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ABSTRACT OF THE THESIS

Predicate Informed Syntax-Guidance for Semantic Role Labeling

by

Sijia Wang

Master of Science in Computer Science

Washington University in St. Louis, May 2020

Research Advisor: Professor Brendan Juba

In this thesis, we consider neural network approaches to the semantic role labeling task in seman-

tic parsing. Recent state-of-the-art results for semantic role labeling are achieved by combining

LSTM neural networks and pre-trained features. This work offers a simple BERT-based model

which shows that, contrary to the popular belief that more complexity means better performance,

removing LSTM improves the state of the art for span-based semantic role labeling. This model

has improved F1 scores on both the test set of CoNLL-2012, and the Brown test set of CoNLL-

2005 by at least 3 percentage points.

In addition to this refinement of existing architectures, we also propose a new mechanism. There

has been an active line of research focusing on incorporating syntax information into the atten-

tion mechanism for semantic parsing. However, the existing models do not make use of which

sub-clause a given token belongs to or where the boundary of the sub-clause lies. In this thesis,

we propose a predicate-aware attention mechanism that explicitly incorporates the portion of the

parsing spanning from the predicate. The proposed Syntax-Guidance (SG) mechanism further im-

proves the model performance. We compare the predicate informed method with three other SG
viii



mechanisms in detailed error analysis, showing the advantage and potential research directions of

the proposed method.
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Chapter 1

Introduction

Given a sentence, semantic role labeling (SRL) is the task of identifying semantic roles in that
sentence based on the theme of the predicate. For example, in the sentence John told Pat

to cut off the tree, when told is the predicate, John is the first argument or performer
of the action of telling, Pat is the receiver of this order, and the sub-clause cut off the tree

is the order that is given. When cut is the predicate, Pat is the first argument, or performer of
cutting, and the tree is the receiver of cutting. SRL is a fundamental task in natural language
processing (NLP), and it has been shown to be useful in other challenging NLP tasks such as
question answering (Shen and Lapata, 2007), and machine reading (Berant et al., 2014; Wang
et al., 2015).

1.1 Current State-of-the-art Approaches to Semantic Role La-
beling

Since the introduction of LSTM neural networks to SRL by Zhou and Xu (2015), He et al. (2017),
and Marcheggiani et al. (2017), most recent methods for SRL employ LSTM to model the rela-
tionships between predicates and arguments. SRL is then solved by performing inference in this
model. The motivation for using LSTM is that SRL can be seen as a sequential labeling task and
LSTM is a powerful model for such tasks in general. However, LSTM models are usually hard
to train due to their sequential computation that cannot be parallelized. Moreover, LSTM has the
inherent problem of gradients vanishing over long sequences (Hochreiter et al., 2001; Pascanu
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et al., 2013) and it requires a high amount of memory bandwidth Appleyard et al. (2016). If not
well-trained, LSTM models can even lead to worse performance.

Pre-trained feature models have received increasing interest in NLP over the past few years.
BERT (Devlin et al., 2019) is one of the most commonly used pre-trained models. BERT has
led to significant improvements in multiple NLP benchmarks, hence it has been widely employed
in many recent NLP models. A popular way of leveraging these pre-trained models to get better
results in SRL is to use their outputs as the input features for the LSTM-based model. For example,
in (Shi and Lin, 2019), an input sentence is fed into a BERT encoder, whose outputs are then used
as contextual word embeddings for a one-layer BiLSTM. This approach obtained state-of-the-art
performance in many SRL benchmarks. However, because they obtained their results by combin-
ing self-attention and LSTM models, it is hard to tell the extent to which these two components
each contributed.

It’s natural to expect that knowledge of the syntactic structure of the sentence should aid improving
the solution to the SRL task. However, it’s not obvious how to utilize such information in neural
network models. Self-attention with syntactic guidance (SG) provides one possible mechanism for
this purpose. Self-attention models the correlation between tokens in an input sequence regardless
of their distance, allowing the encoder, a.k.a. attention head, of one token to attend to other tokens
and draw information from them. SG self-attention restricts the attention head to attend to only the
syntactically relevant tokens in a sentence, while neural nets with plain self-attention are left on
their own to learn which are more important to attend to out of all the tokens in a sentence. Such
mechanisms have been studied by Strubell et al. (2018) and Zhang et al. (2020). Strubell et al.
(2018) trained an additional type of attention head that attends to the parent node in the dependency
parsing tree when predicting the semantic role label of a token, and Zhang et al. (2020)1 extended
this mechanism so that for each token it attends to all the ancestor nodes on the path tracing back
to the root in the dependency tree.

1This SG mechanism has only been used in Question Answering, but can be considered for SRL.
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1.2 Overview of Our Contributions and Organization of This
Thesis.

We introduce a new type of SG self-attention mechanism, where we train an attention head to
attend to all the ancestor tokens in the syntax sub-tree spanning from the predicate. This sub-tree
is essentially the parsing of the predicate’s sub-clause. We call this mechanism predicate-informed

syntax guidance. Since such attention attends to more syntactically relevant tokens, it holds more
information than that proposed by Strubell et al. (2018), and since it does not attend to tokens
outside the predicate sub-clause it is less noisy than that proposed by Zhang et al. (2020). We
implemented a model using our new self-attention method for the SRL task, and evaluated it on
the CoNLL-2005 and 2012 tasks against models using the other forms of SG self-attention. The
results of these experiments show that the predicate-informed SG self-attention achieves the new
state-of-the-art for these data sets.

In this thesis, we first review ingredients of the proposed model in chapter 2. We propose the
baseline BERT + CRF model, which replaces LSTM with CRF compared with Shi and Lin (2019).
It improves the F1 score by 3 percentage points on both CoNLL-2005 and 2012. The detailed
model description and error analysis is in chapter 3. We further propose a enhanced model by
adding the SG attention to the baseline BERT + CRF model, named the SG + BERT + CRF model.
In chapter 4, we compare four SG attention mechanisms, and conclude that the predicate informed
SG attention has the best performance. With the predicate informed SG attention, F1 increases by
at least 1.5 in comparison with the baseline BERT + CRF model. All together, our model beats the
previous published state-of-the-art by 4.5 percentage points in F1.

1.3 Other Task Formulations

For semantic role labeling, there are other two kinds of tasks that are widely explored, all three
meant to extract the predicate-argument structure. The first one differs from our setting in that
the argument span is given. The performance is intrinsically better with known span (He et al.,
2017), in a sense with richer prior knowledge. Other than the fact that argument identification is
an unsolved task (Shi and Lin, 2019), for SRL benchmarks such as CoNLL 2005, 2009, and 2012,
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the span is not given during both training and testing. Thus, in this thesis, we only discuss the case
when the argument span is unknown. In the work of (Ouchi et al., 2018), they split the task into
two steps. They first select all possible argument spans and then assign labels on the span with
highest label scores. Such strategy allows them to use span-level features, however, additive error
comes along for the two steps.

The second one differs in that the predicate is not given. Due to the argument ambiguity in SRL,
which will be discussed in Section 2.1.1, we know that the tokens will have different labels given
distinct predicates. It will be complicated when the predicate is not given. On the other hand, pred-
icate prediction is a task to identify the verb either in a clause or a sentence. Yet we intend to focus
on the predicate-argument task. Thus we follow the task formulation of CoNLL-2005 (Carreras
and Màrquez, 2005) and CoNLL-2012 (Pradhan et al., 2012), where the predicate is given.

4



Chapter 2

Task Formulation and Model Components

We propose two neural network models, one baseline model named BERT + CRF, and one with
syntax-guidance, SG + BERT + CRF. As their name suggest, the model BERT + CRF consists
of two major components, a pre-trained language representation model BERT and a Conditional
Random Field (CRF). And SG + BERT + CRF has three major components, a Syntax Guidance
layer along with BERT and CRF. In this chapter, we first formulate the task in Section 2.1 and
review details of three key ingredients of both model architectures in the following sections.

Bidirectional Encoder Representations from Transformers (BERT) is a language representation
model that has been widely explored in Natural Language tasks. Upon release, BERT achieve a
significant boost in a variety of applications. We will explain BERT contextual embedding in more
detail in Section 2.2. To emphasise the importance of predicate to the argument identification, we
use the Predicate Indicator Embedding to enhance the contribution of the predicate to the token
embedding, which is in Section 2.3. Conditional Random Field (CRF) is a simple and classic
probabilistic model which is able to capture sequential structure information. Thus it is widely
used for sequential tasks. CRF is much less complex than LSTM so it can generalize better than
LSTM and is easier to train. Moreover CRF does not suffer the vanishing gradient problem of
LSTM (Zheng et al., 2015). The details are in Section 2.4

2.1 Task Formulation

We focus on the task of argument identification and classification. Given a sentence and a predi-
cate, this task is to identify the spans of all the arguments for the given predicate and classify each
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argument as the corresponding semantic role. Different predicates are parsed differently. For ex-
ample, in the sentence John told Pat to cut off the tree, for the predicate told,
the arguments are John, whose role is giver of the order; Pat, whose role is the receiver of the
order; and cut off the tree, whose role is the order that is given. For the predicate cut,
the arguments are Pat, whose role is the one that does the cutting, and the tree, whose role is
to receive the cutting. This is suitable for the benchmark data sets CoNLL-2005 and CoNLL-2012,
where predicates are given in the training set and test set along with the sentences.

Figure 2.1: The above example illustrates the concept of argument span and the BIO labeling
mechanism. Given the predicate known, the maze belongs to ARG1, as Wind Cave to
ARG2. Within the term the maze, the is labeled with B-ARG1, which denotes the beginning
of ARG1. maze is labeled with I-ARG1, which denotes the inside of ARG1. The rest are out of
the span, labelled with O.

We treat SRL as a sequential BIO tagging problem, where the span information is encoded by the
BIO prefixes in the tags. The prefix “B-” means the beginning of the span, “I-” means in the span,
and “O-” means out of the span. This task is shown in Fig. 2.1. The goal is the assign each word
to the correct semantic role label.

2.1.1 Argument Ambiguity in SRL

A key observation for SRL tasks is the argument ambiguity of target words given different pred-
icates, that is, given different predicates, a word could bear distinct tags. For instance, in the
following sentence in (He et al., 2017), John told Pat to cut off the tree. The
person named Pat carries two distinct tags A2 and A0, when given two predicates told and cut
off respectively.

I) John told Pat to cut off the tree.

Predicate: told(1)

A0: John

V: told

6



A2: Pat

A1: to cut off the tree

II) John told Pat to cut off the tree.

Predicate: cut(4)

A0: Pat

V: cut off

A1: the tree

To deal with the argument ambiguity problem, we will incorporate the predicate indicator in our
model by converting the indicator sequence into an indicator embedding. Then we concatenate
the predicate indicator embedding following the previous work of (He et al., 2017) with BERT
contextual representations.

2.2 BERT Contextual Embedding

The training of a BERT model consists of two steps, pre-training and fine-tuning. During the pre-
training step, the model is trained on unlabeled data over different tasks. For fine-tuning, the BERT
model is first initialized with the pre-trained parameters, and the parameters are fine-tuned using
labeled data from the downstream tasks (Devlin et al., 2019). In this thesis, we use the pre-trained
BERT model to generate the contextual embeddings, and then fine-tune the parameters with the
labeled SRL data.

In order to add contextual information to the features, we use BERT contextual embeddings. Given
a sequence of tokens as input we map each token to an embedding vector. To do that, we input
the token sequence to the BERT model and it outputs a sequence of embedding vectors. We use
“[CLS] sentence [SEP] predicate [SEP]” as the input format to the BERT model. This format
was used in Shi and Lin (2019). There are two reasons for using it. First, the BERT model was pre-
trained using the format with concatenated special tokens [CLS] and [SEP] so it fits the model
better; second, it has the benefit of producing predicate-aware contextual embeddings for each
word token. After getting the outputs of BERT, we only collect the embeddings of words in the
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sentence for further computations. This is illustrated in the lower layer of the model architecture
in Fig. 3.1.

The final output of BERT assigns a contextual embedding vector to each token. Note that BERT
does not simply assign an embedding vector for each word in the sentence. Upon receiving the
input, BERT uses the WordPiece tokenizer to split the input text into a sequence of tokens. Tradi-
tional tokenizers break the text into a sequence of words by splitting at the whitespace characters
in the sentence. The WordPiece tokenizer sometimes breaks one word into multiple tokens. For
example, the WordPiece tokenizer will split the sentence here is the sentence I want

embeddings for into here, is, the, sentence, I, want, em, ##bed, ##ding, ##s,
and for. This is because it has a fixed sized vocabulary of tokens. So if a word does not belong
to the existing vocabulary then the tokenizer will break it down into sub-tokens that are in the
vocabulary.

We need to use the WordPiece tokenizer because it helps our model generalize beyond the training
set. Suppose a word in the test set has not been seen in the training set. A traditional method
will assign this word a randomly generated embedding vector. But this causes the vector to lose
information about the new word. A model with the WordPiece tokenizer instead decomposes the
word into sub-tokens in the vocabulary and uses the embedding vectors of these sub-tokens to
create an embedding vector for the whole word. This is similar to recognizing a word through
its roots. Since the embedding vectors of these sub-tokens have already been trained, they are
informed rather random. However, since the WordPiece tokenizer can break one word into multiple
sub-tokens, we need to find a way to get a single embedding vector for such a word from the
multiple sub-token embeddings. If not, this creates an inconsistency between the number of tokens
and labels. One can get such a single embedding by averaging the sub-token embeddings, but
according to the suggestion by Devlin et al. (2019), we simply choose the embedding vector of the
first sub-token as the embedding vector for the whole word.

Other than BERT, DistilBERT is a lighter version of BERT that serves the same purpose. Specifi-
cally, it reduce the size of parameters by 40%, while retaining 97% of its language understanding
capabilities and is 60% faster (Sanh et al., 2019). In Section 3.2, we will show experimental per-
formance for both BERT and DistilBERT.
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2.3 Predicate Indicator Embedding

After obtaining the contextual embeddings for each word in the sentence, we now concatenate each
embedding with a predicate indicator embedding.

Note that even though we have included the predicate word in the input to BERT so that we obtain
a predicate-aware contextual embedding, we have not encoded the position information of the
predicate. For instance, suppose we are given the sentence I saw a saw saw a saw and the
predicate saw which is the second word in the sentence. The input of form [CLS] I saw a

saw saw a saw [SEP] saw [SEP] can confuse the model because saw also appears in
three other places in the sentence, where it has different meanings.

To include the position information of the predicate, we use a predicate indicator embedding (He
et al., 2017) and concatenate it with the contextual word embeddings. Formally, we create an
embedding layer of two vectors, v0 and v1. For each word token we assign it v1 if it is a predicate,
and v0 if otherwise. We then concatenate the predicate indicator embeddings with the contextual
word embeddings from BERT, and pass the concatenated embeddings to further computation.

2.4 CRF

The concatenation of the embedding and attention is used in a CRF layer to produce the emission
score. Let [A,E] ∈ Rn×2m denote the concatenation. We pass it through a linear transformation
layer which outputs a matrix P ∈ Rn×k, where k is the target set size. After the linear transforma-
tion, the jth entry of the the ith vector Pi can be interpreted as the log probability of word i being
labeled as the jth semantic role, i.e., the emission score P(wi, yj).

Suppose we are given a sequence of tokens W = {w1, w2, ..., wm}, and a sequence of the corre-
sponding true labels y = {y1, y2, ..., ym} from the training set. Following (Ma and Hovy, 2016)
we use the score below to measure the likelihood of the labels y given W:

score(y|W) =
m∑
i=1

P(wi, yi) +
m∑
i=2

T(yi−1, yi) (2.1)
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where P is the emission matrix, and T is the transition matrix in which the T(yi−1, yi) denotes the
transition score of labeling yi after yi−1. We then model the probability of the label sequence y

given the sequence W as

p(y|W) =
1

Z
exp(score(y|W)) (2.2)

where Z =
∑

y′∈Y p(y|W) is the normalizing factor, which can be computed dynamically, and Y
is the set of all possible label sequences. The negative logarithm of this probability is used as a
loss for training.

When the training is complete, a Viterbi decoder is used to predict the labels for sentences in the
test set. It finds the label sequence ŷ that maximizes the joint score score(y|W). Training the
transition matrix T is computationally efficient since all we need to learn are k2 parameters where
k is the size of role label set.
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Chapter 3

The BERT + CRF Model

In this chapter, we first introduce the baseline BERT + CRF model in Section 3.1. The baseline
model follows (Shi and Lin, 2019), with a replacement of LSTM with CRF. The experiment results
are in Section 3.2. The error analysis mainly focuses on two types of confusion, A0/A1 confusion
and A2 confusion, which will be discussed in Section 3.3

3.1 Model Description

The training process of the baseline model BERT + CRF is as follows.

Given a sentence W = {w1, w2, ..., wm}

1. Tokenize W , some of the tokens might break down into several sub-tokens.

2. Obtain token embeddings through BERT. Pick embedding for the first sub-token as the em-
bedding for the token, E′ = {e′1, e′2, ..., e′m}, where e′j ∈ RdBERT and dBERT is the embed-
ding dimension.

3. Concatenate the contextual embedding e′j with the predicate embedding pj ∈ Rdp . Then

ej = e′j ⊕ pj, (3.1)

ej ∈ RdBERT+dp . Put E = {e1, e2, ..., em}.
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4. Pass E to a linear layer to make the dimension fit the token size.

L = CE (3.2)

5. Compute loss based on (2.1) and (2.2) and propagate backward. Repeat three epochs.

6. Decoding. Use the Viterbi algorithm to get predictions.

We pick the embeddings after passing to BERT instead of at Step 1 because we believe that the
subsequent tokens contain information that can be encoded by BERT. Figure 3.1 shows the baseline
model architecture.

Figure 3.1: In this model, we first obtain BERT contextual embeddings for the word tokens in
the input sentence. Then we concatenate these embeddings with predicate indicator embeddings.
Finally we pass these to a CRF.

3.2 Performance Evaluation

The trainable parameters that we introduce in this model are predicate indicator embeddings, the
attention head vectors, the linear layer matrix, and the transition matrix in a Conditional Random
Field (CRF). During training, we fine-tune the parameters of BERT.

For BERT + CRF, we experimented using both BERT and DistilBert. DistilBert (Sanh et al., 2019)
is a smaller version of BERT, which retains most of the performance of the original version. For

12



Model F1(WSJ) F1(Brown)

LISA (Strubell et al., 2018) 86.0 78.3
Joint predication + ELMo (He et al., 2018) 87.4 80.4
ELMo SPAN (ensemble) (Ouchi et al., 2018) 88.5 79.6
BERT + LSTM (Shi and Lin, 2019) 87.2 82.0

BERT-CRF 91.2 85.4
DistilBERT-CRF 89.1 84.8

Table 3.1: Experimental results on CoNLL-2005 in terms of F1.

Model F1

LISA (Strubell et al., 2018) 83.4
Joint predication + ELMo (He et al., 2018) 85.5
ELMo SPAN (ensemble) (Ouchi et al., 2018) 87.0
BERT + LSTM (Shi and Lin, 2019) 86.5

BERT-CRF 90.2
DistilBERT-CRF 89.7

Table 3.2: Experimental results on CoNLL-2012 test set in terms of F1

both BERT and DistilBert we use the base uncased version. For BERT-CRF, the batch size is 25

and for DistilBERT-CRF, 100. Our learning rate is 0.0001. We use 4 GPUs for training. For
the CoNLL-2005 data set, the running times are 3 hours and 8 hours, using DistilBERT-CRF and
BERT-CRF, respectively. For CoNLL-2012, the running times are 10 hours and 17 hours with
DistilBERT-CRF and BERT-CRF, respectively.

The results of our BERT/DistilBERT-CRF model for span-based SRL is shown in Tables 3.1 and
3.2. BERT-CRF has an improvement of 3.4 and 3.2 percentage points respectively on the CoNLL-
2005 and CoNLL-2012 data sets over the previous state-of-the-art. By the Chernoff bound, the
95% statistical significance thresholds for the three data sets are 1.33, 4.75 and 0.77. Thus BERT
+ CRF has significantly better performance in terms of F1 on CoNLL-2005 WSJ data set and
CoNLL-2012 test set. The detailed calculation is in Appendix.

Since the only change we made to the model of (Shi and Lin, 2019) was to remove the LSTM
and we obtained a significant boost in the performance, we see that LSTM was indeed harmful for
this approach to span-based SRL. We suspect that this may be due to the fact that LSTM is much
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harder to optimize than a CRF model. While it is certainly possible that an unconventional use of
LSTM can achieve better performance, we can’t rule out all possible training methods. What we
argue here is simply that the standard approach is not effective. Rather, it’s actually harmful.

3.3 Error Analysis

With the experimental results reported in Section 3.2, we wonder where potential scope for further
improvement lies. We will mainly focus on the errors due to the lack of syntactic information in
the baseline BERT + CRF model, which could be addressed with SG, and the comparison with
previous methods in the performance of a particular error type.

Though the BERT + CRF model outperforms the previous state-of-the-art by a considerable amount,
we note the following weakness of the model, illustrated by the mislabeled example in Figure 3.2.
The green labels above the given sentence are true labels, and red ones are predictions by our
model. Note that the last word there is mislabeled. Its true label, B-ARGM-LOC, indicates
there should be a location argument of the verb is. It seems obvious to us that a little

out of context and there belong to separate spans. We suspect that this error may be
due to a lack of knowledge of this syntactical information. Therefore, if we can incorporate such
syntactic knowledge via parsing, then we can potentially avoid such errors.

Figure 3.2: A mislabeled example. The green labels are true labels, and the red ones are predic-
tions. The predicate is the token is.

According to (Ouchi et al., 2018) and (He et al., 2017), there are two major types of labeling
confusion. The first type is between A0 and A1 due to ergative verbs. For instance in the sentence

Worse, Congress has started to jump on the Skinner bandwagon
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When started is the predicate, Congress should be labeled as A1, meaning thing start-

ing; when jump is the predicate, Congress should be labeled as A0, meaning causer of

jumping. Since such differences are subtle, it’s hard for an SRL model to tell them apart.

The second type of confusion is between A2 and DIR or LOC. According to (He et al., 2017) these
confusions can arise due to the use of A2 in many verb frames to represent semantic relations such
as direction or location. We computed the labeling confusion matrix of our model, following (He
et al., 2017) and (Ouchi et al., 2018), in Table 3.4. We observed that even though these two kinds
of confusion still appear to be the most prominent, which is similar to previous works, as seen in
Table 3.3, their rate has decreased significantly (decreased by > 30% for A0 and A1 confusion and
by > 10% for A2 confusion).

Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 - 55 11 13 4 0 0 0 0 0

A1 78 - 46 0 0 22 11 10 25 14

A2 11 23 - 48 15 56 33 41 25 0

A3 3 2 2 - 4 0 0 0 25 14

ADV 0 0 0 4 - 0 15 29 25 36

DIR 0 0 5 4 0 - 11 2 0 0

LOC 5 9 12 0 4 0 - 10 0 14

MNR 3 0 12 26 33 0 0 - 0 21

PNC 0 3 5 4 0 11 4 2 - 0

TMP 0 8 5 0 41 11 26 6 0 -

Table 3.3: Confusion matrix from Joint predication + ELMo (He et al., 2017)

Our introduction of syntactic information was motivated by a desire to further reduce the second
type of confusion, which has decreased less. The error sentence,

I think that quote is a little out of context there

exemplifies such confusion.
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When is is the predicate, there can either indicate the location where the quote is a little

out of context or modify context. In the first scenario, there should be labeled LOC. But
in the second, there wrongly attaches to context, so it’s labeled inside the span of label A2.
Such confusion is related to prepositional phrase (PPs) attachment error, a well-known linguistic
ambiguity (Kummerfeld et al., 2012). We notice that this can be fixed by inserting the correct
syntactic parsing: if a reliable parser can correctly link there to the predicate is instead of
context, as done by our syntax-guided attention, for example, then it can help the SRL model
clear such confusion.

Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 - 16 4 13 0 0 0 1 0 2

A1 43 - 34 18 26 26 24 13 57 31

A2 14 28 - 49 13 39 22 18 10 3

A3 0 3 4 - 6 15 0 22 15 0

ADV 21 7 2 0 - 0 14 26 13 33

DIR 0 0 3 0 0 - 6 0 0 0

LOC 4 15 14 2 5 6 - 8 2 16

MNR 3 8 13 11 27 0 17 - 0 12

PNC 0 5 18 0 1 0 8 7 - 0

TMP 10 14 3 3 16 13 5 3 0 -

Table 3.4: Confusion matrix for BERT + CRF
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Chapter 4

The SG + BERT + CRF Models

We now improve the model by incorporating information about syntactic dependencies. For each
sentence, the syntax dependency tree is generated by another pre-trained neural model from (Zhou
and Zhao, 2019). We do not use the golden standard parsing trees from data sets such as Penn Tree
Bank because even if the golden standard parsing is available for each sentence in the CoNLL-2005
and 2012 data sets, they might not be available in practice. So it’s more realistic to use a parsing
tree that is predicted at test time. The key ingredient is the SG attention head, so the comparisons in
the experimental results and the error analysis will mainly focus on the methods for SG attention.

This chapter consists of four parts. We first introduce the SG model in Section 4.1, followed by
the SG + BERT + CRF model description in Section 4.2. The experiment results for the four
mechanisms proposed in Section 4.1 are listed in Section 4.3. We discuss their performance in
Section 4.4.

4.1 The Syntax Guided (SG) Model

Syntax Guided (SG) attention is a mechanism where each token attends only to syntactically related
tokens, in contrast to general self attention.” We propose four types of SG attention. We will show
how to generate their dependency matrices in Section 4.1.1 and how to calculate the corresponding
attention in Section 4.1.2.
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4.1.1 SG Dependency Matrix

To obtain the syntax-guided attention, we need a matrix to indicate which words to attend to.
A standard approach to encode syntactic dependencies is through a parsing tree. An example is
shown in Figure 4.1. In this thesis, we investigate four mechanisms using the syntactic dependency
information: full-tree informed, parent informed, predicate informed, and full-subclause predicate

informed.

Given a sequence of words W = {w1, w2, ..., wn}, we generate a dependency array H = [h1, h2, ..., hn]

where hi indicates the head (parent) word of wi. For instance, in Figure 4.1, fascinating
is the head of The and most, and likewise is is the head of fascinating. Thus we have
h1 = h2 = 3 and h3 = 4.

Given the dependency array, we first construct trees as shown in Figures 4.2a-4.2b. Figures 4.3a-
4.3b illustrate the corresponding dependency matrices I, where Iij = 1 denotes that wj is a word
that wi should attend to. Note that in contrast to (Zhang et al., 2020), we set the diagonal entries Iii
to be 0. Since we will concatenate a word’s own embedding vector with its syntax-guided attention
vector, it would be redundant for them to attend to themselves here.

Here is the description of the dependency matrix for each one of them:

• The Full-tree informed dependency matrix:
For each word wi we set Iij = 1 for all its ancestors wj from its adjacent parent to the most
remote ancestor, which is the root of the dependency tree.

• Parent informed dependency matrix:
We only set Iij = 1 when wj is the adjacent/direct parent of wi.

• Predicate informed dependency matrix:
For each word wi we set Iij = 1 for all its ancestors wj from its adjacent parent up to the
predicate.

• Full-subclause predicate informed dependency matrix:
We set Iij = 1 if wi and wj are in the same subclause rooted with the predicate and i 6= j
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Figure 4.1: Parsing tree of the example sentence

(a) Dependency tree of the full-tree informed
SG. Each node attends to all its ancestors all
the way to the root node.

(b) An illustration of Strubell’s attention mech-
anism, which only attends to the adjacent par-
ent

(c) Dependency tree of predicate informed SG
with respect to the predicate known (subtree
in blue). Each node attends to all its ancestors
all the way to the predicate node.

(d) Dependency tree of full-subclause predi-
cate informed SG with respect to the predicate
known (subtree in blue). Every token pays at-
tention to every other token in the subclause
except itself.

Figure 4.2: A visualization of the tokens attended to under the four mechanisms.

Figure 4.1-4.3 show three steps to generate the dependency matrices for the four mechanisms,
Full-tree informed, Parent informed, Predicate informed and Full-subclause predicate informed.
Figure 4.1 shows the parsing tree obtained from a standard parser. Figures 4.2a-4.2d visualize the
part of that tree that should be attended to. In this example, the token is is the root and known is
the given predicate. For illustration, the attended tokens for labeling the are marked with orange
circles. Figures 4.3a-4.3d are the corresponding dependency matrices.

19



(a) Full-tree-informed dependency matrix (b) Parent-informed dependency matrix

(c) Predicate-informed dependency matrix (d) Full-subclause predicate-informed dependency
matrix

Figure 4.3: Dependency matrices of the four mechanisms.

4.1.2 SG Attention

We compute the attention vectors using a n × n SG dependency matrix I. Let E ∈ Rn×m denote
the BERT features concatenated with predicate indicator vectors, where m is the concatenated
embedding dimension. For each token wi, we compute the attention scores si

si =
EE>i√
m
. (4.1)
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We then take a softmax to get the attention weights

pi = softmax(si). (4.2)

The SG attention vector Ai of token wi is the weighted sum of embeddings that we should attend
to:

Ai =
n∑
j=1

pijIijEj. (4.3)

Each SG attention vector Ai is then concatenated with the embedding Ei, which will be the input
to the next layer.

4.2 Model Description

The training process of the SG + BERT + CRF model is as follows.

Given a sentence W = {w1, w2, ..., wm}

1. Tokenize W , some of the tokens might break down into several sub-tokens. Get the depen-
dency head using the pre-trained model (Zhou and Zhao, 2019) and then generate depen-
dency matrices M accordingly.

2. Obtain token embeddings through BERT. Pick embedding for the first sub-token as the em-
bedding for the token, E′ = {e′1, e′2, ..., e′m}, where e′j ∈ RdBERT and dBERT is the embed-
ding dimension.

3. Concatenate the contextual embedding e′j with the predicate embedding pj ∈ Rdp . Then

ej = e′j ⊕ pj, (4.4)

where ej ∈ RdBERT+dp . Put E = {e1, e2, ..., em}.

4. Calculate the SG attention using (4.3)
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5. Pass E to a linear layer to make the dimension fit the token size.

L = C ′(A⊕E) (4.5)

6. Compute loss based on (2.1) and (2.2) and propagate backwards. Repeat three epochs.

7. Decoding. Use the Viterbi algorithm to get predictions.

An illustration of the architecture is in Figure 4.4.

Figure 4.4: An illustration of the BERT + CRF + SG architecture. In this model, we first con-
catenate BERT contextual embeddings with predicate indicator embeddings. The SG attention is
computed with a specific dependency matrix. Then we concatenate SG attention with the embed-
dings. A linear layer follows to ensure the input dimension of the next layer matches the target
label size. CRF is used to encode the sequential transition information.
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4.3 Performance Evaluation

We use the base uncased version of BERT. The batch size is 48. We use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.0001 and weight decay rate 0.0001. The parameter matrix
used in the linear layer is of shape R2dBERT×k, where k is the size of the target label set. (k = 105

for CoNLL-2005 and k = 129 for CoNLL-2012) The parser we used to generate the dependency
array is by (Zhou and Zhao, 2019). The running times for training CoNLL-2005 and CoNLL-2012
are 7 hours and 19 hours respectively using 8 GPUs (GeForce GTX TITAN Black).

Model CoNLL-2005 CoNLL-2012

Test WSJ Test Brown Test

LISA(Strubell et al., 2018) 86.0 78.3 83.4
Joint predication + ELMo(He et al., 2018) 87.4 80.4 85.5
ELMo SPAN (ensemble) (Ouchi et al., 2018) 88.5 79.6 87.0
BERT + LSTM (Shi and Lin, 2019) 88.8 82.0 86.5
SpanGCN (Marcheggiani and Titov, 2019) 87.2 78.4 85.9

BERT + CRF 91.2 85.4 90.2
Full-attention + BERT + CRF 89.55 86.47 90.34
Full-tree-informed SG + BERT + CRF 91.93 88.06 90.90
Parent-informed SG + BERT + CRF 90.93 87.85 90.57
Predicate-informed SG + BERT + CRF 92.62 88.47 91.67
Full-subclause predicate-informed SG+BERT+CRF 90.34 87.03 90.19

Table 4.1: A comparison of performance on the CoNLL-2005 WSJ test set and Brown test set, and
the CoNLL-2012 test set in terms of F1

The results of the model with the four SG mechanisms for span-based SRL are shown in Table
4.1. The baseline model for this work is the BERT + CRF moel that we proposed in Section 3.1.
For comparison, we also included a model with a “vanilla” attention head, i.e., without any syntax
guidance. It attends to every token in the sentence. We refer to it as full-attention in Table 4.1.
The model without syntax guidance performs worse than the models with SG self-attention, which
indicates the efficacy of syntax guidance.

Among all four SG mechanisms, we observed a consistently improved performance using the
Predicate-informed mechanism over the others. With the Predicate-informed mechanism, we
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achieved an improvement of 3.1 and 1.5 percentage points in F1 respectively on the CoNLL-
2005 Brown test set and CoNLL-2012 test set against the baseline model. Moreover, we gained
3.8 percentage points in F1 on the CoNLL-2005 WSJ test set against the previous state-of-the-
art models. The 95% significance threshold for the three test sets are 1.16, 4.28 and 0.67. Thus
it is significantly better then BERT + CRF on CoNLL-2012. And we are 93% confident that it
performs better on CoNLL-2005 WSJ test set. The detailed calculation is in Appendix. Since the
only change we made to the model of was to concatenate features modified by SG attention and we
obtained a significant boost in the performance, we conclude that syntactic information was indeed
beneficial for this approach to span-based SRL. We discuss possible reasons for the advantage of
the Predicate-informed model over the other forms of SG self-attention in the next section.

4.4 Error Analysis

In this section we analyze the reason behind the improvement of the SG model over the other three
forms of SG attention.

For the parent-informed SG from (Strubell et al., 2018), even though the shallow syntactical de-
pendencies of this model can reconstruct the whole dependency tree, hence fully incorporating
the syntactic information, this can cause the model to be misguided. We observe that sometimes
a word can be mislabelled by parent-aware SG due to the fact that the predicate is not its direct
parent. For example, in the sentence

For weeks, the market had been nervous about takeovers, after Campeau

Corp’s cash crunch spurred concern about the prospects for future

highly leveraged takeovers

when the given predicate is spurred, the entire clause concern about the prospects

for future highly leveraged takeovers should be labeled as “ARG1” since it is
the object of the predicate verb spurred. However, in the dependency parsing tree, which is
illustrated in Fig. 4.5b, the parent-informed model mislabelled prospects as “ARG2”, which
is a modifier type class. This is because the parent of prospects is concern. Since the
parent-informed model only pays attention to the parent, it mistakes prospects as a modifier to
concern, rather than part of an object of the predicate spurred.
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(a) Parent-informed attention mistakes concern and about the prospects as separate semantic
parts since they only attend to the parent concern thus missing the predicate spurred

(b) Full-tree attention mistakes feel as the predicate, when it is opening, labeling I as a subject argu-
ment.

Figure 4.5: Example of errors caused by attention to improper portions of the parsing tree.

Therefore, we argue that it’s important to enforce attention to tokens all the way to the predicate at
the SG layer. To confirm this intuition, we separate each model’s label prediction for the individual
tokens of CoNLL-2005 WSJ into two groups. In one group, the token has the predicate as their
parent, which makes parent-informed SG pay attention to the predicate. In the other group, the
parent of the token is not the predicate, which causes the attention of parent-informed SG to miss
the predicate. The results are shown in Table 4.2. We observe that the performance of the two
methods is essentially identical when the parent is the predicate, and there is a significant differ-
ence when the parent is not the predicate. So the improvement of the predicate-informed SG is
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Total
count

Parent
informed

Predicate
informed Diff.

Predicate
= Parent 19228 92.5 92.6 +0.1

Predicate
6= Parent 129419 90.7 92.6 +1.9

Table 4.2: A comparison of accuracy (%) between Parent-informed SG and Predicate-informed
SG on CoNLL 2005 WSJ. (Statistical significance thresholds are 0.98 and 0.38.)

Total
count

Full-tree
informed

Predicate
informed Diff.

Predicate
= Root 46121 92.2 92.3 +0.1

Predicate
6= Root 102526 91.8 92.7 +0.9

Table 4.3: A comparison of accuracy (%) between Full-tree-informed SG and Predicate-informed
SG on CoNLL 2005 WSJ. (Statistical significance thresholds are 0.63 and 0.42.)

significant precisely when the parent-informed model misses the predicate. This corroborates our
intuition.

On the other hand, the Full-tree-informed SG from (Zhang et al., 2020) encounters ambiguity
when it is applied to the SRL task because it uses the same parsing for each sentence even if
different predicates are given. Such syntactic guidance is likely to add ambiguity since the different
predicates induce different semantic parsings. For instance, in the sentence

I feel committed to the program of opening markets

if opening is given as the predicate then we should label opening as “B-V” and markets as
“B-A1”, while the rest of tokens are “O”. However, the parent-aware SG wrongly labels I as “B-
A0”, which is the subject class. This is due to the fact that in the parsing feel is the root predicate,
and since Full-tree-informed SG pays attention to the root when labeling I, it misinterprets I as
the subject of feel. This shows that paying attention to tokens outside the predicate sub-clause
can be distracting. If the root is not the predicate, then paying attention to all tokens up to the root
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node can reduce the accuracy. Such problems do not appear in the predicate-informed SG because
it does not pay attention to any token outside the predicate’s sub-clause. So intuitively it’s more
reasonable to restrict the attention only to the sub-clause of the predicate.

We have performed another experiment to confirm this intuition. In this experiment we divided the
tokens of CoNLL-2005 WSJ into two groups, where in the first group the root of the dependency
tree where the token resides is different from the predicate, and in the second group they are the
same. The results are shown in Table 4.3. We observe that there is no significant difference in
performance between the methods when the root is the predicate, whereas there is a significant dif-
ference of 0.9% when the root is not the predicate. Therefore our predicate-informed SG achieves
a significant improvement precisely when the root is not the predicate, corroborating our intuition.

4.4.1 Labeling Confusions

We now examine the errors made by the full model, SG + BERT + CRF. The SG + BERT +
CRF models preserve the decrease in A0-A1 confusion obtained by BERT + CRF over the prior
works A clear advantage of the Predicate-informed SG mechanism is a decrease in PPs confu-
sion. Tables 4.4 - 4.7 show the confusion matrices of the four SG mechanisms. We can see that
Predicate-informed SG outperforms other mechanisms in either A0/A1 confusion or A2 confusion
as discussed in Section 4.4.
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Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 - 13 8 3 0 0 0 0 0 2

A1 53 - 51 9 18 9 21 8 63 29

A2 30 30 - 50 8 62 30 24 10 5

A3 0 4 2 - 5 9 0 1 7 0

ADV 10 11 11 18 - 0 12 41 18 57

DIR 0 0 3 1 0 - 3 0 0 0

LOC 0 23 0 2 9 1 - 9 0 2

MNR 0 5 15 6 36 3 14 - 0 2

PNC 0 2 4 0 1 5 8 10 - 0

TMP 4 8 2 4 20 9 7 1 0 -

Table 4.4: Confusion matrix for Full-tree-informed SG BERT + CRF

Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 - 15 10 6 3 0 1 1 0 0

A1 61 - 48 32 47 43 32 18 60 26

A2 15 21 - 31 12 38 19 20 17 3

A3 1 2 3 - 5 11 1 11 3 0

ADV 13 20 7 3 - 0 4 33 18 63

DIR 0 2 0 0 0 - 0 0 0 0

LOC 6 14 11 1 7 2 - 10 0 0

MNR 0 7 11 8 7 1 16 - 0 1

PNC 0 7 5 13 1 0 10 1 - 2

TMP 2 8 1 1 12 1 12 1 0 -

Table 4.5: Confusion matrix for Parent-informed SG + BERT + CRF
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Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 - 15 9 10 3 0 0 0 0 2

A1 67 - 40 23 27 44 43 8 52 42

A2 6 23 - 11 5 22 14 17 15 7

A3 0 3 2 - 0 10 0 7 5 0

ADV 13 9 5 1 - 0 1 44 19 29

DIR 0 0 5 3 0 - 4 0 0 0

LOC 3 29 16 7 9 22 - 13 1 8

MNR 0 1 8 18 21 0 6 - 0 6

PNC 0 3 4 6 1 0 10 1 - 3

TMP 8 13 5 16 29 0 18 6 3 -

Table 4.6: Confusion matrix for Predicate-informed SG + BERT + CRF

Pred.
True

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP

A0 0 26 7 8 4 0 0 1 0 0

A1 59 0 32 13 41 20 33 13 60 29

A2 12 20 0 25 7 22 14 21 15 3

A3 0 0 1 0 0 11 0 4 7 0

ADV 6 5 12 13 0 3 5 38 14 61

DIR 0 0 1 1 0 0 3 0 0 0

LOC 13 8 11 2 8 24 0 11 1 1

MNR 3 13 12 15 22 3 20 0 0 2

PNC 0 9 13 12 2 4 6 3 0 0

TMP 5 15 6 6 13 9 16 5 0 0

Table 4.7: Confusion matrix for Full-subclause predicate-informed SG + BERT + CRF

29



4.4.2 BIO Violations

In order for a sequence of labels to be a possible sequence under the BIO labeling mechanism, it
must obey the following BIO constraints: the sequence of labels within a single semantic role span
must be of the form {B-X, I-X∗, O∗}, where * denotes the Kleene star operator, i.e., any number
of repetitions. Following (He et al., 2017), we counted the number of instances that violate these
BIO constraints

The CoNLL 2005 development set has 3248 sentences and 94763 tokens, and and the CoNLL
2012 development set has 35297 sentences and 934744 tokens. The number of BIO violations of
(He et al., 2017) were 0.07 per token for the CoNLL 2005 development set. We had 0.03 violations
per token for CoNLL 2005 and less than 0.01 per token for the CoNLL 2012 development set. We
believe that the improvement is mainly due to the CRF layer. The transition matrix in CRF provides
the ability to penalize the forbidden label transitions. Table 4.8 and Table 4.9 further compare BIO
violations among the four proposed SG mechanisms. The results show that Full-tree-informed SG
obtains the fewest BIO violations on the CoNLL 2005 development set, while Predicate-informed
SG incurs the fewest BIO violations on CoNLL 2012 development set.

As a matter of fact, CRF is capable of eliminating BIO violations by assigning negative infinite
values in the transition matrix. Suppose the transition from label s to label t is not allowed. Then
we assign T (s, t) = η for every such pairs, where η is the penalty for making such transitions.
The experimental result shows that setting η = −∞ indeed eliminates BIO violation, however,
such a modification turns out to harm the overall performance. Specifically, on CoNLL 2005
development set, the violation is eliminated yet the F1 decreases to 82.28. We suspect that such a
hard constraint rules out a large proportion of labellings, so that the learning becomes tough. If we
relax the penalty η by increasing the constant scalars, and viewing them as prior knowledge, and
then enable training on them, we might potentially obtain better performance.
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Model
BIO violation

violated / violated /
mislabeled sentences mislabeled tokens

Full-tree-informed 231 / 1269 309 / 8011
Parent informed 289 / 1305 330 / 8435
Predicate-informed 278 / 1242 346 / 7124
Full subclause predicate-informed 240 / 1348 369 / 9055

Table 4.8: BIO violation on CoNLL-2005

Model
BIO violation

violated / violated /
mislabeled sentences mislabeled tokens

Full-tree-informed 763 / 12751 811 / 88740
Parent-informed 773 / 13045 812 / 92691
Predicate-informed 505 / 12574 512 / 82192
Full subclause predicate-informed 987 / 13744 1200 / 98621

Table 4.9: BIO violation on CoNLL-2012

4.4.3 Mutual Exclusion Violations of Unique Core Roles

We also investigate the violations of mutual exclusion of Unique Core Roles (UCR) committed
by the proposed architecture. Mutual exclusion of Unique Core Roles refers to the constraint that
UCRs must not occur more than once, such as A0 and A1. Specifically, for any given predicate,
there should be at most one A0 (Agent) or A1 (Patient). Table 4.10 and Table 4.11 report the
number of mutual exclusion violations of four of the semantic role labels A0, A1, A2 and A3.
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Model
Mutual Exclusion violation

violated / violated /
mislabeled sentences mislabeled tokens

Full-tree-informed 75 / 1269 548 / 8011
Parent-informed 112 / 1305 750 / 8435
Predicate-informed 69 / 1242 350 / 7124
Full subclause predicate-informed 121 / 1348 847 / 9055

Table 4.10: Violations of mutual exclusion of core roles on CoNLL-2005

Model
Mutual Exclusion violations

violated / violated /
mislabeled sentences mislabeled tokens

Full-tree-informed 750 / 12751 6253 / 88740
Parent-informed 556 / 13045 4965 / 92691
Predicate-informed 832 / 12574 5934 / 82192
Full-subclause predicate-informed 857 / 13744 6509 / 98621

Table 4.11: Violation of mutual exclusion of core roles on CoNLL-2012

Semantic Loss

We observe that the number of mutual exclusion violations can be decreased by introducing a se-
mantic loss penalty, as proposed by Xu et al. (2018), for these constraints. We can assign semantic
loss for every unique core role in each sentence

Ls(p) ∝ − log
∑
i∈[m]

pi
∏
i 6=j

(1− pj) +
∏
j

(1− pj) (4.6)

where m is the number of tokens in the sentence, and p is the core role of interest. The first term
pi
∏

i 6=j(1 − pj) corresponds to the case when exactly one token is labeled as i and the second
term

∏
j(1− pj) the case when none of the tokens is labeled as i. Therefore whenever the mutual
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exclusion constraint is not violated, semantic loss becomes 0. Otherwise, the semantic loss is
positive.

Suppose LNLL is the negative log likelihood, then the augmented loss becomes:

L′ = LNLL + λLs(p) (4.7)

where λ controls the importance of semantic loss.

Figure 4.6 and Table 4.12 show the experimental result of applying the semantic loss regularizer
and the hard constraint in the transition matrix as discussed in Section 4.4.2. It confirms the
claim that semantic loss can decrease the Unique Core Roles violations, and has a better effect as λ
increases. F1 improves 2.67 percentage points compared to the case when we don’t apply semantic
loss.

Figure 4.6: The experimental result of adding the semantic loss and forbidden illegal transition
through transition matrix in CRF.
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λ
Mutual Exclusion violation

violated / violated / F1
mislabeled sentences mislabeled tokens

0 435 / 2480 3914 / 16789 82.28
1.00E+00 368 / 2400 2511 / 16191 82.91
1.00E+01 252 / 2428 1993 / 17961 81.05
1.00E+02 467 / 2419 3005 / 14795 84.39
1.00E+03 356 / 2354 1903 / 14858 84.32
1.00E+04 427 / 2358 3427 / 14567 84.63
1.00E+05 347 / 2376 2168 / 14260 84.95
1.00E+06 118 / 2718 1241 / 19354 79.58
1.00E+07 0 / 3242 0 / 45966 51.49
1.00E+08 0 / 3248 0 / 64886 31.53
1.00E+09 0 / 3248 0 / 94742 0.02
1.00E+10 0 / 3248 0 / 94763 0.00

Table 4.12: Experimental result with different λ on CoNLL-2005 development set. The illegal
transitions are forbidden through transition matrix in CRF.
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Chapter 5

Conclusion

We first examined the role of LSTM in the state-of-the-art BERT-LSTM model by replacing it
with a CRF, and examining the performance on the CoNLL-2005 and CoNLL-2012 data sets. We
found that by removing LSTM the model can achieve much better results, hence LSTM is harming
the performance of this approach to span-based SRL. We also observed that the lack of syntac-
tic information might be responsible for some errors made by our model, thus we conclude that
incorporating syntactic parsing information might help improve the performance of this baseline
model.

We then proposed a syntax-guided (SG) neural architecture SG + BERT + CRF, which achieves the
new state-of-the-art for CoNLL-2005 and 2012. We have compared its performance with the SG
attention models that have been previously studied, and analyzed the source of the improvement.
However, we notice that the attention mechanism with highest accuracy only traces back to the
predicate when predicting the semantic role of a token, and does not take into consideration the
tokens of other semantic roles of this predicate. We suspect that sometimes these are relevant. As
a future direction, we would like to develop a new attention mechanism that includes such tokens,
which could potentially further improve the accuracy. We also emphasize the potential in the
transition matrix of CRF and semantic loss regularizer to exclude two types of errors, specifically,
the BIO violation and the violation of unique core roles.
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Appendix A

Statistical Significance in F1

The multiplicative Chernoff bound has the following form (Kearns and Vazirani, 1994):

P
[
S − µm > γµm

]
≤ e−mµγ

2/3 (A.1)

where m is the number of variables. pm is the expectation of S. γ controls the significance
threshold. Based on the discussion, the calculation is as follows. Suppose S denote the number of
tokens that are not correctly labeled, then we have 1−F1 ≈ S × (k/2), where k denote label size
(since positive rate equals 1/(lable size)). m = nk where n is the number of tokens, and k is the
size of labels.

Then

P
[
k

2
Eacc −

k

2
µ >

k

2
γµ

]
≤ e−mµγ

2/3. (A.2)

Let t = k
2
γµ, then

P
[
EF1 − EF1,SOTA > t

]
≤ e−

4nt2

3kµ . (A.3)

Table A.1 and Table A.2 show the values for each variable on different data sets for the BERT +
CRF model and the SG + BERT + CRF model. Table A.1 shows that the BERT + CRF model
performs significantly better on the CoNLL-2005 WSJ and the CoNLL-2012 test set. Though it
obtains 3.4 percentage points gain on the CoNLL-2005 Brown set, due to the size of the corpus
being small, its gain does not pass the significance test.
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Table A.2 shows that the SG + BERT + CRF model performs significantly better than the BERT +
CRF on CoNLL-2012 test set. We are 93.83% confident that it is also better than the BERT + CRF
on the CoNLL-2005 WSJ test set. On the CoNLL-2005 Brown test set, even though it obtains 3.07
percentage points gain, it still doesn’t pass the significance test.

Var Notation
CoNLL-2005 CoNLL-2012

WSJ Brown Test

n # of tokens 148647 18814 639622
k label size 105 105 129
µ SOTA 1-F1 0.112 0.180 0.130
t∗ 95% Sign. +0.0133 +0.0475 +0.0077
∆ F1 Gain +0.027 +0.034 +0.032
1− δ′ Conf.∗ 100.00% 78.44% 100.00%

Table A.1: Some statistics and the significance threshold with respect to the BERT + CRF model.
t∗ means the 95% statistical significance threshold. 1− δ′ is the confidence level that the proposed
model is better.

Var Notation
CoNLL-2005 CoNLL-2012

WSJ Brown Test

n # of tokens 148647 18814 639622
k label size 105 105 129
µ 1-F1 (BERT+CRF) 0.112 0.180 0.130
t∗ 95% Sign. +0.0116 +0.0428 +0.0067
∆ F1 Gain +0.0112 +0.0307 +0.0147
1− δ′ Conf.∗ 93.83% 78.61% 100.00%

Table A.2: Some statistics and the significance threshold with respect to the SG + BERT + CRF
model. t∗ means the 95% statistical significance threshold. 1 − δ′ is the confidence level that the
proposed model is better.
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