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ABSTRACT OF THE THESIS

Embedding Preference Elicitation Within the Search for DCOP Solutions
by
Yuanming Xiao
Master of Science in Computer Science
Washington University in St. Louis, May 2020

Research Advisor: Professor William Yeoh

The Distributed Constraint Optimization Problem (DCOP) formulation is a powerful tool to model
cooperative multi-agent problems, especially when they are sparsely constrained with one another.
A key assumption in this model is that all constraints are fully specified or known a priori, which
may not hold in applications where constraints encode preferences of human users. In this thesis,
we extend the model to Incomplete DCOPs (I-DCOPs), where some constraints can be partially
specified. User preferences for these partially-specified constraints can be elicited during the exe-
cution of I-DCOP algorithms, but they incur some elicitation costs. Additionally, we propose two
parameterized heuristics that can be used in conjunction with Synchronous Branch-and-Bound to
solve [-DCOPs. These heuristics allow users to trade off solution quality for faster runtimes and
a smaller number of elicitations. They also provide theoretical quality guarantees for problems
where elicitations are free. Our model and heuristics thus extend the state of the art in distributed
constraint reasoning to better model and solve distributed agent-based applications with user pref-

€rences.

vi



Chapter 1

Introduction

The Distributed Constraint Optimization Problem (DCOP) [43, 48] formulation is a powerful tool
to model cooperative multi-agent problems. DCOPs are well-suited to model many problems that
are distributed by nature and where agents need to coordinate their value assignments to minimize
the aggregate constraint costs. This model is widely employed to model distributed problems such
as meeting scheduling problems [37], sensor and wireless networks [16, 74], multi-robot teams

coordination [76], smart grids [41], and smart homes [56, 18].

The field of DCOP has matured significantly over the past decade since its inception [43]. DCOP
researchers have proposed a wide variety of solution approaches, from complete approaches that
use distributed search-based techniques [43, 71] to distributed inference-based techniques [48].
There is also a significant body of work on incomplete methods that can be similarly catego-
rized into local search based methods [16], GDL-based techniques [68], and sampling-based meth-
ods [47]. Researchers have also proposed the use of other off-the-shelf solvers such as logic pro-

gramming solvers [32, 31] and mixed-integer programming solvers [26].

One of the core limitations of all these approaches is that they assume that the constraint costs in a
DCOP are specified or known a priori. In some application, such as meeting scheduling problems,
constraints encode the preferences of human users. As such, some of the constraint costs may be

unspecified and must be elicited from human users.

To address this limitation, researchers have proposed the preference elicitation problem for
DCOPs [61]. In this preference elicitation problem, some constraint costs are initially unknown,
and they can be accurately elicited from human users. The goal is to identify which subset of

constraints to elicit in order to minimize a specific form of expected error in solution quality. This
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approach suffers from two limitations: First, it assumes that the cost of eliciting constraints is uni-
form across all constraints. This is unrealistic as providing the preferences for some constraints
may require more cognitive effort than the preferences for other constraints. Second, it decouples
the elicitation process from the DCOP solving process since the elicitation process must be com-
pleted before one solves the DCOP with elicited constraints. As both the elicitation and solving
process are actually coupled, this two-phase decoupled approach prohibits the elicitation process

from relying on the solving process.

Therefore, this thesis proposes the Incomplete DCOP (I-DCOP) model, which integrates both the
elicitation and solving problem into a single integrated optimization problem.! In an I-DCOP,
some constraint costs are unknown and can be elicited. Elicitation of unknown costs will incur
elicitation costs, and the goal is to find a solution that minimizes the sum of constraint and elici-
tation costs incurred. To solve this problem, this thesis introduces a number of heuristics that can
be used in conjunction with commonly-used synchronous DCOP search algorithms such as Syn-
chronous Branch-and-Bounds (SyncBB) [27]. These heuristics are also parameterized in such a
way that they allow users to trade off solution quality for faster runtimes and a smaller number of
elicitations. They also provide quality guarantees when solving problems without elicitation costs

when the underlying DCOP search algorithm is correct and complete.

1.1 Motivation Domain: Distributed Meeting Scheduling

Problem

In a distributed meeting scheduling problem, an organization wishes to schedule a set of meetings
in a distributed manner, where meeting participants have constraints for the different time slots
that they are available as well as preferences over those time slots. This problem has been one
of the first and more popular motivating applications for DCOPs since its inception [37, 48, 71].
While there are a number of possible formulations, we use the Private Events as Variables (PEAV)
formulation proposed by Maheswaran et al. [37] in this thesis. In the PEAV formulation, the agents
are meeting participants, their variables correspond to the different meetings that they must attend,

and their values correspond to the different time slots of the meetings.> Equality constraints are

I An extended abstract of this thesis was published at AAMAS 2020 [70].
2The description in this section assumes that each agent can control multiple variables.
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imposed on variables of all agents involved in the same meeting — this enforces that all participants
of a meeting agree on the time of that meeting; inequality constraints are imposed on all variables
of a single agent — this enforces that each participant cannot attend two meetings at the same time.
Finally, unary constraints are imposed on each of the agent’s variables where the costs correspond

to the preferences of the participant on the different time slots.

To solve this problem, existing work has assumed that all the costs of such constraints are all
known [37, 48, 71]. However, since these costs correspond to preferences of human users, it is
unrealistic to assume that all the preferences are known a priori. These unknown preferences must
thus be elicited if necessary. Further, the elicitation of such preferences will incur elicitation costs
that correspond to the degree at which a user is bothered by the elicitation process. As the existing
canonical DCOP model is unable to capture these two features, this thesis describes in the next
section a DCOP extension that models unknown constraint costs that must be elicited as well as

the cost of performing such elicitations.



Chapter 2

Related Work

As this work lies in the intersection of constraint-based models, preference elicitation, and heuristic
search, this thesis will first focus on related work in this intersection before covering the three
broader areas. Aside from the work proposed by Tabakhi et al. [61] discussed in Chapter 1, the
body of work that is most related to ours is the work on Incomplete Weighted CSPs (IWCSPs) [22,
62]. IWCSPs can be seen as centralized versions of [-DCOPs. Researchers have proposed a family
of algorithms based on depth-first branch-and-bound to solve IWCSPs including heuristics that
can be parameterized like ours. Aside from IWCSPs, similar centralized constraint-based models

include Incomplete Fuzzy CSPs and Incomplete Soft Constraint Satisfaction Problems.

In the context of the broader constraint-based models where constraints may not be fully specified,
there are a number of such models, including Uncertain CSPs [75], where the outcomes of con-
straints are parameterized; Open CSPs [15], where the domains of variables and constraints are
incrementally discovered; Dynamic CSPs [13], where the CSP can change over time; as well as
distributed variants of these models [45, 34, 49].

In the context of the broader preference elicitation area, there is a very large body of work [?],
and this thesis focuses on techniques that are most closely related to our approach. They include
techniques that ask users a number of preset questions [64, 61] as well as send alerts and notifi-
cation messages to interact with users [12], techniques that ask users to rank alternative options
or user-provided option improvements to learn a (possibly approximately) user preference func-
tion [11, 8, 67], and techniques that associate costs to eliciting preferences and takes these costs
into account when identifying which preference to elicit as well as when to stop eliciting pref-

erences [65, 33]. The key difference between all these approaches and ours is that they identify



preferences to elicit a priori before the search while this thesis embeds the preference elicitation in

the underlying DCOP search algorithm.

Finally, in the context of the broader heuristic search area, starting with Weighted A* [51], re-
searchers have long used weighted heuristics to speed up the search process in general search
problems. Researchers have also investigated the use of dynamically-changing weights [60, 52];
using weighted heuristic with other heuristic search algorithms like DFBnB [20], RBFS [28], and
AND/OR search [40, 38]; as well as extending them to provide anytime characteristics [35, 24].



Chapter 3

Background

We now describe Distributed Constraint Optimization Problems (DCOPs) [43, 48], which we will
later extend to Incomplete DCOPs, as well as the Synchronous Branch-and-Bound (SyncBB) al-
gorithm [27], which we will use as the underlying DCOP search algorithm that uses our proposed

heuristics.

3.1 Distributed Constraint Optimization Problems

A Distributed Constraint Optimization Problem (DCOP) is a tuple (A, X, D, F, a):

o A={a;}}_, is aset of agents;

o X = {x;}7, is a set of decision variables;

o D ={D,}.cr is a set of finite domains and each variable x € X" takes values from the set D, ;

o F = {f;}l", is a set of constraints, each defined over a set of decision variables: f; :
[L,exs: D2 — RU {oo}, where infeasible configurations have oo costs, xfi C X is the scope of
fi; and

o «: X — Aisamapping function that associates each decision variable to one agent.

A solution o is a value assignment for a set x, C A of variables that is consistent with their
respective domains. The cost F(X,) = > ;o7 rcy, f(Xo) is the sum of the costs across all the
applicable constraints in x,. A solution o is a complete solution if x, =X and is a partial solution

otherwise. The goal is to find an optimal complete solution x* = argmin, F(x).



A constraint graph visualizes a DCOP, where nodes in the graph correspond to variables in the
DCOP and edges connect pairs of variables appearing in the same constraint. A pseudo-tree ar-
rangement has the same nodes as the constraint graph and includes all the edges of the constraint
graph. The edges in the pseudo-tree are divided into tree edges, which connect parent-child nodes
and all together form a rooted tree, and backedges, which connect a node with its pseudo-parents
and pseudo-children. Finally, two variables that are constrained together in the constraint graph
must appear in the same branch of the pseudo-tree. When the pseudo-tree has only a single branch,
it is called a pseudo-chain. One can also view a pseudo-chain as a complete ordering of all the

variables in a DCOP, which is used by SyncBB and in our descriptions later on.

Finally, unless otherwise specified, we assume that each agent controls exactly one decision vari-

able and thus use the terms “agent” and “variable” interchangeably.

3.2 Synchronous Branch-and-Bound

Synchronous Branch-and-Bound (SyncBB) [27] is a complete, synchronous, search-based algo-
rithm that can be considered as a distributed version of a depth-first branch-and-bound algorithm.
It uses a complete ordering of the agents to extend a Current Partial Assignment (CPA) via a syn-
chronous communication process. The CPA holds the assignments of all the variables controlled
by all the visited agents, and, in addition, functions as a mechanism to propagate bound informa-
tion. The algorithm prunes those parts of the search space whose solution quality is sub-optimal by
exploiting the bounds that are updated at each step of the algorithm. In other words, an agent back-
tracks when the cost of its CPA is no smaller than the cost of the best complete solution found so
far. The algorithm terminates when the root backtracks (i.e., the algorithm has explored or pruned

the entire search space).



Chapter 4

Solving Incomplete Distributed Constraint

Optimization Problems

We now describe how we extend DCOPs to Incomplete DCOPs, how to solve them using SyncBB,

and several novel heuristics that can be used to speed up the search.

4.1 Incomplete DCOPs

An Incomplete DCOP (I-DCOP) extends a DCOP by allowing some constraints to be partially
specified. It is defined by a tuple (A, X', D, F, F,E, o), where A, X, D, F, and « are exactly the

same as in a DCOP. There are two key differences:

e The set of constraints F are not known to an I-DCOP algorithm. Instead, only the set of partially-
specified constraints F = { ﬁ}?;l are known. Each partially-specified constraint is a function
fi: [Lexs: Do — RU {00, 7}, where 7 is a special element denoting that the cost for a given
combination of value assignment is not specified. The costs R U {oc} that are specified are
exactly the costs of the corresponding constraints f; € F.

o & = {e;}2, is the set of elicitation costs, where each elicitation cost ¢; : [[,cxr; Do — R

specifies the cost of eliciting the constraint cost of a particular ? in fi.

An explored solution space x is the union of all solutions explored so far by a particular algo-
rithm. The cumulative elicitation cost £(X) = ) .. e(X) is the sum of the costs of all elicitations

conducted while exploring X.
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Figure 4.1: Example of Incomplete DCOP with Elicitation Costs

The total cost F(x,X) = ay-F(x)+a.-E(X) is the weighted sum of both the cumulative constraint
cost F(x) of solution x and the cumulative elicitation cost £(X) of the explored solution space X,
where oy € (0,1] and o, € [0, 1] such that oy + a. = 1. The weights represent the tradeoffs

between the importance of solution quality and the cumulative elicitation cost.

The goal is to find an optimal complete solution x* while eliciting only a cost-minimal set of prefer-

ences from a solution space X*. More formally, the goal is to find (x*, X*) = argmin, 5 F (X, X).

Figure 4.1(a) shows the constraint graph of an example I-DCOP that we will use as a running
example in this thesis. It has three variables xy, x2, and x3 with identical domains D; = Dy =
D3 = {0,1}. All three variables are constrained with one another and Figure 4.1(b) shows the
partially-specified constraints fz their corresponding fully-specified constraints f;, and the elic-
itation costs e;. For simplicity, assume that oy = a. = 0.5 throughout this thesis. There-
fore, in this example, the optimal complete solution is x* = (x; = 1,25 = 1,23 = 0)
and only that solution is explored (i.e., X = x*). The constraint cost of that solution is 3
(= fil{zy = Lizg = 1)) + fo({(z1 = L,zg = 0)) + f3((z2 = 1,23 = 0))). The cumulative
elicitation cost is 2 (= ex({(xy = 1,23 = 0)) + e3((z2 = 1,23 = 0))). Thus, the total cost is
af-3+a.-2=05-3+05-2=25.

4.2 Using SyncBB to Solve I-DCOPs

To solve I-DCOPs, one can easily adapt existing DCOP algorithms by allowing them to elicit
unknown costs whenever those costs are needed by the algorithm. This thesis describes below how
to adapt SyncBB to solve I-DCOPs as well as how to use this algorithm as the underlying search

algorithm that uses the proposed heuristics later.



Figure 4.2: Labels of Search Tree Nodes

The operations of SyncBB can be visualized with search trees. Figure 4.2 shows the search tree for
our example I-DCOP shown in Figures 4.1(a) and 4.1(b), where levels 1, 2, and 3 correspond to
variable 1, =2, and x3, respectively. Left branches correspond to the variable being assigned the
value 0 and right branches correspond to the variable being assigned the value 1. Each non-leaf
node thus corresponds to a partial solution and each leaf node corresponds to a complete solution.
These nodes also correspond to unique CPAs of agents when they run SyncBB. Labeled with an

identifier so that each node of the search tree can be referred to them easily below.

When SyncBB evaluates a node n after exploring search space X, it considers only the cumulative
elicitation cost so far £(x) and the constraint costs of the CPA at node n, which we will refer to
as g-values, denoted by g(n).> This thesis refers to the weighted sum of these values as f-values,
denoted by f(n,X) = ay - g(n) + a. - £(X).

Figure 4.3 shows a simplified execution trace of SyncBB, where the CPA at each step of the algo-
rithm corresponds to the shaded branch of search tree. For example, the CPA is (x; = 1,25 = 0) in
Step 7. The numbers in the shaded nodes correspond to their f-values when those nodes were ex-
panded by SyncBB. Unshaded nodes with numbers correspond to nodes whose estimated weighted
f-values are maintained by the agents. For example, agent a3 maintains estimated weighted f-
values of nodes [ and m in Step 7 as it needs to figure out whether those nodes should be expanded
or pruned in that step. The upper bound ub, which corresponds to the cost of the best complete

solution found so far, is also shown in the figure beside the root node.

Here is the more detailed tracing process. The root agent a; first expands node a followed by
node b in Steps 1 and 2. This is done when it assigns its variable x; the value 0. It then sends a
CPA with this value assignment as well as the cost of this CPA (= 0) and the cumulative elicitation
cost so far (= 0) to its child a,. Upon receipt of the message, agent as needs to decide whether to

expand nodes d or e, which correspond to assigning its variable x5 the values 0 or 1, respectively.

3 A* notations [25] are used here.
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ub = infinity ub = infinity ub = infinity

(g) Step 7 (h) Step 8

Figure 4.3: Simplified Execution Trace of SyncBB Without Heuristics

If the cost of both partial solutions are known, then it should expand the node with the smaller
cost. However, in this case, the costs of both nodes are unknown. These costs correspond to the
unknown constraints f; (x1 = 0,29 = 0) and fl(xl = 0,9 = 1). Therefore, it estimates the cost

of both nodes and expand the node with the smallest estimated cost.

Let’s assume that all the agents know that a lower bound £ on all the constraint costs is 1. In
other words, all constraint costs are no smaller than 1. Using this knowledge, agent a; computes
an estimated cost of node d to be 2, which is the sum of the cost of the received CPA (= 0), the
cumulative elicitation cost so far (= 0), the lower bound on the constraint cost (= o - 1), and the
weighted elicitation cost (= e;(z1 = 0,292 = 0) = a, - 3). Similarly, the agent computes the

estimated cost of node e to be 1.5. These costs are shown in the corresponding nodes in Step 2.

The estimated cost of node e is the smaller of the two. So, in Step 3, agent a; expands node e by
eliciting the unknown cost fi(z; = 0,25 = 1) = 2, updating the weighted cumulative elicitation
cost to a, - 2 = 1, updating the cost of node e to 2 (= cost of received CPA of 0 + weighted
constraint cost of 1 + weighted cumulative elicitation cost of 1), updating its CPA to include this
new value assignment, and sending the updated CPA together with the weighted cost of the CPA

(= 1) and the weighted cumulative elicitation cost so far (= 1) to its child ag.

11



Upon receipt of this message, agent a3 needs to decide whether to expand nodes j or k. Using
the same rationale as above, in Step 4, agent a3 expands node j by eliciting the unknown costs
fa(z1 = 0,23 = 0) = 3 and f3(xs = 1,23 = 0) = 1, incurring a weighted total elicitation cost
of a - 2 = 1, 0.5 for each elicitation. It then updates the weighted cumulative constraint cost to
ay -4 = 2, updates the cost of node j to 5 (= cost of received CPA of 2 + weighted constraint costs
of 2 + weighted cumulative elicitation cost of 1), and updates its CPA to include this new value
assignment. Since agent as is a leaf node, it knows that its CPA is a complete solution. Since the

cost of the solution is smaller than the upper bound, it updates the upper bound to 5.

Then, it evaluates node k£ whether it should be expanded or pruned. Note that the estimated
weighted f-value of the node increased from 4 in Step 3 to 5 in Step 4. The reason for this increase
is because the weighted cumulative elicitation cost increased by 1 between Steps 3 and 4. Since
the weighted estimated f-value of node k is no smaller than the upper bound, agent as prunes
this node and backtracks to its parent a, by sending a BACKTRACK message that contains its
best complete solution, the weighted cumulative constraint cost of that solution, and the weighted

cumulative elicitation cost so far.

Upon receipt of the BACKTRACK message, agent as then updates its weighted cumulative elic-
itation cost to 2 based on the cost received in the message, and updates the weighted estimated
f-value of node d to 4 (= constraint cost of 0 + weighted lower bound of 0.5 + weighted elicitation
cost of 1.5 from e;(z; = 0,22 = 0) + weighted cumulative elicitation cost of 2). If this cost is no
smaller than the upper bound in the message, it will prune this branch and backtrack. Since the
cost is smaller, it will expand the node by eliciting the unknown cost, updates its CPA to include
this new value assignment, and sends the updated CPA together with the weighted cost of the CPA
and the weighted cumulative elicitation cost so far to its child az. Since the estimated costs of
both nodes h and 7 are no smaller than the upper bound, the algorithm prunes the branches and
backtracks to agent a;. Then it updates the weighted cost of the CPA to 6.5 and the weighted cu-
mulative elicitation cost so far to 3.5. The algorithm in Step 8 finds a solution with a cost smaller
than the current upper bound 6.5 thus, it updates the upper bound to 5.5. The process continues

until the root agent backtracks and returns the best complete solution found.

12



4.3 Cost-Estimate Heuristics

To speed up the SyncBB algorithm, one can use cost-estimate heuristics h(n) to estimate the sum
of the constraint and elicitation costs needed to complete the CPA at a particular node n. And if
those heuristics are underestimates of the true cost, then they can be used to better prune the search
space, that is, when f(n,X) = ay-g(n)+h(n)+a.-E(X) > F(x,X), where x is the best complete

solution found so far and x is the current explored solution space.

This thesis describes below two cost-estimate heuristics that can be used in conjunction with
SyncBB to solve I-DCOPs. These heuristics make use of an estimated lower bound £ on the
cost of all constraints f € F. Such a lower bound can usually be estimated through domain exper-
tise. In the worst case since all costs are non-negative, for the running example, the lower bound
(L) is set to 1. The more informed the lower bound, the more effective the heuristics will be in

pruning the search space.

Additionally, these heuristics are parameterized by two parameters — a relative weight w > 1 and

an additive weight e > 0. When using these parameters, SyncBB will prune a node n if:
w- f(n,X) +e> F(x,X) 4.1)

where x is the best complete solution found so far and x is the current explored solution space.
Users can increase the weights w and € to prune a larger portion of the search space and, con-
sequently, reduce the computation time as well as the number of preferences elicited. However,
the downside is that it will also likely degrade the quality of solutions found. Further, in I-DCOPs
where elicitations are free (i.e., the elicitation costs are all zero), this thesis theoretically shows that
the cost of solutions found are guaranteed to be at most w - O PT + ¢, where O PT' is the optimal

solution cost.

4.3.1 Child’s Ancestors’ Constraints (CAC) Heuristic

First heuristic is called Child’s Ancestors Constraints (CAC) heuristic. It is defined recursively
from the leaf of the pseudo-chain (i.e., last agent in the variable ordering) used by SyncBB up to

the root of the pseudo-chain (i.e., first agent in the ordering). Agent z; in the ordering computes a

13



heuristic value h(x; = d;) for each of its values d; € D; as follows: h(z; = d;) = 0 if z; is the leaf

of the pseudo-chain. Otherwise,

h(z; = d;) = min {af . f(xl =dj,xe =d.) + - e(x; = djyx. = d.) + h(x. = dc)]

dc€Dc

+ Z min {af . f(:z:C =de, = di) + @ - e(x. = de, 1) = dk)} 4.2)
rr€Anc(xze)\{z;}

where . is the next agent in the ordering (i.e., child of x; in the pseudo-chain), Anc(z.) is the set
of variables higher up in the ordering that x. is constrained with, and each estimated cost function
f corresponds exactly to a partially-specified function f. except that all the unknown costs 7 are
replaced with the lower bound L. Therefore, the estimated cost f (x) is guaranteed to be no larger

than the true cost f(x) for any solution x.

For a parent z,, of a leaf agent z;, the heuristic value h(x, = d,,) is then the minimal constraint and
elicitation cost between the two agents, under the assumption that the parent takes on value d,,, and
the sum of the minimal constraint cost of the leaf agent with its ancestors. As the heuristic of a
child agent is included in the heuristic of the parent agent, this summation of costs are recursively

aggregated up the pseudo-chain.

It is fairly straightforward to see that this heuristic can be computed in a distributed manner — the
leaf agent x; initializes its heuristic values h(z; = d;) = 0 for all its values d; € D, and computes

the latter term in Equation (4.2):

Z IIliIl |:Oéf . f(xl = dl, T — dk) —+ Oéf . 6(?[)1 = dl, T — dk) (43)

dip€Dy,
rrEAnc(xy)

for each of its values d; € D;. It then sends these heuristic values and costs to its parent. Upon
receiving this message, the parent agent x,, uses the information in the message to compute its own
heuristic values h(x, = d,) using Equation (4.2), computes the latter term similar to Equation (4.3)
above, and sends these heuristic values and costs to its parent. This process continues until the root

agent computes its own heuristic values, at which point it starts the SyncBB algorithm.

Figure 4.4 shows the order of node expansions conducted by SyncBB using the CAC heuristic on
our example [-DCOP. Note that the algorithm needs to only expand 4 nodes and elicit 1 unknown

constraint cost before returning a solution of weighted cost 2.5. In contrast, SyncBB without
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Figure 4.4: Simplified Execution Trace of SyncBB with CAC Heuristic

heuristics expanded 9 nodes elicited 4 unknown constraint costs before returning a solution of

weighted cost 5.5 (see Figure 4.3).

4.3.2 Agent’s Descendants’ Constraints (ADC) Heuristic

Second heuristic is called Agent’s Descendants’ Constraints (ADC) heuristic. Like the CAC
heuristic, it is also defined recursively from the leaf of the pseudo-chain used by SyncBB up to
the root of the pseudo-chain. Agent x; in the ordering computes a heuristic value h(z; = d;)
for each of its values d; € D; as follows: h(xz; = d;) = 0 if x; is the leaf of the pseudo-chain.

Otherwise,

h(x; = d;) = min |:Oéf . f(xl =dj,x.=d.) + a.-e(r; =dj,xe = d.) + h(z, = dc)]

dc€D.

+ Z dn’élg [osz(:cz :di,l'j :dj)+ae~e(:1:i :di,l'j :dj)‘|
xj€Des(x;)\{zc} 7

4.4)

where . is the next agent in the ordering, Des(x;) is the set of variables lower down in the ordering
that x; is constrained with, and each estimated cost function f is as defined for the CAC heuristic

above.
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Like CAC, it is also straightforward to see that this heuristic can be computed in a distributed
manner — the leaf agent z; initializes its heuristic values h(x; = d;) = 0 for all its values d; € D,
and sends these heuristic values to its parent. Upon receiving this message, the parent agent x,, uses
the information in the message to compute its own heuristic values h(z, = d,,) using Equation (4.4)
and sends them to its parent. This process continues until the root agent computes its own heuristic

values, at which point it starts the SyncBB algorithm.

4.4 Value- and Variable-Ordering Heuristics

Instead of choosing a random order to explore the different values of an agent, this thesis orders
their values according to the best-available cost function f(n,X) = ay - g(n) + h(n) + a. - £(X),
where n is the node corresponding to the value of the agent and x is the current explored solution

space.

Instead of choosing a random ordering of variables for SyncBB, this thesis orders the variables
based on the number of their constraints that has unknown costs — the variable with the fewest
number of constraints with unknown costs as the root and the variable with the most number of

constraints with unknown costs as the leaf.

The rationale for this heuristic is the following: When an agent is higher up in the search tree (i.e.,
closer to the root), it will likely need to explore all of its values since the partial cost of its CPA
(i.e., the partial solution from the root to the agent) is likely to be small as the CPA only contains
the value assignments of few agents. As a result, if any of its constraints contain unknown costs,
those costs will likely need to be elicited. In contrast, when an agent is lower down in the search
tree (i.e., closer to the leaf), it is more likely to be able to prune many of its values since the partial
cost of its CPA is likely to be larger as the CPA contains value assignments of more agents. As a

result, it is more likely that many of its unknown costs will not be elicited.
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Chapter 5
Theoretical Results

Theorem 1 The computation of both CAC and ADC heuristics require O(|.A|) number of mes-

sages.

Proof : Both heuristics are recursively computed starting from the leaf to the root and will therefore

take exactly |.A| — 1 number of messages. O
Lemma 1 When all elicitation costs are zero, the CAC heuristic is admissible.

Proof : To prove admissibility, we prove that h(n) < F(x,) — ay - g(n), where x,, is the best
complete solution in the subtree rooted at node n, for all nodes n in the search tree. We prove this

by induction from the leaf agent up the pseudo-chain:

e Leaf Agent: For a leaf agent x;, h(x; = d;) = 0 for each of its values d; € D,. Therefore, the
inequality h(n) = 0 < F(x,) — ay - g(n) trivially applies for all nodes n corresponding the
agent x; taking on its values d; € D,.

e Induction Assumption: Assume that the lemma holds for all agents up to the (k — 1)-th agent
up the pseudo-chain.

e The k-th Agent: For the £-th agent x; from the leaf:

dCeDC

h(z; = d;) = min |:Oéf . f(xl =dij,x. =d.) + - e(x; = dj,x. = d.) + h(x. = dc)]

+ Z min {af . f(:nc =de, = di) + e - e(x. = de, ) = dk)}
rr€Anc(ze)\{z;}
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where x. is the next agent in the ordering (i.e., the (k — 1)-th agent), Anc(z;) is the set of
variables higher up in the ordering that x; is constrained with, and each estimated cost function

A

f is as defined by the CAC heuristic. First, it is easy to see:

~

f(z; =dj,z = dy) < fz; = dj, 2 = dy)

for any pair of agents z; and x;, with any of their value combinations since all unknown costs ?
are replaced with the lower bound £ on all constraint costs. Thus, combined with the premise

that elicitation costs are all zero and the induction assumption, we get:

h(z; = d;) = min {af . f(xl =dj,xe =d.) + e - e(x; = dj,x. = dc)} + h(z. =d,)

dec€Dc

b i o flo = detn = ) + el = donn = )
rrEAnc(xze)\{z;:}

< min {af flz; =di, . =de) + h(z. = dC)l

" deeD.

Y qin oy - f(ze = de,z, = d)
rrEAnc(ze)\z:)

<F(Xn) — a5 - g(n)
where node n corresponds to the agent x; taking on its value d; € D;. U
Lemma 2 When all elicitation costs are zero, the ADC heuristic is admissible.
Proof : The proof is similar to the proof for Lemma 1. 0

Theorem 2 When all elicitation costs are zero, SyncBB with either the CAC or ADC heuristics
parameterized by a user-defined relative weight w > 1 and a user-defined additive weight € > 0
will return an I-DCOP solution whose cost is bounded from above by w - OPT + ¢, where OPT

is the optimal solution cost.

Proof : The proof is similar to the proofs of similar properties [71] for other DCOP search algo-
rithms that also use heuristics. The key assumption in the proofs is that the heuristics employed
are admissible heuristics — and the CAC and ADC are admissible according to Lemmas 1 and 2.
OJ
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Chapter 6

Empirical Evaluations

We evaluate SyncBB using our two heuristics — CAC and ADC — against a baseline without heuris-
tics on I-DCOPs with and without elicitation costs. We evaluate them on random graphs and dis-
tributed meeting scheduling problems, where we measure the various costs of the solutions found
— the cumulative constraint costs, cumulative elicitation costs, and their aggregated total costs — the
number of unknown costs elicited, the number of nodes expanded after the algorithm terminates,
and the runtimes of the algorithms (in sec). In all experiments we set oy = a,, = 0.5. Data points

are averaged of over 50 instances.

6.1 Random Graphs

We generate 50 random (binary) graphs [14], where we vary the number of agents/variables |.A|
from 10 to 20; the domain size | D;| for all variables x; € X’ from 2 to 10 ; the user-defined relative
weight w from 1 to 10; and the user-defined additive weight e from O to 50. The constraint density
p; 1s set to 0.4, the tightness ps is set to 0; the fraction of unknown costs in the problem is set to
0.6. In our experiments below, we only vary one parameter at a time, setting the rest at their default
values: |X| = 10, |D;| = 2, w = 1, and € = 0. All constraint costs are randomly sampled from

2, 5] and all elicitation costs are randomly sampled from [0, 20].

Tables 6.1 and 6.2, tabulates our empirical results, where we vary the number of agents |.A| and

the domain size | D;| respectively. We make the following observations:

19



(a) SyncBB Without Heuristics

# unk Without Elicitation Costs With Elicitation Costs
|A| | #of . const. | #of nodes || # of . total | const. | elic. | #of nodes
costs . runtime . runtime
elic. cost | expanded | elic. cost cost cost | expanded

10 | 43 40.62 | 5.09E-01 | 51.86 | 1.65E+03 || 17.98 | 3.27E-02 | 237.90 | 59.64 | 178.26 | 5.92E+01

12 | 62 59.04 | 1.99E+00 | 76.30 | 6.76E+03 || 25.60 | 4.38E-02 | 349.54 | 87.96 | 261.58 | 1.14E+02

14 86 82.44 | 8.02E+00 | 107.14 | 2.36E+04 | 35.30 | 5.95E-02 | 484.64 | 122.22 | 362.42 | 1.17E+02

16 | 115 | 111.74 | 3.22E+01 | 145.32 | 9.35E+04 || 47.88 | 8.04E-02 | 636.10 | 163.20 | 472.90 | 1.58E+02

18 | 146 | 140.84 | 1.18E+02 | 185.06 | 3.48E+05 || 60.52 | 1.29E-01 | 803.50 | 205.50 | 598.00 | 2.67E+02

20 | 182 || 177.08 | 1.23E+03 | 231.64 | 1.36E+06 | 70.64 | 1.63E-01 | 978.00 | 258.88 | 725.12 | 2.79E+02

(b) SyncBB with CAC Heuristic

10 | 43 38.06 | 2.38E-01 | 51.86 | 7.59E+02 || 12.90 | 2.15E-02 | 185.44 | 61.18 | 124.26 | 2.21E+01

12 62 57.68 | 9.19E-01 | 76.30 | 3.02E+03 | 18.72 | 1.74E-02 | 271.72 | 89.14 | 182.58 | 2.87E+01

14 86 80.28 | 3.43E+00 | 107.14 | 9.55E+03 | 25.90 | 3.60E-02 | 379.58 | 124.34 | 255.24 | 3.82E+01

16 | 115 | 110.22 | 1.35E+01 | 145.32 | 3.75E+04 || 35.16 | 2.84E-02 | 506.38 | 165.04 | 341.34 | 4.48E+01

18 | 146 || 139.30 | 4.41E+01 | 185.06 | 1.22E+05 || 44.80 | 4.78E-02 | 642.48 | 206.24 | 436.24 | 6.10E+01

20 | 182 || 174.92 | 3.67E+02 | 231.64 | 4.09E+05 | 54.88 | 6.29E-02 | 796.32 | 258.28 | 538.04 | 5.06E+01

(c) SyncBB with ADC Heuristic

10 | 43 39.00 | 4.89E-01 | 51.86 | 1.56E+03 || 14.10 | 2.31E-02 | 190.74 | 60.96 | 129.78 | 2.33E+01

12 62 58.52 | 1.93E+00 | 76.30 | 6.25E+03 || 19.80 | 1.77E-02 | 267.36 | 88.60 | 178.76 | 3.06E+01

14 86 81.28 | 7.81E+00 | 107.14 | 2.23E+04 | 26.72 | 3.20E-02 | 375.30 | 122.22 | 253.08 | 3.25E+01

16 | 115 | 110.18 | 3.22E+01 | 145.32 | 8.89E+04 || 35.98 | 2.63E-02 | 496.68 | 164.80 | 331.88 | 3.96E+01

18 | 146 || 139.68 | 1.23E+02 | 185.06 | 3.39E+05 || 44.40 | 3.60E-02 | 621.42 | 208.14 | 413.28 | 3.93E+01

20 | 182 || 173.88 | 1.17E+03 | 231.64 | 1.29E+06 | 54.80 | 5.41E-02 | 771.60 | 259.24 | 512.36 | 4.08E+01

Table 6.1: Varying Number of Agents |.A|

As expected, the runtimes and number of unknown costs elicited by all algorithms increase
with increasing number of agents |.A| and domain size |D;|. The reason is that the size of the
problem, in terms of the number of constraints in the problem, increases with increasing |.A|
and |D;|. And all algorithms need to elicit more unknown costs and evaluate the costs of more
constraints before terminating.

On problems without elicitation costs, SyncBB with CAC is faster than with ADC, which is
faster than without heuristics. The reason is the following: The ADC heuristic value of an
agent includes estimates of all constraints between all its descendant agents. The CAC heuristic
value includes estimates of not only these constraints, but also constraints between any of its
descendant agents with any of its ancestor agents. The CAC heuristic is thus likely to be more

informed and provide better estimates.
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# unk SyncBB Without Heuristics SyncBB with CAC Heuristic

| D;| || #of . total |const. | elic. |#ofnodes || #of . total | const. | elic. |# of nodes
costs . runtime . runtime

elic. cost cost cost | expanded | elic. cost cost cost | expanded
2 43 17.98 | 3.27E-02 | 237.90 | 59.64 | 178.26 | 5.92E+01 || 12.90 | 2.15E-02 | 185.44 | 61.18 | 124.26 | 2.21E+01
4 173 || 19.67 | 4.84E-02 | 254.10 | 58.85 | 195.25 | 1.96E+02 | 14.50 | 1.46E-02 | 202.12 | 58.73 | 143.39 | 4.68E+01
6 389 || 20.00 | 5.54E-02 | 254.66 | 58.72 | 195.94 | 3.97E+02 | 15.36 | 1.03E-02 | 212.30 | 58.44 | 153.86 | 7.01E+01
8 691 | 20.48 | 1.31E-01 | 253.66 | 58.46 | 195.20 | 1.43E+03 | 15.98 | 1.13E-02 | 213.90 | 58.22 | 155.68 | 9.89E+01
10 | 1080 | 20.70 | 2.19E-01 | 260.02 | 57.56 | 202.46 | 2.95E+03 || 16.10 | 1.07E-02 | 214.78 | 56.58 | 158.20 | 1.18E+02

Table 6.2: Random Graphs Varying Domain Size | D;| on Problems with Elicitation Costs
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Figure 6.1: Random Graphs Varying Additive Weights

e On problems with elicitation costs, SyncBB with heuristics is still faster than without heuristics.

The reason is that the number of nodes expanded is significantly smaller than without heuristics.

However, neither heuristic dominates the other. Therefore, for space reasons, we omit the results
for SyncBB with ADC in Table 6.2.
e Overall, the use of heuristics reduces the number of unknown costs elicited by up to 22% and

the runtime by up to 57%, when elicitation is not free, highlighting the strengths of using our

proposed heuristics.

Figure 6.1 plots our empirical results, where we vary the user-defined additive bound (weight) e for
the problems when elicitation is free (i.e., all elicitation costs are zero). Additive weights increases
from right to left on the top axis of the Figure. Each data point in the figures thus show the result
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(a) Without Heuristics

Without Elicitation Costs With Elicitation Costs
|X| | |F|| #of . const. | # of nodes || # of . total | const. | elic. |#of nodes
. runtime . runtime
elic. cost | expanded || elic. cost cost cost | expanded

9 | 15 || 14.20 | 1.36E+00 | 72.66 | 2.14E+03 || 12.00 | 3.60E-01 | 199.76 | 82.16 | 117.6 | 1.69E+03
12 | 26 | 13.12 | 8.73E+00 | 107.36 | 1.47E+04 || 11.54 | 2.70E+00 | 236.48 | 115.82 | 120.66 | 1.24E+04
15 | 43 || 12.82 | 8.12E+01 | 136.24 | 1.25E+05 || 13.32 | 3.15E+01 | 272.58 | 146.05 | 126.51 | 1.19E+05
18 | 61 | 13.80 | 5.69E+02 | 157.28 | 9.06E+05 || 13.56 | 1.83E+02 | 291.70 | 158.40 | 133.30 | 7.79E+05

(b) With CAC Heuristic

9 | 15 || 13.62 | 1.24E+00 | 72.66 | 1.94E+03 || 11.00 | 2.73E-01 | 195.04 | 83.20 | 111.84 | 1.32E+03
12 | 26 | 12.98 | 7.00E+00 | 107.36 | 1.18E+04 || 10.20 | 1.72E+00 | 220.58 | 115.22 | 105.36 | 8.03E+03
15 | 43 || 12.60 | 6.96E+01 | 136.24 | 1.07E+05 || 12.00 | 1.92E+01 | 263.83 | 146.46 | 117.37 | 8.43E+04
18 | 61 || 11.32 | 4.51E+02 | 157.28 | 7.26E+05 || 10.72 | 1.27E+02 | 290.7 | 158.40 | 132.30 | 5.49E+05

(c) With ADC Heuristic

9 | 15 || 12.80 | 1.06E+00 | 72.66 | 1.64E+03 | 10.58 | 1.73E-01 | 179.08 | 77.32 | 101.76 | 8.10E+02
12 | 26 | 12.28 | 6.26E+00 | 107.36 | 1.05E+04 || 8.60 | 1.27E+00 | 218.10 | 113.88 | 104.22 | 5.85E+03
15 | 43 | 12.12 | 5.94E+01 | 136.24 | 9.07E+04 || 11.00 | 1.13E+01 | 248.14 | 144.60 | 103.54 | 4.98E+04
18 | 61 | 11.40 | 4.69E+02 | 157.28 | 7.48E+05 || 10.64 | 1.15E+02 | 291.30 | 157.80 | 133.50 | 4.88E+05

Table 6.3: Meeting Scheduling Problems Varying Number of Variables | Y|

for one of the algorithms with one of the values of €. Data points for smaller values of ¢ are in the
bottom right of the figures and data points for larger values are in the top left of the figures. We
plot the tradeoffs between total cost (= cumulative constraint and elicitation costs) and number of
elicited costs. As expected, as the additive bound € increases, the number of elicitations decreases.
However, this comes at the cost of larger total costs. Between the three algorithms, SyncBB with
CAC is the best, followed by SyncBB with ADC, and SyncBB without heuristics.

We omit plots of results where we vary the relative weight w as their trends are similar to those
shown here, and we also omit plots of results with elicitation costs as their trends are similar to

those without elicitation costs for both additive and relative weights.

6.2 Distributed Meeting Scheduling Problems

We generate 50 random problems, where we set the number of meeting participants (= agents)
|A| = 10, meeting time slots (= domain size) |D;| = 3, density p; to 0.4, and tightness p, to 0.6
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and also the number of unknown costs to 20. We vary the number of meetings (= variables) | X|
from 9 to 18. All time preferences (constraint costs) and elicitation costs are randomly sampled

from [0, 20]. Table 6.3 tabulates our empirical results, where the trends are similar to those in

random graphs.
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Chapter 7

Conclusions

Distributed Constraint Optimization Problems (DCOPs) have been used to model a variety of
cooperative multi-agent problems. However, they assume that all constraints are fully specified,
which may not hold in applications where constraints encode preferences of human users. To
overcome this limitation, we propose Incomplete DCOPs (I-DCOPs), which extends DCOPs by
allowing some constraints to be partially specified and the elicitation of unknown costs in such
constraints incur elicitation costs. Additionally, we propose two parameterized heuristics — CAC
and ADC - that can be used in conjunction with Synchronous Branch-and-Bound (SyncBB) to
solve I-DCOPs. These heuristics allow users to trade off solution quality for faster runtimes and
fewer number of elicitations. Further, in problems where elicitations are free, they provide theoret-
ical quality guarantees on the solutions found. Our empirical results show that using our heuristics
allow SyncBB to find solutions faster and with fewer elicitations. On problems without elicita-
tion costs, CAC is also shown to dominate ADC. In conclusion, our new model and heuristics
improve the practical applicability of DCOPs as they are now better suited to model multi-agent

applications with user preferences.
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