotrophic growth conditions through a unique carbon and energy metabolism. 

Using a 
13

C-labeling approach, this study examined biosynthetic pathways and 

flux distributions in the central metabolism of Cba. tepidum. The isotopomer 

patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine 

synthesis (via citramalate synthase, CimA, CT0612). 
13

C-based flux analysis 

indicated that carbons in biomass were mostly derived from CO2 fixation via three 

key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis 

pathway via pyruvate:ferredoxin oxidoreductase (PFOR), and the CO2-anaplerotic 

pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with 

acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from 

acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). PFOR 

converted acetyl-CoA and CO2 to pyruvate, and this growth-rate-control reaction 

is driven by reduced ferredoxin generated during phototrophic growth. Most 

reactions in the RTCA cycle were reversible. The relative fluxes through the 

RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 

200~230 units for cultures grown on pyruvate. Under the same light conditions, 

the flux results suggested a trade-off between energy-demanding CO2 fixation and 

biomass growth rate: Cba. tepidum fixed more CO2 and had higher biomass yield 
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(YX/S: mole carbon in biomass/mole substrate) in pyruvate culture (YX/S=9.2) than 

in acetate culture (YX/S=6.4), but the biomass growth rate was slower in pyruvate 

culture than in acetate culture. 

Key words: 
13

C, citramalate, CO2 fixation, ferredoxin, RTCA, light-harvesting  

4.2.2 Introduction 

Chlorobaculum tepidum (Cba. tepidum) is a representative green sulfur 

bacterium that is ecologically significant in global cycling of carbon, nitrogen and 

sulfur (2,3). The Cba. tepidum genome has been sequenced, and the genetic tools 

for creating Cba. tepidum mutant strains have been developed to make 

transposon-based mutations or targeted gene disruptions, which offer great 

potential to engineer Cba. tepidum for future applications (4). The annotated 

genome reveals unique aspects in carbon and energy metabolism in Cba. tepidum. 

Instead of using the Calvin-Benson Cycle for CO2-assimilation as in most 

photosynthetic organisms, Cba. tepidum captures energy from light and uses it 

along with electrons, primarily derived from oxidation of sulfur compounds, to 

drive the reductive tricarboxylic acid cycle (RTCA) for synthesis of building 

block molecules (4). Cba. tepidum can grow mixotrophically with acetate or 

pyruvate as the organic carbon source (3). Although recent research has been 

performed on the carbon and energy metabolism of Cba. tepidum (5,6), rigorous 

quantification of the metabolic pathway activities has not yet been achieved. To 

provide quantitative readout of the metabolic functions and regulatory 
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mechanisms, this study has performed 
13

C-based metabolic flux analysis of Cba. 

tepidum in the following steps: 1) growing cultures of Cba. tepidum with 
13

C-

labeled acetate or pyruvate, 2) using gas chromatography-mass spectrometry (GC-

MS) to measure the resulting labeling pattern in key metabolites, and 3) 

deciphering in vivo metabolisms via a flux model (7). Isotopic labeling and 

metabolic flux analysis have been developed to identify the active biosynthesis 

pathways (8,9,10,11) and measure the global enzymatic reaction rates (12,13). 

Such a fluxomics approach can bridge the gap between genome annotations and 

final metabolic outputs, and has been applied for characterizing numerous 

environmental microorganisms, including E. coli (14,15), Saccharomyces 

cerevisiae (16,17), Bacillus subtilis (18), Geobacter metallireducens (19), 

Shewanella oneidensis (20),  Synechocystis sp. (21), etc. This paper reports on the 

first studies of the fluxomics of mixotrophic metabolism in the green sulfur 

bacteria, and provides complementary information to previous genomic and 

proteomic studies.  

4.2.3 Experimental procedure 

13
C-labeled experiments. Cba. tepidum cultures were grown 

anaerobically at temperatures ranging from 46–50 
°
C in low-intensity light (10 ± 1 

W/m
2
). The medium composition (1L) was Na2EDTA-2H2O (0.015 g), MgSO4-

7H2O (0.22 g), CaCl2-2H2O (0.08 g), NaCl (0.45 g), NH4Cl (0.45 g), Na2S2O3-

5H2O (2.6 g), KH2PO4 (0.57 g), MOPS buffer (2.4 g), trace element stock (1.2 
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mL), vitamin B12 stock (0.08 mg), NaHCO3 (0.23 g), and Na2S-9H2O (0.07 g). All 

chemicals were purchased from Sigma-Aldrich. The carbon source for the trace 

experiments was [1-
13

C] acetate (purity > 98%, 0.83g/L) or [2-
13

C] acetate (purity 

> 98%, 0.83g/L) for cultures growing on acetate, or [3-
13

C] pyruvate (purity > 

98%, 1.1 g/L) for cultures growing on pyruvate. The 
13

C-labeled acetate and 

pyruvate were purchased from Cambridge Isotope Laboratories 

(www.isotope.com). Cell growth was monitored at OD625. 1% cultures (100-fold 

dilution) in the exponential growth phase were used to inoculate fresh media with 

13
C-labeled substrates. To reduce the effect of non-labeled carbon from the initial 

stock, cells were sub-cultured twice in the same labeled medium. Biomass was 

sampled at two time points (4 hr interval) in the middle-exponential growth phase, 

and the labeling patterns of proteinogenic amino acids in the biomass were 

measured.  The invariability of amino acid labeling during the two time points 

confirmed the pseudo-steady-state metabolism in tracer experiments.  

Metabolites and isotopomer analysis. The amount of pyruvate and 

acetate during the growth period was determined by enzymatic assays (22,23,24). 

For GC-MS measurement of amino acid labeling, the biomass was harvested by 

centrifugation and hydrolyzed using 6M HCl (24 hrs at 100 
°
C) (20,25). The 

amino acids were derivatized in 0.2 mL tetrahydrofuran and 0.2 mL N-(tert-butyl 

dimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich, St. Louis, MO). A 

gas chromatograph (Hewlett-Packard model 7890A; Agilent Technologies, CA) 

http://www.isotope.com/
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equipped with a DB5-MS column (J&W Scientific, Folsom, CA) and a mass 

spectrometer (model 5975C; Agilent Technologies, CA) were used for analyzing 

metabolite labeling profiles. Four types of charged fragments were detected by 

gas chromatography-mass spectrometry (GC-MS) for all the amino acids (Table 

4.2.1 and Figure 4.2.1): the [M-57]
+
 or [M-15]

+
 group (containing unfragmented 

amino acids); the [M-159]
+
 or [M-85]

+
 group (containing amino acids that had 

lost an α-carboxyl group). For each type of fragments, the labeling patterns were 

represented by M0, M1, M2, etc, which were fractions of unlabeled, singly labeled, 

and doubly labeled amino acids. The effects of natural isotopes on isotopomer 

labeling patterns were corrected by previously reported algorithms (26).  

To compare the relative contributions of carbon substrates and CO2 to 

mixotrophic biomass synthesis, the substrate utilization ratio R was calculated 

based on the labeling patterns of unfragmented amino acid X (e.g., alanine) (8):  

0.98 n Vsub 0.01 VCO2
m Vsub VCO2

( i Mi)
i 1

C

C
 andR

mVsub

VCO2     

             (Equation 1)  

where R ratio reflects the carbon flux ratio of labeled carbon substrate to 

unlabeled CO2 for producing the corresponding amino acid X (mol carbon from 

substrate / mol carbon from CO2); Mi is the GC-MS isotopomer fraction for a 

given amino acid. C is the total number of carbon atoms in the amino acid 

molecule. Vsub is the uptake of 
13

C-labeled organic substrates, VCO2 is the uptake 
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of CO2; 0.98 is the purity of the labeled carbon substrate; 0.01 is the natural 

abundance of 
13

C, m is the total number of carbons in the substrate molecule, and 

n is the total number of labeled carbons in the substrate molecule.  

Metabolic flux analysis. The pathway map of Cba. tepidum was 

generated based on genome annotation from the KEGG database 

(http://www.genome.jp/kegg/) and transcription analysis of several key pathways 

(27). The simplified pathway map includes the reductive tricarboxylic acid cycle, 

CO2-anaplerotic pathway, gluconeogenesis pathway, and pentose phosphate 

pathway (Supplementary Figure 4.2.S1 and Table 4.2.S1). The development of a 

pseudo-steady-state flux model has been discussed before (20,28,29). In brief, the 

substrate (acetate or pyruvate) uptake rate was measured and normalized to 100 

units. The biomass production was determined based on our previous paper (27). 

The biomass composition for macromolecules such as protein and fatty acids was 

assigned based on that of E. coli (14). The fluxes to biomass pools were loosely 

constrained by the estimated dry cell weight (DCW) and biomass compositions. 

These fluxes were used as initial inputs to the isotopomer model and optimized by 

isotopomer labeling information (Table 4.2.1 and Supplementary Table 4.2.S2). 

The remaining unknown intracellular fluxes were determined by reaction 

stoichiometry and atom/isotopomer mapping matrices in an iterative scheme 

(Supplementary Table 4.2.S3). The reaction reversibility was calculated using the 

exchange coefficient (19):  

http://www.genome.jp/kegg/


. 

147 

 

exch i

i

i

exch
v

1 exch
                       

(Equation 2) 

where vi
exch

 is the exchange flux defined as the smaller of the forward and 

backward fluxes, and  exchi is the exchange coefficient with the range of [0,1] (If 

the reaction is irreversible, exchi is 0; if the reaction is “freely” reversible, exchi is 

close to 1). The flux combinations were searched to minimize of the objective 

function (20):  

             (Equation 3) 

where vn are the unknown fluxes to be optimized in the program, Mi is the 

measured MS data, Ni is the corresponding model-simulated MS data, and δi is the 

corresponding standard deviation in the GC-MS data (1~2%). The unknown 

metabolic fluxes were searched to minimize ε. The model was solved by IPOPT 

(Interior Point Optimizer, https://projects.coin-or.org/Ipopt), which is a software 

package for large-scale nonlinear optimization. To avoid getting trapped in a local 

optimal minimum, multiple initial guesses (>100) were used for model calculation 

to obtain the global solution.  

To estimate the confidence interval for the calculated fluxes, a Monte 

Carlo approach was employed (15). In brief, the isotopomer concentration data 

sets were generated by adding 2% of normally distributed measurement noise to 

https://projects.coin-or.org/Ipopt
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actual measured isotopomer data. The same optimization routine was used to 

estimate flux distribution from these data sets.  Confidence limits for each flux 

value were obtained from the probability distribution of calculated fluxes 

resulting from the simulated data sets (n=100). To determine the cellular 

metabolism’s requirements for energy and reducing power, the relative 

consumption rates of ATP, NADH, NADPH and ferredoxin were quantified based 

on the flux distributions in the central metabolic pathways and biomass synthesis 

rates.  

Calculation of biomass yield. The biomass yield (moles of carbon in 

biomass/moles of substrate) was calculated based on the substrate uptake rates 

(moles of substrate/L/hr) and biomass growth rates (g DCW/L/hr). The molecular 

formula for Cba. tepidum was assumed to be CH1.8O0.5N0.2P0.02 (molecular weight 

MW ≈ 25.5) (30). The biomass yield was calculated by: 

biomass growth rate (g/L/hr)

MW of biomass (g/mol)
Yield=

substrate uptake rate (mol/L/hr)
 

4.2.4 Results and discussion 

Carbon utilization during mixotrophic growth. During exponential-

growth with pyruvate and acetate, Cba. tepidum had the growth rates of 0.12 h
-1 

and 0.17 h
-1

, respectively. In the trace experiments, the labeled carbons were 

detected in all amino acids (Table 4.2.1), suggesting utilization of acetate or 
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pyruvate to synthesize all building blocks. Table 4.2.2 shows the ratio of carbon 

utilization (organic carbon vs. CO2) for mixotrophic synthesis of proteinogenic 

amino acids. For acetate culture, the substrate utilization ratio for Ala (precursor: 

pyruvate) was 0.60, which indicated that carbons in pyruvate were mainly derived 

from labeled acetate. Pyruvate is the precursor for both the gluconeogenesis 

pathway and the pentose phosphate pathway, so the R ratios (Equation 1) of Ser 

and Phe are similar to that of alanine. The substrate utilization ratio of His was 

high (0.96) for culture with [2-
13

C]acetate because the His precursor C1 pool (N
5
, 

N
10

-methylene-tetrahydrofolate) was highly labeled. This carbon was derived 

from acetate by following route: 

[2-
13

C]acetate[3-
13

C]pyruvate[3-
13

C]Ser[
13

C] C1 pool. 

In the mixotrophic culture with acetate, the R ratios for aspartate and 

glutamate (~0.2) were significantly lower than the other amino acids. Aspartate 

and glutamate were synthesized from the RTCA cycle, so the small R values 

indicated that the unlabeled CO2 was the dominant carbon source for synthesizing 

metabolites in the RTCA cycle. In pyruvate culture, the substrate utilization ratios 

of amino acids (Ala, Phe, Ser, and Asp) were all lower than in acetate culture, 

indicating a higher contribution of CO2 to synthesize building blocks.  

Analysis of amino acid biosynthesis pathways. Growing in a completely 

defined medium, Cba. tepidum was able to synthesize all amino acids from CO2 

and organic carbon sources using the annotated pathways. Interestingly, the 
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labeling patterns of Leu and Ile from tracer experiments were found to be 

identical, which indicated that the two amino acids shared the same precursors. Ile 

is commonly synthesized via threonine ammonia-lyase, with Thr and pyruvate as 

the precursors, while Leu is synthesized from pyruvate and acetyl-CoA. In the [2-

13
C] acetate trace experiment, both Thr and pyruvate are singly labeled, which 

could lead only to doubly labeled Ile, instead of the triply labeled Ile detected by 

GC-MS. Such an observation is consistent with the fact that a gene encoding 

threonine ammonia-lyase has not been annotated in the genome of Cba. tepidum. 

On the other hand, an alternative pathway for Ile biosynthesis (i.e., threonine-

independent pathway) has been recently identified in several bacteria 

(9,10,25,31), where Ile is synthesized from acetyl-CoA and pyruvate (i.e., using 

the same precursors as Leu) through the formation of citramalate as the 

intermediate (Figure 4.2.1). A search in the genome of Cba. tepidum for the gene 

for citramalate synthase (CimA) as found in Geobacter (10) returned a high 

identity for CT0612 (~ 52%), supporting the presence of the citramalate pathway 

for Ile synthesis. 

Central carbon metabolic pathways. The genome annotation from the 

KEGG database indicates: 1) pyruvate:ferredoxin oxidoreductase (PFOR) (porA, 

CT1628) converts pyruvate to acetyl-CoA (an end-product from RTCA cycle), 2) 

phosphoenolpyruvate (PEP) is derived from pyruvate via pyruvate phosphate 

dikinase (ppd, CT1682), and 3) PEP is fed into the TCA cycle via the CO2-
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anaplerotic pathway (Figure 4.2.2). The fraction of non-labeled Asp (M0=0.64, 

Table 4.2.1) was much higher than that of Ala (M0=0.45, Table 4.2.1) in trace 

experiments with [1-
13

C] acetate, which indicated that non-labeled oxaloacetate 

was also generated through CO2 fixation via the RTCA cycle. Furthermore, 

similar labeling patterns of Ala (precursor: pyruvate) and Ser (precursor: 

glycerate-3-P) confirmed that the carbon flux through the gluconeogenesis 

pathway was mainly from pyruvate.  

The flux analysis results are shown in Figure 4.2.2. In general, predicted 

labeling patterns of all amino acids were good matches with the measured 

isotopomer data (Figure 4.2.3). Under acetate-growth conditions, acetyl-CoA 

could be generated from acetate uptake or as the end-product through the RTCA 

cycle. Fluxes through pyruvate:ferredoxin oxidoreductase (PFOR), the RTCA 

cycle, and the CO2-anaplerotic pathway were ~152, 80-100, and ~30 units, 

respectively (Figure 4.2.2). Meanwhile, the flux ratio of the gluconeogenesis 

pathway to the RTCA cycle was close to 1:1. The oxidative pentose phosphate 

pathway (G6P  6PG  Ru5P) was inactive under our experimental conditions. 

Compared to mixotrophic growth with acetate, the flux distribution during 

pyruvate growth demonstrated different patterns. In general, the fluxes into the 

RTCA cycle and CO2-anaplerotic pathway were much higher (200-230 units and 

~50 units, respectively) and thus more CO2 was fixed. The flux ratio of the 

gluconeogenesis pathway to the RTCA cycle was reduced to 1:2, while acetyl-
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CoA was generated only from the RTCA cycle. The oxidative pentose phosphate 

pathway was not active (flux<1 unit) under pyruvate mixotrophic growth (or 

acetate mixotrophic growth).  

In the mixotrophic cultures grown on acetate or pyruvate, most reactions 

in the RTCA cycle were freely reversible (exchange coefficient close to 1). The 

reversibility is consistent with the physiological free energy changes in the RTCA 

cycle, where the standard Gibbs free energy for most reactions of the TCA cycle 

is positive so that the magnitude of the reaction equilibrium constants is small 

(32). Furthermore, PFOR catalyzes a reversible reaction between pyruvate and 

acetyl-CoA (pyruvate + CoA + 2 Fdox ↔ acetyl-CoA + CO2 + 2 Fdred + 2 H
+
). 

However, metabolic flux analysis of the mixotrophic metabolism indicates that 

the net flux of this enzymatic reaction was from acetyl-CoA to pyruvate (33). The 

direction of the PFOR pathway indicates that the reduced ferredoxin from 

phototrophic processes made the reaction for pyruvate synthesis 

thermodynamically favorable. 

Energy metabolism of Chlorobaculum tepidum. The mixotrophic 

metabolism of Cba. tepidum consumes energy harvested from light.  Since the 

oxidative pentose phosphate pathway and normal TCA cycle are not fully 

functional, the energy (NADPH and NADH) generation mainly depends on the 

light reactions. Based on the metabolic flux distribution and previous 

measurement of the absolute uptake rates of carbon substrates and biomass 
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growth (27), the light-energy harvested for central metabolism and biomass 

growth was approximately quantified (Figure 4.2.4). In general, the photons 

absorbed by pigments (e.g. bacteriochlorophylls) initiate the electron flow and 

oxidize sulfide. The electrons are used to reduce ferredoxin and generate 

NAD(P)H (3,4). Concomitant with the oxidation of the reduced ferredoxin, the 

essential cofactors for energy metabolism (i.e., NADPH and NADH) are mainly 

generated by ferredoxin-NAD(P)
+
 reductase (3,34). Meanwhile, the oxidation of 

sulfide also creates a proton motive force for ATP production. The generated 

ATP, cofactors, and reduced ferredoxin then become the “driver” for the 

mixotrophic metabolism and the RTCA cycle for energy-demanding CO2 fixation. 

Figure 4.2.4 shows that the ATP, NADH and NADPH fluxes into biomass and the 

RTCA cycle are stronger in acetate-grown cultures than in pyruvate-grown 

cultures, supporting a higher growth rate during mixotrophic growth with acetate. 

On the other hand, the calculated biomass yield (moles of carbon in 

biomass/moles of substrate) was higher for pyruvate culture (YX/S=9.2) than for 

acetate (YX/S=6.4), based on our previous experiments (27), which is consistent 

with the fact that the normalized fluxes through RTCA are higher in pyruvate 

culture than acetate culture. Accordingly, pyruvate metabolism has more CO2 

fixation (but slower growth rate).  
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Figure 4.2.1. Citramalate pathway for isoleucine biosynthesis in Cba. tepidum 

(using [2-
13

C] acetate and NaHCO3 as the carbon sources). The asterisks indicate 

the positions of labeled carbon. The dashed lines indicate inactive pathways. 
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Figure 4.2.2. Metabolic flux distribution in Cba. tepidum. (A) Net flux 

distribution in acetate growth conditions (based on [2-
13

C] acetate culture); (B) 

net flux distribution in pyruvate growth conditions. The standard derivation (std) 

and exchange coefficients are marked by flux +/- std and < exchange coefficient > 

respectively. The inactive pathways are marked with dashed lines. The calculated 

biomass yield (moles of carbon in biomass/moles of substrate): pyruvate culture 

(YX/S=9.2); acetate culture (YX/S=6.4). Abbreviations: 3PG, 3-phosphoglycerate; 

6PG, 6-phosphogluconate; AC.ext, extracellular acetate; AC, intracellular acetate; 

ACCOA, acetyl-coenzyme A; AKG, α-ketoglutarate; CIT, citrate; DCW, dry cell 

weight; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; FBP, Fructose 

1,6-bisphosphate; Fdred, reduced ferredoxin; Fdox, oxidized ferredoxin; FNR, 

ferredoxin-NAD(P)
+
 reductase; FUM, fumarate; G6P, glucose-6-phosphate; GAP, 

glyceraldehyde 3-phosphate; ICIT, isocitrate; KGOR, 2-ketoglutarate ferredoxin 

oxidoreductase; MAL, malate; OAC, oxaloacetate; PEP, phosphoenolpyruvate; 

PFOR, pyruvate:ferredoxin oxidoreductase; PYR, intracellular pyruvate; PYR.ext, 

extracellular pyruvate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate; 

RTCA, the reductive tricarboxylic acid; S7P, sedoheptulose-7-phosphate; SUCC, 

succinate; SUCCoA, Succinyl-CoA; Xu5P, xylulose-5-phosphate.  



 

156 

 

 

 

A 



 

157 

 

 

 

 

 

 

B 



 

158 

 

Figure 4.2.3. Model quality test for (A) acetate metabolism; (B) pyruvate 

metabolism. ● alanine data, ○ serine data, ▼ aspartate data, Δ glutamate data, ■ 

leucine data, □ histidine data, ◊ phenylalanine data, and ♦ glycine data. 

 

 



 

159 

 

Figure 4.2.4. Proposed energy metabolism in Cba. tepidum. (A) energy 

requirement (mmol/gDCW/hr) in acetate growth conditions; (B) energy 

requirement (mmol/gDCW/hr) in pyruvate growth conditions. The intracellular 

energy metabolism was quantified in the framed figures based on the relative flux 

distributions (The detailed calculations are in Supplementary Tables 4.2.S4A and 

S4B). Arrows pointing to the framed figure indicated the energy demand of 

intracellular metabolism. Arrows pointing to biomass indicate the energy demand 

of biomass accumulation. Arrows pointing from light indicated the entire energy 

harvested by Cba. tepidum. The light reaction produces reduced ferredoxin and 

ATP. NADPH and NADH are mainly generated by ferredoxin-NAD(P)
+
 

reductase. Biomass (protein) synthesis can also generate a small amount of 

NADH, as indicated in the figure. 
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Figure 4.2.S1. Pathway map for mixotrophic metabolism of Chlorobaculum 

tepidum 
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Table 4.2.1. Isotopic labeling patterns in amino acids from Chlorobaculum 

tepidum
a
 

Carbon source Amino acids Fragments M0 M1 M2 

[1-
13

C] acetate 

Ala 
[M-57]

+
 0.45 0.54 0.01 

[M-159]
+
 0.44 0.53 0.03 

Gly 
[M-57]

+
 0.54 0.46 0.00 

[M-85]
+
 0.54 0.46  

Ser 
[M-57]

+
 0.46 0.52 0.02 

[M-159]
+
 0.47 0.53 0.00 

Leu [M-159]
+
 0.21 0.43 0.33 

Ile [M-159]
+
 0.21 0.43 0.33 

Asp 
[M-57]

+
 0.64 0.35 0.01 

[M-159]
+
 0.65 0.34 0.01 

Glu 
[M-57]

+
 0.63 0.33 0.04 

[M-159]
+
 0.63 0.33 0.04 

Phe 
[M-57]

+
 0.11 0.29 0.36 

[M-159]
+
 0.12 0.30 0.36 

[2-
13

C] acetate 

Ala 
[M-57]

+
 0.43 0.56 0.01 

[M-159]
+
 0.42 0.54 0.04 

Gly 
[M-57]

+
 0.94 0.06 0.00 

[M-85]
+
 0.95 0.05  

Ser 
[M-57]

+
 0.44 0.55 0.01 

[M-159]
+
 0.45 0.55 0.00 

Leu [M-159]
+
 0.13 0.25 0.36 

Ile [M-159]
+
 0.14 0.25 0.36 

Asp 
[M-57]

+
 0.61 0.38 0.00 

[M-159]
+
 0.62 0.37 0.00 

Glu 
[M-57]

+
 0.62 0.35 0.03 

[M-159]
+
 0.63 0.34 0.03 

Phe 
[M-57]

+
 0.13 0.26 0.36 

[M-159]
+
 0.14 0.26 0.35 

His 
[M-57]

+
 0.16 0.35 0.36 

[M-159]
+
 0.28 0.48 0.22 

[3-
13

C] pyruvate 

Ala 
[M-57]

+
 0.67 0.32 0.01 

[M-159]
+
 0.65 0.30 0.05 

Gly 
[M-57]

+
 0.96 0.04 0.00 

[M-85]
+
 0.97 0.03  

Ser 
[M-57]

+
 0.71 0.28 0.01 

[M-159]
+
 0.71 0.28 0.01 

Leu [M-159]
+
 0.47 0.38 0.12 

Ile [M-159]
+
 0.47 0.39 0.12 

Asp 
[M-57]

+
 0.82 0.17 0.00 

[M-159]
+
 0.83 0.15 0.01 

Glu 
[M-57]

+
 0.75 0.20 0.05 

[M-159]
+
 0.76 0.20 0.04 

Phe [M-57]
+
 0.38 0.41 0.17 
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[M-159]
+
 0.38 0.40 0.18 

His 
[M-57]

+
 0.46 0.41 0.11 

[M-159]
+
 0.56 0.34 0.08 

a. the standard deviations for GC-MS measurement were based on the 

duplicate experiments (n=2), with the standard deviation below 2%. 
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Table 4.2.2. Carbon substrate utilization ratios
a
 in amino acids from 

Chlorobaculum tepidum 

Amino 

acids 

Carbon sources 

[1-
13

C] acetate + 

NaHCO3 

[2-
13

C] acetate + 

NaHCO3 

[3-
13

C] pyruvate + 

NaHCO3 

Ala 0.60 0.60 0.48 

Ser 0.58 0.58 0.42 

Asp 0.20 0.22 0.12 

Glu 0.18 0.18 0.21 

His NA
b
 0.96 0.38 

Phe 0.62 0.64 0.26 

a. the carbon source utilization ratio (organic substrate/CO2 fixation) for amino 

acid synthesis was calculated according to Equation (1); b. isotopomer labeling 

pattern for histidine was not detected under [1-
13

C] acetate + NaHCO3 due to the 

weak signal to noise ratio in GC-MS. 
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Table 4.2.S1. Metabolic pathways in mixotrophic metabolism of Chlorobaculum 

tepidum 

Pathway 

ID 
Reactions Notes 

v1_ACT 
Extracellular acetate→Intracellular 

acetate 
Confirmed by qRT-PCR (acsA, ackA) 

v1_PYR 
Extracellular pyruvate→Intracellular 

pyruvate 
 

v2 Acetate→Acetyl-CoA (-ATP)  

v3 Acetyl-CoA+CO2↔Pyruvate (-2 Fdred) Confirmed by qRT-PCR (porA) 

v4 PEP/Pyruvate+CO2↔OAC (+ATP) Confirmed by qRT-PCR (ppc, pckA) 

v5 OAC↔MAL (-NADH)  

v6 MAL↔FUM  

v7 FUM↔SUCC (-2[H])  

v8 SUCC↔SUCCoA (-ATP)  

v9 SUCCoA+CO2↔AKG (-2 Fdred) Confirmed by qRT-PCR (korA, korB) 

v10 AKG+CO2↔ICIT (-NADPH) Confirmed by qRT-PCR (icd) 

v11 ICIT↔CIT Confirmed by qRT-PCR (acn) 

v12 CIT↔ACCOA+OAC 
Confirmed by qRT-PCR (gltA, aclA, 

aclB) 

v13 PYR↔PEP (-ATP) Confirmed by qRT-PCR (ppd) 

v14 PEP↔3PG  

v15 3PG→GAP (-ATP) (-NADH)  

v16 2 GAP→FBP  

v17 FBP→F6P (+ATP)  

v18 F6P→GAP  

v19 GAP→6PG (+NADPH)  

v20 6PG→C5P+CO2 (+NADPH)  

v21 F6P+GAP↔XU5P+E4P  

v22 E4P+F6P↔S7P+GAP  

v23 S7P+GAP↔XU5P+R5P  

v24 R5P→Biomass Energy cost is listed in Table.S2 

v25 E4P→Biomass Energy cost is listed in Table.S2 

v26 F6P→Biomass Energy cost is listed in Table.S2 

v27 G6P→Biomass Energy cost is listed in Table.S2 

v28 GAP→Biomass Energy cost is listed in Table.S2 

v29 3PG→Biomass Energy cost is listed in Table.S2 

v30 PEP→Biomass Energy cost is listed in Table.S2 

v31 PYR→Biomass Energy cost is listed in Table.S2 

v32 ACCOA→Biomass Energy cost is listed in Table.S2 

v33 OAC→Biomass Energy cost is listed in Table.S2 

v34 AKG→Biomass Energy cost is listed in Table.S2 
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Table 4.2.S2. Precursors for building blocks synthesis in Chlorobaculum tepidum 

Building block  

 

 

Cost of making 1 mol of each of these building blocks 

(mol/mol) 

Precursors 

Protein amino acids  

Alanine 1 PYR 

Arginine 1 AKG, (-5 ATP) (-1 NADPH) 

Asparagine 1 Asp, (-2 ATP) 

Aspartate 1 OAC 

Cysteine 1 Ser (-3 ATP) (-4 NADPH) 

Glutamate 1 AKG (-1 NADPH) 

Glutamine 1 Glu (-1 ATP) 

Glycine 1 Ser 

Histidine 1 C5P, 1 C1 unit (-5 ATP) (+2 NADH) 

Isoleucine 2 PYR, 1 ACCOA (-1 NADPH) (+1 NADH) 

Leucine 2 PYR, 1 ACCOA (-1 NADPH) (+1 NADH) 

Lysine 1 OAC, 1 PYR (-1 NADPH) 

Methionine 1 Asp,1 C1 unit (-1 ATP) (-2 NADPH) 

Phenylalanine 1 E4P, 2 PEP (-1 ATP) (-1 NADPH) 

Proline 1 Glu (-1 ATP) (-2 NADPH) 

Serine 1 3PG (+1 NADH) 

Threonine 1 OAC (-2 ATP) (-2 NADPH) 

Tryptophan 1 C5P, 1 E4P,1 PEP (-3 ATP) (-1 NADPH) 

Tyrosine 1 E4P, 2 PEP (-1 ATP) (-1 NADPH) (+1 NADH) 

Valine 2 PYR (-1 NADPH) 

RNA nucleotides  

ATP 1 C5P, 1 3PG 

GTP 1 C5P, 1 3PG 

CTP 1 C5P, 1 OAC 

UTP 1 C5P, 1 OAC 

DNA nucleotides  

dATP 1 C5P, 1 3PG 

dGTP 1 C5P, 1 3PG 

dCTP 1 C5P, 1 OAC 

dTTP 1 C5P, 1 OAC 

Average fatty acid 8.2 ACCOA 

Average 

carbohydrate 
1 G6P 
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Table 4.2.S3.  Atom mapping matrices for metabolic reactions 

PyrPEP 

  1  0  0 

  0  1  0 

  0  0  1 

PEP3PG 

  1  0  0 

  0  1  0 

  0  0  1 

3PGGAP 

  1  0  0 

  0  1  0 

  0  0  1 

Acetate 

ACCOA 

  1  0 

  0  1 

 

C1GLY 

  0 

  1 

 

ICITCO2 

 0  0  0  0  0  1 

 

ACCOAPyruvate 

  0     0 

  1     0 

  0     1 

AKGCO2 

  1  0  0  0  0 

 

AKG GLU 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1 

AKGSUCC 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1 

 

ASPMET 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

  0  0  0  0 

 

ACCOA  LEU 

  1  0 

  0  1 

  0  0 

  0  0 

  0  0 

  0  0 

PYR LEU 

  0  0  0 

  0  0  0 

  0  1  0 

  0  1  0 

  0  0  1 

  0  0  1 

C1MET 

  0 

  0 

  0 

  0 

  1 

 

C1HIS 

  0 

  0 

  0 

  0 

  0 

  1 

E4PTYR 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

E4PF6P 

  0  0  0  0 

  0  0  0  0 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

 

E4PPHE 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

E4PS7P 

  0  0  0  0 

  0  0  0  0 

  0  0  0  0 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

 

E4PGAP 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

 

CO2OAA 

  0 

  0 

  0 

  1 

 

F6PE4P 

  0  0  1  0  0  0 

  0  0  0  1  0  0 

  0  0  0  0  1  0 

  0  0  0  0  0  1 

 

F6PG6P 

  1  0  0  0  0  0 

  0  1  0  0  0  0 

  0  0  1  0  0  0 

  0  0  0  1  0  0 

  0  0  0  0  1  0 

  0  0  0  0  0  1 

F6PS7P 

  1  0  0  0  0  

0 

  0  1  0  0  0  

0 

  0  0  1  0  0  

0 

  0  0  0  0  0  

0 

  0  0  0  0  0  

0 

  0  0  0  0  0  

0 

  0  0  0  0  0  

0 

GAPF6P 

  0  0  1   

  0  1  0  

  1  0  0   

  1  0  0   

  0  1  0  

  0  0  1   

 

F6PC5P 

  1  0  0  0  0  0 

  0  1  0  0  0  0 

  0  0  0  0  0  0 

  0  0  0  0  0  0 

  0  0  0  0  0  0 

 

ICITAKG 

  1  0  0  0  0  0 

  0  1  0  0  0  0 

  0  0  1  0  0  0 

  0  0  0  1  0  0 

  0  0  0  0  1  0 

 

F6PG6P 

  1  0  0  0  0  0 

  0  1  0  0  0  0 

  0  0  1  0  0  0 

  0  0  0  1  0  0 

  0  0  0  0  1  0 

  0  0  0  0  0  1 

G6PC5P 

  0  1  0  0  0  

0 

  0  0  1  0  0  

0 

  0  0  0  1  0  

0 

OACMAL 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 
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  0  0  0  0  1  

0 

  0  0  0  0  0  

1 

 

MALFUM 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 

FUMSUCC 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 

SUCCSUCCoA 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 

PYRCO2 

  1  0  0 

 

PYRACCOA 

  0  1  0 

  0  0  1 

 

SUCCoASUCC 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 

CO2 MAL 

  0 

  0 

  0 

  1 

PYROAA 

  1  0  0  

  0  1  0   

  0  0  1   

  0  0  0 

SUCCFUM 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 

FUMMAL 

  0.5  0  0  0.5 

  0  0.5  0.5  0 

  0  0.5  0.5  0 

  0.5  0  0  0.5 
AKGSUCCoA 

  0   1     0     0     0 

  0   0     1     0     0 

  0   0     0     1     0 

  0   0     0     0     1 

SUCCoA 

AKG 

  0  0  0  0 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

MAL(OAA)CO2 

  0  0  0  1 

 

MALOAC 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

PYRMAL 

  1  0  0  

  0  1  0   

  0  0  1   

  0  0  0 

CIT  ACCOA 

 

 

0.5  0  0   0   0.5   0      

0   0.5   0   0.5 0   0 

ACCOA  CIT 

  0.5  0 

  0     0.5 

  0     0 

  0     0.5 

  0.5  0 

  0     0 

CITOAC 

 0    0    0   0     0     1 

 0    0    1   0     0     0 

 0    0.5 0  0.5   0     0 

 0.5  0   0   0   0.5     0 

OACCIT  

  0  0  0    0.5 

  0  0  0.5  0 

  0  1  0     0 

  0  0  0.5  0 

  0  0  0     0.5 

  1  0  0      0 

PYRALA 

  1  0  0 

  0  1  0 

  0  0  1 

 

OACASP 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

  0  0  0  1 

OACCO2 

  0  0  0  1 

 

PEPOAA 

  1  0  0 

  0  1  0 

  0  0  1 

  0  0  0 

OACPEP 

  1  0  0  0 

  0  1  0  0 

  0  0  1  0 

PEPPYR 

  1  0  0 

  0  1  0 

  0  0  1 

 

C5PF6P 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  0  0  0 

  0  0  0  0  0 

  0  0  0  0  0 

  0  0  0  0  0 

 

C5PS7P  

  1  0  0  0  0 

  0  1  0  0  0 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1 

 

G6PCO2 

  1  0  0  0  0  0 

 

PEPTYR 

  1  0  0 

  0  1  0 

  0  0  1 

  0  1  0 

  0  0  1 

  0  0  0 

  0  0  0 

  0  0  0 

  0  0  0 

PEPPHE 

  1  0  0 

  0  1  0 

  0  0  1 

  0  1  0 

  0  0  1 

  0  0  0 

  0  0  0 

  0  0  0 

  0  0  0 

GAPC5P 

  0  0  0 

  0  0  0 

  1  0  0 

  0  1  0 

  0  0  1 

 

PYRLEU 

  0  0  0 

  0  0  0 

  0  1  0 

  0  2  0 

  0  0  2 

  0  0  1 

PYRLys 

  0  0  0 

  0  0  0 

  0  0  0 

  0  0  0 

  0  1  0 

  0  0  1 

PYRVal 

  1  0  0 

  0  1  0 

  0  2  0 

  0  0  2 

  0  0  1 

C5PHis 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1 

  0  0  0  0  0 

C5PS7P  

  1  0  0  0  0 

C5PGAP 

  0  0  1  0  0 

S7PE4P 

 0  0  0  1  0  0  0 

S7PF6P 

  1  0  0  0  0  0  0 

S7P C5P  

  1  0  1  0  0  0  0 
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  0  1  0  0  0 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1 

  0  0  0  1  0 

  0  0  0  0  1 

 

 0  0  0  0  1  0  0 

 0  0  0  0  0  1  0 

 0  0  0  0  0  0  1 

 

  0  1  0  0  0  0  0 

  0  0  1  0  0  0  0 

  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0 

  0  0  0  0  0  0  0 

 

  0  1  0  1  0  0  0 

  0  0  0  0  1  0  0 

  0  0  0  0  0  1  0 

  0  0  0  0  0  0  1 

 

SERC1 

  0  0  1 

 

SERGLY 

  1  0  0 

  0  1  0 

 

ICITAKG 

  1  0  0  0  0  0   

  0  1  0  0  0  0 

  0  0  1  0  0  0 

  0  0  0  1  0  0 

  0  0  0  0  1  0 

AKGICIT 

  1  0  0  0  0 

  0  1  0  0  0 

  0  0  1  0  0 

  0  0  0  1  0 

  0  0  0  0  1  

  0  0  0  0  0 

GAPE4P 

  0  0  0 

  1  0  0 

  0  1  0 

  0  0  1 

CITICIT 

  0.5  0  0  0  0.5  0 

  0  0.5  0  0.5  0  0 

  0  0  1  0  0  0 

  0  0.5  0  0.5  0  0 

  0.5 0  0  0  0.5  0 

  0  0  0  0  0  1 

ICITCIT 

   0.5  0  0  0  0.5  

0 

  0  0.5  0  0.5  0  

0 

  0  0  1  0  0  0 

  0  0.5  0  0.5  0  

0 

  0.5 0  0  0  0.5  

0 

  0  0  0  0  0  1 
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Table 4.2.S4A. Energy demand of Chlorobaculum tepidum in acetate growth 

conditions 

Acetate Metabolism 

Flux ID Flux (units) 
Flux 

(mmol/g/hr) 
ATP NADH NADPH 2[H] Fdred 

v1_ACT 100.0±0.0 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v2 100.0±0.0 1.0±0.1 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v3 152.4±11.4 1.5±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 3.0±0.2 

v4 33.1±2.3 0.3±0.0 -0.3±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v5 98.1±11.3 1.0±0.1 0.0±0.0 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 

v6 98.1±11.3 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v7 98.1±11.3 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 1.0±0.1 0.0±0.0 

v8 98.1±11.3 1.0±0.1 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v9 98.1±11.3 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 2.0±0.2 

v10 81.4±9.4 0.8±0.1 0.0±0.0 0.0±0.0 0.8±0.1 0.0±0.0 0.0±0.0 

v11 81.4±9.4 0.8±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v12 81.4±9.4 0.8±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v13 124.2±10.4 1.2±0.1 1.2±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v14 81.1±15.0 0.8±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v15 51.1±7.8 0.5±0.1 0.5±0.1 0.5±0.1 0.0±0.0 0.0±0.0 0.0±0.0 

v16 18.5±2.4 0.2±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v17 18.5±2.4 0.2±0.0 -0.2±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v18 1.7±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v19 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v20 0.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v21 10.9±1.8 0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v22 4.2±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v23 4.2±0.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

Sum - - 3.2±0.4 1.5±0.2 0.8±0.1 1.0±0.1 5.0±0.5 

Biomass - 
μ=0.17 hr-1 

±0.02 hr-1 

40.86∙0.17 

=6.9±0.7 

-3.55∙0.17 

=0.6±0.1 

16.87∙0.17 

=2.9±0.3 

0.00∙0.17 

=0.0±0.0 

0.00∙0.17 

=0.0±0.0 
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Table 4.2.S4B. Energy demand of Chlorobaculum tepidum in pyruvate growth 

conditions 

Pyruvate Metabolism 

Flux ID Flux (units) 
Flux 

(mmol/g/hr) 
ATP NADH NADPH 2[H] Fdred 

v1_PYR 100.0±0.0 0.4±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v2 100.0±0.0 0.4±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v3 138.1±10.2 0.6±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.2±0.1 

v4 48.1±5.6 0.2±0.0 -0.2±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v5 230.4±26.6 1.0±0.1 0.0±0.0 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 

v6 230.4±26.6 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v7 230.4±26.6 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 1.0±0.1 0.0±0.0 

v8 230.4±26.6 1.0±0.1 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v9 230.4±26.6 1.0±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 2.0±0.2 

v10 207.3±21.0 0.9±0.1 0.0±0.0 0.0±0.0 0.9±0.1 0.0±0.0 0.0±0.0 

v11 207.3±21.0 0.9±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v12 207.3±21.0 0.9±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v13 161.1±4.9 0.7±0.0 0.7±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v14 100.0±11.8 0.4±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v15 70.1±9.5 0.3±0.0 0.3±0.0 0.3±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v16 25.4±10.9 0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v17 25.4±10.9 0.1±0.0 -0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v18 2.9±1.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v19 0.4±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v20 0.4±0.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v21 14.6±6.2 0.1±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v22 5.5±2.6 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

v23 5.5±2.6 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

Sum - - 1.7±0.2 1.3±0.1 0.9±0.1 1.0±0.1 3.2±0.3 

Biomass - 
μ=0.12 hr-1 

±0.01 hr-1 

40.86∙0.12 

=4.9±0.5 

-3.55∙0.12 

=-0.4±0.1 

16.87∙0.12 

=2.0±0.2 

0.00∙0.12 

=0.0±0.0 

0.00∙0.12 

=0.0±0.0 

 

Biomass formation: 2.833 PYR+ 1.078 AKG+1.787 OAC+1.493 3PG+0.898 

R5P+2.938 ACCOA+0.719 PEP+0.361 E4P+0.205 G6P+0.071 F6P+0.129 GAP 

+16.866 NADPH+ 40.860 ATP→39.68 Biomass+3.547 NADH 
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4.3 
13

C-metabolic flux analyses of Thermoanaerobacter species  

13
C-MFA has been applied to quantify and compare metabolic flux 

distributions in two Thermoanaerobacter species: Thermoanaerobacter sp. X514 

and Thermoanaerobacter pseudethanolicus 39E (35). Both species were cultured 

anaerobically with 2 g/L of [1-
13

C] glucose or 2 g/L of [1-
13

C] xylose. The 

metabolic network of Thermoanaerobacter species included pentose phosphate 

pathway, glycolysis, the branched TCA cycle, and the futile pathways.  

When using glucose as the carbon substrate, the flux through the oxidative 

pentose phosphate pathway, which was often used for NADPH production, was 

moderately higher in 39E than that in X514. In spite of very different growth rates 

between X514 and 39E in glucose and xylose cultures, the intracellular carbon 

flux distributions, after normalization by carbon substrate consumption rates, 

were not significantly different between these two strains. This suggested a 

similar regulation of central metabolic pathways in these two phylogenetically 

closely related strains. The report of 
13

C-MFA of Thermoanaerobacter species is 

attached in Appendix 7. Beside, 
13

C-MFA has also been used in investigating the 

metabolic robustness of Shewanella oneidensis MR-1 (36) (Appendix 8). 
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4.4.1 Abstract 

In a 
13

C-experiment for metabolic flux analysis (
13

C-MFA), we examined 

isotope discrimination by measuring the labeling of glucose, amino acids and 

hexose monophosphates via mass spectrometry. When Escherichia coli grew in a 

mix of 20% fully labeled and 80% naturally labeled glucose medium, the cell 

metabolism favored light isotopes, and the measured isotopic ratios (δ
13

C) were in 

the range of -35 to -92. Glucose transporters might play an important role in such 

isotopic fractionation. Flux analysis showed that both isotopic discrimination and 

isotopic impurities in labeled substrates could impact the accuracy and precision 

of 
13

C-MFA. 

Key words: amino acid, glucose transporter, δ
13

C, mass spectrometer, isotopic 

impurity 

4.4.2 Methods and results 

13
C-metabolic flux analysis (

13
C-MFA) experiments consist of feeding 

microbes with enriched 
13

C-labeled substrate, then measuring the isotopic 

distribution in the resulting metabolites (often amino acids) to quantify absolute 

fluxes through the metabolic network. In a typical 
13

C-MFA experiment, 

uniformly 
13

C-labeled substrates are often used in a mixture with the non-labeled 

form to create efficient scrambling of labeled carbons in the backbone of all 

metabolites (37,38). Such an experiment assumes that the microbial activity is 

equal for all isotopomers, and that 
13

C tracing will not change the metabolic 
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kinetics.  However, a kinetic isotopic effect may be present in all bio-reactions, 

wherein light isotopes react faster than heavy isotopes due to the lower activation 

energies for enzymatic breaking of the 
12

C-
12

C bond than the 
13

C-
13

C bond 

(39,40,41). In the microbial process, the isotopic effect depends on isotopomer 

diffusion kinetics, intrinsic enzyme characteristics, and microbial growth 

conditions (such as pH, micronutrients, and growth factors) (41,42). However, 

most isotopic effect studies are in the fields of biogeochemistry and ecology, 

where the 
13

C is naturally labeled (around 1.1%).  

This study investigated the isotopic effect in 
13

C-MFA experiments when 

highly enriched 
13

C-susbtrate was used. E.coli BL21 (DE3) was first grown in M9 

medium with 22.2 mM of glucose (shaking flasks, 150 rpm, 37°C), which 

contained  non-labeled glucose (Sigma-Aldrich, USA) and fully labeled glucose 

(99% purity, Cambridge Isotope, USA) in approximately a 4:1 molar ratio. To 

reduce the non-labeled carbon from the initial stock, cells were then sub-cultured 

(0.1% inoculation ratio) in the same 
13

C-labeled medium. All sub-cultured 

samples from the 
13

C-MFA experiments were harvested at the mid-log phase (8 

hrs) for isotopomer analysis.   

We first employed an isotope ratio mass spectrometer and a gas 

chromatograph-mass spectrometer (GC-MS) to analyze isotopic fractionation in 

cell metabolism. The exact ratio of 
13

C/
12

C (i.e. 
13

C/
12

C=0.2497) in the initial 

carbon substrate (glucose) of 
13

C-MFA experiments was determined using an 
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isotope ratio mass spectrometer after combustion of glucose to CO2 (performed 

by the Stable Isotope Biogeochemistry Laboratory, Washington University). 

Since the mass detector could be saturated for 
13

C enriched compounds (
13

C >5%) 

(43), we made a tenfold dilution of the samples with naturally labeled glucose 

before measurement (39,40). To determine the ratio of 
13

C/
12

C in the biomass 

(reflected by proteinogenic amino acids), a gas chromatograph (Hewlett-Packard 

model 7890A; Agilent Technologies, CA) and a mass spectrometer (model 

5975C; Agilent Technologies, CA) were employed. The sample preparation and 

isotopic analysis of proteinogenic amino acids were performed as previously 

described (20,25). The GC-MS was carefully tuned and the measurement errors 

were determined using naturally labeled amino acids (Supplementary Table 

4.4.S1)(44). In a separate 
13

C-MFA experiment, we used a liquid chromatograph-

mass spectrometer (LC-MS) to investigate the isotopic effect. The first metabolite 

in the glycolysis, hexose monophosphate (mainly glucose 6-phosphate, G6P), was 

extracted by cold methanol. The labeling pattern was determined using ion pair 

reverse phase LC-TOF(a Quadrupole Time-of-Flight, Agilent) with electrospray 

ionization (ESI) in negative mode. The measurement was performed by the 

Proteomics & Mass Spectrometry Facility at the Donald Danforth Plant Science 

Center) (45).  

The isotopic ratio (δ
13

C) is a standard parameter for isotopic fractionation 

and was calculated as: 
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1000
glucose/

)glucose/()metabolite/(
1213

12131213

13

CC

CCCC
C

            (Equation 1) 

The 
13

C/
12

C ratio of glucose used in 
13

C-MFA experiments can be determined by 

an isotope ratio mass spectrometer or LC-TOF. In this work, the 
13

C/
12

C ratios in 

metabolites were calculated from the labeling patterns of metabolites. Due to their 

associated pathways, each metabolite has a different value for 
13

C/
12

C, given 

below: 

 metabolite/1213 CC
C

i

i

C

i

i

MiC

Mi

1

1

)(

         (Equation 2) 

where Mi is the isotopomer fraction for a given metabolite (i.e., M0 is the non-

labeled fraction, M1 is the singly labeled fraction, M2 is the doubly labeled 

fraction, , etc). C is the total number of carbon atoms in the molecule.  

Previous research has reported that when a naturally labeled carbon source 

was digested, the isotopic ratio for key metabolites (including amino acids) 

resulting from enzymatic conversion of glucose was around -20 (46). When E. 

coli was grown with 20% [U-
13

C] glucose and 80% non-labeled glucose, the 

growth curve was similar to that for non-labeled glucose (supplementary Figure 

4.4.S1). Based on GC-MS measurement, δ
13

C values from key amino acids were 

all negative (i.e., light isotopes were favored) and significantly above the 

instrument errors (Figure 4.4.1). The δ
13

C values also suggest that pathways may 
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have different isotope discrimination. Phenylalanine and histidine are derived 

from the pentose phosphate pathway. Their δ
13

C values were between -47 and -

45, similar to the δ
13

C values of serine and alanine (both of which are derived 

from glycolysis). On the other hand, leucine has acetyl-CoA as one of its 

precursors.  The oxidation of pyruvate to acetyl-CoA has been reported to have a 

strong isotopic effect (47), so the leucine synthesis route showed a higher 

microbial isotopic effect (δ
13

C = -79) than that of alanine (converted from 

pyruvate). Besides, aspartate had the highest isotopic ratio (δ
13

C = -92) among all 

amino acids, because the anaplerotic reaction (PEP + CO2  Oxaloacetate) used 

non-labeled CO2 for oxaloacetate (the precursor of aspartate) synthesis, leading to 

additional dilution of the 
13

C pool of aspartate.  

To confirm the GC-MS results, we performed independent 
13

C 

experiments and examined the labeling patterns of G6P and glucose in the 
13

C 

culture medium. Table 4.4.1 gives the LC-MS-based labeling fraction data for 

G6P (M0~M6, ion m/z=259~265) and glucose (M0~M6, ion m/z=179~185). These 

results indicate that cells selectively metabolize more light glucose than heavy 

glucose (δ
13

C=-77±27) during the middle-log phase. The LC-MS-based δ
13

C 

values were close to the δ
13

C values obtained by GC-MS (via analysis of amino 

acid labeling). The G6P data suggests that the selectivity of glucose uptake may 

also be a reason for isotopic fractionation. In general, heavy glucose (fully 

labeled, molecular weight=186 Da) has a slower diffusion rate than 
12

C glucose 
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(non-labeled, molecular weight=180 Da). Thus the glucose transporter may favor 

light glucose and cause isotopic fractionation during the glucose uptake process.  

Finally, a 
13

C-MFA model estimated the impact of the isotopic effect on 

the accuracy of flux calculations. The pathway map of E. coli BL21 (DE3) 

includes the glycolysis, citric acid cycle, pentose phosphate, and anaplerotic 

pathways (supplementary Fig 4.4.S2). The development of the 
13

C-MFA has been 

discussed previously (20). In brief, glucose, acetate, and biomass pools were 

measured, and glucose uptake rates were normalized to 100 units. The unknown 

fluxes were determined in an iterative scheme based on the reaction stoichiometry 

and atom transition routes through the defined metabolic network. The flux 

optimization was performed using the “fmincon” function in MATLAB 

(MathWorks). Because local solutions may be found, the model was run 50 times 

from different initial guesses to generate the solution space for each flux. By 

using the amino acid labeling data (supplementary Table 4.4.S2), the flux 

distributions were estimated with three sets of initial glucose-labeling patterns. 

The first glucose set (case 1) was comprised of 20% fully labeled glucose mixed 

with 80% non-labeled glucose, which represented the traditional approach for 

13
C-MFA. The second glucose set (case 2) was adjusted to 19.2% universally 

labeled glucose mixed with 80.8% non-labeled glucose, which corrected for bias 

in glucose utilization (i.e., assuming that E. coli utilizes relatively more 
12

C-

glucose than 
13

C-glucose). Such reduced labeling was based on a microbial 

isotopic fractionation ratio (δ
13

C = -47). The third glucose set (case 3) was based 
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on Table 4.4.1, and the labeling distribution was M0=74%, M1=5%, M2=1%, 

M5=1% and M6=18%. Since commercial labeled glucose is not perfectly pure 

(M0≠80%, M6≠20%), the differences in fluxes from case 1 and case 3 represent a 

common error in conventional GC-MS-based 
13

C-MFA analysis. The estimated 

global net flux distributions in the three sets of labeling data showed that the 

isotopic effect slightly changed the relative fluxes in the central pathways (~1 

units) (Supplementary Fig. 4.4.S3). Beside, consideration of the isotopic impurity 

of glucose improved the precision of the flux calculation (i.e. smaller solution 

space on case 3 than that on case 1). The flux difference in key pathways between 

case 1 and 3 could be up to 5 units. Therefore, the isotopic impurity, rather than 

isotopic fractionation, should be the concern for flux estimation in conventional 

labeling experiments.  
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Figure 4.4.1. Isotopic effect in E. coli BL21 (DE3) with 20% [U-
13

C] glucose and 

80% non-labeled glucose. The biased isotopic ratio is defined as - δ13
C, based on 

GC-MS measurement. The higher the biased isotopic ratio, the more 
12

C atoms 

are preferred in the amino acids synthesis.   
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Figure 4.4.S1. Growth curve of E. coli BL21 (DE3) with non-labeled glucose (●, 

solid line) or 20% [U-
13

C] glucose and 80% non-labeled glucose (○, dot-dashed 

line). 
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Figure 4.4.S2. Flux analysis of central metabolism in E. coli BL21 (DE3). The 

grey arrows indicate fluxes to biomass. Abbreviations: 6PG, 6-phosphogluconate; 

ACCOA, acetyl-coenzyme A; E4P, erythrose-4-phosphate; F6P, fructose-6-

phosphate; G6P, glucose-6-phosphate; GAP, glyceraldehyde 3-phosphate; 3PG, 

3-phosphoglycerate; CIT, citrate/isocitrate; MAL, malate; OAA, oxaloacetate; 

AKG, 2-oxoglutarate; PEP, phosphoenolpyruvate; PYR, pyruvate; P5P, ribose-5-

phosphate (or xylulose-5-phosphate, or ribulose-5-phosphate); S7P, 

sedoheptulose-7-phosphate.  
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Figure 4.4.S3. Boxplot of metabolic flux results from MATLAB fmincon 

optimization using 50 random guesses of initial fluxes. Three sets of glucose-

labeling patterns were used for flux calculations. 1) not biased: 20% [U-
13

C] 

glucose mixed with 80% non-labeled glucose; 2) biased: 19.2% [U-
13

C] labeled 

glucose mixed with 80.8% non-labeled glucose; 3) actual: glucose labeling 

patterns obtained from LC-MS measurement as listed in Table 4.4.1. All the 

fluxes were normalized by taking the glucose uptake flux as 100 units, while the 

optimal flux values were marked in the Figure. 
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Table 4.4.1. Calculation of δ
13

C for G6P derived from LC-MS 

Fragmentations 
G6P in E. coli  Glucose in medium 

Replicate 1 Replicate 2 Replicate 1 Replicate 2 

M0  0.663 0.655 0.743 0.743 

M1  0.091 0.095 0.051 0.049 

M2  0.054 0.056 0.008 0.012 

M3  0.059 0.066 0.000 0.000 

M4  0.014 0.000 0.000 0.000 

M5  0.000 0.000 0.015 0.013 

M6  0.119 0.128 0.183 0.183 

(
13

C/
12

C) 
0.236 0.243 0.260 0.260 

0.240±0.005 0.260±0.000 

(δ
13

C) -77 

 

Note: Two independent culture experiments were performed with five technical 

repeated measurements. The instrument error was 0.4%. 
13

C/
12

C was calculated 

by equation 2; δ
13

C was calculated by equation 1.  
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Table 4.4.S1. GC/MS calibration for eight amino acids fragments. 

 

Ala 260 (C11H26O2NSi2); δ
13

C=-20.4  

m/z theory data difference 

260 100 100 0.0 

261 23.2 22.6 -0.6 

262 9.5 9.4 -0.1 

263 1.5 1.4 -0.1 

264 0.3 0.2 -0.1 

265 0.0 0.0 0.0 

266 0.0 0.0 0.0 

267 0.0 0.0 0.0 

268 0.0 0.0 0.0 

 

Gly 246 (C10H24O2NSi2); δ
13

C=-19.2  

m/z theory data difference 

246 100 100 0.0 

247 22.0 21.4 -0.6 

248 9.2 9.1 -0.1 

249 1.3 1.3 0.0 

250 0.2 0.2 0.0 

251 0.0 0.0 0.0 

252 0.0 0.0 0.0 

253 0.0 0.0 0.0 

254 0.0 0.0 0.0 

 

Leu 344 (C17H38O2NSi2); δ
13

C=-27.6 

m/z theory data difference 

344 100 100 0.0 

345 30.0 29.3 -0.7 

346 11.3 11.2 -0.1 

347 2.1 2.0 -0.1 

348 0.4 0.3 -0.1 

349 0.0 0.1 0.0 

350 0.0 0.0 0.0 
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Ser 390 (C17H40O3NSi3); δ
13

C=-20.4  

m/z theory data difference 

390 100 100 0.0 

391 35.1 34.3 -0.8 

392 16.3 15.9 -0.4 

393 3.8 3.7 -0.1 

394 0.9 0.9 0.0 

395 0.1 0.1 0.0 

396 0.0 0.0 0.0 

397 0.0 0.0 0.0 

398 0.0 0.0 0.0 

399 0.0 0.0 0.0 

400 0.0 0.0 0.0 

 

Phe 336 (C17H30O2NSi2); δ
13

C=-14.6  

m/z theory data difference 

336 100 100 0.0 

337 29.9 29.3 -0.6 

338 11.2 11.0 -0.2 

339 2.1 2.1 0.0 

340 0.4 0.4 0.0 

341 0.0 0.0 0.0 

342 0.0 0.0 0.0 

343 0.0 0.0 0.0 

344 0.0 0.0 0.0 

 

Asp 418 (C18H40O4NSi3); δ
13

C=-18.8  

m/z theory data difference 

418 100 100 0.0 

419 36.1 35.1 -1.0 

420 16.9 16.6 -0.3 

421 4.0 3.9 -0.1 

422 1.0 0.9 -0.1 

423 0.2 0.1 -0.1 

424 0.0 0.0 0.0 
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425 0.0 0.0 0.0 

426 0.0 0.0 0.0 

427 0.0 0.0 0.0 

428 0.0 0.0 0.0 

 

Glu 432 (C19H42O4NSi3); δ
13

C=-27.1  

m/z theory data difference 

432 100 100 0.0 

433 37.4 36.4 -1.0 

434 17.4 16.9 -0.5 

435 4.3 4.1 -0.2 

436 1.0 1.0 0.0 

437 0.2 0.1 -0.1 

438 0.0 0.0 0.0 

439 0.0 0.0 0.0 

440 0.0 0.0 0.0 

441 0.0 0.0 0.0 

442 0.0 0.0 0.0 

 

His 440 (C20H42O2N3Si3); δ
13

C=-24.3 (‰) 

m/z theory data difference 

440 100 100 0.0 

441 39.2 38.3 -0.9 

442 17.7 17.2 -0.5 

443 4.4 4.2 -0.2 

444 1.0 0.9 -0.1 

445 0.2 0.1 -0.1 

446 0.0 0.0 0.0 

447 0.0 0.0 0.0 

448 0.0 0.0 0.0 

449 0.0 0.0 0.0 

450 0.0 0.0 0.0 

Note: Table 4.4.S1 determined the instrumental errors of GC-MS using 

derivatized amino acids (naturally labeled with 
13

C, 
18

O, 
15

N and 
29,30

Si). δ
13

C 

values in the table represent the measurement bias for labeled amino acids during 
13

C-MFA. 
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Reference: M.R. Antoniewicz, J.K. Kelleher, and G. Stephanopoulos, Accurate 

assessment of amino acid mass isotopomer distributions for metabolic flux 

analysis. Anal. Chem. 79 (2007) 7554-9. 
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Table 4.4.S2.  Measured and model fitted isotopomer data from TBDMS-

derivatized amino acids  

Amino 

Acids 
Fragment Origin 

Isotopomer Enrichment 

M0 M1 M2 M3 M4 

Ala [M-57]
+
 

Exp 0.78 0.04 0.02 0.17  

Cal_Unbiased 0.77 0.04 0.03 0.17  

Cal_Biased 0.77 0.04 0.03 0.16  

  Cal_Actual 0.75 0.05 0.02 0.17  

Gly [M-57]
+
 

Exp 0.79 0.05 0.16   

Cal_Unbiased 0.79 0.05 0.16   

Cal_Biased 0.79 0.05 0.16   

  Cal_ Actual 0.79 0.05 0.16   

Leu [M-159]
+
 

Exp 0.51 0.15 0.24 0.06 0.03 

Cal_Unbiased 0.49 0.16 0.24 0.07 0.03 

Cal_Biased 0.51 0.15 0.24 0.06 0.03 

  Cal_ Actual 0.48 0.18 0.24 0.07 0.03 

Ser [M-57]
+
 

Exp 0.74 0.08 0.05 0.13  

Cal_Unbiased 0.74 0.07 0.06 0.14  

Cal_Biased 0.74 0.07 0.06 0.13  

  Cal_ Actual 0.73 0.08 0.05 0.14  

Asp [M-57]
+
 

Exp 0.61 0.17 0.11 0.09 0.02 

Cal_Unbiased 0.60 0.15 0.12 0.10 0.03 

Cal_Biased 0.61 0.16 0.11 0.09 0.03 

  Cal_ Actual 0.63 0.15 0.10 0.10 0.03 

Glu [M-57]
+
 

Exp 0.52 0.16 0.21 0.07 0.02 

Cal_Unbiased 0.49 0.16 0.24 0.07 0.03 

Cal_Biased 0.50 0.17 0.23 0.06 0.03 

  Cal_ Actual 0.51 0.19 0.21 0.06 0.02 

Phe [M-57]
+
 

Exp 0.45 0.09 0.12 0.16 0.10 

Cal_Unbiased 0.44 0.07 0.13 0.17 0.09 

Cal_Biased 0.45 0.08 0.13 0.17 0.09 

  Cal_ Actual 0.42 0.09 0.12 0.15 0.11 

His [M-57]
+
 

Exp 0.53 0.16 0.10 0.11 0.03 

Cal_Unbiased 0.53 0.16 0.10 0.11 0.03 

Cal_Biased 0.53 0.16 0.10 0.11 0.03 

  Cal_ Actual 0.53 0.16 0.11 0.11 0.03 

Note:  

Cal_Unbiased isotopic data are calculated by assuming δ
13

C= 0. 

Cal_Biased isotopic data are calculated by assuming δ
13

C= -47.  

Cal_ Actual isotopic data are calculated based on the labeling pattern of glucose 

detected by LC-MS. 
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5.1 Abstract 

Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste 

products (pyruvate and acetate) during batch culture. To decipher MR-1 

metabolism, we integrated genome-scale flux balance analysis (FBA) into a 

multiple-substrate Monod model to perform the dynamic flux balance analysis 

(dFBA). The dFBA employed a static optimization approach (SOA) by dividing 

the batch time into small intervals (i.e., ~400 mini-FBAs), then the Monod model 

provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to 

profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a 

dual-objective function (a weighted combination of “maximizing growth rate” 

and “minimizing overall flux”) to capture trade-offs between optimal growth and 

minimal enzyme usage. By fitting the experimental data, a bi-level optimization 

of dFBA revealed that the optimal weight in the dual-objective function was time-

dependent: the objective function was constant in the early growth stage, while 

the functional weight of minimal enzyme usage increased significantly when 

lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 

metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then 

decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and 

gluconeogenesis were stable in the exponential growth period; and 3. the 

glyoxylate shunt was up-regulated when acetate became the main carbon source 

for MR-1 growth.  
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5.2 Authors’ summary 

This study integrates two modeling approaches, a Monod kinetic model 

and genome-scale flux balance analysis, to analyze the dynamic metabolism of an 

environmentally important bacterium (S. oneidensis MR-1). The modeling results 

reveal that MR-1 metabolism is suboptimal for biomass growth, while MR-1 

continuously reprograms the intracellular flux distributions in adaption to nutrient 

conditions. This innovative dFBA framework can be widely used to investigate 

transient cell metabolisms in response to environmental variations. Furthermore, 

the dFBA is able to simulate metabolite-labeling dynamics in 
13

C-tracer 

experiments, and thus can serve as a springboard to advanced 
13

C-assisted 

dynamic metabolic flux analysis by using labeled proteinogenic amino acids to 

improve flux results. 

Key words: 
13

C, enzyme usage, genome-scale, Monod, objective functions, 

suboptimal, TCA cycle  

5.3 Introduction 

Cell metabolisms are highly dependent on environmental conditions, so 

the metabolic state often shifts during the cultivation period (1,2,3). 

Characterizing the transience of metabolic fluxes is important for understanding 

how cells responded to environmental changes. Bioprocess models (e.g., a 

Monod-based kinetic model) (4) have been widely applied to predict microbial 
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dynamics, but they cannot directly obtain the intracellular flux distributions. On 

the other hand, flux balance analysis (FBA) profiles the rates of enzymatic 

reactions based on stoichiometric mass balance, knowledge of reaction 

constraints, and measurements of inflow/outflow fluxes (5,6). As an 

underdetermined model, FBA requires an objective function (e.g., “maximizing 

growth rate”) for flux calculation. However, since cells may show suboptimal 

metabolism and reprogram their metabolic fluxes under different environmental 

conditions, the commonly used objective function is insufficient to describe cell 

physiologies (7,8,9). Furthermore, FBA assumes steady-state metabolic 

conditions, and thus is unable to directly analyze the transience of cell metabolism 

(10,11,12). 

This study developed an FBA framework that integrates Monod kinetics 

and FBA to decipher the dynamic metabolism of MR-1 (Figure 5.1). MR-1 is a 

facultative anaerobic bacterium, which not only plays an important ecological role 

in carbon cycling and metal reduction, but also has been widely used for in situ 

bioremediation and microbial fuel cell applications (13,14,15). MR-1 has a 

diverse carbon utilization capability and shifts its metabolism during batch 

cultivation (16). MR-1 uses lactate for initial growth and produces acetate and 

pyruvate. In the late growth stage, MR-1 metabolizes less energy-favorable 

pyruvate and acetate. To describe such kinetic behavior, we used unsegregated 

Monod equations to simulate cell growth, lactate utilization, and metabolite 
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secretion and reuse. The standard Monod model was incorporated into a genome-

scale FBA model, iSO783 (17), to formulate the dynamic FBA (dFBA) 

framework (11), which enabled quantitative predictions of the MR-1 metabolism. 

5.4 Results    

5.4.1 Monod model  

MR-1 growth displayed an apparent lag phase (~7.1 h) in 30 mM lactate 

medium (0.1% inoculation). By incorporating a time delay function for the lag 

growth phase, a standard Monod model consisting of four ordinary differential 

equations was built to describe the extracellular metabolite curves and growth 

kinetics (Figure 5.2). The parameters of the Monod model were estimated by 

fitting the experimental data. Table 5.1 indicates that the lactate-based biomass 

yield was higher than that for either pyruvate or acetate, confirming the 

preferential utilization of lactate as an energy-favorable carbon substrate for MR-

1. Similarly, the lactate-based growth rate (μmax) was much higher than that for 

either pyruvate or acetate, indicating that lactate was the major carbon substrate 

for biomass growth at the early growth stage. Table 5.1 lists the rate coefficients 

(kpl, kap and kal) for waste products (pyruvate and acetate) synthesis and reuse, 

which indicates that MR-1 quickly consumed lactate, producing significant 

metabolic overflows to the waste products. Such a strategy illustrates an 

advantageous ecological niche for MR-1 in competing for favorable carbon 

sources. Finally, although our standard Monod model reasonably well described 
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MR-1 growth data, its results showed some lack-of-fit with statistical analysis 

(Table 5.S1). Such a discrepancy was possibly due to the model’s simplification 

and to measurement noises. In this study, the kinetic model represents a 

compromise between complexity and practical simplicity.      

5.4.2 Link kinetic model to FBA 

To resolve the flux dynamics, the static optimization approach (SOA) 

divided the cultivation phase into numerous pseudo-steady states so that a 

conventional genome-scale MR-1 framework (iSO783, containing 774 reactions 

and 634 metabolites) was able to calculate the flux distributions (17) in each five-

minute time interval. Such dFBA model consisted of ~400 mini-FBAs. To avoid 

repeated and tedious measurements of biomass and metabolite concentrations for 

each mini-FBA, we used the Monod model to determine the inflow/outflow fluxes 

of lactate, acetate, and pyruvate in each time interval. The mini-FBAs could be 

resolved by an objective function of “maximizing growth rate”, but this function 

severely overestimated the actual biomass growth (Figure 5.3). To account for the 

suboptimal metabolic features (7,8,9), we used a dual-objective function in dFBA: 

a combination of “maximize growth rate” and “minimize overall flux”. By 

appropriately weighing both objectives, we explored the trade-offs between 

optimal cell growth and minimal enzyme usage. Specifically, the Monod model 

determined the transient growth rate for each time interval, which tuned the 

weights in the dual-objective functions for the mini-FBAs so that the biomass 
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growth curve simulated by dFBA was in agreement with experimental 

observations. Figure 5.3 showed that the optimal dual-objective function in mini-

FBAs was time-dependent. In general, these dual-objective functions were 

invariable before the carbon substrate switched from lactate to acetate/pyruvate. 

When lactate became scarce, the weight of “minimizing overall flux” in the 

objective function increased significantly, indicating an intracellular reduction of 

enzyme synthesis and minimization of intracellular fluxes.    

5.4.3 Dynamic flux distributions in MR-1 

The dynamic flux distributions in MR-1 were calculated using the bi-level 

optimization (Figure 5.4). The carbon flows to extracellular acetate and pyruvate 

were high when lactate was sufficient (~33% and ~25% of the lactate uptake flux 

before the carbon substrate switch, respectively). Fluxes into the gluconeogenesis 

pathway, reductive PP pathway, and ED pathway were mainly for biomass 

synthesis, and remained approximately constant during the exponential growth 

phase. In the middle log phase (22~25 hours), when the growth rate reached the 

maximum, fluxes in the oxidative TCA cycle reached a peak (e.g., ~6 mmol/g 

DCW/h for succinyl-CoA synthetase) to generate energy and building blocks. 

When lactate became scarce (25~30 hrs), MR-1 had to utilize its waste 

metabolites (acetate and pyruvate). During this metabolic shift, most intracellular 

fluxes started to decrease. In the late log growth phase (30~34 hrs), it was also 

observed that the glyoxylate shunt was up-regulated compared to TCA cycle 
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fluxes after acetate became the main carbon source for MR-1 growth. The 

glyoxylate shunt reduced the oxidation of carbon substrate for CO2 production by 

diverting the carbon flow into a shorter metabolic route. The glyoxylate shunt 

activity was further confirmed by in vitro enzyme assays at both the mid-log 

phase (malate synthase activity was 0.18±0.11 μmol/g DCW/min) and the late-log 

phase (malate synthase activity was 0.37±0.17 μmol/g DCW/min).  

5.4.4 Simulation of dynamic 
13

C-labeling in proteinogenic amino acids  

In 
13

C-labeled tracer experiments, dFBA can be used to predict the 

isotopomer dynamics in slow turnover metabolites, such as proteinogenic amino 

acids. During MR-1 growth with [3-
13

C] lactate, the dynamic metabolism led to 

variations of labeling patterns in intracellular metabolites (biomass precursors) so 

that the isotopic labeling in proteinogenic amino acids was continuously changing 

during cell growth (18). Here, we simulated the time-integrative labeling patterns 

in proteinogenic amino acids based on fluxes from dFBA. The predicted 

isotopomer labeling patterns of five proteinogenic amino acids (Ala, Ser, Glu, 

Asp, and Gly, at t = 24 and 30 h) are illustrated in Figure 5.5A and Figure 5.S1. 

Compared with the experimental measurements, the labeling patterns predicted by 

dFBA are consistent with the measured labeling patterns, but some lack-of-fit still 

exists. One of the limitations of the FBA model is that the intracellular pathway is 

treated as unidirectional, so the effect of exchange fluxes on isotopomer data is 

neglected. Considering that some in vivo reactions could be bi-directional, we 
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implemented exchange coefficients for four pathways (e.g., the anaplerotic 

pathway: pyruvate  malate) in the model to improve the simulation of 
13

C-

labeling (Table 5.2). After introduction of the exchange coefficients, the measured 

and the simulated isotopomer data for proteinogenic amino acids matched (R
2 

= 

0.9619, Figure 5.5B).  

5.5 Discussion 

dFBA models have been developed to describe the dynamic metabolism of 

E.coli (10), Saccharomyces cerevisiae (19), Lactococcus lactis (12), and even for 

a more complicated coculture system of E.coli and Saccharomyces cerevisiae 

(20). In this study, we developed dFBA for analyzing metabolic states of S. 

oneidensis MR-1. The time-dependent inflow/outflow fluxes for dFBA can be 

constrained by either a Monod model or other empirical models (such as 

polynomial-fitting to the measurement data (21)). The Monod model is suitable to 

uncover kinetic properties of a scale-up bioprocess and empowers the dFBA to 

correlate the bioprocess parameters (such as nutrient concentrations and inhibition 

coefficients) with intracellular metabolism analysis. The integration of the Monod 

model and dFBA can decipher and predict cell metabolisms in response to batch 

fermentation conditions.  

To describe biological realities, a physiologically reasonable objective 

function is important for FBA. For E.coli metabolism, 11 objective functions have 

been systemically investigated under different cultivation conditions (7). It turns 
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out that no single objective function can describe metabolic states accurately for 

all conditions. A recent study of MR-1 indicated that futile cycles may be 

operational, in which less energetically efficient enzymes are expressed at higher 

levels than their counterparts and decrease biomass yield (17). Such suboptimal 

metabolic features in MR-1 make the conventional objective functions difficult to 

use in predicting actual cell physiology. To bridge the gap between the in silico 

simulations and experimental observations, we assigned dual-objective functions 

to resolve mini-FBAs. Using dual-objective functions, dFBA accurately predicted 

the elevated flux ratio of the glyoxylate shunt (represented by malate synthase 

activity) to the oxidative TCA cycle (represented by fumarase activity) when 

acetate started to be used as the main carbon substrate (Figure 5.S2). The up-

regulation of the glyoxylate shunt and down-regulation of the oxidative TCA 

pathways were consistent with a previous 
13

C-metabolic flux analysis of MR-1 

(18). In comparison, this transient metabolic shift in the glyoxylate shunt could 

not be captured by a single objective function, such as maximal biomass growth. 

Moreover, our dFBA results showed the weight of the two objective functions 

remained relatively constant when lactate was sufficient. At the early stage of 

MR-1 growth, such a pseudo-steady state has been experimentally verified by 

previous isotopomer-based analysis (18). Under nutrient scarcity conditions, MR-

1 metabolism may reduce synthesis and usage of enzymes to achieve a 

compromise between minimization of general physiological activities and 

maintenance of essential cellular functions (22).  
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The dFBA model can also simulate time-dependent isotopomer 

enrichment in proteinogenic amino acids. In turn, the isotopomer results (Figure 

5.5) can be used to validate and improve the dFBA model predictions. For 

example, our dFBA model predicted low fluxes through malic enzyme during the 

exponential growth because these pathways may reduce biomass production, 

while the genetic analysis indicates a high functionality of malic enzyme (17). In 

the dynamic isotopomer simulations, we found that the fitting of isotopomer 

labeling patterns was significantly improved by introducing the bi-directional 

fluxes through the pathway Malate ↔ CO2 + Pyruvate, while keeping the net flux 

minimal. Such reversible reactions suggest metabolic flexibility. The activity of 

malic enzyme was also confirmed by in vitro enzyme assays at both the mid-log 

phase (malic enzyme activity was 0.90±0.18 μmol/g DCW/min) and late-log 

phase (malic enzyme activity was 1.73±0.81 μmol/g DCW/min). 

Proteinogenic amino acids
 
are abundant in biomass and can easily be 

measured by GC-MS. Complementing this instrumental data, 
13

C-metabolic flux 

analysis (MFA) offer analytic insight into the cell metabolisms in fermentation 

processes (3,23,24). However, the turnover rate of protein is much slower than 

that of intracellular metabolites, so
 13

C-MFA is useful only for analyzing the 

steady-state central metabolism. To perform 
13

C-MFA of dynamic flux 

distributions, the fast turnover metabolites have to be extracted and analyzed at 

multiple time points (1,3), which requires significant sampling efforts and high-
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sensitivity analytical measurement of low-abundance/unstable metabolites. 

Moreover, the calculation of dynamic fluxes with isotopomer data formulates an 

inverse nonlinear optimization problem, which is computationally challenging. 

Due to insufficient methods for analyzing low abundance metabolites (25), as 

well as limitations in computational algorithms, dynamic 
13

C-MFA cannot resolve 

the flux distributions in a large-scale metabolic network. To overcome these 

difficulties, this study illustrates a proof-of-concept approach that exploits the 

synergy between proteinogenic-amino-acid-based 
13

C-MFA and genome-scale 

dynamic flux balance analysis.  

In our dFBA, the Monod model is solved first independently of the FBA. 

As an alternative approach, we also tested to integrate the kinetic models with 

FBA (integrative Flux Balance Analysis, iFBA). iFBA simultaneously optimizes 

the kinetic model parameters and solves the dynamic cell metabolism in MR-1 

(Supplementary Text S1). We found that iFBA also requires a dual objective 

function, a weighted combination of “maximizing growth rate” and “minimizing 

overall flux”, to improve the model accuracy, similar to the dFBA approach 

(Figure 5.S3 and Table 5.S2). Such results indicate that it is difficult to use a 

single objective to describe the flux states under all growth conditions, while the 

time-dependent trade-off objective functions are effective for analyzing the 

dynamic suboptimal metabolism.  
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In conclusion, as in other FBA studies, the dFBA framework proposed in 

this study links macroscopic bioprocess variables (such as nutrient 

concentrations) to microscopic intracellular metabolism analysis. It predicts 

metabolic responses under dynamic culture conditions, and reveals the impact of 

the kinetic parameters (such as μmax) on intracellular flux distributions. 

Furthermore, dFBA can identify the objective functions that are possibly used by 

microorganisms in adaption to environmental variations. Finally, by simulating 

and comparing the isotopomer labeling patterns of different metabolites, the 

proposed dFBA framework can potentially improve dynamic flux resolutions by 

incorporating the isotopomer data from labeled proteinogenic amino acids. 

5.6 Materials and methods 

Culture conditions, analytical methods, and isotopomer analysis. S. 

oneidensis MR-1 (ATCC 70050) was first grown in LB medium in shake flasks 

overnight. A 0.1% inoculum volume was then cultured into modified MR-1 

defined medium (26) in shake flasks (100 mL culture for each of triplicate 

experiments, shaken at 150 rpm) at 30°C. The initial carbon source was ~30 mM 

lactate. The growth curve was monitored by dried biomass weight. The 

concentrations of lactate and acetate in the medium were measured using enzyme 

kits (r-Biopharm, Darmstadt, Germany). The concentration of pyruvate in the 

medium was measured with the enzyme assay developed by Marbach and Weli 

(27).  
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To analyze the activity of malate synthase and malic enzyme, samples 

were taken at early middle log phase (biomass of MR-1 ~0.08 g/L) and late log 

phase (biomass of MR-1 ~0.23 g/L). The harvested cells were centrifuged and re-

suspended in 100 mM Tris buffer. The samples were then ultra-sonicated for 5 

min to release the enzymes. Malate synthase activity was gauged based on the 

reaction of CoASH with DTNB (Acetyl-CoA+glyoxylateMalate+CoASH; 

CoASH+DTNBCoA-TNB+TNB), as described by Dixon and Kornberg (28). In 

general, 20 μL acetyl-CoA (5 mM), 10 μL DTNB (10 mM), 50 μL cell extract, 

and 500 μL of a solution containing 0.1 M potassium phosphate and 10 mM 

MgCl2 were mixed with water. The mixture was then added with 20 μL 100 mM 

glyoxylate. The difference in absorbance at OD412 before and after glyoxylate 

addition reflected the activity of malate synthase, in which one unit ∆OD412 

corresponded to 70.6 nmol of TNB produced (in a 1 mL reaction solution). 

Furthermore, the activity of malic enzyme was detected based on increased 

absorbance at 340 nm due to the reduction of NAD
+
 to NADH (29). In brief, 400 

μL 250 mM Tris HCl, 20 μL 50 mM MnCl2, 25 μL 40 mM NH4Cl, 100 μL 1M 

KCl, 50 μL 20 mM NAD
+
, 100 μL 100 mM malate, and 50 μL cell extract were 

mixed with water (1 mL reaction solution). The change in absorbance at OD340 

reflected the activity of malic enzyme. 

In the labeling experiment, MR-1 was first grown overnight in the LB 

medium in shake flasks. A 0.1% inoculum volume was then cultured into 100 mL 
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of modified MR-1 defined medium at 30°C, with the initial carbon source as 30 

mM [3-
13

C] lactate (purity>98%) purchased from Cambridge Isotope 

Laboratories, Inc. (Andover, MA). The biomass was harvested at ~24 h (before 

lactate was depleted) and ~30 h (after the substrate had switched from lactate to 

waste products). To analyze the labeling pattern of proteinogenic amino acids, we 

hydrolyzed the biomass with 6M HCl at 100 
o
C. The isotopic analysis of 

proteinogenic amino acids was performed using a GC-MS based TBDMS 

method, as previously described (30,31,32). Ions of [M-57]
+
 (unfragmented 

amino acid) were used for the 
13

C-simulations (33). 

Monod model development. A multiple-substrate Monod model was 

developed to describe the cell growth, lactate consumption and secretion, and 

reuse of waste products (acetate and pyruvate).  
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where X is biomass (g DCW/L); LACT, ACT, and PYR are lactate, acetate, and 

pyruvate concentrations (mmol/L), respectively; μL, μA, and μP are the specific 

growth rates (h
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endogenous metabolism rate constant (h
-1

); YX/L, YX/A, and YX/P are the biomass 

yield coefficients (g DCW/mol substrate) of lactate, acetate, and pyruvate 

respectively; rP,L and rA,L are the production rates (mmol/L/h) of acetate and 

pyruvate from lactate, respectively. rA,P is the production rates (mmol/L/h) of 

acetate from pyruvate. S(t-tL) is the dimensionless unit-step time delay function 

(S=0 when t < tL; S=1 when t= tL) which described the lag phase after inoculation.  

The specific cell growth rate was described by Monod equations: 
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where μmax,L, μmax,A, and μmax,P are the maximal growth rates (h
-1

) for fully aerobic 

growth on lactate, acetate, and pyruvate, respectively; and Ks,l, Ks,a, and Ks,p are 

Monod constants (mmol/L) for lactate, acetate, and pyruvate, respectively. The 

acetate and pyruvate production rates are assumed to be proportional to the 

biomass (16), as expressed below: 
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where kal and kpl are rate constants of acetate and pyruvate production, 

respectively (L∙ (h∙g DCW)
-1

). kap is the rate constant of acetate production from 

pyruvate (L∙ (h∙g DCW)
-1

). 

The kinetic model (Equations 1~10) contained 14 kinetic parameters. To 

estimate the model parameters, an ordinary least squares (OLS) method (34) was 

applied to solve the inverse problem. OLS aimed to minimize the residual sum of 

the squares (R) between model simulations and experimental measurements, 

expressed as 

)];([)];([ tYtYR T                                                               (11) 

where η represents four dependent variables simulated by the kinetic model; β 

represents the vector of the parameters to be estimated; and Y is the vector of the 

measured value of the dependent variables. Since the scales of the dependent 

variables were different (e.g., the scale of the biomass measurement was < 1 g/L, 

while the lactate measurement >10 mmol/L), the direct application of OLS would 

overemphasize the fitting of dependent variables with large scales. Therefore, we 

normalized dependent variables by the corresponding maximum concentrations 

measured in the experiments.  

The “ode23” command in MATLAB (R2009a, Mathworks) was used to 

solve ODEs, and the “fmincon” command was used to find suitable settings of the 

parameters. Figure 5.S4 is the histogram of normalized model residuals. The 
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standard deviations of the parameters were derived from a bootstrap analysis, in 

which the experimental measurements were randomly re-sampled 1000 times and 

the corresponding parameters were simulated with the same parameter estimation 

approach. The 1000 re-sampling was found to be adequate since the variation of 

parameters converged to within a desired tolerance of 0.1%.  

Bi-level dFBA study. The growth phase was divided into 408 pseudo-

steady-state intervals with instantaneous transitions between the two adjacent 

intervals (11). At each pseudo-steady state (~five minutes) (35), a mini-FBA was 

formulated by a dual-objective function comprised of “maximizing the growth 

rate” and “minimizing overall flux”; and inflow/outflow fluxes (for lactate, 

acetate, and pyruvate) derived from the Monod model. The inflow/outflow fluxes 

were calculated from: 

Xv
dt

dPYR

Xv
dt

dACT

Xv
dt

dLACT

outflowpyr

outflowact

lowlac

_

_

inf_

  

where vlac_inflow, vact_outflow, and vpyr_outflow are transient lactate inflow flux, acetate 

outflow flux, and pyruvate outflow flux, respectively. 

At each pseudo steady state, the mini-FBA followed a bi-level 

optimization framework similar to ObjFind (36). The internal optimization was an 

(12) 

 

(13) 

 

(14) 
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FBA with a combined objective function in which the weighting factor of 

“minimizing overall flux” ranged from zero to one. The difference between the 

transient growth rate simulated from the FBA and that derived from the Monod 

model was minimized in the external optimization, by tuning the weighting factor 

in the combined objective function. The bi-level optimization determined a trade-

off between maximizing growth rate and maximizing enzyme efficiency under the 

specified growth conditions. The bi-level optimization was formulated as: 

10     

 model Monod  thefrom     

0  

..

]1[min 

     

 ..

)-(min 

inf

2

2

FBAMonod

w

, v, vv

ubv    lb

v  S

ts

μw)(vw

ts

wpyr_outflowact_outflolowlac_

i

FBAi

                               (15) 

where μmonod and μFBA are transient growth rates derived from the Monod model 

and the dFBA study, respectively; w is the weight of “minimizing overall flux” in 

the combined objective function; v is the vector of the intracellular fluxes; S is the 

stoichiometry matrix; lb and ub are the lower and upper boundaries for 

intracellular flux.  

The internal optimization was a typical quadratic programming (QP) 

problem and was solved using the CPLEX solver in the TOMLAB optimization 

toolbox (TOMLAB Optimization Inc, Seattle, WA) within MATLAB (R2009a). 
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The external optimization problem (i.e., search for weight) was solved by a grid 

search. Since the QP problem in this study was convex, the locally searched 

results were also the global solutions (37).  

Simulation of dynamic 
13

C-labeling in proteinogenic amino acids. Our 

previous 
13

C-MFA study of MR-1 showed that the labeling patterns in its 

proteinogenic amino acids changed during the late-stage of batch growth (18). 

Using the dynamic flux distributions from dFBA, we could now simulate 

dynamics of isotopomer labeling patterns in proteinogenic amino acids using the 

algorithm below.    
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Since FBA neglects flux reversibility, we implemented exchange 

coefficients exch to account for the reversibility of four key metabolic pathways 

(ME2, GHMT, GLYCL, and SUCOAS in iSO783, Table 5.2). In Equation 16, 

vexch is the vector of exchanged fluxes in the reversible reactions; v is the vector of 

the transient fluxes at the t’ interval, simulated from the mini-FBA; p(t) are fluxes 

to proteinogenic amino acids at each time interval; ∆t is the scale of a pseudo 

steady state (5 min); ∆X(t) is the biomass produced at each time interval;  IMM is 

the isotopomer mapping matrices describing the carbon atoms transitions from 

reactants to products in a reaction; IDV(t) are the isotopomer distribution vectors 

of transient intracellular metabolites at each time interval, which is calculated 

based on the different labeling patterns of precursors from n pathways; IDVint|t=t’ 

are the isotopomer distribution vectors in proteinogenic amino acids at the end of 

the t’ time interval; MDVi,sim and MDVi,exp are the mass distribution vectors for 

each of the five proteinogenic amino acids, as simulated and as measured by GC-

MS, respectively; M is the matrix for converting IDV to MDV; σi is the standard 

deviation of the GC-MS measurement (error ~2%), which is assumed to be 

constant in this study. The carbon transitions in the reactions involved were given 

in Supplementary Text S2.  The “fmincon” command in MATLAB was used to 

find the exchange coefficients, and the “nlparci” command in MATLAB was used 

to find the asymptotic confidence intervals of the exchange coefficients. These 

exchange coefficients significantly improved dFBA simulation of the labeling 

patterns in proteinogenic amino acids.     
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5.7 Supplementary Text S1: framework of integrative Flux Balance Analysis 

(iFBA) 

We have tested an alternative model framework: iFBA. The dynamic 

cultivation process was decomposed into numerous pseudo-steady-state time 

intervals. At each time interval, the inflow/outflow fluxes in the FBA were 

derived from the Monod equations; while the biomass increase during the time 

interval was predicted by mini-FBAs using proper objective functions. At the end 

of each time interval, the predicted biomass increase was incorporated into the 

Monod equations to estimate the metabolite and substrate concentrations at the 

next time interval. Then, we obtained the inflow/outflow fluxes of mini-FBA in 

the next time interval (t+∆t). To improve the model accuracy, iFBA employed a 

dual-objective function w(i), a weighted combination of “maximizing growth 

rate” and “minimizing overall flux”. The time-dependent weight in the dual-

objective function and the kinetic parameters in Monod equations were 

determined by minimizing the differences between iFBA predicted MR-1 growth 

kinetics and the experimentally measured data. The iFBA was formulated as 

below: 
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The new symbols introduced in iFBA are as following: num_timepoint is 

the number of time intervals decomposed during the entire cultivation process, 

which is 408; dt is the time of each time interval, which is 1/12 h. p1, p2 and p3 are 
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three parameters used to simulate the dynamic weighting factors in the dual 

objective function. The internal dFBA problem was solved using the CPLEX 

solver in TOMLAB optimization toolbox (TOMLAB optimization Inc, Seattle, 

WA) within MATLAB (R2009a). The external optimization problem (i.e. search 

for weight) was solved by SNOPT solver in TOMLAB optimization toolbox 

within MATLAB (R2009a). The histogram of normalized residuals in growth 

kinetics simulated by iFBA was shown in Figure 5.S5. The Lack-of-fit test for 

iFBA was shown in Table 5.S3. 

5.8 Supplementary Text S2: reactions involved in 
13

C-labeling simulations  

TCA cycle and metabolites transport  

J1 (L-LACD2) LAC (abc)pyr(abc) 

J2 (-ACt6) accoa(ab)↔ACT (ab) 

J3 (-PYRt2) pyr(abc)↔PYR(abc) 

J4 (PDH) pyr(abc)accoa(bc)+co2(a) 

J5 (CS) oaa(abcd)+accoa(ef)cit(dcbfea) 

J6 (ACONT) cit(abcdef)icit(abcdef) 

J7 (ICDHy) icit (abcdef)akg(abcde)+co2(f) 

J8 (AKGD) akg(abcde)succoa(bcde)+co2(a) 

J9 (SUCD7) succ(1/2abcd+1/2dcba)fum(1/2abcd+1/2dcba) 

J10 (FUM) fum(1/2abcd+1/2dcba)mal-L(abcd) 
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J11 (MDH) mal-L(abcd)oaa(abcd)  

J12 (PPC) pep(abc)+co2(d)oaa(abcd) 

J13 (PPCK) oaa(abcd)pep(abc)+co2(d) 

Glyoxylate shunt 

J14 (ICL) icit(abcdef)glx(de)+succ(1/2abcf+1/2fcba)  

J15 (MALS) accoa(ab)+glx(cd)mal-L(dcab) 

Reversible net fluxes and C1 metabolism  

J16 (GHMT) ser-L(abc)↔glx(ab)+mlthf(c) 

J17 (GLYCL) glx(ab)↔co2(a)+mlthf(b) 

J18 (ME2) mal-L(abcd)↔pyr(abc)+co2(d) 

J19 (-SUCOAS) succoa(abcd)↔succ(1/2abcd+1/2dcba) 

Gluconeogenesis 

J20 (PPS) pyr(abc)pep(abc) 

J21 (-ENO) pep(abc)2pg(abc) 

J22 (-PGM) 2pg(abc)3pg(abc) 

Amino acid biosynthesis  

J23 3pg(abc)ser-L(abc) 

J24 akg(abcde)glu-L(abcde) 

J25 pyr(abc)ala-L(abc) 

J26 oaa(abcd)asp-L(abcd) 
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Notes:  

1) All abbreviations are referred to iSO783, except LAC, PYR and ACT; which 

represent extracellular lactate, pyruvate and acetate, respectively. 

2) The reaction IDs in iSO783 are listed with brackets. The negative sign 

indicates that the net flux of the pathway is in the opposite direction as set by 

iSO783. The amino acids biosynthesis pathways are lumped; hence no ID in 

iSO783 is available. 
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Figure 5.1. Flowchart of dFBA to decipher the dynamic metabolism of S. 

oneidensis MR-1. 
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Figure 5.2. Monod model for growth kinetics. The green dots are the 

measurements, and the blue lines are the simulated growth by the empirical 

Monod model. 
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Figure 5.3. Prediction of growth rates (h
-1

). Blue ○: growth rate determined by 

the Monod model. Red ○: dFBA prediction using the objective function 

(maximization of growth rate). Green □: dFBA prediction using dual-objective 

functions (maximization of growth rate and minimization of overall flux). Yellow 

◊: the weight of the dual-objective functions that predicted the measured growth 

rates. Note: the summation of the square of fluxes (∑v
2
) was a very large number 

(total 774 fluxes), so the magnitude of weight w was small. 
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Figure 5.4. Dynamic flux distributions (unit: mmol/g DCW/h) in central 

metabolic pathways. The yellow filled cycles are intracellular metabolites; the 

blue filled cycles are substrates and extracellular metabolites (LAC: extracellular 

lactate, PYR: extracellular pyruvate, ACT: extracellular acetate); the dashed lines 

indicate inactive pathways; the green filled boxes are reactions listed in iSO783. 

All the abbreviations refer to iSO783 (7,8,9).  
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Figure 5.5. Experimentally observed and simulated isotopomer labeling patterns 

[M-57]
+
 in proteinogenic amino acids. The standard error for GC-MS 

measurement was below 0.02. A1: dynamic isotopomer simulation for glutamate 

from dFBA without considering reaction reversibility (dFBA w/o reversibility). 

A2: dynamic isotopomer simulation for glutamate from dFBA considering 

reaction reversibility (dFBA w/ reversibility). Bar plot: comparison of 

experimentally observed isotopomer labeling to simulated isotopomer labeling 

patterns of glutamate (A1: without considering reaction reversibility; A2: 

considering reaction reversibility). B: The model fitting of the isotopomer 

labeling data of five key amino acids (Ala, Gly, Ser, Asp, and Glu) at t = 24 and 

30 h. 
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Figure 5.S1. Experimental observed and simulated isotopomer labeling patterns 

[M-57]
+
 in key proteinogenic amino acids. The standard error for GC-MS 

measurement was ~0.02. Area plot: dynamic isotopomer simulation (case 1: 

simulation without considering reaction reversibility; case 2: simulation 

considering reaction reversibility). Bar plot: comparison of experimental data to 

simulated isotopomer labeling patterns (case 1: without considering reaction 

reversibility; case 2: considering reaction reversibility). 
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Figure 5.S2. Flux ratio of malate synthase (MALS) and fumarase (FUM) in 

dynamic metabolism of Shewanella oneidensis MR-1. Blue ■: time profiles of flux 

ratio using “maximizing growth rate” as the objective function in dFBA; red ▲: 

time profiles of flux ratio using dual-objective function in dFBA: a combination 

of “maximize growth rate” and “minimize overall flux”. The entire growth of 

MR-1 was divided into three phases. In phase I, lactate was mainly used as the 

carbon substrate. In phase II, lactate, acetate and pyruvate were used as the carbon 

substrates. In phase III, acetate was used as the carbon substrate. 
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Figure 5.S3. Growth kinetics simulated by iFBA using “maximizing growth rate” 

as the objective function (red line) or using the dual-objective function (green 

line). The blue dots are the measurements.  
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Figure 5.S4. Histogram of normalized Monod model residuals. 
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Figure 5.S5. Histogram of normalized residuals in growth kinetics simulated by 

iFBA. 
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Table 5.1. Parameters estimated in the empirical Monod model  

Symbols Notation Unit Value 

μmax,L Maximum specific growth rate using lactate h
-1

 0.57±0.11 

μmax,P Maximum specific growth rate using pyruvate h
-1

 0.14±0.02 

μmax,A Maximum specific growth rate using acetate h
-1

 0.13±0.02 

YX/L 
Apparent biomass yield coefficient from 

lactate 
g DCW/mol lactate 17.0±1.3 

YX/P 
Apparent biomass yield coefficient from 

pyruvate 

g DCW/mol 

pyruvate 
16.7±1.3 

YX/A 
Apparent biomass yield coefficient from 

acetate 
g DCW/mol actate 11.1±4.7 

Ks,l Monod lactate saturation constant mM 19.4±7.9 

Ks,p Monod pyruvate saturation constant mM 19.4±8.1 

Ks,a Monod acetate saturation constant mM 10.1±2.2 

kal Acetate production coefficient from lactate L∙ (h∙g DCW)
-1

 0.71±0.06 

kpl Pyruvate production coefficient from lactate L∙ (h∙g DCW)
-1

 0.45±0.04 

kap Acetate production coefficient from pyruvate L∙ (h∙g DCW)
-1

 0.94±0.08 

ke Endogenous metabolism rate constant h
-1

 0.013±0.016 

tL Lag time in growth h 7.10±0.01 
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Table 5.2. Exchange coefficients for key metabolic pathways of MR-1 

Pathways Abbreviation 
Exchange 

coefficients  

Confidence 

intervals 

Malate ↔ CO2 + Pyruvate ME2 0.862 [0.803 0.921] 

Serine ↔ Glycine + C1 unit GHMT 0.270 [0.062 0.477] 

Glycine ↔ C1 unit + CO2 GLYCL 0.109 [0.061 0.157] 

Succinate ↔ Succinyl-CoA SUCOAS 0.944 [0.906 0.983] 
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Table 5.S1. Lack-of-fit test for the Monod model. 

Model 

Name 

Lack-of-

fit sum 

of 

squares, 

SSLOF 

Degree 

of 

freedom,  

df1 

Pure-

error 

sum of 

squares, 

SSPE 

Degree 

of 

freedom,  

df1 

 

2/

/ 1

dfSSPE

dfSSLOF
  

 

F(df1,df2) 

Monod 

model 
2.064 58 0.813 144 6.303 1.390 

 

 

Notes: 

In order to test whether or not a model could fit the data well, we applied the lack-

of-fit test. It partitioned the total sum of squares of residuals in the model (SSE) 

into two sources of variability: 1) the sum of squares from pure error variability 

(SSPE) and 2) the sum of squares from lack of fit (SSLOF), i.e. 

SSE=SSPE+SSLOF.  

For testing the null hypothesis H0: the nonlinear model was adequate versus 

hypothesis Ha: the nonlinear model was inadequate, the test statistic 

is:
2/

/ 1

dfSSPE

dfSSLOF
F . For a specified α-level of significance, we rejected the null 

hypothesis if F > Fα, where Fα is the α-level critical value (α=0.95 in this study) 

corresponding to an F(df1; df2) distribution. The F-test indicates our nonlinear 

model can be further improved by including new parameters. The improved 

kinetic model is presented in another manuscript under review.  
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Table 5.S2. Parameters estimated in iFBA 

 

Symbols Notation Unit iFBA 

μmax,L Maximum specific growth rate using lactate h
-1

 0.53 

μmax,P Maximum specific growth rate using pyruvate h
-1

 0.14 

μmax,A Maximum specific growth rate using acetate h
-1

 0.14 

YX/L 
Apparent biomass yield coefficient from 

lactate 
g DCW/mol lactate 17.5 

YX/P 
Apparent biomass yield coefficient from 

pyruvate 

g DCW/mol 

pyruvate 
15.5 

YX/A 
Apparent biomass yield coefficient from 

acetate 
g DCW/mol actate 10.9 

Ks,l Monod lactate saturation constant mM 19.4 

Ks,p Monod pyruvate saturation constant mM 19.4 

Ks,a Monod acetate saturation constant mM 10.1 

kal Acetate production coefficient from lactate L∙ (h∙g DCW)
-1

 0.70 

kpl Pyruvate production coefficient from lactate L∙ (h∙g DCW)
-1

 0.42 

kap Acetate production coefficient from pyruvate L∙ (h∙g DCW)
-1

 0.94 

ke Endogenous metabolism rate constant h
-1

 0.013 

tL Lag time in growth h 7.10 

p1 Parameters used in tradeoff objective function dimensionless 5.3×10
-6

 

p2 Parameters used in tradeoff objective function h
-1

 0.33 

p3 Parameters used in tradeoff objective function h 26.7 
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Table 5.S3. Lack-of-fit test for iFBA  

 

Model Name 

Lack-of-fit 

sum of 

squares, 

SSLOF 

Degree 

of 

freedom,  

df1 

Pure-

error 

sum of 

squares, 

SSPE 

Degree 

of 

freedom,  

df1 

 

2/

/ 1

dfSSPE

dfSSLOF
  

 

F(df1,df2) 

iFBA 3.726 56 0.813 144 11.78 1.396 

 

Note: In order to test whether or not a model could fit the data well, we applied 

the lack-of-fit test. The F-test indicates that the iFBA model should be further 

improved to describe the experimental data. 
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6.1 Abstract 

Background: Parallel to the efforts currently underway in mapping microbial 

genomes using high-throughput sequencing methods, systems biologists are 

building metabolic models to characterize and predict cell metabolisms. The key 

step in building a metabolic model is querying multiple databases to collect and 

assemble essential information about genome-annotations and the architecture of 

metabolic network for a specific organism. To speed up metabolic model 

development for a large number of microorganisms, we need a user-friendly platform to 

construct metabolic network and perform constraint-based flux balance analysis 

based on genome databases and experimental results. 

Results: We have developed a web-based platform (MicrobesFlux) for 

generating and reconstructing metabolic models for annotated microorganisms. 

The MicrobesFlux is able to load the metabolic network (including enzymatic 

reactions and metabolites) of over 1,100 species from KEGG database (Kyoto 

Encyclopedia of Genes and Genomes) and then automatically converting it to a 

metabolic model. The platform also provides diverse customized tools, such as 

gene knockouts and introduction of heterologous pathways, for users to redefine 

the model network. The reconstructed metabolic network can be formulated to a 

constraint-based flux model to predict and analyze the carbon fluxes in the 

metabolisms. The simulation results can be output in SBML format (The Systems 

Biology Markup Language). Furthermore, we also validate and demonstrate the 
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platform functions by developing an FBA model (including 229 reactions) for a 

recent annotated bioethanol producer, Thermoanaerobacter sp. strain X514, to 

predict its biomass growth and ethanol productions.  

Conclusion: The MicrobesFlux is an installation-free and open-source 

platform that enables biologists with little programming knowledge to develop 

metabolic models for newly sequenced microorganisms. Our system allows users 

to construct metabolic networks of organisms directly from the KEGG database. 

It also provides users with predictions of microbial metabolism via flux balance 

analysis. This prototype platform can be a springboard to advanced and broad-

scope metabolic modeling of complex biological systems by integrating other 

“omics” data or 
13

C-assisted metabolic flux analysis results. MicrobesFlux is 

available at http://tanglab.engineering.wustl.edu/static/MicrobesFlux.html. 

6.2 Background 

Arising interests have focused on systems analysis of cell metabolisms 

(1,2,3,4,5,6). Metabolic flux analysis is a key systems biology approach that 

determines the final in vivo enzyme activities in a metabolic network and links 

genetics to biological functions. In the past decade, over 100 genome-scale 

metabolic models have been constructed for E.coli (7,8,9), Bacillus subtilis 

(10,11), and Saccharomyces cerevisiae (12,13,14), to expand our understanding 

of their physiologies. While important, the pace of metabolic model 

reconstructions is still much slower than the pace of high throughput genome 

http://tanglab.engineering.wustl.edu/static/MicrobesFlux.html
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sequencing of diverse microorganisms (15) due to three reasons. First, 

reconstructing metabolic models is normally a tedious, slow and labor-intensive 

process, including over 90 steps from assembling genome annotations of target 

organisms to validating the metabolic model by various “omics” studies (16). 

Second, a systemic reconstruction of metabolic model often relies on commercial 

software (e.g. MATLAB) and demands proficient programming skills of the 

researchers. The majority of microbiologists, who know the physiology of 

environmental microorganisms well, may not gain access to commercial software 

or programming skills. Third, to study less-characterized environmental 

organisms, it needs to efficiently convert a vast amount of experimental data into 

model constraints to reduce solution space and improve the model predictability. 

Therefore, programming-free and user-friendly software need to be developed to 

overcome rate-limiting steps in metabolic model reconstructions.  

Currently, only a few software tools are available to assist biologists for 

metabolic modeling. SimPheny is commercial software for genome-scale Flux 

Balance Analysis (www.genomatica.com). Webcoli supplies diverse approaches 

for users to reconstruct a genome-scale E.coli metabolic model (17). OpenFLUX 

is computationally efficient software for 
13

C-assisted metabolic flux (18). OptFlux 

is open-source and modular software for FBA and microbial strain design using 

an evolutionary optimization algorithm (19). BioMet Toolbox is a web-based 

resource for FBA and transcriptome analysis (20). Model SEED (21) has been 

http://www.genomatica.com/
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developed to automatically generate genome-scale metabolic models for different 

microbes based on RAST sequencing. Complementing these tools, we are 

developing MicrobesFlux, a web platform to draft and reconstruct metabolic 

models. This system has several features: 1) automatically generate metabolic 

models of over 1,100 microbes sequenced in KEGG dataase 

(www.genome.jp/kegg/), 2) fine tune the metabolic models according to user-

defined requests, and 3) perform constraint-based flux analysis under both 

metabolic steady states (i.e. flux balance analysis, FBA) and dynamic states (i.e. 

dynamic flux balance analysis, dFBA). The marriage of high-throughput model 

generation and the customized genome reconstruction is of great benefit since 

biologists can easily validate or disprove various hypotheses in microbial 

metabolism by drafting and comparing numerous metabolic models. Besides, this 

prototype platform can potentially link to other software (e.g. OptFlux (19), 

COBRA (22)) to perform broad-scope metabolic modeling of complex biological 

systems.   

6.3 Implementation 

MicrobesFlux is an open-source platform that does not require mandatory 

registration. It has three components: logic level, application level, and 

achievement level. The logic level includes two fundamental databases used in 

MicrobesFlux, where KGML is for organism-specific metabolic networks and 

KEGG LIGAND is for general enzymatic reactions and metabolites. The basic 
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principles for metabolic model reconstruction and constraint-based flux analysis 

are summarized in logic level (Figure 6.1). In the application level, organism-

specific metabolic network is loaded from KEGG database to generate the 

metabolic model, which is pursued for customized reconstruction. The 

reconstructed metabolic model is then formulated as either an FBA or a dFBA 

problem to determine the flux distributions under metabolic steady or dynamic 

state, respectively. The constraint-based flux analysis will be accomplished in the 

achievement level, by using state-of-the-art optimization solvers, such as IPOPT 

(Interior Point OPTimizer) and cloud computations. The calculated flux 

distributions and the reconstructed metabolic network are recorded in SBML 

format (The Systems Biology Markup Language), and the metabolic networks are 

visualized using Scalable Vector Graphics (SVG). Both results are sent to users in 

the output module. In summary, three key features are embedded in 

MicrobesFlux: 1) high-throughput and automatic generation of metabolic model; 

2) customized reconstruction of metabolic models; and 3) constraint-based flux 

analysis in steady and dynamic metabolic states. 

6.3.1 High-throughput and automatic generation of metabolic model 

MicrobesFlux can serve as a platform to build metabolic models for 1,194 

organisms sequenced in KEGG database. To generate a metabolic model for a 

specific microorganism, the gene annotation information are loaded from the 

corresponding KGML files, and cross-referred to KEGG LIGAND database. The 
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generated pathway network serves as a seed model and subject to further 

reconstruction based on user-defined requests. The pipeline for metabolic model 

generation is automatic, time-saving and high-throughput.  

6.3.2 Customized reconstruction of metabolic models 

The model of designated microorganisms, automatically generated from 

KEGG database, should be reconstructed to fill the gaps between genome 

annotation and the functional metabolism. Based on experimental knowledge, 

users can manually adjust mis-annotated pathways in the original metabolic 

network. Furthermore, users can knock out the native pathways or introduce 

heterologous pathways in metabolic models for engineered microbial strains. The 

reaction can also be set as reversible in the MicrobesFlux platform. In addition, 

the uptake of carbon substrates and the extracellular secretion of metabolites can 

be experimentally measured, which are constructed as “inflow” pathways and 

“outflow” pathways in the metabolic model, respectively. Since numerous 

metabolites are used as building blocks for biomass production, an independent 

biomass formation pathway can be introduced by allowing users to input the 

organism-specific biomass composition information. The metabolic pathways can 

be grouped by different metabolic features to provide an intuitive manipulation of 

the metabolic network by users.  

6.3.3 Constraint-based flux analysis in steady and dynamic metabolic states 
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For each reconstructed metabolic network, users can choose to perform 

either FBA or dFBA to determine flux distribution under metabolic steady or 

dynamic states. In general, the objective functions used in constraint-based flux 

analysis can either be the commonly used “maximizing biomass”, or a user-

defined objective function. The users can also define the upper and lower bounds 

of each flux. MicrobesFlux performs the constraint-based flux analysis of the 

reconstructed model using optimization solver (i.e., IPOPT). As a unique feature, 

dynamic simulation of metabolic fluxes can be achieved in MicrobesFlux, 

following the static optimization approach (SOA) (23). In specific, the users can 

assume that the entire dynamic microbial metabolism decomposed into numerous 

pseudo-steady states. At each pseudo-steady state, a conventional FBA problem is 

formulated with the user-defined inflow and outflow fluxes, so a dFBA problem 

will be converted to multiple mini-FBAs that are subject to constraints from the 

measurement of time-dependent inflow (substrate uptake) and outflow fluxes 

(metabolite production). To avoid extensive analytical efforts to measure inflow 

and outflow fluxes at each time interval, the users can use an empirical or kinetic 

model to estimate the time-dependent inflow fluxes and outflow fluxes for mini-

FBAs through entire growth period based on limited measurement data. The 

dynamic flux simulation is of particular industrial interest since many biological 

systems cannot maintain a meaningful metabolic steady state during fermentation 

process. 
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6.4 Results 

We have applied MicrobesFlux to a few studies in drafting metabolic 

models. We first drafted a TOY model (Figure 6.2), which has 10 metabolites and 

16 fluxes, as a demonstration of MicrobesFlux workflow. We then constructed a 

medium-scale stoichiometric model with 196 metabolites and 229 reactions for 

Thermoanaerobacter sp. strain X514, a thermophilic bacterium that is of great 

interests in cellulosic ethanol production (24). The functionality of MicrobesFlux 

has been proved in both case studies. 

6.4.1 Case study 1: a toy model 

To demonstrate the use of MicrobesFlux platform, a simple toy model was 

constructed, only including central metabolic pathways, namely glycolysis, the 

pentose phosphate pathway, the TCA cycle, and the anaplerotic pathway. Glucose 

represented the carbon substrate and acetate represented the extracellular 

metabolite product. The TOY model was loaded from MicrobesFlux (Figure 6.3), 

which included 10 reactions that described the intracellular fluxes and lumped 

biomass production. The toy model was then reconstructed by introducing the 

inflow flux: “Glucose  G6P” and the outflow flux: “AcCoA  Acetate”. The 

drafted TOY model was then pursued for constraint-based flux analysis, by 

setting the objective function as “maximizing biomass” and fixing the inflow and 

outflow fluxes as 11.0 and 6.4 mmol/g/h. The simulated results from 
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MicrobesFlux were confirmed by an independent linear optimization of the same 

TOY model via “linprog” in MATLAB. 

6.4.2 Case study 2: a medium-scale metabolic model for Thermoanaerobacter 

sp. strain X514 

Based on the similar flowchart, we have drafted a medium-scale metabolic 

model of Thermoanaerobacter sp. strain X514. Thermoanaerobacter species are 

thermophilic bacteria that can covert both pentose and hexose simultaneously to 

ethanol with high yield (25,26). It can also be co-cultured with cellulosic 

Clostridium thermocellum species to produce ethanol from cellulose. Strain X514 

has been sequenced recently and a comprehensive study on the central carbon 

metabolism has been accomplished by using 
13

C-assisted pathway analysis (25). 

Using the experimental data of strain X514 reported in (25) and (26), we apply 

MicrobesFlux to construct a metabolic model that can describe the carbohydrate 

metabolism and amino acids biosynthesis in Strain X514. The drafted model is 

consisted of 196 metabolites and 229 reactions (162 intracellular reactions, 19 

inflow/outflow reactions, 39 gap-filling reactions, and 9 biomass-producing 

reactions). The intracellular reactions in the drafted model are derived from 

genome-annotation, only considering the carbon and cofactor balance. The 

inflow/outflow reactions were introduced into the metabolic model if the 

transporters of the specific substrates or extracellular products have been reported 

by published research. Moreover, two algorithms were employed to fill the gaps 
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in the metabolic pathways. First, we have implemented un-annotated novel 

pathways identified from 
13

C-assisted pathway analysis (e.g. the Re-type citrate 

synthase in TCA cycle) into the metabolic model of strain X514 (25). Since the 

draft model is a simplified model by focusing on carbohydrate metabolism and 

amino acids biosynthesis, the gaps may also be generated due to the lack of 

consideration of the metabolites exchange between the pathways that were 

included in the model (e.g. carbohydrate metabolism) and other pathways that 

were not included in the model (e.g. purine metabolism). Accordingly, we employ 

the principle of introducing the metabolite-exchange-reactions for filling the gaps. 

For example, UTP is involved in both carbohydrate metabolism and RNA 

synthesis. Since we did not include the RNA synthesis pathway in the 

MicrobesFlux model, we instead introduced a UTP exchange pathway to fill the 

gap. The gap-filling reactions were evaluated carefully to make sure that each one 

of them was necessary for feasible predictions of biomass production.  

The biomass composition of Thermoanaerobacter sp. strain X514 is not 

yet available. In the drafted model, we used the reported biomass composition of 

a close species, Clostridium acetobutylicum (27). Besides the biomass 

composition, the growth-associated maintenance (GAM) and non-growth 

associated maintenance (NGAM) energies have been found to play an important 

role in simulating the growth rate of organisms (27,28,29). In our model 

simulation, the NGAM was chosen as 7.6 mmol ATP/g DCW, as reported 
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previously (29). To identify the GAM, we plotted the relations between growth 

rate and GAM (Figure 6.4), and found the value of GAM that can match the 

experimental measurement (i.e. growth rate of strain X514 as 0.043 h
-1

 reported in 

(26)) was 220.0 mmol ATP/g DCW, and this fitted value is qualitatively 

consistent to previous reported GAM value (150.0 mmol ATP/g DCW) in a 

thermopilic ethanol producer Clostridium thermocellum (30). Based on this 

drafted model, we also predicted the correlations between growth rate, ethanol 

production, and waste product outflow (Figure 6.5). The prediction shows a trade-

off relation between ethanol production and growth rate. The ethanol production 

can be increased by 25% (i.e. increased from 6.3 mmol/g/h to 7.8 mmol/g/h) 

while halving the growth rate (i.e. decreased from 0.045 h
-1

 to 0.027 h
-1

). By 

inhibiting the acetate production from 2.0 mmol/g/h to 0.6 mmol/g/h, the ethanol 

production under the optimal growth conditions could be improved by 33%. 

Therefore, we have shown the platform is able to make reasonable predictions for 

the biomass growth in response to metabolites synthesis.    

6.5 Discussion and conclusion 

MicrobesFlux is designed for high-throughput drafting of metabolic 

models for environmental organisms based on genome annotations in KEGG. 

Unlike the model organisms that have been systemically studied via different 

“omics” approaches, the environmental organisms have more complex metabolic 

features but fewer measurements from laboratories. Therefore, MicrobesFlux can 
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be used as a platform to construct models for predicting cell metabolism. On the 

other hand, validation of a genome-scale metabolic model can be a challenge due 

to requirement for manually fine tuning metabolic pathways and due to lack of 

experimental data to confirm functional pathways. For example, 

Thermoanaerobacter sp. strain X514 used in the MicrobesFlux case study is 

capable of growing under high temperature and converting sugars to ethanol, 

which can be simulated by a medium-scale metabolic model. Such a convenient 

FBA model has decent predictive power for in silico studies of a non-model 

environmental microorganism for bioethanol production at different growth rates 

(Figure 6.5). However, many other metabolic features (e.g., secondary 

metabolisms) in the strain X514 are not fully understood yet. It requires extensive 

experimental studies, including transcriptomics and proteomics analysis, for a 

precise reconstruction of genome-scale model. Although the scale of drafted 

MicrobesFlux model in this study is still small (<300 reactions) so that users can 

easily fine tune the metabolic model and manually fill annotation gaps in carbon 

metabolic pathways, MicrobesFlux can serve as a springboard to future advanced 

genome-scale metabolic model by adding more reconstruction steps, such as the 

gene-protein-reaction (GPR) correlation, charge balance, and metabolites 

exchange among metabolic compartments (e.g. mitochondria in eukaryotic cells).  

In summary, we have developed MicrobesFlux to draft the metabolic 

models of environmental organisms from KEGG database and serves as a high-
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throughput tool for systems biology. MicrobesFlux extricates microbiologists 

from programming and commercial software that are normally required to build a 

metabolic model. It covers a large number of sequenced organisms in KEGG 

database and provides multiple approaches to assist the model generation and 

reconstruction. Both FBA and dFBA can be achieved in MicrobesFlux to simulate 

the metabolic behaviors of organisms in metabolic steady state and dynamic state.  

The drafted model can be further used by other software for genome-scale model 

reconstruction and in silico predictions. In the future, we will implement broad 

fluxomic approaches (e.g. 
13

C-metabolic flux analysis) in MicrobesFlux to 

improve the accuracy and predictive power of drafted metabolic models. 

6.6 Availability and requirements 

 Project name: MicrobesFlux 

 Project homepage: 

http://tanglab.engineering.wustl.edu/static/MicrobesFlux.html 

 Operating systems: Platform independent. 

 Programming language: Java and Python. 

 License: MicrobesFlux is freely available for non commercial purposes. 

 Any restrictions to use by non-academics: none 
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Figure 6.1. Architecture of MicrobesFlux. 
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Figure 6.2. (A) Pathway network of TOY model used in MicrobesFlux, and (B) 

simulated flux distribution of TOY model used in MicrobesFlux. The same results 

were obtained by using “linprog” in MATLAB. 
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Figure 6.3. Screenshot of reconstructing TOY model by using MicrobesFlux. (A) 

load TOY model from MicrobesFlux; (B) pathway information of TOY model; 

(C) customized reconstruction of TOY model; and (D) constraint-based flux 

balance analysis of TOY model. 
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Figure 6.4. Estimation of the growth-associated maintenance (GAM) in 

Thermoanaerobacter sp. strain X514. From this comparison, the GAM value (red 

dotted line) consistent with experimental data (i.e. growth rate was 0.043 h
-1

) 

could be estimated and was indicated as a 220.0 mmol ATP/ g DCW. 
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Figure 6.5. Predictions of the relationship between growth rate and outflow 

fluxes [Unit: mmol/g/h] in Thermoanaerobacter sp. strain X514. The glucose 

inflow flux is fixed as 3.92 mmol/g/h.  
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Chapter 7 

 Conclusions and Future Investigations  

7.1 Summary  

I have developed and applied multiple fluxomics tools during my Ph.D. 

training. 
13

C-pathway analysis has been systemically used to discover novel 

pathways, investigate the mixotrophic metabolism, and optimize medium for 

slow-growing bacteria. The achievements from 
13

C-pathway analysis are 

summarized in Table 7.1. Meanwhile, 
13

C-MFA has extended the applications 

from quantifying metabolic fluxes in industrial workhorses to those in 

environmental microorganisms. The accurate metabolic readouts of the flux 

distribution have been determined for Chlorobaculum tepidum, as the first study 

in quantifying the mixotrophic metabolism of green sulfur bacteria. The isotope 

discriminations have been confirmed in heterotrophic metabolism of E.coli, which 

could affect the solution space in flux calculations by 
13

C-MFA. Moreover, to 

investigate the dynamic metabolism of environmental microorganisms, a 

framework that integrates bioprocess models, dFBA, and isotopomer simulations 

has been applied in Shewanella oneidensis MR-1. The dynamic flux distributions 

have been profiled, which revealed a few underlying metabolic features during the 

dynamic metabolism. Such dynamic flux analysis approach can bypass the 

measurement of low-abundant and fast-turnover metabolites, and can address the 
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suboptimal microbial metabolisms that are often adopted by environmental 

microorganisms. As one of the steps in bridging the gaps between fast-paced 

genome sequencing and slow-paced metabolic model constructions, a web-based 

platform, MicrobesFlux, is being built based on KEGG database for high-

throughput metabolic models drafting. A large database including 1,192 

sequenced genomes is available in MicrobesFlux. Diverse customized tools are 

provided for model reconstruction. Both FBA and dFBA can be achieved to 

simulate the metabolic fluxes of environmental microorganisms in metabolic 

steady state and dynamic state.  

Beside fluxomics investigation on the metabolisms of environmental 

microorganisms, several projects have also been accomplished by studying 

bioprocess engineering, metabolic engineering, and nano-toxicity. In general, a 

parsimonious kinetic model has been constructed to capture the growth kinetics of 

Shewanella oneidensis MR-1 (Appendix 9). A bioprocess model was built to 

describe the isobutanol fermentation of recombinant E.coli strains (Appendix 10). 

The broad scope research also involved constructing a statistical model that 

analyzed influential factors in production yield of metabolic engineering 

(Appendix 11) (1), and characterizing the bacterial responses to nanoparticles 

(Appendix 12) (2). 

7.2. Current challenges in fluxomics analysis   
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One of the main applications of fluxomics analysis is to identify the 

bottlenecks in biochemical production by engineered microorganisms and to 

assist the rational design of mutants in metabolic engineering. Unfortunately, 

several barriers in current fluxomics analysis stalled the inception of fluxomics-

based biotechnology.  

On one hand, the fluxomics can measure the carbon flows in central 

metabolic pathways to the final product and predict the optimal operation of 

metabolic network. However, the flux measurements and predictions have not yet 

been coordinated systemically and left many key questions unanswered in 

metabolic engineering. For example, metabolic robustness, the ability of 

microorganisms to maintain the similar metabolic performances under genetic or 

environmental perturbations, is a long-recognized property of microbial systems. 

Comparative studies on wide-type and genetically manipulated mutants via 
13

C-

MFA often fail to tell the differences in flux distributions of central metabolism, 

and yield no information or predictions for the mechanisms of microbial 

robustness. Constraint-based flux analysis can in silico test different hypothesis 

about microbial robustness. However, most of the hypotheses cannot be proved 

due to lack of accurate flux measurements in FBA. 

On the other hand, metabolic engineering of industrial chassis is based on 

the premise that the yield of a desired product can be increased by identifying and 

over-expressing the enzymes that catalyze the rate-limiting steps in a given 
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metabolic pathway. However, the rate-limiting enzymes may not always exist in 

reality due to the complicated cell-wide regulations of microbial metabolisms that 

involve both the well-known gene-protein-flux correlations, and the less well-

known post-transcriptional and post-translational regulations. In this case, the 

increases in productivity are often achieved by coordinated expression of multiple 

genes in the metabolic network, in which fluxomics analysis cannot provide 

reasonable guidelines for rational design in metabolic engineering, until it is 

cross-talked with other “omics” data in systems biology.  

7.3 Future development of advanced fluxomics tools 

Fluxomics analysis is playing an increasingly important role in systems 

biology and bioengineering. One of current limits in fluxomics studies is the 

tradeoff between model predictive capacity and model accuracy. FBA is well-

known for the strong predictive power by adopting genome-scale metabolic 

models. However, FBA lacks the accuracy in describing the cellular metabolism. 

Conversely, 
13

C-MFA provides accurate metabolic readouts in a simplified 

metabolic network. Unfortunately, it cannot predict metabolic behaviors well. To 

further refine fluxomics analysis, my future research will focus on developing an 

integrated modeling approach that not only describes the cellular metabolism 

accurately in genome-scale, but also predicts the flux distributions based on 

diverse assumptions. The barriers between model prediction and model accuracy 
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will be removed, which can be of specific help in rational design of metabolically 

engineered mutants. 

Another topic in my future investigation is to cross-talk fluxomics with 

transcriptomics and proteomics to unravel the cell-wide post-transcriptional and 

post-translational regulations. Little is known about the post-transcriptional and 

post-translational network in cellular metabolism except their complex 

characteristics. The fluxomics study can provide reliable and high-throughput of 

cellular metabolism. By quantitatively correlating the input (i.e., transcriptomics 

and proteomics) and output (i.e. fluxomics) of metabolic system, the topology and 

activities of metabolic regulatory network that controls the cellular metabolism 

can be empirically deciphered. The decoding of metabolic regulatory mechanisms 

will be of great value in understanding the physiology, especially the 

pathophysiology of diverse biological systems.  

Finally, open-source software for integrative and broad scope fluxomics 

analysis is planned to be developed in future. It is expected that genome-scale 

metabolic models can be automatically generated from multiple genome 

sequencing databases. The drafted metabolic models can be efficiently and 

successively validated based on heterogeneous databases on systems biology 

experiments (e.g. transcriptional analysis, lethality tests). State-of-the-art flux 

analysis approaches can be achieved in the genome-scale metabolic models, 
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which provide precise readouts on metabolic flux distributions and predictive 

guidelines for in silico genetic manipulations. 
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Table 7.1. Novel metabolic features identified by 
13

C-pathway analysis 

Microbes Interests 
Novel metabolic 

features 
Collaborations 

Shewanella 

oneidensis MR-1 

Bioremediation 

and microbial 

fuel cells. 

Invariability of 

central metabolism 

under environmental 

or genetic 

perturbations 

Dr. Adam Arkin 

Mycobacteria 

smegmatis  

Relative of 

pathogenic 

Mycobacterium 

tuberculosis 

Induced glyoxylate 

pathway and glycine 

dehydrogenase 

under hypoxic stress  

Dr. Carolyn 

Bertozzi and Dr. 

Jay D. Keasling 

Thermoanaerobacter 

X514 

Ethanol 

producing at 

high 

temperature  

(Re)-type citrate 

synthase and 

citramalate pathway 

Dr. Jizhong 

Zhou 

Roseobacter 

denitrificans 

OCh114 

Aerobic 

anoxygenic 

phototrophs, 

CO2 fixation 

Inactive glycolysis 

and active Entner–

Doudoroff pathway  

Dr. Robert 

Blankenship 

Cyanothece 51142 

Biofuel 

producing, 

nitrogen 

fixation  

Citramalate pathway 

for isoleucine 

synthesis; inhibition 

of CO2 fixation by 

glycerol  

Dr. Himadri 

Pakrasi 

Heliobacterium 

modesticaldum  

Gram-positive, 

thermophilic, 

photosynthetic 

bacteria 

(Re)-type citrate 

synthase in TCA 

cycle  

Dr. Robert 

Blankenship 

Dehalococcoides 

ethenogenes 195 

TCE 

degradation 

Exogenous amino 

acids are selectively 

utilized   

Dr. Lisa 

Alvarez-Cohen 
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Appendix 1       

Metabolic Pathway Confirmation and Discovery Through  

13
C-labeling of Proteinogenic Amino Acids 
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Appendix 2       

Alternative Isoleucine Synthesis Pathway in  

Cyanobacterial Species 
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Appendix 3       

Carbon Flow of Heliobacteria Is Related More to Clostridia than 

to the Green Sulfur Bacteria 
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Appendix 4       

Carbohydrate Metabolism and Carbon Fixation in  

Roseobacter denitrificans OCh114 
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Appendix 5       

Selective Utilization of Exogenous Amino Acids by 

Dehalococcoides ethenogenes Strain 195 and Its Effects on Growth 

and Dechlorination Activity 
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Appendix 6       

Central Metabolism in Mycobacterium smegmatis during the 

Transition from O2-rich to O2-poor Conditions as Studied by 

Isotopomer-assisted Metabolite Analysis 
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Appendix 7       

Correlation of Genomic and Physiological Traits of 

Thermoanaerobacter Species with Biofuel Yields 
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Appendix 8       

Invariability of Central Metabolic Flux Distribution in 

Shewanella oneidensis MR-1 under Environmental or Genetic 

Perturbations 
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Construction of a Parsimonious Kinetic Model to Capture 

Microbial Dynamics via Parameter Estimation  
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Kirk D. Dolan, Tel: 517-355-8474, Fax: 517-353-8963; E-mail: dolank@msu.edu  

Abstract 

Understanding microbial kinetic behavior is important for bioprocessing 

engineering, such as chemical synthesis and bioremediation. However, 

development of proper models to capture complicated microbial kinetics is a 

challenging task. In this study, we demonstrate an example for rationally 

modeling the growth of Shewanella oneidensis MR-1 in a batch culture. Based on 

a series of analyses, including residual analysis, scaled sensitivity coefficient 

analysis, parameter correlation analysis, and the F-test, we estimated model 

parameters to construct a parsimonious Monod-based model that used the fewest 

parameters for best simulation of Shewanella growth using different carbon 

substrates. Sequential analysis was also applied to identify the time window for 

estimating each parameter in the kinetic model. This study shows that statistics-

based parameter estimation is an efficient method to successively reconstruct and 

fine tune kinetic models for complex biological systems.  

 

Key words: Monod, Shewanella, parsimonious model, sensitivity, F-test, 

sequential analysis 
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Introduction 

The relation between microbial growth rates and substrate concentrations 

(often referred to as microbial growth kinetics) has been studied and substantiated 

for over a century [1]. Numerous models, including the well-known Monod 

equation [2], have been established to describe the growth kinetics. In spite of the 

wide applications of the Monod model, it does not always lead to a good 

description of a given bioprocess. One criticism of the Monod model is that the 

two parameters in the model, i.e., the maximum specific growth rate (μmax) and 

substrate saturation constant (Ks), can be correlated in estimation, which results in 

reported values that differ by several orders of magnitude [1]. In addition, the 

complicated culture conditions (e.g., growth with mixed substrates rather than a 

single substrate) make the original Monod model insufficient to reflect every 

aspect of growth kinetics. To overcome this problem, the model has to be refined 

by introducing additional parameters to account for the complexity of growth 

kinetics. In doing so, however, there is a risk of over-parameterization [3].  

In this study, we applied parameter estimation techniques [4,5] in 

reconstructing the Monod model to decipher growth kinetics of Shewanella 

oneidensis MR-1.  MR-1 is an environmentally important bacterium that plays 

important roles in bioremediation, microbial fuel cells, and ecological carbon 

cycling [6,7,8,9]. As revealed by our previous kinetic study, S. oneidensis MR-1 

utilizes lactate as the favorable carbon source and produces waste metabolites 



. 

410 

 

(acetate and pyruvate) which are consumed during the late growth stage [6]. 

However, the previous model has not rigorously considered the optimal selection 

of model parameters to improve the quality of data fitting. To build a 

parsimonious model for capturing MR-1 growth dynamics (i.e., a model with the 

best simulation and fewest parameters), we applied a series of tools that were 

originally used in nonlinear parameter estimation to reconstruct the Monod model 

successively until it satisfied all the statistical assumptions used in parameter 

estimation. During the model reconstruction, several underlying metabolic 

features of MR-1 were uncovered. Finally, the impact of each experimental 

measurement on estimating the updated kinetic parameters was also evaluated by 

sequential parameter estimation [10,11,12,13] of the parsimonious model.  

 

Methods 

Cell culture and analytical methods 

S. oneidensis MR-1 was first grown in LB medium in shake flasks 

overnight. A 0.1% inoculum volume was then cultured into the modified MR-1 

defined medium [14] in shaking flasks at 150 rpm and 30°C. The initial carbon 

source was 30 mM lactate. The growth curve was monitored by dried biomass 

weight. The concentrations of lactate and acetate in the medium were measured 

using enzyme kits (r-Biopharm, Darmstadt, Germany). The concentration of 
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pyruvate in the medium was measured with the enzyme assay developed by 

Marbach and Weli, 1967. For each sampling point, we made triplicate 

measurements. 

Seed model for growth kinetics 

To find a parsimonious model describing MR-1 growth with the fewest 

parameters, a seed model was built first and then successively reconstructed 

(Table 1). In the seed model, a multiple-substrate Monod model was developed to 

simulate the cell growth, lactate consumption, and acetate and pyruvate secretion 

and reuse.  

 P
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dt
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The growth rates of MR-1 on different carbon substrates were assumed to be 

additive: 
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max,A

A

s,a

μ
μ

K

ACT

ACT
 

 

max,P

P

s,p

μ
μ

K

PYR

PYR
 

In the above model, X is biomass (g dry cell/L); LACT, ACT, and PYR are 

lactate, acetate, and pyruvate concentrations (mmol/L), respectively; μ is the 

overall specific growth rate (h
-1

); ke is the endogenous metabolism rate constant 

(h
-1

); YX/L, YX/A, and YX/P are the biomass yield coefficients (g dry cell /mmol 

substrate) of lactate, acetate, and pyruvate, respectively; rP,L and rA,L are the 

production rate (mmol/L/h) of pyruvate and acetate from lactate, respectively; rA,P 

is the production rate (mmol/L/h) of acetate from pyruvate. The biomass yield 

coefficients were the reported values: YX/L = 0.0212 (g dry cell /mmol lactate), YX/A 

= 0.0132 (g dry cell /mmol acetate) and YX/P = 0.0195 (g dry cell /mmol pyruvate) 

[15]. μL, μA, and μP are the specific growth rates (h
-1

) on lactate, acetate, and 

pyruvate, respectively; μmax,L, μmax,A, and μmax,P are the maximal growth rates (h
-1

) 

for fully aerobic growth on lactate, acetate, and pyruvate, respectively; and Ks,l, 

Ks,a, and Ks,p are Monod constants (mmol/L) for lactate, acetate, and pyruvate, 

respectively.  

The acetate and pyruvate secretions were assumed to follow first order 

kinetic forms in the seed model:  
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A,L

P,L

A,P

r

r

r

al

pl

ap

k LACT X

k LACT X

k PYR X

 

where kal and kpl are rate constants of acetate and pyruvate production from 

lactate, respectively (L∙ (h∙g DCW)
-1

). kap is rate constant of acetate production 

from pyruvate (L∙ (h∙g DCW)
-1

). The seed model was then reconstructed 

following the flowchart in Figure 1. In general, parameter estimation was 

accomplished for each reconstructed model, and then it guided the addition or 

removal of parameters. Ten different models (Table 1) were built and compared 

until the parsimonious model was capable of satisfying all the statistical 

assumptions. 

Nonlinear parameter estimation 

To estimate the parameters in the seed model and the reconstructed 

models, an ordinary least squares (OLS) method [4] was applied to solve the 

inverse problems. In general, OLS aims to minimize the residual sum of the 

squares (R) between model simulations and experimental measurements:  

R = [Y – η (t ; β)]
T 

[Y – η (t ; β) ]                                                      (12) 

where t is the time of the experimental measurements, η represents four dependent 

variables (i.e., concentration of biomass, lactate, acetate and pyruvate) simulated 

by the kinetic model; β represent the vector of the parameters to be estimated; and 

(9) 

(10) 

(11) 
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Y is the vector of the experimentally measured value of the dependent variables. 

Our experiment had a total of n measurements for each of the four dependent 

variables, so η and Y were vectors with a length of 4×n. The scales of the four 

dependent variables had order of magnitude differences (e.g., the scale of the 

biomass measurement was < 1 g/L, while the lactate measurement was > 10 

mmol/L), and the direct application of OLS would overemphasize the fitting of 

dependent variables with large scales. To overcome the estimation bias, each 

simulated dependent variable η j  (n×1 vector) and the corresponding experimental 

measurements Yj (n×1 vector) were normalized by dividing by the maximum 

concentrations observed in the n experimental measurements (i.e., Y j
’ 
= Y j / max( 

Y j ), η j
’ 
= η j / max (Y j ), j = 1…4). The weighted OLS method was  

R = [Y
’
 – η

’ 
( t ; β ) ]

T 
[Y

’
 – η

’ 
( t ; β )]                                          (13) 

To check the simulation quality, we applied a series of analyses, including 

residual analysis, scaled sensitivity coefficient analysis, parameter correlation 

analysis, and the F-test. The mean of the residuals in the model simulation (i.e., ε 

= Y′ – η΄ (t ; β) in each model) should be close to zero (i.e., E (ε) should be close 

to zero, where E is the expectation function), should be normally distributed (i.e., 

the histogram of ε should follow Gaussian distribution), and should be 

uncorrelated (i.e. E { [ε i  – E (ε i) ] [ε j –E (ε j)]} = 0). A simple check for 

uncorrelated residuals was to count the number of runs (i.e., number of changes in 

signs of the residuals) [4]. In this study, n measurements (triplicates) were taken 
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at m time points (i.e., n = 3∙m). The means of the triplicates at each time point 

were used to check the residual correlations. For m independent, zero-mean, 

random model fitting residuals, the minimum value for non-correlated residuals 

should be [4]  

r = (m+1) /2                                                                                              (14) 

If the number of runs in the model simulation was smaller than r, the model fitting 

residuals were correlated with each other, and vice versa.  

The impact of parameters on the model simulation was identified by 

formulating and analyzing a scaled sensitivity (SS) matrix. The scaled sensitivity 

matrix is the normalization for the commonly-used Jacobian matrix, which can be 

applied to compare the impact of the parameters on model simulation:  

' '

1 1

1 p

1 p

' '

n n

1 p

1 p

...

SS

...

                                                                      
(15)

 

where ηi 
’
 is the simulation in ith time point, βj is the jth parameter, n is the 

number of time points in experimental measurements, and p is the number of 

parameters. The units of the scaled sensitivity coefficients (SSCs) are 

dimensionless since all the dependant variables are normalized in η
’
. Each column 

of the SS matrix reflects the dynamic impact of different parameters on the model 
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simulation. The SSCs of the two most influential parameters are plotted in Figure 

S1, for both the seed model and the parsimonious model. From a comparison of 

the scale of each column (i.e., the maximum of the absolute values in the column), 

the impact generated by each parameter could be compared and used to guide the 

model reconstruction. For each dependent variable, the SSCs versus time could be 

plotted for each parameter.  For better parameter estimation that would result in 

the smallest standard error for that parameter, we desired SSCs to be large and 

uncorrelated. 

The correlations among parameters were characterized by a correlation 

matrix Corr, which yielded the correlation coefficient of the two parameters βi 

and βj, by using the covariance matrix C: 

C(i,i)
Corr(i, j)   [ 1.0 1.0]

C(i, j) C(i, j)                                                        
(16)

 

A higher absolute value of Corr (i, j) in the correlation matrix indicated a strong 

correlation between the two parameters and hence more difficult estimation for 

both parameters. 
 

The “ode23” command in MATLAB (2009a) was used to solve 

differential equations, and the “fmincon” command was used to estimate the 

parameters. Since many local solutions existed around the real parameter settings, 

the likely global solution of parameters was derived by randomly choosing the 
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initial guesses within a known range in the nonlinear optimization and running for 

100 times. Next, a bootstrap method was used to find the confidence intervals of 

each parameter by following the approach described before [4,16]. In general, the 

residuals in the parsimonious model were randomly re-sampled to obtain a new 

bootstrap set Y
΄
, which constructed a new parameter estimation problem that was 

solved by the same procedure. The 95% confidence intervals of the parameters 

were derived by running the bootstrap method 999 times [4], which added to the 

original estimate gave 1,000 values for each parameter.  For each parameter, the 

1,000 values were sorted from lowest to highest, and the confidence interval was 

found by choosing the 25
th

 and 975
th

 value. The standard deviation of each 

parameter was calculated from the 1,000 values.  

The F-test for the reconstructed models 

Introducing more parameters in the reconstructed model usually led to a 

better (or at least equally good) simulation of the microbial growth kinetics. 

However, it was unclear whether the improvement in simulation was statistically 

significant. In this study, the F-test was applied to address this question. For the 

original model ηi and the reconstructed model ηj, the critical F value was 

calculated as 



. 

418 

 

i j

j i

j

j

R - R

p - p
F

R

n - p

=
                                                                                              

(17)
 

where Ri and Ri are the residual sum of the squares of models ηi  and ηj , 

respectively; n is the number of  experimental measurements; and pi and pj  are the 

number of parameters in models ηi  and ηj , respectively. If  the F value calculated 

from the reconstructed model was larger than the critical F value for some desired 

false-rejection probability (e.g., 0.05 in this study), the improvement of the 

reconstructed model was significant. Otherwise, the new model could not provide 

a significantly better fit than the original model. The F-test can check not only 

whether introducing new parameters leads to a significant improvement in model 

simulation, but also can be used in a reversible way to test whether some 

parameters can be removed from the original model. If the reconstructed model 

with fewer parameters has a smaller F value than the critical F value, then by 

removing redundant parameters, the simulation in the reconstructed model is not 

degraded (i.e., the original model is over-parameterized).
 

Sequential analysis of the parsimonious model 

To estimate the effect of experimental measurements on model 

parameters, we applied a sequential analysis [10,11,12,13] by successively adding 

experimental data. Each experimental data point was treated as one step in the 



. 

419 

 

parameter estimation. There were four dependent variables and 18 time-course 

samples (triplicates), so the total steps were 4×18×3 = 216. At each step, the 

parameters in the parsimonious model were estimated by the sequential procedure 

which was developed based on a matrix inversion lemma [4]. A series of 

equations was used iteratively to find the parameter at each step: 

'

' '

1 1
1 p

1 p

' '

n n
1 p

1 p

T

2

for j=1:m 

Y (t, )

...

...

for i=1:n-1 

(i 1) (i) (i 1)

(i 1) (i 1) (i 1) (i 1)

(i 1) (i 1) \ (i 1)

(i 1) (i) (i 1) (i 1) (i)

(i 1)

e b

J

A P J

J A

K A

P P K X P

B (i) (i 1){ (i 1) (i 1)[ (i) ]}

(n);

if ( )<tol  break;  else = ;

B K e X B b

b_new B

b_new b b b_new

                        
(18) 

where e is the vector for normalized residuals; b is the vector for parameters 

estimated by sequential analysis; J is the scaled sensitivity matrix, P was the 

parameter covariance matrix; Ф is the vector for variance of measurement; A, ∆, 

K, B, and b_new are matrices used in the sequential analysis; n is the number of 
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steps in sequential analysis (i.e., 216 in this study), m is the number of runs of the 

sequential analysis; tol is the convergence tolerance in the sequential analysis. 

In general, the parameter vector b and the parameter covariance matrix P 

were initialized. The residual vector e and the scaled sensitivity matrix J were 

calculated based on b, and they initiated one round of sequential analysis, as 

shown in the inner for-loop. The sequential analysis then updated b, which was 

used as the new initial parameter vector in the next round of sequential analysis. 

This procedure was repeated until the difference between b and B converged 

below the tolerance, 0.3% in this study. 

 

Results and discussion  

Simulation of growth kinetics by the seed model 

As a starting point to investigate the growth kinetics of S. oneidensis MR-

1, a seed model (Model 0, eq.1-11) assumed that the growth rate on different 

carbon substrates was additive and that first-order kinetics in the carbon substrate 

switch from lactate to acetate and pyruvate. The seed model showed gaps between 

the model simulation and experimental measurements. For example, the 

concentrations of lactate were always overestimated, while the biomass 

productions were underestimated by the model prediction at the early growth 

stage (Figure 2A). The differences between the simulation and experimental 
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measurements made the residuals of the seed model highly correlated (Figure 2B) 

and of large variance as indicated in the width of histogram (Figure 2C).  

In the seed model, the largest SSCs for the seed model are those related to 

the growth rates of lactate (μmax,L) and of acetate (μmax,A). These two SSCs v.s. 

time are plotted for each dependent variable (i.e., biomass, lactate, acetate and 

pyruvate) in Figure S1A, C, E & G, respectively. For best estimation results, we 

desire SSCs to be large and uncorrelated. The maximum absolute value of each 

SSC is shown by its corresponding length in the bar charts in Figure S2 A-F, 

where each chart is for a different model. For example, the maximum absolute 

value of SSC for μmax,L in acetate simulation was 5.57 (Figure S1E). The 

corresponding bar runs from 5.78 to 11.35 (Figure S2A, green bar). In this way, 

Figure S2 A-F could readily show which parameter is the most or least influential 

for each model. Figure S2 usefully summarizes the large number of SSCs and 

avoid clutter in Figure S1. 

In addition, the scaled sensitivity analysis (Figure S2A) of the seed model 

indicated that the impacts of μmax,P and Ksp (the two parameters related to MR-1 

growth with pyruvate) on simulation of growth kinetics were 7~8 magnitudes 

lower than the other parameters. The correlation analysis among parameters (Text 

S1) showed that the two parameters μmax,L and Ksl (the two parameters related to 

Shewanella growth with lactate) were correlated with each other (correlation 
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coefficient was 0.885). Based on the fitting analysis of the seed model, a series of 

model reconstructions were made following the procedure in Figure 1. 

Monod model reconstructions 

The imperfection of the growth kinetics simulation in the seed model 

initiated the successive model reconstructions to find the parsimonious model 

(Figure 1). In general, based on the statistical analysis of the seed model, the 

model was reconstructed by either adding or removing parameters in the growth 

kinetics. The reconstructed model with the hypothesized kinetics was analyzed by 

a series of statistical methods, including scaled sensitivity analysis (Figure S2), 

residual analysis (Figure S3), parameter correlation analysis (Text S1), and 

residual correlation analysis (Text S2). The reconstructed model was accepted as 

the new seed model if it passed the F-test. The procedure was repeated until a 

parsimonious model was found to satisfy all the statistical assumptions.  

In this study, ten reconstructed models were built and improved (labeled 

as Model 0-Model 3.1 in Table 2). The entire reconstruction procedure was 

composed of two steps. The first step in model reconstruction (Model 0-Model 

1.3) was to remove the parameters in Model 0 that were not necessary in 

describing the growth rates with multiple carbon substrates. Since the scaled 

sensitivity coefficients of the parameters μmax,P and Ks,p related to Shewanella 

growth with pyruvate were 7~8 magnitudes lower than for the other parameters 

(Figure S2A), the pyruvate term had a trivial contribution to MR-1growth. 
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Therefore, we built Model 1.1 (Table 1) by removing μmax,P and Ks,p from the seed 

model. By using the F-test in reverse, it was found that the reconstructed model 

did not lead to a significantly worse simulation (i.e. F < F_critical in Table 2), and 

thus Model 1.1 was accepted for further reconstruction. To build Model 1.2, the 

Monod constant Ksa was then removed because it had the lowest maximum value 

of scaled sensitivity (Figure S2B). This assumption was again proved to be 

reasonable by the F-test. Next, it was found that μmax,L and Ksl could be mildly 

correlated (the correlation coefficient is 0.776) in Model 1.2, which indicated that 

the value of the Monod constant Ksl was much more influential than lactate 

concentrations in the experimental measurements, and hence first-order kinetics 

would be sufficient to describe the growth kinetics with lactate. Model 1.3 was 

accordingly built by assuming that the biomass production from lactate followed 

first order kinetics. Although such an assumption affected the kinetic model 

simulation (Figure S3), the smaller F (F = 2.308) than the critical F (F = 4.043) 

value in Table 2 suggested that the reconstructed model avoided over-

parameterization.  

Reconstruction from Model 0 to Model 1.3 aimed at a more concise 

description of the growth kinetics. However, owing to the improper assumption of 

first-order kinetics in the substrate switch, the simulated growth kinetics needed to 

be improved. Therefore, the second step in model reconstruction (Model 2.1-

Model 2.3.3) was to increase the complexity of products secretion kinetics in the 
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reconstructed model. From Model 2.1 to 2.3.3 (Table 1), five different kinetics 

were constructed to describe the acetate and pyruvate production. We used the 

rational function to empirically simulate the product secretion kinetics. The 

denominator function was set as a first-order polynomial, while the numerator 

function was gradually made more complicated from Model 2.1 to Model 2.3.3 

(Table 1) by increasing the degrees of the polynomial function. The F-test was 

applied to each reconstructed model to test whether the rational function was 

sufficient to describe the growth kinetics. As identified in the F-test (Table 2), 

first-order kinetics was sufficient for acetate production from lactate or pyruvate. 

However, the kinetics of pyruvate production from lactate was more complicated 

than first-order or Monod kinetics. Therefore, we described pyruvate production 

from lactate by adding a second order polynomial term in the numerator of the 

Monod equation (i.e., Model 2.2, Table 1). The reconstructed model, Model 2.2, 

dramatically improved the fitting of biomass, acetate, and pyruvate concentrations 

by decreasing both the scale and variances of residuals (Figure S3 D1 and D2, vs. 

E1 and E2). However, correlated residuals were still found in the model 

simulation. So we added a hypothetical kinetic term to describe additional lactate 

loss during the cultivation or measurement processes (Model 3.1). Based on the 

F-test, the introduction of the hypothetical lactate loss coefficient did not 

significantly reduce the residual sum of squares for the entire model. However, it 

did improve the overall fitting by eliminating the correlated residuals (Text S2) in 

the biomass, lactate, and acetate simulations. Accordingly, the lactate loss term 
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was retained in the parsimonious model to account for the consumption of lactate 

not considered by the original Monod kinetics (Model 3.1, Table 3).  

Compared to Model 0, the residuals in the parsimonious model were 

smaller (a root mean square error of 0.15, compared to 0.26 in Model 0, Figure 

2D). The residuals were also non-correlated in biomass, lactate, and acetate 

simulations (Figure 2E), and normally distributed with a smaller variance (0.004, 

compared to 0.012 in Model 0, Figure 2F). All parameters were confirmed to be 

uncorrelated and to influence the growth kinetics simulation. Therefore, the 

statistical assumptions were satisfied in the parsimonious model. The largest 

SSCs for the parsimonious model were those related to the growth rate of lactate 

(β2) and of acetate (β1), as shown in Figure S1 B, D, F, H and Figure 3. The 

parameter values in the parsimonious model and 95% confidence intervals 

derived from the bootstrap method are listed in Table 4. 

Sequential analysis of the parsimonious model 

In designing experiments to reveal microbial growth kinetics, it is 

necessary to know the best time window for estimating each parameter. By 

gradually including more experimental measurements in parameter estimation, we 

applied a sequential analysis to investigate the impact of experimental 

measurements on parameter estimation in the parsimonious model. The 

sequentially estimated parameters initially fluctuated as expected with the 

addition of more experimental measurements (Figure 4), but eventually converged 
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to results similar to those from nonlinear parameter estimation (Text S3). 

However, the measurement steps in sequential analysis at which the parameters 

no longer varied were not the same. For example, parameter ke could be 

accurately estimated within 100 measurement steps (i.e., ~18 h), while kap could 

not be reasonably estimated until the 150
th

 measurement step (i.e., ~25 h). Some 

parameters (i.e., β11) could not smoothly converge, indicating that current 

experimental measurements may not be effective in estimating such parameters, 

or that a longer experiment may be necessary for estimating the parameter. All 

other parameters converged to a constant well before the experiment ended, 

strengthening the conclusion that the model is appropriately reconstructed to 

simulate the growth kinetics of MR-1.    

Concluding remarks 

The Monod model was successively reconstructed in this study until a 

parsimonious model emerged that described the growth kinetics of Shewanella 

oneidensis MR-1. From the model reconstructions, we found that pyruvate made a 

trivial contribution to biomass production; rather, it served as a transient 

metabolite in producing acetate. The growth rate with lactate and acetate could be 

sufficiently described by first-order and zero-order kinetics, respectively. The 

kinetics of carbon substrate utilization, especially for pyruvate production by 

lactate, was more complicated than first-order reactions, and it suggest that 

unidentified lactate loss may be involved in the growth of MR-1. Finally, by using 
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sequential analysis in the parsimonious model, the time windows necessary for 

parameter estimation were provided, which can be further used for guiding the 

experimental designs in microbial growth kinetics studies. The general modeling 

approach in this research can also be potentially used to study other complex 

biological systems. 
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Figure Legends 

Figure 1. Flowchart of Monod model reconstruction. 

Figure 2. Growth kinetics of Shewanella oneidensis MR-1. Left (A, B, and C), 

simulation by seed model; right (D, E, and F), simulation by the reconstructed 

parsimonious model. In the fitting plots (A, D), the experimental measurements 

are plotted with markers (○: lactate concentration, mmol/L; ◊: measured acetate 

concentration, mmol/L; ×: pyruvate concentration, mmol/L; □: biomass, g/L) and 

the model predictions were plotted in solid lines. In the residual plots (B, E), the 

normalized residuals were plotted with different markers (○: normalized lactate 

residuals; ◊: normalized acetate residuals; ×: normalized pyruvate residuals; □: 

normalized biomass residuals). The residual histograms (C, F) are plotted for all 

the normalized residuals. 

Figure 3. The maxima of scaled sensitivity for parameters in the parsimonious 

model. Black bars: the maximum scaled sensitivity for biomass simulation; red 

bars: maximum scaled sensitivity for lactate simulation; green bars: the maximum 

scaled sensitivity for acetate simulation yellow bars: the maximum scaled 

sensitivity for pyruvate simulation. 

Figure 4. Sequential analysis for the reconstructed Monod model. 
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Table 1. Models used in the F-test 

Model Assumptions 

0 Seed model as developed in eq. (1) - (11) 

1.1 
Extracellular pyruvate was neglected for biomass production: μ = μL+ μA 

in eq. (5) 

1.2 
Biomass production from acetate was assumed to follow zero order 

kinetics: μA = β1 in eq. (7) 

1.3 
Biomass production from lactate was assumed to follow first order 

kinetics: μL = β2∙LACT in eq. (6) 

2.1 

Pyruvate production from lactate was assumed to follow Monod kinetics:
 

3
P,L

4

LACT
r

LACT
in eq. (10) 

2.2 

Pyruvate production from lactate was assumed to follow the kinetics: 
2

5 3

P,L

4

LACT LACT
r

LACT
in eq. (10) 

2.3.1 

Pyruvate production from lactate was assumed to follow the kinetics:
 

3 2

6 5 3
P,L

4

LACT LACT LACT
r

LACT
 in eq. (10) 

2.3.2 

Acetate production from lactate was assumed to follow Monod kinetics: 

7
A,L

8

LACT
r

LACT
in eq. (9) 

2.3.3 

Acetate production from pyruvate was assumed to follow Monod 

kinetics:
 

9
A,P

10

PYR
r

PYR
in eq. (11) 

3.1 

Lactate was assumed to have non-growth related degradation:
 

L

P,L A,L 11

X/L

XdLACT
( r r LACT)  

dt Y
in eq. (1) 
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Table 2. F-test for different models 

Model 

No. 

No. of 

Parameters

, 

p 

Degree of 

freedom, 

n-p 

Sum 

of  

squar

es, R  

Mean square, 

s2=R/(n-p) 

Mode

ls 

comp

ared 

∆R 

 

F_ critical 

Bes

t 

Mo

del 

No. 

0 10 44 2.9174 0.0663  
   

 

1.1 8 46 2.9174 0.0634 
Model 
0 v.s. 

1.1 

0.0

000 
0.000 

F(0.95,2,46

)=3.200 
1.1 

1.2 7 47 2.9717 0.0632 

Model 
1.1 

v.s. 

1.2 

0.0

543 
0.215 

F(0.95,1,47

)=4.047 
1.2 

1.3 6 48 3.6794 0.0767 

Model 

1.2 

v.s. 

1.3 

0.7

077 
2.308 

F(0.95,1,48

)=4.043 
1.3 

2.1 7 47 2.4463 0.0520 

Model 

1.3 
v.s. 

2.1 

1.2
331 

5.923 
F(0.95,1,47

)=4.047 
2.1 

2.2 8 46 1.1603 0.0252 

Model 
2.1 

v.s. 

2.2 

1.2

860 
12.746 

F(0.95,1,46

)=4.052 
2.2 

2.3.1 9 45 1.1603 0.0258 

Model 

2.2 

v.s. 
2.3.1 

0.0

000 
0.000 

F(0.95,1,45

)=4.057 
2.2 

2.3.2 9 45 1.1603 0.0258 

Model 

2.2 
v.s. 

2.3.2 

0.0
000 

0.000 
F(0.95,1,45

)=4.057 
2.2 

2.3.3 9 45 1.1603 0.0258 

Model 
2.2 

v.s. 

2.3.3 

0.0

000 
0.000 

F(0.95,1,45

)=4.057 
2.2 

3.1 9 45 0.9650 0.0214 

Model 

2.2 
v.s. 

3.1 

0.1
953 

2.277 
F(0.95,1,45

)=4.057 
3.1
* 

 

* Based on the F-test, Model 3.1 cannot significantly improve the sum of squares, 

R. However, Model 3.1 can eliminate the correlation among residuals and hence 

improve the overall fitting. 
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Table 3. A parsimonious model for S. oneidensis MR-1 growth 

No. Reaction Equations 

1 Bacteria growth L A e

dX
( k ) X

dt
 

2 Lactate consumption 
L

P,L A,L 11

X/L

XdLACT
( r r LACT)  

dt Y
 

3 
Acetate production and 

reuse 
A

A,L A,P

X/A

XdACT
(r r )   

dt Y
 

4 
Pyruvate production and 

reuse P,L A,P

dPYR
(r r )   

dt
 

6 
Specific growth rate with 

lactate L 2 LACT  

7 
Specific growth rate with 

acetate A 1  

8 
Acetate production from 

lactate 
A,L alr k LACT X  

9 
Acetate production from 

pyruvate 
A,P apr k PYR X  

10 
Pyruvate production from 

lactate 

2

5 3

P,L

4

LACT LACT
r

LACT
 

 

 

  

 

 

 

 

 

 

 



. 

437 

 

Table 4. Parameters of Monod model for S. oneidensis MR-1 growth 

Symbols Notation Unit Value 
SD 

(%) 

95% 

Confidence 

Intervals 

β1 

Zero order 

growth 

coefficient 

from 

acetate 

h
-1

 
0.0773

[6][16][16](Tang 

et al., 2007)
 

0.33 
[0.0768 

0.0778] 

β2 

First order 

growth 

coefficient 

from lactate 

L∙(h∙mmol 

lactate)
-1

 
0.0070 0.37 

[0.0070 

0.0071] 

β3 

Coefficient 

for pyruvate 

production 

from lactate 

mmol lactate∙ 

(h∙g DCW)
-1

 
18.8010 0.35 

[18.6442 

18.9666] 

β4 

Coefficient 

for pyruvate 

production 

from lactate 

mmol 

lactate∙L
-1

 
1.6223 7.36 

[1.4174 

1.9163] 

β5 

Coefficient 

for pyruvate 

production 

from lactate 

L∙ (h∙g DCW)
-

1
 

-0.6916 2.64 
[-0.7315 -

0.6630] 

β11 

Non-growth 

related 

lactate 

g 

DCW∙(h∙mmol 

lactate)
-1

 

0.0057 0.36 
[0.0057 

0.0058] 
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degradation 

coefficient 

kal 

Acetate 

production 

coefficient 

from lactate 

L∙ (h∙g DCW)
-

1
 

0.4672 4.86 
[0.4378 

0.5334] 

kap 

Acetate 

production 

coefficient 

from 

pyruvate 

L∙ (h∙g DCW)
-

1
 

2.5487 3.36 
[2.3986 

2.7851] 

ke 

Endogenous 

metabolism 

rate  

h
-1

 0.0063 5.46 
[0.0061 

0.0074] 
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Figure S1. Scaled sensitivity coefficients (SSCs) in the seed model and the 

parsimonious model. Left column (A, C, E and G): the scaled sensitivity 

coefficients of μmax,L (blue line) and μmax,A (green line) in the seed model. These 

two parameters were chosen as examples to plot because they had the largest 

values.  Right column (B, D, F and H): the SSCs of β1 (blue line) and β2 (green 

line) in the parsimonious model.  These two parameters were chosen because they 

had the largest value. The maximums of the scaled sensitivity coefficients plotted 

in Figure 3 were the maximums of the absolute values in the corresponding scaled 

sensitivity plots above.  We desire SSCs to be large and uncorrelated for best 

parameter estimation.  

Note: SSCs for triplicate measurements were the same.   
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Figure S2 The maximal scaled sensitivity coefficients (SSCs) of parameters in 

reconstructed models. A: Model 0; B: Model 1.1; C: Model 1.2; D: Model 1.3; E: 

Model 2.1; F: Model 2.2. Black bars: scaled sensitivity on biomass simulation; 

red bars: scaled sensitivity on lactate simulation; green bars: scaled sensitivity on 

acetate simulation; yellow bars: scaled sensitivity on pyruvate simulation.  The 

length of each colored bar came from the absolute maximum value of the 

corresponding scaled sensitivity coefficient plots such as those in Figure S1.  
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E
 A  

F
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Note: the maximal SSCs of certain parameters (e.g. μmax,P and Ks,p in Figure S2A) 

were too small to see. 
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Figure S3 Residual analysis for reconstructed models. A1 and A2: Model 1.1; B1 

and B2: Model 1.2; C1 and C2: Model 1.3; D1 and D2: Model 2.1; E1 and E2: 

Model 2.2. Green dots: normalized lactate residuals; orange diamonds: 

normalized acetate residuals; red crosses: normalized pyruvate residuals; blue 

squares: normalized biomass residuals.  
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Text S1 Correlation matrix in reconstructed models. 

 

Correlation matrix in Model 0 

 
umax_L umax_A umax_P Ksl Ksa Ksp kpl kal kap ke 

umax_L 1.000 0.700 0.027 0.885 0.931 0.056 0.653 -0.187 0.373 -0.300 

umax_A 0.700 1.000 -0.058 0.433 0.854 0.040 0.359 -0.456 0.888 -0.500 

umax_P 0.027 -0.058 1.000 0.046 0.046 0.993 0.357 0.331 -0.169 0.019 

Ksl 0.885 0.433 0.046 1.000 0.683 0.036 0.603 0.010 0.064 -0.303 

Ksa 0.931 0.854 0.046 0.683 1.000 0.105 0.627 -0.278 0.593 -0.387 

Ksp 0.056 0.040 0.993 0.036 0.105 1.000 0.341 0.246 -0.052 -0.043 

kpl 0.653 0.359 0.357 0.603 0.627 0.341 1.000 0.341 0.001 0.070 

kal -0.187 -0.456 0.331 0.010 -0.278 0.246 0.341 1.000 -0.713 0.497 

kap 0.373 0.888 -0.169 0.064 0.593 -0.052 0.001 -0.713 1.000 -0.519 

ke -0.300 -0.500 0.019 -0.303 -0.387 -0.043 0.070 0.497 -0.519 1.000 

 

Correlation matrix in Model 1.1 

 
umax_L umax_A Ksl Ksa kpl kal kap ke 

umax_L 1.000 0.887 0.937 0.962 0.746 -0.046 0.680 -0.211 

umax_A 0.887 1.000 0.858 0.899 0.859 0.313 0.797 -0.166 

Ksl 0.937 0.858 1.000 0.834 0.625 -0.097 0.696 -0.405 

Ksa 0.962 0.899 0.834 1.000 0.825 0.084 0.666 -0.179 

kpl 0.746 0.859 0.625 0.825 1.000 0.246 0.829 0.009 

kal -0.046 0.313 -0.097 0.084 0.246 1.000 0.031 0.247 

kap 0.680 0.797 0.696 0.666 0.829 0.031 1.000 -0.118 

ke -0.211 -0.166 -0.405 -0.179 0.009 0.247 -0.118 1.000 

 

Correlation matrix in Model 1.2 

 
umax_L beta_1 Ksl kpl kal kap ke 

umax_L 1.000 -0.149 0.776 -0.406 -0.593 0.031 -0.048 

beta_1 -0.149 1.000 0.294 0.477 0.551 0.582 0.014 

Ksl 0.776 0.294 1.000 -0.259 -0.412 0.300 -0.500 

kpl -0.406 0.477 -0.259 1.000 0.279 0.655 0.287 

kal -0.593 0.551 -0.412 0.279 1.000 -0.082 0.292 
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kap 0.031 0.582 0.300 0.655 -0.082 1.000 -0.005 

ke -0.048 0.014 -0.500 0.287 0.292 -0.005 1.000 

 

Correlation matrix in Model 1.3 

 
beta_2 beta_1 kpl kal kap ke 

beta_2 1.000 -0.762 -0.558 -0.620 -0.514 0.535 

beta_1 -0.762 1.000 0.687 0.863 0.601 0.120 

kpl -0.558 0.687 1.000 0.365 0.865 0.050 

kal -0.620 0.863 0.365 1.000 0.216 0.104 

kap -0.514 0.601 0.865 0.216 1.000 0.049 

ke 0.535 0.120 0.050 0.104 0.049 1.000 

 

Correlation matrix in Model 2.1 

 
beta_2 beta_1 kal kap ke beta_3 beta_4 

beta_2 1.000 -0.704 -0.478 -0.431 0.411 -0.517 0.187 

beta_1 -0.704 1.000 0.643 0.624 0.342 0.689 -0.141 

kal -0.478 0.643 1.000 -0.058 0.110 0.003 -0.214 

kap -0.431 0.624 -0.058 1.000 0.292 0.849 0.112 

ke 0.411 0.342 0.110 0.292 1.000 0.231 0.026 

beta_3 -0.517 0.689 0.003 0.849 0.231 1.000 0.217 

beta_4 0.187 -0.141 -0.214 0.112 0.026 0.217 1.000 

 

Correlation matrix in Model 2.2 

 
beta_2 beta_1 kal kap ke beta_3 beta_4 beta_5 

beta_2 1.000 -0.690 -0.549 -0.243 0.466 -0.600 -0.271 0.461 

beta_1 -0.690 1.000 0.695 0.514 0.301 0.392 -0.098 -0.273 

kal -0.549 0.695 1.000 -0.029 0.069 0.311 0.104 -0.361 

kap -0.243 0.514 -0.029 1.000 0.351 0.011 -0.361 0.130 

ke 0.466 0.301 0.069 0.351 1.000 -0.246 -0.430 0.213 

beta_3 -0.600 0.392 0.311 0.011 -0.246 1.000 0.672 -0.936 

beta_4 -0.271 -0.098 0.104 -0.361 -0.430 0.672 1.000 -0.588 

beta_5 0.461 -0.273 -0.361 0.130 0.213 -0.936 -0.588 1.000 
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Correlation matrix in Model 3.1 

 
beta_2 beta_1 kal kap ke beta_3 beta_4 beta_5 beta_11 

beta_2 1.000 -0.486 -0.586 -0.234 0.621 -0.417 0.245 0.275 -0.432 

beta_1 -0.486 1.000 0.552 0.398 0.360 0.293 -0.515 0.003 -0.271 

kal -0.586 0.552 1.000 -0.042 -0.209 0.096 -0.338 -0.210 0.295 

kap -0.234 0.398 -0.042 1.000 0.075 0.308 -0.763 -0.152 0.129 

ke 0.621 0.360 -0.209 0.075 1.000 -0.174 -0.101 0.331 -0.806 

beta_3 -0.417 0.293 0.096 0.308 -0.174 1.000 -0.457 -0.852 0.187 

beta_4 0.245 -0.515 -0.338 -0.763 -0.101 -0.457 1.000 0.437 -0.204 

beta_5 0.275 0.003 -0.210 -0.152 0.331 -0.852 0.437 1.000 -0.432 

beta_11 -0.432 -0.271 0.295 0.129 -0.806 0.187 -0.204 -0.432 1.000 
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Text S2 Residual correlations in reconstructed models 

Model 

No. 

Residuals of 

biomass 

simulation 

Residuals of  

lactate 

simulation 

Residuals of  

acetate 

simulation 

Residuals of 

pyruvate 

simulation 

0 Correlated Correlated Correlated Correlated 

1.1 Correlated Correlated Correlated Correlated 

1.2 Correlated Correlated Correlated Correlated 

1.3 Non-correlated Correlated Correlated Correlated 

2.1 Correlated Correlated Correlated Correlated 

2.2 Correlated Correlated Correlated Correlated 

3.1 Non-correlated Non-correlated Non-correlated Correlated 

 

Note: the criteria for checking residuals correlations were following the counting-

number-of-runs method as described in the main content. The residuals were 

treated as correlated if the number of runs was smaller than value given by Eq 14 

in the main content.  
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Text S3 Parameters estimated by sequential analysis in the Parsimonious 

model 

Symbols Unit Value from OLS 
Value from Sequential 

analysis 

β1 h
-1

 
0.0773

[6][16][16](Tang 

et al., 2007)
 

0.0768
[6][16][16](Tang et al., 2007)

 

β2 L∙(h∙mmol lactate)
-1

 0.0070 0.0071 

β3 
mmol lactate∙ (h∙g 

DCW)
-1

 
18.8010 19.1150 

β4 mmol lactate∙L
-1

 1.6223 1.7057 

β5 L∙ (h∙g DCW)
-1

 -0.6916 -0.7078 

β11 
g DCW∙(h∙mmol 

lactate)
-1

 
0.0057 0.0058 

kal L∙ (h∙g DCW)
-1

 0.4672 0.4631 

kap L∙ (h∙g DCW)
-1

 2.5487 2.5951 

ke h
-1

 0.0063 0.0064 
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Abstract 

This study constructed an E. coli strain for isobutanol fermentation via the 

Ehrlich pathway, which included two genes from Lactococcus lactis: a kivd gene 

encoding 2-ketoisovalerate decarboxylase and an adhA gene encoding aldehyde 

reductase. We performed fermentation under aerobic and oxygen-limited 

conditions, and then built an empirical Monod model with 19 parameters to 

simulate glucose consumption, biomass growth, and product secretion and loss. 

Based on fermentation kinetics and 
13

C-isotopic experiments to analyze nutrient 

utilization for isobutanol and biomass synthesis, we had following findings. 1) 

Oxygen-limited conditions showed the highest isobutanol titer (0.95 g/L). 2) 

Isobutanol production took place during both growth and stationary phases 

(described by mixed-growth-associated product formation kinetics). 3) Aerobic 

condition had better isobutanol yield from glucose than oxygen-limited 

conditions. 4) Nutrient supplement (yeast extract) provided building blocks for 

both biomass and isobutanol synthesis, but it also enhanced the waste product 

secretion (such as acetate and lactate) and thus reduced glucose-based isobutanol 

yield. This study offered both metabolic insights and bioprocess guidelines for 

designing scaled-up isobutanol fermentation using engineered E. coli strains. 

 

Key words: 
13

C-isotopic experiment, Ehrlich pathway, Mixed-growth-associated, 

scaled-up bioprocess, yeast extract 
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Introduction 

Bioethanol produced by yeast fermentation is a common biofuel used as a 

gasoline additive. Other biofuels, such as butanol and biodiesels, have higher 

energy density and lower water solubility than ethanol, and thus receive extensive 

study. Among these biofuels, butanol is compatible with automotive internal 

combustion engines. Acetone-butanol-ethanol (ABE) fermentation is a bioprocess 

that uses Clostridium acetobutylicum to produce n-butanol [17], but such a 

process is restrained by a relatively low alcohol production rate during the 

anaerobic fermentation. To overcome this disadvantage, the n-butanol pathway 

derived from Clostridium has been reconstructed in fast-growing E. coli or yeast 

strains [18,19,20,21]. Butanol biosynthesis via Clostridium pathway has 

limitations including low product titer, accumulation of toxic metabolites, and the 

requirement of large nutrient supplements (such as yeast extract). Another novel 

approach is via the non-fermentative pathway to produce low-toxicity isobutanol 

[22], where the amino acid biosynthesis pathways and the Ehrlich pathway 

[23,24] are utilized for alcohols synthesis. The non-fermentative pathway was 

previously found in yeast and lactic acid bacteria, which form fuel alcohols from 

intermediates in amino acids pathways [23]. A non-fermentative pathway, with 

ketoisovalerate as the central intermediate, has shown promising industrial 

potential for effective isobutanol production.  
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Diverse butanol production strategies have been reported (Table 1), 

including overexpression of targeted pathway, elimination of competing 

pathways, systems redesign of host metabolism, and in situ removal of inhibitory 

products using gas stripping. However, very few studies have developed process 

models to study the kinetics of engineered microbial platform for butanol 

fermentation. To apply a newly developed host in the biofuel industry, a kinetic-

based model is of practical importance not only for designing optimal scaled-up 

fermentation, but also for understanding the internal metabolic features of 

microbial hosts in responses to various nutrient sources and cultivation 

conditions. To fulfill the gap between microbial strain reconstruction and 

industrial bioprocess engineering, we have first created an E. coli mutant that is 

able to produce isobutanol via the standard non-fermentative pathway. The model 

strain provided isobutanol fermentation data from a well-controlled bioreactor 

under different cultivation conditions. Based on the experimental data, we 

developed an empirical model to simulate the key bioprocess variables and 

investigate the influential factors affecting isobutanol fermentation. To provide 

metabolic insights into the kinetic model,
 13

C-experiments were also performed to 

investigate the nutrient utilization for biomass and isobutanol synthesis.    

Materials and Methods 

Pathway construction 
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The non-fermentative isobutanol pathway was introduced into E. coli 

BL21 (DE3) (Fig. 1), in which glucose was converted to 2-ketoisovalerate via 

glycolysis and valine biosynthesis pathway, and then transformed to isobutanol by 

the Ehrlich pathway. Via heterologous expression of Kivd (2-ketoisovalerate 

decarboxylase) and AdhA (aldehyde reductase), the E. coli strain can produce 

isobutanol as well as other higher alcohols. In this study, kivd and adhA were 

amplified from Lactococcus lactis by PCR with high fidelity DNA polymerase 

Pfx (Invitrogen).  

Primers for kivd:  

5’-GACACTCGAGTAATGTATACAGTAGGAGATTAC-3’; 

 5’- TGCGGGTACCTTATGATTTATTTTGTTC-3’.  

Primers for adhA:  

5’-

TCAACTAGTGGTACCAGGAGATATAATATGAAAGCAGCAGTAGTAAG

AC-3’;  

5’- ATTTGCGGCCGCGCATGCTTATTTAGTAAAATCAATGAC-3’.  

The genes kivd (treated with XhoI / KpnI) and adhA (treated with KpnI / 

SphI) were cloned into pTAC-MAT-Tag-2 Expression Vector (Sigma-Aldrich) 

using XhoI / SphI to create the plasmid pTAC-KA, and then transformed into E. 
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coli BL21 (DE3). To confirm the expression of Kivd and AdhA, we performed 

SDS-PAGE analysis of the recombinant strain and observed the protein bands of 

Kivd (60.9 kDa) and AdhA (30.8 kDa). Moreover, the measurement also showed 

that the strain synthesized isobutanol, acetate, lactate, ethanol, and a small amount 

of n-propanol and methyl-butanol. Therefore, the host had similar product profiles 

to other isobutanol producing E.coli strains [22], and thus could be used as a 

model to study the general kinetic behaviors of engineered E.coli for isobutanol 

fermentation.  

Fermentation conditions  

Fermentations were performed in a 1 L New Bruswick Bioflo 110 

fermentor with dissolved oxygen (DO) electrode, temperature electrode, and pH 

meter.  The 100% DO value was defined as the point where the cell-free medium 

was saturated and achieved by purging air (~2 L/min) for 15 minutes. The culture 

reached 0% DO in the oxygen limited condition (air rate 0 L/min) after the cell 

had consumed the residual oxygen in the culture. Two culture media were used in 

this study: A minimal medium contained 2% glucose, M9 salts (Difco), 10 mg/L 

vitamin B1, and 50 mg/L ampicillin; a rich medium contained minimal medium 

with 5 g/L yeast extract. The culture (400 mL) was inoculated with 5 ml overnight 

LB culture (OD600~2) of the recombinant E. coli strain. The pH value, measured 

by the pH meter, was maintained around 7.0 by addition of 2 mol/L NaOH via an 

auto-pump. The temperature was held at 30 °C and the stirring speed was kept at 
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200 rpm. Cultures in the bioreactor were first grown for 5~7 hours under aerobic 

conditions (OD600 0.3~0.5; DO>50%), before adding 0.2 mM IPTG (Isopropyl β-

D-1-thiogalactopyranoside) to induce the isobutanol pathway. 

After the E. coli entered the isobutanol production phase, we imposed 

three different fermentation conditions. The first fermentation (F1: aerobic 

condition and minimal medium) was carried out in aerobic condition. Air (airflow 

rate: ~1 L/min) was bubbled in the bioreactor to provide oxygen and to remove 

isobutanol (i.e., gas stripping) from bioreactor. In the second fermentation (F2: 

oxygen-limited condition and minimal medium), air was turned off and the DO 

was maintained around zero throughout the fermentation in a closed bioreactor. In 

the third fermentation (F3: oxygen-limited condition and rich medium containing 

5 g/L yeast extract), air was turned off and the DO was maintained around zero 

for the duration of the fermentation in a closed bioreactor.  

Analytical methods for biomass and metabolites 

The biomass growth was monitored based on optical density (OD600). 

There was a linear relationship between the dry weight of E. coli cells and OD600. 

To measure the dry biomass weight, biomass samples were harvested by 

centrifugation and washed with DI water and dried at 100
°
C until their weight 

remained constant. The concentrations of glucose, ethanol, acetate, and lactate 

were measured using enzyme kits (R-Biopharm). The alcohols could be detected 

using GC (Hewlett Packard model 7890A, Agilent Technologies, equipped with a 
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DB5-MS column, J&W Scientific) and a mass spectrometer (5975C, Agilent 

Technologies). The GC-MS spectrum revealed that alcohols in the culture 

samples were mainly ethanol and isobutanol. We also detected small amounts of 

propanol and methyl-butanols. Isobutanol concentration was determined by a 

modified GC-MS method [19]. Briefly, 400 µl of supernatant was extracted with 

400 µl of toluene (Sigma-Aldrich) by 2-min vortex, followed by high-speed 

centrifugation (16000×g). The organic layer was taken for GC-MS analysis under 

the following program: hold at 70 °C for 2 min, ramp to 230 °C at 20 °C min
-1

, 

and then hold at 300 °C for 6 min. The carrier gas was helium. The MS scan 

mode was from m/z 20 to 200. Samples were quantified relative to a standard 

curve of 16, 32, 64, 125, 250, 500, and 1000 mg/L isobutanol for MS detection, 

and methanol was taken as an internal standard. 

13
C-experiments for analyzing carbon substrates 

In the 
13

C-experiments, the minimal medium with 2% fully labeled 

glucose (U-
13

C, Cambridge Isotope Laboratories) was supplemented with either 

0.1% or 0.5% yeast extract (Bacto). By measuring 
13

C-abundance in key 

metabolites, we could estimate the contribution of yeast extract (non-labeled) to 

biomass and isobutanol synthesis in the 
13

C-glucose medium. Specifically, 5 mL 

cultures (with 
13

C-glcuose and yeast extract)
 

were inoculated with 5 µl of 

overnight LB culture of engineered strain in a 50 mL falcon tube with a closed 

cap to prevent product vaporization (shaking at 200 rpm, 30°C). The cultures 
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were induced by 0.2 mM IPTG (at t=7 hours), and the samples were taken (at 

t=24 hours, middle-log growth phase) for isotopomer analysis. The isobutanol 

content was determined using the previously described GC-MS procedure [19]. 

The ratio of two mass-to-charge peaks (m/z=74 for unlabeled isobutanol and 

m/z=78 for labeled isobutanol) corresponded to the ratio of isobutanol synthesized 

from unlabeled yeast extract vs. labeled glucose. Concurrently, we also performed 

isotopic analysis of proteinogenic amino acids to identify the incorporation of 

unlabeled carbon from yeast extract into biomass (i.e., protein). The 

measurements were based on a previously published GC-MS based protocol [25], 

using TBDMS (N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide, Sigma-

Aldrich) to derivatize hydrolyzed amino acids from the biomass. The m/z ions 

[M-57]
+
 from unfragmented amino acids were used for analysis [26] except 

leucine and isoleucine. Because the [M-57]
+
 in leucine and isoleucine overlap 

with other ions, the [M-159]
+
 group was used to obtain the isotopomer labeling 

information of leucine and isoleucine. 

Model formulation 

We developed a Monod-based kinetic model, with six ordinary differential 

equations, to describe three different batch fermentation processes. Here, we 

should emphasize that the model only describe the fermentation data after IPTG 

induction (i.e., the E. coli strain entered into the butanol production phase).  
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R
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dEtOH

XLACTkR
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XLACTkYR
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dACT

RXkR
dt

dX
,

 

The model contained six time-dependent process variables:  X, ACT, 

LACT, EtOH, IB, and Glu, which represented the concentrations (g/L) of biomass, 

acetate, lactate, ethanol, isobutanol, and glucose, respectively. In the above 

equations, kd was the cell death rate; YAL was the acetate yield from lactate (equal 

to 0.67 g ACT/g LACT, based on a 1:1 mol ratio); YXG, YAG, YEG, YLG, and YIG were 

the glucose-associated yields of biomass, acetate, ethanol, lactate, and isobutanol, 

respectively. kIB was the first-order removal rate of isobutanol due to gas stripping 

under aerobic fermentation F1. The isobutanol loss was minimal in a closed 

bioreactor during oxygen-limited fermentations (kIB was equal to zero). Under 

oxygen-limited conditions (i.e. F2 and F3), we used a first-order kinetic parameter 

(kact) to describe acetate production from lactate. 

X

K
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Equations 7 represented a Monod-based growth kinetics. Since acetate 

inhibited E. coli growth by decreasing the intracellular pH and interfering with 

enzyme reactions, a non-competitive inhibition KiA (assumed to be constant in F1, 

F2 and F3) was included in the model [27]. The dependence of the growth rate on 

oxygen necessitates (i.e., aerobic growth vs. anaerobic growth) was implicitly 

included in the calculation of the apparent maximal growth rate, μmax,app, (i.e., the 

oxygen conditions affected μmax,app in different fermentation process). The Monod 

constant KS was set to be constant for all three cultures (F1, F2 and F3). Equations 

8~11 simulated the extracellular metabolite production associated with biomass 

growth. RX, RA, RE, RL, and RIB were the production rates of biomass, acetate, 

ethanol, lactate, and isobutanol from glucose, respectively; αAX, αEX, αLX, and αIBX 

were the growth-associated coefficients of acetate, ethanol, lactate, and isobutanol 

productions, respectively. β was the non-growth associated isobutanol production 

coefficient. For experiments using rich medium (F3), the isotopic experiments 

indicated that the yeast extract was quickly consumed to support biomass growth 

at the early stage of the fermentation. Since precise measurement of yeast extract 

concentrations was difficult, we included a yeast-extract-associated biomass 

 

(8) 

(9) 

(10) 

(11) 

(12) 
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growth rate (RX,YE) using a two-parameter exponential decay function (Equation 

12). Table 2 summarized model parameters and their units. 

For each batch culture, 18 unknown model parameters were determined by 

minimizing the sum of the squares of the differences between the model’s 

predictions and the experimentally observed growth and metabolite profiles (data 

after IPTG induction) [28]. The “ode23” command in MATLAB (R2009a, 

Mathworks) solved differential equations, while the “fmincon” command 

searched suitable values of parameters. To avoid having local solutions during the 

nonlinear parameter estimation, we perturbed the initial guesses for 30 times 

within the range of possible values (as observed experimentally) to identify the 

global solution. Meanwhile, to narrow the search-range for reasonable parameters, 

we assumed that the values of each parameter acquired from different 

fermentations differed by less than one order of magnitude. 

To evaluate the quality of the parameter estimates, a statistical analysis 

checked the reliability and the sensitivity of the estimated parameters to the 

measurement inaccuracies. Fifty simulated fermentation data sets (including both 

biomass and metabolite data) were generated by addition of normally distributed 

noise to the measured fermentation data set (i.e., randomly perturbed the 

measured data by 30%). The same data-fitting algorithm found new sets of 

parameters. From the probability distribution of these parameter distributions, 

confidence limits of model-fitted parameters were estimated. 
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Results and discussion 

Isobutanol fermentation results  

We engineered an E. coli strain which was used as a model to study 

isobutanol fermentation kinetics. The isobutanol pathway of the strain was in 

Fig.1. The key precursor, 2-ketoisovalerate (KIV), is also an intermediate of 

valine biosynthesis and degradation pathways. When E. coli converts one mole of 

glucose to two moles of pyruvate through glycolysis, it generates two moles of 

NADH, whereas the isobutanol synthesis consumes one mole of NADPH by keto-

acid reductoisomerase and one mole of NADH by aldehyde reductase. To keep 

balance, the cell metabolism has to remove the redundant NADH by O2 

oxidization (aerobic condition) or by synthesis of reduced metabolites (leading to 

lactate and ethanol secretion). In the F1 (Fig. 2), ethanol and lactate were barely 

detected. Isobutanol concentration only reached (0.2 g/L), and the in situ removal 

of isobutanol was considerable since the airflow carried isobutanol out of the 

fermentor. Such gas stripping has been reported as an effective strategy to avoid 

the isobutanol accumulation in the bioreactor to cause inhibitory effect on alcohol 

production [29].   

In the oxygen-limited conditions (Fig. 3 & 4), the F2 generated 0.95 g/L 

isobutanol, 1.5 g/L ethanol, 2 g/L acetate, and 5 g/L lactate, while the lactate was 

reused in the late fermentation stage (stationary growth phase). With the addition 
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of yeast extract, the F3 had fast biomass growth (Fig. 4). The cell density reached 

the peak (2 g DCW/L biomass) after seven hours of IPTG induction, and glucose 

was consumed within ~12 hours (compared to ~40 hours in the F1 and F2). The 

high rates for biomass growth and glucose uptake promoted isobutanol production 

rate. It took the F3 15 hours to generate 0.6 g/L isobutanol (it took F2 40 hours to 

generate same amount of isobutanol). The F3 produced 0.7 g/L isobutanol and 2.0 

g/L ethanol. The addition of yeast extract also resulted in a large amount of 

growth-associated organic acids (6.0 g/L lactate and 3.6 g/L acetate).  

Kinetic modeling of isobutanol fermentation   

The kinetic model simulated biomass growth, isobutanol production, and 

metabolic byproduct (lactate, ethanol, and acetate) secretion and reuse in all three 

culture conditions. Here, we should emphasize that all data points in Fig. 2~4 

were after IPTG induction (i.e., cell entered isobutanol production metabolic 

status). Table 2 listed the kinetic parameters, where the maximal glucose-based 

cell growth rate μmax,app (0.007~0.026 h
-1

) in the anaerobic culture conditions was 

lower than that in the aerobic culture condition (0.051 h
-1

). To simulate the 

influence of yeast extract on alcohol fermentation, the Monod growth equation 

included a yeast-extract associated biomass growth rate (μmax,YE=0.44 hr
-1

) that 

was more than one order of magnitude higher than glucose-associated growth 

rates.  
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As for the intrinsic biomass yield YXG, YXG (0.18) under aerobic condition 

was higher than that in the anaerobic condition F2 (0.11). Aerobic fermentation 

produced less extracellular waste metabolites, while the citric acid cycle in cell 

metabolism was highly active to provide energy and building blocks for biomass 

and butanol synthesis. Isobutanol was produced in both aerobic and oxygen-

limited conditions. The growth (αIBX) and non-growth (β) associated isobutanol 

production coefficients were both positive, indicating the isobutanol production 

took place during both growth and stationary phases. Although cell metabolism 

shared the same pathway for synthesizing both biomass building block (valine) 

and isobutanol, this pathway was still functional after biomass growth stopped. 

The theoretical isobutanol yield from glucose is 0.41 g isobutanol/g glucose. In 

this study, coefficient YIG under aerobic condition was 0.25 g isobutanol/g 

glucose, which was higher than anaerobic conditions. For anaerobic condition F2, 

non-growth associated isobutanol production β was ~0.11 (g isobutanol/g biomass 

∙ h), while aerobic condition F1 showed much smaller non-growth associated 

productivity (β ~0.002 g isobutanol/g biomass ∙ h). For anaerobic condition F3, 

the addition of yeast extract significantly improved the growth associated 

isobutanol production (αIBX = 0.91 g isobutanol/g biomass), but it also generated 

significantly more acetate, lactate and ethanol. The yield coefficients associated 

with waste products (YAG, YEG, YLG) were all the highest in the F3. Although the 

addition of nutrients improved the biomass growth and cell energy (such as 

NADH) generation, the NADPH-dependent valine synthesis pathway could not 
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utilize NADH to produce isobutanol precursors (Figure 1). The excessive NADH 

from fast cell metabolism had to be redirected to waste extracellular metabolites. 

To alleviate such co-factor imbalance, an NADH-dependent keto-acid 

reductoisomerase or transhydrogenase PntAB could be used to consume NADH 

for isobutanol synthesis [30]. 

Analysis of the role of yeast extract for isobutanol synthesis 

Nutrient supplements often plays important role in improving fermentation 

performance. Rich media have been commonly used for butanol fermentations 

[19,21,22,31]. In addition to providing the building blocks for biomass growth, it 

has been reported that E. coli can also utilize the Ehrlich pathway to convert 

protein hydrolysates to higher alcohols by engineering nitrogen flux [32]. To 

reveal the contribution of nutrient to biomass and isobutanol production during 

the cell growth stage, we used 
13

C-experiemnts to determine the ratio of carbon 

utilization from two different sources (nonlabeled yeast extract vs. fully labeled 

13
C-glucose) under oxygen limited condition via GC-MS analysis (Fig. 5). When 

yeast extract was minimal (1 g/L), isobutanol mostly came from labeled glucose 

in the medium (isobutanol was all labeled with four carbons, m/z=78), and yeast 

extract mainly supported biomass growth. In the more nutrient-rich medium, yeast 

extract (5 g/L, commonly used for biobutanol production) provided major 

building blocks for cell growth. Based on the labeling data, proteinogenic amino 

acids (histidine, leucine, isoleucine, valine, lysine, and proline) in the biomass 
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protein were highly imported from exogenous amino acids  (>95%, corresponding 

to the 
12

C-dilutions), while other proteinogenic amino acids (alanine and serine) 

were largely synthesized from 
13

C-glucose (50~60%). Furthermore, high 

concentration of yeast extract (5g/L) provided the precursors (i.e., keto-acids from 

exogenous amino acid degradation pathway) for production of alcohols (non-

labeled isobutanol ~ 50%). A similar observation was also found in the glucose-

labeled medium supplemented with Lysogeny broth (LB) powder (data not 

shown). These results implied that the nutrient supplements provided building 

blocks for both biomass and isobutanol synthesis in the glucose-based culture 

medium. However, nutrient addition may not enhance butanol yields from its 

main carbon source (glucose) due to higher waste metabolite production.    

Concluding remarks  

This study developed an empirical Monod model for capturing the 

influential process factors during isobutanol fermentation using an engineered E. 

coli strain. The model strain shared common kinetic features with other reported 

isobutanol producers. These features included similar biomass growth behavior 

and generation of multiple-metabolites, such as acetate, ethanol, and isobutanol. 

The model results implied that byproducts were deleterious to isobutanol 

synthesis (which could be the genetic targets for future improvement). Nutrients 

(such as yeast extract) increased the production rates for both alcohols and 

organic acids, but reduced isobutanol yields. The kinetic model may not only 
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provide guidelines for controlling isobutanol fermentation conditions, but also 

serve as a springboard to develop useful bioprocess models for higher alcohols 

fermentations in the biotechnology industry.   
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Table 1. Recent studies on butanol production by genetically engineered 

microorganisms 

 
Products Substrate Host cell Titer Research Highlights Ref 

Isobutanol Glucose E. coli 22 

g/L 

Introduction of a non-fermentative 

pathway to produce isobutanol; 

elimination of competing pathways to 

reduce waste metabolite secretion 

[22] 

Isobutanol Glucose E. coli 50 

g/L 

In situ isobutanol removal from the 

bioreactor using gas stripping 

[29] 

Isobutanal CO2 Synechococcus 

elongatus 

1.1 

g/L 

Overexpression of both non-

fermentative pathway and Rubisco for 

autotrophic isobutanol production 

[33] 

Isobutanol Cellulose Clostridium 

cellulolyticum 

0.66 

g/L 

Direct conversion of cellulose to 

isobutanol using engineered 

cellulolytic bacterial species 

[34] 

Isobutanol Glucose E. coli 1.7 

g/L 

A strain optimized for isobutanol 

production via elementary mode 

analysis  

[35] 

Isobutanol Glucose E. coli 13.4 

g/L 

Utilization of the NADH-dependent 

enzyme to enable anaerobic 

isobutanol production 

[30] 

Isobutanol 

 

Amino 

acids 

E. coli ~1g/L        

 

 

Utilization of protein hydrolysates for 

C4 and C5 alcohols synthesis by 

introducing enzymes for exogenous 

transamination and deamination 

cycles to biobutanol producing strains 

[32] 

n-Butanol Glucose E. coli 1 g/L 

 

A strain engineered for 1-butanol and 

1-propanol production via isoleucine 

biosynthesis pathway 

[36] 

n-Butanol Galactose Saccharomyces 

cerevisiae 

2.5 

mg/L 

Overexpression of n-butanol pathway 

derived from Clostridium  

[21] 

n-Butanol Glucose E. coli 4.6 

g/L 

Increase of the barrier for the reverse 

reaction of butyryl-CoA to crotonyl-

CoA via trans-enoyl-CoA reductase 

[19] 

n-Butanol Gluocse E. coli 30 

g/L 

Construction of butanol pathway by 

employing trans-enoyl-CoA reductase 

and creating NADH & acetyl-CoA 

driving forces 

[20] 

n-Butanol CO2 Synechococcus 

elongatus 7942 

14.5 

mg/L 

 

Anaerobic production of 1-butanol 

from CO2 using CoA-dependent 

butanol pathway 

[37] 
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Table 2. Parameters of Monod kinetic model for E. coli isobutanol 

fermentation 

Symbo

l 
Notations Units 

Aerobic,  

condition F1 

Anaerobic,  

condition F2 

Anaerobic,  

condition F3 

KS Monod parameter for Glu g/L 
 

0.30±0.08 a  

KiA Inhibition of acetate for growth g/L 
 

26±5 a  

μmax,app Maximal growth rate with glucose /h 0.051±0.005 
0.0070±0.002

0 
0.026±0.004 

YXG Intrinsic biomass yield from Glu 
g 

biomass/g 

glucose 

0.18±0.03 0.11±0.01 0.23±0.03 

YAG Acetate yield from Glu 
g acetate/g 

glucose 
0.08±0.01 0.08±0.01 0.39±0.03 

YEG Ethanol yield from Glu 
g ethanol/g 

glucose 
NA 0.27±0.01 0.46±0.03 

YLG Lactate yield from Glu 
g lactate/g 

glucose 
NA 0.60±0.02 0.85±0.06 

YIG Isobutanol yield from Glu 
g 

isobutanol/

g glucose 

0.25±0.05 0.03±0.00 0.18±0.02 

αAX Growth associated acetate synthesis 
g acetate/g 

biomass 
0.62±0.02 0.29±0.03 2.8±0.3 

αEX Growth associated ethanol synthesis 
g ethanol/g 

biomass 
NA 6.7±1.0 3.2±0.3 

αLX Growth associated lactate synthesis 
g lactate/g 

biomass 
NA 26±4 11±2 

    αIBX Growth associated isobutanol synthesis 
g 

isobutanol/

g biomass 

0.57±0.04 0.10±0.01 0.91±0.12 

YAL Acetate yield from lactate 
g acetate/g 

lactate 
NA 0.67 0.67 

kd Cell death rate /h 0.010±0.002 
0.0010±0.000

5 

0.0087±0.000

7 

kIB gas stripping rate coefficient for isobutanol /h 0.11±0.02 NA NA 

kact First-order acetate production from lactate 

(h∙g 

biomass/L)
-1 

NA 0.012±0.001 
0.0022±0.000

3 

kYE Yeast extract first-order decay rate  /h NA NA 0.55±0.04 

μmax,YE 
Apparent maximal growth rate with yeast 

extract 
/h NA NA 0.44±0.05 

β 
Non-growth associated isobutanol production 
rate 

(g isobutanol)/( g 
biomass∙h) 

0.0021±0.001
7 

0.011±0.001 
0.0038±0.000

6 

 

 

a): assuming same value for all three fermentations. 

Glu: glucose; NA: not applicable.
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Figure legend 

Figure 1. Pathways and kinetics for isobutanol and metabolites production in 

the recombinant E. coli BL21 (DE3)/pTAC-KA. RX, RX,YE, RA, RE, RL, and RIB 

were shown in the Equation 1~12. Abbreviations: G6P, glucose 6-phosphate; 

F6P, fructose 6-phosphate; G3P, glyceraldehydes 3-phosphate; PYR, pyruvate; 

ACA, acetyl-CoA; ALA, 2-acetolactate; DHI, 2,3-dihydroxy-isovalerate; KIV, 2-

keto-isovalerate; Val, valine; IBA, isobutanal; NADH, reduced nicotinamide 

adenine dinucleotide; NADPH, reduced nicotinamide adenine dinucleotide 

phosphate; PP pathway, pentose phosphate pathway; TCA cycle,  tricarboxylic 

acid cycle; Kivd, 2-keto-isovalerate decarboxylase; AdhA, aldehyde reductase. 

Figure 2: Growth kinetics of aerobic culture after IPTG induction (condition F1). 

The dots were experimental measurements, and the solid lines are simulations 

from the Monod kinetic model. 

Figure 3: Growth kinetics of anaerobic culture after IPTG induction (condition 

F2). The dots are experimental measurements, and the solid lines are simulations 

from the Monod kinetic model. 

Figure 4: Growth kinetics of anaerobic culture with 0.5% yeast extract after IPTG 

induction (the F3 includes two replicated cultivation experiments). The dots were 

experimental measurements, and the solid lines were simulations from the Monod 

kinetic model. 
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 Figure 5. The fraction of 
13

C carbon (
13

C carbons/total carbons) in each 

metabolite. The fraction of 
13

C carbon represents the contribution of labeled 

glucose to metabolite synthesis.  The cells were grown on M9 medium (Difco), 

containing 20 g/L fully labeled 
13

C-glucose, with 1 g/L (black bar) or 5 g/L (gray 

bar) nonlabeled yeast extract. All samples were taken at 24 hrs (n=2, GC-MS 

standard errors < 2%). 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Appendix 11       

Evaluating Factors That Influence Microbial Synthesis Yields by 

Linear Regression with Numerical and Ordinal Variables 



. 

480 

 



. 

481 

 



. 

482 

 



. 

483 

 



. 

484 

 



. 

485 

 



. 

486 

 



. 

487 

 



. 

488 

 



. 

489 

 

 



. 

490 

 

 



. 

491 

 

Appendix 12       

Bacterial Responses to Cu-doped TiO2 Nanoparticles 
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