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ABSTRACT OF THE DISSERTATION

Development and Application of Fluxomics Tools for Analyzing Metabolisms in

Non-Model Microorganisms
by
Xueyang Feng
Doctor of Philosophy in Energy, Environmental and Chemical Engineering
Washington University in St. Louis, 2012

Professor Yinjie Tang, Chair

Decoding microbial metabolism is of great importance in revealing the
mechanisms governing the physiology of microbes and rewiring the cellular
functions in  metabolic engineering. Complementing the genomics,
transcriptomics, proteinomics and metabolomics analysis of microbial
metabolism, fluxomics tools can measure and simulate the in vivo enzymatic
reactions as direct readouts of microbial metabolism. This dissertation develops
and applies broad-scope tools in metabolic flux analysis to investigate metabolic

insights of non-model environmental microorganisms.

3C-based pathway analysis has been applied to analyze specific carbon
metabolic routes by tracing and analyzing isotopomer labeling patterns of
different metabolites after growing cells with **C-labeled substrates. Novel

pathways, including Re-type citrate synthase in tricarboxylic acid cycle and



citramalate pathways as an alternate route for isoleucine biosynthesis, have been
identified in  Thermoanaerobacter X514 and other environmental
microorganisms. Via the same approach, the utilizations of diverse
carbon/nitrogen substrates and productions of hydrogen during mixotrophic
metabolism in Cyanothece 51142 have been characterized, and the medium for a
slow-growing bacterium, Dehalococcoides ethenogenes 195, has been optimized.
In addition, *3C-based metabolic flux analysis has been developed to
quantitatively profile flux distributions in central metabolisms in a green sulfur
bacterium, Chlorobaculum tepidum, and thermophilic ethanol-producing
Thermoanaerobacter X514. The impact of isotope discrimination on *3C-based

metabolic flux analysis has also been estimated.

A constraint-based flux analysis approach was newly developed to
integrate the bioprocess model into genome-scale flux balance analysis to
decipher the dynamic metabolisms of Shewanella oneidensis MR-1. The sub-
optimal metabolism and the time-dependent metabolic fluxes were profiled in a
genome-scale metabolic network. A web-based platform was constructed for
high-throughput metabolic model drafting to bridge the gap between fast-paced
genome-sequencing and slow-paced metabolic model reconstruction. The
platform provides over 1,000 sequenced genomes for model drafting and diverse
customized tools for model reconstruction. The in silico simulation of flux

distributions in both metabolic steady state and dynamic state can be achieved via



flux balance analysis and dynamic flux balance analysis embedded in this

platform.

Cutting-edge fluxomics tools for functional characterization and metabolic
prediction continue to be developed in the future. Broad-scope systems biology
tools with integration of transcriptomics, proteinomics and fluxomics can reveal
cell-wide regulations and speed up the metabolic engineering of non-model

microorganisms for diverse bioenergy and environmental applications.
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Chapter 1

Introduction

1.1 Systems biology of microbial metabolism

Microbial metabolism is a complex biological system that involves the
interactions of thousands of genes, proteins and metabolites (1). Toward a system-
level investigation of microbial metabolism, high-throughput “omics” tools are
being developed and applied to capture the behaviors of different metabolic
components. Transcriptomics, proteomics and metabolomics tools have been used
to characterize the responses of gene expressions, protein productions and
metabolite concentrations, respectively, to metabolic perturbations. In
complementary to the aforementioned omics tools, fluxomics analysis has become
instrumental in the systems biology of microbial metabolism. In fluxomics study,
the metabolite turnover rates (i.e. metabolic fluxes) are measured or predicted as a
direct readout of the functional output of metabolism (2). By developing and
applying diverse fluxomics tools, the novel metabolic features in environmental
microorganisms can be revealed and the knowledge-based rewiring of cellular

functions can be achieved in metabolic engineering.

Fluxomics tools are often categorized into two groups based on the
principles of design: constraint-based metabolic flux analysis and **C-based

pathway and flux analysis (Figure 1.1). Constraint-based metabolic flux analysis



profiles the “optimal” microbial metabolisms for in silico simulations and
predictions. Three components are utilized to find intracellular fluxes in this
fluxomics approach: the stoichiometry of the metabolic reactions in a
reconstructed metabolic model, an objective function based on prior knowledge of
microbial metabolism, and a series of boundary conditions imposed on metabolic
reactions (3). In comparison, *3C-based pathway and flux analysis measures in
vivo operation of a metabolic network. It is carried out by culturing microbes with
defined **C-labeled carbon source, tracing the transitional paths of the labeled
atoms between metabolites in the biochemical network, and analyzing the
labeling profiles in various metabolites both qualitatively and quantitatively. *C-
based pathway and flux analysis provides the most accurate readouts of microbial

metabolisms (4).
1.2 Constraint-based metabolic flux analysis

Flux balance analysis (FBA) is commonly used for constraint-based
metabolic flux analysis. To formulate a FBA problem, the metabolic model of a
target microorganism, often in genome scale, needs to be reconstructed (3). A
draft metabolic model is first constructed based on genome annotation, which is
then iteratively refined by adjusting the metabolic functionality to fill the gaps
between model simulations and experimental observations (5). From the
reconstructed metabolic model, the stoichiometry matrix S is generated in FBA,

with each row in S representing one metabolite and each column in S representing



one metabolic flux. The vector of metabolic fluxes, v, follows S - v = 0 under
metabolic steady state and is constrained within feasible ranges identified from
the physical, chemical and biological characteristics (e.g., thermodynamic
directionality, and enzyme capacity). Since the FBA problem is normally
underdetermined with a larger number of variables (i.e., reactions) than that of
equations, an objective function (e.g., maximizing growth rate) is assumed for the
microbial metabolism to pinpoint the unique flux distributions in the metabolic

network. The FBA is constructed as a linear programming (3,6):

maxc' -v
s.t. S-v=0
b<v<ub

where c is a vector that represents the objective function in FBA.

As a mathematical approach for in silico simulation of microbial
metabolism, FBA is equipped with a strong predictive capability to prove or
disprove various assumptions in systems biology of microbial metabolism.
However, since FBA relies on a biologically appropriate objective function to
quantify the flow of metabolites through metabolic network, it cannot always give
realistic metabolic readouts due to the lack of a priori knowledge of microbial

metabolism (7).

1.3 *C-based metabolic pathway and flux analysis



The *C-based metabolic pathway analysis aims at qualitative elucidation
of metabolic pathway activity by applying isotopic labeling approaches (8). In
general, the microbes are cultured using a carbon source with a known
distribution of *3C isotopomers. As the *3C-labeled carbon source is being used
for different metabolic pathways, the metabolites synthesized in microbial
metabolism (e.g. amino acids) acquire unique labeling patterns, which are
measured by gas chromatography—mass spectrometry (GC-MS). To elucidate the
route for metabolites synthesis, the “fingerprinting” labeling patterns of
metabolites are generated by tracing the **C carbon transitions in the proposed
pathway; and compared with the corresponding experimental measurements to

reveal whether the metabolic pathway is active.

The C-based metabolic flux analysis (*C-MFA) is a quantitative
approach to identify the metabolic flux distributions under metabolic and isotopic
steady state, in which the pool size and the *3C-labeling patterns of intracellular
metabolites are invariable (4,9). By integrating isotopic labeling approach and in
silico computation, *C-MFA is formulated as an inverse problem to find a set of
fluxes that leads to the best match of the experimentally measured isotopomer
abundances. The nonlinear programming of *C-MFA is formulated as follows

(10,11):



0.

min g(v,) =Zn:£M‘ — Ni(V”)J

s.t. S-v=0
Ib<v<ub

where v, are the unknown fluxes to be optimized in the program, M; are the
measured isotopomer labeling patterns of metabolites from GC-MS, N; are the
corresponding model-simulated labeling patterns of metabolites, and J; are the
corresponding standard deviation in GC-MS measurement. The unknown

metabolic fluxes are searched to minimize ¢.

The method of **C-based pathway and flux analysis allows for precise
determinations of metabolic states in a particular growth condition. Compared to
FBA, ‘*C-based pathway and flux analysis cannot directly predict the metabolic
behaviors. However, it provides a physiologically reliable description of

microbial metabolism.
1.4 Recent advances in fluxomics

Fluxomics study is an emerging area in systems biology. In the past
decade, various approaches have been developed and improved to investigate the
cellular metabolic behaviors in response to environmental and genetic
perturbations; which yield significant achievements in both mechanistic studies of

cell physiology and rational designs in metabolic engineering.



1.4.1 Advances in constraint-based metabolic flux analysis

By integrating genome annotations, gene-protein-flux (GPR) correlations,
and experimental validations, genome-scale metabolic models are powerful
platforms in constraint-based flux analysis and have been constructed and applied
for various microorganisms (5). Simulations from genome-scale FBA have been
widely used in a number of studies (12), including interpreting various “omics”
data (13), directing hypothesis-driven discoveries (14), investigating metabolic
network properties (15), and predicting dynamic metabolisms of microorganisms
(16,17). Advanced computational approaches, such as MOMA (18), OptKnock
(19), and OptStrain (20), have been developed to guide the in silico design of
genetic manipulations in metabolic engineering. Additionally, the multi-species
relationships in mixed cultures are starting to be analyzed by constraint-based

metabolic flux analysis (21).
1.4.2 Advances in **C-based pathway and flux analysis

State-of-the-art mass spectrometry technologies, such as liquid
chromatography—mass spectrometry (LC-MS), have been developed to directly
measure the *C-labeling patterns of low-abundant and fast-turnover metabolites.
Mass spectrometry technologies could take the snapshot of transient metabolism
and can be used for novel pathways identification (22) and kinetic flux profiling
(23). As an improvement to conventional **C-MFA under metabolic and isotopic

steady state, an advanced experimental and computational framework has been



proposed and employed to quantitatively investigate intracellular metabolism
under metabolic steady state but isotopic non-steady state (24,25). To unravel the
time profiles of metabolic fluxes under metabolic non-steady state, several
approaches have been developed by tracing and analyzing the **C-labeling
patterns of either fast-turnover intracellular metabolites (26), or slow-turnover
proteinogenic amino acids (27). Additionally, pioneering fluxomics studies have
recently been achieved to provide subpopulation-specific metabolic pathway

usage in mixed cultures via *C-MFA of reporter proteins (28).
1.4.3 Advances in fluxomics software development

Multiple software toolboxes have been developed to facilitate fluxomics
studies. The hallmark of software development in constraint-based metabolic flux
analysis is the COBRA toolbox (29), which provides a computational platform for
model constructions and FBA studies. Other toolboxes, such as OptFlux (30),
have facilitated advanced FBA approaches for microbial strain design. A few
software tools for *C-MFA are also available, including OpenFLUX (31) and
FiatFlux (32). Moreover, web-based platforms have been constructed for
metabolic model generations and FBA. For example, BioMet Toolbox is a web-
based resource for FBA and transcriptome analysis (33). Webcoli supplies diverse
approaches for users to reconstruct a genome-scale E.coli metabolic model (34).
Model SEED (35) has been developed to automatically generate genome-scale

metabolic models for different microbes.



1.5 Scope of dissertation

Decoding microbial metabolisms is of great importance in revealing the
mechanisms governing the physiology of microbes and rewiring the microbial
metabolism for bioenergy and biomaterial production. As one of the fundamental
approaches to characterize microbial metabolism, the fluxomics tools have not yet
been developed or applied as extensively as the other omics approaches in
systems biology. Noteworthy hurdles are also present in fluxomics study of
industrial biotechnology (Chapter 2). During my Ph.D. training, the *C-based
pathway analysis has been applied to a wide range of environmental
microorganisms, including Cyanothece 51142 (36,37), Thermoanaerobacter
X514 (38), Mycobacteria smegmatis (39), Shewanella oneidensis MR-1 (40),
Roseobacter denitrificans (41), Heliobacterium modesticaldum (42), and
Dehalococcoides ethenogenes 195 (43), with a cluster of novel metabolic features
uncovered to enrich the knowledge of microbial metabolisms (Chapter 3). The
metabolic flux distributions in a green sulfur bacterium, Chlorobaculum
tepidumgreen (10), have been investigated by “*C-MFA to reveal the functionality
of reversed TCA cycle; and the impact of isotope discrimination on *C-MFA has
been rigorously evaluated using flux analysis of heterotrophic metabolism in
E.coli (Chapter 4). A novel computational approach has been developed to
decipher the dynamic metabolism of Shewanella oneidensis MR-1 by integrating

the bioprocess model with dynamic flux balance analysis (Chapter 5). In addition,



MicrobesFlux, a web-based platform for metabolic model drafting has been
constructed to bridge the gap between fast-paced genome-sequencing and slow-
paced metabolic model reconstruction (Chapter 6). Several broad-scope studies
have also been accomplished to supplement the systems biology of microbial
metabolism; and advanced fluxomics tools are expected to be developed in future

investigations (Chapter 7).
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Figure 1. Fluxomic analysis of microbial metabolisms.
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2.1 Abstract

Metabolic flux analysis is a vital tool used to determine the ultimate output
of cellular metabolism and thus detect biotechnologically relevant bottlenecks in
productivity. *3C-based metabolic flux analysis (**C-MFA) and flux balance
analysis (FBA) have many potential applications in biotechnology (1). However,
noteworthy hurdles in fluxomics study are still present. First, several technical
difficulties in both *C-MFA and FBA severely limit the scope of fluxomics
findings and the applicability of obtained metabolic information. Second, the
complexity of metabolic regulation poses a great challenge for precise prediction
and analysis of metabolic networks, as there are gaps between fluxomics results
and other omics studies. Third, despite identified metabolic bottlenecks or sources
of host stress from product synthesis, it remains difficult to overcome inherent
metabolic robustness or to efficiently import and express non-native pathways.
Fourth, product yields often decrease as the number of enzymatic steps increases.
Such decrease in yield may not be caused by rate-limiting enzymes, but rather is
accumulated through each enzymatic reaction. Fifth, high throughput fluxomics
tool hasn’t been developed for characterizing non-model microorganisms and
maximizing their application in industrial biotechnology. Refining fluxomics
tools and understanding these obstacles will improve our ability to engineer

highly-efficient metabolic pathways in microbial hosts.
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2.2 Introduction

Numerous chemical compounds, ranging from the anti-malaria drug
artemisinin (2) to the “biofuel” butanol (3,4), have been produced with the aid of
synthetic biology tools. The ability to efficiently synthesize natural or unnatural
products requires a systems-level understanding of metabolism. Functional
genomics tools such as genome sequencing, profiling of mRNA transcripts, and
proteomics, are widely used to attain a comprehensive knowledge of how
metabolic components (genes, proteins and metabolites) are regulated. In contrast
to traditional omics tools, flux analysis (measurement of metabolite turnover
rates) has become instrumental for physiological prediction and enzymatic rate
quantification in metabolic networks (5). This technology also allows for the
identification of metabolic interactions and the knowledge-based design of
cellular functions. As such, one can utilize this tool to rationally modify biological
hosts and analyze global physiological changes resulting from genetic

modifications.

Fluxomics, the cell-wide quantification of intracellular metabolite turnover
rates, was first performed via Flux Balance Analysis (FBA). This method uses the
stoichiometry of the metabolic reactions in addition to a series of physical,

chemical and biological characteristics (thermodynamics, energy balance, gene
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regulation, etc.) to constrain the feasible fluxes under a given objective function
(e.g., maximal biomass production). FBA is an underdetermined model (the
number of constraints is smaller than the number of reactions in the metabolic
network), which may give unrealistic metabolic readout. In spite of this
limitation, FBA provides a useful framework for predicting a wide variety of
cellular metabolisms. A complementary approach, *3C-based metabolic flux
analysis (**C-MFA) allows for precise determinations of metabolic status under a
particular growth condition. The key to **C-MFA is isotopic labeling, whereby
microbes are cultured using a carbon source with a known distribution of **C. By
tracing the transition path of the labeled atoms between metabolites in the

biochemical network, one can quantitatively determine intracellular fluxes.

Flux analysis can not only provide genetic engineers with strategies for
“rationally optimizing” a biological system, but also reveal novel enzymes useful
for biotechnology applications (5). However, flux analysis platforms are still not
routinely established in biotechnology companies. This review paper addresses
current developments and challenges in the field of fluxomics, which may guide
future study to bridge the gap between systems analysis of cellular metabolism

and application in biotechnology.
2.3 Advances and limitations in metabolic flux analysis

2.3.1 Steady-state flux model
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FBA and **C-MFA concentrate on the stoichiometric (rather than kinetic)
properties of metabolic networks. FBA has been widely applied to predict cell
growth rate, product yield using different feedstocks, lethality of gene knockouts,
and advantageous pathway modifications (6). Such a model provides general
guidelines for metabolic engineering and thus is a viable first step towards
improving biosynthetic yield (7). The hallmark of large scale FBA is the
COnstraint-Based Reconstruction and Analysis Toolbox (COBRA) (8), which

provides a general platform for fluxomics studies.

A number of optimization algorithms and computational strategies for
resolving in silico and in vivo inconsistencies have been proposed to improve the
applicability of FBA (7,9). For example, incorporation of thermodynamic
principles into FBA can constrain solution space (i.e., energy balance analysis)
and obtain both stoichiometrically and thermodynamically feasible fluxes (1). To
describe the ‘“non-optimal” metabolic behaviors, FBA can use a bi-level
optimization approach to estimate the potential trade-off between biomass
accumulation and the yield of a desired product (10). FBA can also relax the
objective function for maximization of the biomass and apply a Minimization of
Metabolic Adjustment Algorithm to solve fluxes in mutant strains (1). Such an
algorithm calculates fluxes by minimizing the difference between the wild-type
flux distributions and the knockout-strain fluxes. Furthermore, FBA can be

integrated with metabolic pathway analysis (MPA). MPA is a qualitative
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technique that examines functional routes existing in a metabolic network without
requiring knowledge of reaction rates (11). Combining MPA with FBA can
quantitatively trace the plausible paths for optimal product synthesis, calculate
cellular metabolism, and predict phenotypes under genetic manipulations or
culture conditions (12). One main advantage of FBA is its capability for genome-
scale modeling (including thousands of reactions), which bridge genomic
annotation and functional metabolic output. Accordingly, the number of FBA

models has increased exponentially since 1999 (13).

3C-MFA aims to rigorously quantify pathway activities in intracellular
metabolism by using both the isotopic labeling approach and in silico
computation. **C-MFA is accomplished by feeding microbes a **C-labeled carbon
source, measuring the enrichment pattern of the isotopomer in metabolites (e.g.
amino acids), and deciphering the fluxes via computational routines (14). Since
carbon fluxes through a metabolic network generate unique labeling patterns in
metabolites, the overall flux distributions can be determined using isotopomer
information. Advances in '*C-MFA, including mass spectrometry-based
metabolomics and isotopomer modeling approaches (such as novel algorithm
using elementary metabolite units), have been discussed in recent papers

(5,15,16).

Furthermore, open-source software has recently been published that

facilitates in silico modelling. For example, WEbcoli is web-based software for
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flux balance analysis of E.coli (17). In addition, OpenFLUX is computationally
efficient software for '*C-MFA (15), which incorporates the Elementary
Metabolite Unit (EMU) framework for calculation of isotopomer balances (18).
User-friendly software such as this allows biologists to perform fluxomics studies

with little programming knowledge.

Methodologies for FBA and *C-MFA share two key characteristics: the
use of a metabolic network and the assumption of a steady metabolic state (for
internal metabolites). However, the two techniques have different purposes. FBA
profiles the “optimal” metabolism for the desired performance; BC-MFA
measures in vivo operation of a metabolic network. The two approaches to flux
analysis are complementary when developing a rational metabolic engineering
strategy. By comparing existent metabolic fluxes which were empirically
determined via *C-MFA to the optimal metabolisms predicted by both FBA and
other “omics” tools (such as transcription analysis), one can deduce gene targets
for solving biotechnologically relevant productivity bottlenecks (19). Figure 2.1
shows that iterative flux analysis and genetic engineering of microbial hosts can
remove competitive pathways or toxic byproducts, amplify genes encoding key

metabolites, and balance energy metabolism (7).
2.3.2 Metabolic control and dynamic flux analysis
FBA and “*C-MFA disregard dynamic intracellular behavior. This avoids

the difficulties in developing kinetic models and performing intracellular
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experimental measurements. However, many biological systems may not maintain
a meaningful metabolic (or isotopic) steady state during the fermentation process
(20,21,22). The description of metabolic perturbation and regulatory mechanisms
requires kinetic modeling and control theories. For example, metabolic control
analysis (MCA) couples local enzyme kinetics with systematic behavior to predict
the control exerted on the targeted pathways by different components (e.g.
transcription, enzymes) (23). Although MCA is not a quantitative measurement of
flux, MCA can pinpoint bottle-neck enzymes (enzymes having the largest effect
on the desired flux) in a pathway and allow the analysis of steady-state
metabolism in response to changes in the cellular environment (24). In addition to
MCA, the cybernetic approach (a model based on process dynamics and control)
has been introduced for study of multi-enzyme systems and metabolic regulation
(25). By incorporating both the enzyme kinetics in pathways and the enzyme
synthesis Kinetics, the cybernetic approach emphasizes microbial process

dynamics and control during complicated fermentations (26).

Both MCA and the cybernetics approach focus on a simplified pathway
network. To perform cell-wide quantitative analysis of a dynamic system, it is
necessary to integrate the kinetic modeling with FBA and *C-MFA. Dynamic
FBA (dFBA) has been developed to illuminate changing global enzyme activities
(27,28). To avoid ordinary differential equations and dynamic optimization for

describing intracellular metabolism, dFBA can use the Static Optimization
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Approach (SOA) (29) which divides the time-course into numerous small
intervals. At each time interval, a steady-state flux is calculated under the
assumption of fast intracellular dynamics. By combining stoichiometric FBA for
intracellular metabolism with dynamic mass balances on extracellular substrates
and products, it is possible to reconstruct dFBA model for genome-scale analysis
of microbial metabolisms in industrial fermentations, where product synthesis is

often under dynamic control (30,31).

Recently, *C-dMFA (dynamic metabolic flux analysis) has been
developed for isotopically nonstationary cultures. To profile the flux distributions
for fed-batch cultures (slow dynamic metabolism), isotopic pseudo-steady state
was assumed and two dilution parameters were introduced to account for isotopic
transients. Another approach (Kinetic Flux Profiling) for solving intracellular
fluxes is to create a sudden increase of the portion of **C in the substrate feed,
then measure time-course samples as *C moves from the substrate into the
metabolites (32). The fluxes can be calculated based on the rates of isotopic
enrichment multiplied by the intracellular metabolite concentrations. A similar
principle has been proposed for the flux analysis of photoautotrophic
microorganisms (33) and E. coli in an isotopic transient phase (34). If the culture
is under both metabolic and isotopic non-stationary state, exploratory and
sophisticated *C-dMFA (dynamic **C-MFA) models have to be used to calculate

both metabolic and isotopic kinetics (20,35,36). To solve the *C-dMFA problem

23



efficiently, a set of computational algorithms have been developed for tracing
non-stationary isotopomer labeling in response to in vivo flux distributions
(20,35,36). The EMU (elementary metabolite unit) framework has also been
applied in **C-dMFA (18,37), because such algorithm can significantly improve
computational times for tracing the labeling information (38). To avoid extensive
simulation of dynamic isotopomer patterns, the SOA has to be applied by dividing
the growth period into small time intervals (30~60 min), then the “mini” quasi-
steady state *C-MFA can be applied at each time interval based on constraints
from simultaneous isotopomer analysis of the fast turnover metabolites (39). By
examining flux profiles over all time intervals, one can resolve the metabolic

transients during the entire cultivation period.
2.3.3 Technical limitations of fluxomics

Cell-wide fluxomics tools (i.e., FBA and '*C-MFA) have technical
limitations. In genome-scale FBA models, the number of constraints (i.e., the
availability of quantitative metabolite data) is much smaller than the number of
reactions in the metabolic network. The calculation of such underdetermined
systems depends on objective functions where one assumes that the metabolism
optimizes its native ‘‘goals’’ (such as biomass or co-factor production) (40). This
optimization principle has been questioned for several reasons. First, biological
systems (e.g., Bacillus subtilis) seem to display sub-optimal growth performance

(41). Second, a previous study examined 11 objective functions in E. coli and
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found no single objective function that can perfectly describe flux states under
various growth conditions (42). For example, unlimited aerobic growth on
glucose is best described by a nonlinear maximization of the ATP yield per flux
unit, but nutrient-limited continuous cultures favor biomass yield as the objective
function. Third, some native cellular processes cannot be simply described by
FBA. For example, cyanobacterial species (i.e., Cyanothece 51142) maintain their
circadian rhythms (e.g., nitrogen fixation and light dependent reaction activities)

under nutrient-sufficient and continuous light conditions (43,44).

The application of *C-MFA in industrial biotechnology also has several
bottlenecks. The most prevalent constriction occurs because current techniques
are insufficient for measuring large-scale metabolic networks. Obtaining labeling
information of free metabolites rather than amino acids and solving large-scale
nonlinear flux models pose two key challenges. As a result, most obtained flux
information is limited to central metabolism. To date, only two large-scale **C-
MFA (>300 reactions) have been reported, but many fluxes in their reports cannot
be precisely determined due to insufficient constraints (45,46). The genome-scale
3C-MFA is still in its infancy and requires further development of the relevant
experimental techniques and computational tools (47). A second issue is that **C-
dMFA is still poorly developed for determining dynamic metabolic behavior. It is
difficult for rapid sampling and precise measurements of metabolites at short time

intervals throughout the entire culture period. For example, to measure absolute
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intracellular metabolite concentrations, one has to grow cell in fully **C-labeled
medium, then the labeled cells are extracted with quenching solvent containing
known concentrations of unlabeled internal standards (the concentrations of
metabolites are calculated using the isotope ratio-based approach) (48). Such
measurement requires extremely high cost of analytical efforts including quick
sampling, rapid metabolite extraction, and a high resolution LC-MS instrument.
Furthermore, the time-dependent model includes ordinary differential equations
and significantly increases the computational complexity (20,34). Third, flux
determination assumes that enzymatic reactions are homogenous inside the cell
and that there are no transport limitations between metabolite pools. However,
eukaryotes have organelles (compartments) that may have diffusion limitations or
metabolite channeling (14,49). Compartmentalization of amino acid biosynthesis
further clouds the obtained amino acid-based labeling information (50).
Therefore, confident **C-MFA for eukaryotes not only requires the combination
of different analytical tools (GC-MS, LC-MS and NMR) to obtain extensive
labeling information (51), but also adequate sample processing and extraction
methods (e.g. separation of compartments by ultracentrifugation). A fourth
problem is that some industrial hosts and the great majority of environmental
microbes resist cultivation in minimal media, and introducing other nutrient
sources often significantly complicates metabolite labeling measurements and
flux analyses (52). Finally, a microbial community demonstrates complex

metabolic interactions between species. To date, only a few FBA models have
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been developed for community studies (53,54). The exchange of metabolites
among species is nearly impossible to unravel by **C-MFA because complete
separation and measurement of metabolites from a single species in a microbial
community is impossible (5). These technical limitations in both FBA and MFA
models are responsible for the gap between fluxomics and its applicability in

biotechnology.
2.4 Integration of fluxomics with other “omics”

It is desirable to integrate the concepts of systems biology (which
combines the readouts from transcription as well as protein/metabolite profiling)
with fluxomics (Figure 2.2) (47). For example, *C-MFA, enzyme activity assays,
and RT-PCR analysis can be used together to study E.coli mutants’ metabolism
(55). Additionally, the responses of E. coli to genetic modification have been
systematically examined by utilizing multiple high-throughput “omics” methods
(56). The results illuminate relatively small changes in mRNA and proteins in
response to genetic disruptions, which allow the cell to maintain a stable
metabolic state under changing growth conditions. A similar approach to the study
of Synechocystis 6803 has shown that the regulation of some enzymes is sensitive
to light conditions (57). Many other regulatory mechanisms, however, still remain
unknown. Furthermore, global regulators in industrial microorganisms have been

successfully identified by correlating transcript/transduction levels and metabolic
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fluxes (58,59,60,61). The discovery of functioning regulators provides insight to

the entire regulation in metabolic network.

On the other hand, challenges in integrated “omics” studies are also
present. The lack of understanding of metabolic regulation at different metabolic
levels complicates the rational design of biological systems, which is a major
barrier in industrial biotechnology. For example, post-transcriptional regulation
poses a significant challenge in integrating fluxomics with other “omics” studies.
It is well known that transcript and protein data correlate relatively well for
specific pathways, yet this correlation can be poor in cell-wide analyses (62).
Furthermore, most mRNA expression studies insufficiently predict enzyme
activities or flux changes in many E. coli pathways (63). In studies on the
adaptation of E. coli to environmental perturbations, the tricarboxylic acid cycle is
found to correlate well with molecular changes at the transcriptional level, but
flux alterations in other central metabolic pathways seem to be uncorrelated to
changes in the transcriptional network (64). Because of the complexity of
regulatory mechanisms spanning multiple cellular processes, fluxomics and other
“omics” studies may have inconsistent observations which complicate systems-

level analyses.

2.5 Fluxomics of microbes for industrial biotechnology

FBA allows in silico simulations of metabolism in “industrial

workhorses,” from which desired strains or targeted mutations can be identified.
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3C-MFA can assess in vivo metabolism of engineered strains under specific
growth conditions and validate FBA results. Here, we summarize recent
applications of FBA and *3*C-MFA for commonly-used industrial chassis (i.e., E.
coli, B. subtilis and S. cerevisiae) and for non-model microorganisms (i.e., less-

characterized or newly-discovered microorganisms).
2.5.1. Escherichia coli model

E. coli is the most commonly utilized species in fermentation industry. E.
coli flux models were reported as early as the 1990s (65,66). For biotechnology
applications, the Liao group first applied metabolic pathway analysis (MPA) to
guide the genetic manipulation of E.coli strains and channel the metabolic fluxes
from carbohydrate to the aromatic amino acid pathway (67). The Maranas group
has integrated cell growth and product synthesis in the OptKnock toolbox (10)
and applied it to construct high performance mutants. The computer-aided designs
have shown improved lactic acid, succinate, and 1,3-propanediol production (68).
FBA can predict lethality in a metabolic network where deletions of more than
one non-essential gene mutants may trigger the death of the organism. For
example, the Maranas group (69) analyzed the gene/reaction essentiality in a
genome-scale model of E. coli and systemically identified possible pairs of
synthetic lethals: non-essential genes whose simultaneous knockouts would have
a potentially lethal effect. Incorporating information about synthetic lethality into

the new model will curb the construction of ill-designed biological systems for
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biotechnology. Furthermore, FBA can be used to find rate-limiting steps for
product synthesis. For example, FBA revealed gene targets, and modification of
those genes (i.e., knocking out the genes for pyruvate forming enzymes, over-
expression of the glyoxylate shunt and glucose transport system) resulted in more
than a ten-fold increase in succinate production (70,71,72). FBA has also been
used to improve genetic strategies for the overproduction of secondary

metabolites, such as amino acids (73) and lycopene (74).

Besides genetic strategies, FBA can provide useful information for the
design of optimal fermentation conditions. For example, an FBA model was used
to identify nutrient limitations during recombinant interleukin-2 (IL-2) production
in E. coli. By supplementing specific amino acids, IL-2 production increased two-
fold in fed-batch fermentation (75). Recently, a reactor-scale dFBA model was
developed via a Static Optimization Approach to analyze E. coli metabolism for
the production of a biopharmaceutical drug (27). dFBA contains a steady state
FBA model embedded within a dynamic kinetic model that describes the time
evolution of fermentation process variables (e.g., biomass growth, glucose
consumption and products synthesis). Such a model provided guidelines for the

optimization of fermentations at the scale of a 1000L process.

The **C-MFA model was first used to investigate metabolic regulation in
E.coli under different genetic and environmental conditions (76). **C-MFA has

also been used to examine various biotechnological processes involved in the
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production of pharmaceuticals, amino acids and polymers. A large scale *C-MFA
with over 300 reactions was successfully developed for amorphadiene (a
precursor of the anti-malaria drug) producing E. coli strains (45). Another study
revealed a growth phase-dependent metabolic shift in a lysine-producing E. coli
strain (77). This work was performed in a fed-batch culture with rich medium
(containing yeast extract), and metabolic fluxes in both exponential growth and
stationary phases were estimated by measuring free metabolites. Metabolic
analysis of the stationary phase is important since many products are synthesized
during a non-growth phase. In a third example, **C-MFA of a 1,3-propanediol
producing E. coli strain was conducted in fed-batch fermentation (78). The **C-
MFA results showed a decrease in the split ratio between glycolysis and the
pentose phosphate pathway over the time-course of the culture in response to

increasing 1,3-propanediol fluxes.
2.5.2 Bacillus subtilis model

B. subtilis is the industrial organism of choice for the production of
vitamins, antibiotics, enzymes, and nucleosides. The FBA model for B. subtilis
was constructed based on a combination of genomic, biochemical, and
physiological information (79). The FBA model was iteratively corrected and
improved using information from high-throughput phenotypic screens of mutants,
substrate utilization, gene essentiality, and sequence analyses. The B. subtilis flux

model is mostly studied for riboflavin production, focusing on four aspects:
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investigating phenotypes of wild type and knock-out strains, assessing production
capacity, identifying the impact of different carbon sources on biosynthesis, and
characterizing the cellular response to different culture conditions. The Sauer
group has extensively investigated riboflavin-producing strains. They first used an
FBA model to quantify growth maintenance coefficients, the maximum growth
yield, and the specific riboflavin production rate in continuous cultivation (80).
Later on, they applied *C-MFA to the same strain and found that genetic
manipulations should target the NADPH balance and riboflavin biosynthetic
pathways (81). In other studies on B. subtilis, they revealed several guidelines for
high yield riboflavin production: 1. they compared the metabolic flux
distributions and maintenance energy of eight Bacillus strains and discovered that
B. licheniformis was the most suitable for industrial biotechnology (82); 2. they
found that using malate as a substrate resulted in a suppressed respiratory TCA
cycle and an enhanced overflow metabolism (83); 3. they found the pentose
precursors of riboflavin were mainly synthesized via the non-oxidative pentose-
phosphate pathway, so any suggested genetic modification should decrease the
activity of the oxidative pentose phosphate pathway (84). Recently, they
developed a **C-dMFA model for B. subtilis to identify the metabolic response of
riboflavin overproduction under a glucose-limited fed-batch culture (39). This
dynamic flux analysis was obtained by recording changes in labeling patterns of

intracellular amino acids under a metabolic pseudo-steady state assumption.
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2.5.3 Saccharomyces cerevisiae model

S. cerevisiae is a robust eukaryotic chassis used for the expression of a
wide range of products. For example, flux analysis revealed target genes in two
native pathways for the over-expression of succinate: the TCA and glyoxylate
cycles (85). Another study showed the enhancement of sesquiterpene production
via in silico driven metabolic engineering (86). Additionally, flux analysis has
been extensively applied for improving ethanol production. First, a number of
strategies were developed for the metabolic engineering of redox processes in S.
cerevisiae, resulting in a decrease in the yield of glycerol by 40% and an increase
in ethanol production under both glucose and xylose/glucose growth conditions
(87). Second, Dikicioglu et al. (88) applied a genome-scale FBA model to analyze
respiration-deficient mutants of S. cerevisiae for ethanol production. They found
that many genetic manipulation strategies (e.g., the overexpression of the
glutamate synthase gene) were unnecessary in a respiration-deficient metabolic
background. This indicates that the rate limiting steps for ethanol production can
change after the initial genetic manipulations of targeted genes. Third, a *C-MFA
model was used to screen ethanol production in 14 hemiascomycetous yeast
strains (50). This study suggests that S. cerevisiae is the ideal ethanol production
candidate due to a strong NADPH-driven pentose phosphate pathway. Other **C-
MFA studies characterized the metabolic shift between oxidative growth and

fermentative growth with ethanol production (89), investigated alternative carbon
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substrate (xylose) metabolisms (90), revealed key factors influencing biomass
growth on xylose (91), and examined the consumption of ethanol and other

storage carbohydrates in a glucose-limited chemostat culture (92).

Furthermore, a genome-scale FBA indicates an apparent enzyme
dispensability, i.e., 80% of yeast genes seem to be non-essential for viability
under laboratory conditions (93). The FBA illustrated the influence of non-
essential genes on metabolic robustness and environmental fitness due to genetic
buffering through alternative genes, while a **C-MFA (consisting of over 700
reactions) revealed a similar effect of metabolic network robustness on null
mutations (46). Understanding the role of these redundant genes is important for a

valid and efficient genetic modification.
2.5.4 Non-model microorganisms

Fluxomics is an important tool for the rigorous study of metabolism in
less-characterized microbes that provides novel insights for application of these
species to biotechnology. However, fluxomics have not been sufficiently applied
to non-model microorganisms as compared to model microbial hosts. Table 2.1
summarizes some milestone papers in fluxomics studies on non-model species
that are potentially useful for synthetic biology. Compared to the work done in the
field of fluxomics for industrial workhorses, far fewer studies have been
performed on non-model microorganisms. This is due to the complicated growth

conditions, poorly-understood metabolic networks, and significant lack of genetic
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and molecular biology tools. However, non-model environmental microorganisms
are also important for industrial biotechnology because they often possess native
biochemical pathways for chemical synthesis or the ability to utilize cheap
substrates (94). Furthermore, flux analysis can be used to discover novel enzymes
that can be cloned into industrial microbes to improve their capacity for product
synthesis. For example, **C-MFA revealed a citramalate pathway for isoleucine
biosynthesis (independent of the common threonine ammonia-lyase pathway)
(95,96). Citramalate synthase, which has also been detected in some
environmental bacteria (97,98,99), can be engineered into E. coli for 1-propanol
and 1-butanol production. The new pathway bypasses threonine biosynthesis and
represents the shortest keto-acid-mediated pathway; as such, it improved biofuel
yield 9 to 22-fold (100). Currently, high-throughput genome sequencing methods
are mapping genomes in novel microbes at a pace that far exceeds the pace of
functional characterization of these species. Therefore, a high throughput **C-
MFA technique is required for screening non-model microorganisms for new

enzymes and maximizing their application in industrial biotechnology (5).
2.6 Finding bottlenecks for Industrial Biotechnology

One of the main goals of fluxomics is to indentify bottlenecks for
industrial biotechnology and thereby assist in the creation of rational engineering
strategies. Simple measurements of metabolism, however, are not enough to

overcome unpredictable challenges in industrial biotechnology. Metabolic
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regulation is very complex, and systems biology tools are incapable of revealing a

general strategy for synthetic biology (101).

Bottlenecks in industrial biotechnology can be explained from the view of
fluxomics. First, metabolic robustness (the ability to maintain metabolic
performance under genetic or environmental perturbations) is a long-recognized
key property of microbial systems (102). This basic mechanism is often
responsible for the gap between computationally aided design and final
experimental outcomes. For example, a *C-MFA study indicates that E. coli
shows remarkable robustness in the central carbon metabolism in the presence of
genetic variation, and is even more flexible in response to altered environmental
conditions (e.g., different nutrients or oxygen levels) (76). Analyses of E. coli
components at multiple “omics” levels also reveal unexpectedly small changes in
messenger RNA, proteins and metabolite levels for most genetic disruptions. This
is because E. coli actively regulates enzyme levels to maintain a stable metabolic
state in the presence of perturbations (56,64). Similarly, B. subtilis shows rigidity
and suboptimal performance for its flux regulation in over 137 genetic
backgrounds (41). Furthermore, gene essentiality and pairwise genetic
interactions have been investigated in S. cerevisiae (93,103). It has been found
that a gene’s function is buffered by duplication in S. cerevisiae genomic DNA or
by an alternative biochemical pathway. Although only 13% of genes were

suggested to be essential by single knockout experiments, simultaneous deletion

36



of pairs of non-essential genes (>70% of the total metabolic genes) were found to
inhibit growth. Invariability of metabolic flux under mutagenic genotypes seems
to be an important feature in many biological systems, and thus successful
metabolic strategies highly depend on an understanding of robust cellular nature

(104,105,106).

Metabolic engineering of industrial chassis is based on the premise that
the yield of a desired product can be increased by identifying and over-expressing
the enzymes that catalyze the rate-limiting steps in a given metabolic pathway.
However, a method based on over-expressing rate-limiting enzymes will only
work if these rate-limiting enzymes exist and remain rate-limiting when their
activities are increased. Previous studies have shown that the commonly-believed
“rate-limiting” enzymes may not exist in some industrial microbes and an
increase in productivity has to be achieved by coordinated expression of entire
pathways (107). Furthermore, rate-limiting steps in a metabolic network often
shift after initial targets have been engineered. For example, phenotypic data in S.
cerevisiae mutants revealed that some FBA-predicted gene targets for ethanol
production are invalid if the cell’s respiratory genes have been knocked-out (88).
Another example of this phenomenon is highlighted by the metabolic
consequences of the deletion of the methionine and cysteine biosynthesis
repressor protein (McbR) in Corynebacterium glutamicum, which yielded no

overproduction of methionine but drastic accumulation of homolanthionine (108).
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The above evidence indicates that rate-limiting steps often shift after initial targets
have been engineered. Additionally, simultaneous importation and expression of a
few heterologous genes to improve the rate-limiting pathway may fail if the non-
native pathway is incompatible with the host. These efforts often lead to

metabolic imbalance and accumulation of toxic metabolites (3,4).

Based on the recent publications, we have constructed a linear regression
model which shows that the vyield of biosynthetic products decreases
exponentially as a function of the steps away from central metabolism in S.
cerevisiae (Figure 2.3). It is easier to achieve high carbon fluxes to the central
metabolites, possibly because enzyme efficiency in central metabolism is usually
high (109). However, the yields of secondary metabolites are smaller because
each additional enzymatic step may not be perfectly efficient (model regression
shows an average of ~67% efficiency in each enzymatic step in secondary
metabolisms). This loss of yield is unavoidable due to the metabolism channeling
the intermediates away from the desired product. Potential solutions to this
problem include: 1. designing host-compatible enzymes with high product
specificity (110); 2. feeding intermediates to the cell to reduce the number of
enzymatic steps to final product (111); 3. creating synthetic protein scaffolds,
which significantly improve intermediate conversion efficiency and overall

biosynthetic yield (112).
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In conclusion, fluxomics studies enable the quantification of intracellular
metabolism. However, this tool is not fully developed, and it remains difficult to
deduce cell-wide pathway bottlenecks and to provide effective strategies for
biotechnology applications. Numerous technical difficulties in developing flux
analysis methods and complicated metabolic regulatory mechanisms have
severely limited the scope of fluxomics in industrial biotechnology. It is necessary
for the future development of flux analysis to combine other advanced “omics”
analysis and molecular biology techniques to resolve challenges in the fluxomics

fields.
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Figure 2.1. An iterative approach of fluxomic analysis and rational metabolic

engineering
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Figure 2.2. *C-assisted cellular metabolism analysis
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Figure 2.3. Product yields as a function of enzymatic steps from central
metabolism. The solid line is the regression of published product yields by S.
cerevisiae as a function of reaction steps from intermediate metabolites in central
metabolism (including glycolysis, TCA cycle and pentose phosphate pathways).
The yield declines exponentially as the number of reaction steps increases. The
dotted lines are boundary curves with yield efficiencies of 30% and 70%
respectively. All yield data from initial carbon sources are estimated from recent
papers using our best judgment. The synthesized products and reaction steps are:
Poly(R-3-hydroxybutyrate) (113) (steps=3); Glycerol (114) (steps=2);
Artemisinic acid (2) (steps=10); Amorphadiene (115) (steps=9); Pyruvate (116)
(steps=0); Geranylgeraniol (117) (steps=10); Hydrocortisone (118) (steps=19);
Squalene (119) (steps=9); p-carotene (120) (steps=12); Lycopene (120)
(steps=11); Phytoene (120) (steps=10); p-hydroxycinnamic acid (121) (steps=12);
Naringenin (122) (steps=14); Pinocembrin (122) (steps=14); Xylitol and Ribitol

(123) (steps=3); Ethanol (124) (steps=2); L-ascorbic acid (125) (steps=8).
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Table 2.1. Recent application of fluxomics of non-model microbes to bio-product
synthesis

Species Product Substrate Model Results from study  Reference

description
MFA models
(combining
transcriptome,
metabolome
analysis) have been
developed to study

BC-MFA fluxes under
different cultivation
modes (mini-
bioreactor, batch,
fed-batch) using
various carbon
sources.

Glucose
Lysine (sucrose,
fructose)

Corynebacterium

glutamicum (126)

The C. glutamicum
mutant (mcbR)
showed no
overproduction of
methionine, but
accumulation of
homolanthionine.

BC-MFA
only focuses
on flux
Methionine Glucose distribution
in the
methionine
pathway.

Corynebacterium

glutamicum (108)

The flux from
phosphoenolpyruvat
e to oxaloacetate
catalyzed by
BC-MFA phosphoenolpyruvat
Corynebacterium Gl (focus on e carboxylase
. utamate Glucose . -
glutamicum anaplerotic (PEPc) was active in
pathways) the growth phase,
whereas pyruvate
carboxylase was
inactive.

(127)

The model indicated:
1. NADPH was
produced primarily
by transhydrogenase
and/or by NADP-
BC-MFA dependent malic
Actinobacillus Succinate Glucose (viaNMR enzyme; 2.
succinogenes formate and N and GC-MS)  oxaloacetate and
aHCO,
acetate and enzyme malate were
assay converted to
pyruvate; 3. the
effects of NaHCO;
and H, on metabolic
fluxes were
quantified.

(128,129)
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Geobacillus
thermoglucosidasiu
s

Clostridium
acetobutylicum

Penicillium
chrysogenum

Synechocystis sp.
PCC6803

Synechocystis sp.
PCC6803

Chlamydomonas
reinhardtii

Zymomonas mobilis

Ethanol

Butanol

Penicillin

Hydrogen

Light energy
& Biomass

Light energy
& Biomass

Ethanol

Glucose

Glucose

Gluconate
/glucose

CO,

Glucose/CO,

(@)

0,

Glucose/

FBA and *C-
MFA

Genome
scale-FBA

BC -MFA
(focus on
pentose
phose phase
pathway and

glycolysis)

FBA

13C-MFA and
dynamic *C -
MFA

FBA model
including
three
metabolically
active
compartment
s

FBA with

The model
characterized the
ethanol production
under three oxygen
conditions. The FBA
analysis pointed out
several gene targets
for improving
ethanol production.

The engineered
strain was able to
produce 154 mM
butanol with 9.9 mM
acetone at pH 5.5,
resulting in a butanol
selectivity (a molar
ratio of butanol to
total solvents) of
0.84.

The model
determined the
pentose phosphate
pathway split ratio
and estimated
NADPH
metabolism.

The results included
H, photoproduction,
strategies to avoid
oxygen inhibition,
and analysis of
hetero-, auto-, and
mixotrophic
metabolisms.

The model analyzed
heterotrophic,
autotrophic and
mixotrophic
metabolisms.

The model indicated
that heterotrophic
growth had a low
biomass yield on
carbon, while
mixotrophical and
autotrophical growth
had higher carbon
utilization
efficiency.

Model analyzed the

(19)

(130)

(131)

(132,133)

(33,57)

(134)

(135)




Zymomonas mobilis

Coculture
(Desulfovibrio
vulgaris and
Methanococcus
maripaludis)

Community
(oxygenic
phototrophs,
filamentous
anoxygenic
phototrophs, and
sulfate-reducing
bacteria).

Phaffia rhodozyma
and Haematococcus
pluvialis

Glucose with
(peptone &
yeast extract)

xylose
Glucose
Ethanol [frucose/
xylose
CH,4 Lactate
Biomass and
nitrogen CO,
fixation
Astaxanthin

various
biological
objectives

BC_MFA via
1H-NMR
31P-NMR
spectroscopy

FBA analysis
of microbial
consortia

FBA and
elementary
mode
analysis

FBA analysis
of mix
culture

metabolic
boundaries of Z.
mobilis. The study
indicated that
ethanol and biomass
production depend
on anaerobic
respiration
stoichiometry and
activity.

The model
characterized the
intracellular
metabolic state
during growth on
glucose, fructose and
xylose in defined
continuous cultures.

The model predicted
the ratio of D.
vulgaris to M.
maripaludis cells
during growth. It
was possible to
eliminate formate as
an interspecies
electron shuttle, but
H, transfer was
essential for
syntrophic growth.

The model predicted
and described
relative abundances
of species, by-
products, and the
metabolic
interactions.

The two major
astaxanthin-
producing
microorganisms
exhibited elevated
yields (2.8-fold)
under mixed culture
conditions compared
to pure culture.

(136)

(54)

(33)

(137)




Chapter 3

BC-Pathway Analysis of Environmental Microorganisms

3.1 *C-pathway analysis protocol

Novel metabolic features of environmental microorganisms can be
revealed by *C-pathway analysis. As a complementary method to transcriptomics
and proteomics studies, *3C-pathway analysis can be used to uncover novel
enzymes, investigate mixotrophic metabolism, and optimize the medium for slow-
growing microbes. A protocol for *C-pathway analysis of environmental
microorganisms is attached in Appendix 1. In general, *C-pathway analysis has

three major steps.

The first step is to grow microbes on **C-labeled carbon substrates. Three
key factors affect the '*C-pathway analysis: medium composition, **C-labled
carbon substrate, and culture modes. To avoid measurement noises from non-
labeled carbon in nutrient supplements, a minimal medium with only one **C-
labeled carbon source is required in tracer experiments. To collect the
“fingerprinting” labeling patterns of metabolites synthesized from different
pathways, singly labeled carbon substrates (>98% pure) are normally
recommended in '*C-pathway analysis. To guarantee both metabolite and

isotopomer steady state are achieved in **C-pathway analysis, microbes can either
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be cultured under chemostat mode, using typical bioreactors with continuous

feeding, or batch mode, using shake flasks or small-scale mini-batch reactors.

The second step is to analyze amino acid labeling patterns using GC-MS.
Amino acids are abundant in protein and thus can be obtained from biomass
hydrolysis. To make the amino acids volatile enough for GC separation, amino
acids are derivatized by N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide
(TBDMS) prior to analysis. The TBDMS-derivatized amino acids can be
fragmented by MS and result in different arrays of fragments, including four
characteristic arrays of fragments that can reflect the *3C-labeling patterns of
amino acids: fragment (M-15)", which contains the entire amino acid but has lost
a 15 MW methyl group; fragment (M-57)", which contains the entire amino acid
but has lost a 57 MW tert-butyl group; fragment (M-159)*, which has lost a 159
MW group that contains the 1% carbon (a carboxyl group) of the amino acid; and
fragment (f302)", which consists of a 302 MW group containing the amino acid
without its R group. The final isotopic labeling patterns of proteinogenic amino
acids are reported as mass fractions, such as M0, M1, M2, M3 and M4, to

represent the percentage of fragments containing zero to four **C labeled carbons.

The third step is to trace **C carbon transition in the proposed pathways
and to verify whether the labeling patterns in key metabolites are consistent with
the annotated enzymatic reactions. Since errors or gaps within annotated

pathways are common for poorly characterized microorganisms, the pathway
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activity uncovered from *3C-pathway analysis can be useful in functional
characterization of metabolic pathway activities. Derived from the isotopic
analysis of amino acids, labeling information about eight metabolites in the
central carbon metabolism is provided and is used to reflect the functions of

associated metabolic pathways.

3C-pathway analysis is a powerful tool to probe active carbon metabolic
pathways in vivo. Table 3.1 illustrates several carbon metabolic pathways that can
be revealed by *C-labeled proteinogenic amino acids. In cooperation with in vivo
physiological studies, transcription assays, and in vitro biochemical
characterizations, new insights to carbon metabolisms of organisms can be

illustrated.
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Table 3.1 Fingerprinting **C-labeling patterns of amino acids for identifying

novel metabolic pathways and enzymes.

Pathways and B3C-carbon Key amino “Fingerprinting”
enzymes substrate acids labeling patterns
Notably lower (with [1-
The Entner- 13 13 ;
Duodroff (ED) [1 13C] glucose, or Ser & Ala C_] glucgse) or higher
athwa [6-7°C] glucose (with [6-7°C] glucose)
P y 13C abundance in Ser
. Non-labeled CO, Notably lower **C
igﬂidléfélve with [3-2°C] Ala, éizp & | abundance in Asp and
Y pyruvate Glu than in Ala

[3-13C] pyruvate,
or Asp & Glu
[2-*C] glycerol

The branched
TCA cycle

Different labeling
patterns in Asp versus in
Glu

(Re)-citrate

Non-labeled a-carboxyl
group of Glu

synthase in TCA  |[1-"°C] pyruvate Glu
cycle

The citramalate- N

pathway in [2-°C] pyruvate

isoleucine or [1-"°C] acetate Leu & lle

biosynthesis

Identical labeling
patterns in Leu and lle

Non-labeled CO,
with labeled His & Ser
organic carbon

The Calvin-
Benson cycle

Significantly low *C
abundance in Ser and
His

The oxidative

pentose phosphate {[1-*C] glucose Ala non-labeled Ala >50%

pathway

The CO,- 3C-bicarbonate 3

anaplerotic with non-labeled Ala & Asp !Enrlched C abundance
. in Asp

pathways organic carbon
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3.2.1 Abstract

The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC
51142 (Cyanothece 51142), is able to grow aerobically in nitrogen-fixing
conditions under alternating light-dark cycles or continuous illumination. This
study investigated the impacts of carbon and nitrogen sources on Cyanothece
51142 metabolism via *3C-assisted metabolite analysis and biochemical
measurements. Under continuous light (50 pmol photons/m?s) and nitrogen-
fixing conditions, we find glycerol addition promoted aerobic biomass growth (by
twofold) and nitrogenase-dependent hydrogen production (up to 25 pumol H,/mg
chlorophyll/hr), but strongly reduced phototrophic CO, utilization. Under
nitrogen-sufficient conditions, Cyanothece 51142 was able to metabolize glycerol
photoheterotrophically, and the activity of light dependent reactions (e.g., oxygen
evolution) was not significantly reduced. In contrast, Synechocystis sp. PCC 6803
showed apparent mixotrophic metabolism under similar growth conditions.
Isotopomer analysis also detected that Cyanothece 51142 was able to fix CO, via
anaplerotic pathways, and to uptake glucose and pyruvate for mixotrophic

biomass synthesis.

Key words: *3C-assisted, anaplerotic pathway, CO, utilization, glycerol,

hydrogen, nitrogenase
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3.2.2 Introduction

Rising concerns about global warming due to the greenhouse effect have
renewed research focused on biological capture of CO,. Cyanobacteria have
versatile metabolic capabilities, which allow them to grow under autotrophic,
heterotrophic, and mixotrophic conditions (1,2,3). More importantly, some
cyanobacteria can capture solar energy to fix nitrogen and generate H,, thereby
serving as a source of biofertilizer and biofuel, while simultaneously consuming
atmospheric CO, (4,5,6,7,8,9). Cyanothece 51142, a unicellular diazotrophic
cyanobacterium, is able to grow aerobically under nitrogen-fixing conditions and
has been recognized for contributing to the marine nitrogen cycle. The recent
sequencing of the Cyanothece 51142 genome and its transcriptional analysis
uncovered the bacterium’s diurnally oscillatory metabolism in alternating light-
dark cycles (photosynthesis during the day and nitrogen fixation at night)
(10,11,12). In general, cyanobacteria use spatial or temporal separation of the
oxygen-sensitive nitrogen-fixation and the oxygen-evolving photosynthesis as a
strategy for diazotrophic growth (9,13). Interestingly, Cyanothece 51142
demonstrates simultaneous N, fixation and O, evolution under continuous light
conditions, though it appears to be unicellular (14,15). For example, a recent
study on transcriptional and translational regulation of continuously-illuminated
Cyanothece has revealed strong synthesis capability for nitrogenase and circadian

expression of 10% of its genes (10,11). Furthermore, Cyanothece strains usually
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utilize exogenous carbon substrates for mixotrophic growth under light and for
heterotrophic growth under dark conditions (16). Carbon substrates are key
factors controlling the efficiency of cyanobacterial aerobic growth and hydrogen
production (7,16,17,18,19). Genome analysis studies have revealed that
Cyanothece 51142 has a unique gene cluster on its linear chromosome containing
key genes involved in glucose and pyruvate metabolism (12). However, the

ability of this strain to metabolize glucose or pyruvate remains unknown.

To quantitatively examine the effect of carbon and nitrogen sources on
Cyanothece central metabolism, this study investigated the impact of three carbon
sources (glucose, glycerol, and pyruvate as representatives of sugar, lipid
derivatives, and organic acids from central metabolic pathways, respectively) on
Cyanothece 51142 growth and metabolism. Two nitrogen sources other than N,
ammonia and nitrate, were also examined. Precise readouts on metabolic state and
activity were based on *C-assisted metabolite analysis integrated with
biochemical assays and the gene expression patterns obtained by reverse
transcription PCR (RT-PCR) (20,21,22,23,24,25). Superior to the traditional **C
method (1), the non-radioactive *C method can provide rich information about
which carbons within a metabolite are labeled, and thus enable an in-depth
understanding of carbon utilization and metabolic regulation in Cyanothece

51142.

3.2.3 Materials and methods
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Bacterial strains and growth conditions. Cyanothece 51142 were first
grown in 150 mL Erlenmeyer flasks fed with ASP2 medium (16) without nitrate.
Ambient carbon dioxide provided the sole carbon source. For experiments
examining the effect of nitrogen sources, 18 mM NaNO; or 17 mM NH4CI was
added into the medium. Cultures were grown aerobically under continuous light
(50 pmol photons'm™?-s™) on a shaker at 150 rpm and 30°C. Cells at late mid-log
phase were sub-cultured into different cultural media with various nitrogen and
carbon sources. Isotopically-labeled carbon substrates (Cambridge Isotope
Laboratories, Andover, MA) were used for mixotrophic growth, including 54 mM
glycerol (2-C, >98%), 26 mM glucose (U-C, >98%) and 11 mM sodium
pyruvate (3-1*C, >98%). For tracer experiments, a 3% inoculum from unlabeled
stock culture was used to inoculate a 50 mL medium containing labeled carbon
sources. At the mid-log phase of growth, a 3% inoculum from the first isotopic
labeled culture was used to inoculate 50 mL sub-cultures with the same medium
to remove the effect of unlabeled carbon introduced from the initial inoculum.
Cell growth was monitored by a UV-Vis spectrometer (Genesys, Thermo
Scientific, USA) at 730 nm. To perform a comparative study, a glucose tolerant
Synechocystis strain  PCC 6803 (a model cyanobacterium for studying
fundamental processes of photosynthetic metabolism) was also cultured in BG11
medium (pH=7.6) under the same growth conditions (continuous light and 30 °C,
(26). The BG11 medium was supplemented with 6 mM glucose (U-3C, >98%) to

support mixotrophic growth. Synechocystis PCC 6803 were also sub-cultured in
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the same labeled medium twice before sampling for ‘*C-labeled metabolite

analysis.

Metabolite and photosynthetic activity analysis. To analyze metabolites
in Cyanothece 51142, biomass was harvested at the middle-log phase of growth
(~90 hours) by centrifugation at 7,000 rpm for 15 min at 10°C. The concentrations
of pyruvate, glucose and glycerol were analyzed with enzymatic assay kits (R-
Biopharm, Germany). To measure hydrogen produced by Cyanothece 51142, 20
ml of culture solution was taken from the culturing flask after three days and
transferred into 35.2 ml glass vials sealed with rubber septa and kept under
continuous light (50 pmol photons'm?s™). A modified protocol was used to
quantify hydrogen (27). Briefly, hydrogen that accumulated in the headspace of
the sealed culture vials (for 5 hours) was withdrawn with a Hamilton gas-tight
syringe and quantified on an Agilent 6890N Gas Chromatograph with a molseive
5A 60/80 column (inner dimensions 6’x1/8”) and Thermal Conductivity Detector.
Injection, oven, and detector temperatures were 100°C, 50°C, and 100°C,
respectively. Argon was the carrier gas (flow rate of 65 mlmin™). All

measurements included three biological replicates.

Photosynthesis activities were determined based on measurements of
chlorophyll fluorescence and oxygen evolution. Chlorophyll fluorescence profiles
of photosystem 11 (PSII) of Cyanothece 51142 under different nutrient conditions

were detected by a FL100 fluorometer (Photon Systems Instruments, Brno, Czech
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Republic) as detailed before (28). All samples taken for measurement were
diluted to ODy3 ~0.2 using cell-free ASP2 medium. The samples were first
adapted for 3 min in total darkness. During the measurement (performed at room
temperature), the fluorometer emitted saturating light pulses to determine
samples’ fluorescence yield. The photosynthesis activity was derived by the
maximum quantum yield (F./Fn) according to the formula F./Fy, = (Fm - Fo)/Fnm,
where Fy is initial fluorescence and Fn, is maximum fluorescence at the beginning

of measurement (29).

Oxygen evolution rates of Cyanothece 51142 grown under different
nutrient conditions were measured with a Hansatech oxygen electrode. Assays
were performed at 30 °C on whole cells in ASP2 media with a saturating light
intensity of 8,250 pmol photons'm?s™ for 2 mins in a 2.5-mL reaction volume.
For each reaction, the chlorophyll concentration of each sample was diluted to ~6
ug'ml™. The oxygen evolution rates (umol Ozemg chlorophyll™shr) were then

measured and normalized based on chlorophyll concentration.

RNA extraction and reverse transcription PCR (RT-PCR). The
bacteria grown under different cultural conditions were harvested at mid-log
phase according to the corresponding growth curves. The total RNA was
extracted by using a PureLink™ RNA Mini Kit (Invitrogen, California),
following the manufacturer’s instruction. cDNA was synthesized from ~2 g

RNA by using a High-Capacity cDNA Reverse Transcription Kit (Invitrogen,
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California). The primers for RT-PCR reactions were designed using Primer
Premier 5 software (PREMIER Biosoft) and analyzed by OligoAnalyzer 3.0
software (Integrated DNA Technologies, Coralville, USA). The forward primer
(AGCGGTGGAGTATGTGGT) and reverse primer
(GGCTGGGTTTGATGAGATT) were employed to amplify a 16S rRNA gene as
a control. The forward primer (CCGACTACACTCCGAAAG) and reverse primer
(ACGTAACGCCCGTAATGC) were used to amplify the Rubisco (rbcL) gene
and the forward primer (TAATCACGAAACGGGAG) and reverse primer
(CACCACATCAGCGTATTG) to amplify the prk gene. The PCRs were
conducted with the following cycle conditions: 2 min of activation of the
polymerase at 94 °C followed by 30 cycles consisting of 1 min at 94 °C, 30 s at
53 °C and 2 min at 72 °C; finally, a 10 min extension process was performed at
72 °C. The final PCR product was observed directly on 2% agarose gels after

electrophoresis.

Isotopic analysis. The preparation and isotopic analysis of proteogenic
amino acids were performed as previously described (30,31). In brief,
exponentially growing biomass from ~20 ml culture was collected by
centrifugation (8,000xg, 10 min, 4°C) and hydrolyzed in 6 M HCI at 100°C for 24
h. The amino acid mix was dried and derivatized in tetrahydrofuran (THF) and N-
(tert-butyl dimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich, St. Louis,

MO) at 70°C for 1 h. A gas chromatograph (GC) (Hewlett-Packard, model
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7890A, Agilent Technologies Inc., Ballwin, MO) equipped with a DB5-MS
column (J&W Scientific, Folsom, CA) and a mass spectrometer (MS) (5975C,
Agilent Technologies Inc., Ballwin, MO) were used for analyzing amino acid
labeling profiles. The ion [M-57]" from unfragmented amino acid was detected
and mass fractions of key amino acids were calculated (32). The substrate
utilization ratios R (reflecting the degree of mixotrophic metabolism) were

calculated from the labeling patterns of proteogenic amino acids:

0.98xnxV,

C

(> i1xM,)
+0.01><V002_ ,Zl: '_>R:Vsub 1)
mx=V

Amino acid X: =
+Vg, C Voo

sub

where the ratio R indicated the utilization of labeled carbon substrate over
unlabeled CO, for producing an amino acid X (and its precursors). M; was the
GC-MS isotopomer fraction for the given amino acid X (i.e., Mg was the
unlabeled fraction, M; was the singly labeled fraction, M, was the doubly labeled
fraction, M3 was the triply labeled fraction, etc). C was the total number of carbon
atoms in the amino acid molecule. Vg, was the carbon flux from **C labeled
substrate, Vco, was the carbon flux from CO,; 0.98 was the purity of the labeled
carbon substrate; 0.01 was the natural abundance of *3C, m was the total number
of carbons in the substrate molecule, and n was the total number of labeled
carbons in the substrate molecule. The ratio R indicated the amount of labeled

carbon that percolated through the central metabolic networks (Figure 3.2.1).
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3.2.4 Results

Cell growth with different carbon and nitrogen sources. Figure 3.2.2
and Supplementary Figure 3.2.S1 shows the effect of carbon and nitrogen
substrates on the growth of Cyanothece 51142 under continuous light. Biomass
growth was significantly enhanced by addition of glycerol to ASP2 medium. For
example, glycerol addition doubled the specific growth rate from 0.28 day™ to
0.63 day™ under N, fixing conditions. These results are consistent with an earlier
report on two Cyanothece strains (16). On the other hand, Cyanothece growth was
not apparently enhanced by either glucose or pyruvate (Supplementary Figure
3.2.51), and high concentration pyruvate (64 mM) inhibited Cyanothece growth.
Compared to nitrogen fixing cultures, the presence of nitrate salts in the growth
media increased Cyanothece autotrophic growth rates from 0.28 day™ (N fixation
condition) to 0.37 day™ (nitrate-sufficient condition). Similarly, the presence of
glycerol enhanced growth rate by two-fold (from 0.60 day™ to 1.02 day™). As
expected, high concentrations of ammonium salts (17 mM) fully inhibited growth
(data not shown) because of its well-known deleterious effect on photosystems of

cyanobacteria (33,34).

Isotopic analysis of amino acids. *C enrichment patterns in key
metabolites were used to estimate the relative utilization of labeled carbon
substrates (i.e., glucose, pyruvate, or glycerol) and CO, for metabolite synthesis

under mixotrophic growth. Figure 3.2.1 shows the central metabolic pathways in
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Cyanothece 51142 (http://www.genome.jp/kega/). Five amino acids were

analyzed for their labeling: histidine (precursor: ribose-5-phosphate and 5,10
methyl-THF), synthesized from the Calvin Cycle and pentose phosphate pathway;
serine (precursor: 3-phosphoglycerate, a product from the Calvin Cycle); alanine
(precursor: pyruvate, originated from carbon substrate or CO, fixation); and
aspartate and glutamate (precursors: oxaloacetate and 2-oxoglutarate,
respectively, synthesized from the citric acid cycle). Under nitrate-sufficient
conditions, glycerol could be used as the sole carbon source for synthesis of
alanine, serine, and histidine (as indicated by approximately infinite R values).
This indicates that the cell was undergoing completely heterotrophic metabolism.
R values of some key amino acids in glucose and pyruvate cultures were positive
and thus the two carbon sources were actually utilized for biomass synthesis
(Table 3.2.1). However, their measured R values were between 0 and 0.3, which
indicated that CO, was the main carbon source for metabolite synthesis. This
result was consistent with the fact that glucose and pyruvate did not apparently
improve the biomass growth. Compared to nitrogen-sufficient conditions,
nitrogen fixing conditions further limited glucose and glycerol utilization, as
shown by the decreased labeling fractions of three key amino acids (i.e., alanine,

serine, and histidine) (Table 3.2.1).

Nitrogenase-dependent hydrogen production, photosynthesis and

Calvin Cycle activity. Hydrogen production under continuous light with different
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carbon substrates (N, as the sole nitrogen source) was measured in the
exponential (day 4) and stationary (day 9) growth phases, respectively
(Supplementary Figure 3.2.S2). In the exponential growth phase under nitrogen
fixing conditions, hydrogen production rates were as follows: for glycerol (25+6
pmol Hy/mg chlorophyll/hr); for glucose (1319 pmol Hy/mg chlorophyli/hr); for
pyruvate (4+2 pmol Hp/mg chlorophyll/hr); and in the photoautotrophic condition
(51 pmol Hy/mg chlorophyll/hr). Under all nitrate or ammonium chloride
conditions, hydrogen production was not detected regardless of the carbon

substrate.

The measurement of photosynthetic parameters (Figure 3.2.3) suggested
that, compared to photoautotrophic conditions, addition of an exogenous carbon
source (glycerol, glucose, or pyruvate) did not strongly suppress the maximal
quantum vyield of PSII (F./Fy) or the oxygen evolution rate. Nitrate-sufficient
conditions enhanced the oxygen evolution rates by 2~3 fold compared to
nitrogen-fixing conditions, while the change of quantum yields of PSII were much
less significant (10~30%). Gene expression in the carbon fixation pathway was
also determined (Figure 3.2.4). Reverse transcription PCR (RT-PCR) results
indicated that two key enzymes in Calvin Cycle (ribulose-1,5-bisphosphate
carboxylase oxygenase (Rubisco, rbcL) and phosphoribulokinase (prk)) were
functional under growth conditions with glycerol or glucose. The above

measurements confirm that the light dependent reactions were active under all
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culture conditions, even though carbon substrates reduced the relative amount of

CO; fixation for biomass synthesis.
3.2.5 Discussion

Carbon substrate utilization and regulation. In continuous light,
Cyanothece 51142 can efficiently utilize glycerol for aerobic growth. Based on
the measurement of carbon substrates in the culture medium during the
exponential growth phase, the uptake rates of glycerol were 0.22+0.05 g-(g dry
biomasseday)™ under nitrogen fixing and 0.35+0.06 g-(g dry biomasseday)™ under
nitrate-sufficient conditions. Glycerol promoted Cyanothece 51142 growth
because it provided carbon and energy sources. Under nitrate-sufficient
conditions, the unlimited large value of R from serine, alanine and histidine
labeling data indicated that 3-phosphoglycerate node, pyruvate node and ribose-5-
phosphate node in the central metabolic pathways (Figure 3.2.1) were completely
originating from glycerol, while the contribution of CO, photofixation to those
metabolite nodes was negligible. As a comparison, a glucose-tolerant strain of
Synechocystis sp. strain 6803 was cultured with fully labeled glucose under
continuous light and nitrogen-sufficient conditions (Supplementary Figure 3.2.3).
The measured R values (Table 3.2.1) for serine (0.87), alanine (0.92) and histidine
(1.73) indicated that Synechocystis 6803 had a typical mixotrophic growth. In
general, cyanobacterial heterotrophic growth has been reported only under three

conditions: complete darkness, dim light, and pulses of light (35,36). When the
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light is sufficient for photoautotrophy, Cyanothece photoheterotrophic growth
was only achieved by addition of photosystem Il inhibitors (16). This study shows
that rapidly-growing Cyanothece 51142 cells can shift their metabolic strategies
from mixotrophic or autotrophic growth to photoheterotrophic growth, possibly
because maximal utilization of energy-rich carbon substrate (glycerol) can reduce
energy costs related to CO; fixation (fixation of one CO, consumes two ATP and
one NADPH) and building block synthesis so that maximal biomass growth can

be achieved.

On the other hand, glucose was not apparently consumed by Cyanothece
51142 (the consumed concentrations were below 1mM in all experiments). In the
[U-13C] glucose experiments (Table 3.2.1), all five amino acids contained labeled
carbons, which indicated that the labeled glucose had percolated through the
entire central metabolic pathways, thereby confirming the ability of Cyanothece
51142 to metabolize glucose. The R values of all key amino acids were below
0.05 for both nitrogen fixation and nitrate-sufficient conditions, suggesting that a
large fraction of the carbon in the biomass had originated from CO, fixation. In
contrast, glucose was the most favorable carbon source for Synechocystis species
(3), and the R values (Table 3.2.1) from key amino acids were around (0.4~1.7).
While both Synechocystis 6803 and Cyanothece 51142 have completely annotated
central pathways for glucose metabolism, Synechocystis 6803 contains a glucose

transporter (gene code SII0771) that shares a sequence relationship with
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mammalian glucose transporters (1,37,38). So far, the presence of a glucose
transporter in Cyanothece 51142 has not been rigorously verified. From the

genome database (DOE Joint Genome Institute, www.jgi.doe.gov/), a gene

(cce_3842) was identified as a glucose transport protein that shared weak (25%)
amino acid identity with the SI10771 protein of Synechocystis PCC6803. Based on
the glucose-dependent growth data, we conclude that the enzymes involved in
glucose transport or utilization in Cyanothece 51142 may not be as efficient as

those of Synechocystis PCC6803.

Analysis of labeled pyruvate-grown Cyanothece cells showed that serine
(whose precursor is 3-phosphoglycerate) and histidine (whose precursor is ribose-
5-phosphate) were completely unlabeled (R=0). Such labeling profiles suggest
that CO, was used as the sole carbon source for synthesis of metabolites in
glycolysis and the pentose phosphate pathway (i.e., there was no gluconeogenesis
activity). Pyruvate was used only to synthesize alanine (R=0.3~0.6) and
metabolites in the TCA Cycle: (pyruvate->oxaloacetate—> Asp) (pyruvate—>acetyl-
CoA->citrate->2-oxoglutarate>Glu), as reflected by the labeled carbon present
in glutamate and aspartic acid. Interestingly, the R values of alanine (=0.60) and
glutamate (=1.25) were higher under nitrogen-fixing conditions compared to the
nitrate-sufficient conditions, indicating that relatively more labeled pyruvate was
used for glutamate synthesis under these conditions. The nitrogen fixation was via

nitrogenase: N, + 6 H* + 6 € — 2 NHs, and the nitrogenase-generated
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ammonium was assimilated into amino acids through the glutamine
synthetase/glutamate synthase pathway (39). Utilization of supplemented

pyruvate for glutamate synthesis could facilitate the nitrogen fixation process.

The enzyme ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)
is known to be the rate-limiting factor in the Calvin Cycle for capturing CO, to
synthesize three-carbon sugar (glycerate 3-phosphate) (40,41,42). We examined
Rubisco (rbcL) and phosphoribulokinase (prk) gene expression to reveal the
metabolic regulation in the Calvin Cycle at the transcriptional level. Under
photoautotrophic, mixotrophic, and heterotrophic growth conditions, the
expression of the two genes encoding ribulose-1,5-bisphosphate carboxylase
oxygenase (rbcL) and phosphoribulokinase (prk) were clearly observed. Although
Calvin Cycle genes were expressed, Cyanothece 51142 still grew
heterotrophically in the presence of glycerol and nitrate based on the isotopomer
data (no apparent incorporation of CO, from Calvin Cycle). These inconsistencies
indicate that *C-assisted metabolite analysis provides direct readout on actual
metabolic status, while gene expression results cannot be solely relied upon as

there are many possible post-transcriptional regulations involved.

Furthermore, Cyanothece 51142 can fix CO; via anaplerotic pathways
(i.e., C4 carbon fixation) (43). In the presence of glycerol and nitrate-sufficient
conditions (Table 3.2.1), R ratios for aspartate synthesis were 1.53, much smaller

than the R ratios (R=0) of Ala, Ser, and His. This indicates the utilization of CO;
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for the synthesis of C4 metabolites in the TCA Cycle via anaploric pathways,
even though phototrophic CO, fixation was significantly inhibited: (1)
PEP+CO,—>o0xaloacetate (catalyzed by phosphoenolpyruvate carboxylase or
phosphoenolpyruvate carboxykinase) or (2) pyruvate+CO,—>malate (catalyzed by
malic oxidoreductase). Such anaplerotic pathways synthesized key TCA Cycle

metabolites like oxaloacetate and succinate (precursors for chlorophyll).

Meanwhile, CO, was (generated by two reactions (i.e.,
pyruvate—>acetylCoA+CO,; isocitrate—>2-oxoglutarate+CO5), which are essential
steps for glutamate synthesis. These catabolic processes cause the loss of
unlabeled carbon when 2" position labeled glycerol is used as the main carbon
source. Therefore, the coefficients Voo (CO, utilization flux) and R (carbon
utilization ratio) were both negative for glutamate synthesis (Equation 1) in
glycerol supplemented cultures (both nitrogen fixation and nitrate-sufficient

conditions) (Table 3.2.1).

Photosynthesis activity. Photosynthesis activity was estimated by the
Fv/Fm parameter (maximum quantum efficiency of photosystem I1) (44). When
glycerol or glucose were utilized, the maximum quantum vyield F,/Fn, (i.e,
efficiency of photosystem II) in Cyanothece 51142 was not significantly affected
(changes are within ~30%, Figure 3.2.3a). Although chlorophyll fluorescence
estimation is not an accurate method for determination of absolute PSII activity

(45,46), we have used it in our study as a tool only to confirm active photon
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capture in the light-harvesting antenna complexes of photosystem Il under both

heterotrophic and mixotrophic conditions.

Oxygen evolution was measured as one molecule of the pigment
chlorophyll absorbs one photon and uses its energy to generate NADPH, ATP,
and O; in the light-dependent reactions (47). The oxygen evolution rates in
Cyanothece 51142 rose by 2~3 fold under all nitrate-sufficient conditions
compared to corresponding nitrogen fixation conditions (Figure 3.2.3b). The
significantly higher rates of oxygen evolution indicated that the photosynthetic
process of water splitting was more active and provided more energy (ATP and

NADPH) to support biomass growth under nitrate-sufficient conditions.

Finally, precise determination of the photosynthetic activity is difficult for
Cyanothece 51442, since the metabolic behavior of Cyanothece 51442 fluctuates
under continuous light due to its circadian rhythm (10,15). The photoreaction
activities in Figure 3.2.3 are only qualitative (not quantitative) evidences to
support the presence of active light-dependent reactions under all culture

conditions.

Nitrogen utilization and nitrogenase-dependent hydrogen production.
Under anaerobic condition (using argon gas to flush the culture), hydrogen
production rates of Cyanothece 51142 were as high as 100 pmol/mg
chlorophyll/hr (data not shown). Under aerobic conditions, hydrogen production

enzyme (hydrogenase) was completely inactivated by oxygen (7). Cyanothece
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51142 used nitrogenase for both nitrogen fixation and hydrogen production.
Nitrate, ammonium or some amino acids inhibit nitrogenase activity and thus
fully prohibit aerobic hydrogen production by cyanobacteria (48). Furthermore,
NH," is a direct nitrogen source (nitrate is reduced to NH,") that can be
incorporated into biomass via glutamine / glutamate synthase (49). Cyanothece
51142, however, only grows with low concentration NH;" (below 1 mM) because
of an observed inhibition effect (48,50). Nitrogen fixation is an energy demanding
process (N,+8H'+8e+16 ATP—2NH3+H,+16ADP +16Pi). Addition of glycerol
reduces CO; fixation via the Calvin Cycle, so more energy (ATP and NADH) can
be directed to nitrogen fixation and thus improve hydrogen production by 4~5
fold (4,5). Glucose and pyruvate cannot significantly promote hydrogen
production because their utilization is very low and their effect on energy
economy is limited. Hydrogen production rates dropped for all mixotrophic
cultures of Cyanothece 51142 after 9 days, suggesting that inhibitory metabolites
accumulated during the cultivation which reduced nitrogenase activities
(40,41,42). Finally, the coexistence of oxygen-evolving photosynthesis and
oxygen-sensitive nitrogen fixation (indicated by hydrogen evolution) is an
attractive characteristic in some cyanobacteria (13,14). Unlike filamentous
cyanobacterial species where nitrogen fixation and oxygenic photosynthesis are
spatially segregated (51), Cyanothece 51142 is able to maintain activities for N,
fixation, respiration, and photosynthesis within the same cell under continuous

light. The strain not only has a strong ability to scavenge intracellular oxygen and
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synthesize nitrogenase (9,15), but also develops a highly circadian mechanism for

nitrogen fixation (52).

This study improves our understanding of Cyanothece 51142 physiology
under different carbon and nitrogen sources as well as its potential application for
hydrogen production applications. In general, exogenous carbon substrates may
improve cellular growth, but have strong negative effects on CO, fixation.
Continuously illuminated Cyanothece 51142 shows simultaneous oxygen
evolution and nitrogenase-dependent hydrogen production, while hydrogen
production can be significantly enhanced by the addition of glycerol. A
comparison of metabolic status under autotrophic, mixotrophic and heterotrophic
growth conditions indicated that Cyanothece 51142 has an inherent metabolic
strategy for maximal biomass production at low energy cost. Finally, this study
has further confirmed that **C-assisted metabolite analysis is a high throughput
method which can provide new and precise information to understand a biological

system.
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Figure 3.2.1. Central metabolic pathways of Cyanothece 51142 with glucose,
glycerol, and pyruvate as carbon substrates. The dashed line shows the metabolic
pathway with glycerol as carbon substrate; the bold line indicates glucose; the
solid line shows the common pathway for all carbon conditions. Abbreviations:
ACCOA, acetyl-coenzyme A; Ala, alanine; E4P, erythrose-4-phosphate; F6P,
fructose-6-phosphate; G6P, glucose-6-phosphate; GAP, glyceraldehyde 3-
phosphate; 3PG, 3-phosphoglycerate; GLY, glycerol; GLU, glucose; His,
histidine; ICIT, citrate/isocitrate; MAL, malate; OAA, oxaloacetate; OXO, 2-
oxoglutarate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, ribose-5-
phosphate (or ribulose-5-phosphate); R15P, ribulose-1,5-bisphosphate; S7P,

sedoheptulose-7-phosphate; Ser, serine; Xu5P: xylulose-5-phosphate.
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Figure 3.2.2. Cyanothece 51142 growth curves under different nitrogen and
carbon sources (biological replicates, n=3). ¢: Glycerol+Nitrate; o: Glycerol+Np;

A: CO,+ Nitrate; o: CO,+N,. The error bars are smaller than the symbols.
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Figure 3.2.3. Maximum quantum vyields (Figure 3.2.3a) of PSIlI and oxygen
evolution rates (Figure 3.2.3b) in Cyanothece 51142 under different growth
conditions (biological replicates, n=3). All samples were taken at the exponential
growth phase based on the growth curve. Black column, N, as nitrogen source;

white column, NaNOjs as nitrogen source; Error bars, SD.
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Figure 3.2.4. Reverse transcription PCR (RT-PCR) study for ribulose-1,5-
bisphosphate carboxylase oxygenase (rbcL) and phosphoribulokinase (prk) under
different mixotrophic growth conditions. (a) CO,+Ny; (b) CO,+NaNOs; (c)
glycerol+NaNOgz; (d) glucose+NaNO3z. The 16S rRNA gene was used as the
internal reference; the no template control (NTC) was added under each

mixotrophic growth conditions.
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Supplementary Figure 3.2.S1. The growth of Cyanothece 51142 in the presence

of different carbon and nitrogen substrates under continuous light (n=3). (a) N, as

nitrogen source; (b) NaNOs as nitrogen source. [1, No carbon source; 0, glucose

(26 mM); [, pyruvate (64 mM); A, pyruvate (9 mM). The error bars are smaller

than the symbols.
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Supplementary Figure 3.2.S2. Hydrogen production under mixotrophic
conditions. Open bars, hydrogen production at day 4; filled bars, hydrogen
production at day 9. The asterisk indicates that hydrogen production was below
the minimum detectable level.
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Supplementary Figure 3.2.S3. Growth of Synechocystis 6803 in the presence of
glucose (6 mM) under continuous light (n=3). *C-labelled samples were taken in
the midexponential phase (~80 h), when there was still sufficient glucose in the

medium. The error bars are smaller than the symbols.
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Table 3.2.1. Isotopic analysis of the labeling profiles of amino acids in
Cyanothece 51142 and Synechocystis 6803 under different growth conditions (the
standard error for GC-MS measurement was below 0.02, technical replicates,
n=2)

Synechocystis

Amino N, NaNO; 6803 (nitrate-
[M-57T medium)
Acids Glucose R' Pyruvate R Glycerol R Glucose R Pyruvate R Glycerol R Glucose R
Mo 0.67 0.41 0.19 0.61 0.51 0.07 0.04

Ala M; 019 0032 055 0597 071 42 019 0042 048 0327 085 4o 005 092

M, 011 0.03 0.10 0.17 0.01 0.07 0.28
Mo 065 0.98 0.20 0.58 0.97 0.08 0.04

Ser  M:; 022 0033 002 O 072 37 022 0046 003 (O 081 4w 006
M,  0.10 0 0.09 0.16 0 0.10 0.28 087
Mo 058 0.54 0.10 0.59 0.94 0.07 0.04

Asp M; 024 0030 043 0195 064 2.2 020 0.032 006 0.005 078 153 0.05 (.44

M, 011 0.04 0.25 0.17 0 0.15 0.19
M; 0.6 0 0.01 0.03 0 0 0.47
Mo 043 0.15 0.02 0.38 0.47 0.01 0.02
M, 026 0041 044 125 014 - 022 0051 049 0170 015 - 002 076
Glu* 1.78 2.11
M, 021 0.37 0.62 0.27 0.04 0.74 0.04
Ms; 007 0.04 0.21 0.09 0 0.10 0.07
M, 002 0 0.01 0.03 0 0 0.53
Mo 044 0.91 0.05 033 0.92 0.01 0.01
. M: 028 0.08 0.28 0.24 0.08 0.21 0.01
e M, 017 0032 ¢ 0 050 283 022 0049 O 0 055 1o 002 173
M; 007 0 0.16 0.12 0 0.20 0.03
M,  0.03 0 0 0.07 0 0.03 0.06
Ms 0 0 0 0.01 0 0 0.22

Note: 1. Bold values were the carbon substrate (glycerol, pyruvate, or glucose) utilization
ratios (substrate/CO, fixation) for amino acid synthesis calculated according to Equation
(1). 2. The glutamate synthesis pathway involved the loss of two carbons from pyruvate
to a-ketoglutarate. Such a microbial process changed the labeling enrichment, and the
negative value indicated the net loss of unlabeled CO,.
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3.3.1 Abstract

Thermoanaerobacter sp. X514 has great potential in biotechnology due to
its capacity to ferment a range of C5 and C6 sugars to ethanol and other
metabolites under thermophilic conditions. This study investigated the central
metabolism of strain X514 via **C-labeled tracer experiments using either glucose
or pyruvate as both the carbon and energy source. X514 grew on a minimal
medium and thus contains complete biosynthesis pathways for all macromolecule
building blocks. Based on genome annotation and isotopic analysis of amino
acids, three observations can be obtained about the central metabolic pathways in
X514. First, the oxidative pentose phosphate pathway in X514 is not functional,
and the TCA cycle is incomplete under fermentative growth conditions. Second,
X514 contains (Re)-type citrate synthase activity, although no gene homologous
to the recently characterized (Re)-type citrate synthase of Clostridium Kkluyveri
was found. Third, the isoleucine in X514 is derived from acetyl-CoA and
pyruvate via the citramalate pathway rather than being synthesized from threonine
via threonine ammonia-lyase. The functionality of the citramalate synthase gene

(CimA, Teth514 1204) has been confirmed by enzymatic activity assay, while the
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presence of intracellular citramalate has been detected by mass spectrometry. This
study demonstrates the merits of combining '*C-assisted metabolite analysis,
enzyme assays, and metabolite detection not only to examine genome sequence

annotations but also to discover novel enzyme activities.
Key words: ethanol, *C, (Re)-type citrate synthase, isoleucine, citramalate
3.3.2 Introduction

Rising global energy demand and the depletion of fossil energy resources
have resulted in significant environmental, economic, and social impacts.
Production of renewable, biomass-derived energy sources has been suggested as a
partial solution to this problem. Among renewable energy sources, ethanol is an
attractive short-term solution owing to its strong research foundation and its ready
integration with the current petroleum-based infrastructure (53,54). Plant-based
cellulose is the most attractive raw material for bioethanol production (55).
However, the use of anaerobic cellulosic bacteria in consolidated bioreactors has
been proposed as an efficient means of rapid conversion of cellulosic biomass to
ethanol (56). Thermophilic bacteria of the genus Thermoanaerobacter have the
ability to naturally ferment a wide variety of monomeric and polymeric
carbohydrates, including D-xylose, into ethanol (57,58,59). While not cellulose-
utilizing themselves, Thermoanaerobacter species in co-culture with thermophilic
cellulose-utilizing Clostridium species have significantly higher yields of ethanol

from both cellulose and hemicellulose than from monoculture alone (60,61).
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Therefore, the investigation of carbon metabolism in Thermoanaerobacter sp.
X514 has implications for understanding X514’s potential in bioenergy

production.

Despite the potential importance of X514 in biofuel production, a rigorous
investigation of the central metabolic pathways in X514 has yet to be conducted.
Although an array of functional genomics tools has been applied in predicting this
species’ metabolism (62,63,64), a precise description of cellular metabolism is
complicated by misannotation and by post-transcriptional regulation of protein
synthesis (20,65). The complete genome sequence of X514 from the KEGG
database (http://www.genome.jp/kegg/) suggests a few gaps in several essential
pathways involved in the biosynthesis of amino acids (e.g. isoleucine) and in the
TCA cycle (e.g., citrate synthase). Therefore, X514 would not survive without
supplements of isoleucine or other essential nutrients. However, X514 can
actually grow in a completely minimal medium. Hence, the metabolism of X514
cannot be precisely revealed by genome sequence annotation alone. At this time,
one of the most physiologically reliable methods for determining cell metabolism
remains *C-based isotopic analysis (20,21,22,66). Based on **C-labeling patterns
in key amino acids, the active pathways can be traced back, and new enzymes can
be revealed. In this study, **C-based isotopic analysis was applied to accurately
examine the annotated pathways in X514 and to investigate gaps in key

biosynthetic pathways (22,31,67). Specifically, glucose (1% or 6™ carbon labeled)
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and pyruvate (1% carbon labeled) were used respectively as the sole source of
carbon to grow X514. By analyzing the mass spectra of different fragmentations
in proteogenic amino acids derived from various pathways, we have determined
the active fluxes of intracellular pathways (e.g., the pentose phosphate pathway
and citric acid cycle). Meanwhile, misannotations in the genome sequence were
checked and unknown enzymes involved in the pathway were identified. The
isotopomer analysis linked the genome annotation to the final enzyme-functional
output and thus significantly improved our understanding of the regulation of the

central metabolism of X514.
3.3.3 Materials and methods

Medium and cultivation conditions. Thermoananerobacter sp. X514
was grown anaerobically at 60°C without shaking (68). The minimal medium
contained (per liter) 1 g of NaCl, 0.5 g of MgCl,, 0.2 g of KH,PO,, 0.3 g of
NH4CI, 0.3 g of KCI, 0.015 g of CaCl,, 0.25 mg of resazurin, 0.031 g of L-
cysteine-HCI, 0.048 g of Na,S, 2.52 g of NaHCO3; and 1 ml trace element
solution. One liter of trace element solution included: 10 ml 25% w/w HCI
solution, 1.5 g of FeCly, 0.19 g of CoCl,, 0.1 g of MnCl;, 70 mg of ZnCl,, 6 mg of
H3BO3, 36 mg of Na,MoO,, 24 mg of NiCl,, 2 mg of CuCl,, 6 mg of Na,SeOs, 8
mg of Na;WO,, and 0.5 g of NaOH. The pH of the medium was adjusted with
NaOH to 7.2-7.3. The vitamin solution was prepared according to the method

developed by Wolin et al. (69). The rich medium was prepared by adding 0.1%
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yeast extract to the minimal medium. Three types of *3C-labeled carbon substrates
were obtained from Cambridge Isotope Laboratories, Inc. (Andover, MA) and
used for cell culture: pyruvate ([1-'*C], 98%), glucose ([1-'*C], 98%), or glucose
([6-°C] , 98%). The medium was flushed with N, and was filter-sterilized. All
gases, including nitrogen and a nitrogen-CO, mixture, were obtained from Airgas,
Inc. (Radnor, PA). The strain was initially grown in a 50-ml culture medium with
an unlabeled carbon source (glucose or pyruvate). At the mid-log phase of
growth, a 3% inoculum was added to a 50-ml culture containing one of the
following carbon sources: 2.1 g/L of [1-**C] glucose, 2.1 g/L of [6-*C] glucose,
or 2.2 g/L 1%-position labeled pyruvate. At the mid-log phase of growth in this
culture, 3% inoculum from the first *C-labeled culture medium was used to
inoculate a 50-ml sub-culture (with the same labeled carbon source), which

reduced the effect of unlabeled carbon from the initial stock.

Analytical methods. Biomass was harvested at the late-log phase of
growth by centrifugation at 8,000 g for 15 min at 10°C. The concentrations of
glucose, acetate, ethanol, and lactate were analyzed with a high performance
liquid chromatography apparatus (Agilent Technologies, CA) equipped with a
variable wavelength (190-600 nm) detector (VWD) (the UV absorption at 245
nm), and an ion exclusion column (Aminex HPX-87H, 300 mm x 7.8 mm, Bio-
Rad Laboratories, CA) operating at 55°C. The mobile phase consisted of 0.025 %

sulfuric acid at a flow rate of 0.6 ml/min.
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Isotopic analysis. The preparation and isotopic analysis of proteogenic
amino acids were performed as previously described (30,67). In brief, biomass
was hydrolyzed in 6 M HCI at 100°C for 24 h. The amino acid solution was dried
under air flush overnight, and amino acid samples were derivatized in
tetrahydrofuran (THF) and N-(tert-butyl dimethylsilyl)-N-methyl-
trifluoroacetamide (Sigma-Aldrich, St. Louis, MO) at 70°C for 1 h. A gas
chromatograph (GC) (Hewlett-Packard, model 7890A, Agilent Technologies, CA)
equipped with a DB5-MS column (J&W Scientific, Folsom, CA) and a mass
spectrometer (MS) (model 5975C, Agilent Technologies, CA) was used for
analyzing amino acid labeling profiles. Three types of charged fragments were
detected by GC-MS for most amino acids: the [M-57]" group, which contained
unfragmented amino acids; the [M-159]" group, which contained amino acids
losing o carboxyl group; and the [f302]" group, which contained only 1% (a
carboxyl group) and 2™ carbons in an amino acid backbone. (However, [f302]
cannot be detected in some amino acids.) Published algorithms were used to
correct the effects of natural isotopes on the mass distributions of amino acids
(32), and the final isotopomer distribution was shown in Tables 3.3.S1 and 3.3.S2.
lon mass fractions in Tables 3.3.S1 and 3.3.S2 were given for the amino acid
fragments. MO, M1, M2... were fractions of unlabeled, singly labeled, and doubly

labeled amino acids, respectively.

Confirmation of citramalate synthase. The citramalate synthase activity
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was assayed by monitoring the pyruvate-dependent production of CoA over time
(70,71). In brief, X514 cells from a 10-ml culture in the mid-log phase were
centrifuged (19,000 g for 10 min, 4°C). The total protein content in the biomass
was estimated using Bradford protein assay (Bio-Rad Laboratories, Inc, CA).
X514 cell extracts were then prepared by sonication of X514 pellets for 3 minutes
(30 sec on / 20 sec off) in 2 ml of a 0.1 M TES [N-tris (hydroxymethyl) methyl-2-
aminoethanesulfonic acid, pH 7.5] buffer. Samples to be measured were brought
to a final volume of 1000 pl by mixing with cell extracts (100 ul), the TES buffer
(0.2 M, pH 7.5, 500 pl), pyruvate (10 mM, 100 ul), acetyl-CoA (50 mM, 20 ul),
and distilled water. The resulting solutions were then incubated in the oven at
60°C for 2 h. At intervals of 20 min, 100 ul of either test samples or blank
samples were taken from the oven and mixed with a 900-ul stop solution. The
stop solution was prepared in distilled water with 50 ul of 10 mM DTNB [5, 5°-
dithio-bis (2-nitrobenzoic acid)] in 0.1 M Tris-HCI and with 70 pl of 1 M Tris-
HCI. The absorbance at 412 nm was recorded immediately and blanked against an
identical incubation sample without pyruvate. The micromoles of HS-CoA
produced were calculated from a standard curve generated with known
concentrations (0 to 1 mM) of 2-mercaptoethanol and based on the linear function
between the product formation and the amount of enzyme added over the 2-hour
time period of the assay. All the chemicals employed in this measurement were

from Sigma-Aldrich (MO, USA).
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LC-MS/MS was further applied to confirm the presence of citramalate in
X514. In this study, the free intracellular metabolites were extracted with a cold
methanol-water solution (60%, v/v) and chloroform mixture (1:1), held at -20°C
overnight. Subsequently, cold water was added to separate free metabolites from
those components that might interfere with the results. The extracts were then
lyophilized. After being dissolved with 1% formic acid in water, 50 pL samples
were injected into the LC-MS/MS for separation and detection. The LC-MS/MS
system was composed of a Shimadzu LC system (Shimadzu Corporation, Japan,
http://www.shimadzu.com), a LEAP CTC PAL autosampler (LEAP
Technologies, USA, http://www.leaptec.com), and an Applied Biosystems 4000
QTRAP mass spectrometer (Applied Biosystems, USA,
http://www.appliedbiosystems.com) equipped with a TurbolonSpray electrospray
ion source. 5 uM of citrate, malate, and citramalate standards (Sigma, MO, USA)
in water were separately infused into the mass spectrometer to optimize
compound-dependent parameters for multiple reaction monitoring (MRM)
detection and to obtain corresponding MS/MS spectra. LC separation was
achieved by coupling three 4.6x300 mm Onyx Monolith C18 columns
(Phenomenex, CA) in tandem. The LC gradient was delivered at 1 ml/min with
Solvent A: 0.1% formic acid in water, and Solvent B: 0.1% formic acid in
methanol. The gradient started from 5% B and was kept isocratic for 4 min, then
ramped to 20% within 7 min, and increased to 95% B within 1 min. Finally, after

being held at 95% B for 8 min, the gradient was ramped down to 5% B, where it
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remained for 4 min to re-equilibrate the column.
3.3.4 Results

Growth and metabolite curves. When X514 was cultivated in the
minimal medium, the lag phase for X514 in the **C labeled glucose was 12 hours
and was followed by an exponential growth phase with a doubling time of ~15-19
hours (Fig. 3.3.1a). This rate was much slower than X514’s growth rate in the rich
medium (with 0.1% yeast extract), which was measured a doubling time of 6
hours. Fig. 3.3.1b shows both the glucose consumption and the production of
ethanol, acetate, and lactate when X514 was grown in the minimal glucose
medium. No formate was detected during the culturing. The ability to grow in the
minimal medium using glucose (or pyruvate, data not shown) indicates that X514
contains the necessary biosynthetic pathways for all macromolecule building

blocks (i.e., for synthesizing amino acids).

Confirmation of amino acid biosynthetic pathways. According to the
genome annotation from the KEGG resource (http://www.genome.jp/kegg/), two
amino acid biosynthetic pathways (isoleucine and proline) were incomplete. To
examine biosynthetic pathways in X514, the labeling profiles of 14 proteogenic
amino acids were analyzed (Tables 3.3.S1 and 3.3.S2). Since pyruvate is the key
metabolite in the central pathway (i.e., glycolysis, pentose phosphate pathway,
and TCA cycle), the labeling profiles of amino acids from tracer experiments that

use 1%-position labeled pyruvate as the carbon source can easily identify the
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precursors of several key amino acids (Table 3.3.52). For example, alanine,
valine, and serine demonstrated the same carbon molecule-labeling pattern as that
of pyruvate (Table 3.3.52), which confirms that pyruvate is the common precursor
of these three amino acids (Fig. 3.3.2). The aromatic amino acids phenylalanine
and tyrosine were derived from phosphoenolpyruvate (also synthesized from
pyruvate). The labeling patterns of the [f302]" group (containing the 1% and 2"
carbons of fragmented amino acids) for alanine, phenylalanine, and tyrosine were
all identical. This fact indicates that the 1% and 2™ carbons of all three amino

acids are originally derived from the 1% and 2™ carbons of pyruvate.

In tracer experiments using the 1¥-position labeled pyruvate, the similar
labeling patterns of aspartate, methionine, and threonine in Table 3.3.S2 suggest
the same precursor (oxaloacetate) for the three amino acids. Based on the KEGG-
generated pathway map, oxaloacetate is expected to be synthesized from pyruvate
(labeled at its first position), and CO, (labeled because it is cleaved from the 1%
carbon of pyruvate), leading to the labeling of two carbons in oxaloacetate and
aspartate (both a- and - carboxyl group) (Fig. 3.3.2). In tracer experiments using
[1-C] or [6-C] glucose as the carbon source, the labeling percentage of
methionine was higher than that of aspartate from the same experiment, as a result
of the addition of *C-enriched C1 pool (5, 10 methyl-THF) into the carbon
backbone of methionine (synthesis route: aspartate + C1 pool->methionine). The

labeled carbon entered the C1 pool via the glucose->serine>glycine+C1 pool
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(Fig. 3.3.2), which caused more methionine to be labeled.

Alternate isoleucine pathway. Anaerobic bacteria such as
Methanococcus jannaschii and Leptospira can biosynthesize isoleucine from
citramalate by direct condensation of acetyl-CoA and pyruvate (70,72). Recently,
Risso et al. (71) first used *C-assisted metabolic flux analysis and biochemistry
assays to discover an alternate isoleucine pathway in Geobacter sulfurreducens.
Interestingly, X514 may also contain a similar alternate isoleucine pathway. The
labeling patterns of leucine and isoleucine in both glucose and pyruvate tracer
experiments were similar. For example, the pyruvate experiment demonstrated
that the MO ([M-159]", without the carboxyl group) of both leucine and isoleucine
was >91%, indicating that the C2~C6 carbons in both leucine and isoleucine were
mostly unlabeled. Such labeling patterns in isoleucine are unexpected unless
isoleucine shares the same precursors (pyruvate and acetyl-CoA) as leucine.
According to the genome annotation, X514 lacks threonine ammonia-lyase (EC
4.3.1.19), which is necessary for the biosynthesis of isoleucine from threonine;
this result is supported by our labeling data: when [1-*3C] pyruvate was used as
the carbon source, threonine was labeled with two carbons (M2 [M-57]" >93%),
while isoleucine (C2~C6) was not labeled (note: the GC-MS could not detect the
labeling information for the first carbon of isoleucine due to the peak overlap
(73)). We propose an alternate isoleucine synthesis pathway via the citramalate

pathway that uses pyruvate and acetyl-CoA as precursors (Fig. 3.3.3). The key
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enzyme regulating the citramalate pathway (citramalate synthase, CimA) is

annotated in X514 (gene: Teth514 1204) (22,71).

In order to determine whether the citramalate pathway was active in X514,
crude soluble extracts from mid-log phase cells were tested for the presence of
citramalate synthase activity (about 27+9 nmol/mg protein/min). Furthermore, we
applied high sensitivity mass spectrometry to detect whether there was any
intracellular citramalate in X514. Fig. 3.3.S1 indicates that malate, citrate, and
citramalate were clearly detected in the X514 soluble extracts by LC/MS/MS in
the MRM mode. The retention time and the ratio of multiple MRM transitions
selected for each of the three targeted compounds are in agreement with those of
the respective authentic standards. Although CID spectra signals for the three
targeted compounds in X514 soluble extracts were lower than the spectra signals
of authentic standards, the major fragments and their relative abundance agreed
with their corresponding standards (Fig. 3.3.52). This result provides additional

evidence to prove the presence of citramalate synthase in X514.

(Re)-type citrate synthase. In spite of the production of citrate by X514
(Fig. 3.3.S1), the genome annotation indicates that the enzyme in the first step of
TCA cycle, i.e. the (Si)-type citrate synthase, is missing. Interestingly, the
isotopomer data from the 1%-position labeled pyruvate experiment suggests that
the a-carboxyl group of glutamate is not labeled (Table 3.3.S2). Such an

observation of the labeling pattern of glutamate is consistent with the main
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characteristics of (Re)-type citrate synthase, which has been discussed in detail in
our previous study on (Re)-type citrate synthase in Desulfovibrio vulgaris
Hildenborough (22). Due to the lack of a regular (Si)-type citrate synthase, X514
may employ the (Re)-type citrate synthase. Fig. 3.3.2 shows the proposed carbon
transition routes from labeled pyruvate (a-carboxyl group) to doubly labeled
oxaloacetate (both a- and B- carboxyl group). The B-carboxyl group of 2-
oxoglutarate and the B-carboxyl group of glutamate were ultimately derived from

the B-carboxyl group of oxaloacetate.

Pentose phosphate pathway. About 50% of alanine was not labeled ([M-
57]", MO =0.51) when the [1-'*C] glucose was used as the carbon source (Table
3.3.51). The glucose carbon backbone loses the first carbon as CO, when it is
metabolized via the oxidative pentose phosphate pathway (PP pathway) to
synthesize 5-carbon sugars (C5P) (Fig. 3.3.2). If the oxidative pentose phosphate
pathway is not active, one glucose molecule (with either 1% or 6™ carbon labeled)
converts to two pyruvate molecules, and thus ~50% of pyruvate (inferred from
alanine) is expected to be unlabeled. The fact that the fraction of unlabeled
alanine was 51+2% indicates the very low activity of the oxidative pentose
phosphate pathway, i.e., the carbon flux split ratio between G6P—>C5P (oxidative
pentose phosphate pathway) and G6P->G3P (glycolysis) was <3% (the algorithm
for calculating the split ratio was provided in the supplementary material). Since

the oxidative pentose phosphate pathway was not active, the isotopomer labeling

105



patterns of most amino acids in the [1-*C] glucose experiment were identical to

those in the [6-°C] experiments (Table 3.3.51).
3.3.5 Discussion

This study has examined the pentose phosphate pathway, amino acid
biosynthesis and TCA cycle in Thermoanaerobacter sp. X514 by *3C labeling
experiments. X514 shows very low activity in the oxidative phase of the pentose
phosphate pathway under glucose fermentation conditions. Such an observation is
consistent with the missing of 6-phosphogluconolactonase (EC 3.1.1.31) gene,
which catalyzes 6-phospho-D-glucono-1,5-lactone to 6-phospho-D-gluconate.
Considering the important role of the oxidative pentose phosphate pathway in
providing NADPH for biosynthesis, alternate NADPH pathways should be
present in X514. Some bacteria utilize transhydrogenase PntAB or UdhA for
NADPH generation (74), but a BLASTP search (75) indicates that neither of the
two transhydrogenases is encoded in the X514 genome (Fig. 3.3.S3). Although
NADPH-dependent isocitrate  dehydrogenase is annotated in X514
(Teth514_0327), it may provide only limited NADPH since the TCA cycle is
branched and is mainly used for biosynthesis. On the other hand, ferredoxin-
NADP" reductase (e.g., Teth514_0652) and pyruvate:ferredoxin oxidoreductase
(e.g., Teth514 0781, the enzyme that catalyzes the production of ferredoxin from

pyruvate) are annotated in the X514 genome and may be key sources of NADPH

106



in X514. Ferredoxin-NADP" reductase activity has been well documented in

certain thermophilic anaerobes for NADPH production (76).

The discovery of an alternative pathway for isoleucine synthesis and (Re)-
type citrate synthase activity demonstrates the unique metabolism of X514,
Isoleucine is synthesized from the citramalate pathway so that both leucine and
isoleucine share the same precursors (pyruvate and acetyl-CoA). Multiple lines of
evidence support an alternate isoleucine biosynthesis pathway via citramalate in
X514: 1) labeling patterns in key amino acids, 2) genomic evidence (i.e. presence
of citramalate synthase gene but absence of threonine deaminase gene), 3)
detection of citramalate synthase activity, 4) detection of citramalate via LC-
MS/MS. In some organisms, citramalate is used for reactions other than
isoleucine biosynthesis. For example, during Rhodospirillum rubrum phototrophic
growth on acetate and CO,, citramalate (formed via the condensation of acetate
and pyruvate) can be degraded to glyoxylate and propionate (77). This pathway
allows R. rubrum to assimilate acetate and synthesize intermediates in TCA cycle
(i.e., succinate). On the other hand, Atsumi and Liao (78) introduced citramalate
synthase (CimA) to E.coli and successfully evolved a new 2-oxobutanoate
synthetic pathway for both 1-propanol and 1-butanol production (9- and 22-fold
higher production, respectively). Therefore, the citramalate pathway in X514

could be potentially utilized in bio-butanol production.
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A (Re)-type citrate synthase was recently reported in both Clostridium
kluyveri (CKL 0973) and Desulfovibrio spp. (79). (Re)-type citrate synthase and
(Si)-type citrate synthase are phylogenetically unrelated. (Re)-type citrate
synthase is O, sensitive and thus restricted to anaerobic microorganisms. Using a

JGI genome database search by May 2009 (http://img.jgi.doe.gov, with the

BLAST search score >400 and with identity of amino acid sequences >40%), we
found that ~200 microbial species may be annotated with citramalate synthase (a
key step for an alternate isoleucine synthesis pathway), while ~40 stains may have
(Re)-type citrate synthase (with the BLAST search score >290 and with identity
>40%). A few species may contain both citramalate synthase and the (Re)-type
citrate synthase (Table 3.3.1), including Desulfovibrio desulfuricans and
Desulfovibrio vulgaris Hildenborough. Thermoanaerobacter sp. X514,
Dehalococcoides ethenogenes and Pelotomaculum thermopropionicum species
contain neither (Si)-type citrate synthase nor the documented (Re)-type citrate
synthase, but all encode citramalate synthase. Table 3.3.1 indicates that the
citramalate pathway and (Re)-type citrate synthase may be more widespread in

microorganisms than originally thought.

(Re)-type citrate synthase-like activity was observed in X514. A
candidate (Re)-type citrate synthase gene in X514 should be identifiable through a
BLAST search of the polypeptide amino acid sequences (Fig. 3.3.54). However,

no gene candidate is identical to the reported (Re)-type citrate synthase in
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Clostridium kluyveri (CKL 0973), and thus, X514 may contain an undocumented
(Re)-type citrate synthase. However, X514 contains homocitrate synthase
(Teth514_0415: 2-oxoglutarate+acetylCoA—>homocitrate) and isopropylmalate
synthase (Teth514 0014: 3-methyl-2-oxobutanoate+acetyl CoOA > 2-
isopropylmalate), which are phylogenetically related to the reported (Re)-type
citrate  synthase  (oxalacetate+acetylCoA—>citrate). More  importantly,
Teth514 0416 is annotated as aconitate hydratase (citrate—>isocitrate), and this
gene is in the same operon with homocitrate synthase (Teth514 0415). Therefore,
homocitrate synthase (Teth514 _0415) can be a potential (Re)-type citrate synthase
candidate, and further experimentation is required to test this hypothesis.
Interestingly,  citramalate ~ synthase  (Teth514 1204:  pyruvate+acetyl-
CoA->citramalate) condenses acetyl-CoA and organic acids to form metabolites
structurally similar to citrate. This enzyme also belongs to the isopropylmalate

synthase/homocitrate synthase family.

In summary, *3C isotopic analysis is a powerful tool to examine the
metabolic networks of sequenced species and to predict novel enzymes. Our
results suggest an inactive pentose phosphate pathway and an alternate isoleucine
biosynthesis pathway via citramalate in X514. Furthermore, X514 also
demonstrates the (Re)-type citrate synthase activity. A comprehensive
understanding of metabolism in Thermoanaerobacter sp. X514 could have dual

significance for both rational genetic engineering of microorganisms in biofuel
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production (78) and the investigating of the evolution for phylogenetically related

pathways.
3.3.6 Supporting information

Flux calculations in oxidative pentose phosphate pathway. The flux
directed into the oxidative pentose phosphate (PP) pathway can be measured
using the labeling profile of alanine. We assume that the flux through glycolysis is
vy and that the flux through oxidative pentose phosphate pathway is v,. The
replenished route from the oxidative pentose phosphate pathway to glycolysis is
v3. Hence, the percentage of fluxes directed into the pentose phosphate pathway
would satisfy:

n= Y2 100%
vV, +V,

In pure [1-**C]-glucose experiments, the flux to unlabeled alanine through
glycolysis is 0.5 v;, while the flux to unlabeled alanine through pentose phosphate

pathway is vs. Hence, the percentage of unlabeled alanine satisfies:

v, +V,

77ala

When G6P enters the pentose phosphate pathway, the first carbon is lost
as CO,. Hence, only five carbons from the six-carbon glucose flow into C5P. C5P

is then re-formed to synthesize G3P. Based on the mass balance, the equilibrium
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should satisfy:

From the [M-57]" data in GC-MS, the percentage of unlabeled alanine is

51%. Hence,

D = 2205 1009 = 51%
vV, +V,

With all the equations above, the percentage of flux directed into the

pentose phosphate pathway is 2.4%.

Note: when the 6™ carbon of glucose was labeled, the labeled carbon
incorporated into E4P (the precursor of phenylalanine) via the reductive PP
pathway. However, when the 1% carbon of glucose was labeled, the resulting E4P
was not labeled via PP pathway, so the labeling percentage of phenylalanine was

lower when the 1% carbon of glucose was used as carbon source (Table 3.3.51).
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Figure 3.3.1. Thermoanaerobacter sp. X514 growth and metabolite secretion. (a)
Growth curves of Thermoanaerobacter sp. X514 in minimal glucose medium
(symbol: o) and rich medium (with 1g/L yeast extract) (symbol: 0). (b) Glucose
consumption and metabolite production by Thermoanaerobacter sp. X514 in
minimal glucose medium: glucose (symbol: m); acetate (symbol: Q); lactate

(symbol: 0); ethanol (symbol: o).
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Figure 3.3.2. Proposed scheme of central metabolic pathways in
Thermoanaerobacter sp. X514. **C labeled positions in metabolites are marked
with an asterisk (*) for the 1%-position labeled pyruvate experiment. The inactive
pathways are marked with dashed lines. Based on the genome annotation in
KEGG database, some genes that are missed in the pathways are marked by
dashed boxes. C5P: ribulose 5-phosphate, ribose 5-phosphate and xylulose 5-

phosphate.
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Figure 3.3.3. Proposed scheme of isoleucine biosynthesis in Thermoanaerobacter
sp. X514 (using 1¥-position labeled pyruvate as the carbon source). **C labeled

positions are marked with asterisks. The inactive pathway is marked by dashed

line.
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Figure 3.3.S1. Separation and detection of malate, citrate and citramalate in
Thermoanaerobacter sp. X514 sample by LC-MS/MS in MRM mode. The
multiple MRM transitions used for confident detection of the three target
compounds in the sample are: 1) malate: 133/89, 133/71, 133/73, 133/43; 2)
citrate: 191/129, 191/111, 191/87, 191/85; 3) citramalate: 147/87, 147/85, 147/57,
147/43, 147/41; 4) UN: unidentified compounds. The colors represent different
transitions used in this method. Malate eluted at 5.6 min, citrate at 7.6 min and
citramalate at 8.5 min. The peak at 9.0 min was an uncharacterized compound that

shared the same MRM transitions as malate, but with different ratios.
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Figure 3.3.52. Comparison of CID mass spectra of authentic standards with target

compounds in sample X514. Left panel: CID mass spectra of authentic standards.

Right panel: corresponding CID mass spectra in sample X514 after background

subtraction to remove background noise.
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Figure 3.3.S3. The BLASTP (80) result of transhydrogenase PntA and UdhA in

the genome of Thermoanaerobacter sp. X514. Neither gene was annotated.
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Figure 3.3.5S4. Protein sequences of (Re)-type citrate synthase (CKL0973) were
compared against the strain X514 genome (http://www.jgi.doe.gov) using BLAST
search. The resulting polypeptide amino acid sequence identity was low: 27% for

homocitrate synthase and 23% for 2-isopropylmalate synthase.
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Table 3.3.1. BLAST searches (May, 2009) for the key genes in an alternate
isoleucine synthesis pathway (citramalate synthase, GSU 1798), for (Si)-type
citrate synthase (EC 2.3.3.1 from E.coli K12) and for (Re)-type citrate synthase
(CKL 0973 from Clostridium Kluyveri) in the Joint Genome Institute
(http://img.jgi.doe.gov).

EC233.1 EC 2.3.3.3 (CKL 0973) EC 2.3.1.182
Species
(Si)-type citrate synthase (Re)-type citrate synthase GSU1798
*Thermoanaerobacter sp. X514 (B)[F] 0% 27% 49%
Anaerocellum thermophilum DSM 6725 (B)[D] 0% 68% 51%
Caldicellulosiruptor saccharolyticus DSM 8903 (B)[F] 0% 68% 51%
Caldivirga maquilingensis 1C-167 (A)[F] 39% 41% 47%
Candidatus Kuenenia stuttgartiensis (B)[F] 0% 55% 54%
Clostridium acetobutylicum ATCC 824 (B)[F] 0% 65% 50%
Clostridium botulinum A ATCC 3502 (B)[F] 0% 73% 22%
Clostridium kluyveri DSM 555 (B)[F] 28% 100% 29%
Clostridium cellulolyticum H10 (B)[F] 30% 60% 50%
Clostridium thermocellum ATCC 27405 (B)[F] 30% 60% 51%
Clostridium phytofermentans ISDg (B)[F] 30% 62% 25%
Desulfovibrio desulfuricans G20 (B)[F] 0% 48% 55%
Desulfovibrio vulgaris Hildenborough (B)[F] 0% 48% 55%
Desulfovibrio vulgaris DP4 (B)[F] 0% 48% 55%
Desulfovibrio vulgaris Miyazaki F (B)[F] 0% 49% 55%
*Dehalococcoides ethenogenes 195 (B)[F] 0% 28% 53%
Syntrophus aciditrophicus SB (B)[F] 0% 49% 55%
Syntrophobacter fumaroxidans MPOB (B)[F] 32% 50% 59%
*Pelotomaculum thermopropionicum SI (B)[F] 0% 29% 56%
Ignicoccus hospitalis KIN4/I (A)[F] 0% 50% 45%

Note:
1. Domains: (B)acteria, (A)rchaea.
2. Genome Completion: [F]inished, [D]raft.
3. Both (Si)- and (Re)-type citrate synthases in the species (with “*” in front)
may be missing due to the low identity (<30%) of polypeptide amino acid
sequences to the documented (Si)- and (Re)-type citrate synthases.
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Table 3.3.S1. Isotopic analysis of amino acids in Thermoanaerobacter X514

. . [M-57]" [M-159]" [f302]"
Amino Acids  Precursors lons [1-2C)/[6-°C] [1-°C]/[6-°C] [1-5C}/[6-°C]
MO 0.51/0.49 0.51/0.49 ND
Ala Pyruvate M1 0.47/0.50 0.45/0.47
M2 0.01/0.01 0.04/0.03
MO 0.95/0.96 0.97/0.97
Gly Serine M1 0.05/0.03 0.03/0.03 ND
M2 0/0
MO 0.26/0.24 0.26/0.24 0.90/0.91
Val Pyruvate M1 0.49/0.49 0.49/0.48 0.08/0.06
M2 0.24/0.26 0.24/0.26 0.02/0.03
MO Overlap 0.14/0.12
Pyruvate M1 Peak with 0.38/0.37 ND
Leu Acetyl-CoA M2 302 0.36/0.37
M3 0.12/0.13
MO Overlap 0.18/0.17
\
o TR S
lle Acetyl-CoA 302 . .
M3 0.08/0.09
MO 0.35/0.32 0.35/0.36
Aspartate M1 0.48/0.51 0.49/0.48 ND
Met Methy-THF M2 0.16/0.16 0.15/0.14
M3 0/0.01 0.01/0.02
MO 0.54/0.52 0.55/0.53 0.96/0.99
Ser G3P M1 0.44/0.48 0.45/0.47 0.04/0
M2 0.02/0 0.01/0 0/0.01
MO 0.51/0.47 0.52/0.46
Thr Aspartate M1 0.47/0.52 0.48/0.51
M2 0.02/0 0/0.02
MO 0.19/0.05 0.20/0.06 0.97/0.98
M1 0.42/0.29 0.42/0.29 0.03/0.02
PEP M2 0.30/0.44 0.30/0.43 0/0
Phe E4P M3 0.08/0.21 0.08/0.21
M4 0.01/0.01 0/0.01
Asp/Asn OAA MO 0.50/0.47 0.50/0.48 0.97/0.98
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M1 0.48/0.52 0.48/0.49 0.03/0.02

M2 0.02/0.01 0.01/0.02 0/0
MO 0.26/0.24 0.27/0.24 ND
M1 0.49/0.49 0.49/0.49
GIU/GIn 0XO0 M2 0.25/0.26 0.23/0.26
M3 0.01/0.01 0/0
MO 0.19/0.05 0.20/0.08 0.97/0.97
M1 0.42/0.32 0.41/0.31 0.03/0.03
Tyr PEP M2 0.30/0.41 0.310.38 0/0
E4P M3 0.08/0.21 0.08/0.21
M4 0.01/0.01 0.01/0.02

Notes for Table 3.3.51 ~ 2:

1.

lon mass values represent amino acid molecules with specific
fragmentation patterns: ([M-57]": No loss); ([M-159]": Loss of o carboxyl
group); ([f302]*: 1% and 2" carbons in amino acids). ([M-159]": Loss of a
carboxyl group) of threonine was replaced by ([M-85]": Loss of a
carboxyl group) because the later ion had clearer signals.

[f302]" peaks of some amino acids overlapped with other peaks, so [f302]"
only qualitatively reflects the labeling status in amino acids.

Asparagine and glutamate were converted into aspartate and glutamine
during the protein hydrolysis.

Abbreviations: E4P, erythrose-4-phosphate; OAA, oxaloacetate; OXO, 2-
ketoglutarate; PEP, phosphoenolpyruvate; G3P, 3-phosphoglycerate.

The standard deviations for measurement (n=2) of mass fractions are
below 2%.
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Table 3.3.S2. Isotopic analysis of amino acids in Thermoanaerobacter sp. X514
and their labeling positions ([1-**C] pyruvate)

Amino

Proposed *C enriched

Acids  Preeursors lons - [M-57] [M-159]"  [f302] positions
MO 0.02 0.93 0.03
C-C-*COOH
Ala Pyruvate M1 0.96 0.02 0.95
M2 0.02 0.04 0.02
MO 0.03 0.99
C-*COOH
Gly Serine M1 0.96 0.01 ND
M2 0.01
MO 0.01 0.95 0.12
C-C-C-C-*COOH
Val Pyruvate M1 0.94 0.04 0.87
M2 0.04 0 0.01
MO 0.93
Pyruvate M1 O;g;'sp 0.06 ND C-C-C.C-C-COOH
Acetyl- C2~C6 were not labeled.
Leu Co,Z\ M2 with f302 0.01
M3 0.00
p " MO 0.91 ND
Aycr:l;;ﬁe M1 Overlap ~ 0.08 C-C-C-C-C-COOH
Ile CoA M2 Peak 0.01 C2 ~C6 were not labeled
Aspartat MO 0 0.03
Methy- ML 0.03 0.93 ND C-S-*C-C-C-*COOH
Met THE M2 0.92 0.03
M3 0.04 0
MO 0.02 0.97 0.03
C-C-*COOH
Ser G3P M1 0.96 0.02 0.95
M2 0.01 0 0.02
MO 0.01 0.03
*C-C-C-*COOH
Thr Aspartate M1 0.02 0.95 ND
M2 0.93 0
MO 0.01 0.01 0.02
C-C-C-C-C-C-C-C-*COOH
M1 0.01 0.37 0.97 1% carbon was labeled. The other
PEP M2 0.38 0.56 0.01 two carbons’ labeling positions
Phe E4P M3 0.56 0.05 could not be determined.
M4 0.04 0.01
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Asp/Asn

Glu/GIn

Tyr

OAA

O0XO

PEP
E4P

MO
M1
M2

MO
M1
M2
M3

MO
M1
M2
M3
M4

0.03
0.96

0.02
0.93

0.05

0.02
0.37
0.56
0.04

0.02
0.95
0.02

0.02
0.94

0.03

0.02
0.37
0.54
0.05
0.01

0.02
0.98

0.82
0.18

0.02
0.98

*C-C-C-*COOH

*C-C-C-C-COOH

C-C-C-C-C-C-C-C-*COOH
1% carbon was labeled. The other
two carbons’ labeling positions
could not be determined
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3.4 ®C-pathway analysis of environmental microorganisms

3C-pathway analysis has been applied to a number of environmental
microorganisms, including 1) Cyanothece 51142, a unicellular diazotrophic
cyanobacterium (81); 2) Heliobacterium modesticaldum, a Gram-positive
photosynthetic bacterium (82); 3) Roseobacter denitrificans OCh114, an aerobic
anoxygenic phototrophic bacterium (83); 4) Dehalococcoides ethenogenes Strain
195, an important member of bioremediation communities to detoxify
chloroethenes into the benign end product ethane (84); and 5) Mycobacterium
smegmatis, a non-virulent bacterium that is often used to study the metabolism of
a pathogenic bacterium, Mycobacterium tuberculosis (85). Novel metabolic
features have been uncovered for the aforementioned environmental
microorganisms via 3C-pathway analysis. Diverse analytical methods were
utilized to confirm the discoveries from *C-pathway analysis, including
biochemical assays to detect in vitro enzyme activities, quantitative RT-PCR to
profile the gene expressions, and LC-MS/MS to measure fast-turnover

metabolites.
3.4.1 Cyanothece 51142

Based on the identical labeling patterns of isoleucine and leucine in [2-
3C] glycerol cultures, an alternative isoleucine biosynthesis pathway via
citramalate synthase was discovered in Cyanothece 51142. Instead of using

threonine as the precursor, Cyanothece 51142 applied the citramalate pathway to
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induce isoleucine biosynthesis by using the same precursors (i.e., pyruvate and
acetyl-CoA) as those used in leucine biosynthesis pathway. The presence of
citramalate pathway was confirmed by measuring the in vitro enzymatic activity
of citramalate synthase via biochemical assays and by detecting the key
intermediate in citramalate pathway, citramalte, via LC-MS/MS. A report about
applications of '3C-pathway analysis to identify citramalate pathway in

Cyanothece 51142 is attached in Appendix 2.
3.4.2 Heliobacterium modesticaldum

Heliobacteria are the only cultured Gram-positive photosynthetic bacteria.
The isotopomer data from proteinogenic amino acids was collected to probe the
central carbon metabolism of Heliobacterium modesticaldum. The CO,-
anaplerotic pathway was found to be active during phototrophic growth and the
citramalate pathway was employed by Heliobacterium modesticaldum for
isoleucine biosynthesis. Furthermore, the oxidative TCA cycle was operative by
using a putative (Re)-citrate synthase to produce citrate. The presence of (Re)-
citrate synthase was confirmed by measuring activity of citrate synthase via an
activity assay. The report of '*C-pathway analysis for Heliobacterium

modesticaldum is attached in Appendix 3.

3.4.3 Roseobacter denitrificans OCh114
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Roseobacter denitrificans OCh114 is a model organism to study aerobic
anoxygenic photosynthesis in bacteria. Through measurements of **C-isotopomer
labeling patterns of proteinogenic amino acids in a series of tracer experiments,
the metabolic routes for carbohydrate utilization, CO, assimilation, and amino
acid biosynthesis were studied in Roseobacter denitrificans OCh114. The
anaplerotic pathways, mainly via the malic enzyme, were used to fix CO, by R.
denitrificans. The Entner-Doudoroff (ED) pathway and the non-oxidative pentose
phosphate pathway were employed by R. denitrificans in carbohydrate
metabolism. The Embden-Meyerhof-Parnas (EMP, glycolysis) pathway was
found to be inactive, which was confirmed by the absence of in vitro enzyme
activity of 6-phosphofructokinase (PFK). In addition, isoleucine synthesis in R.
denitrificans used both threonine-dependent (20% total flux) and citramalate
pathway (80% total flux). The report of *3C-pathway analysis for Roseobacter

denitrificans OCh114 is attached in Appendix 4.
3.4.4 Dehalococcoides ethenogenes Strain 195

Dehalococcoides ethenogenes 195 is the only known bacteria that can
fully degrade PCE to ethane (86,87). Isotopomer-based dilution analysis was
applied to differentiate the amino acids in Dehalococcoides ethenogenes from two
pathways: de novo synthesis from acetate, and amino acids import from
environment. It was found that glutamate/glutamine and aspartate/asparagine

were almost exclusively synthesized by Dehalococcoides ethenogenes, even when
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provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine,
and methionine were identified as the four amino acids that were most highly
imported from environment. Adding either phenylalanine or the four highly
imported amino acids to the defined mineral medium enhanced the growth rates,
dechlorination activities, and vyields of strain 195 in a similar level to
supplementation with 20 amino acids. The transcriptional regulations of ABC-
type amino acids transporters were also analyzed by gRT-PCR. The report of **C-
pathway analysis for Dehalococcoides ethenogenes Strain 195 is attached in

Appendix 5.
3.4.5 Mycobacterium smegmatis

Mycobacterium smegmatis is phylogenetically related to Mycobacterium
tuberculosis (MTB) and is often used as a model for studying MTB metabolism
since it is non-virulent. Isotopomer-assisted metabolite analysis was used to
investigate the metabolic transition from normal growth to a non-replicating state
under a hypoxic environment. The glyoxylate pathway and glycine
dehydrogenase were induced as the bacillus encountered hypoxic stress.
Meanwhile, the relative amount of acetyl-CoA entering the TCA cycle was
doubled, whereas little entered the glycolytic and pentose phosphate pathways.
The report of **C-pathway analysis for Mycobacterium smegmatis is attached in

Appendix 6.
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Chapter 4

BC-Metabolic Flux Analysis of Central Carbon Metabolisms

4.1 **C-metabolic flux analysis (**C-MFA) protocol

13C-MFA integrates the isotopomer measurements and the computational
optimization to quantify fluxes through a metabolic network. In general, **C-MFA
is formulated as a nonlinear inverse problem, in which mass balance equations
and isotopomer balance equations are used to find an optimal set of metabolic
fluxes that has the smallest lack-of-fit between the simulated and measured
isotopomer labeling patterns in proteinogenic amino acids (1). *C-MFA is
usually applied to quantify the flux distributions in central metabolic network,
including glycolysis, Entner—Doudoroff pathway, pentose phosphate pathway, the
TCA cycle, futile pathways, and the glyoxylate shunt. At metabolic and isotopic
steady state, labeling information of proteinogenic amino acids that are
synthesized from these central metabolic pathways is collected for *C-MFA. The
substrate uptake rates and products secretion rates are measured as the inflow and

outflow fluxes in *C-MFA.

To quantify the intracellular metabolic fluxes, both mass and isotopomer
balance equations are applied. At metabolic steady state, there is no net
accumulation of the intracellular metabolites in the metabolic network. The mass

balance in the given metabolic network is hence represented as S - v = 0, where S
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is the stoichiometric coefficients matrix and v is the flux distribution vector. For
an intracellular metabolite synthesized from two reactant molecules at isotopic
steady state, i.e. A+B—C, the isotopomer distribution of the product molecule can
be represented as IDVc = (IMMa_c - IDVp) ® (IMMg_,c - IDVg); where IDV is
the isotopomer distribution vector for a metabolite, ® represents element-wise
multiplication, and IMM,_,c represents the isotopic mapping matrix that

describes the isotopomer transitions from the precursor to the product. The

isotopomer balance equations can be derived as IDV-) v, =Z(j~IDV.\;

] -

j=1 j=1
where IDV are the isotopomer distributions for the target metabolite, v; is the jth
reaction that produces the target metabolite, and IDV; are the isotopomer

distributions of the target metabolites synthesized from v;.

To simulate the isotopomer labeling patterns of amino acids that are
measured by GC/MS, the isotopomer distributions are converted to mass
distribution vectors (MDV) by the following MDV = M - IDV equation, where M
is the conversion matrix. The difference between the simulated and measured
MDYV in proteinogenic amino acids is minimized by using a series of
computational optimization algorithm, such as simulated annealing and
evolutionary algorithms. Multiple sets of metabolic fluxes are tested and the flux
distribution that best match the simulated data with the experimental data is

provided by *C-MFA. The flowchart of **C-MFA is illustrated in Figure 4.1.
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Figure 4.1. Framework for *C-metabolic flux analysis.
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4.2.1 Abstract

The photosynthetic green sulfur bacterium, Chlorobaculum (Cba.)
tepidum, assimilates CO, and organic carbon sources (acetate or pyruvate) during
mixotrophic growth conditions through a unique carbon and energy metabolism.
Using a *3C-labeling approach, this study examined biosynthetic pathways and
flux distributions in the central metabolism of Cba. tepidum. The isotopomer
patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine
synthesis (via citramalate synthase, CimA, CT0612). *C-based flux analysis
indicated that carbons in biomass were mostly derived from CO, fixation via three
key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis
pathway via pyruvate:ferredoxin oxidoreductase (PFOR), and the CO,-anaplerotic
pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with
acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from
acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). PFOR
converted acetyl-CoA and CO; to pyruvate, and this growth-rate-control reaction
is driven by reduced ferredoxin generated during phototrophic growth. Most
reactions in the RTCA cycle were reversible. The relative fluxes through the
RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and
200~230 units for cultures grown on pyruvate. Under the same light conditions,
the flux results suggested a trade-off between energy-demanding CO, fixation and

biomass growth rate: Cba. tepidum fixed more CO, and had higher biomass yield
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(Yxs: mole carbon in biomass/mole substrate) in pyruvate culture (Yx;s=9.2) than
in acetate culture (Yxs=6.4), but the biomass growth rate was slower in pyruvate

culture than in acetate culture.
Key words: *C, citramalate, CO; fixation, ferredoxin, RTCA, light-harvesting
4.2.2 Introduction

Chlorobaculum tepidum (Cba. tepidum) is a representative green sulfur
bacterium that is ecologically significant in global cycling of carbon, nitrogen and
sulfur (2,3). The Cba. tepidum genome has been sequenced, and the genetic tools
for creating Cba. tepidum mutant strains have been developed to make
transposon-based mutations or targeted gene disruptions, which offer great
potential to engineer Cba. tepidum for future applications (4). The annotated
genome reveals unique aspects in carbon and energy metabolism in Cba. tepidum.
Instead of using the Calvin-Benson Cycle for COj-assimilation as in most
photosynthetic organisms, Cba. tepidum captures energy from light and uses it
along with electrons, primarily derived from oxidation of sulfur compounds, to
drive the reductive tricarboxylic acid cycle (RTCA) for synthesis of building
block molecules (4). Cba. tepidum can grow mixotrophically with acetate or
pyruvate as the organic carbon source (3). Although recent research has been
performed on the carbon and energy metabolism of Cba. tepidum (5,6), rigorous
quantification of the metabolic pathway activities has not yet been achieved. To

provide quantitative readout of the metabolic functions and regulatory
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mechanisms, this study has performed **C-based metabolic flux analysis of Cba.
tepidum in the following steps: 1) growing cultures of Cba. tepidum with **C-
labeled acetate or pyruvate, 2) using gas chromatography-mass spectrometry (GC-
MS) to measure the resulting labeling pattern in key metabolites, and 3)
deciphering in vivo metabolisms via a flux model (7). Isotopic labeling and
metabolic flux analysis have been developed to identify the active biosynthesis
pathways (8,9,10,11) and measure the global enzymatic reaction rates (12,13).
Such a fluxomics approach can bridge the gap between genome annotations and
final metabolic outputs, and has been applied for characterizing numerous
environmental microorganisms, including E. coli (14,15), Saccharomyces
cerevisiae (16,17), Bacillus subtilis (18), Geobacter metallireducens (19),
Shewanella oneidensis (20), Synechocystis sp. (21), etc. This paper reports on the
first studies of the fluxomics of mixotrophic metabolism in the green sulfur
bacteria, and provides complementary information to previous genomic and

proteomic studies.
4.2.3 Experimental procedure

3C-labeled experiments. Cha. tepidum cultures were grown
anaerobically at temperatures ranging from 46-50 "C in low-intensity light (10 + 1
W/m?). The medium composition (1L) was Na,EDTA-2H,0 (0.015 g), MgSO,-
7H,0 (0.22 g), CaCl,-2H,0 (0.08 g), NaCl (0.45 g), NH4Cl (0.45 g), Na,S,03-

5H,0 (2.6 g), KH,PO, (0.57 g), MOPS buffer (2.4 g), trace element stock (1.2

143



mL), vitamin B, stock (0.08 mg), NaHCO3 (0.23 g), and Na,S-9H,0 (0.07 g). All
chemicals were purchased from Sigma-Aldrich. The carbon source for the trace
experiments was [1-'*C] acetate (purity > 98%, 0.83g/L) or [2-**C] acetate (purity
> 98%, 0.83¢/L) for cultures growing on acetate, or [3-*3C] pyruvate (purity >
98%, 1.1 g/L) for cultures growing on pyruvate. The *3C-labeled acetate and
pyruvate were purchased from Cambridge Isotope Laboratories

(www.isotope.com). Cell growth was monitored at ODgs. 1% cultures (100-fold

dilution) in the exponential growth phase were used to inoculate fresh media with
3C-labeled substrates. To reduce the effect of non-labeled carbon from the initial
stock, cells were sub-cultured twice in the same labeled medium. Biomass was
sampled at two time points (4 hr interval) in the middle-exponential growth phase,
and the labeling patterns of proteinogenic amino acids in the biomass were
measured. The invariability of amino acid labeling during the two time points

confirmed the pseudo-steady-state metabolism in tracer experiments.

Metabolites and isotopomer analysis. The amount of pyruvate and
acetate during the growth period was determined by enzymatic assays (22,23,24).
For GC-MS measurement of amino acid labeling, the biomass was harvested by
centrifugation and hydrolyzed using 6M HCI (24 hrs at 100 "C) (20,25). The
amino acids were derivatized in 0.2 mL tetrahydrofuran and 0.2 mL N-(tert-butyl
dimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich, St. Louis, MO). A

gas chromatograph (Hewlett-Packard model 7890A; Agilent Technologies, CA)
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equipped with a DB5-MS column (J&W Scientific, Folsom, CA) and a mass
spectrometer (model 5975C; Agilent Technologies, CA) were used for analyzing
metabolite labeling profiles. Four types of charged fragments were detected by
gas chromatography-mass spectrometry (GC-MS) for all the amino acids (Table
4.2.1 and Figure 4.2.1): the [M-57]" or [M-15]" group (containing unfragmented
amino acids); the [M-159]" or [M-85]" group (containing amino acids that had
lost an a-carboxyl group). For each type of fragments, the labeling patterns were
represented by Mo, M1, My, etc, which were fractions of unlabeled, singly labeled,
and doubly labeled amino acids. The effects of natural isotopes on isotopomer

labeling patterns were corrected by previously reported algorithms (26).

To compare the relative contributions of carbon substrates and CO, to
mixotrophic biomass synthesis, the substrate utilization ratio R was calculated

based on the labeling patterns of unfragmented amino acid X (e.g., alanine) (8):

C
(2uix M)
098 x nx Vo +001x Vo, _ 21 and R = "V (Equation 1)
mxV. 14

sub + VCOZ C Cco,

where R ratio reflects the carbon flux ratio of labeled carbon substrate to
unlabeled CO, for producing the corresponding amino acid X (mol carbon from
substrate / mol carbon from CO,); M; is the GC-MS isotopomer fraction for a
given amino acid. C is the total number of carbon atoms in the amino acid

molecule. Vyy, is the uptake of *3C-labeled organic substrates, Vcoo is the uptake
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of CO,; 0.98 is the purity of the labeled carbon substrate; 0.01 is the natural
abundance of 3C, m is the total number of carbons in the substrate molecule, and

n is the total number of labeled carbons in the substrate molecule.

Metabolic flux analysis. The pathway map of Cha. tepidum was
generated based on genome annotation from the KEGG database

(http://www.genome.jp/kega/) and transcription analysis of several key pathways

(27). The simplified pathway map includes the reductive tricarboxylic acid cycle,
COg-anaplerotic pathway, gluconeogenesis pathway, and pentose phosphate
pathway (Supplementary Figure 4.2.S1 and Table 4.2.S1). The development of a
pseudo-steady-state flux model has been discussed before (20,28,29). In brief, the
substrate (acetate or pyruvate) uptake rate was measured and normalized to 100
units. The biomass production was determined based on our previous paper (27).
The biomass composition for macromolecules such as protein and fatty acids was
assigned based on that of E. coli (14). The fluxes to biomass pools were loosely
constrained by the estimated dry cell weight (DCW) and biomass compositions.
These fluxes were used as initial inputs to the isotopomer model and optimized by
isotopomer labeling information (Table 4.2.1 and Supplementary Table 4.2.S2).
The remaining unknown intracellular fluxes were determined by reaction
stoichiometry and atom/isotopomer mapping matrices in an iterative scheme
(Supplementary Table 4.2.S3). The reaction reversibility was calculated using the

exchange coefficient (19):
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exch _ exch,

i T _exch. (Equation 2)

where v,

is the exchange flux defined as the smaller of the forward and
backward fluxes, and exch; is the exchange coefficient with the range of [0,1] (If
the reaction is irreversible, exch; is 0; if the reaction is “freely” reversible, exch; is

close to 1). The flux combinations were searched to minimize of the objective

function (20):

e(v,)= E[M_S—N(V)J (Equation 3)

where v, are the unknown fluxes to be optimized in the program, M; is the
measured MS data, N; is the corresponding model-simulated MS data, and 9; is the
corresponding standard deviation in the GC-MS data (1~2%). The unknown
metabolic fluxes were searched to minimize €. The model was solved by IPOPT

(Interior Point Optimizer, https://projects.coin-or.org/Ipopt), which is a software

package for large-scale nonlinear optimization. To avoid getting trapped in a local
optimal minimum, multiple initial guesses (>100) were used for model calculation

to obtain the global solution.

To estimate the confidence interval for the calculated fluxes, a Monte
Carlo approach was employed (15). In brief, the isotopomer concentration data

sets were generated by adding 2% of normally distributed measurement noise to
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actual measured isotopomer data. The same optimization routine was used to
estimate flux distribution from these data sets. Confidence limits for each flux
value were obtained from the probability distribution of calculated fluxes
resulting from the simulated data sets (n=100). To determine the cellular
metabolism’s requirements for energy and reducing power, the relative
consumption rates of ATP, NADH, NADPH and ferredoxin were quantified based
on the flux distributions in the central metabolic pathways and biomass synthesis

rates.

Calculation of biomass yield. The biomass yield (moles of carbon in
biomass/moles of substrate) was calculated based on the substrate uptake rates
(moles of substrate/L/hr) and biomass growth rates (g DCW/L/hr). The molecular
formula for Cba. tepidum was assumed to be CH1 800 5No2Po.02 (molecular weight

MW = 25.5) (30). The biomass yield was calculated by:

biomass growth rate (g/L/hr)
MW of biomass (g/mol)
substrate uptake rate (mol/L/hr)

Yield=

4.2 .4 Results and discussion

Carbon utilization during mixotrophic growth. During exponential-
growth with pyruvate and acetate, Cba. tepidum had the growth rates of 0.12 h™*
and 0.17 h', respectively. In the trace experiments, the labeled carbons were

detected in all amino acids (Table 4.2.1), suggesting utilization of acetate or
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pyruvate to synthesize all building blocks. Table 4.2.2 shows the ratio of carbon
utilization (organic carbon vs. CO,) for mixotrophic synthesis of proteinogenic
amino acids. For acetate culture, the substrate utilization ratio for Ala (precursor:
pyruvate) was 0.60, which indicated that carbons in pyruvate were mainly derived
from labeled acetate. Pyruvate is the precursor for both the gluconeogenesis
pathway and the pentose phosphate pathway, so the R ratios (Equation 1) of Ser
and Phe are similar to that of alanine. The substrate utilization ratio of His was
high (0.96) for culture with [2-'*C]acetate because the His precursor C1 pool (N°,
N'°-methylene-tetrahydrofolate) was highly labeled. This carbon was derived

from acetate by following route:
[2-13C]acetate>[3-*C]pyruvate>[3-*C]Ser>[**C] C1 pool.

In the mixotrophic culture with acetate, the R ratios for aspartate and
glutamate (~0.2) were significantly lower than the other amino acids. Aspartate
and glutamate were synthesized from the RTCA cycle, so the small R values
indicated that the unlabeled CO, was the dominant carbon source for synthesizing
metabolites in the RTCA cycle. In pyruvate culture, the substrate utilization ratios
of amino acids (Ala, Phe, Ser, and Asp) were all lower than in acetate culture,

indicating a higher contribution of CO, to synthesize building blocks.

Analysis of amino acid biosynthesis pathways. Growing in a completely
defined medium, Cba. tepidum was able to synthesize all amino acids from CO,

and organic carbon sources using the annotated pathways. Interestingly, the
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labeling patterns of Leu and lle from tracer experiments were found to be
identical, which indicated that the two amino acids shared the same precursors. lle
is commonly synthesized via threonine ammonia-lyase, with Thr and pyruvate as
the precursors, while Leu is synthesized from pyruvate and acetyl-CoA. In the [2-
13C] acetate trace experiment, both Thr and pyruvate are singly labeled, which
could lead only to doubly labeled lle, instead of the triply labeled Ile detected by
GC-MS. Such an observation is consistent with the fact that a gene encoding
threonine ammonia-lyase has not been annotated in the genome of Cba. tepidum.
On the other hand, an alternative pathway for Ile biosynthesis (i.e., threonine-
independent pathway) has been recently identified in several bacteria
(9,10,25,31), where lle is synthesized from acetyl-CoA and pyruvate (i.e., using
the same precursors as Leu) through the formation of citramalate as the
intermediate (Figure 4.2.1). A search in the genome of Cba. tepidum for the gene
for citramalate synthase (CimA) as found in Geobacter (10) returned a high
identity for CT0612 (~ 52%), supporting the presence of the citramalate pathway

for lle synthesis.

Central carbon metabolic pathways. The genome annotation from the
KEGG database indicates: 1) pyruvate:ferredoxin oxidoreductase (PFOR) (porA,
CT1628) converts pyruvate to acetyl-CoA (an end-product from RTCA cycle), 2)
phosphoenolpyruvate (PEP) is derived from pyruvate via pyruvate phosphate

dikinase (ppd, CT1682), and 3) PEP is fed into the TCA cycle via the CO,-
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anaplerotic pathway (Figure 4.2.2). The fraction of non-labeled Asp (M=0.64,
Table 4.2.1) was much higher than that of Ala (My=0.45, Table 4.2.1) in trace
experiments with [1-'*C] acetate, which indicated that non-labeled oxaloacetate
was also generated through CO, fixation via the RTCA cycle. Furthermore,
similar labeling patterns of Ala (precursor: pyruvate) and Ser (precursor:
glycerate-3-P) confirmed that the carbon flux through the gluconeogenesis

pathway was mainly from pyruvate.

The flux analysis results are shown in Figure 4.2.2. In general, predicted
labeling patterns of all amino acids were good matches with the measured
isotopomer data (Figure 4.2.3). Under acetate-growth conditions, acetyl-CoA
could be generated from acetate uptake or as the end-product through the RTCA
cycle. Fluxes through pyruvate:ferredoxin oxidoreductase (PFOR), the RTCA
cycle, and the COj-anaplerotic pathway were ~152, 80-100, and ~30 units,
respectively (Figure 4.2.2). Meanwhile, the flux ratio of the gluconeogenesis
pathway to the RTCA cycle was close to 1:1. The oxidative pentose phosphate
pathway (G6P - 6PG -> Ru5P) was inactive under our experimental conditions.
Compared to mixotrophic growth with acetate, the flux distribution during
pyruvate growth demonstrated different patterns. In general, the fluxes into the
RTCA cycle and CO,-anaplerotic pathway were much higher (200-230 units and
~50 units, respectively) and thus more CO, was fixed. The flux ratio of the

gluconeogenesis pathway to the RTCA cycle was reduced to 1:2, while acetyl-
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CoA was generated only from the RTCA cycle. The oxidative pentose phosphate
pathway was not active (flux<l unit) under pyruvate mixotrophic growth (or

acetate mixotrophic growth).

In the mixotrophic cultures grown on acetate or pyruvate, most reactions
in the RTCA cycle were freely reversible (exchange coefficient close to 1). The
reversibility is consistent with the physiological free energy changes in the RTCA
cycle, where the standard Gibbs free energy for most reactions of the TCA cycle
is positive so that the magnitude of the reaction equilibrium constants is small
(32). Furthermore, PFOR catalyzes a reversible reaction between pyruvate and
acetyl-CoA (pyruvate + CoA + 2 Fdox <> acetyl-COA + CO; + 2 Fdpg + 2 HY).
However, metabolic flux analysis of the mixotrophic metabolism indicates that
the net flux of this enzymatic reaction was from acetyl-CoA to pyruvate (33). The
direction of the PFOR pathway indicates that the reduced ferredoxin from
phototrophic  processes made the reaction for pyruvate synthesis

thermodynamically favorable.

Energy metabolism of Chlorobaculum tepidum. The mixotrophic
metabolism of Cba. tepidum consumes energy harvested from light. Since the
oxidative pentose phosphate pathway and normal TCA cycle are not fully
functional, the energy (NADPH and NADH) generation mainly depends on the
light reactions. Based on the metabolic flux distribution and previous

measurement of the absolute uptake rates of carbon substrates and biomass
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growth (27), the light-energy harvested for central metabolism and biomass
growth was approximately quantified (Figure 4.2.4). In general, the photons
absorbed by pigments (e.g. bacteriochlorophylls) initiate the electron flow and
oxidize sulfide. The electrons are used to reduce ferredoxin and generate
NAD(P)H (3,4). Concomitant with the oxidation of the reduced ferredoxin, the
essential cofactors for energy metabolism (i.e., NADPH and NADH) are mainly
generated by ferredoxin-NAD(P)" reductase (3,34). Meanwhile, the oxidation of
sulfide also creates a proton motive force for ATP production. The generated
ATP, cofactors, and reduced ferredoxin then become the “driver” for the
mixotrophic metabolism and the RTCA cycle for energy-demanding CO fixation.
Figure 4.2.4 shows that the ATP, NADH and NADPH fluxes into biomass and the
RTCA cycle are stronger in acetate-grown cultures than in pyruvate-grown
cultures, supporting a higher growth rate during mixotrophic growth with acetate.
On the other hand, the calculated biomass yield (moles of carbon in
biomass/moles of substrate) was higher for pyruvate culture (Yxs=9.2) than for
acetate (Yx/;s=6.4), based on our previous experiments (27), which is consistent
with the fact that the normalized fluxes through RTCA are higher in pyruvate
culture than acetate culture. Accordingly, pyruvate metabolism has more CO,

fixation (but slower growth rate).
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Figure 4.2.1. Citramalate pathway for isoleucine biosynthesis in Cba. tepidum
(using [2-"3C] acetate and NaHCO; as the carbon sources). The asterisks indicate

the positions of labeled carbon. The dashed lines indicate inactive pathways.
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Figure 4.2.2. Metabolic flux distribution in Cba. tepidum. (A) Net flux
distribution in acetate growth conditions (based on [2-*3C] acetate culture); (B)
net flux distribution in pyruvate growth conditions. The standard derivation (std)
and exchange coefficients are marked by flux +/- std and < exchange coefficient >
respectively. The inactive pathways are marked with dashed lines. The calculated
biomass yield (moles of carbon in biomass/moles of substrate): pyruvate culture
(Yx/s=9.2); acetate culture (Yx/s=6.4). Abbreviations: 3PG, 3-phosphoglycerate;
6PG, 6-phosphogluconate; AC.ext, extracellular acetate; AC, intracellular acetate;
ACCOA, acetyl-coenzyme A; AKG, a-ketoglutarate; CIT, citrate; DCW, dry cell
weight; E4P, erythrose-4-phosphate; F6P, fructose-6-phosphate; FBP, Fructose
1,6-bisphosphate; Fdq, reduced ferredoxin; Fd.x, oxidized ferredoxin; FNR,
ferredoxin-NAD(P)" reductase; FUM, fumarate; G6P, glucose-6-phosphate; GAP,
glyceraldehyde 3-phosphate; ICIT, isocitrate; KGOR, 2-ketoglutarate ferredoxin
oxidoreductase; MAL, malate; OAC, oxaloacetate; PEP, phosphoenolpyruvate;
PFOR, pyruvate:ferredoxin oxidoreductase; PYR, intracellular pyruvate; PYR.ext,
extracellular pyruvate; R5P, ribose-5-phosphate; Ru5P, ribulose-5-phosphate;
RTCA, the reductive tricarboxylic acid; S7P, sedoheptulose-7-phosphate; SUCC,

succinate; SUCCOoA, Succinyl-CoA; Xu5P, xylulose-5-phosphate.
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Figure 4.2.3. Model quality test for (A) acetate metabolism; (B) pyruvate
metabolism. e alanine data, o serine data, ¥ aspartate data, A glutamate data, m

leucine data, o histidine data, ¢ phenylalanine data, and ¢ glycine data.

1.0
s
7 s
7 s
5 0.8 P
L Upper bound of isotopomer s
= measurement errors _ it ~ <
£ 061 o i
[~ o /7 P
) 7
> i
2 A A
= 0.4 4 W -
D b3
g A
E e « Lower bound of isotopomer
& 0.2 - 2 < A s measurement errors
7 s
s
54
0.0 L} L} L} | 5
0.0 0.2 0.4 0.6 0.8 1.0
Measured isotopomer data
1.0
s
A S
>l 4
5 081 P A
o Upper bound of isotopomer e e
5 measurement errors Pt 7
£ 061 s
(=3 - P 4
oy s
> A
2 s i B
= 0.4 4
o > 7 7
§ oy Lower bound of isotopomer
&~ 0.2 - _ -~ s - measurement errors
A
ad
> 4
0-0 T L) L) T
0.0 0.2 04 0.6 0.8 1.0

Measured isotopomer data

158



Figure 4.2.4. Proposed energy metabolism in Cha. tepidum. (A) energy
requirement (mmol/gDCW/hr) in acetate growth conditions; (B) energy
requirement (mmol/gDCW/hr) in pyruvate growth conditions. The intracellular
energy metabolism was quantified in the framed figures based on the relative flux
distributions (The detailed calculations are in Supplementary Tables 4.2.S4A and
S4B). Arrows pointing to the framed figure indicated the energy demand of
intracellular metabolism. Arrows pointing to biomass indicate the energy demand
of biomass accumulation. Arrows pointing from light indicated the entire energy
harvested by Cba. tepidum. The light reaction produces reduced ferredoxin and
ATP. NADPH and NADH are mainly generated by ferredoxin-NAD(P)”
reductase. Biomass (protein) synthesis can also generate a small amount of

NADH, as indicated in the figure.
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Figure 4.2.51. Pathway map for mixotrophic metabolism of Chlorobaculum

tepidum
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Table 4.2.1. Isotopic labeling patterns in amino acids from Chlorobaculum
tepidum®

Carbon source Amino acids Fragments Mo M; M,
Ala [M-57]" 0.45 0.54 0.01
[M-159]" 0.44 0.53 0.03
Gly [M-57]* 0.54 0.46 0.00
[M-85]" 0.54 0.46
Ser [M-57]* 0.46 0.52 0.02
[M-159]" 0.47 0.53 0.00
13 Leu [M-159]* 0.21 0.43 0.33
[1-7C] acetate lle [M-159]" 0.21 0.43 0.33
o o 085 03 o0l
M-159]* . . .
Gl [M-57]* 0.63 0.33 0.04
[M-159]* 0.63 0.33 0.04
Phe [M-57]° 0.11 0.29 0.36
[M-159]" 0.12 0.30 0.36
O 022 054 oos
M-159]" . . .
Gly [M-57]° 0.94 0.06 0.00
[M-85]" 0.95 0.05
Ser [M-57]" 0.44 0.55 0.01
[M-159]" 0.45 0.55 0.00
Leu [M-159]" 0.13 0.25 0.36
[2-°C) acetate “ s ot om oo
Asp [M-159]* 0.62 0.37 0.00
[M-57]° 0.62 0.35 0.03
Glu [M-159]" 0.63 0.34 0.03
Phe [M-57]° 0.13 0.26 0.36
[M-159]" 0.14 0.26 0.35
His [M-571" 0.16 0.35 0.36
[M-159]" 0.28 0.48 0.22
Ala [|v|-57]++ 0.67 0.32 0.01
[M-159] 0.65 0.30 0.05
Gly [M-57]" 0.96 0.04 0.00
[M-85]* 0.97 0.03
SO S 1 A
[3-1*C] pyruvate Leu [M-159]" 0.47 0.38 0.12
lle [M-159]" 0.47 0.39 0.12
Asp [M-57]* 0.82 0.17 0.00
[M-159]" 0.83 0.15 0.01
Gl [M-57]" 0.75 0.20 0.05
[M-159]" 0.76 0.20 0.04
Phe [M-57]" 0.38 0.41 0.17
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[M-159]° 0.38 0.40 0.18
[M-57]° 0.46 0.41 0.11

His [M-150]" 0.56 0.34 0.08

a. the standard deviations for GC-MS measurement were based on the
duplicate experiments (n=2), with the standard deviation below 2%.
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Table 4.2.2. Carbon substrate utilization ratios® in amino acids from
Chlorobaculum tepidum

Carbon sources

Amino

acids [1-"°C] acetate + [2-2°C] acetate + [3-"°C] pyruvate +
NaHCO; NaHCO; NaHCO;
Ala 0.60 0.60 0.48
Ser 0.58 0.58 0.42
Asp 0.20 0.22 0.12
Glu 0.18 0.18 0.21
His NA® 0.96 0.38
Phe 0.62 0.64 0.26

a. the carbon source utilization ratio (organic substrate/CO, fixation) for amino
acid synthesis was calculated according to Equation (1); b. isotopomer labeling
pattern for histidine was not detected under [1-*C] acetate + NaHCO; due to the
weak signal to noise ratio in GC-MS.
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Table 4.2.S1. Metabolic pathways in mixotrophic metabolism of Chlorobaculum

tepidum
PatIth ay Reactions Notes
vL_ACT fé‘g:feeuular acetate—Intracellular Confirmed by qRT-PCR (acsA, ackA)
vl PYR Extracellular pyruvate—Intracellular
- pyruvate
v2 Acetate— Acetyl-CoA (-ATP)
v3 Acetyl-CoA+CO2«—Pyruvate (-2 Fd ) Confirmed by gRT-PCR (porA)
v4 PEP/Pyruvate+CO2—0AC (+ATP) Confirmed by qRT-PCR (ppc, pckA)
v5 OAC—MAL (-NADH)
v6 MAL—FUM
v7 FUM—SUCC (-2[H])
v8 SUCC—SUCCoA (-ATP)
v9 SUCCoA+C0O2—AKG (-2 Fdreg) Confirmed by gqRT-PCR (korA, korB)
v10 AKG+CO2<ICIT (-NADPH) Confirmed by gRT-PCR (icd)
v1l ICIT<—CIT Confirmed by qRT-PCR (acn)
v12 CIT>ACCOA+OAC aC(E’)Irg)lrmed by qRT-PCR (gltA, aclA,
v13 PYR<PEP (-ATP) Confirmed by gRT-PCR (ppd)
v1l4 PEP-3PG
vi5 3PG—GAP (-ATP) (-NADH)
v16 2 GAP—FBP
v17 FBP—F6P (+ATP)
v18 F6P—GAP
v19 GAP—6PG (+NADPH)
v20 6PG—C5P+CO2 (+NADPH)
v21 F6P+GAP«—XU5P+E4P
v22 E4P+F6P«S7P+GAP
v23 S7P+GAP«+XUS5P+R5P
v24 R5P—Biomass Energy cost is listed in Table.S2
v25 E4P—Biomass Energy cost is listed in Table.S2
v26 F6P—Biomass Energy cost is listed in Table.S2
v27 G6P—Biomass Energy cost is listed in Table.S2
v28 GAP—Biomass Energy cost is listed in Table.S2
v29 3PG—Biomass Energy cost is listed in Table.S2
v30 PEP—Biomass Energy cost is listed in Table.S2
v31l PYR—Biomass Energy cost is listed in Table.S2
v32 ACCOA—Biomass Energy cost is listed in Table.S2
v33 OAC—Biomass Energy cost is listed in Table.S2
v34 AKG—Biomass Energy cost is listed in Table.S2
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Table 4.2.52. Precursors for building blocks synthesis in Chlorobaculum tepidum

Building block Cost of making 1 mol of each of these building blocks
(mol/mol)
Precursors
Protein amino acids
Alanine 1PYR

Arginine 1 AKG, (-5 ATP) (-1 NADPH)

Asparagine 1 Asp, (-2 ATP)

Aspartate 1 0AC

Cysteine 1 Ser (-3 ATP) (-4 NADPH)

Glutamate 1 AKG (-1 NADPH)

Glutamine 1Glu (-1 ATP)

Glycine 1 Ser

Histidine 1 C5P, 1 C1 unit (-5 ATP) (+2 NADH)
Isoleucine 2 PYR, 1 ACCOA (-1 NADPH) (+1 NADH)
Leucine 2 PYR, 1 ACCOA (-1 NADPH) (+1 NADH)
Lysine 1 OAC, 1 PYR (-1 NADPH)

Methionine 1 Asp,1 C1 unit (-1 ATP) (-2 NADPH)
Phenylalanine 1 E4P, 2 PEP (-1 ATP) (-1 NADPH)

Proline 1 Glu (-1 ATP) (-2 NADPH)

Serine 1 3PG (+1 NADH)

Threonine 1 OAC (-2 ATP) (-2 NADPH)

Tryptophan 1 C5P, 1 E4P,1 PEP (-3 ATP) (-1 NADPH)
Tyrosine 1 E4P, 2 PEP (-1 ATP) (-1 NADPH) (+1 NADH)
Valine 2 PYR (-1 NADPH)

RNA nucleotides

ATP 1 C5P, 1 3PG
GTP 1 C5P, 1 3PG
CTP 1C5P,1 0OAC
UTP 1 C5P, 1 OAC
DNA nucleotides

dATP 1 C5P, 1 3PG
dGTP 1 C5P, 1 3PG
dCTP 1 C5P, 1 OAC
dTTP 1C5P,1 0OAC
Average fatty acid 8.2 ACCOA
Average

carbof?ydrate 1 G6P
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Table 4.2.53. Atom mapping matrices for metabolic reactions
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Table 4.2.54A. Energy demand of Chlorobaculum tepidum in acetate growth
conditions

Acetate Metabolism

Flux

Flux ID | Flux (units) ATP NADH NADPH 2[H] Fdreq
(mmol/g/hr)

vl _ACT | 100.0+0.0 1.0£0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v2 100.0+0.0 1.0£0.1 1.0£0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v3 152.4+11.4 1.5+1.2 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 3.0+0.2
v4 33.1+2.3 0.3+0.0 -0.3+0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v5 98.1+11.3 1.0£0.1 0.0£0.0 1.0£0.1 0.0+0.0 0.0+0.0 0.0+0.0
v6 98.1+11.3 1.0£0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v7 98.1+11.3 1.0£0.1 0.0+0.0 0.0+0.0 0.0+0.0 1.0+0.1 0.0+0.0
v8 98.1+11.3 1.0£0.1 1.0£0.1 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v9 98.1+11.3 1.0£0.1 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 2.0+0.2
v10 81.4+9.4 0.840.1 0.0£0.0 0.0£0.0 0.8+0.1 0.0+0.0 0.0+0.0
v1l 81.4+9.4 0.8+0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v12 81.4+9.4 0.8+0.1 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v13 124.2+10.4 1.2+0.1 1.2+0.1 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
vl4 81.1+15.0 0.840.2 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v15 51.1+7.8 0.5+0.1 0.5+0.1 0.5+0.1 0.0+0.0 0.0+0.0 0.0+0.0
v16 18.5+2.4 0.2+0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v17 18.5+2.4 0.2+0.0 -0.240.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v18 1.7£0.2 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v19 0.0+0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v20 0.0+0.1 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
v21 10.9+1.8 0.1+0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v22 4.240.2 0.0£0.0 0.0£0.0 0.0£0.0 0.0+0.0 0.0+0.0 0.0+0.0
v23 4.2+0.2 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0 0.0+0.0
Sum - - 3.2+04 1.5+0.2 0.840.1 1.0+0.1 5.0+0.5

Biomass ) p=0.17 hr' | 40.86:0.17 | -3.55-0.17 | 16.87:0.17 | 0.00-0.17 | 0.00-0.17

+0.02 hr! =6.9+0.7 =0.6+0.1 =2.940.3 =0.0£0.0 =0.0£0.0
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Table 4.2.54B. Energy demand of Chlorobaculum tepidum in pyruvate growth

conditions

Pyruvate Metabolism

Flux ID | Flux (units) (mn::olrl)g(] ) ATP NADH NADPH 2[H] Fdreq

vI PYR | 100.0£0.0 0.420.0 0.0£0.0 0.00.0 0.0£0.0 0.0£0.0 | 0.0£0.0
V2 100.0+0.0 0.420.0 0.0£0.0 0.00.0 0.0£0.0 0.0£0.0 | 0.0£0.0
V3 138.1+10.2 | 0.6£0.0 0.0£0.0 0.020.0 0.0£0.0 0000 | 1.240.1
va 48.145.6 0.20.0 -0.2+0.0 | 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V5 230.4+26.6 | 1.0%0.1 0.00.0 1.0:0.1 0.0£0.0 0.0:0.0 | 0.0£0.0
V6 230.4£26.6 | 1.0£0.1 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V7 230.4+26.6 | 1.0£0.1 0.0£0.0 0.00.0 0.0£0.0 1.0:0.1 | 0.0£0.0
V8 230.4+26.6 | 1.0£0.1 1.0£0.1 0.020.0 0.0£0.0 0.0£0.0 | 0.0£0.0
VO 230.4+26.6 | 1.0%0.1 0.00.0 0.00.0 0.0£0.0 0.0:0.0 | 2.0+0.2
vI0 | 207.3¥210 | 0.9%0.1 0.00.0 0.00.0 0.9%0.1 0.0:0.0 | 0.0+0.0
vil | 207.3:21.0 | 0.9%0.1 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
vi2 | 207.3:210 | 0.9%0.1 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
Vi3 161.1+4.9 0.720.0 0.740.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
vi4 | 1000118 | 0.4%0.1 0.00.0 0.0£0.0 0.0£0.0 0.0:0.0 | 0.0£0.0
vi5 70.149.5 0.3£0.0 0.310.0 0.320.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V16 25.4+10.9 0.10.0 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
vi7 25.4+10.9 0.10.0 -0.1:0.0 | 0.0£0.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V18 2.9+1.0 0.0£0.0 0.0£0.0 0.020.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V19 0.4%0.1 0.0£0.0 0.0£0.0 0.020.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V20 0.4+0.1 0.0£0.0 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V21 14.646.2 0.10.0 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V22 5.5:2.6 0.00.0 0.0£0.0 0.00.0 0.0£0.0 0.0:0.0 | 0.0£0.0
V23 55:2.6 0.0£0.0 0.0£0.0 0.020.0 0.0£0.0 0.0:0.0 | 0.0£0.0
Sum - - 1.7+0.2 1.3:0.1 0.9+0.1 10:0.1 | 3.2:03

Biomass ] u=0.12hr? | 40.86:0.12 | -3.550.12 | 16.87-0.12 | 0.00-0.12 | 0.00:0.12

+001hr! | =4.9:05 | =-04201 | =2.0£0.2 | =0.0+0.0 | =0.0+0.0

Biomass formation: 2.833 PYR+ 1.078 AKG+1.787 OAC+1.493 3PG+0.898
R5P+2.938 ACCOA+0.719 PEP+0.361 E4P+0.205 G6P+0.071 F6P+0.129 GAP

+16.866 NADPH+ 40.860 ATP—39.68 Biomass+3.547 NADH
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4.3 *C-metabolic flux analyses of Thermoanaerobacter species

3C-MFA has been applied to quantify and compare metabolic flux
distributions in two Thermoanaerobacter species: Thermoanaerobacter sp. X514
and Thermoanaerobacter pseudethanolicus 39E (35). Both species were cultured
anaerobically with 2 g/L of [1-°C] glucose or 2 g/L of [1-**C] xylose. The
metabolic network of Thermoanaerobacter species included pentose phosphate

pathway, glycolysis, the branched TCA cycle, and the futile pathways.

When using glucose as the carbon substrate, the flux through the oxidative
pentose phosphate pathway, which was often used for NADPH production, was
moderately higher in 39E than that in X514. In spite of very different growth rates
between X514 and 39E in glucose and xylose cultures, the intracellular carbon
flux distributions, after normalization by carbon substrate consumption rates,
were not significantly different between these two strains. This suggested a
similar regulation of central metabolic pathways in these two phylogenetically
closely related strains. The report of **C-MFA of Thermoanaerobacter species is
attached in Appendix 7. Beside, *C-MFA has also been used in investigating the

metabolic robustness of Shewanella oneidensis MR-1 (36) (Appendix 8).
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4.4.1 Abstract

In a *C-experiment for metabolic flux analysis (*C-MFA), we examined
isotope discrimination by measuring the labeling of glucose, amino acids and
hexose monophosphates via mass spectrometry. When Escherichia coli grew in a
mix of 20% fully labeled and 80% naturally labeled glucose medium, the cell
metabolism favored light isotopes, and the measured isotopic ratios (5*3C) were in
the range of -35 to -92. Glucose transporters might play an important role in such
isotopic fractionation. Flux analysis showed that both isotopic discrimination and
isotopic impurities in labeled substrates could impact the accuracy and precision
of *C-MFA.

Key words: amino acid, glucose transporter, 5°C, mass spectrometer, isotopic
impurity

4.4.2 Methods and results

3C-metabolic flux analysis (**C-MFA) experiments consist of feeding
microbes with enriched '*C-labeled substrate, then measuring the isotopic
distribution in the resulting metabolites (often amino acids) to quantify absolute
fluxes through the metabolic network. In a typical **C-MFA experiment,
uniformly **C-labeled substrates are often used in a mixture with the non-labeled
form to create efficient scrambling of labeled carbons in the backbone of all
metabolites (37,38). Such an experiment assumes that the microbial activity is

equal for all isotopomers, and that **C tracing will not change the metabolic
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kinetics. However, a Kkinetic isotopic effect may be present in all bio-reactions,
wherein light isotopes react faster than heavy isotopes due to the lower activation
energies for enzymatic breaking of the *2C-'2C bond than the **C-**C bond
(39,40,41). In the microbial process, the isotopic effect depends on isotopomer
diffusion kinetics, intrinsic enzyme characteristics, and microbial growth
conditions (such as pH, micronutrients, and growth factors) (41,42). However,
most isotopic effect studies are in the fields of biogeochemistry and ecology,

where the °C is naturally labeled (around 1.1%).

This study investigated the isotopic effect in “*C-MFA experiments when
highly enriched **C-susbtrate was used. E.coli BL21 (DE3) was first grown in M9
medium with 22.2 mM of glucose (shaking flasks, 150 rpm, 37°C), which
contained non-labeled glucose (Sigma-Aldrich, USA) and fully labeled glucose
(99% purity, Cambridge Isotope, USA) in approximately a 4:1 molar ratio. To
reduce the non-labeled carbon from the initial stock, cells were then sub-cultured
(0.1% inoculation ratio) in the same “*C-labeled medium. All sub-cultured
samples from the *C-MFA experiments were harvested at the mid-log phase (8

hrs) for isotopomer analysis.

We first employed an isotope ratio mass spectrometer and a gas
chromatograph-mass spectrometer (GC-MS) to analyze isotopic fractionation in
cell metabolism. The exact ratio of **C/*?C (i.e. *C/**C=0.2497) in the initial

carbon substrate (glucose) of *C-MFA experiments was determined using an
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isotope ratio mass spectrometer after combustion of glucose to CO, (performed
by the Stable Isotope Biogeochemistry Laboratory, Washington University).
Since the mass detector could be saturated for *3C enriched compounds (**C >5%)
(43), we made a tenfold dilution of the samples with naturally labeled glucose
before measurement (39,40). To determine the ratio of *C/**C in the biomass
(reflected by proteinogenic amino acids), a gas chromatograph (Hewlett-Packard
model 7890A; Agilent Technologies, CA) and a mass spectrometer (model
5975C; Agilent Technologies, CA) were employed. The sample preparation and
isotopic analysis of proteinogenic amino acids were performed as previously
described (20,25). The GC-MS was carefully tuned and the measurement errors
were determined using naturally labeled amino acids (Supplementary Table
4.4.51)(44). In a separate *C-MFA experiment, we used a liquid chromatograph-
mass spectrometer (LC-MS) to investigate the isotopic effect. The first metabolite
in the glycolysis, hexose monophosphate (mainly glucose 6-phosphate, G6P), was
extracted by cold methanol. The labeling pattern was determined using ion pair
reverse phase LC-TOF(a Quadrupole Time-of-Flight, Agilent) with electrospray
ionization (ESI) in negative mode. The measurement was performed by the
Proteomics & Mass Spectrometry Facility at the Donald Danforth Plant Science
Center) (45).

The isotopic ratio (8*3C) is a standard parameter for isotopic fractionation

and was calculated as:
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(*C /* C metabolite) — ("C /* C glucose)
“C/”C glucose

(Equation 1)

0°C = %1000

The C/**C ratio of glucose used in *C-MFA experiments can be determined by
an isotope ratio mass spectrometer or LC-TOF. In this work, the *C/**C ratios in
metabolites were calculated from the labeling patterns of metabolites. Due to their
associated pathways, each metabolite has a different value for *C/**C, given

below:

C

ZixMi

®C /% C metabolite = —'= (Equation 2)

C-(QixM,)

where M; is the isotopomer fraction for a given metabolite (i.e., My is the non-
labeled fraction, M; is the singly labeled fraction, M, is the doubly labeled

fraction, , etc). C is the total number of carbon atoms in the molecule.

Previous research has reported that when a naturally labeled carbon source
was digested, the isotopic ratio for key metabolites (including amino acids)
resulting from enzymatic conversion of glucose was around -20 (46). When E.
coli was grown with 20% [U-"*C] glucose and 80% non-labeled glucose, the
growth curve was similar to that for non-labeled glucose (supplementary Figure
4.4.51). Based on GC-MS measurement, '*C values from key amino acids were
all negative (i.e., light isotopes were favored) and significantly above the

instrument errors (Figure 4.4.1). The 8"3C values also suggest that pathways may
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have different isotope discrimination. Phenylalanine and histidine are derived
from the pentose phosphate pathway. Their '°C values were between -47 and -
45, similar to the 8"3C values of serine and alanine (both of which are derived
from glycolysis). On the other hand, leucine has acetyl-CoA as one of its
precursors. The oxidation of pyruvate to acetyl-CoA has been reported to have a
strong isotopic effect (47), so the leucine synthesis route showed a higher
microbial isotopic effect (8*3C = -79) than that of alanine (converted from
pyruvate). Besides, aspartate had the highest isotopic ratio (5'*C = -92) among all
amino acids, because the anaplerotic reaction (PEP + CO, - Oxaloacetate) used
non-labeled CO; for oxaloacetate (the precursor of aspartate) synthesis, leading to
additional dilution of the *3C pool of aspartate.

To confirm the GC-MS results, we performed independent *C
experiments and examined the labeling patterns of G6P and glucose in the *3C
culture medium. Table 4.4.1 gives the LC-MS-based labeling fraction data for
G6P (Mo~Mg, ion m/z=259~265) and glucose (Mo~Meg, ion m/z=179~185). These
results indicate that cells selectively metabolize more light glucose than heavy
glucose (5'°C=-77+27) during the middle-log phase. The LC-MS-based §'*C
values were close to the 8"3C values obtained by GC-MS (via analysis of amino
acid labeling). The G6P data suggests that the selectivity of glucose uptake may
also be a reason for isotopic fractionation. In general, heavy glucose (fully

labeled, molecular weight=186 Da) has a slower diffusion rate than **C glucose
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(non-labeled, molecular weight=180 Da). Thus the glucose transporter may favor
light glucose and cause isotopic fractionation during the glucose uptake process.
Finally, a *C-MFA model estimated the impact of the isotopic effect on
the accuracy of flux calculations. The pathway map of E. coli BL21 (DE3)
includes the glycolysis, citric acid cycle, pentose phosphate, and anaplerotic
pathways (supplementary Fig 4.4.52). The development of the *C-MFA has been
discussed previously (20). In brief, glucose, acetate, and biomass pools were
measured, and glucose uptake rates were normalized to 100 units. The unknown
fluxes were determined in an iterative scheme based on the reaction stoichiometry
and atom transition routes through the defined metabolic network. The flux
optimization was performed using the “fmincon” function in MATLAB
(MathWorks). Because local solutions may be found, the model was run 50 times
from different initial guesses to generate the solution space for each flux. By
using the amino acid labeling data (supplementary Table 4.4.S2), the flux
distributions were estimated with three sets of initial glucose-labeling patterns.
The first glucose set (case 1) was comprised of 20% fully labeled glucose mixed
with 80% non-labeled glucose, which represented the traditional approach for
13C-MFA. The second glucose set (case 2) was adjusted to 19.2% universally
labeled glucose mixed with 80.8% non-labeled glucose, which corrected for bias
in glucose utilization (i.e., assuming that E. coli utilizes relatively more *2C-
glucose than **C-glucose). Such reduced labeling was based on a microbial

isotopic fractionation ratio (5'°C = -47). The third glucose set (case 3) was based
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on Table 4.4.1, and the labeling distribution was My=74%, M;=5%, M,=1%,
Ms=1% and Mg=18%. Since commercial labeled glucose is not perfectly pure
(Mo#£80%, Me#20%), the differences in fluxes from case 1 and case 3 represent a
common error in conventional GC-MS-based *C-MFA analysis. The estimated
global net flux distributions in the three sets of labeling data showed that the
isotopic effect slightly changed the relative fluxes in the central pathways (~1
units) (Supplementary Fig. 4.4.S3). Beside, consideration of the isotopic impurity
of glucose improved the precision of the flux calculation (i.e. smaller solution
space on case 3 than that on case 1). The flux difference in key pathways between
case 1 and 3 could be up to 5 units. Therefore, the isotopic impurity, rather than
isotopic fractionation, should be the concern for flux estimation in conventional

labeling experiments.
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Figure 4.4.1. Isotopic effect in E. coli BL21 (DE3) with 20% [U-"*C] glucose and
80% non-labeled glucose. The biased isotopic ratio is defined as - §**C, based on
GC-MS measurement. The higher the biased isotopic ratio, the more *2C atoms

are preferred in the amino acids synthesis.
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Figure 4.4.S1. Growth curve of E. coli BL21 (DE3) with non-labeled glucose (e,
solid line) or 20% [U-*C] glucose and 80% non-labeled glucose (o, dot-dashed

line).
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Figure 4.4.S2. Flux analysis of central metabolism in E. coli BL21 (DE3). The
grey arrows indicate fluxes to biomass. Abbreviations: 6PG, 6-phosphogluconate;
ACCOA, acetyl-coenzyme A; E4P, erythrose-4-phosphate; F6P, fructose-6-
phosphate; G6P, glucose-6-phosphate; GAP, glyceraldehyde 3-phosphate; 3PG,
3-phosphoglycerate; CIT, citrate/isocitrate; MAL, malate; OAA, oxaloacetate;
AKG, 2-oxoglutarate; PEP, phosphoenolpyruvate; PYR, pyruvate; P5P, ribose-5-
phosphate  (or  xylulose-5-phosphate, or  ribulose-5-phosphate);  S7P,

sedoheptulose-7-phosphate.
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Figure 4.4.S3. Boxplot of metabolic flux results from MATLAB fmincon
optimization using 50 random guesses of initial fluxes. Three sets of glucose-
labeling patterns were used for flux calculations. 1) not biased: 20% [U-"*C]
glucose mixed with 80% non-labeled glucose; 2) biased: 19.2% [U-3C] labeled
glucose mixed with 80.8% non-labeled glucose; 3) actual: glucose labeling
patterns obtained from LC-MS measurement as listed in Table 4.4.1. All the
fluxes were normalized by taking the glucose uptake flux as 100 units, while the

optimal flux values were marked in the Figure.
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Table 4.4.1. Calculation of 8*3C for G6P derived from LC-MS

: G6P in E. coli Glucose in medium
Fragmentations - - - -
Replicate 1 Replicate2 Replicatel Replicate 2
Mo 0.663 0.655 0.743 0.743
M; 0.091 0.095 0.051 0.049
M, 0.054 0.056 0.008 0.012
M, 0.059 0.066 0.000 0.000
M, 0.014 0.000 0.000 0.000
Ms 0.000 0.000 0.015 0.013
Me 0.119 0.128 0.183 0.183
Bero) 0.236 0.243 0.260 0.260
0.240£0.005 0.260+0.000
(6°C) -77

Note: Two independent culture experiments were performed with five technical
repeated measurements. The instrument error was 0.4%. *3C/**C was calculated
by equation 2; 5'*C was calculated by equation 1.
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Table 4.4.51. GC/MS calibration for eight amino acids fragments.

Ala 260 (C11H60,NSi,); §°C=-20.4

m/z theory data difference
260 100 100 0.0
261 23.2 22.6 -0.6
262 9.5 9.4 -0.1
263 15 1.4 -0.1
264 0.3 0.2 -0.1
265 0.0 0.0 0.0
266 0.0 0.0 0.0
267 0.0 0.0 0.0
268 0.0 0.0 0.0

Gly 246 (C1oH240,NSi5); 53C=-19.2

m/z theory data difference
246 100 100 0.0
247 22.0 21.4 -0.6
248 9.2 9.1 -0.1
249 1.3 1.3 0.0
250 0.2 0.2 0.0
251 0.0 0.0 0.0
252 0.0 0.0 0.0
253 0.0 0.0 0.0
254 0.0 0.0 0.0

Leu 344 (C17H350,NSiy); §°C=-27.6

m/z theory data difference
344 100 100 0.0
345 30.0 29.3 -0.7
346 11.3 11.2 -0.1
347 2.1 2.0 -0.1
348 0.4 0.3 -0.1
349 0.0 0.1 0.0
350 0.0 0.0 0.0
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Ser 390 (C17H4003NSis); 8*3C=-20.4

m/z theory data difference
390 100 100 0.0
391 35.1 34.3 -0.8
392 16.3 15.9 -04
393 3.8 3.7 -0.1
394 0.9 0.9 0.0
395 0.1 0.1 0.0
396 0.0 0.0 0.0
397 0.0 0.0 0.0
398 0.0 0.0 0.0
399 0.0 0.0 0.0
400 0.0 0.0 0.0
Phe 336 (C17H300-NSi,); §°C=-14.6
m/z theory data difference
336 100 100 0.0
337 29.9 29.3 -0.6
338 11.2 11.0 -0.2
339 2.1 2.1 0.0
340 0.4 0.4 0.0
341 0.0 0.0 0.0
342 0.0 0.0 0.0
343 0.0 0.0 0.0
344 0.0 0.0 0.0
Asp 418 (C15H4004NSis); §°C=-18.8
m/z theory data difference
418 100 100 0.0
419 36.1 35.1 -1.0
420 16.9 16.6 -0.3
421 4.0 3.9 -0.1
422 1.0 0.9 -0.1
423 0.2 0.1 -0.1
424 0.0 0.0 0.0
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425 0.0 0.0 0.0

426 0.0 0.0 0.0
427 0.0 0.0 0.0
428 0.0 0.0 0.0

Glu 432 (C19H404NSis); §2C=-27.1

m/z theory data difference
432 100 100 0.0
433 374 36.4 -1.0
434 17.4 16.9 -0.5
435 4.3 4.1 -0.2
436 1.0 1.0 0.0
437 0.2 0.1 -0.1
438 0.0 0.0 0.0
439 0.0 0.0 0.0
440 0.0 0.0 0.0
441 0.0 0.0 0.0
442 0.0 0.0 0.0

His 440 (C20H4202N3Sis); §°C=-24.3 (%o)

m/z theory data difference
440 100 100 0.0
441 39.2 38.3 -0.9
442 17.7 17.2 -0.5
443 4.4 4.2 -0.2
444 1.0 0.9 -0.1
445 0.2 0.1 -0.1
446 0.0 0.0 0.0
447 0.0 0.0 0.0
448 0.0 0.0 0.0
449 0.0 0.0 0.0
450 0.0 0.0 0.0

Note: Table 4.4.S1 determined the instrumental errors of GC-MS using
derivatized amino acids (naturally labeled with *C, *0, *N and #*°sj). §**C
values in the table represent the measurement bias for labeled amino acids during
BC-MFA.
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Reference: M.R. Antoniewicz, J.K. Kelleher, and G. Stephanopoulos, Accurate
assessment of amino acid mass isotopomer distributions for metabolic flux
analysis. Anal. Chem. 79 (2007) 7554-9.
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Table 4.4.52. Measured and model fitted isotopomer data from TBDMS-
derivatized amino acids

Amino Eragment Origin Isotopomer Enrichment
Acids g g MO ML M2 M3 M4
Exp 0.78 0.04 0.02 0.17

Ala [M-57]"  Cal_Unbiased 0.77 0.04 0.03 0.17
Cal_Biased 0.77 0.04 0.03 0.16
Cal_Actual 0.75 0.05 0.02 0.17
Exp 0.79 0.05 0.16
Gly [M-57]"  Cal_Unbiased 0.79 0.05 0.16
Cal_Biased 0.79 0.05 0.16
Cal_ Actual 0.79 0.05 0.16
Exp 0.51 0.15 0.24 0.06 0.03
Leu [M-159]" Cal_Unbiased 0.49 0.16 0.24 0.07 0.03
Cal_Biased 0.51 0.15 0.24 0.06 0.03
Cal_ Actual 0.48 0.18 0.24 0.07 0.03
Exp 0.74 0.08 0.05 0.13
Ser [M-57]"  Cal_Unbiased 0.74 0.07 0.06 0.14
Cal_Biased 0.74 0.07 0.06 0.13
Cal_ Actual 0.73 0.08 0.05 0.14
Exp 0.61 0.17 0.11 0.09 0.02
Asp [M-57]"  Cal_Unbiased 0.60 0.15 0.12 0.10 0.03
Cal_Biased 0.61 0.16 0.11 0.09 0.03
Cal_ Actual 0.63 0.15 0.10 0.10 0.03
Exp 0.52 0.16 0.21 0.07 0.02
Glu [M-57]"  Cal_Unbiased 0.49 0.16 0.24 0.07 0.03
Cal_Biased 0.50 0.17 0.23 0.06 0.03
Cal_ Actual 0.51 0.19 0.21 0.06 0.02
Exp 0.45 0.09 0.12 0.16 0.10
Phe [M-57]"  Cal_Unbiased 0.44 0.07 0.13 0.17 0.09
Cal_Biased 0.45 0.08 0.13 0.17 0.09
Cal_ Actual 0.42 0.09 0.12 0.15 0.11
Exp 0.53 0.16 0.10 0.11 0.03
His [M-57]"  Cal_Unbiased 0.53 0.16 0.10 0.11 0.03
Cal_Biased 0.53 0.16 0.10 0.11 0.03
Cal_ Actual 0.53 0.16 0.11 0.11 0.03

Note:

Cal_Unbiased isotopic data are calculated by assuming §C= 0.

Cal_Biased isotopic data are calculated by assuming 8"3C= -47.

Cal_ Actual isotopic data are calculated based on the labeling pattern of glucose
detected by LC-MS.
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5.1 Abstract

Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste
products (pyruvate and acetate) during batch culture. To decipher MR-1
metabolism, we integrated genome-scale flux balance analysis (FBA) into a
multiple-substrate Monod model to perform the dynamic flux balance analysis
(dFBA). The dFBA employed a static optimization approach (SOA) by dividing
the batch time into small intervals (i.e., ~400 mini-FBAS), then the Monod model
provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to
profile the pseudo-steady-state fluxes in each time interval. The mini-FBASs used a
dual-objective function (a weighted combination of “maximizing growth rate”
and “minimizing overall flux”) to capture trade-offs between optimal growth and
minimal enzyme usage. By fitting the experimental data, a bi-level optimization
of dFBA revealed that the optimal weight in the dual-objective function was time-
dependent: the objective function was constant in the early growth stage, while
the functional weight of minimal enzyme usage increased significantly when
lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1
metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then
decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and
gluconeogenesis were stable in the exponential growth period; and 3. the
glyoxylate shunt was up-regulated when acetate became the main carbon source

for MR-1 growth.
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5.2 Authors’ summary

This study integrates two modeling approaches, a Monod kinetic model
and genome-scale flux balance analysis, to analyze the dynamic metabolism of an
environmentally important bacterium (S. oneidensis MR-1). The modeling results
reveal that MR-1 metabolism is suboptimal for biomass growth, while MR-1
continuously reprograms the intracellular flux distributions in adaption to nutrient
conditions. This innovative dFBA framework can be widely used to investigate
transient cell metabolisms in response to environmental variations. Furthermore,
the dFBA is able to simulate metabolite-labeling dynamics in *3C-tracer
experiments, and thus can serve as a springboard to advanced C-assisted
dynamic metabolic flux analysis by using labeled proteinogenic amino acids to

improve flux results.

Key words: *C, enzyme usage, genome-scale, Monod, objective functions,

suboptimal, TCA cycle
5.3 Introduction

Cell metabolisms are highly dependent on environmental conditions, so
the metabolic state often shifts during the cultivation period (1,2,3).
Characterizing the transience of metabolic fluxes is important for understanding
how cells responded to environmental changes. Bioprocess models (e.g., a

Monod-based kinetic model) (4) have been widely applied to predict microbial
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dynamics, but they cannot directly obtain the intracellular flux distributions. On
the other hand, flux balance analysis (FBA) profiles the rates of enzymatic
reactions based on stoichiometric mass balance, knowledge of reaction
constraints, and measurements of inflow/outflow fluxes (5,6). As an
underdetermined model, FBA requires an objective function (e.g., “maximizing
growth rate”) for flux calculation. However, since cells may show suboptimal
metabolism and reprogram their metabolic fluxes under different environmental
conditions, the commonly used objective function is insufficient to describe cell
physiologies (7,8,9). Furthermore, FBA assumes steady-state metabolic
conditions, and thus is unable to directly analyze the transience of cell metabolism

(10,11,12).

This study developed an FBA framework that integrates Monod kinetics
and FBA to decipher the dynamic metabolism of MR-1 (Figure 5.1). MR-1 is a
facultative anaerobic bacterium, which not only plays an important ecological role
in carbon cycling and metal reduction, but also has been widely used for in situ
bioremediation and microbial fuel cell applications (13,14,15). MR-1 has a
diverse carbon utilization capability and shifts its metabolism during batch
cultivation (16). MR-1 uses lactate for initial growth and produces acetate and
pyruvate. In the late growth stage, MR-1 metabolizes less energy-favorable
pyruvate and acetate. To describe such kinetic behavior, we used unsegregated

Monod equations to simulate cell growth, lactate utilization, and metabolite
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secretion and reuse. The standard Monod model was incorporated into a genome-
scale FBA model, iSO783 (17), to formulate the dynamic FBA (dFBA)

framework (11), which enabled quantitative predictions of the MR-1 metabolism.

5.4 Results

5.4.1 Monod model

MR-1 growth displayed an apparent lag phase (~7.1 h) in 30 mM lactate
medium (0.1% inoculation). By incorporating a time delay function for the lag
growth phase, a standard Monod model consisting of four ordinary differential
equations was built to describe the extracellular metabolite curves and growth
kinetics (Figure 5.2). The parameters of the Monod model were estimated by
fitting the experimental data. Table 5.1 indicates that the lactate-based biomass
yield was higher than that for either pyruvate or acetate, confirming the
preferential utilization of lactate as an energy-favorable carbon substrate for MR-
1. Similarly, the lactate-based growth rate (umax) Was much higher than that for
either pyruvate or acetate, indicating that lactate was the major carbon substrate
for biomass growth at the early growth stage. Table 5.1 lists the rate coefficients
(Koi, kap and ky) for waste products (pyruvate and acetate) synthesis and reuse,
which indicates that MR-1 quickly consumed lactate, producing significant
metabolic overflows to the waste products. Such a strategy illustrates an
advantageous ecological niche for MR-1 in competing for favorable carbon

sources. Finally, although our standard Monod model reasonably well described
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MR-1 growth data, its results showed some lack-of-fit with statistical analysis
(Table 5.S1). Such a discrepancy was possibly due to the model’s simplification
and to measurement noises. In this study, the kinetic model represents a

compromise between complexity and practical simplicity.

5.4.2 Link kinetic model to FBA

To resolve the flux dynamics, the static optimization approach (SOA)
divided the cultivation phase into numerous pseudo-steady states so that a
conventional genome-scale MR-1 framework (iISO783, containing 774 reactions
and 634 metabolites) was able to calculate the flux distributions (17) in each five-
minute time interval. Such dFBA model consisted of ~400 mini-FBAs. To avoid
repeated and tedious measurements of biomass and metabolite concentrations for
each mini-FBA, we used the Monod model to determine the inflow/outflow fluxes
of lactate, acetate, and pyruvate in each time interval. The mini-FBAs could be
resolved by an objective function of “maximizing growth rate”, but this function
severely overestimated the actual biomass growth (Figure 5.3). To account for the
suboptimal metabolic features (7,8,9), we used a dual-objective function in dFBA:
a combination of “maximize growth rate” and “minimize overall flux”. By
appropriately weighing both objectives, we explored the trade-offs between
optimal cell growth and minimal enzyme usage. Specifically, the Monod model
determined the transient growth rate for each time interval, which tuned the

weights in the dual-objective functions for the mini-FBAs so that the biomass
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growth curve simulated by dFBA was in agreement with experimental
observations. Figure 5.3 showed that the optimal dual-objective function in mini-
FBAs was time-dependent. In general, these dual-objective functions were
invariable before the carbon substrate switched from lactate to acetate/pyruvate.
When lactate became scarce, the weight of “minimizing overall flux” in the
objective function increased significantly, indicating an intracellular reduction of

enzyme synthesis and minimization of intracellular fluxes.

5.4.3 Dynamic flux distributions in MR-1

The dynamic flux distributions in MR-1 were calculated using the bi-level
optimization (Figure 5.4). The carbon flows to extracellular acetate and pyruvate
were high when lactate was sufficient (~33% and ~25% of the lactate uptake flux
before the carbon substrate switch, respectively). Fluxes into the gluconeogenesis
pathway, reductive PP pathway, and ED pathway were mainly for biomass
synthesis, and remained approximately constant during the exponential growth
phase. In the middle log phase (22~25 hours), when the growth rate reached the
maximum, fluxes in the oxidative TCA cycle reached a peak (e.g., ~6 mmol/g
DCW/h for succinyl-CoA synthetase) to generate energy and building blocks.
When lactate became scarce (25~30 hrs), MR-1 had to utilize its waste
metabolites (acetate and pyruvate). During this metabolic shift, most intracellular
fluxes started to decrease. In the late log growth phase (30~34 hrs), it was also

observed that the glyoxylate shunt was up-regulated compared to TCA cycle
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fluxes after acetate became the main carbon source for MR-1 growth. The
glyoxylate shunt reduced the oxidation of carbon substrate for CO, production by
diverting the carbon flow into a shorter metabolic route. The glyoxylate shunt
activity was further confirmed by in vitro enzyme assays at both the mid-log
phase (malate synthase activity was 0.18+0.11 umol/g DCW/min) and the late-log

phase (malate synthase activity was 0.37+0.17 pumol/g DCW/min).
5.4.4 Simulation of dynamic **C-labeling in proteinogenic amino acids

In 3C-labeled tracer experiments, dFBA can be used to predict the
isotopomer dynamics in slow turnover metabolites, such as proteinogenic amino
acids. During MR-1 growth with [3-*C] lactate, the dynamic metabolism led to
variations of labeling patterns in intracellular metabolites (biomass precursors) so
that the isotopic labeling in proteinogenic amino acids was continuously changing
during cell growth (18). Here, we simulated the time-integrative labeling patterns
in proteinogenic amino acids based on fluxes from dFBA. The predicted
isotopomer labeling patterns of five proteinogenic amino acids (Ala, Ser, Glu,
Asp, and Gly, at t = 24 and 30 h) are illustrated in Figure 5.5A and Figure 5.S1.
Compared with the experimental measurements, the labeling patterns predicted by
dFBA are consistent with the measured labeling patterns, but some lack-of-fit still
exists. One of the limitations of the FBA model is that the intracellular pathway is
treated as unidirectional, so the effect of exchange fluxes on isotopomer data is

neglected. Considering that some in vivo reactions could be bi-directional, we
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implemented exchange coefficients for four pathways (e.g., the anaplerotic
pathway: pyruvate - malate) in the model to improve the simulation of **C-
labeling (Table 5.2). After introduction of the exchange coefficients, the measured
and the simulated isotopomer data for proteinogenic amino acids matched (R? =

0.9619, Figure 5.5B).
5.5 Discussion

dFBA models have been developed to describe the dynamic metabolism of
E.coli (10), Saccharomyces cerevisiae (19), Lactococcus lactis (12), and even for
a more complicated coculture system of E.coli and Saccharomyces cerevisiae
(20). In this study, we developed dFBA for analyzing metabolic states of S.
oneidensis MR-1. The time-dependent inflow/outflow fluxes for dFBA can be
constrained by either a Monod model or other empirical models (such as
polynomial-fitting to the measurement data (21)). The Monod model is suitable to
uncover Kinetic properties of a scale-up bioprocess and empowers the dFBA to
correlate the bioprocess parameters (such as nutrient concentrations and inhibition
coefficients) with intracellular metabolism analysis. The integration of the Monod
model and dFBA can decipher and predict cell metabolisms in response to batch

fermentation conditions.

To describe biological realities, a physiologically reasonable objective
function is important for FBA. For E.coli metabolism, 11 objective functions have

been systemically investigated under different cultivation conditions (7). It turns
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out that no single objective function can describe metabolic states accurately for
all conditions. A recent study of MR-1 indicated that futile cycles may be
operational, in which less energetically efficient enzymes are expressed at higher
levels than their counterparts and decrease biomass yield (17). Such suboptimal
metabolic features in MR-1 make the conventional objective functions difficult to
use in predicting actual cell physiology. To bridge the gap between the in silico
simulations and experimental observations, we assigned dual-objective functions
to resolve mini-FBAs. Using dual-objective functions, dFBA accurately predicted
the elevated flux ratio of the glyoxylate shunt (represented by malate synthase
activity) to the oxidative TCA cycle (represented by fumarase activity) when
acetate started to be used as the main carbon substrate (Figure 5.S2). The up-
regulation of the glyoxylate shunt and down-regulation of the oxidative TCA
pathways were consistent with a previous *C-metabolic flux analysis of MR-1
(18). In comparison, this transient metabolic shift in the glyoxylate shunt could
not be captured by a single objective function, such as maximal biomass growth.
Moreover, our dFBA results showed the weight of the two objective functions
remained relatively constant when lactate was sufficient. At the early stage of
MR-1 growth, such a pseudo-steady state has been experimentally verified by
previous isotopomer-based analysis (18). Under nutrient scarcity conditions, MR-
1 metabolism may reduce synthesis and usage of enzymes to achieve a
compromise between minimization of general physiological activities and

maintenance of essential cellular functions (22).
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The dFBA model can also simulate time-dependent isotopomer
enrichment in proteinogenic amino acids. In turn, the isotopomer results (Figure
5.5) can be used to validate and improve the dFBA model predictions. For
example, our dFBA model predicted low fluxes through malic enzyme during the
exponential growth because these pathways may reduce biomass production,
while the genetic analysis indicates a high functionality of malic enzyme (17). In
the dynamic isotopomer simulations, we found that the fitting of isotopomer
labeling patterns was significantly improved by introducing the bi-directional
fluxes through the pathway Malate <~ CO, + Pyruvate, while keeping the net flux
minimal. Such reversible reactions suggest metabolic flexibility. The activity of
malic enzyme was also confirmed by in vitro enzyme assays at both the mid-log
phase (malic enzyme activity was 0.90+0.18 umol/g DCW/min) and late-log

phase (malic enzyme activity was 1.73+0.81 umol/g DCW/min).

Proteinogenic amino acids are abundant in biomass and can easily be
measured by GC-MS. Complementing this instrumental data, **C-metabolic flux
analysis (MFA) offer analytic insight into the cell metabolisms in fermentation
processes (3,23,24). However, the turnover rate of protein is much slower than
that of intracellular metabolites, so **C-MFA is useful only for analyzing the
steady-state central metabolism. To perform *C-MFA of dynamic flux
distributions, the fast turnover metabolites have to be extracted and analyzed at

multiple time points (1,3), which requires significant sampling efforts and high-
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sensitivity analytical measurement of low-abundance/unstable metabolites.
Moreover, the calculation of dynamic fluxes with isotopomer data formulates an
inverse nonlinear optimization problem, which is computationally challenging.
Due to insufficient methods for analyzing low abundance metabolites (25), as
well as limitations in computational algorithms, dynamic **C-MFA cannot resolve
the flux distributions in a large-scale metabolic network. To overcome these
difficulties, this study illustrates a proof-of-concept approach that exploits the
synergy between proteinogenic-amino-acid-based *C-MFA and genome-scale

dynamic flux balance analysis.

In our dFBA, the Monod model is solved first independently of the FBA.
As an alternative approach, we also tested to integrate the kinetic models with
FBA (integrative Flux Balance Analysis, iFBA). iFBA simultaneously optimizes
the kinetic model parameters and solves the dynamic cell metabolism in MR-1
(Supplementary Text S1). We found that iFBA also requires a dual objective
function, a weighted combination of “maximizing growth rate” and “minimizing
overall flux”, to improve the model accuracy, similar to the dFBA approach
(Figure 5.S3 and Table 5.S2). Such results indicate that it is difficult to use a
single objective to describe the flux states under all growth conditions, while the
time-dependent trade-off objective functions are effective for analyzing the

dynamic suboptimal metabolism.
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In conclusion, as in other FBA studies, the dFBA framework proposed in
this study links macroscopic bioprocess variables (such as nutrient
concentrations) to microscopic intracellular metabolism analysis. It predicts
metabolic responses under dynamic culture conditions, and reveals the impact of
the kinetic parameters (such as pmax) On intracellular flux distributions.
Furthermore, dFBA can identify the objective functions that are possibly used by
microorganisms in adaption to environmental variations. Finally, by simulating
and comparing the isotopomer labeling patterns of different metabolites, the
proposed dFBA framework can potentially improve dynamic flux resolutions by

incorporating the isotopomer data from labeled proteinogenic amino acids.

5.6 Materials and methods

Culture conditions, analytical methods, and isotopomer analysis. S.
oneidensis MR-1 (ATCC 70050) was first grown in LB medium in shake flasks
overnight. A 0.1% inoculum volume was then cultured into modified MR-1
defined medium (26) in shake flasks (100 mL culture for each of triplicate
experiments, shaken at 150 rpm) at 30°C. The initial carbon source was ~30 mM
lactate. The growth curve was monitored by dried biomass weight. The
concentrations of lactate and acetate in the medium were measured using enzyme
kits (r-Biopharm, Darmstadt, Germany). The concentration of pyruvate in the
medium was measured with the enzyme assay developed by Marbach and Weli

7).
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To analyze the activity of malate synthase and malic enzyme, samples
were taken at early middle log phase (biomass of MR-1 ~0.08 g/L) and late log
phase (biomass of MR-1 ~0.23 g/L). The harvested cells were centrifuged and re-
suspended in 100 mM Tris buffer. The samples were then ultra-sonicated for 5
min to release the enzymes. Malate synthase activity was gauged based on the
reaction of CoASH with DTNB (Acetyl-CoA+glyoxylate—>Malate+CoASH,;
CoASH+DTNB—->CoA-TNB+TNB), as described by Dixon and Kornberg (28). In
general, 20 pL acetyl-CoA (5 mM), 10 uL DTNB (10 mM), 50 pL cell extract,
and 500 pL of a solution containing 0.1 M potassium phosphate and 10 mM
MgCI; were mixed with water. The mixture was then added with 20 pL. 100 mM
glyoxylate. The difference in absorbance at OD4j, before and after glyoxylate
addition reflected the activity of malate synthase, in which one unit AODyj
corresponded to 70.6 nmol of TNB produced (in a 1 mL reaction solution).
Furthermore, the activity of malic enzyme was detected based on increased
absorbance at 340 nm due to the reduction of NAD" to NADH (29). In brief, 400
puL 250 mM Tris HCI, 20 pL 50 mM MnCly, 25 pL 40 mM NH,CI, 100 uL 1M
KCI, 50 uL 20 mM NAD", 100 uL 100 mM malate, and 50 pL cell extract were
mixed with water (1 mL reaction solution). The change in absorbance at OD34o

reflected the activity of malic enzyme.

In the labeling experiment, MR-1 was first grown overnight in the LB

medium in shake flasks. A 0.1% inoculum volume was then cultured into 100 mL
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of modified MR-1 defined medium at 30°C, with the initial carbon source as 30
mM [3-C] lactate (purity>98%) purchased from Cambridge Isotope
Laboratories, Inc. (Andover, MA). The biomass was harvested at ~24 h (before
lactate was depleted) and ~30 h (after the substrate had switched from lactate to
waste products). To analyze the labeling pattern of proteinogenic amino acids, we
hydrolyzed the biomass with 6M HCI at 100 °C. The isotopic analysis of
proteinogenic amino acids was performed using a GC-MS based TBDMS
method, as previously described (30,31,32). lons of [M-57]" (unfragmented

amino acid) were used for the **C-simulations (33).

Monod model development. A multiple-substrate Monod model was
developed to describe the cell growth, lactate consumption and secretion, and

reuse of waste products (acetate and pyruvate).

L @
%; (. —%—rA,P)-S(t—tL) (3)
%:x.(HA+MP+HL_ke)-S(t—tL) @)

where X is biomass (g DCWI/L); LACT, ACT, and PYR are lactate, acetate, and
pyruvate concentrations (mmol/L), respectively; w, ua, and up are the specific

growth rates (h™?) on lactate, acetate, and pyruvate, respectively; ke is the
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endogenous metabolism rate constant (h™); Yxi, Yxa, and Yxp are the biomass
yield coefficients (y DCW/mol substrate) of lactate, acetate, and pyruvate
respectively; rp, and ra, are the production rates (mmol/L/h) of acetate and
pyruvate from lactate, respectively. rap is the production rates (mmol/L/h) of
acetate from pyruvate. S(t-t) is the dimensionless unit-step time delay function

(S=0 when t < t.; S=1 when t=t.) which described the lag phase after inoculation.

The specific cell growth rate was described by Monod equations:

Mmax L’ LACT

W= e ©)
K,, +LACT

, = Pmecn ACT (6)
K,, +ACT

W, = Poaxp - PYR (7)
K,, +PYR

Where fimax L, maxa, and zmaxp are the maximal growth rates (h™) for fully aerobic
growth on lactate, acetate, and pyruvate, respectively; and Ks), Ksa, and K, are
Monod constants (mmol/L) for lactate, acetate, and pyruvate, respectively. The
acetate and pyruvate production rates are assumed to be proportional to the
biomass (16), as expressed below:

ryo =Ky -LACT-X (8)

r,, =k, -LACT X 9)
ryp =K, PYR-X (10)
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where ky and ky are rate constants of acetate and pyruvate production,
respectively (L (h'g DCW)™). kap is the rate constant of acetate production from

pyruvate (L- (h-g DCW)™?).

The kinetic model (Equations 1~10) contained 14 kinetic parameters. To
estimate the model parameters, an ordinary least squares (OLS) method (34) was
applied to solve the inverse problem. OLS aimed to minimize the residual sum of
the squares (R) between model simulations and experimental measurements,

expressed as

R=[Y -7t A" Y —n(t: A)] (11)

where 7 represents four dependent variables simulated by the kinetic model; g
represents the vector of the parameters to be estimated; and Y is the vector of the
measured value of the dependent variables. Since the scales of the dependent
variables were different (e.g., the scale of the biomass measurement was < 1 g/L,
while the lactate measurement >10 mmol/L), the direct application of OLS would
overemphasize the fitting of dependent variables with large scales. Therefore, we
normalized dependent variables by the corresponding maximum concentrations

measured in the experiments.

The “ode23” command in MATLAB (R2009a, Mathworks) was used to
solve ODEs, and the “fmincon” command was used to find suitable settings of the

parameters. Figure 5.S4 is the histogram of normalized model residuals. The
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standard deviations of the parameters were derived from a bootstrap analysis, in
which the experimental measurements were randomly re-sampled 1000 times and
the corresponding parameters were simulated with the same parameter estimation
approach. The 1000 re-sampling was found to be adequate since the variation of

parameters converged to within a desired tolerance of 0.1%.

Bi-level dFBA study. The growth phase was divided into 408 pseudo-
steady-state intervals with instantaneous transitions between the two adjacent
intervals (11). At each pseudo-steady state (~five minutes) (35), a mini-FBA was
formulated by a dual-objective function comprised of “maximizing the growth
rate” and “minimizing overall flux”; and inflow/outflow fluxes (for lactate,
acetate, and pyruvate) derived from the Monod model. The inflow/outflow fluxes

were calculated from:

dLACT _ )
dt lac _inf low
dACT
—— —v_ X
dt act _ outflow (13)
dPYR _

v - X
dt oy _outfow (14)

WHhEre Viac_inflow, Vact outflow, 8N Vpyr outfiow are transient lactate inflow flux, acetate
outflow flux, and pyruvate outflow flux, respectively.
At each pseudo steady state, the mini-FBA followed a bi-level

optimization framework similar to ObjFind (36). The internal optimization was an
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FBA with a combined objective function in which the weighting factor of
“minimizing overall flux” ranged from zero to one. The difference between the
transient growth rate simulated from the FBA and that derived from the Monod
model was minimized in the external optimization, by tuning the weighting factor
in the combined objective function. The bi-level optimization determined a trade-
off between maximizing growth rate and maximizing enzyme efficiency under the

specified growth conditions. The bi-level optimization was formulated as:

min (:uMonod _IUFBA)Z

st
min [w- Y V7 = (1= W) figgy ] |
st. (15)
S-v=0
Ib<v<ub
Vlac_inf low ? Vact_ourflow' prr_outflow from the MOﬂOd mOdeI

O<w<1

where umonod and urpa are transient growth rates derived from the Monod model
and the dFBA study, respectively; w is the weight of “minimizing overall flux” in
the combined objective function; v is the vector of the intracellular fluxes; S is the
stoichiometry matrix; Ib and ub are the lower and upper boundaries for
intracellular flux.

The internal optimization was a typical quadratic programming (QP)
problem and was solved using the CPLEX solver in the TOMLAB optimization

toolbox (TOMLAB Optimization Inc, Seattle, WA) within MATLAB (R2009a).
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The external optimization problem (i.e., search for weight) was solved by a grid
search. Since the QP problem in this study was convex, the locally searched

results were also the global solutions (37).

Simulation of dynamic **C-labeling in proteinogenic amino acids. Our
previous *C-MFA study of MR-1 showed that the labeling patterns in its
proteinogenic amino acids changed during the late-stage of batch growth (18).
Using the dynamic flux distributions from dFBA, we could now simulate
dynamics of isotopomer labeling patterns in proteinogenic amino acids using the

algorithm below.

> (MDVi,exp|t=24h_MDVi,sim|t=24h )2 > (MDVi,exp|t=3Oh_MDVi,sim|t=30h )2

min . +> -

i—1 oF i=1 oF
st v, =N
1—exch
0<exch <1

f < [V’ Vexch] (16)

> f(t)-(IMM,, - IDV,; ® IMM,, - IDV,, )

IDV(t) = 4= -
Z f, ()

tj.p(t)- IDV(1)- At - AX (t)

IDV,

_0
int |t=t' — T

jp(t) At - AX (1)

MDVi,sim|t:24h =M 'IDVim t=24h

MDVi,sim|t:30h =M- IDVint|t=30h
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Since  FBA neglects flux reversibility, we implemented exchange
coefficients exch to account for the reversibility of four key metabolic pathways
(ME2, GHMT, GLYCL, and SUCOAS in iSO783, Table 5.2). In Equation 16,
Vexch 1S the vector of exchanged fluxes in the reversible reactions; v is the vector of
the transient fluxes at the ¢’ interval, simulated from the mini-FBA; p(t) are fluxes
to proteinogenic amino acids at each time interval; At is the scale of a pseudo
steady state (5 min); AX(?) is the biomass produced at each time interval; IMM is
the isotopomer mapping matrices describing the carbon atoms transitions from
reactants to products in a reaction; IDV(t) are the isotopomer distribution vectors
of transient intracellular metabolites at each time interval, which is calculated
based on the different labeling patterns of precursors from n pathways; IDVini,~
are the isotopomer distribution vectors in proteinogenic amino acids at the end of
the ¢’ time interval; MDVisim and MDVi e, are the mass distribution vectors for
each of the five proteinogenic amino acids, as simulated and as measured by GC-
MS, respectively; M is the matrix for converting IDV to MDV; o; is the standard
deviation of the GC-MS measurement (error ~2%), which is assumed to be
constant in this study. The carbon transitions in the reactions involved were given
in Supplementary Text S2. The “fmincon” command in MATLAB was used to
find the exchange coefficients, and the “nlparci” command in MATLAB was used
to find the asymptotic confidence intervals of the exchange coefficients. These
exchange coefficients significantly improved dFBA simulation of the labeling

patterns in proteinogenic amino acids.
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5.7 Supplementary Text S1: framework of integrative Flux Balance Analysis

(iFBA)

We have tested an alternative model framework: iIFBA. The dynamic
cultivation process was decomposed into numerous pseudo-steady-state time
intervals. At each time interval, the inflow/outflow fluxes in the FBA were
derived from the Monod equations; while the biomass increase during the time
interval was predicted by mini-FBAs using proper objective functions. At the end
of each time interval, the predicted biomass increase was incorporated into the
Monod equations to estimate the metabolite and substrate concentrations at the
next time interval. Then, we obtained the inflow/outflow fluxes of mini-FBA in
the next time interval (t+At). To improve the model accuracy, iFBA employed a
dual-objective function w(i), a weighted combination of “maximizing growth
rate” and “minimizing overall flux”. The time-dependent weight in the dual-
objective function and the Kkinetic parameters in Monod equations were
determined by minimizing the differences between iFBA predicted MR-1 growth
kinetics and the experimentally measured data. The iIFBA was formulated as

below:
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min R=[Y -n (tPI'[Y -n (P)]
S.t.
X(0), LACT(0), ACT(0), PYR(0)
for i=1: num_timepoint
t=1i-dt
v, ....(1) = f.(LACT, ACT, PYR)

4. -LACT()
_ Kt LACT(‘)/ “k, -LACT() -k, - LACT()] -S(t —t, )

V. .aeo() = f,(LACT, ACT, PYR)

Hpuor - ACT (i)
_-Kat ACT(% +k, -PYR(@)+k, -LACT()] -S(t —t,)

Vo o) = T(LACT, ACT, PYR)

H s - ACT (i)
_p-Ket ACT(% +k_ -PYR(Q)+k, - LACT()] -S(t—t, )

‘min [w(i)- X v()’ - (1-w(@i)-u0)]]
S.t.

S-v(i)=0

Ib< v(i) < ub

Vie-stion D1 Voo 1V ()
L w(@)= p,-exp(p,-S(t-p,))
X(i+1) = X(0) + u(i) - X(i) - dt
LACT(i +1) = LACT(i) + f, - X(i) - dt
ACT(+1) = ACT() + f, - X(i) - dt
| PYR{+1)=PYR()+ f, - X(i)-dt
Ib< g, p, p, <ub

lac_inf low

The new symbols introduced in iFBA are as following: num_timepoint is
the number of time intervals decomposed during the entire cultivation process,

which is 408; dt is the time of each time interval, which is 1/12 h. py, p, and ps are
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three parameters used to simulate the dynamic weighting factors in the dual
objective function. The internal dFBA problem was solved using the CPLEX
solver in TOMLAB optimization toolbox (TOMLAB optimization Inc, Seattle,
WA) within MATLAB (R2009a). The external optimization problem (i.e. search
for weight) was solved by SNOPT solver in TOMLAB optimization toolbox
within MATLAB (R2009a). The histogram of normalized residuals in growth
kinetics simulated by iFBA was shown in Figure 5.S5. The Lack-of-fit test for

iIFBA was shown in Table 5.S3.
5.8 Supplementary Text S2: reactions involved in **C-labeling simulations

TCA cycle and metabolites transport

J1 (L-LACDZ2) LAC (abc)—>pyr(abc)

J2 (-ACt6) accoa(ab)«~>ACT (ab)

J3 (-PYRt2) pyr(abc)«»PYR(abc)

J4 (PDH) pyr(abc)—>accoa(bc)+co2(a)

J5 (CS) oaa(abcd)+accoa(ef) > cit(dcbfea)

J6 (ACONT) cit(abcdef)—>icit(abcdef)

J7 (ICDHpy) icit (abcdef)—>akg(abcde)+co2(f)

J8 (AKGD) akg(abcde)->succoa(bcde)+co2(a)

J9 (SUCDY7) succ(1/2abcd+1/2dcba)—> fum(1/2abcd+1/2dcba)

J10 (FUM) fum(1/2abcd+1/2dcba)->mal-L(abcd)
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J11 (MDH) mal-L(abcd)->0aa(abcd)

J12 (PPC) pep(abc)+co2(d)—>oaa(abcd)

J13 (PPCK) oaa(abcd)—>pep(abc)+co2(d)

Glyoxylate shunt

J14 (ICL) icit(abcdef)—>glx(de)+succ(1/2abcf+1/2fcba)
J15 (MALS) accoa(ab)+glx(cd)->mal-L(dcab)
Reversible net fluxes and C1 metabolism

J16 (GHMT) ser-L(abc)«<—glx(ab)+mlthf(c)

J17 (GLYCL) gIx(ab)«>co2(a)+mlthf(b)

J18 (ME2) mal-L(abcd)«pyr(abc)+co2(d)

J19 (-SUCOAS) succoa(abcd)«succ(1/2abcd+1/2dcha)
Gluconeogenesis

J20 (PPS) pyr(abc)—>pep(abc)

J21 (-ENO) pep(abc)—->2pg(abc)

J22 (-PGM) 2pg(abc)—>3pg(abc)

Amino acid biosynthesis

J23 3pg(abc)->ser-L(abc)

J24 akg(abcde)->glu-L(abcde)

J25 pyr(abc)—>ala-L(abc)

J26 oaa(abcd)—>asp-L(abcd)
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Notes:

1) All abbreviations are referred to iSO783, except LAC, PYR and ACT; which

represent extracellular lactate, pyruvate and acetate, respectively.

2) The reaction IDs in iSO783 are listed with brackets. The negative sign
indicates that the net flux of the pathway is in the opposite direction as set by
1ISO783. The amino acids biosynthesis pathways are lumped; hence no ID in
iISO783 is available.
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Figure 5.1. Flowchart of dFBA to decipher the dynamic metabolism of S.

oneidensis MR-1.
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Figure 5.2. Monod model for growth Kinetics. The green dots are the

measurements, and the blue lines are the simulated growth by the empirical

Monod model.
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Figure 5.3. Prediction of growth rates (h™). Blue o: growth rate determined by
the Monod model. Red o: dFBA prediction using the objective function
(maximization of growth rate). Green o: dFBA prediction using dual-objective
functions (maximization of growth rate and minimization of overall flux). Yellow
0: the weight of the dual-objective functions that predicted the measured growth
rates. Note: the summation of the square of fluxes (Yv) was a very large number

(total 774 fluxes), so the magnitude of weight w was small.
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Figure 5.4. Dynamic flux distributions (unit: mmol/g DCW/h) in central
metabolic pathways. The yellow filled cycles are intracellular metabolites; the
blue filled cycles are substrates and extracellular metabolites (LAC: extracellular
lactate, PYR: extracellular pyruvate, ACT: extracellular acetate); the dashed lines
indicate inactive pathways; the green filled boxes are reactions listed in iISO783.

All the abbreviations refer to iISO783 (7,8,9).
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Figure 5.5. Experimentally observed and simulated isotopomer labeling patterns
[M-57]" in proteinogenic amino acids. The standard error for GC-MS
measurement was below 0.02. Al: dynamic isotopomer simulation for glutamate
from dFBA without considering reaction reversibility (dFBA wi/o reversibility).
A2: dynamic isotopomer simulation for glutamate from dFBA considering
reaction reversibility (dFBA w/ reversibility). Bar plot: comparison of
experimentally observed isotopomer labeling to simulated isotopomer labeling
patterns of glutamate (Al: without considering reaction reversibility; A2:
considering reaction reversibility). B: The model fitting of the isotopomer
labeling data of five key amino acids (Ala, Gly, Ser, Asp, and Glu) at t = 24 and

30 h.
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Figure 5.S1. Experimental observed and simulated isotopomer labeling patterns
[M-57]" in key proteinogenic amino acids. The standard error for GC-MS
measurement was ~0.02. Area plot: dynamic isotopomer simulation (case 1:
simulation without considering reaction reversibility; case 2: simulation
considering reaction reversibility). Bar plot: comparison of experimental data to
simulated isotopomer labeling patterns (case 1: without considering reaction

reversibility; case 2: considering reaction reversibility).
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Figure 5.S2. Flux ratio of malate synthase (MALS) and fumarase (FUM) in
dynamic metabolism of Shewanella oneidensis MR-1. Blue m: time profiles of flux
ratio using “maximizing growth rate” as the objective function in dFBA; red A:
time profiles of flux ratio using dual-objective function in dFBA: a combination
of “maximize growth rate” and “minimize overall flux”. The entire growth of
MR-1 was divided into three phases. In phase I, lactate was mainly used as the
carbon substrate. In phase Il, lactate, acetate and pyruvate were used as the carbon

substrates. In phase 111, acetate was used as the carbon substrate.
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Figure 5.S3. Growth kinetics simulated by iFBA using “maximizing growth rate”
as the objective function (red line) or using the dual-objective function (green

line). The blue dots are the measurements.
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Figure 5.54. Histogram of normalized Monod model residuals.
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Figure 5.S5. Histogram of normalized residuals in growth kinetics simulated by

iIFBA.
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Table 5.1. Parameters estimated in the empirical Monod model

Symbols Notation Unit Value
Mmax,L Maximum specific growth rate using lactate h? 0.57+0.11
Wmax.p Maximum specific growth rate using pyruvate  h™ 0.14+0.02
Hmax,A Maximum specific growth rate using acetate h? 0.13+0.02
Yoo ﬁgtpﬁgent biomass yield coefficient from g DCW/mol lactate 17.041.3

Yo gﬁﬂ%ﬁ? biomass yield coefficient from gyl?li/\;\:(/emol 16.7+13
Yon ,:Cp;?:tr:nt biomass yield coefficient from g DCW/mol actate 11.1+4.7
Ks) Monod lactate saturation constant mM 19.4+£7.9
Ksp Monod pyruvate saturation constant mM 19.448.1
Ksa Monod acetate saturation constant mM 10.1+2.2
Kal Acetate production coefficient from lactate L (hg DCW)* 0.71+0.06
Kol Pyruvate production coefficient from lactate L (hg DCW)* 0.45+0.04
Kap Acetate production coefficient from pyruvate  L- (h-g DCW)™ 0.94+0.08
Ke Endogenous metabolism rate constant ht 0.013+0.016
t Lag time in growth h 7.10+0.01
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Table 5.2. Exchange coefficients for key metabolic pathways of MR-1

Pathways Abbreviation CE;(%?SZEE Ci?]r:;(j/;r;;:e

Malate <> CO, + Pyruvate ME2 0.862 [0.803 0.921]
Serine <> Glycine + C1 unit GHMT 0.270 [0.062 0.477]
Glycine <> C1 unit + CO, GLYCL 0.109 [0.061 0.157]

Succinate <> Succinyl-CoA SUCOAS 0.944 [0.906 0.983]
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Table 5.51. Lack-of-fit test for the Monod model.

Lack-of- Pure-

i Degree Degree
Model fit sum of error of SSLOF / df,
of sum of —————— F(dfy,df,)

Name freedom, freedom, gSpPE/df 2

squares, df , df

SSLOF 1 SSPE 1
Monod 2.064 58 0.813 144 6.303 1.390
model

Notes:

In order to test whether or not a model could fit the data well, we applied the lack-
of-fit test. It partitioned the total sum of squares of residuals in the model (SSE)
into two sources of variability: 1) the sum of squares from pure error variability
(SSPE) and 2) the sum of squares from lack of fit (SSLOF), i.e.
SSE=SSPE+SSLOF.

For testing the null hypothesis HO: the nonlinear model was adequate versus
hypothesis Ha: the nonlinear model was inadequate, the test statistic

- _ SSLOF /df,

=—————— For a specified a-level of significance, we rejected the null
SSPE / df 2

hypothesis if F > F,, where F, is the a-level critical value (0=0.95 in this study)
corresponding to an F(df;; dfy) distribution. The F-test indicates our nonlinear
model can be further improved by including new parameters. The improved

kinetic model is presented in another manuscript under review.
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Table 5.52. Parameters estimated in iFBA

Symbols Notation Unit iFBA
Hmax.L Maximum specific growth rate using lactate h* 0.53
Wmax.p Maximum specific growth rate using pyruvate  h™ 0.14
Mmax.A Maximum specific growth rate using acetate ht 0.14
Vi ﬁgtpﬁgent biomass yield coefficient from g DCW/mol lactate 175

Apparent biomass yield coefficient from g DCW/mol
Yyp 15.5
pyruvate pyruvate
Yoon ,:;p;;t):tr:nt biomass yield coefficient from g DCW/mol actate 10.9
K Monod lactate saturation constant mM 19.4
Ksp Monod pyruvate saturation constant mM 19.4
Ksa Monod acetate saturation constant mM 10.1
Kal Acetate production coefficient from lactate L (hg DCW)*! 0.70
Ko Pyruvate production coefficient from lactate L (hg DCW)*! 0.42
Kap Acetate production coefficient from pyruvate  L- (h-g DCW)* 0.94
Ke Endogenous metabolism rate constant h* 0.013
t Lag time in growth h 7.10
p1 Parameters used in tradeoff objective function  dimensionless 5.3x10°®
P> Parameters used in tradeoff objective function h™ 0.33
p3 Parameters used in tradeoff objective function h 26.7
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Table 5.S3. Lack-of-fit test for iFBA

Lack-of-fit  Degree Pure- Degree
sum of of error of SSLOF /df,
Model Name sum of ——  F(df,,dfy)
squares,  freedom, freedom,  SSPE /df 2
SSLOF ar,  Squarss, df,
SSPE
iFBA 3.726 56 0.813 144 11.78 1.396

Note: In order to test whether or not a model could fit the data well, we applied
the lack-of-fit test. The F-test indicates that the iFBA model should be further

improved to describe the experimental data.
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6.1 Abstract

Background: Parallel to the efforts currently underway in mapping microbial
genomes using high-throughput sequencing methods, systems biologists are
building metabolic models to characterize and predict cell metabolisms. The key
step in building a metabolic model is querying multiple databases to collect and
assemble essential information about genome-annotations and the architecture of
metabolic network for a specific organism. To speed up metabolic model
development for a large number of microorganisms, we need a user-friendly platform to
construct metabolic network and perform constraint-based flux balance analysis

based on genome databases and experimental results.

Results: We have developed a web-based platform (MicrobesFlux) for
generating and reconstructing metabolic models for annotated microorganisms.
The MicrobesFlux is able to load the metabolic network (including enzymatic
reactions and metabolites) of over 1,100 species from KEGG database (Kyoto
Encyclopedia of Genes and Genomes) and then automatically converting it to a
metabolic model. The platform also provides diverse customized tools, such as
gene knockouts and introduction of heterologous pathways, for users to redefine
the model network. The reconstructed metabolic network can be formulated to a
constraint-based flux model to predict and analyze the carbon fluxes in the
metabolisms. The simulation results can be output in SBML format (The Systems

Biology Markup Language). Furthermore, we also validate and demonstrate the
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platform functions by developing an FBA model (including 229 reactions) for a
recent annotated bioethanol producer, Thermoanaerobacter sp. strain X514, to

predict its biomass growth and ethanol productions.

Conclusion: The MicrobesFlux is an installation-free and open-source
platform that enables biologists with little programming knowledge to develop
metabolic models for newly sequenced microorganisms. Our system allows users
to construct metabolic networks of organisms directly from the KEGG database.
It also provides users with predictions of microbial metabolism via flux balance
analysis. This prototype platform can be a springboard to advanced and broad-
scope metabolic modeling of complex biological systems by integrating other
“omics” data or **C-assisted metabolic flux analysis results. MicrobesFlux is

available at http://tanglab.engineering.wustl.edu/static/MicrobesFlux.html.

6.2 Background

Arising interests have focused on systems analysis of cell metabolisms
(1,2,3,4,5,6). Metabolic flux analysis is a key systems biology approach that
determines the final in vivo enzyme activities in a metabolic network and links
genetics to biological functions. In the past decade, over 100 genome-scale
metabolic models have been constructed for E.coli (7,8,9), Bacillus subtilis
(10,11), and Saccharomyces cerevisiae (12,13,14), to expand our understanding
of their physiologies. While important, the pace of metabolic model

reconstructions is still much slower than the pace of high throughput genome
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sequencing of diverse microorganisms (15) due to three reasons. First,
reconstructing metabolic models is normally a tedious, slow and labor-intensive
process, including over 90 steps from assembling genome annotations of target
organisms to validating the metabolic model by various “omics” studies (16).
Second, a systemic reconstruction of metabolic model often relies on commercial
software (e.g. MATLAB) and demands proficient programming skills of the
researchers. The majority of microbiologists, who know the physiology of
environmental microorganisms well, may not gain access to commercial software
or programming skills. Third, to study less-characterized environmental
organisms, it needs to efficiently convert a vast amount of experimental data into
model constraints to reduce solution space and improve the model predictability.
Therefore, programming-free and user-friendly software need to be developed to

overcome rate-limiting steps in metabolic model reconstructions.

Currently, only a few software tools are available to assist biologists for
metabolic modeling. SimPheny is commercial software for genome-scale Flux

Balance Analysis (www.genomatica.com). Webcoli supplies diverse approaches

for users to reconstruct a genome-scale E.coli metabolic model (17). OpenFLUX
is computationally efficient software for *C-assisted metabolic flux (18). OptFlux
is open-source and modular software for FBA and microbial strain design using
an evolutionary optimization algorithm (19). BioMet Toolbox is a web-based

resource for FBA and transcriptome analysis (20). Model SEED (21) has been
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developed to automatically generate genome-scale metabolic models for different
microbes based on RAST sequencing. Complementing these tools, we are
developing MicrobesFlux, a web platform to draft and reconstruct metabolic
models. This system has several features: 1) automatically generate metabolic
models of over 1,100 microbes sequenced in KEGG dataase
(www.genome.jp/kegg/), 2) fine tune the metabolic models according to user-
defined requests, and 3) perform constraint-based flux analysis under both
metabolic steady states (i.e. flux balance analysis, FBA) and dynamic states (i.e.
dynamic flux balance analysis, dFBA). The marriage of high-throughput model
generation and the customized genome reconstruction is of great benefit since
biologists can easily validate or disprove various hypotheses in microbial
metabolism by drafting and comparing numerous metabolic models. Besides, this
prototype platform can potentially link to other software (e.g. OptFlux (19),
COBRA (22)) to perform broad-scope metabolic modeling of complex biological

systems.

6.3 Implementation

MicrobesFlux is an open-source platform that does not require mandatory
registration. It has three components: logic level, application level, and
achievement level. The logic level includes two fundamental databases used in
MicrobesFlux, where KGML is for organism-specific metabolic networks and

KEGG LIGAND is for general enzymatic reactions and metabolites. The basic
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principles for metabolic model reconstruction and constraint-based flux analysis
are summarized in logic level (Figure 6.1). In the application level, organism-
specific metabolic network is loaded from KEGG database to generate the
metabolic model, which is pursued for customized reconstruction. The
reconstructed metabolic model is then formulated as either an FBA or a dFBA
problem to determine the flux distributions under metabolic steady or dynamic
state, respectively. The constraint-based flux analysis will be accomplished in the
achievement level, by using state-of-the-art optimization solvers, such as IPOPT
(Interior Point OPTimizer) and cloud computations. The calculated flux
distributions and the reconstructed metabolic network are recorded in SBML
format (The Systems Biology Markup Language), and the metabolic networks are
visualized using Scalable Vector Graphics (SVG). Both results are sent to users in
the output module. In summary, three key features are embedded in
MicrobesFlux: 1) high-throughput and automatic generation of metabolic model;
2) customized reconstruction of metabolic models; and 3) constraint-based flux

analysis in steady and dynamic metabolic states.

6.3.1 High-throughput and automatic generation of metabolic model

MicrobesFlux can serve as a platform to build metabolic models for 1,194
organisms sequenced in KEGG database. To generate a metabolic model for a
specific microorganism, the gene annotation information are loaded from the

corresponding KGML files, and cross-referred to KEGG LIGAND database. The
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generated pathway network serves as a seed model and subject to further
reconstruction based on user-defined requests. The pipeline for metabolic model

generation is automatic, time-saving and high-throughput.

6.3.2 Customized reconstruction of metabolic models

The model of designated microorganisms, automatically generated from
KEGG database, should be reconstructed to fill the gaps between genome
annotation and the functional metabolism. Based on experimental knowledge,
users can manually adjust mis-annotated pathways in the original metabolic
network. Furthermore, users can knock out the native pathways or introduce
heterologous pathways in metabolic models for engineered microbial strains. The
reaction can also be set as reversible in the MicrobesFlux platform. In addition,
the uptake of carbon substrates and the extracellular secretion of metabolites can
be experimentally measured, which are constructed as “inflow” pathways and
“outflow” pathways in the metabolic model, respectively. Since numerous
metabolites are used as building blocks for biomass production, an independent
biomass formation pathway can be introduced by allowing users to input the
organism-specific biomass composition information. The metabolic pathways can
be grouped by different metabolic features to provide an intuitive manipulation of

the metabolic network by users.

6.3.3 Constraint-based flux analysis in steady and dynamic metabolic states
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For each reconstructed metabolic network, users can choose to perform
either FBA or dFBA to determine flux distribution under metabolic steady or
dynamic states. In general, the objective functions used in constraint-based flux
analysis can either be the commonly used “maximizing biomass”, or a user-
defined objective function. The users can also define the upper and lower bounds
of each flux. MicrobesFlux performs the constraint-based flux analysis of the
reconstructed model using optimization solver (i.e., IPOPT). As a unique feature,
dynamic simulation of metabolic fluxes can be achieved in MicrobesFlux,
following the static optimization approach (SOA) (23). In specific, the users can
assume that the entire dynamic microbial metabolism decomposed into numerous
pseudo-steady states. At each pseudo-steady state, a conventional FBA problem is
formulated with the user-defined inflow and outflow fluxes, so a dFBA problem
will be converted to multiple mini-FBAs that are subject to constraints from the
measurement of time-dependent inflow (substrate uptake) and outflow fluxes
(metabolite production). To avoid extensive analytical efforts to measure inflow
and outflow fluxes at each time interval, the users can use an empirical or kinetic
model to estimate the time-dependent inflow fluxes and outflow fluxes for mini-
FBAs through entire growth period based on limited measurement data. The
dynamic flux simulation is of particular industrial interest since many biological
systems cannot maintain a meaningful metabolic steady state during fermentation

process.
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6.4 Results

We have applied MicrobesFlux to a few studies in drafting metabolic
models. We first drafted a TOY model (Figure 6.2), which has 10 metabolites and
16 fluxes, as a demonstration of MicrobesFlux workflow. We then constructed a
medium-scale stoichiometric model with 196 metabolites and 229 reactions for
Thermoanaerobacter sp. strain X514, a thermophilic bacterium that is of great
interests in cellulosic ethanol production (24). The functionality of MicrobesFlux

has been proved in both case studies.

6.4.1 Case study 1: a toy model

To demonstrate the use of MicrobesFlux platform, a simple toy model was
constructed, only including central metabolic pathways, namely glycolysis, the
pentose phosphate pathway, the TCA cycle, and the anaplerotic pathway. Glucose
represented the carbon substrate and acetate represented the extracellular
metabolite product. The TOY model was loaded from MicrobesFlux (Figure 6.3),
which included 10 reactions that described the intracellular fluxes and lumped
biomass production. The toy model was then reconstructed by introducing the
inflow flux: “Glucose = G6P” and the outflow flux: “AcCoA > Acetate”. The
drafted TOY model was then pursued for constraint-based flux analysis, by
setting the objective function as “maximizing biomass” and fixing the inflow and

outflow fluxes as 11.0 and 6.4 mmol/g/h. The simulated results from
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MicrobesFlux were confirmed by an independent linear optimization of the same

TOY model via “linprog” in MATLAB.

6.4.2 Case study 2: a medium-scale metabolic model for Thermoanaerobacter

sp. strain X514

Based on the similar flowchart, we have drafted a medium-scale metabolic
model of Thermoanaerobacter sp. strain X514. Thermoanaerobacter species are
thermophilic bacteria that can covert both pentose and hexose simultaneously to
ethanol with high yield (25,26). It can also be co-cultured with cellulosic
Clostridium thermocellum species to produce ethanol from cellulose. Strain X514
has been sequenced recently and a comprehensive study on the central carbon
metabolism has been accomplished by using **C-assisted pathway analysis (25).
Using the experimental data of strain X514 reported in (25) and (26), we apply
MicrobesFlux to construct a metabolic model that can describe the carbohydrate
metabolism and amino acids biosynthesis in Strain X514. The drafted model is
consisted of 196 metabolites and 229 reactions (162 intracellular reactions, 19
inflow/outflow reactions, 39 gap-filling reactions, and 9 biomass-producing
reactions). The intracellular reactions in the drafted model are derived from
genome-annotation, only considering the carbon and cofactor balance. The
inflow/outflow reactions were introduced into the metabolic model if the
transporters of the specific substrates or extracellular products have been reported

by published research. Moreover, two algorithms were employed to fill the gaps
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in the metabolic pathways. First, we have implemented un-annotated novel
pathways identified from *3C-assisted pathway analysis (e.g. the Re-type citrate
synthase in TCA cycle) into the metabolic model of strain X514 (25). Since the
draft model is a simplified model by focusing on carbohydrate metabolism and
amino acids biosynthesis, the gaps may also be generated due to the lack of
consideration of the metabolites exchange between the pathways that were
included in the model (e.g. carbohydrate metabolism) and other pathways that
were not included in the model (e.g. purine metabolism). Accordingly, we employ
the principle of introducing the metabolite-exchange-reactions for filling the gaps.
For example, UTP is involved in both carbohydrate metabolism and RNA
synthesis. Since we did not include the RNA synthesis pathway in the
MicrobesFlux model, we instead introduced a UTP exchange pathway to fill the
gap. The gap-filling reactions were evaluated carefully to make sure that each one

of them was necessary for feasible predictions of biomass production.

The biomass composition of Thermoanaerobacter sp. strain X514 is not
yet available. In the drafted model, we used the reported biomass composition of
a close species, Clostridium acetobutylicum (27). Besides the biomass
composition, the growth-associated maintenance (GAM) and non-growth
associated maintenance (NGAM) energies have been found to play an important
role in simulating the growth rate of organisms (27,28,29). In our model

simulation, the NGAM was chosen as 7.6 mmol ATP/g DCW, as reported
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previously (29). To identify the GAM, we plotted the relations between growth
rate and GAM (Figure 6.4), and found the value of GAM that can match the
experimental measurement (i.e. growth rate of strain X514 as 0.043 h™ reported in
(26)) was 220.0 mmol ATP/g DCW, and this fitted value is qualitatively
consistent to previous reported GAM value (150.0 mmol ATP/g DCW) in a
thermopilic ethanol producer Clostridium thermocellum (30). Based on this
drafted model, we also predicted the correlations between growth rate, ethanol
production, and waste product outflow (Figure 6.5). The prediction shows a trade-
off relation between ethanol production and growth rate. The ethanol production
can be increased by 25% (i.e. increased from 6.3 mmol/g/h to 7.8 mmol/g/h)
while halving the growth rate (i.e. decreased from 0.045 h™ to 0.027 h™). By
inhibiting the acetate production from 2.0 mmol/g/h to 0.6 mmol/g/h, the ethanol
production under the optimal growth conditions could be improved by 33%.
Therefore, we have shown the platform is able to make reasonable predictions for

the biomass growth in response to metabolites synthesis.
6.5 Discussion and conclusion

MicrobesFlux is designed for high-throughput drafting of metabolic
models for environmental organisms based on genome annotations in KEGG.
Unlike the model organisms that have been systemically studied via different
“omics” approaches, the environmental organisms have more complex metabolic

features but fewer measurements from laboratories. Therefore, MicrobesFlux can
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be used as a platform to construct models for predicting cell metabolism. On the
other hand, validation of a genome-scale metabolic model can be a challenge due
to requirement for manually fine tuning metabolic pathways and due to lack of
experimental data to confirm functional pathways. For example,
Thermoanaerobacter sp. strain X514 used in the MicrobesFlux case study is
capable of growing under high temperature and converting sugars to ethanol,
which can be simulated by a medium-scale metabolic model. Such a convenient
FBA model has decent predictive power for in silico studies of a non-model
environmental microorganism for bioethanol production at different growth rates
(Figure 6.5). However, many other metabolic features (e.g., secondary
metabolisms) in the strain X514 are not fully understood yet. It requires extensive
experimental studies, including transcriptomics and proteomics analysis, for a
precise reconstruction of genome-scale model. Although the scale of drafted
MicrobesFlux model in this study is still small (<300 reactions) so that users can
easily fine tune the metabolic model and manually fill annotation gaps in carbon
metabolic pathways, MicrobesFlux can serve as a springboard to future advanced
genome-scale metabolic model by adding more reconstruction steps, such as the
gene-protein-reaction (GPR) correlation, charge balance, and metabolites

exchange among metabolic compartments (e.g. mitochondria in eukaryotic cells).

In summary, we have developed MicrobesFlux to draft the metabolic

models of environmental organisms from KEGG database and serves as a high-
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throughput tool for systems biology. MicrobesFlux extricates microbiologists
from programming and commercial software that are normally required to build a
metabolic model. It covers a large number of sequenced organisms in KEGG
database and provides multiple approaches to assist the model generation and
reconstruction. Both FBA and dFBA can be achieved in MicrobesFlux to simulate
the metabolic behaviors of organisms in metabolic steady state and dynamic state.
The drafted model can be further used by other software for genome-scale model
reconstruction and in silico predictions. In the future, we will implement broad
fluxomic approaches (e.g. “*C-metabolic flux analysis) in MicrobesFlux to

improve the accuracy and predictive power of drafted metabolic models.
6.6 Availability and requirements

e Project name: MicrobesFlux

e Project homepage:
http://tanglab.engineering.wustl.edu/static/MicrobesFlux.html

e Operating systems: Platform independent.

e Programming language: Java and Python.

e License: MicrobesFlux is freely available for non commercial purposes.

e Any restrictions to use by non-academics: none
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Figure 6.1. Architecture of MicrobesFlux.
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Figure 6.2. (A) Pathway network of TOY model used in MicrobesFlux, and (B)

simulated flux distribution of TOY model used in MicrobesFlux. The same results

were obtained by using “linprog” in MATLAB.
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Figure 6.3. Screenshot of reconstructing TOY model by using MicrobesFlux. (A)

load TOY model from MicrobesFlux; (B) pathway information of TOY model;

(C) customized reconstruction of TOY model; and (D) constraint-based flux

balance analysis of TOY model.
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Figure 6.4. Estimation of the growth-associated maintenance (GAM) in
Thermoanaerobacter sp. strain X514. From this comparison, the GAM value (red
dotted line) consistent with experimental data (i.e. growth rate was 0.043 h™)

could be estimated and was indicated as a 220.0 mmol ATP/ g DCW.
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Figure 6.5. Predictions of the relationship between growth rate and outflow

fluxes [Unit: mmol/g/h] in Thermoanaerobacter sp. strain X514. The glucose

inflow flux is fixed as 3.92 mmol/g/h.
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Chapter 7

Conclusions and Future Investigations

7.1 Summary

| have developed and applied multiple fluxomics tools during my Ph.D.
training. **C-pathway analysis has been systemically used to discover novel
pathways, investigate the mixotrophic metabolism, and optimize medium for
slow-growing bacteria. The achievements from *3C-pathway analysis are
summarized in Table 7.1. Meanwhile, 3 C-MFA has extended the applications
from quantifying metabolic fluxes in industrial workhorses to those in
environmental microorganisms. The accurate metabolic readouts of the flux
distribution have been determined for Chlorobaculum tepidum, as the first study
in quantifying the mixotrophic metabolism of green sulfur bacteria. The isotope
discriminations have been confirmed in heterotrophic metabolism of E.coli, which
could affect the solution space in flux calculations by **C-MFA. Moreover, to
investigate the dynamic metabolism of environmental microorganisms, a
framework that integrates bioprocess models, dFBA, and isotopomer simulations
has been applied in Shewanella oneidensis MR-1. The dynamic flux distributions
have been profiled, which revealed a few underlying metabolic features during the
dynamic metabolism. Such dynamic flux analysis approach can bypass the

measurement of low-abundant and fast-turnover metabolites, and can address the
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suboptimal microbial metabolisms that are often adopted by environmental
microorganisms. As one of the steps in bridging the gaps between fast-paced
genome sequencing and slow-paced metabolic model constructions, a web-based
platform, MicrobesFlux, is being built based on KEGG database for high-
throughput metabolic models drafting. A large database including 1,192
sequenced genomes is available in MicrobesFlux. Diverse customized tools are
provided for model reconstruction. Both FBA and dFBA can be achieved to
simulate the metabolic fluxes of environmental microorganisms in metabolic

steady state and dynamic state.

Beside fluxomics investigation on the metabolisms of environmental
microorganisms, several projects have also been accomplished by studying
bioprocess engineering, metabolic engineering, and nano-toxicity. In general, a
parsimonious kinetic model has been constructed to capture the growth kinetics of
Shewanella oneidensis MR-1 (Appendix 9). A bioprocess model was built to
describe the isobutanol fermentation of recombinant E.coli strains (Appendix 10).
The broad scope research also involved constructing a statistical model that
analyzed influential factors in production yield of metabolic engineering
(Appendix 11) (1), and characterizing the bacterial responses to nanoparticles

(Appendix 12) (2).

7.2. Current challenges in fluxomics analysis
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One of the main applications of fluxomics analysis is to identify the
bottlenecks in biochemical production by engineered microorganisms and to
assist the rational design of mutants in metabolic engineering. Unfortunately,
several barriers in current fluxomics analysis stalled the inception of fluxomics-
based biotechnology.

On one hand, the fluxomics can measure the carbon flows in central
metabolic pathways to the final product and predict the optimal operation of
metabolic network. However, the flux measurements and predictions have not yet
been coordinated systemically and left many key questions unanswered in
metabolic engineering. For example, metabolic robustness, the ability of
microorganisms to maintain the similar metabolic performances under genetic or
environmental perturbations, is a long-recognized property of microbial systems.
Comparative studies on wide-type and genetically manipulated mutants via **C-
MFA often fail to tell the differences in flux distributions of central metabolism,
and yield no information or predictions for the mechanisms of microbial
robustness. Constraint-based flux analysis can in silico test different hypothesis
about microbial robustness. However, most of the hypotheses cannot be proved

due to lack of accurate flux measurements in FBA.

On the other hand, metabolic engineering of industrial chassis is based on
the premise that the yield of a desired product can be increased by identifying and

over-expressing the enzymes that catalyze the rate-limiting steps in a given
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metabolic pathway. However, the rate-limiting enzymes may not always exist in
reality due to the complicated cell-wide regulations of microbial metabolisms that
involve both the well-known gene-protein-flux correlations, and the less well-
known post-transcriptional and post-translational regulations. In this case, the
increases in productivity are often achieved by coordinated expression of multiple
genes in the metabolic network, in which fluxomics analysis cannot provide
reasonable guidelines for rational design in metabolic engineering, until it is

cross-talked with other “omics” data in systems biology.
7.3 Future development of advanced fluxomics tools

Fluxomics analysis is playing an increasingly important role in systems
biology and bioengineering. One of current limits in fluxomics studies is the
tradeoff between model predictive capacity and model accuracy. FBA is well-
known for the strong predictive power by adopting genome-scale metabolic
models. However, FBA lacks the accuracy in describing the cellular metabolism.
Conversely, **C-MFA provides accurate metabolic readouts in a simplified
metabolic network. Unfortunately, it cannot predict metabolic behaviors well. To
further refine fluxomics analysis, my future research will focus on developing an
integrated modeling approach that not only describes the cellular metabolism
accurately in genome-scale, but also predicts the flux distributions based on

diverse assumptions. The barriers between model prediction and model accuracy
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will be removed, which can be of specific help in rational design of metabolically

engineered mutants.

Another topic in my future investigation is to cross-talk fluxomics with
transcriptomics and proteomics to unravel the cell-wide post-transcriptional and
post-translational regulations. Little is known about the post-transcriptional and
post-translational network in cellular metabolism except their complex
characteristics. The fluxomics study can provide reliable and high-throughput of
cellular metabolism. By quantitatively correlating the input (i.e., transcriptomics
and proteomics) and output (i.e. fluxomics) of metabolic system, the topology and
activities of metabolic regulatory network that controls the cellular metabolism
can be empirically deciphered. The decoding of metabolic regulatory mechanisms
will be of great value in understanding the physiology, especially the

pathophysiology of diverse biological systems.

Finally, open-source software for integrative and broad scope fluxomics
analysis is planned to be developed in future. It is expected that genome-scale
metabolic models can be automatically generated from multiple genome
sequencing databases. The drafted metabolic models can be efficiently and
successively validated based on heterogeneous databases on systems biology
experiments (e.g. transcriptional analysis, lethality tests). State-of-the-art flux

analysis approaches can be achieved in the genome-scale metabolic models,
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which provide precise readouts on metabolic flux distributions and predictive

guidelines for in silico genetic manipulations.
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Table 7.1. Novel metabolic features identified by **C-pathway analysis

Novel metabolic

Microbes Interests Collaborations
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Microbes have complex metabolic pathways that can be investigated using biochemistry and functional genomics methods. One important
technique to examine cell central metabolism and discover new enzymes is '*C-assisted metabolism analysis 1. This technique is based on
isotopic labeling, whereby microbes are fed with a '*C labeled substrates. By tracing the atom transition paths between metabalites in the
biochemical network, we can determine functional pathways and discover new enzymes.

As a complementary method to transcriptomics and proteomics, appreaches for isotopomer-assisted analysis of metabolic pathways contain
three major steps 2 First, we grow cells with 3C labeled substrates. In this step, the composition of the medium and the selection of labeled
substrates are two key factors. To avoid measurement noises from non-labeled carbon in nutrient supplements, a minimal medium with a sole
carbon source is required. Further, the choice of a labeled substrate is based on how effectively it will elucidate the pathway being analyzed
Because novel enzymes often involve different reaction stereachemistry or intermediate products, in general, singly labeled carbon substrates are
more informative for detection of novel pathways than uniformly labeled ones for detection of novel pathways® 4. Second, we analyze amino acid
labeling patterns using GC-MS. Amino acids are abundant in protein and thus can be obtained from biomass hydrolysis. Amino acids can be
derivatized by N-{tert-butyldimethylsilyl)-N-methyltriflucroacetamide (TBDMS) before GC separation. TBDMS derivatized amino acids can be
fragmented by MS and result in different arrays of fragments. Based on the mass to charge (m/z) ratio of fragmented and unfragmented amino
acids, we can deduce the possible labeled patterns of the central metabolites that are precursors of the amino acids. Third, we trace 13C carbon
transitions in the proposed pathways and, based on the isotopomer data, confirm whether these pathways are active 2. Measurement of amino
acids provides isotopic labeling information about eight crucial precursor metabolites in the central metabolism. These metabolic key nodes can
reflect the functions of associated central pathways.

13C-assisted metabolism analysis via proteinogenic amino acids can be widely used for functional characterization of poorly-characterized

micrabial metabolism’. In this protocol, we will use Cyanothece 51142 as the model strain to demonstrate the use of labeled carbon substrates for
discovering new enzymatic functions.

Video Link

The video component of this article can be found at hitp:/iwww.jove.com/details.php?id=3583

Protocol

1. Cell culture (Figure 1)

1. Grow cells in minimal medium with trace elements, salts, vitamins, and specifically labeled carbon substrates that are best for pathway
investigation. Use either shaking flasks or bicreactors for cell culture. Organic nutrients, such as yeast extract, may interfere with the
measurement of amino acid labeling and thus cannot be present in the culture medium.

2. Monitor cell growth by the optical density of the culture at an optimal wavelength (e.g., OD73p for Cyanothece 51142) with a UV/Vis
spectrophotometer.

3. Cells can first be grown in a non-labeled medium. The middle-log growth phase cells are preferred to be used for inoculation (3% (v/v) by
velume inoculation ratio) of the labeled medium. The labeled culture should be sub-cultured (3% v/v inoculation ratio) in the same labeled
medium to avoid the introduction of non-labeled carbon from the initial inoculum.

2. Amino acid extraction

1. Harvest sub-cultured cells (10mL) in the middle-log growth phase by centrifugation (10 min, 8000xg).

2. Resuspend the pellet in 1.5mL of 8M HCI and transfer it to a clear glass, screw-top GC vial. Cap the vials and place them ina 100°C oven for
24 hours to hydrolyze the biomass proteins into amine acids. Hydrolysis of biomass pellets can yield 16 of the 20 common amino acids
(Figure 2) %, Cysteine and tryptophan are degraded, and glutamine and asparagine are converted to glutamate and aspartate, respectively.
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3. Centrifuge the amino acid solution at 20,000=g for 5 min using 2 m| Eppendorf tubes, and transfer the supernatants to new GC vials. This
step removes solid particles in the hydrelysis solution

4. Remove the GC vial lids and dry the samples completely under a stream of air using a Thermo Scientific Reacti-Vap evaporator (note: a
freeze dryer can also be used to dry samples). This step can be done overnight.

3. Amino acid derivatization and GC-MS conditions

Analysis of amino acids or charged/highly polar metabolites via GC requires that these metabolites be derivatized, so that the amino acids are
volatile and can be separated by gas chromatography 2.

1. Dissolve the dried samples with 150 pL of tetrahydrofuran (THF) and 150 L of N-(tert-butyldimethylsilyl)-N-methyltrifilucroacetamide
derivatization reagent.

2. Incubate all samples in an oven or a water bath between 65 and 80°C for 1 hour. Vortex occasionally to make sure the metabolites in the vial
are dissolved.

3. Centrifuge the samples at 20,000xg for 10 min, and then transfer the supernatant to new GC vials. The supernatant should be a clear and
yellowish solution. Due to saturation of the detectors, GC-MS measurement accuracy can be affected by the high concentration of injected
TBDMS derivatized amine acids (these samples often shows dark brown color), therefore, we should dilute these samples using THF before
GC-MS measurement 5.

4. Analyze the samples by GC-MS (use a 1:5 or 1:10 split ratio, injection volume = 1 pL, carrier gas helium = 1.2 mL/min). Use the following GC
temperature program: hold at 150°C for 2 minutes, increase at 3°C per min to 280°C, increase at 20°C per min to 300°C, and then hold for 5
minutes. Solvent delay can be set as "5 min (for a 30 meter GC celumn). The range of the mass to charge ratio (m/z) in MS can be set
between 60 and 500.

4. GC-MS data analysis

1. TBDMS derivatized amine acid measurement can also be affected by isotope discrimination in GC separation. Light isctopes move slightly
faster than heave isotopes in GC column. To reduce the potential measurement bias, we may average the mass spectrum of the whole amino
acid peak range ©

2. The GC and MS spectra of TBDMS derivatized metabolites have been reported before’. The GC retention time and the unique m/z peaks for
each amino acid are illustrated in Figure 3.

3. Derivatization of amino acids or central metabolites introduces significant amounts of naturally-labeled isotopes, including '*C (1.13%), *O
(0.20%), 22Si (4.70%), and *°Si (3.09%). The measurement noise from natural isotopes in the raw mass isotopomer spectrum can be
corrected by using published software®, & The final isotopic labeling data are reported as mass fractions, e.g., Mo, M, Mz, Mz and M
(representing fragments containing zero to four '*C labeled carbons).

4. Measurement of amino acids can provide isotopic labeling information about eight crucial precursor metabolites: 2-oxo-glutarate,
3-P-glycerate, acetyl-CoA, erythrose-4-P, oxaloacetate, phosphoenolpyruvate, pyruvate, and ribose-5-P. The labeling patterns in these
metabolites can be used to identify several central metabolic pathways (Figure 2) . The outcome of the labeling experiments can be further
confirmed using other biochemistry methods (e.g., RT-PCR).

5. Pathway analysis using labeled amino acid data

By investigating only a few key amino acids produced from well-designed '*C tracer experiments, we may reveal several unique pathways or
enzyme activities without performing sophisticated *C-metabolic flux analysis of entire central metabolism.

1. Entner-Doudoroff pathway: [1-'*C] glucose can be used as the carbon source. If the pathway is active, serine labeling will be significantly
lower than labeling in alanine 1©

2. Branched TCA cycle: [1-'3C] pyruvate can be used as the carbon source. If the TCA cycle is broken, aspartate can be labeled by two
carbons, while glutamate is labeled with only one carbon 11, 2,

3. COx: fixation by Calvin-Benson-Bassham cycle in a mixotrophic metabolism: Non-labeled COz and labeled carbon substrates are both used
as the carbon sources. If Calvin cycle is functional, serine and histidine labeling will be significantly diluted, comparing to other amino acids.
Such method can determine the relative CO3 fixation when organic carbon sources are present in the medium 2.

4. Oxidative pentose phosphate pathway: [1-'°C] glucose can be used as the carbon source. If the pathway is active, non-labeled alanine will be
>50% 12

5. Anaplerotic pathway (e.g., PEP + COz a oxaloacetate): *COz and non-labeled carbon substrates (e.g., glycerol or pyruvate) can be used as
the carbon source. If the pathway is active, aspartate labeling will be significantly enriched, comparing to alanine and serine 2.

6. Re-citrate synthase: [1-*C] pyruvate can be used as the carbon source. If the enzyme is active, glutamate is labeled in B-carboxyl group ?, %

7. Citramalate pathway: [1-'*C] pyruvate, [2-1°C] glycerol, or [1-1*C] acetate can be used as the carbon source. If the pathway is active, leucine
and isoleucine labeling amounts are identical **.

8. Serine-isocitrate lyase cycle: [1-'3C] pyruvate or [1-*C] lactate can be used as the carbon source. If the pathway is active, the third position
carbon in serine will be labeled '°.

9. Utilization of nutrients (i.e., exogenous amino acids): a culture medium with fully labeled carbon substrates and non-labeled amino acids can
be used. If the cells selectively utilize these supplemented non-labeled nutrients, we will see significant labeling dilution of these amino acids
in the biomass. This method can be used to investigate which nutrient supplements are preferred by the cell &

6. Representative results:

Recent bioenergy studies have revived interests in using novel phototrophic microorganisms for bioenergy production and CO; capture. In the past
years, quite a few 13C-metabolism analyses, including advanced 13C-Metabolic Flux Analyses (13C-MFA), have been applied to investigate central
metabolisms in phototrophic bacteria, because biochemical knowledge of the central metabolic pathways is not well-founded in these non-model
organisms'?, ', 1720, Here, we present an example of the discovery of an alternate isoleucine pathway in Cyanothece 51142 2!. Cyanothece 51142
does not contain the enzyme (EC 4.3.1.19, threonine ammonia-lyase), which catalyzes conversion of threonine to 2-ketobutyrate in the typical
isoleucine synthesis pathway. To resolve the isoleucine pathway, we grow Cyancthece 51142 (20 mL) in ASP2 medium 22 with 54 mM glycerol
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(2-13C, >98%). Cyanothece 51142 utilizes 2" position labeled glycerol as the main carbon source. We observe that threonine and alanine have
one labeled carbon, while isoleucine is labeled with three carbons. Therefore, synthesis in Cyanothece 51142 cannot be derived from the threonine
route employed by most organisms (Figure 4). On the other hand, leucine and isoleucine have identical labeling patterns based on fragment (M-15)
*and fragment (M-159)*. For example, the isotopomer data from [M-15]* (containing unfragmented amino acids) show identical labeling for leucine
(M0=0.01, M1=0.03, M2=0.21, M3=0.69) and isoleucine (M0=0.01, M1=0.03, M2=0.24, M3=0.67). Thus leucine and isoleucine must be synthesized
from the same precursors (i.e., pyruvate and acetyl-CoA). This observation is consistent with the labeled carbon transition in the citramalate

thway for e . To confirm this pathway, we search the Joint Genome Institute database and find the presence of a citramalate
synthase CimA (cce_ 0248) in Cyanothece.
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Figure 1. The '3C-assisted pathway analysis steps.
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Figure 2. Amino acids used for acquiring the labeling pattern of their metabolic precursors. ACoA, acetyl-CoA; AKG, a-Ketoglutarate; C5P, ribose
S-phosphate; CIT, citrate; E4P, erythrose 4-phosphate; GEP, glucose 6-phosphate; OAA, [ tate; PEP, phosph

3-phosphoglycerate; PYR, pyruvate.
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Figure 3. GC peaks for 16 amino acids. TBDMS derivatized amino acids are cracked by MS into two fragments: (M-57)*, containing the entire
amino acid, and (M-159)*, which lacks the a carboxyl group of the amino acid. For leucine and isoleucine, the (M-57)+ was overlapped by other
mass peaks. We suggest using fragment (M-15)+ to analyze the entire amino acid labeling. The (f302)+ group is detected in most amino acids,
which contains only the first (a-carboxyl group) and second carbons in an amino acid backbone. Because this MS peak often has high
noise-to-signal ratios, (f302)* is not \ded for quantitatively analyzing the metabolic fluxes’.
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Figure 4. Labeling transitions in isoleucine pathways in Cyanothece 51142 (modified from our previous paper)?'.

This protocol consists of feeding the cell with a labeled substrate and measuring the resulting isotopic labeling patterns in the amino acids via
GC-MS. Since MS data (m/z ratios) give just the overall amount of labeling of MS ions, we have to assess the isotopomer distributions of amino
acids by examining the m/z ratios of both unfragmented (M-57)* and fragmented amino acids (i.e., (M-159)* and (f302)*). Furthermore, we can
perform several cell cultures with a chemically identical medium but substrates that have different labeling patterns (1% position labeled, 2"
position labeled, etc.). The labeling information about metabolites from these experiments can be integrated to decode the actual carbon
transition routes through the central metabolic pathways.

For pathway analysis, the choice of a labeled substrate is important. In general, singly labeled carbon substrates are easier to use in tracing the
fate of the labeled carbon when "3C percolates through central pathways, while multiple-carbon labeled substrates may confound carbon tracing.
Also, singly labeled substrates are more informative to elucidate unique molecule structures in metabolites than uniformly labeled substrates.*
For example, the (Re)-type citrate synthase shows different reaction stereochemistry from normal citrate synthase, and thus causes citrate to
have different molecular chirality. On the other hand, substrates are different in their suitability to detect their associated pathways. Glucose is
best for detecting the split ratio between the glycolysis and pentose phosphate pathways, while pyruvate or acetate are best for analyzing the
TCA cycle and some amino acid pathways. Therefore, it is necessary to use different substrates to investigate the overall picture of cell
metabolisms.

3C-isotope labeling is a useful technique for determining functional pathways in microorganisms. However, this technique has several limitations.
First, it is suited only for analysis of carbon metabolism using organic substrates, as it cannot directly resolve metabolism in autotrophic
metabolisms if CO2 is used as the sole carbon source. Autotrophic cultures using CO2 label all amino acids to the same extent as the input 2CO2/
12CO2 mixture 2. This makes pathway analysis difficult, as ysis has to be inferred from a rearrangement of *C carbons in
metabolites by different metabolic pathways. Second, this paper presents solely quamatlve results dlscnmmahng between “active” and
“non-active" pathways. Precise quantification of boli q a sophisti d modeling app! h (i.e., *C-MFA) to decipher metabolic
fluxes from isotopomer data. Third, the scope of **C-metabolism analysis is limited by technical challenges in determining low abundance and

boli Broader lic network can be probed by analyzing free metabolites besides amino acids. Measurement of free
metabolites requires both highly-efficient metabolite extraction methods and highly-sensitive analytical platforms. LC-MS, FT-ICR MS, and CE-MS
have been used for identifying the labeling patterns of free metabolites, and provide more insight into cell metabolisms2. Fourth, '*C-assisted
pathway analysis is best done in minimal medium, because addition of non-labeled nutrient supplements leads to falsely lower labeling
concentrations and make quantitative *C-MFA studies not so straightforward. Also, cells may utilize exogenous amino acids extensively for
protein synthesis, and thus give very weak labeling signals for these proteinogenic amino acids 2. If a rich medium is required to grow cells,

of i llar tes, instead of amino acids, can effectively reduce the interference in labeling data that arises from

exogenous non-labeled carbon nutrients.

Finally, an increasing number of genome sequences for non-model microbial species are being published each year. However, functional
characterization of these species has lagged far behind the pace of genomic sequencing. '*C-labeling approaches can play important roles in the
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confirmation and discovery of metabolic pathways in many non-model organisms. Furthermore, the labeling information can be integrated with
metabolic modeling (*C-MFA) to decipher absolute carbon fluxes in microorganisms 2°. Therefore, this technique can be widely used in analyzing
biological systems related to biofuel, ecological and medical applications.
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Cyanothece sp. ATCC 51142 is an aerobic N;-fixing and hydrogen-producing cyanobacterium.
Isotopomer analysis of its amino acids revealed an identical labelling profile for leucine and
isoleucine when Cyanothece 51142 was grown mixotrophically using 2-'°C-labelled glycerol as
the main carbon source. This indicated that Cyanothece 51142 employs the atypical alternative
citramalate pathway for isoleucine synthesis, with pyruvate and acetyl-CoA as precursors.
Utilization of the citramalate pathway was confirmed by an enzyme assay and LC-MS/MS analysis.
Furthermore, the genome sequence of Cyanothece 51142 shows that the gene encoding the key
enzyme (threonine ammonia-lyase) in the normal isoleucine pathway is missing. Instead, the
cce_0248 gene in Cyanothece 51142 exhibits 53 % identity to the gene encoding citramalate
synthase (CimA, GSU1798) fram Geobacter sulfurreducens. Reverse-transcription PCR
indicated that the cce_0248 gene is expressed and its transcriptional level is lower in medium
with isoleucine than in isoleucine-free medium. Additionally, a BLAST search for citramalate
synthase and threonine ammania-lyase implies that this alternative isoleucine synthesis pathway
may be present in other cyanobacteria, such as Cyanothece and Synechococcus. This suggests

that the pathway is more widespread than originally thought, as previous identifications of the
citramalate pathway are limited to mostly anaerobic bacteria or archaea. Furthermore, this
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Accepted 28 October 2009

discovery opens the possibility that such autrotrophic micro-organisms may be engineered for
robust butanol and propanol production from 2-ketobutyrate, which is an intermediate in the
isoleucine biosynthesis pathway.

INTRODUCTION

Cyanethece sp. ATCC 51142 is an aerobic unicellular
marine cyanobacterium that has a robust diurnal cycle for
photosynthesis and nitrogen fixation and is also capable of
evolving hydrogen (Colon-Lépez & Sherman, 1998; Stockel
et al., 2008; Toepel et al., 2008). Previous transcriptional
network studies on Cyanothece sp. have shown unique
periodic changes in its central metabolism throughout the
day-night cycle (Stockel er al., 2008). The genome of this
strain has recently been sequenced {Welsh et al., 2008) and
the enzyme {threonine ammonia-lyase, EC 4.3.1.19)
catalysing the conversion of threonine to 2-ketobutyrate
in the nermal isoleucine synthesis pathway is not

tThese authors contributed equally to this work.

Abbreviatons: CID, collision-induced dissociation; MRM, multiple
reaction monitoring,

Two supplementary figures are available with the online version of this
paper.

annotated based on KEGG pathway maps {(http://www.
genome.jp/kegg/). However, the key intermediate in iso-
leucine biosynthesis pathways, 2-ketobutyrate, can also be
synthesized from citramalate. While most bacteria employ
the threonine pathway to form isoleucine, some anaerobic
bacteria and archaea, such as Methanococcus jannaschii and
Geobacter sulfurreducens, can synthesize isoleucine from
citramalate via condensation of acetyl-CoA and pyruvate
catalysed by citramalate synthase (CimA) (Howell er al,
1999; Risso et al., 2008; Tang et al,, 2009b; Xu er al., 2004).

In this study, we investigated the actual route for isoleucine
synthesis in Cyanothece 51142 via C-based isotopomer
analysis. These experiments consisted of feeding the culture
a defined "*C-labelled substrate and measuring the isotopic
enrichment in metabolites once the labelled carben had
percolated through the metabolic network. The isotopomer
labelling information allowed us to decipher carbon
transitions in the isoleucine synthesis pathways (Tang
et al, 2009a). The identification of such enzymes can
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improve our understanding of carbon metabolism in
Cyanothece 51142 as well as in other recently sequenced
cyanobacterial strains. Furthermore, because an intermedi-
ate in the citramalate pathway is 2-ketobutyrate (the
precursor of 1-propanol and 1-butanol: Atsumi & Liao,
2008), this discovery may have potential applications to
CO,-based biofuel research by making cyanobacteria a
viable vehicle for the autotrophic production of butanol
and propanol.

METHODS

Culture conditions. Cyanothece 51142 was grown in 150 ml
Erlenmeyer flasks fed with ASP2 medium (Toepel et al., 2008). The
medium composition for 1 litre was as follows: Na,EDTA, 0.03 g;
K;HPO4, 0.05 g KCl, 0.6 g5 NaCl, 18 g; NaNOs, 1.5 g MgSOy,
2.24 g CaCl,.2H,0, 0.37 mg; FeCl;.6H0, 3.9 mg; HCL, 0.1 pmol;
TAPS, 1 g TAPSO, 1g HsBO;, 34.3 mg MnCl,4H,0, 4.32 mg;
ZnS0.7H,0, 0.668 mg; CuSO.5H,0, 3 pg CoCl.6H,O, 12 ug;
Na,;MoOs.2H,0, 44 pg. The carbon source was [2-*Clglycerol (99 %,
Cambridge Isotope Laboratories), at an initial concentration of 7 g
1 . The strain was initially grown in 20 ml labelled culture medium
(with 3% inoculum volume). At the mid-exponential phase of
growth, a 3% inoculum was added to a 50 ml subculture containing
the same labelled medium, which reduced the effect of unlabelled
carbon from the initial stock. All cultures were grown aerobically at
30 °C under continuous light (50 pmol photons m *s ') in 125 ml
flasks shaking at 150 r.p.m.

Analytical measurements. During the growth of Cyanothece 51142,
cell density was monitored on a UV-Vis spectrophotometer (Genesys,
Thermo Scientific) at 730 nm. At each time point, samples were
collected and glycerol concentrations were measured using a glycerol
enzymic assay kit (R-Biopharm). When the growth of the strain
approached the mid-exponential phase, the biomass was harvested by
centrifugation (10000 g, 10 min), and the cell pellet was hydrolysed
in 6 M HCl at 100 °C for 24 h. After air-drying overnight, the dried
samples (containing free amino acids) were derivatized in tetra-
hydrofuran and N-(tert-butyldimethylsilyl)- N-methyltrifluoroaceta-
mide (Sigma-Aldrich) at 70 °C for 1 h. Isotopomer measurements
were made on a gas chromatograph (Hewlett Packard, model 6890,
Agilent Technologies) equipped with a DB5-MS column (J&W
Scientific) and a mass spectrometer (5975, Agilent Technologies).
Four types of charged fragments were detected by GC-MS for the
amino acids: the [M—57]% or [M—15]" group, which contains
unfragmented amino acids; and the [M—159]* or [M—85]" group,
which contains amino acids having lost o-carboxyl groups. Because
the [M—57]" peaks in leucine and isoleucine overlap with other
peaks, the [M—15]" group was used to obtain the isotopomer
labelling information of the unfragmented leucine and isoleucine.
When amino acids are derivatized for GC separation, derivatization
groups introduce the natural isotopes, including *C (1.13%), %O
(0.20%), *°Si (4.70 %) and *°Si (3.09 %). Published algorithms were
used to correct for the effects of those natural isotopes on the mass
distributions of amino acids (Wahl et al., 2004)

LC-MS/MS (composed of a Shimadzu HPLC system with a LEAP
PAL autosampler and a 4000 QTRAP with TurbolonSpray ion source,
Applied Biosystems) was used to confirm the production of
citramalate by Cyanothece 51142, A 5 ml sample of culture taken
during the exponential growth phase was centrifuged for 10 min at
8000 g. The intracellular metabolites were extracted from the cell
pellet using 2 ml cold methanol and 2 ml chloroform. Then 1 ml
distilled water (0 °C) was added to partition the solution. The
hydrophobic layer at the bottom was removed, and extracted

metabolites in the aqueous solution were lyophilized and reconsti-
tuted in 1 % formic acid. After vortexing and sonication, the samples
were centrifuged at room temperature for 4 min at 13200 g to
remove water-insoluble components. The LC gradient was optimized
by injecting a citramalate standard that was detected by MS in
multiple reaction monitoring (MRM) mode (Heinig & Henion,
1999). Under the optimized LC-MS/MS conditions, 50 pl of test
sample was injected into the LC-MS/MS. Polar acidic components in
the sample were resolved by an Onyx Monolith column
(300 mm x 4.6 mm, Phenomenex) in gradient elution mode.
Negative electrospray ionization (ESI) mode was used for detecting
citramalate in both MRM and MS/MS scan modes. Collision-induced
dissociation (CID) spectra of the citramalate parent ion m/z 147
(M—H) and MRM parameters were optimized for sensitive
detection.

An identical LC-MS setup was used for measurement of citramalate’s
labelling pattern with the following modifications: (1) the HPLC
system was changed to the Agilent 1200 HPLC system; (2) the
injection volume was set to 40 pl. After obtaining citramalate mass
patterns, *C-labelled citramalate was subjected to MS/MS fragment
analysis using the QTRAP 4000 system. If citramalate was labelled, the
pseudo-molecular parent fon of citramalate (m/z 147, no loss of
carbons) and its fragment ions (m/z 57, 85 and 87) would have a
higher mass-to-charge ratio. Such information could be used to
determine the isotopic labelling pattern of citramalate.

Enzymic activity assay. The methods of Howell et al. (1999) and
Risso et al. (2008) were used. A wet weight of 100-200 mg of cell
pellet was suspended in 0.1 M TES buffer, pH 7.5. The cell extract was
prepared by sonication (MISONIX) of the cell pellet for 3 min with a
30 s 0n/20 s off cycle. A 100 pl sample of cell extract was mixed with
TES buffer (0.2 M, pH 7.5, 500 pl), pyruvate (10 mM, 100 pl) and
acetyl-CoA (50 mM, 20 pl), then topped up with distilled water to a
final volume of 1000 pl. Blank samples were prepared as for the test
samples but without pyruvate. The resulting test sample and blank
sample solutions were then incubated at 30, 45 or 60 °C in an oven
for 2 h. At intervals of 20 min, a 100 pl test sample and a blank
sample were taken from the incubator and added to a solution
containing 50 pl 10 mM DTNB [5,5’-dithiobis(2-nitrobenzoic acid)]
in 0.1 M Tris/HCl (pH 8.0), 70 ul 1 M Tris/HCl (pH 8.0), and
distilled water to a final volume of 0.9 ml. The Ay;, values for the test
sample and blank sample were recorded. The production of SH-CoA
was determined based on a standard curve generated with 2-
mercaptoethanol. The enzyme activity was assayed by detecting the
production of SH-CoA over 2 h. All the chemicals employed in this
assay were from Sigma-Aldrich.

RNA extraction and reverse transcription PCR (RT-PCR). In
order to confirm the expression of cce_0248 (encoding CimA),
Cyanothece 51142 was cultured in ASP2 medium with glycerol (7 g
1 Y. In the exponential growth phase (ODy3 ~0.6), isoleucine was
added to the culture to a final concentration of 10 mM. The control
experiment (without addition of isoleucine) was performed in parallel
and the both culture samples were collected after 30 min. The RT-
PCR protocol was based on a previous report (Johnson et al., 2005).
In brief, total RNA was extracted from the frozen cell pellets using
RNAwiz reagent (Ambion) according to the product manual.
Contaminant DNA was removed by DNase treatment using an RQ1
RNase-Free DNase kit (Promega) in accordance with the manufac-
turer’s protocol. The extracted RNA was transcribed to cDNA by a
SuperScript II Reverse Transcriptase kit (Invitrogen), also according
to the manufacturer’s protocol. The forward primer TTAGCT-
GCAGGAACACGATG and reverse primer TCTCGAACAATG-
CGACTGAC were employed to amplify the cce_0248 gene, the
forward primer AGAGGATGAGCAGCCACACT and reverse primer
TAATTCCGGATAACGCTTGC to amplify the r7n 16Sa gene (i.e. 165
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rRNA) as a positive control gene, and the forward primer GACC-
CCCATTAAAGCGAGAA and reverse primer TTAACCAAGGA-
GGOGGATTT to amplify the #ifX gene (as a negative control gene)
in the cDNA by PCR using the Platinum Pfx DNA Polymerase kit
(Invitrogen) (Welsh et al,, 2008). PCRs were conducted with the
following cycle conditions: 2 min of activation of the polymerase at
94 °C followed by 30 cycles consisting of 1 min at 94 °C, 30 s at
58 “C and 2 min at 72 °C; finally, 2 10 min extension process was
performed at 72 “C. The final PCR product was observed directly on
agarose gels after electrophoresis.

RESULTS AND DISCUSSION

Cyanothece 51142 exhibited a maximum specific growth
rate of ~0.9 ﬁ:la}f1 in ASP2 medium in the presence of
glycerol during the exponential phase (Fig. 1}. The glycerol
was quickly utilized for biomass production during the
exponential growth phase and most key amino acids were
highly labelled (Fig. 2). For example, =90 % of alanine was
labelled with one or more carbons, indicating that a
significant amount of labelled glycerol was directed into the
central metabolism (glycolysis, TCA and pentose phos-
phate pathway}, which produced the building blocks for
aminoe acids and other metabolites. In comparison, CO,
(unlabelled carbon) fixation via the Calvin cycle was
minimal when glycerol was present in the medium (only
7 % of alanine was unlabelled).

The isotopomer data from [M—159]" (loss of the o-
carboxyl group) showed that the labelling profiles for
leucine (M0=0.01, M1=0.14, M2=0.70, M3=0.13; M0,
M1, M2... are fractions of unlabelled, singly labelled and
doubly labelled amino acids, respectively) and isoleucine
(M0=0.01, M1=0.14, M2=0.71, M3=0.13) were similar
(the standard error for isotopomer analysis is <0.05).
Furthermore, the isotopomer data from [M—IS]+ (con-
taining unfragmented amino acids) also showed identical
labelling for leucine (M0=0.01, M1=0.03, M2=0.21,
M3=0.69) and isoleucine (M0=0.01, MI1=0.03,
M2=0.24, M3=0.67). These data suggest that leucine and
isoleucine are synthesized from the same precursors (i.e.
pyruvate and acetyl-CoA), and thus that isolencine
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Fig. 1. Growth of Cyanothece 51142 and utilization of glycerol.
O, ODzaq; L, glycerol concentration.

synthesis in Cyanothece 51142 takes place via an alternative
pathway to the threonine-pyruvate pathway employed by
most organisms. Further supporting this conclusion,
isoleucine could not be labelled with three carbons
(IM—15]*: M3=0.67) if threonine and pyruvate were its
precursors: threonine was mostly labelled with one carbon
(IM—57]%, M1=0.64) and alanine (pyruvate as its
precursor) was also mostly labelled with one carbon
(alanine [M—57]*, M1=0.84) (Fig. 2).

The citramalate pathway via citramalate synthase is an
alternative to the common threonine pathway for the
synthesis of isoleucine. Citramalate synthase (CimA),
which catalyses the synthesis of the isoleucine precursor
2-ketobutyrate, has been discovered in other organisms via
isotopomer analysis, enzyme chemistry or cloning methods
(Table 1). Two types of genes encoding CimA have been
identified and both genes are homologous to homocitrate
synthase. CimA was previously reported in an archaeal
species (Methanococcus jannaschii, gene MJ1392) (Howell
et al., 1999) and recently a new CimA gene homologue
(Geobacter sulfurreducens, gene GSU1798) has been dis-
covered (Risso er al, 2008); further CimA identifications
are listed in Table 1. According to the genome sequence of
Cyanothece 51142 (from the Joint Genome Institute: http://
www.jgi.doe.gov), the gene for threonine-ammonia lyase
(EC 4.3.1.19) catalysing the conversion of threonine to 2-
ketobutyrate is missing. We also confirmed the absence of
this gene from the Cyanothece 51142 genome by BLAST
analysis (Table 2). In contrast, BLAST search results indicate
the presence of a complete citramalate pathway for
isoleucine synthesis and the gene for CimA is identified
as cce_0248, which has 53% identity to the reported
citramalate synthase gene (GSU1798) in G. sulfurreducens.

To confirm citramalate synthase activity in Cyanothece
51142, the specific activities of this enzyme were measured.
The enzyme activities in crude cell extracts at elevated
temperatures (30, 45 and 60 °C) were 8.54+2.24,
569+1.79 and 2.79+0.07 nmol min~' (mg dry bio-
mass)”", respectively. In comparison, the citramalate
synthase from the thermophilic M. jannaschii shows higher
thermostability (Howell et al., 1999). However, this enzyme
assay does not conclusively prove the presence of
citramalate synthase (Risso et al, 2008) and therefore
high-sensitivity and selectivity LC-MS/MS was used to
detect  intracellular  citramalate  concentrations in
Cyanothece 51142, Initially, the LC-MS/MS conditions
were optimized using the signal of an authentic citramalate
standard, MRM-based methods then confidently identified
citramalate from cell extracts in our unlabelled cultures
(Fig. 3). We spiked the cell extracts with an authentic
citramalate standard and the spiked standard co-eluted
with endogenous citramalate as a single peak. The
measured  intracellular  concentration of citramalate
[0.12+0.03 pmol (g dry biomass)™'] was smaller than
the reported pools of central metabolites [such as a-
ketoglutarate and malate, ~2—4 pmol (g dry biomass) ™' in
cyanobacteria (such as Synechocystis) (Shastri & Morgan,
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2007). This lower concentration is consistent with the
proposed role for citramalate as a secondary metabolite in
Cyanothece 51142. Furthermore, the citramalate labelling

pattern resulting from the tracer experiment (using
[2-*Clglycerol as the carbon source} was also investigated.
The spectra of the parent ion (M—H)" had a mass-to-
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Table 1. Reported threonine-independent isoleucine synthesis pathways

Species Reference(s) Main methods cimA similarity cimA similarity Growth
(GSU 1798) (MJ1392) conditions
Methanobacterium Eikmanns ef al. (1983) *C-labelling MTH1481 28 % MTH723 58 % Anaerobic
thermoautotrophicum experiments
Methanococcus jannaschii ~ Howell et al. (1999) cimA gene cloned and  ND MJ1392 100 % Aerobic
expressed in E. coli (E. coli)
Leptospira interrogans Charon et al. (1974);  “*C-labelling LIC11726 26 % LIC11726 41 % Aerobic
Westfall et al. (1983) experiments (E. coli)
Xu et al. (2004) cimA gene cloned and
expressed in E. coli
Thermoproteus Schifer et al. (1989)  “CNMR Tneu_0320 45 % Tneu_0832 55% Anaerobic,
neutrophilus thermophilic
Ignicoccus hospitalis Jahn et al. (2007) Enzyme assays; Igni_0645 45% Igni_0983 52 % Anaerobic,
B labelling thermophilic
experiments
Geobacter sulfurreducens  Risso et al. (2008) ¢ GC-MS and GSU1798 100 % GSU1906 41% Anaerobic
gene/enzyme assays
Geobacter metallireducens  Tang et al. (2007) BC GC-MS Gmet_1879 92% Gmet_1265 42% Anaerobic
Serratia marcescens Kisumi et al. (1977) Enzyme assays Spro_0745 (26 %)*  Spro_0745 (37 %)*  Anaerobic
Thermoanaerobacter Peng et al. (2009) BC GCMS; Teth514_1204 49%  Teth514_0415 45%  Anaerobic,
sp. X514 enzyme assays thermophilic
Dehalococcoides Tang et al. (2009¢) BC GC-MS; qPCR DETO0825 53 % DET0830 41% Anaerobic

ethenogenes 195

ND, Not determined.
*Sequence similarity is based on Serratia proteamaculans 568 because the Serratia marcescens sequence is not available.

charge ratio of 149 (from the **C-labelled sample) instead experiment. The two labelled carbons in citramalate were
of 147 (from the unlabelled sample), which indicates that derived from pyruvate and acetyl-CoA (Fig. 2). The carbon
citramalate was mostly labelled with two carbons in this labelling positions in citramalate were determined by

Table 2. BLAST searches of amino acid sequences for key genes similar to the target genes (GSU1798 in G. sulfurreducens and
MJ1392 in M. jannaschii, encoding CimA) and threonine ammonia-lyase (3772 in E. coli K-12) in several sequenced cyanobacterial
species

Cyanobacterium Strain GSU1798 MJ1392 b3772
Gene Identity Gene Identity Gene Identity

(%) (%) (%)

Cyanothece sp. ATCC 51142 cce_0248 53 cce_4008 41 cce_1455 28

CCY 0110 CY 0110_21607 53 CY0110_30221 41 CY0110_21225 29

PCC 7424 PCC7424 3413 53 PCC7424_1126 41 PCC7424_0305 34

PCC 7425 Cyan7425_0344 25 Cyan7425_0344 41 Cyan7425_3269 50

PCC 7822 Cyan7822DRAFT_4501 53 Cyan7822DRAFT_3533 41 Cyan7822DRAFT_1627 29

PCC 8801 PCC8801_0449 55 PCC8801_0832 41 PCC8801_1025 28

PCC 8802 Cyan8802DRAFT_1361 54 Cyan8802DRAFT_0632 41 Cyan8802DRAFT_3061 28

Synechococcus sp.  elongatus PCC  syc 1089_d 53 syc0145_d 40 sycl1498_c 33
6301

elongatus POC  Synpcc7942_0428 53 Synpcc7942_1410 40 Synpec7942_2612 33
7942

JA-2-3 Ba (2-13) CYB_1307 51 CYB_1442 43 CYB_2298 27

JA-3-3 Ab CYA_0566 51 CYA_ 2223 43 CYA_ 0143 51

PCC 7002 SYNPCC7002_A0730 51 SYNPCC7002_A1356 41 SYNPCC7002_Al616 50

Synechocystis sp.  PCC 6803 sll1564 52 s1r0186 41 s1r2072 49
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Fig. 3. LC-MS/MS spectra for citramalate: (a) MRM signals of authentic citramalate standard; (b) MRM signals of cell extracts;
{c) MRM signals of cell extracts spiked with authentic citramalate standard; (d) MS/MS CID spectra from authentic citramalate
standard; (&} MS/MS CID spectra from extracted citramalate in Cyanothece 51142.

analysing the fragments of the parent ion (see
Supplementary Fig. 51, available with the online version
of this paper). It was concluded that citramalate was
labelled predominantly at the C-2 and C-4 positions, based
on MRM experiments and MS/MS fragmentation of *C-
labelled citramalate (parent ion m/z 149) (Fig. 2).

Binally, expression of cce_0248, the key gene in Cyanothece
51142 that encodes the putative citramalate synthase, was
confirmed by RT-PCR. The RT-PCR products from the
amplification of cce_0248 and the 165 rRNA gene (as a
positive control) were distinct and as expected, although
the expression of cce_0248 was lower than that of thel6S
rRNA gene (Supplementary Fig. $2). The nifX gene (a gene
involved in the fixation of atmospheric nitrogen) was not
expressed under either of the culture conditions (with or
without isoleucine), because the ASP2 medium contained
nitrate as the nitrogen source. So the nifX gene was treated
as a negative control gene. RT-PCR products also showed
that the presence of isoleucine (10 mM) in the medium
recuced the expression of cce_0243 relative to the control
experiments. This result could be explained by a previous
report that citramalate synthase was subject to feedback
inhibition by 5 mM isoleucine (Xu et al, 2004}.

Our findings led us to search for further homologues of
CimA of G. sulfirreducens in other species and we found that
homologues are present in a wide diversity of cyanobacteria.
BLAST searches for citramalate synthase (GSU1798) and

threonine ammonia-lyase (b3772) were conducted in
Synechocystis sp. PCC 6803, seven strains of Cyanothece sp.
and 16 strains of Synechocaceus sp., based on amino acid
sequence similarity. The BLasT results (Table 2) indicate that
at least six strains of Cyanothece sp. and five strains of
Synechococeus sp. have high probabilities of employing the
citramalate pathway to synthesize isoleucine rather than the
normal isoleucine pathway via threonine ammonia-lyase
(CimA identity >509%). Synechococcus JA-3-3 Ab and PCC
7002, and Symechocystis PCC 6803, may be capable of
employing two different pathways for isoleucine synthesis.
Twelve strains of Prochloracoccus sp. have also been examined
(data not shown), and all of them appeared not to have the
genes encoding the identical CimA based on the KEGG
pathway map (http://www.genome.jp/kegg/}; these strains
may only have the normal isoleucine pathway via threonine
ammonia-lyase. The predictions in Table 2 require further
experimental verification. For comparison, the two other
genes closest to GSUL798 in sequence identity within the
cyanobacteria have relatively low sequence identities (20—
30%; data not shown) to GSU1798; these genes encode
2-isopropylmalate synthase (which participates in the
biosynthesis of L-leucine) and homocitrate synthase.

Conclusions

Our isotopomer information, enzyme activity measurement,
metabolite analysis and gene expression data unambiguously
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indicate that the citramalate pathway is utilized for isoleucine
synthesis in Cyanothece 51142. Furthermore, genome
sequences suggest that quite a few other cyanobacterial strains
may also employ the citramalate pathway for isoleucine
synthesis. To our knowledge, citramalate pathways have
previously been identified only in some anaerobic bacteria
and archaea. The discovery of this alternative isoleucine
pathway in cyanobacteria may help us understand their
unique metabolic regulation related to photosynthesis and
nitrogen fixation. Moreover, the citramalate pathway may be
utilized to synthesize 2-ketobutyrate, a precursor of both
butanol and propanol. As such, the discovery of citramalate
synthase in cyanobacteria may provide a new biofuel synthesis
route utilizing autotrophic micro-organisms.
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SUPPLEMENTARY DATA

For the unlabelled citramalate, the parent ion m/z was 147 (Fig. S1-a). The results from the *C-
labelled sample show that the 149/88 transition was dominant (Fig. S1-b), followed by the 149/86
transition. The ratio between 149/86 and 147/85 indicates that most of the citramalate was labelled
with two 1>C carbons. According to the MS2 spectrum of unlabelled citramalate, the fragment ions
87 and 85 contained different carbon skeletons: C-1, C-2 and C-5 in the 87 ion and C-1, C-2, C-3,
C-5 in the 85 ion (Fig. S1-b). The dominance of the 149/88 and 149/86 MRM transitions confirmed
that the two "*C-labelled carbons were distributed separately on the pyruvate moiety (C-1, C-2, C-5)
and the remaining acetate moiety (C-3, C-4) of the citramalate molecule (please refer to Fig. 2 in
the main text for the citramalate pathway), and that the C-3 carbon was excluded from being
labelled by *C. Therefore, the only labelled carbon in the acetate portion of citramalate was in the
C-4 position. On the other hand, in the ion spectrum of the unlabelled citramalate, the m/z 57
fragment ion contains C-2, C-3 and C-5 and the m/z 43 fragment ion contains C-2 and C-3 only.
The dominance of the m/z 44 fragment ion in the *C-labelled sample readily indicates that the
labelled carbon in the pyruvate part of the molecule was in the C-2 position. Therefore, it was
concluded that citramalate was labelled dominantly by two *C carbons and they were possibly
located at the C-2 and C-4 positions based on MRM experiments and MS/MS fragmentation of *C-
labelled citramalate (parent ion m/z 149).

Fig. S1. Determination of citramalate labelling pattern. (a) LC-MS/MS spectra for unlabelled
citramalate. (b) LC-MS/MS spectra for labelled citramalate and their mass fragments.

Fig. S2. Gel profiles of RT-PCR products (two conditions: 1, exponential growth culture without
isoleucine; 2, addition of 10 mM isoleucine into exponential growth culture for 30 min). (a)
Expression of cce 0248 and 16S rRNA. Lane 1: DNA ladder; lane 2: culture without Ile (amplify
cce 0248 gene, the expected size of the RT-PCR band is 302 bp); lane 3: culture with 10 mM Ile
(amplify cce 0248 gene); lane 4: negative control (without cDNA, amplify cce 0248 gene) ; lane 5:
culture without Ile (amplify 16S rRNA gene, the expected size of the RT-PCR band is 243 bp); lane
6: culture with 10 mM Ile (amplify 16S rRNA gene); lane 7: negative control (without cDNA,
amplify 16S rRNA gene). (b) Expression of 7ifX gene and 16S rRNA gene. Lane 1: culture without
Ile (amplify 16S rRNA gene); lane 2: culture with 10 mM Ile (amplify 16S rRNA gene); lane 3:
negative control (without cDNA, amplify 16S rRNA gene); lane 4: culture without Ile (amplify nifX’
gene, the expected size of the RT-PCR band is 95 bp); lane 5: culture with 10 mM Ile (amplify nifX’
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gene); lane 6: negative control (without cDNA, amplify NifX gene); lane 7: DNA ladder. Note: no

PCR products were amplified from the nifX gene in both culture conditions.
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Figure S1-a. LC-MS/MS spectra for unlabeled citramalate.
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Figure S1-b. LC-MS/MS spectra for labeled citramalate and their mass fragments
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Figure S2-a. Expression of cce_0248 and 165 rRNA.
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The recently discovered heliobacteria are the only Gram-pos-
itive photosynthetic bacteria that have been cultured. One of the
unique features of heliobacteria is that they have properties of
both the photosynthetic green sulfur bacteria (containing the
type I reaction center) and Clostridia (forming heat-resistant
endospores). Most of the previous studies of heliobacteria,
which are strict anaerobes and have the simplest known photo-
synthetic apparatus, have focused on energy and electron trans-
fer processes. It has been assumed that like green sulfur bacteria,
the major carbon flow in heliobacteria is through the (incom-
plete) reductive (reverse) tricarboxylic acid cycle, whereas the
lack of CO,-enhanced growth has not been understood. Here,
we report studies to fill the knowledge gap of heliobacterial car-
bon metabolism. We confirm that the CO,-anaplerotic pathway
is active during phototrophic growth and that isoleucine is
mainly synthesized from the citramalate pathway. Furthermore,
to our surprise, our results suggest that the oxidative (forward)
TCA cycle is operative and more active than the previously
reported reductive (reverse) tricarboxylic acid cycle. Bothisoto-
pomer analysis and activity assays suggest that citrate is pro-
duced by a putative (Re)-citrate synthase and then enters the
oxidative (forward) TCA cycle. Moreover, in contrast to {(Si)-
citrate synthase, (Re)-citrate synthase produces a different iso-
mer of 2-fluorocitrate that is not expected to inhibit the activity
of aconitase.

Heliobacteria are a relatively newly discovered group of
anaerobic photosynthetic bacteria. Allofthe cultured heliobac-
teria require organic carbon for anoxygenic growth, and several
of the species can fix nitrogen (1, 2). Heliobacteria are the only
cultured Gram-positive photosynthetic bacteria and are phylo-
genetically related to the bacterial phylum Fimmicutes, such as
the aerobic Bacillus and anaerobic Clostridia (1). Among 10
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cultured heliobacteria (2), Heliobacterium modesticaldum is
the only one that can grow at temperatures of =50 °C, Madigan
and co-workers (1, 3) reported that pyruvate, lactate, acetate
(+HCO, ), or veast extract can support the phototrophic
growth of H. modesticaldum, and our recent studies demon-
strated that p-sugars can also support the growth of H. modes-
ticaldum (4).

An unusual feature of heliobacteria is that they have proper-
ties of both green sulfur bacteria (containing the type L reaction
center) and Clostridia (forming heat-resistant endospores) (1).
Helicbacteria have the simplest photosynthetic apparatus
among the photosynthetic organisms (5), and most of the
research on them has been focused on understanding the pho-
tosynthetic machinery and energy transfer processes (1, 6—8).
In contrast, our knowledge of phototrophic carbon metabolism
by heliobacteria is still poorly developed.

Only two reported studies have experimentally probed the
carbon metabolism of heliobacteria; one is our recent study
with H. modesticaldum (4), and the other is the 1994 report by
Kelly and co-workers (9) on Heliobacterium strain HY-3. Our
studies highlighted the critical roles that pyruvate plays during
phototrophic and chemotrophic growth of H. modesticaldum,
reported on three new carbon sources for H. modesticaldum,
and verified the genomic information. Kelly and co-workers (9)
assayed activity forthe enzymes inthe TCA cycle and employed
13C NMR to analyze '*C-labeled protein-based amino acids
using [2-**CJpyruvate or [2-'*CJacetate. Furthermore, the
genes aclAB, encoding ATP citrate lvase (ACL),* and gltA,
encoding citrate synthase (CS), have not been annotated in the
H. modesticaldum genome (5), and neither we (4) nor Kelly and
co-workers (9) detected the enzymatic activities for ACL or CS.
Together, previous studies suggested that the RTCA cycleis not
complete in H. modesticalduni (Fig. 1A} (4, 5) and Heliobacte-
v strain HY-3 (9).

Note that '>C NMR may be insufficient for generating com-
plete labeling information of key metabolites, as **C NMR can-
not directly detect labeled carbon on the carboxyl group of an
amino acid if its a-carbon is not labeled (10). More importantly,
essential questions remain unresolved for carbon metabolism
of heliobacteria. () Ifthe (incomplete) RTCA cycle isemployed

“ The abbreviations used are: ACL, ATP citrate lyase; CS, citrate synthase; FAc,
fluoroacetate; 2-FC, 2-fluorocitrate; ¢-KG, a-ketoglutarate; OAA, oxaloace-
tate; OTCA cycle, oxidative (forward) TCA cycle; PEP, phosphoenolpyru-
vate; RTCA cycle, reductive (reverse) TCA cycle; BChl g, bacteriochlorophyll
g;8'-OH-Chl ag, 8'-hydroxychlorophyll a with a famesol tail.
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FIGURE 1. A, previously proposed carbon flow in H. modesticaldum from
genomic information and enzymatic activity assays. B, phototrophic growth
curve of H. modesticaldum grown on pyruvate, HCO7, or pyruvate and HCO;
as the defined carbon source. Cell density was estimated by measuring
the optical density (OD) at 625 nm (see the “Experimental Procedures”).
PFOR, pyruvate:ferredoxin oxidoreductase; PEPCK, phosphoenolpyruvate
carboxykinase; KFOR, a-KG:ferredoxin oxidoreductase; [DH, isocitrate
dehydrogenase.

for biomass production in heliobacteria (Fig. 14), then CO, is
essential for phototrophic growth (a metabolic type similar to
the green sulfur bacteria that employ an RTCA cycle) (11).
However, no apparent CO,-enhanced growth has been ob-
served for pyruvate-grown heliobacterial cultures. (b) Some
3C-labeled patterns in the study by Kelly and co-workers (9)
suggested that the oxidative (forward) TCA (OTCA) cycle is
operative. If this is the case, it is difficult to understand how the
OTCA cycle could possibly be initiated without the encoding
genes or enzymatic activities of ACL or CS.

This study is intended to apply both biochemical methods
and *C-based metabolite analysis via mass spectrometry to
address those essential questions by investigating how the TCA
cycle and amino acid biosynthesis are performed by H. modes-
ticaldum. Our results identify the missing link for the carbon
metabolism of H. modesticaldum (and perhaps Heliobacterium
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strain HY-3) and suggest that the carbon flow of H. modestical-
dum is more akin to Clostridia than to the green sulfur bacteria.

EXPERIMENTAL PROCEDURES

Materials—Chemicals and enzymes were obtained from
Sigma. The "C-labeled sodium bicarbonate, [1-'*C]- and
[3-"*C]pyruvate were obtained from Cambridge Isotope Labo-
ratories, Inc. The DNA oligomers were obtained from Inte-
grated DNA Technology without further purification.

Cell Cultures—The cell cultures employed in this study are
listed below. Cell density was estimated by measuring the opti-
cal density (OD) of a suspension of cells at 625 nm (ODy,5) for
the cell growth of both H. modesticaldum and Roseobacter
denitrificans because absorbance of photosynthetic pigments is
minimal around 625 nm (4), and ODy,, was measured to esti-
mate the growth of Desulfovibrio vulgaris Hildenborough
(DvH), in which no photosynthetic pigment was present. Auto-
claved subcultures were used as negative controls, and all of the
experiments were performed in triplicate.

H. modesticaldum—The H. modesticaldum strain Icel” cul-
ture was provided by Dr. Michael T. Madigan (Southern Illinois
University, Carbondale) and was grown phototrophically in a
minimal medium (1, 4) with pyruvate (20 mum) and (=)HCO;
(20 mm) as the carbon sources. The fresh medium was inocu-
lated with 1-2% cell culture in the late exponential growth
phase. Physiological studies with fluoroacetate (FAc) for the
pyruvate-grown cultures were performed with 20 mm pyruvate
and 20 mm FAc included in the growth medium. The cultures
were grown inside the anaerobic chamber (Coy) in low intensity
light (100 £ 10 umol/m?/s) at 4648 °C.

R. denitrificans—The R. denitrificans OCh114 culture,
obtained from Dr. J. T. Beatty (University of British Columbia,
Vancouver, Canada), was grown aerobically in a defined
medium with pyruvate (20 mum), FAc (20 mum), or pyruvate (20
mMm) + FAc (20 mm) as the sole carbon sources. The defined
growth medium was prepared as reported (12). The cultures
were grown at 28 °C (20-30%-filled Erlenmeyer flask) with
shaking at 150 rpm in the dark.

D. vulgaris Hildenborough (DvH)—DvH was kindly provided
by Dr. Terry C. Hazen (Lawrence Berkeley National Labora-
tory, Berkeley, CA). DvVH was grown in a defined growth
medium containing (per liter) NaCl (1.0 g), MgCl,-6H,0 (0.5 g),
KH,PO, (0.2 g), NH,CI1 (0.3 g), KC1 (0.3 g), CaCl,2H,0 (0.015
g), MgSO,7H,0 (0.2 g), a trace element solution (1 ml) (13), a
Na,SeO5/Na, WO, solution (1 ml) (14), resazurin (10 mg), lac-
tate (5 mm), Na,SO, (5 mum), and with a N,/CO, (80:20, v/v)
headspace. After autoclaving and cooling to room temperature,
the medium was supplied with a vitamin mixture solution (0.5
ml) (15). DvH was subcultured into fresh medium in triplicate
with 1% (v/v) inoculate, and cell cultures were grown at 30 °C
anaerobically. FAc amended cultures were prepared in the
same content except FAc (1.5 mwm) was added before
inoculation.

RNA Extraction and Quantitative Real Time PCR—The tran-
scriptomic profiling data were generated using the approaches
described elsewhere (16). The primer sequences for QRT-PCR
are listed in supplemental Table S1.
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Isotopomer Analysis via GC-MS—The isotopomer analysis
was performed using the methods reported previously (17) and
is described in the supplemental material.

Activity Assays for Citrate Synthase—Enzymatic activities
were performed in triplicate with cell-free extracts that were
prepared using the procedure as described earlier (4). Protein
concentration in cell extracts was determined by the Bradford
assay (18) using bovine serum albumin as the standard. The
reaction turnover for the reaction catalyzed by CS was followed
by the formation of 5,5'-dithiobis-2-nitrobenzoic acid or Ell-
man'’s reagent-modified CoA using the method reported previ-
ously (9, 19) with minor modification. To minimize oxygen in
the assay mixture for measuring CS activity, all of the reagents
(5,5'-dithiobis-2-nitrobenzoic acid, metal ions), substrates
(acetyl-CoA, oxaloacetate), and buffer were prepared with oxy-
gen-free water in an anaerobic chamber (Coy), and the assay
components were mixed in a tightly sealed cuvette inside the
anaerobic chamber prior to removal for the spectral measure-
ments. The reaction was initiated by the addition of oxaloace-
tate (OAA) (0.5 mm), and the increase at A,,, was followed to
monitor the activity. The amount of CoA production was esti-
mated using a standard calibration curve with 8-mercaptoeth-
anol. The control experiment was performed with the same
procedure with water rather than OAA added to initiate the
reaction.

RESULTS
Carbon M

bolismin H. desticaldum

In this study, we probed the central carbon metabolic path-
way with the following approaches: (i) physiological studies
with fluoroacetate; (i) isotopomer data; (iii) mass spectrum of
photosynthetic pigments; and (iv) transcriptomic profiles.
Pyruvate is the best known organic carbon source for support-
ing the phototrophic growth of H. modesticaldum (3, 4) and
several other heliobacteria (1), and it was used for probing the
carbon metabolism of H. modesticaldum.

Physiological Studies with Fluoroacetate—FAc has been re-
ported as a metabolic toxin. The toxicity of FAc is generally
recognized to arise from the fact that the carbon flow in the
OTCA cycle is blocked through the inhibition of aconitase by
(—)-erythro-(2R,3R)-2-F-citrate (2-FC), which is synthesized
from F-acetyl-CoA and OAA by CS (20). Consistent with this
hypothesis, an aerobic anoxygenic photoheterotrophic bacte-
rium R. denitrificans, which has been known to have an active
OTCA cycle (12), was notably inhibited by FAc (Fig. 24). In
contrast, the growth of H. modesticaldum on pyruvate was sim-
ilar with FAc versus without FAc (Fig. 2B). It is known that FAc,
an acetate analog, can be taken up by H. modesticaldum and
converted into F-acetyl-CoA, because the acsA gene, encoding
acetyl-CoA synthetase (ACS), has been annotated and the
enzymatic activity of ACS has been reported (4). Furthermore,
acetate (+HCOj) is also known to support the phototrophic
growth of H. modesticaldum (1, 3, 4). Consistent with the phys-
iological studies, the transcript levels of genes for carbon
metabolism are similar (within ~2 AAC,) for cultures grown
on pyruvate (20 mm) and with or without the addition of FAc
(20 mm) (Table 1). Together, our studies indicate little effect of
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FIGURE 2. Effect of FAc for the growth of R. denitrificans, H. modestical-
dum, and D. vulgaris Hildenborough (DvH). A, growth curve of R. denitrifi-
cans grown on pyruvate, FAc, or pyruvate and FAc as the carbon source;
B, growth curve of H. modesticaldum during photoheterotrophic growth on
pyruvate with or without FAc; C, growth curve of DvH grown on lactate with
or without FAc.

A EVEN

VOLUME 285+NUMBER 45-NOVEMBER 5, 2010

298

1102 'z} Jequiaoaq uo ‘Aysianiun uojbuiysep 1e B10°og[ mmm woly pspeojumog



TABLE1

Carbon Flow in Heliobacteria

The transcript level of the genes for carbon metabolism of H. modesticaldum during photoheterotrophic growth on pyruvate with or without
FAc

The genes encoding the enzymes in the (R)TCA cycle are highlighted in boldface italie.

AAC,(ACyIn relative expression level
Gene AC (pyruvate)  AC,"(pyruvate + FAc) pyruvate — ACy (pyruvate vs. p{ruvale
in pyruvate + FAc) + FA¢) = 23a¢r

pykA (HM1_0076, pyruvate kinase) 11.0 =02 127 + 0.2 1.7*+04 32=1.3
@cnt (HM1_0105, aconitase) 107 = 01 126+01 1.8+02 35+ 1.1
JfdxR (HM1_0289, Fd-NADP" reductase, FNR) 122 = 0.0 142201 2.0=01 40=1.0
porA (HM1_0807, pyruvate, Fd oxidoreductase, PFOR} 98+ 02 11.7 + 01 1.8+03 35+ 1.2
acsA (HM1_0951, acetyl-CoA synthetase) 121 =00 143+02 21+02 43+11
icd (HM1_1471, isocitrate dehydrogenase) 10.7 = 0.2 12.4 + 0.0 1.6+ 02 30+ 1.1
il (HM1_1472, malate dehydrogenase 109 = 0.0 124+ 00 15+ 00 28+ 0.0
ackA (HM1_2157, acetate kinase) 116201 13.6 = 0.0 20x01 40=1.0
ppdK (HM1_2461, pyruvate phosphate dikinase) 11.3+01 13.2+01 19+02 37+11
korC (HM1_2762, KFOR, + subunit) 99= 0.0 10802 0.9+02 19=1.1
oorB (HM1_2763, KFOR, {3 subunit) 92+ 00 109 +01 1.7 =01 32=1.0
karA (HM1_2766, KFOR, o subunit) 8901 10.7 = 0.0 18+ 01 15+ 1.0
korD (HM1_2767, KFOR, & subunit} 89=00 11.0x01 21=x01 43=1.0
(HM1_0858, homocitrate synthase) 15.0= 01 154+ 02 04+ 03 13+1.2
aksA (HM1_2993, homoeitrate synthase) 105 = 0.2 12.0x02 1504 28x1.3
pckA (HM1_2773, PEP carboxykinase) 11.9 = 0.0 135+ 01 1.6=01 30=1.0

“ACr = Cr (the threshold cycle) of the target gene —Cr of the 16 S tRNA gene.

FAc on the growth of H. modesticaldum, implying that (—)-
erythro-2-FC cannot be synthesized in H. modesticaldum, in
agreement with the findings that no genes encoding CS and
ACL have been annotated in the genome (5), and no enzymatic
activities of CS or ACL have been detected for H. modestical-
dum (4).

Moreover, when the anaerobic sulfate-reducing bacterium
D. vulgaris Hildenborough (DvH) was grown with a 1:1 molar
ratio of [2-'*Clacetate and nonlabeled lactate, significant
amounts of labeled carbon were detected in the biomass {(sup-
plemental Table S2), indicating that DvH can utilize acetate for
producing biomass. Furthermore, isotopomer analysis using
[2-*3CJacetate (supplemental Table S2) and a previous DvH
flux analysis (21} indicate that acetate < acetyl-CoA is revers-
ible in DvH. No FAc inhibition was detected during the growth
of DvH (Fig. 2C).

Isotopomer Analysis by GC-MS—Previous studies have
established that the cell growth of H. modesticaldum is best
supported by pyruvate (1, 3, 4). We used *C-labeled pyruvate
and characterized the protein-based amino acids for probing
the central carbon metabolic pathways. H. miodesticaldumn is
recognized as a photoheterotrophic bacterium (3, 4}, and CO,
neither supports nor enhances its phototrophic growth (Fig.
1B). When H. modesticaldum was grown on [1-*3C]pyruvate,
aspartate was mainly double-labeled, and glutamate was pri-
marily single-labeled (Table 2). In the {incomplete) RT CA cycle
(Fig. 1}, a-KG, the precursor of glutamate, is synthesized from
OAA, the precursor of aspartate, which results in the incorpo-
ration of all the carbons from aspartate into the carbon back-
bones of glutamate. Also, assuming that some of the CO, mol-
ecules assimilated through the RTCA eycle are '2CO,
generated from the reaction [1-**C]pyruvate + CoA — acetyl-
CoA + °C0, (Fig. 1), **C-labeled content is expected to be
higher for glutamate than for aspartate. Consequently, the mul-
tiply labeled instead of the singly labeled glutamate would even-
tually become dominant through the (incomplete) RTCA cycle.
However, in this study, the observed lower **C-labeled content
of glutamate compared with aspartate with [1-**C]pyruvate-
grown cells cannot have been generated by cells utilizing solely
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the (incomplete) RTCA cycle. Furthermore, the carbon flux of
H. modesticaldum cannot primarily go through the {incom-
plete) RTCA cycle but must instead mainly transform via the
OTCA cycle. Moreover, aspartate was dominantly single-la-
beled (M1 >0.8), and glutamate was mostly double-labeled (M2
=0.75) for cells using [3-'*C] pyruvate (supplemental Table S3),
in agreement with significant carbon flow through the QTCA
cycle.

Mass Spectrum of Photosynthetic Pigments—We further ana-
Ivzed the mass spectrum of BChls we reported earlier using
MALDI-TOF ({matrix-assisted laser desorption ionization
time-of-flight} mass spectrometry (4), in which **C-labeled
photosynthetic pigments (bacteriochlorophyll g (BChl g) and
8'-hydroxychlorephyll @ with a farnesol tail (8'-OH-Chl a))
were detected using [3-'*C]pyruvate. Both BChl g and 8'-OH-
Chl ap were synthesized from eight molecules of glutamate and
eight molecules of acetyl-CoA (for generating the farnesyl tail
with a 15-carbon unit at C17* position), and thus **C-labeled
BChl g and 8'-OH-Chl ag are expected using [3-'*C]pyruvate.
The mije for BChl g and 8'-OH-Chl ap is 796.7 and 812.7,
respectively, with unlabeled pyruvate, and for BChl g and
8.OH-Chl @ is 8168 and 8328, respectively, with
[3-**C]pyruvate. The number of labeled carbons for the labeled
BChl g or 8-OH-Chl @ was estimated to be 21-22 using the
program IsoPro 3.1. Using [3-*C]pyruvate as the carbon
source, glutamate is expected to be double-labeled through the
OTCA cycle because citrate is double-labeled via condensation
of [3-"*C]OAA and [2-'°Clacetyl-CoA, where glutamate is sin-
gle-labeled through the RTCA cycle (from [3-C]OAA). Thus,
16 carbons are labeled through the RTCA cycle {(eight single-
labeled glutamates and eight single-labeled acetyl-CoAs) and
24-labeled carbons through the OTCA cycle (eight double-la-
beled glutamates and eight single-labeled acetyl-CoAs) using
[3-13C]pyruvate. Thus, observations of higher **C contents on
BChl g and 8'-OH-Chl a; in the mass spectrum than expected
from the RTCA cycle would suggest that the OTCA cycle con-
tributes to the formation of glutamate and a-KG. Consistent
with this hypothesis, glutamate was found to be mostly double-
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TABLE 2

Isotopomer labeling patterns of protein-based amino acids in the cultures grown on [1-'*C]pyruvate

Proposed **C-enriched positions.

Amino acid Precursor Ton® M-57% M-159° 302 (shown as asterisk)
Ala Pyruvate MO 0.20 0.85 0.20 C-C-*COOH
M1 0.77 0.09 079
M2 0.03 0.06 0.01
Gly Serine Mo 0.24 093 012 C-*COOH
M1 075 0.02 048
M2 0.01 040
Val Pyruvate Mo 0.20 089 028 C-C-C-C-*COOH
M1 0.77 009 072
M2 0.03 001 0.00
Leu Pyruvate MO 0.60 0.3 063 Nonlabeled
Acetyl-CoA M1 0.36 014 0.36
M2 0.03 002 0.01
M3 0.00 0.00
Tle Pyruvate Mo 0.66 083 069 Nonlabeled
Threonine M1 0.25 016 025
M2 0.08 001 0.06
M3 0.01 0.00
Met Aspartate Mo 0.09 022 017 C-8-*C-C-C-*COOH
Methyl-THE* M1 0.24 058 051
M2 Q.51 020 032
M3 015 001
Ser 3-Phosphoglycerate MO 019 0.94 0.21 C-C-*COOH
M1 0.77 006 078
M2 0.04 0.00 0.01
Thr Aspartate MO 011 0.26 011 *C-C-C-*COOH
M1 029 072 046
M2 059 002 043
Phe PEP Mo 0.08 013 022 C-C-*C-~C-C-C-C-C-*COOH
Erythrose 4-phosphate M1 011 029 077
M2 0.31 053 0.01
M3 0.46 0.04
M4 0.04 001
Asp OAA Mo 0.11 027 027 *COOH-C-C-*COOH
M1 0.31 071 0.73
M2 056 001 0.01
Glu a-Ketoglutarate MO 0.26 028 082 C-C-C-C-*COOH
M1 0.64 063 018
M2 0.09 0.04 0.00
M3 0.01 0.00
His Ribose 5-phosphate MO 013 013 092 N-C-N-C-*C-*C-C-COOH
M1 0.41 041 0.06
M2 0.32 034 0.02
M3 0.10 0.07
Lys Aspartate Mo 0.14 023 0.92 C-C-*C-C-C-"COOH
Pyruvate M1 0.26 068 0.08
M2 058 003 0.00
M3 0.02 0.00
M4 0.00 0.00

“ MO0, M1, M2, M3, and M4 indicate mass fraction of the unlabeled, single-labeled, double-labeled, triple-labeled, and quadruple-labeled amine acid.

#[M-57]" indicates un-fragmented amino acid detected by GC-MS.

“[M-159]* indicates an amino acid minus the « - carboxyl group detected by GC-MS,
7302 is the fragment of the first two carbons in a derivatized amino acid (17).

¢ THF is tetrahydrofolate.

labeled (M2 >>75%) using [3-'*C]pyruvate (supplemental Table
S3).

Transcriptomic Profiles—All of the genes encoding the
enzymes in the RTCA cycle, except for ACL, have been anno-
tated in the H. modesticaldum genome (5). Table 1 shows that
genes in the RTCA cycle (highlighted in boldface italic) are
expressed and that the transcript level for the genes responsible
for carbon metabolism is similar (at most a 4-fold difference) in
the pyruvate-grown cultures with and without FAc.

Taking all of the experimental evidence together, our studies
indicate that in addition to the incomplete RTCA cycle, the
OTCA cycle is also employed by H. modesticaldum. Like the
RTCA cycle, the OT CA cycle is not complete but mainly con-
tributes to the formation of a-KG, as indicated by isotopomer
analysis and mass spectrometry of photosynthetic pigments.
The active OTCA cycle is consistent with the observed lack of

35108 JOUARNAL OF BIOLOGICAL CHEMISTRY

CO,-enhanced pyruvate growth of H. modesticaldum (Fig. 1B),
because CO, is produced through the OTCA cycle.

Citrate Synthase Activity Detected Anaerobically

Table 2 shows that over 50% aspartate and 60% glutamate
were labeled in the 8-carboxyl group with [1-'*C]pyruvate as
the carbon source, implying that citrate formation is possibly
catalyzed by (Re)-citrate synthase ((Re}-CS) (Fig. 3). Both
(Re)-CS and normal CS (i.e. (Si)-CS) catalyze the formation of
citrate through aldol condensation of OAA and acetyl-CoA,
whereas the acetyl-CoA moiety is added to the “pro-R” and
“pro-§” arm of citrate through catalysis of (Re)-CS and (Si)-CS,
respectively (Fig. 3).

We have previously showed that no CoA production was
detected with acetyl-CoA and OAA added in the cell extracts of
H. modesticaldum under aerobic conditions and without diva-
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®: "3C-labeled carbon using [1-'*C]pyruvate
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Alternative Isoleucine Biosynthe-

0 Hic—coon ) HC—COOH Hie—cooH Sis Path‘way—lsoleucine is rypicglly
CoA HO COOH Aconttase L o o symhesmeq lhmugh the ﬂlreomne

sm (Si)-citrate Hzc I dsl;;ggg;g‘;asa o=t &oon rn—g—Eoon pathway (Fig. 4). Using [1- C]pyru,
o synthase (Si)-<itrate aketoglutarate ghtamate vate as the carbon source, threonine

was mainly double-labeled (M2

. . >=58%), so isoleucine would be

] G (Re)itrate HiG— °°°” aconitase He—COOM HC—CO0H  aypected to be double-labeled via
10 ’5’"‘"““ c""“ ~isocitrate  SH2 — the threonine pathway. Table 2
HJC coor  dehydrogenase o—ccoon HN—G—COOH  ghows that isoleucine was large-

ﬁ‘/k (Re)-citrate a-ketoglutarate glutamate |y nonlaheled (MO >60%) with

[1-%*C]pyruvate

[1-'*C]pyruvate, suggesting that

FIGURE 3. Reactions catalyzed by the (Re)- versus (5i)-citr ynth.

genase. "°C labeling distributions in citrate, a-ketoglutarate, and glulamateuslng [1-"*Clpyruvate are shuwn

lent metal ion supplied, confirming that (Si)-CS is not produced
by H. modesticaldum (1). Anaerobic conditions have not been

reported to be required for the activity of (5i)-CS. To test if
citrate can be produced by H. modesticaldum via the catalysis of

(Re)-CS, rigorous efforts were made to minimize the oxygen
content in the assay mixtures (described under “Experimental
Procedures”), because oxygen-sensitive and divalent metal ion
(Mn*", Mg*", or Co®") dependences were reported for the
aclivity measurements of (Re)-CS (19). The increase of A,,, for
5,5"-dithiobis-2-nitrobenzoic  acid-modified CoA can be
detected with Mn?*, OAA, and acetyl-CoA under anaerobic
conditions, suggesting the presence of the CS activity in H.
modesticaldurm. The catalytic activity of the novel CS, likely
(Re)-CS, was estimated to be 50 = 20 nmol/min/mg protein.

Anaplerotic-CO, Fixation Pathways

The isotopomer labeling experiment with '“C-labeled
HCO; and unlabeled pyruvate as the carbon source showed
that over 50% alanine was labeled (supplemental Table $4) and
that all the labeled alanine was labeled at the carboxyl group.
The labeling pattern suggests that the reaction catalyzed by
pyruvate:ferredoxin oxidoreductase (acetyl-CoA + CO, +
2Fd, .4 + 2H " <> pyruvate + CoA + 2Fd,,) is frecly reversible
and very active so that the labeled bicarbonate is incorporated
into pyruvate. The isotopomer analysis is in agreement with our
recent physiological studies that pyruvateferredoxin oxi-
doreductase plays a central role in carbon metabolism of H.
modesticaldurm (4). Moreover, when using [1-'*C]pyruvate as
the carbon source, aspartate can be synthesized either from the
CO,-anaplerotic pathways with pyruvate and/or phosphoenol-
pyruvate (PEP) and “CO, (from decarboxylation of [1-*C]
pyruvate), leading to double-labeled aspartate, or through the
OTCA cycle, in which aspartate is not expected to be double
labeled. The predominance of double-labeled aspartate indi-
cates the high carbon flow via the CO,-anaplerotic pathway and
low flux from the OTCA cycle, consistent with observed activ-
ity of PEP carboxykinase illustrated in our recent studies (4),
and confirming that the OTCA cycle is not complete as genes
encoding the enzymes specific for the OTCA cycle have not
been annotated in the genome (5).

Amino Acid Biosynthesis

The isotopomer analysis for biosynthesis of several amino
acids is illustrated as follows.

NOVEMBER 5, 2010+ VOLUME 285 NUMBER 45 EXTEIEN

itr isoleucine was mostly synthesized
through the citramalate pathway,
although all of the genes in the threonine pathway have been
annotated. In the citramalate pathway, citramalate synthase
(CimA) catalyzes the formation of p-erythro-3-methylmalate
(i.e. citramalate) through condensation of pyruvate and acetyl-
CoA (Fig. 4). Two gene loci, HM1 1519 and HM1 1515,
encoding putative CimA in the citramalate pathway have been
annotated in the genome. The amino acid sequence encoding
by gene locus HM1_1519 shows >50% identity to the recently
reported CimA (Teth514 1204) in Thermoanaerobacter sp.
X514 (22), which is a close relative to the genus Clostridivm.
The supplemental Table S5 lists the bacteria with the citra-
malate pathway identified.

Normal Pathways for Alanine, Serine, Phenylalanine, and
Lysine Biosynthesis—The isotopomer pattern suggested ala-
nine and serine are synthesized from pyruvate and PEP, respec-
tively. Also, using [3-"*Clpyruvate as the carbon source, the
labeling patternin supplemental Table S3 indicates that phenyl-
alanine is synthesized from the common biosynthetic pathway
with erythrose 4-phosphate and PEP as precursors in agree-
ment with the genomic information (5). Furthermore, Pickett et
al. (9) also reported the same results regarding pathways of
alanine, serine, and phenylalanine biosynthesis for Heliobacte-
rium strain HY-3.

The labeling patterns of lysine in the isotopomer analysis
suggest that lysine is synthesized through the common diamino-
pimelate pathway with pyruvate and aspartate as the precur-
sors, rather than through the a-amino adipate pathway (sup-
plemental Fig. S1), in which 2-ketoglutarate and acetyl-CoA are
condensed and converted to lysine. This conclusion is consist-
ent with the fact that all genes in the a-aminoadipate pathway
are missing, except for the genes encoding putative homoci-
trate synthase (nifV (HM1 0858) and aksA (HM1 2993)). This
enzyme catalyzes the formation of homocitrate ((R)-2-hy-
droxybutane-1,2,4-tricarboxylate) by condensing «-KG and
acetyl-CoA. Note that the askA gene is expressed with higher
transcript level (Table 1). The possible function of the homoci-
trate synthase for carbon metabolism will be discussed later.

DISCUSSION
Growth of H. modesticaldum with FAc

Fig. 2 shows that there is no detectable difference in the
growth of H. modesticaldum with or without FAc, suggesting
that (—)-erythro-2-FC cannot be synthesized by CS or/and ACL
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e Predicted *C-labeled via the threonine pathway
® Predicted '3C-labeled via the citramalate pathway

® Predicted '3C-labeled via the leucine and valine biosynthesis pathways

. HyC—C—SCoA H;,C—(E—'(?OOH
{l:=° acetyl-CoA g !
(I.‘.H, pyruvate
®COOH i
0AA citramalate l
pathway
HiC—C—THPP
° COOH o]
H;N-CH-COOH HE-OH
T
G H-C-COOH
COOH T
3
aspartate D-erythro-3-methylmalate

| .

H{C~C—SCoA

ies showing that conversion of pyru-
vate to acetyl-CoA, catalyzed by
pyruvate:ferredoxin  oxidoreduc-
tase, is wvery active in pyru-
vate-grown H. modesticaldum (4)
and the isotopomer data presented
in this report. However, Fig. 24
shows that the pyruvate-grown R.
denitrificans, whichis also known to
exhibit high flux from pyruvate to

®COOH
H.C—C—OH acetyl-CoA  (12), was notably
N (I:—O reduced by the presence of FAc,

1 suggesting that other factors must
(S]-z-atc:::aolaclate contribute to the lack of FAc-inhibi-
tion on the phototrophic growth of

l H. modesticaldurn.
Different Stereoisomer of 2-FC Is

0, [} +COOH Synthesized—Alternatively, it is
. *COOH acetyl-CoA ¢=0 possible that the putative CS cata-
HyN-CH-COOH oo CH-CH,4 lyzes the formation of a 2-FCisomer
. ?H'OH L{ﬂne’ é“z (':H, other than (=)-erythro-2-FC. Note
CHy deaminase . éHg 2-oxoisovalerate  {hat only one of four possible 2-FC
threonine threonine 2-kstobutyrate COOH isomers, (f):er)fthm—}l:(l,‘ c;flaf—
pathway . HE—-OH lyzed by (Sz)‘-(.S, is a potent lr:lhlhl-
HOOG—C—H tor of aconitase (20). Thus, if the
Htl:ch putative CS does not catalyze the
1 ’ formation of (—)-erythro-2-FCbuta
CH, different 2-FC isomer, then the tox-
(2R, 35)-3-isopropylmalate icity of FAc is not expected to be
observed for H. modesticaldur.
{:0: This hypothesis is further elabo-
rated below.
OOH Different Isomers of 2-FC Produced
*COOH HoN-CH ¢ COOH by (Re)- Versus (5i)-CS
H;N-CH GHy HaN-CH ) ” i
HiC Hch(‘:H HC-CH, HyC-CH hAl.though therle is no_d.1-1 E'frenlce in
o CH, CH, CH, the 5lereo$hemlslry of glLr_:ile from
isoleucine leucine condensation of acetyl-CoA and

FIGURE 4.Proposed biosynth

li
va ".‘e OAA catalyzed by (Si)-CS versus

=3
-

i ysforisol the citramal
ways, leucine, and valine. Predicted "*C labeling distributions using [1-'*Clpyruvate are shown.

in H. modesticaldum. However, the lack of genes encoding ACL
and CS along with the lack of the enzymatic activities is incon-
sistent with our presented isotopomer data, which suggest that
at least a partial OTCA cycle is active and an oxygen-sensitive
novel CS is produced by H. modesticaldum to initiate the
OTCA cycle. If a novel CS is produced by H. modesticaldum,
then the lack of FAc inhibition during the growth of H. modes-
ticaldum needs to be explained. Two working hypotheses can
be considered.

High Flux from Pyruvate Lo Acetyl-CoA to Compele wilh
F-gcetyl-CoA—Similar activity of F-acetyl-CoA versus acetyl-
CoA for normal CS has been reported previously (23). Assum-
ing that (—)-erythro-2-FC is synthesized by a putative novel CS,
acetyl-CoA from pyruvate could compete with F-acetyl-CoA
from FAc for the interactions of the putative CS. A high flux
from pyruvate to acetyl-CoA is suggested from our recent stud-

35110 JOURNAL OF BIOLOGICAL CHEMISIRY

T
o

(Re)-CS (Fig, 3), different isomers of
2-F-citrate (2-FC) are produced
from condensation of F-acetyl-CoA
and OAA catalyzed by (5i)-C5 versus (Re)-C5 (Fig. 5). Lauble et
al. (20) proposed that interactions of (—)-erythro-2-FC with
aconitase produce an intermediate that inhibits aconitase,
whereas interactions of (+)-erythro-2-FC with aconitase leads
to formation of «-KG, instead of inhibiting aconitase.

To test this hypothesis, we performed physiological studies
with the sulfate-reducing bacterium D). vidgaris Hildenborough
(DvH) using FAc. Acetate can serve as a carbon source for DvH
in the presence of reducing power, which can be generated
during lactate-supported growth (supplemental Table 52).
Thus, FAc, like acetate, can be assimilated by DvH using the
reducing power generated by lactate oxidation. Like H. modes-
ticaldum, no genes encoding ACL and (Si)-CS have been anno-
tated in the DvH genome, whereas the activity of (Re)-CS and
contribution of CS to the carbon flow of the OTCA cycle have
beenidentified for DVH (24), Fig. 2C shows no inhibition for the
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genome, homocitrate synthase has
been suggested to be phylogeneti-
cally related to (Re)-CS (19). It is
possible that homacitrate synthase
catalyzes not only the formation of

o o \ H,C—COOH ho]l(n(t;cbitrtatflf t‘rﬂin [ﬂcetYIL-'COA[M-T]
i H,C—COOH o= ul also e lormalion ol Cil-
Ho)k/u\ﬂ/OH “:ﬂfﬂg:f — COOH  rate from acetyl-CoA and OAA (e
o) He COOH  acenitase F—c—coon (Re)-CS). Two genes in the H. mod-
CoA  F—HC—COOH I

(+)-erythro-2-FC

FIGURE 5. Reaction of F-acetyl-CoA and OAA catalyzed by (Re)- versus (Si)-citrate synthase, and interac-

tions of (—)-erythro-2-FC versus (+}-erythro-2-FC with aconitase.

PPDK
PEP —— pyruvate
PFOR
CO, COy co,
PEPCK acetyl-CoA === acetate
ATP (Re)-citrate synthase?
OAA citrate .
/ ‘\\acomtase
late isocitrate
mee oTCA cycle J IDH
| & cO; co,
fumarate RTCA cycle  o-KG
KFOR

X C
succinate succinyl-CoA
—/

FIGURE 6. New view for carbon flow in H. modesticaldum. The proposed
carbon flow is through the OTCA cycle (red) and the RTCA cycle (blue) with a
stronger flux through the OTCA cycle (acetyl-CoA — a-KG, shown in bold).
The proposed role of the putative (Re)-citrate synthase is shown.

growth of DvH with FAc, consistent with the hypothesis by
Lauble et al. (20). Consequently, we believe that the lack of FAc
inhibition on the growth of H. modesticaldum is in agreement
with generation of (+)-erythro-2-FC, instead of (—)-erythro-2-
FC, by (Re)-CS.

Homocitrate Synthase May Function as (Re)-CS in
H. modesticaldum

(Re)-CS has been identified in Clostridium kluyveri (19), aND
THE ACTIVITY OF (Re)-CS has been reported in Thermoanaero-
bacter sp. X514 (22), DvH (24), Dehalococeoides ethenogenes
195 (26), Ignicoccus hospitalis (27), and several anaerobic bac-
teria. Because different stereoisomers of citrates are generated
through the catalysis of (Re)- versus (Si)-CS, it is not surprising
that these two types of CS are rather phylogenetically distinct
(19, 28).

As mentioned under “Results,” the product turnover cata-
lyzed by an oxygen-sensitive CS, possibly a putative (Re)-CS,
has been detected with Mn® " ions supplied while minimizing
oxygen content in the assay solution. Although the gene encod-
ing (Re)-CS has not been annotated in the H. modesticaldum

NOVEMBER 5, 2010-VOLUME 285 NUMBER 45 NASBIMB

OH esticaldum genome possibly encode
homocitrate synthase, mifV (HM1_
0858) and aksA (HMI1 2993). A
BLAST search shows that proteins
encoded by both genes, particularly
by askA, share high identity with the
reported putative homocitrate syn-
thase/(Re)-CS, in agreement with the observed higher tran-
script level (e, lower AC,) of askA compared with that of mifV
(Table 1). Given the data presented in this study, we propose
that the putative homocitrate synthase, an enzyme that has
been reported to function as (Re)-CS in several bacteria, is likely
responsible for synthesizing citrate in H. modesticaldum.

HF
a-ketoglutarate

New View for Carbon Flow of H. modesticaldum

Fig. 6 represents a new model for the carbon flow of H. mod-
esticaldum that reflects improved understanding resulting
from isotopomer and activity assays; the major carbon flux of H.
modesticaldum is through the OTCA cycle. (Re)-citrate syn-
thase, identified in several Clostridia and other anaerobic bac-
teria, is likely employed by H. modesticaldum to produce citrate
for entering the OTCA cycle. The finding of the OTCA cycle
herein fills the knowledge gap for the carbon flow of H. modes-
ticaldwm, Tt is intriguing to learn that the major carbon flux of
H. modesticaldum is switched from the RTCA cycle to the
OTCA cycle when the only gene (ATP citrate lyase) missing in
the RTCA cycle is replaced by a gene with novel function ((Re)-
citrate synthase) in the OTCA cycle. Together, our studies sug-
gest that the carbon flow of H. modesticaldum (and perhaps
Heliobacteriwm strain HY-3) is more akin to Clostridia than to
the green sulfur bacteria, which employ the RTCA cycle for
CO, assimilation and biomass production (25).
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Supporting Information

Isotopomer analysis. Cell pellets were hydrolyzed in 6 M HCI at 100°C for 24 hrs. After air-
drying overnight, the dried samples containing free amino acids were derivatized with N-(tert-
butyl-dimethylsilyl)-N-methyl-trifluoroacetamide in tetrahydrofuran at 70°C for 1 hr. Isotopomer
measurements were made on a GC (Hewlett-Packard, model 6890, Agilent Technologies, Palo
Alto, CA) equipped with a DB5-MS column (J&W Scientific, Falsom, CA) and a mass
spectrometer (MS) (5975, Agilent Technologies, Palo Alto, CA). Several groups of charged
fragments were detected by GC-MS for the amino acids: the [M-57]" or [M-15]" group, which
contains un-fragmented amino acids; the [M-159]" or [M-85]" group, which contains amino
acids losing « carboxyl group; and the 302 group, which contains the fragments of the first two
carbons from derivatized amino acids. The [M-57]* peaks in leucine and isoleucine overlap with
other peaks. Published algorithms were used to correct the effects of natural isotopes on the mass
distributions of amino acids (1) mass fractions (i.e. M0, M1, M2... which are fractions of
unlabeled, single-labeled, and double-labeled amino acids...).

305

LEOZ 'ZL Jaquiaoaq uo Asiaaun ueiBuiysep 18 B0 aql mmm woly papeojumoed



Table S1. Sequences of primers described in this report.

Gene (loci number, predicted/ Forward primer (5’ 3’)

reported function)

Reverse primer (5’ 3’)

16S rRNA gene GCAACGCGAAGAACCTT GGGCACCCTCGCATCTC
ACC
pykA (HM1_0076, pyruvate GCCCGAATCATCTCCAT AACGCCCCGCACGAA
kinase) CAG
acn (HM1 0105, aconitase) AATCAGCCTGTGGTCCC CAGAGACACCGCCCGAGT
TGT T
fdxR (HM1 0289, ferredoxin- CCTGCTCCCGGTCAAAA TTCTTCGCGCCGATGAA
NADP reductase, FNR) TC
porA (HM1_0807, pyruvate: GAAGCCTGCAACCCCTA GGTGAGTTTGCCGATCTC
Fd oxidoreductase, PFOR) CTATAAG CTT
acsA (HM1 0951, acetyl-CoA  TCCAAACCTGAAATCCT AGAACTCGCGCTCCACAT
synthetase) ATGAAGAG CcT
ied (HM1_1471, isocitrate TCAACCCCGGATCGGTC CTGCCAGCCGAGGTGTTC
dehydrogenase)
mdh (HM1_1472, malate CGGCTATGAGGGCATCT CGGTCAGCTCGATCTCAA
dehydrogenase ACAC AGA
ackA (HM1_2157, acetate CCCGCGTCGGTGACAT CGTCAATCCCTCTTTTITCC
kinase) ATC
ppdK (HM1_2461, pyruvate AGATGTCGTTGCCGGTA AAGCATTCGGGCAGTTCT
phosphate dikinase) TCC TC
korC (HM1 2762, KFOR. v GGGAAGCCCTCGAAAAA TGTTCATCTCCTCGGTCCC
subunit ) GC T
oorB (HM1_2763, KFOR, B AAAGGGACCACCGCTCC GCCAGGTTGCAGATGTCG
subunit ) T A
korA (HM1_2766, KFOR, o CGGCGACCATCCTGTCA CCGTCAGGTTGAAGCATT
subunit ) T cC
korD (HM1_2767, KFOR, & AAGTGTTGGGCGCTGAC TGCACTTGGTACATTTTTT
subunit ) G CGG
nif V. (HM1_0858, homocitrate GAAGCCTATCCGCCCGA GCTGTATTTGCCAAAGGC
synthase) GA
aksA (HM1 2993, homocitrate CGCTTCCCGTTCTGATAT CGCCCAGCTTTTTGGCTT
synthase) TGA
pckA (HM1 2773, PEP GATGCCATCTTCCACGA CAGTCCCTGTTACGTGTCG
carboxykinase) GGTA AAA
2
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Table S2. Isotopomer labeling patterns of protein-based amino acids in the Desulfovibrio
vulgaris Hildenborough (DvH) cultures grown on non-labeled lactate and [2-"C]acetate.”

Amino acid Precursor Ion M-57 M-159
MO 0.89 0.85
Ala pyruvate M1 0.10 0.12
M2 0.01 0.03
MO 0.34
vate
Leu pyr M1 peaks 0.49
acetyl-CoA M2  overlapped 0.14
Phe phosphoenolpyruvate :11(1) 82; 323
erythrose-4-phosphate M2 0'05 0.06
oxaloacetate Mo 0.85 0.86
Asp M1 0.14 0.10
M2 0.01 0.02
MO 0.43 0.42
u-ketoglutarate
Glu orelos M1 0.49 0.50
M2 0.03 0.06
. MO 0.78 0.81
. ribose-5-phosphate
His PRosP M1 0.13 0.13
M2 0.06 0.03

“ While DvH cannot grow using acetate as the sole carbon and energy source, DvH can grow
with a mixed-substrate (lactate and acetate). When [2—13C]m:elale and non-labeled lactate with
1:1 molar ratio were presented in DvI growth medium, a doubling time ~ 9 hours was observed
during the middle-log phase. The labeling carbons were significantly enriched in its protein-
based amino acids for the cultures harvested during the late-log growth phase (see Table above),
indicating that labeled acetate was partially utilized for protein synthesis in the mixed-substrate
culture. The labeling data presented above also illustrates that acetate < acetyl-CoA < pyruvate
is a reversible pathway. The DvH culture condition was described in the Experimental
Procedures.
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Table S3. Isotopomer labeling patterns of protein-based amino acids in the H. modesticaldum

cultures grown on [3-C]pyruvate.

Aminoacid Precursor  lon  M-57  M-159 (302 Proposed 13C enriched
positions
Ala pyruvate MO 0.06 0.09 0.13 *C-C-COOH
M1 0.89 0.80 0.85
M2 0.05 0.11 0.02
Gly serine MO 0.70 0.72 0.28 *C-COOH
M1 0.29 0.28 0.35
M2 0.01 0.37
Val pyruvate MO 0.06 0.08 0.73 #*C-#C-C-C-COOH
M1 0.03 0.05 0.18
M2 0.87 0.78 0.10
Leu pyruvate MO 0.06 0.08 0.28 #*C-*C-C-C-*C-COOH
acetyl-CoA M1 0.02 0.02 0.30
M2 0.15 0.27 0.42
M3 0.75 0.57
Ile pyruvate MO 0.05 0.05 0.22 *C-#C-C-C-*C-COOH
threonine M1 0.02 0.02 0.48
M2 0.27 0.34 0.29
M3 0.64 057
Met aspartate MO 0.06 0.06 0.29 #*(C-S-C-*C-C-COOH
methyl-THF M1 0.37 0.39 0.54
M2 0.52 0.52 0.17
M3 0.05 0.04
Ser 3-phospho- MO 0.09 0.09 0.75 *#C-C-COOH
glycerate M1 0.87 0.89 0.24
M2 0.04 0.02 0.01
Thr aspartate MO 0.07 0.08 0.11 C-*C-C-COOH
M1 0.83 0.86 0.64
M2 0.11 0.07 0.25
Phe PEP MO 0.06 0.06 076 CTELCCCHRCCCOOM
(clockwise)
erythrose-4- M1 0.01 0.01 0.23
phosphate M2 0.04 0.05 0.01
M3 0.74 0.75
M4 0.14 0.13
Asp OAA MO 0.06 0.06 0.58 C-*C-C-COOH
M1 0.82 0.87 0.39
M2 0.12 0.07 0.03
4
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Glu a-KG MO 0.07 0.07 0.71 C-*C-C-*C-COOH
M1 0.10 .22 0.24
M2 0.76 0.67 0.05
M3 0.07 0.05
His ribose-5- MO 0.06 0.13 0.14 N-#C-N-C-C-C-C-*COOH
phosphate M1 0.12 0.43 0.78
M2 0.53 0.35 0.08
M3 0.28 0.08
Lys aspartate MO 0.07 0.07 0.91 C-#C-C-*#C-C-COOH
pyruvate M1 0.05 0.04 0.09
M2 0.79 0.81 0.00
M3 0.09 0.06
M4 0.00 0.01
5
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Table S4. Isotopomer labeling patterns of protein-based amino acids in the H. modesticaldum
cultures grown on "*C-labeled sodium bicarbonate and non-labeled pyruvate.

Proposed 13C enriched

Amino acid Precursors Ions M-57 M-159 302 e
positions
Ala pyruvate MO 0.47 0.92 0.47 C-C-*COOH
M1 0.52 0.03 0.53
M2 0.01 0.05 0.00
Gly serine MO 0.49 0.99 0.24 C-*COOH
M1 0.51 0.01 0.29
M2 0.01 0.47
Val pyruvate MO 0.43 0.93 0.51 C-C-C-C-*CO0H
M1 0.54 0.05 0.48
M2 0.03 0.01 0.01
Leu pyruvate MO 0.74 0.92 0.80 Non-labeled
acetyl-CoA M1 0.20 0.07 0.19
M2 0.02 0.01 0.01
M3 0.04 0.00
Ile pyruvate MO 0.64 0.86 0.65 Non-labeled
threonine M1 0.29 0.13 0.31
M2 0.07 0.01 0.04
M3 0.00 0.00
Met aspartate MO 0.23 0.42 0.28 C-§-*C-C-C-+COOH
methyl- THF M1 0.45 0.52 0.42
M2 0.29 0.04 0.30
M3 0.03 0.01
Ser 3-phospho- MO 0.45 0.96 0.48 C-C-*COOH
glycerate M1 0.54 0.03 0.51
M2 0.02 0.01 0.01
Thr aspartate MO 0.23 0.43 0.20 #C-C-C-*COOH
M1 0.47 0.57 0.49
M2 0.30 0.02 0.31
Phe PEP MO 0.14 027 041 C-C-*C-*C-C-C-C-C-*COOH
erythrose-4- M1 0.32 0.45 0.59
phosphate M2 0.35 025 0.00
M3 0.18 0.03
M4 0.01 0.00
Asp OAA MO 0.24 0.47 0.47 *COOH-C-C-*COOH
M1 0.46 052 0.53
M2 0.31 0.01 0.00
Glu a-KG MO 0.38 0.43 0.78 C-C-C-C-*COOH
6
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M1 0.50 0.54 0.21
M2 0.11 0.02 0.01
M3 0.00 0.00
Lys aspartate MO 0.26 0.42 0.87 C-C-*#C-C-C-*COOH
Pyruvate M1 0.41 0.54 0.13
M2 0.34 0.03 0.00
M3 0.00 0.01
M4 0.01 0.00
7
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Table S5. List of bacteria with the citramalate pathway reported.

Species References CimA similarity CimA similarity Growth
Species S (GSU1798) (MJ1392) conditions
’;Z;ffr";ggj: 2)  RDI_3182,45% RDI_1121, 40% aerobic
Methanobacterium 3) MTH1481, 28%  MTH723, 58% anaerobic
thermoautotrophicum
Methanococe ]
j; e ) ND MJ1392, 100%  aerobic (E. coli)
;‘;f:;’;g;fs (5.6), () LIC11726,26% LIC11726,41% aerobic (E. coli)
Thermoproteus o o anaerobic,
neutropkilces (8) Tneu_0320, 45% Tneu_0832, 55% thermophilic
U : o . o anaerobic,
Ignicoccus hospitalis ©) Igni_0645, 45%  1gni_0983, 52% thermophilic
mg;zi‘;fjfgm (10) GSU1798, 100%  GSU1906, 41% anaerobic
Geobacter ar Gmet_1879, Gmet_1265, anaerobic
metallireducens ) 92% 42%
Serratia marcescens (12) Spro_0745,26%  Spro_0745, 37% anaerobic
Thermoanaerobacter (13 Teth514_1204 Teth514_0415 anaerobic,
sp. X514 3) 49% 45% thermophilic
f{i’;ﬁ;’;;”fgﬁ; (14) DET0825,53%  DET0830, 41% anaerobic
Heliobacterium ——— (15)and — pryr 4510 550, [IM 1515,45%  anaerobic
modesticaldum this report
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Fig. S1. The normal versus the novel pathway for lysine biosynthesis in the H. modesticaldum
cultures grown on [1-"°Clpyruvate. Predicted labeled carbons are marked by asterisks.
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Abstract

The Roseobacter clade of aerobic marine proteobacteria, which compose 10-25% of the total marine bacterial community,
has been reported to fix CO;, although it has not been determined what pathway is involved. In this study, we report the
first metabolic studies on carbohydrate utilization, CO; assimilation, and amino acid biosynthesis in the phototrophic
Roseabacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined
carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be
replaced by vitamin B,y (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly
developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in
combination. Through measurements of '*C-isotopomer labeling patterns in protein-derived amino acids, gene expression
profiles, and enzymatic activity assays, we report that: (1} R. denitrificans uses the anaplerotic pathways mainly via the malic
enzyme to fix 10-15% of protein carbon from CO,; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for
carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and
coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of &
phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both
threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole
carbon source.
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Intreduction

Two of the most important sources of carbon sinks known in
nature are absorption of CO; by the oceans and photosynthesis by
photosynthetic organisms. The marine Roseobactr clade are
potentially major contributors to global CO, fixation as they
make up 10 25% of the total microbial community in some
surface ocean ecosystems [1 4], Some members of the Rosobacter
clade belong to a group known as Aerobic Anoxygenic Photo-
trophs (AAPs), the only known organisms performing photosyn-
thesis requiring oxygen but not producing oxygen, while other
members are non-phototrophic. CO oxidation was confirmed
experimentally for the non-phototrophic Roseebacter clade bacteri-
um Sthicibacter pomeroys [5] and other Roseobacter clade [6], and CO,
fixation was suggested in several marine AAPs (7], while
bioinformatic analysis in Roseobacter clade with completed genome
sequence indicated that the genes encoding ribulose bisphosphate
carboxylase/oxygenase (RUBISCO) and phosphoribulokinase
required in the Calvin cycle for carbon fixation, as well as genes
for other autotrophic CO;, fixation pathways, are missing in these
bacteria [5,8 10]. Thus, it has been of great interest to determine
how Roseabacter clade bacteria can fix COj, if they indeed fix CO,.

Anaplerotic pathways have been proposed as an alternative
mechanism for COj fixation in Roseobacter clade [5,8,11], but have

). PLoS ONE | www.plosaneorg

not been verified experimentally. Given that organisms in the
Roseobacter clade are known to require organic carbon sources for
growth [12,13], understanding how Roseobacter clade bacteria
utilize organic carbon and assimilate COy will help us understand
the bio-energy metabolism, production of bicactive metaholites,
and roles of global carbon cycle in these wide-spread marine
bacteria.

Here, we report metabolic and biochemical studies of
Roseobacter denstrificans OCh114 [14], which can denitrify, as its
name indicates [13], and produce bacteriochlorophyll & (BChl &)
aerobically. The genomic sequence of R. demitrificans [8] suggested
that the tricarboxylic acid (TCA) cycle and anaplerotic pathways
are complete, and that most of the genes for carbohydrate
metabolism in the Embden-Meyerhof-Parnas (EMP, glycelysis),
Entner-Deudoroff’ (ED), and pentose phosphate (PP} pathways
are present and annotated. To understand the contributions of
these enzymes and reaction pathways in the metabolism of R.
denitrificans, we developed a minimal growth medium containing
only defined carbon source(s), optimized the growth conditions of
R denitrificans in different defined carbon sources, and used
isotopomer assisted metabolite analyses, biochemical approaches,
and gene expression profiles to investigate the carbon assimila-
tion, carbohydrate utilization, and amino acid biosynthesis
pathways in R. demtnficans.
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Results

Growth of R. denitrificans OCh114 in different growth
conditions

Similar growth curves and spectral features were obtained in the
R. dautnficans OChl 14 cultures grown aerobically in the light
(20 W/m®), dark, and day-night cycles (Figure Sla and S1b), and
skighty higher ODgg, were reached in the dark and day-light cycles
compared to in the continuous light growth conditions (Figure Slc).
It is consistent with the reports that light has a negative effect on
pigment formation in some AAPs [15]. No growth was observed
anaerobically regardless of the light intensity (data not shown).
Multiple organic carbon sources have been tested for the growth of
R denitrificans OCh1 14 [13]. Here, we repaort studies of three carbon
sources: pyruvate, D-glucose, and CO; (or HCO;™). Spectral
features of the photosynthesis system and light-harvesting complexes
for the cultures grown in the minimal medium containing pyruvate
or glucose are similar to the cultures grown in the rich medium
(Figure la and [b) as well as the results reported previously [13,16].
The image of R. denifrificans cells grown in the minimal medium
with pyruvate was examined by OLYMPUS FV1000/BX61 high-
resolution confocal microscope, and the morphology and average
cell size is consistent with previous reports [13). Uptake of pyruvate,
2.5%107225%107* mmole per hour (Figure 1d and S1d), is
approximately 2 to 3-fold faster than uptake of glucose by R
denitrificans (Figure le), consistent with the faster growth in pyruvate
than in D-glucose (Figure 1c). Higher Ol and better cell growth
can be obtained using 0.2% pyruvate in the minimal medium (data
not shown). No differences in the lsC-isnmpumer abundances of the
protein-derived amino acids for cultures grown in the minimal
medium containing pyruvate were observed under either dark or
illuminated conditions (Table S1a and S1b). Similar results were also
observed in the cultures grown in the minimal medium supplied with
glucose,

Vitamin B, is required for the growth of R. denitrificans

The previous studies of the growth of R. demtaficans OChl 14 or
ather AAPs have been performed in either a rich medium or a
medium containing either 0.02 g/liter [13] or 0.1 g/liter [17] of
yeast extract (undefined carbon sources). We confirmed the necessity
of yeast extract, as poor growth of the R. denttnficans cultures without
yeast extract was observed (data not shown). Although it has been
recognized that yeast extract contains rich vitamin mixtures, it also
includes amino acids and other undefined carbon sources. Ideally,
the "*C-isotopic labeling studies require a minimal medium
containing only defined carbon sourcefs), thus it is desirable to
optimize the growth conditions by eliminating the yeast extract. We
found that vitamin By, (cyanocobalamin) can serve as an alternative
to yeast extract for growing R. denitrificans in defined carbon sources,
as cultures with ODgge=3 can be reached in our minimal growth
medium with glucose as the sole carbon source (Figure le). Vitamin
Bys and different forms of cobalamin are required for methionine
and protein synthesis, deaxyribonucleotide triphosphate synthesis,
amino acid metabolisms, and CO, fixation (in methanogens,
although there is no such pathway identified in R. denitrificans), and
are included in the growth media of many photoautotrophic,
photoheterotrophic and chemoheterotrophic bacteria. Requirement
for vitamin By in the growth of K. deminficans may partially explain
why yeast extract was necessary to be included in the minimal
medium containing either pyruvate or glucose.

The carbohydrate utilization pathways in R. denitrificans

In the cultures grown in the minimal medium containing either
D-[l-lSC]glumsE or D-[G-BC] glucose, the isotopomer labeling
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data of serine (the precursor is 3-phosphoglycerate) and alanine
(the precursor is pyruvate) were different (Table Sle, S1f, S1i, and
83). Three metabolic pathways can be employed for sugar
utilization by R. demstrificans and need to be considered to account
for the isotopomer abundance in these protein-derived amino
acids: (1) the Embden-Meyerhof-Parnas (EMP) pathway (glycol-
ysis), by which one [l—lBC]glucose molecule is cleaved into two
glyceraldehyde-3-phosphate (GAP) molecules: one is [3-'°C]-
labeled and the other is unlabeled using either D-[1-"*C]glucose
or D-[6-"*C]glucose; (2) the Entner-Doudoroff (ED) pathway [18],
by which one molecule of glucose generates one molecule of GAP,
in which the third carbon is labeled using D-[6-'*C]glucose, and
one molecule of pyruvate, where the first carbon is labeled using
D-[1-°Clglucose (Figure 2a); (3) the pentose phosphate (PP}
pathway, the first carbon of glucose is removed as GOy, if the
oxidative PP pathway is active, to generate ribose-5-phosphate,
which can be converted 1o GAP through the non-oxidative PP
pathway (Figure S2). As shown in Figure 2a, regardless of the
pathways, GAP is converted inte 3-phosphoglycerate (3-PGA), the
precursor of glycine, serine, and cysteine, and then to pyruvate,
the precursor of alanine, valine, leucine, and isoleucine.

If R. demirificans predominantly uses the EMP pathway for
carbohydrate metabolism, one will expect similar lgC-iscr(o]:u:»nmr
abundance in serine and alanine (converted from pyruvate through
alanine aminotransterase). However, this is not consistent with the
higher M+0 value (more unlabeled carbon) in serine (0.74) than in
alanine (0.56) using D-[1-"*Clglucose in our studies (Table S1e and
83). Alernatively, genes encoding two key enzymes in the ED
pathway can be found in R. dmifrificans: eda (RID1_2878), encoding
2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (EC 4.1.2.14),
and edd (RD1_2879), encoding phosphogluconate dehydratase (EC
4.2.1.12). If R demitrificans uses the ED pathway as one of the
alternative carbohydratz utilization pathways, [1-'*Clglucose is
converted into [1- 3!:}]-Q-kE.to-."‘n-t:leo:\qf-5-]:vhos]:|}n:»g]\.l.:nnamz, which
is cleaved into [1-"°Clpyruvate and unlabeled GAP, leading to
unlabeled 3-PGA (Figure 2b). In this case, serine is expected to be
mostly unlabeled, while half of the alanine, derived from [1-"C]
pyruvate, is labeled, consistent with our experimental data

The QRT-PCR results indicate that both eda (RD}]_2878) and
edd (RID1_2879) genes are expressed and the transcript level of
these genes is higher in the minimal medium containing either
pyruvate or glucose than in the rich medium, similar to the gene
expression profiles of other genes responsible for carbon fixation
and carbon metabolism examined in this report (Figure 3).
Moreover, the activity of 2-keto-3-deoxy-phosphogluconate
(KDPG) aldolase and phosphogluconate dehydrase can be
detected in cell-free extracts. Alternatively, the gene encoding 6-
phosphofructokinase (PFK, EC 2.7.1.11), an essential enzyme for
the EMP pathway, is not annotated, and no PFK activity can be
detected in cell free extracts.

The proposed ED pathway was further tested using D-
[6-1*C)glucose, in which [6-*C]KDPG is cleaved into unlabeled
pyravate and [3-'*C]GAP in the ED pathway (Figure 2b). Our
data showed a smaller M+0 value in serine using D-[6-"*C] glucose
(0.30) than using D-[1-"*C]glucose (0.74), compared to slighty
higher M+0 value in alanine using D-[1-"*C]glucose (0.56) versus
D-[6-°C] glucose (0.48) (Table Sle and S1i). The M+0 value in
serine using D-[l-lsc]giucose or D-[ﬁ-lgC]glucose is not close to |
or 0, respectively, suggesting that in addition to the ED pathway,
the PP pathway is also active and generating GAP with different
labeling pattern using D-[6-'*C)glucose or D-[1-'*C] glucose
(Figure 2a). Based on the isotopomer abundance of serine using D-
[1-"°C)glucose and D-[6-"*C]glucose, we estimated 25~30% of
GAP is produced from the (non-oxidative) PP pathway (Table 53).
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Figure 1. Spectra, image and organic carbon uptake of R. denitrificans OCh114. The spectra of cultures grown in the rich medium vs. in the
minimal medium supplied with either 0.1% pyruvate or 0.1% glucose (a). No undefined carbon sources were included in the minimal medium
reported in this paper. The normalized spectra in the 650 nm-900 nm range (b}, the cell growth in the minimal medium with pyruvate, glucose, or
HCO;™ {c}, and the cell growth curve and uptake of pyruvate {d} or glucose (e} with or without the addition of 0.2% NaHCOj; in the minimal medium
containing pyruvate or glucose. More than ten biological replicates were performed in every growth conditions.
doi:10.1371/journal.pone.0007233.g001
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Figure 3. QRT-PCR studies. Gene name {encoding enzyme and gene
location number): eda (2-keto-3-deoxy-6-phosphogluconate aldolase,
RD1_2878), edd (6-phosphogluconate dehydratase, RD1_2879), pyc
{pyruvate carboxylase, RD1_3376), pckA {phosphoenclpyruvate carbox-
ykinase, RD1_1376}, ppc {phosphoencipyruvate carboxylase RD1_4248),
ppdk {pyruvate phosphate dikinase, RD1_1948), aatA (aspirate amino-
transferase, RD'1_3892), tme (malic enzyme, RD1_0421) and ilvA {threonine
deaminase, RD'1_0416). Relative gene expression value of each gene is
calculated with 2 7%, where ACt = Cliarget gene—Cliss mins gener and
the 165 fRNA gene was used as the internal reference. Three biological
replicates and eighteen technical replicates were preformed for every
ene.
doi:10.1371/journal.pene.0007233.g003

The ED pathway also leads to different predicted labeling in the
aromatic amino acids. Phosphoenolpyruvate (PEP), synthesized
from 3-PGA, and erythrose-4-phosphate (E4P}, the intermediate in
the non-oxidative PP pathway, are the precursors of phenylalanine,
tyrogine and tryptophan. Labeled E4P in the non-oxidative PP
pathway (Figure 32) leads to lower M+0 value in the aromatic
aming acids ((L50-+0.03) compared to serine ((.74) using D-
[1-C)elucose. The ED and PP pathways can explain much higher
M+0 value in phenylalanine (.48) and tyrosine (153} using D-
[1-"C)elucose than the value in these amino acids (0.04) using D-
[G—MC]glucose, and more labeled carbon can be incorporated into
PEP and B4P using D-[6-'°C]ghucose (Figure 2a and 4.

The Pentose Phosphate pathway in R. denitrificans

A gmaller M+0 value in histidine ((.28) than other amine acids
[0.42-0.89) was detected wsing D-[1-"°Clglucose (Takle Sle).
Histidine Iz synthesized from 5-phespho-ribosyl-«-pyrophosphate
(PRPP), the purine ring of ATP (the carhon from the formyl group
of M U—fonnyl—ten"ahyd_‘rofolate (THF)), and glutamine (the nitro-
gen source). The 6-phosphogluconate, an intermediate of the ED/
oxidative PP pathway, is the precursor of PRPP. In the oxidative
PP pathway (Figure 4), the first (labeled) carbon in D-[1-'*Clglu-
cose s released as GO, during the conversion of 6-phosphoglu-
conate inte D-ribulose-5-phosphate by 6-phosphogluconate dehy-
drogenase (PGD, EC 1.1.1.44), and it is unknown if the oxidative
PP pathway is complete becanse the pgd gene in R. demiirificans i
net annotated. Thus, the Grisotopormer abundance in histidine
using D-[1-'°C) glucose is possible from the following sources: [1)
from the Nm-ﬁ)myl moiety of THF if the oxidative PP pathway is
active, (2) from D-ribose-5-phosphate or D-ribulose-5-phosphate
derived from the non-oxidative PP pathway, where the labeled
carbon is maintained (Figure 4), or both. The M formyl moiety of
THEF is generated from THF and formate by wansformylase, and
wvarious pathways can lead to formate biosynthegis in R dentiriffeans.
Tt s Jess likely that the labeled histidine using D-[1-""C)glucose was
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produced exclusively from the Y daheled formate through the
oxidative PP pathway.

Alternatively, the non-oxidative PP pathways can also generate
D-ribose-5-phosphate through steps of isomerization, epimerization
and transketolation (Figure 83). If the metabolic flux goes through
the non-oxidative PP patitay, more than one “*C-labeled sources
are available using D-[6-1°C) glucose (ie. labeled GAP from the ED
pathway and labeled fructose-6-phosphate (FEF), while only F6P is
labeled using D-[1-"°Clelucose (GAP is not labeled via the ED
pathway wsing D-[1-'°Clghicose) (Figure 4). Since the EMP
pathway in R denitrificans is likely to be inactive, based on the
experimental data and genomic information presented above, the
labeled FGP is only led into the non-oxidative PP pathway. It is the
most straightforward explanation for the detected '°C-labeling
abundance in histidine [M+( value is 0.28) with D-[1-""(]glucose
(Tahle 8le) and for smaller M+( value in histidine using D-
[6-""Clglucose (.10 [Table S1i) than wsing D-[1-'°Clelucose
(@.28). Together, our studies imply that R. demiirificans uses the non-
oxidative PP pathway for histidine, ATP, coenzymes, and nucleic
acids biosynthesis, ag well as su