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Abstract 

Toward Controlling Cardiac Tissue Pacing Using Modified mRNA 

By 

Yicheng Zhao 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2020 

Research Advisor: Professor Nathaniel Huebsch 

 

Arrhythmia is a common heart disease that happens when the heart is beating too fast, too slow, 

or irregularly. To study the mechanisms and treatments of this disease, it is important to acutely 

control the beating rate of the model as it will help distinguish the contribution of different 

potassium currents and drug-induced action potential in cardiomyocytes. The current method of 

tissue pacing, electrical pacing, causes contamination and corrosive damage to tissues, thus the 

tissues fail to be used repeatedly or in future studies. In this study, red-shifted channelrhodopsin 

(ReaChR) is applied as a non-chemical means to control the beating rate. ReaChR is a light-gated 

ion channel that opens and allows potassium to enter cardiomyocytes when excited by red lights. 

To deliver ReaChR into micro tissues, modified mRNA is chosen because of its higher transfection 

rate comparing to the plasmid, and lower cell toxicity comparing to the virus. Reducible polycation 

(RPC) is synthesized and used as transfection reagent to acquire a better transfection rate and 

modifiable structure. The results show successful modified mRNA synthesis and enhanced 

transfection efficiency with modified mRNA comparing to plasmid in both cells and tissues. The 

improved transfection efficiency of modified mRNA into iPSC-derived cardiomyocytes and iPSC- 

derived micro heart muscle using RPC is achieved. The results presented in this thesis demonstrate 
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the potential of using modified mRNA to control the beating rate of the tissue and eventually 

control other physiological properties in cells. 

 



1 

Chapter 1: Introduction 

Arrhythmia is a common heart disease that happens when the heart is beating too fast, too slow, 

or irregularly (National Heart Lung and Blood Institute). Over 2.2 million Americans are suffering 

from arrhythmia, and it may lead to cardiac arrest, stroke, or even sudden death (American Heart 

Association, 2016, Sep 30b; Health Engine, 2004, Sep 15). Some previous studies have shown that 

arrhythmia is caused by gene mutations and triggered by the increased mechanical loading of 

cardiac muscle, which can happen during intense exercise (Herren, Gerber, & Duru, 2009; La 

Gerche, 2015). Current medications include calcium-channel blocker, beta blocker and 

anticoagulant (American Heart Association, 2016, Sep 30a). However, some of those drugs have 

unstable performance in different patients (Krikler, Harris, & Rowland, 1982). Therefore, further 

study on the mechanisms of arrhythmia and the effects of different medications on the phenotypes 

is needed.  

 

Acutely controlling the beating rate of cardiac tissue allows the characterization of the conduction 

velocity, which is a critical factor affecting arrhythmia. It is also a crucial aspect of distinguishing 

the contribution of different potassium currents and drug-induced action potential in 

cardiomyocytes (La Gerche et al., 2012). In general, to study the chronic effect of specific drugs 

on cardiomyocytes and cardiac tissue, and to avoid the interference factors from mechanical 

environment, adrenergic stimulation, and other physiological signaling, it is essential to have a 

non-chemical means of controlling the beat rate of cardiac tissue. 

 

Currently, the common method is electrical pacing. Although the electrical pacing can be used to 

induce the maturation of iPSC-derived cardiomyocytes (iPSC-CM) and to exacerbate the 
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phenotype of familial cardiomyopathy(Davis et al., 2016; Ronaldson-Bouchard et al., 2018), the 

corrosive damage and contamination to the tissues impede further incubation after pacing, thus 

further studies cannot be done on the same sample. Therefore, using an optogenetic approach can 

allow the cardiac tissue being paced by light and avoid the damages mentioned before. 

 

Channelrhodopsin is a light-gated ion channel on cell membranes. The natural form of it is 

controlled by blue light, and when the all-trans-retinal in the channelrhodopsin absorbs blue light, 

a conformational change will happen as all-trans-retinal becomes 13-cis-retinal. This 

conformational change will lead to a further change happen in the transmembrane protein, which 

will open up a pore on the membrane and allow an influx of ions. After milliseconds, the 13-cis-

retinal will shift back to all-trans-retinal, and the pore will be closed to stop the flow of ions(Nagel 

et al., 2003). Because the blue light may be toxic to human cells, a red-shift channelrhodopsin 

(ReaChR) has been used in recent studies(Lin, Knutsen, Muller, Kleinfeld, & Tsien, 2013). 

ReaChR can be excited by orange or red light, and has a higher membrane trafficking, higher 

photocurrents, and faster kinetics than channelrhodopsin-2. In addition, the red light will be 

absorbed less into blood comparing to the blue light(Lin et al., 2013). 

 

It is notably challenging to deliver the ReaChR directly into cardiac tissue because several barriers 

need to be overcome to reach the nucleus. From the outside, ReaChR needs to go through 

endothelial barrier, extracellular matrix, and cell membrane before reaching the nucleus [16]. The 

current method of delivering ReaChR into the human heart or iPSC-derived bioengineered cardiac 

tissue is by virus infection [14]. Although viral delivery has a higher transfection efficiency and a 

longer half-life comparing to the non-viral approaches, there is a risk of cytopathic effects, multiple 
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insertion sites, and mutagenesis [15]. Plasmid delivery has a simple production process, but 

because DNA needs to go through both cell and nucleus membrane to be expressed, the 

transfection rate is low and it is less effective in non-proliferating cells, meaning it may not work 

in tissues(Al-Dosari & Gao, 2009). To find the delivery method that is safe and efficient, modified 

mRNA is used as the gene delivery vehicle.  

 

Modified mRNA (mmRNA) is a chemically modified messenger RNA that allows the gene to be 

expressed by cells. Unmodified mRNA will be recognized by the innate immune system in the 

endosome, and the protein synthesis will be shut down and eventually cause cell death(Karikó, 

Buckstein, Ni, & Weissman, 2005). The modification is done by substituting uridine with 

pseudouridine and cytosine with 5-methyl-cytosine during in vitro transcription, and the 

modification can help avoid the attack from the immune system, and therefore allow the protein 

to be synthesized and expressed in the host cell(Karikó et al., 2005; Kariko, Muramatsu, Ludwig, 

& Weissman, 2011). 

 

The goal of this study is to develop a safe and efficient method to control the beating of the in vitro 

cardiac tissue that allows the tissue to be used repeatedly in multiple experiments, and eventually 

serve to help further understanding of the mechanisms of arrhythmia and finding better solutions 

using the iPSC-derived micro heart muscle (µHM) previously developed(Huebsch et al., 2016). 

To improve the transfection result, the reducible polycation (RPC)  is used as a transfection reagent 

of the nucleic acids(Read et al., 2005). The previous study has shown that by coating the nucleic 

acids with positive charges, the histidine-rich RPC helped improve the transfection efficiency in 

cells since it can be cleaved by the intracellular reducing environment, which allows the better 
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release of nucleic acids and lower toxicity(Read et al., 2005). In this study, the RPC is used as the 

transfection reagent to improve the transfection of ReaChR plasmids and mmRNAs into tissues. 

This study also shows the possibility to use mmRNA to control other properties of the cell with 

the gene delivery methods and mmRNA synthesized procedure developed here that help the 

investigation of other aspects of heart diseases. 
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Chapter 2: Materials and Methods 

In this chapter, the materials and methods used for tissue pacing and gene delivery are described. 

Three main methods (lentivirus, plasmids, modified mRNA) applied for gene delivery into micro 

tissues are elaborated. The preparation of plasmids, modified mRNA and the transfection reagent 

is also included. 

Micro Tissue Formation with PDMS Stencils 

The dogbone PDMS stencils were first absorbed and disinfected onto a 24-well plate or a 12-well 

plate with three dogbones per well prior to the tissue formation, and then treated with Pluronics 

F68 and Fibronectin for better cell adhesion(Huebsch et al., 2016). The iPSC was differentiated 

into cardiomyocytes by manipulating the Wnt signal following a previously modified 

protocol(Huebsch et al., 2016; Lian et al., 2013). After differentiation, the iPSC-CMs were 

singularized using 0.25% trypsin and then combined to a final density of 1 ൈ 10଼ cells/mL in 

EB20 media (Dulbecco’s Modified Eagle Medium with 20% fetal bovine serum) with 10µM 

Y27632 and 150µg/mL L-ascorbic acid. The iPSC-CMs were then seeded into a dogbone PDMS 

stencil with 2µL of the cell/media mixture given a final concentration of  2 ൈ 10ହ cells per 

dogbone. The plate was then being centrifuged to get the cells into the dogbone stencils, and then 

the wells were filled with EB20/Y27632/ascorbic acid media. On the next day, when the cells 

started beating, they were fed with RPMI/B27/ascorbic acid media, and the cells were fed every 

other day until the micro tissues were formed. 

 

C2C12 tissues were formed based on a similar protocol. The C2C12 fibroblast was singularized 

using 0.05% Trypsin, and then they were suspended into Dulbecco’s Modified Eagle Medium 

(DMEM) with 20% fetal bovine serum (FBS) to a density of 1 ൈ 10 cells/mL, and seeded to the 
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dogbone stencils with 5µL per dogbone, given a final density of  5 ൈ 10ସ cells per dogbone. The 

cells were fed with DMEM with 20% FBS. The cells were compacted inside of the dogbone 

stencils and the tissues were formed around day 4 after cell seeding. 

 
 

C2C12 Myotube Differentiation 

The C2C12 myotubes were differentiated from wild type C2C12 fibroblasts based on a previous 

protocol(Asano, Ishizuka, Morishima, & Yawo, 2015). On day 0, the C2C12 cells was seeded at a 

density of  5 ൈ 10ସ cells/well for 48-well plate in culture media (DMEM with 20% FBS). On day 

1, when the cells reached around 80% confluency, transfect the cells with desired plasmid. The 

transfection result was observed and imaged on the next day, and after confirming the success of 

transfection, change culture media into differentiation media (DMEM with 5% horse serum), and 

the media was changed every other day. Observe the morphology of the cells everyday until the 

C2C12 myotubes formed. 

 
Plasmid Cloning and Modified mRNA synthesis 

The ReaChR protein was obtained from pLenti-ReaChR-citrine (Addgene plasmid # 50956 ; 

http://n2t.net/addgene:50956 ; RRID:Addgene_50956)(Lin et al., 2013). In order to have the 

plasmids expressed in human cells, the Ef1α promoter was fused into the plasmid using the In-

Fusion Cloning kit (Takara #638920) to replace the hSyn promoter. The ReaChR-citrine portion 

was also fused into GenII plasmid (Cloned by Tim Rand in the lab of Shinya Yamanaka (Warren 

et al., 2010)) using In-Fusion Cloning, and the T7 promoter and PolyA tail in the plasmid allowed 

it to be a DNA template for in vitro transcription to synthesize modified mRNA (mmRNA). The 

Citrine is a signaling protein to allow the visualization of the transfection. The LifeAct GFP was 

also fused into the GenII plasmid to serve as a DNA template for GFP mmRNA.  
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The mmRNA synthesis process was modified based on a previous protocol using the MEGAscript 

T7 transcription kit (Thermo Fisher, cat. AM1334), murine RNAse inhibitor (NEB, cat. M0314S), 

5-Methylcytidine-5′-triphosphate (Me-CTP; Trilink, cat. no. N1014), Pseudouridine-5′-

triphosphate (Pseudo-UTP; Trilink, cat. no. N1019), vaccinia capping system (NEB cat. M2080S), 

and mRNA Cap 2´-O-Methyltransferase (NEB cat. M0366S)(Mandal & Rossi, 2013). The 

plasmids were first digested into linear DNA, and the reaction was set up for in vitro transcription 

as follow: 

Amount Component 

To 20 ulNF H2O 

2 ul GTP Solution 

2 ul ATP Solution 

1.5 ul Me-CTP 

1.5 ul Pseudo-UTP 

2 ul 10x Reaction Buffer

0.8 ug Linearized DNA 

2 ul Enzyme 

After incubation for 4 hours at 37 °C, 1µL of TURBO DNase was added and further incubated for 

15 minutes at 37 °C to digest the residual DNA template. After the incubation, the phenol-

chloroform extraction was done to clean up the synthesized RNA. Before capping the RNA, 10µg 

uncapped RNA was combined with nucleus free water to a final volume of 13.5 µL, and they were 
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heated at 65 °C for 5 minutes and then paced on ice for another 5 minutes to denature the uncapped 

RNA. The reaction was then set up for enzymatic capping as follow: 

AmountComponent 

13.5 ul Denatured uncapped RNA 

2 ul 10x Capping Buffer 

1 ul GTP (10 mM) 

1 ul SAM (4 mM, dilute 32 mM stock to 4 mM) 

0.5 ul Murine RNase Inhibitor 

1 ul Vaccinia Capping Enzyme (10 U/ul) 

1 ul mRNA Cap 2'-O-Methyltransferase (50 U/ul)

The reaction was done by 60 minutes incubation at 37 °C. Another phenol-chloroform extraction 

was done to clean up the capped RNA and to obtain our final product of mmRNA. The 

concentration of the mmRNA was measured by NanoDrop spectrophotometer. As a positive 

control, CleanCap EGFP mRNA (TriLink, cat. L-7201) was used for transfection. 

 
Reducible Polycations Preparation 

The Reducible Polycation (RPC) was prepared based on a previous study by Read et al(Read et 

al., 2005). The polycondensation reaction was done with 2 mg CH6K3H6C monomer into 150 µL 

phosphate-buffered saline (PBS) containing 30 vol% DMSO. The reaction was performed at room 

temperature for 48 hours with the solution was continuously being gently shaken on a vortex mixer. 

After the reaction was done, the RPCs were purified from DMSO and cyclic by-products using 

centrifugal ultra-filters with molecular weight cut-off 10,000. The concentration of RPCs was 

measured by BCA assay using the BCA Protein Assay kit (Thermo Fisher, cat. 23227). Finally, 
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the RPCs were filter sterilized (0.2µm) and stored at 4 °C. The gel-shift assay was done to exam 

the functionality of RPC. The RPCs were combined with Plasmid DNA and incubated for 30 

minutes, and then the polyplexes were run on the gel at 135 volts for 15 minutes. 

 
Cell and Tissue Transfection 

For cell transfection, the C2C12 cells were seeded to a 48-well plate at 2.5 ൈ 10ସ cells per well a 

day before the transfection. Right before transfection, the plasmid or mmRNA was diluted into 

Opti-MEM (Thermo Fisher, cat. 31985088) to a final concentration of 50 µg/mL, and then the 

RPC was added with desired weight ratios of RPC/nucleic acid and the mixture was mixed well 

by gently pipetting the solution up and down. The polyplexes were formed by incubation at room 

temperature of the solution for 15-30 minutes. After incubation, the polyplexes were added directly 

into the culture media drop by drop, and the plate was being rocked gently to enable even 

distribution of nucleic acids. The amount of nucleic acids added were 0.5 µg plasmids per well 

and 0.25 µg mmRNA per well, and each well was seeded with 2.5 ൈ 10ସ cells. As a positive 

control, the commercial reagent, Lipofectamine 3000 (Thermo Fisher, cat. L3000001), was used 

for plasmid transfection, and TransIt-mRNA (Mirus, cat. MIR2225) was used for mmRNA 

transfection. For tissue transfection, both C2C12 tissues and iPSC-CM micro tissues have three 

tissues per well, and the ratio of the amount of nucleic acid delivered over the numbers of cells 

seeded was tested with the same ratio of cell transfection and double the ratio. Around 18 hours 

after mmRNA transfection and around 26 hours after plasmid transfection, the cells and tissues 

were imaged to get the transfection result using Nikon microscope. The transfection efficiency 

was quantified using Matlab by finding the number of cells expressing the signaling protein and 

the overall number of cells. 
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Chapter 3: Results of Modified mRNA Synthesis and Gene Delivery 

This chapter provides the results of modified mRNA synthesis and gene delivery into 

tissues. The transfection efficiency in cells and tissues using plasmids and modified mRNA are 

analyzed and compared. The gene delivery results of C2C12 tissues and iPSC-derived micro heart 

muscles with the use of reducible polycation are also compared. 

Expression of Synthesized ReaChR mmRNA in C2C12 Cells 

The synthesized ReaChR mmRNA and LifeAct GFP mmRNA were transfected into C2C12 cells, 

and the transfection result is shown (Figure 1). The signal proteins are showing green under GFP 

for EGFP mRNA, LifeAct GFP mmRNA, and ReaChR mmRNA, and they are showing the shape 

of the C2C12 cells (Figure 1A-C). Comparing to the images showing the nucleus of the cells 

(Figure 1D-F), most of the cells are expressing the delivered proteins, indicating that the 

synthesized mmRNA has a high transfection efficiency, and the toxicity to cells is limited. 

 

Figure 1. The result of mmRNA shows the successful synthesis of mmRNA, the high 
transfection efficiency of mmRNA, and the limited toxicity to cells. (A-C) Images showing the 
transfection result of EGFP mRNA, GFP mmRNA, and ReaChR mmRNA respectively, and 
green is the expressing protein, proves the cell is transfected. (D-F) Red is the nucleus of C2C12 
cells, showing the total amounts of cells of each condition in the same order. 
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Application of RPC on Plasmid Delivery and mmRNA Delivery 

RPC was proved to be functioning by gel-shift assay (Figure 2). The assay was done with different 

weight ratios of RPC over Plasmid DNA, and as the ratio increases, less free Plasmid DNAs are 

released in the gel, proving that the RPC has capsulated the plasmids. The transfection of Plasmid 

DNA into C2C12 cells using RPC showed a higher transfection rate comparing to the commercial 

reagent (Figure 3). The imaging results showed the C2C12 cells are transfected successfully with 

GFP plasmids using both Lipofectamine 300 and RPC (Figure 3B-I), where RPC greatly improves 

the transfection efficiency. The images are showing the transfection results of Lipofectamine 3000 

(Figure 3B, F), RPC/DNA w/w 100 (Figure 3C, G), RPC/DNA w/w 200 (Figure 3D, H), and 

RPC/DNA w/w 300 (Figure 3E, I). The best efficiency happened at the RPC/DNA weight ratio 

of 300, and the transfection rate is around 20% while the transfection rate with Lipofectamine 3000 

is around 8% (Figure 3A). Therefore, we can conclude that RPC doubles the transfection 

efficiency of Plasmid DNA delivery into cells comparing to using Lipofectamine 3000. 

 

However, RPC failed to improve the transfection of mmRNA delivery into C2C12 cells comparing 

to the commercial reagent, TransIt (Figure 4). The transfection rate was quantified using Matlab 

and calculated by GFP expressing cells (Figure 4B-E) over overall cell numbers (Figure 4F-I). 

Comparing the transfection rate of EGFP mRNA, it is clear that RPC has a lower transfection 

efficiency given that the transfection rate of TranIt is around 60%, and the RPC is around 30% 

(Figure 4A).  The images are showing the transfection results of TransIt (Figure 4B, F), 

RPC/RNA w/w 40 (Figure 4C, G), RPC/RNA w/w 80 (Figure 4D, H), and RPC/RNA w/w 160 

(Figure 4E, I). Comparing the results of Plasmid DNA delivery and mmRNA delivery, mmRNA 

has a significantly higher transfection rate than plasmids. As for iPSC-CMs, the RPC with 
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RPC/RNA w/w ratio of 40 seems to improve the transfection efficiency of EGFP mRNA delivery 

comparing to TransIt, but the difference is not significant (Figure 5). 

 
Figure 2. The gel-shift assay showed that the Plasmid DNA is encapsulated inside the RPC as 
less free plasmids are released as the RPC/DNA weight ratio increased. 

 

 
Figure 3. The result of Plasmid DNAs transfection shows RPC as transfection reagent improves 
the transfection efficiency. (A) Comparing the percentage of transfection, RPC has a better 
transfection rate than Lipofectamine 3000, and the best result is at RPC/DNA w/w ration of 300. 
(B-E) The green indicating transfected cells expressing GFP, and the imaging results of 
Lipofectamine 3000 and RPC/DNA w/w ratio of 100, 200, 300 respectively show the C2C12 
cells expressing GFP, and (F-I) red shows the nucleus of the cells. (** indicated P < 0.005) 
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Figure 4. The result of EGFP mRNA transfection into C2C12 cells shows RPC as transfection 
reagent gives lower transfection efficiency comparing to TransIt (A) Comparing the percentage 
of transfection, RPC has a lower transfection rate than TransIt, which is 60% and the best result 
of RPC is at RPC/RNA w/w ration of 40, which is around 30% (B-E) The imaging results of 
TransIt and RPC/RNA w/w ratio of 40, 80, 160 respectively show the C2C12 cells expressing 
GFP, which is the green, and (F-I) red is the nucleus of the cells, showing the total number of the 
cells. (*** means P < 0.001) 

 
Figure 5. The result of EGFP mRNA transfection into iPSC-CM shows RPC as transfection 
reagent gives slightly higher transfection efficiency compared to TransIt. (A) 0.5 µg mRNA was 
transfected into one well of cardiomyocytes using TransIt reagent. Green is indicating the cells 
that are transduced. (B) The same amount of mRNA was delivered into one well of 
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cardiomyocytes using RPC with the RPC/RNA w/w ratio of 40. The difference in transfection 
rate was not significant. 

 
mmRNA Delivery into C2C12 Tissues and iPSC-CM µHM 

After confirming mmRNA and Plasmid DNA can be transfected in cells, they are used to 

transfected into tissues directly. In order to find an efficient delivery method, the transfections are 

done in C2C12 tissues first. With three tissues per well for a 12-well plate, and each dogbone 

seeded with 5 ൈ 10ସ cells per dogbone, given 1.5 ൈ 10ହ cells per well. The amount of LifeAct 

same DNA/cells ratio in the protocol of Lipofectamine 3000. Similarly, the amount of GFP mRNA 

was decided to be 1 µg per well. The transfections were done on day 4 or day 5 after cell seeding 

when the tissues were fully formed with both conditions of RPC and commercial reagents. The 

RPC/DNA w/w ratio was 300 since it has the best transfection rate in cell transfection, and 

similarly, RPC/RNA w/w ratio was 40. From the imaging results, RPC has a higher transfection 

efficiency in tissues for LifeAct GFP plasmid (Figure 6A-B), but has a lower transfection 

efficiency for GFP mRNA (Figure 6C-D). Also, the GFP mRNA has a significantly higher 

transfection rate than GFP plasmid, especially the more condensed parts of the tissue indicating 

by higher intensity of the red fluorescence from nuclei (Figure 6). It is shown in the images that 

at the most condensed part of tissues, the LifeAct GFP plasmid hardly has any expression, but on 

the other hand, the EGFP mRNA has a similar level of expression throughout the tissue. This result 

indicate that it is hard for Plasmid DNAs to be transfected into intact tissues. Another transfection 

doubling the amount of the nucleic acid was done with both Plasmid DNA and mmRNA, but 

shows no noticeable increase in transfection rate (data not shown). 

 

The iPSC-CM µHM was transfected with EGFP mRNA and LifeAct GFP Plasmid DNA, but the 

expression GFP plasmid can hardly be seen when imaging inside the µHM (data not shown). The 
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EGFP mRNA transfection was done with four different conditions, including using TransIt as 

transfection reagent with normal ratio of mRNA/cells (Figure 7A), TransIt with double ratio of 

mRNA/cells (Figure 7B), RPC with normal ratio of mRNA/cells (Figure 7C), and finally RPC 

with double ratio of mRNA/cells (Figure 7D). The results are showing that with doubling the 

amount of mRNA transfected, the transfection rate increased, and the RPC has a higher 

transfection rate comparing to TransIt. Overall, the transfection using RPC with double ratio of 

RPC/RNA has the best outcome regarding of transfection efficiency. This result is inconsistent 

with the results from C2C12 tissue transfection, leading to the possibility that cardiomyocytes have 

different barriers for Plasmid DNA and mmRNA delivery. 

 

Figure 6. The result of LifeAct GFP plasmid DNA and EGFP mRNA transfection into C2C12 
tissues shows mmRNA has a much higher transfection efficiency in tissues than DNA, especially 
for the most condensed part. The green indicating the expressing GFP protein, and the red 
indicating the cell nucleus. The higher intensity of the red means more condensed of the part of 
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the tissue. (A) The quantification result shows that mmRNA has a significantly higher 
transfection rate using TransIt comparing to RPC and plasmid transfection, but doubling the 
amount of mmRNA has limited effect. (B, F) The GFP plasmids can hardly be expressed in 
C2C12 tissues with Lipofectamine 3000. (C, G) The transfection efficiency was slightly 
improved by RPC as reagent with RPC/DNA w/w 300, but the plasmid DNA was still hard to get 
into the condensed part. (D, H) EGFP mRNA transfection using TransIt has a significantly 
higher transfection rate comparing to plasmid DNA, and even the condensed parts have a high 
level of cells being transfected. (E, I) mmRNA transfection using RPC with RPC/RNA w/w 40 
has a lower transfection rate than using TransIt, but is still much higher than plasmid DNA. (*** 
means P < 0.001) 

 
Figure 7. The result of EGFP mRNA transfection into iPSC-CM µHM shows RPC as 
transfection reagent and with double amount of mRNA delivered gives the best transfection 
efficiency. (A) Normal ratio of mRNA/cells, 1 µg per well for 24-well plate and three tissues per 
well, were transfected using TransIt reagent. Scattered green dots indicating the cells that are 
transduced, and the blurry green background is the GCamp indicating calcium activities. (B) 
Double ratio of mRNA/cells, 2 µg per well, were transfected using TransIt reagent. (C) Normal 
Ratio of mRNA/cells were transfected using RPC with RPC/RNA w/w 40. (D) Double ratio of 
mRNA/cells were transfected using RPC. 
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Figure 8. The red line is the shining of LED light, and the blue line is the beating of iPSC-CM. 
The first blue peak is the spontaneous beating of the cardiomyocytes with the first larger peak 
being the contraction, and the second lower peak being relaxation. The peaks and frequency of 
LED light and cell beating matches, indicating that the cardiomyocytes have a spontaneous 
beating, but it follows the frequency of the LED light when the light started to shine. 

 
 

ReaChR Plasmid Transduced C2C12 Myotubes Pacing 

To prove that the ReaChR can be used in cells for optogenetic pacing, the C2C12 fibroblasts were 

differentiated into myotubes and reverse transfected with EF1α ReaChR Plasmid DNA using 

Lipofectamine 3000. The myotubes started to form starting from day 5 after differentiation, and 

the expressing GFP is showing the shape of the myotubes. On day 9, the transduced myotubes 

were imaged and paced under TRITC (532nm). As the light shining, the transduced cell twitched 

when the light is on (Supplementary video 1). The twitching indicated that the ReaChR is being 

expressed in the cell, and can be excited by the light. The myotube diameter was measure using 

ImageJ, and the shortest length was when the cell twitched and longest length was when the cell 

in relaxation. The contracted length was 12.5 pixels, proving that the cells are twitching and 

changing the diameters under the light. 
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The ReaChR was also delivered into iPSC-CM using virus transfection. On the next day of the 

transfection, the transduced cells were paced by red LED light, and the cells were beating at the 

same frequency of the light shining (Supplementary video 2). The frequency of the cardiomyocytes 

under the shining LED light was recorded, and the results showed that the frequency of 

cardiomyocytes changed from spontaneous beating to match the frequency of LED light (Figure 

8) Overall, the pacing results from transduced C2C12 myotubes and virus infected iPSC-CM 

indicate that ReaChR can be excited by light and leads to the beating of the cells. 
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Chapter 4: Discussion and Conclusion 

In this study, we compared the transfection efficiency under different condition using different 

transfection reagents. Overall, the mmRNA has a significant higher transfection efficiency 

comparing to Plasmid DNAs for both C2C12 cells and tissues. Considering unlike plasmid DNA, 

mRNA does not require entering cell nucleus and is effective in non-dividing cells, this result is 

reasonable(Leonhardt et al., 2014). Reducible polycations (RPCs) is a lipopolymer that combine 

with nucleic acids to give them positive charges, therefore allow them to enter the cell membrane 

and to be delivered into the cells. For C2C12 fibroblasts, the RPC improved the cell transfection 

efficiency for Plasmid DNAs comparing to the commercial transfection reagent, and the 

transfection rate was doubled at the highest when the RPC/DNA w/w ratio was 300. The 

improvement in transfection efficiency is consistent with previous study(Read et al., 2005). On the 

other hand, RPC did not work well for mmRNA transfection comparing to the commercial reagent, 

TransIt, as the transfection rate decreased from 60% to 30% with the RPC/RNA w/w ratio of 40. 

Similar results were showed in C2C12 tissues. The RPC helped to improve the transfection 

efficiency for Plasmid DNA, but for mmRNA transfection, TransIt has a higher transfection rate.  

In addition, the transfection rate was not improved by doubling the ratio of nucleic acids over cells. 

The reason of RPC did not work for mmRNA as well as with plasmid DNA may be the difference 

in the mechanisms of mRNA transfection and DNA transfection, and may also be the different 

sizes of the nuclei acids. In order to find out the exact reason and to make modification on the 

transfection process for mmRNA, further researches may be needed. 

 

The transfection of iPSC-CM and iPSC-CM µHM showed slightly different results from C2C12 

cells and tissues. Consistently, the plasmid DNA had very limited delivery into both the 
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cardiomyocytes and the µHM, and mmRNA has a significantly higher transfection efficiency. 

However, using RPC as transfection did improve the transfection efficiency of mmRNA into µHM, 

as well as doubling the amount of mmRNA being delivered. The best transfection result of 

mmRNA into µHM was using RPC as transfection reagent with RPC/RNA w/w ratio of 40, and 

double the ratio of mmRNA/cells. Transfection into iPSC-CM has proven to be harder than 

undifferentiated cells as more integral membrane proteins are on the apical membrane, delimiting 

the interaction between membrane and transfection reagent, therefore decreasing the transfection 

efficiency(Rybakovsky et al., 2019). With this, it is reasonable that the results are not identical 

between iPSC-CM and C2C12s. 

 

With the virus transfection into iPSC-CM and the C2C12 myotubes transfection, the results 

showed that ReaChR could be expressed and excited by light, leading to optogenetic pacing using 

LED light. However, the virus infected cardiomyocytes did not look as healthy as non-transduced 

cells, indicating that virus transfection gives a relatively high toxicity to cells. Therefore, it is 

important to find a safer, at the same time efficient method for transfection. Comparing to the virus, 

mmRNA has lower toxicity to cells, and from the results above, it is relatively efficient compared 

to plasmid DNA. The ReaChR mmRNA was synthesized by a two-step process: in vitro 

transcription followed by the capping of mRNA. The cell transfection results showed that the 

ReaChR mmRNA can be transfected into cells and expressing the protein. The ReaChR mmRNA 

was also transduced into iPSC-CM and expressing the signal fluorescence protein, but in order to 

pace the transduced cardiomyocytes, further studies are needed. 
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Overall, the study supports that ReaChR can be used for optogenetic pacing of cardiac tissues, and 

demonstrates a transfection process with high transfection efficiency using mmRNA and RPC as 

transfection reagent. It also shows a method of tissue transfection with mmRNA. With the support 

from this study, it is possible to control the beating and even other properties of the cells using 

mmRNA. 
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Chapter 5: Limitations and Future Work 

From this study, we have demonstrated the possibility using ReaChR mmRNA to control the cell 

beating. However, there are still some limitation we need to overcome to reach the goal. Although 

the experiments results showed the success transfection of mmRNA into cells and tissues, those 

ReaChR mmRNA transduced cells have not yet been paced with light successfully. One possibility 

we are considering is that although mRNA transfection gives a high transfection rate, the 

expression of the protein may not be strong enough because mRNA degrades fast in the cells 

comparing to plasmid DNA and virus, therefore the amounts of protein being produced may not 

be enough to drive the beating of the cardiomyocytes. Another limitation is that the signal protein 

of the ReaChR mmRNA is citrine, which is a yellow fluorescence protein, and because of the 

GCamp in our iPSC-CM, the citrine is hard to be imaged, thus provides obstacle in transfection 

efficiency quantification. Therefore, another fluorescence protein may be used to replace Citrine 

in the future as necessary. There is also a concern regarding to the light source for pacing. The 

current LED light is not concentrated enough to apply only on one well at a time, and the spread 

of the light may decrease the intensity of the light that are delivered into the cells or tissues. To 

resolve this problem, a modification on the light source may be needed. 
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Appendix A: Plasmid Map of pLenti ReaChR Citrine 
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Appendix B: Plasmid Map of Ef1α ReaChR 
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Appendix C: Plasmid Map of GenII ReaChR 
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Appendix D: Plasmid Map of GenII LifeAct GFP 
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