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ABSTRACT OF THE DISSERTATION 

Delineating the Steps of BAX Pore Activation 

by 

Eric Thomas Christenson 

Doctor of Philosophy in Biology and Biomedical Sciences 
(Molecular Cell Biology) 

Washington University in St. Louis, 2011 

Professor Paul H. Schlesinger, Chair 

 
 The BCL2 protein family is the primary gatekeeper of mitochondrial apoptosis and 

governs integrity of the organelles’ outer membranes. Permeabilization of mitochondrial outer 

membranes permits egress of cytochrome c and other apoptogenic factors, resulting in 

apoptosome formation, caspase activation, and subsequent proteolytic demolition of cells. 

Proapoptotic BAX & BAK effect the release of cytochrome c while their antiapoptotic 

counterparts like BCL-2, BCL-XL, & MCL-1 oppose this permeabilization. A third class of the 

BCL2 family, the prodeath BH3-only proteins, act as sentinels of cell stress and exert their 

influences by occupying antiapoptotic BCL2 members and/or activating BAX/BAK. Cell-free 

reconstitution assays have revealed that BAX/BAK undergo significant conformational changes 

to oligomerize and form pores in membranes. 

 Previously unresolved was the basis for the outer cell membranes’ escape from BAX 

poration during apoptosis. Unlike outer cell membranes, which are roughly 40% cholesterol, 

mitochondrial outer membranes are only 5-10% cholesterol. Vesicle leakage assays 

demonstrated that BAX pore activation is severely inhibited by the sterol. Inclusion of the total 

enantiomer of cholesterol in our assays uncovered that this BAX functional suppression was 
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due to bilayer structure alteration rather than a stereospecific protein-cholesterol interaction. 

Real-time observation of BAX-vesicle binding showed that cholesterol curbs membrane 

integration by the protein, thus suppressing oligomerization and pore formation. 

 Oxysterols and bile acids are physiological derivatives of cholesterol. Further 

employment of our vesicle leakage regime revealed that 25-hydroxycholesterol at low 

micromolar concentrations accelerates BAX pore formation, suggesting a compensatory 

mechanism for BAX inhibition by cholesterol. Bile acids lithocholic and chenodeoxycholic 

acids are toxic and induce apoptosis at high concentrations, thus we reasoned that the 

physiological detergents may directly activate BAX. While truncated BAX (ΔC) was effectively 

activated by monomeric detergent, the full-length protein required micellar bile acids, implying 

that bile acids could play at most only an amplification role in BAX-mediated apoptosis. 

 In nonstressed cells, BAX exists as a soluble, cytosolic monomer or loosely affiliated 

with mitochondria while cellular recognition of death signals induces BAX transition to a 

membrane-integral state. The physical basis of this translocation and locale of BAX activation 

are poorly characterized. Assemblage of a cell-free scheme comprising full-length BAX, 

antiapoptotic BCL-XL, and BH3-only activators cBID & BIMS, and synthetic vesicles revealed 

that BIMS more effectively activates BAX and is less suppressible by BCL-XL. Each of these four 

proteins can independently adsorb to membranes and that BCL-XL “outraces” BAX to their in-

membrane functional sites. Membrane-bound cBID and BIMS robustly accelerate the bilayer 

integrations of BAX & BCL-XL; the two activators recruit equivalently at the membrane 

surface, however, suggesting that BIMS, unlike cBID, can activate BAX prior to interaction on a 

bilayer scaffold. 
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1.1 | Distillation 

 BAX is a proapoptotic member of the BCL2 family and lies at the convergence of a 

multitude of cell death signaling pathways. This dissertation is primarily concerned with 

interrogating the sequence of events culminating in BAX pore formation which, inside 

mammalian cells, results in cytochrome c liberation from mitochondria and subsequent cellular 

demise. BAX is a soluble, cytosolic, and monomeric protein that transitions to a bilayer-

integral, oligomeric assemblage that permeabilizes biological membranes. This process can be 

delineated into three basic steps: 1) translocation to a membrane, 2) integration, and 3) 

oligomerization from which membrane pores emanate (Fig. 1.1). This first chapter describes 

the tripartite regulatory scheme of the BCL2 protein family which governs BAX activation. 

The second chapter details our investigation of BAX-membrane integration and 

oligomerization kinetics and the inhibitory effect of cholesterol on the proceeding. Chapter 

Three extends our study of BAX pore activation as influenced by cholesterol derivatives. The 

fourth chapter examines BAX translocation, integration, and pore formation and their 

modulations by anti- and proapoptotic BCL2 kin. Chapter Five proposes further investigative 

efforts and Appendix I marshals biophysical and structural evidences to proffer a model of 

active, membrane-integral BAX. Appendices II-V comprise experimental inquiries, to which 

this dissertation’s author contributed substantially, that address BAX in-membrane 

oligomerization and elucidate physical mechanisms by which BAX induces bilayer poration. 
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Fig. 1.1 

 

 

 

 

 

 

Fig. 1.1 | Sequence of BAX pore formation. Translocation to membranes, integration, 
and subsequent oligomerization.  
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1.2  | Vertebrate Apoptosis 

Apoptosis is the most prevalent form of programmed cell death in animals and is a 

tightly-regulated process used to sculpt tissue during development and is critical for 

maintaining homeostasis (1). First defined morphologically, apoptosis was characterized by cell 

shrinkage, membrane blebbing, chromatin condensation, and DNA fragmentation (2). 

Dysregulation of this death program manifests as a multitude of pathologies – insufficient 

ablation of aberrant cells can lead to cancer or autoimmunity whereas excess educes the likes of 

type I diabetes and neurodegeneration (3). 

The apoptotic process is a coordination of genetic and biochemical pathways, 

proximally effected by cysteine-aspartate proteases (i.e. caspases) which drive the demolition 

and packaging of dying cells for clearance (4). Caspases are produced as proenzymes and thus 

require activation to become catabolically competent. In vertebrates, caspase activation is 

elicited primarily by two pathways—the extrinsic and intrinsic (or mitochondrial) (Fig. 1.2). 

The extrinsic pathway promulgates death signals received via cell membrane death receptors 

like TNFR1 (tumor necrosis factor 1), Fas (APO1/CD95), and TRAILR1/2 (TNR-related 

apoptosis inducing ligand receptor 1/2) which are activated when engaged by their cognate 

death ligands outside the cell (1). Active receptors then assemble into a death-inducing 

signaling complex (DISC), resulting in activation of initiator caspases-8 and -10 which then 

cleave and activate effector caspases-3 and -7. 

The intrinsic apoptotic pathway is a complementary death signaling cascade that 

responds to genotoxicity, ER and oxidative stresses, and cytokine or growth factor deprivation. 

These signals converge at mitochondria, resulting in their outer membrane permeabilization 
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(MOMP) and egress of apoptogenic factors into the cytosol. MOMP occurs at an indefinite 

time after reception of a death signal due to varying intracellular concentrations of signaling 

molecules; caspase activation and apoptosis, however, usually ensue permeabilization within 

minutes (5). Foremost of the mitochondrial proapoptotic factors is cytochrome c, whose 

liberation from the intermembrane space allows it to bind inactive adapter protein Apaf-1 (6). 

Cytochrome c binding initiates the adapter’s conformational change and heptamerization into 

a complex termed the apoptosome which then recruits and activates caspase-9 for subsequent 

cleavage and activation of effector caspases-3 and -7 (7). MOMP also releases other 

proapoptotic factors such as Smac/DIABLO, AIF, HtrA2/Omi, and EndoG to further 

promulgate death signals (8,9). Notably, the extrinsic and intrinsic pathways operate largely in 

parallel but not without some intersection. Cells undergoing apoptosis induced by Fas are 

grouped into two categories: type I cells, such as lymphocytes, are effectively killed by the 

extrinsic pathways whereas type II cells, like pancreatic β–cells and hepatocytes, require 

amplification of the death signal via the intrinsic pathway (10). 
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Fig. 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.2 | Convergence of intrinsic & extrinsic apoptosis pathways. Executioner 
caspases can be activated either directly by initiator caspases or through apoptosome 
assembly consequent of MOMP. The BCL2 family governs MOMP via complex balance of 
interactions between pro- and antideath members. Adapted from Y-L P. Ow et al. (2008) 
Nat Rev Mol Cell Biol 9, 532-542. 
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1.3 | The BCL2 Family 

The BCL2 protein family is the primary governor of mitochondrial outer membrane 

integrity; it comprises both anti- and proapoptotic members whose regulation and interactions 

dictates a cell’s commitment to survival or suicide (11) (Table 1.1). Membership in this family 

is largely assigned by conservation in four sequence-defined BCL2 homology (BH1-4) domains 

that control binding between members. The antiapoptotic members encompass all four BH 

domains and are typically localized to their active sites—mitochondrial outer membranes—but 

also may be cytosolic or affiliated with ER and nuclear membranes (12) (Fig. 1.3 & Table 1.1). 

BCL-2, BCL-XL, MCL-1, A1/BFL-1, & BCL-w constitute the predominant members of the 

class and antagonize MOMP via heterotypic binding of proapoptotic BCL2 proteins. The 

proapoptotic members are subdivided into multidomain effectors and BH3-only signaling 

proteins. BAX and BAK are the pore-forming effectors and include BH1-3 and a degenerate 

BH4 (13,14); counterintuitively, BAX/BAK share a similar tertiary fold with the antiapoptotic 

proteins despite their oppositional functions (15,16) (Fig. 1.4). While BAK constitutively 

affiliates with mitochondrial outer membranes, BAX resides largely in the cytosol or loosely 

associated with intracellular membranes (17-19). Following activation, BAX/BAK 

homodimerize and further assemble into multimeric complexes which elicit MOMP (20). As 

even healthy cells express both BAX and BAK abundantly, the two death proteins’ are 

neutralized until damage is recognized (21-23). 
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Table 1.1 | BCL2 family proteins (non-exhaustive compilation) 

 

 

 

 

Fig. 1.3 

 

 

 

 

 

 

 

 

Antiapoptotic 
(multidomain; BH1-4) 

 
 

Proapoptotic 
(multidomain; BH1-4) 

 
 

Proapoptotic 
(BH3-only) 

Direct 
Activator 

Sensitizer 
 

    BCL-2     BAX     BID X  
    BCL-XL     BAK     BIM X  
    MCL-1      PUMA X  
    A1      BAD  X 
    BCL-w      NOXA  X 
      BIK/BLK  X 
      BMF  X 
      HRK/DP5  X 
      Beclin-1  X 
      BNIP3/NIP3  X 
      BNIP3L/NIX  X 

Fig. 1.3 | Generalized schematic of BCL2 protein structure. Depicted are representations 
of 1° and 2° structures of multidomain (anti- & proapoptotic) and BH3-only proteins (top 
& bottom panels respectively). α-helices in blue indicate central, mostly hydrophobic 
hairpin and α-helices in red signify membrane anchors. 



9 

 

Fig. 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAX (1F16) 

BCL-XL (1LXL; 
modified) 

BID (2BID) 

Fig. 1.4 | Ribbon representations of BAX, BCL-XL, & BID. Illustrated are representatives 
of pro- and antiapoptotic multidomain BCL2 proteins. BID also depicted to demonstrate 
structural homology; it is the lone BH3-only protein known to adopt a defined tertiary 
fold. Colors of domains correlate with Fig. 1.3: central hairpin (blue), membrane anchor 
(red), and BH3 domain (green). For BID, the N-terminal, solubilizing fragment is colored 
magenta. For BCL-XL, the C-terminus is homology-modeled based on BAX & BCL-w. 
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BH3-only proteins are the most diverse and least conserved of the BCL2 family, 

containing only the titular BH3 domain (24-26). These proteins integrate disparate cell stress 

pathways and are classified according to their multidomain BCL2 binding partners – 

sensitizer/derepressor BH3s antagonize only the antiapoptotic contingent while direct 

activator BH3s interact both with the antiapoptotics and trigger activation and 

multimerization of prodeath effectors BAX and BAK (27,28). The complex interaction 

network between the three classes of BCL2 proteins—antiapoptotic, BH3-only, and 

proapoptotic effectors—shifts the balance toward or away from MOMP and apoptosis. 

Distinct BH3-only proteins initialize the cell death program in response to a host of 

cellular insults, thus their activities are stringently regulated by transcriptional and post-

translational mechanisms. BH3s that are transcriptionally-upregulated include PUMA, BIK, & 

NOXA (by tumor suppressor p53) and BIM & BNIP3L (by FOXO3A) (29-33). 

Modifications like phosphorylation or proteolytic cleavage are also common—BID becomes 

active and translocates to mitochondria after cleavage by caspase-8, calpains, granzyme B, or 

cathepsin (34,35). BAD is activated by dephosphorylation in an Akt-dependent manner 

(36,37). BIM is further governed by multiple mechanisms: alternative splicing, 

phosphorylation, and sequestration away from mitochondria (38,39). RNA interference has 

recently emerged as a means for regulating BMF, PUMA, & BIM (40-42). 

1.4 | Two Schemes of BAX/BAK Activation 

The process by which BAX/BAK transition from inactive monomers to apoptotically-

proficient oligomers has been scrutinized for nearly 18 years since discovery of the first 

proapoptotic BCL2 family member, BCL-2 associated X protein (i.e. BAX) (43); subsequently, 
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BAX comrade-in-arms BAK (BCL-2 homologous antagonist/killer) was uncovered as another 

prodeath BCL2 member (44-46). Genetic knockout mouse models of bax-/- and bak-/- have 

shown the two to be largely compensatory but, when both ablated, indispensable for eliciting 

MOMP (22,23,47,48). With the discovery of BAX, BCL2 family governance of apoptosis (and 

MOMP) was initially proposed to be a rheostat, a simple ratio between BCL-2 and BAX that 

tilted cells from living to dying (43). This model was soon obviated by discoveries of multiple 

antiapoptotic, BCL-2-like proteins and the BH3-only protein subclass; genetic and biochemical 

evidence was marshaled in support of two succeeding models – the displacement and the direct 

activation schemes (28,49). The displacement model posits that BAX/BAK are intrinsically 

active and the proteins’ oligomerization must be continually repressed via sequestration by 

antiapoptotics to prevent MOMP. Upon death signaling, BH3-only proteins liberate 

BAX/BAK from inhibitory interactions thus allowing the prodeath effectors to 

homooligomerize and induce MOMP. Conversely, the direct activation model provides that 

BAX/BAK are intrinsically nonactive and require interaction with some activating molecule 

(typically a BH3-only protein) to trigger the prodeath effectors’ oligomerization. Accordingly, 

antiapoptotics sequester BH3-only proteins to preclude BAX/BAK activation and also bind 

BAX/BAK to prevent homooligomerization. The direct activation regime has since been 

further refined by the hierarchical and embedded-together schemes – the former defines three 

BAX/BAK direct activator BH3s (BID, BIM, & PUMA) with other BH3s serving to occupy 

the antiapoptotics and the latter integrating the protein conformational changes induced by 

membrane localization (27,50). 
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The origin of this rift in models of BCL2 function derives from conflicting evidence 

from differing experimental systems. A few lines of evidence support the displacement model 

(51): when first identified, overexpression of BAX and BAK resulted in mammalian cell death 

(43-45). Ectopic BAX expression in yeast, which have no endogenous BCL2 homologs, induces 

a lethal phenotype by abrogating mitochondrial respiration, an effect suppressible by co-

expression of BCL-2 or BCL-XL (52,53). Direct interactions of BH3-only proteins with 

BAX/BAK are difficult to detect via immunoprecipitation from cellular extracts and in vitro 

measures of BAX/BAK binding to BH3-only proteins or BH3 peptides reveal very weak 

affinities (54-56). Double knockout bid-/- bim-/- mouse models have unimpaired apoptosis and 

complementary cultured tissue experiments found that mutating antiapoptotics to prevent 

BAX/BAK incarceration are driven to apoptosis without stimulus (57,58). 

Despite these findings, the displacement model has been largely subverted by evidence 

from cell-free reconstitution and other biochemical/physical assays where components are 

tightly coordinated. BAX applied to synthetic vesicles requires an activator BH3 peptide or 

BH3-only protein to efficiently induce leakage (59-61). Employment of hydrocarbon-stapled 

BH3 peptides (to enforce α-helicity) allowed measurement of nanomolar BAX affinities for 

activator BH3s BID and BIM (56) and an engineered soluble BAK construct was found by 

NMR to weakly bind a BID BH3 peptide (15). Perhaps most convincingly conveying the direct 

activation model was discovery of FRET (Förster resonance energy transfer) between labeled 

BAX and tBID, but only when the two proteins were bound to vesicles (62). As in vivo 

validation of the direct activation paradigm, recent work demonstrated that a bid-/- bim-/- puma-
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/- triple knockout mouse model evoked a similar phenotype as the bax-/- bak-/- double knockout 

(63). Notable, however, was a disparity in embryonic lethality, with the TKO surviving 

postnatally with much greater success than the bax-/- bak-/- DKO, suggesting that while BID, 

BIM, and PUMA may provide the dominant activating function, BAX/BAK can become 

apoptotically proficient by other means. 

Indeed, the less severe lethality of bid-/- bim-/- puma-/- TKO is not unexpected as 

BAX/BAK activators beyond those three BH3-only proteins have been identified. Specifically, 

both changes in pH and mild heat can induce BAX/BAK activity (64-66). The tumor 

suppressor p53 can directly interact with and activate BAX & BAK (67,68) and prostaglandins 

were recently shown to activate BAX (69). Nonionic detergents drastically alter BCL2 protein 

structure and elicit a BAX conformation that porates vesicles and isolated mitochondria 

(70,71). A new report employing BH3 peptides found that while BID & BIM most potently 

activate BAX/BAK, BMF & NOXA could also mildly activate, while PUMA, BIK, & HRK 

weakly activated (and BAD was completely ineffective) (72).  In fact, the binary delineation 

between intrinsically active (on) vs. intrinsically inactive (off) may be artificial, as in vitro 

experimental regimes have shown a small degree of BAX/BAK activity on synthetic LUVs 

(which lack antiapoptotic defense mechanisms of mitochondria) in the absence of activators 

(72-75). 

1.5 | Structural Details of BCL2 Interactions 

During the first eight years of BCL2 study, the biochemical bases of their oppositional 

anti- and proapoptotic functions remained elusive. Clearly demonstrated, however, was that 
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homo-* and heterodimerization were decisive in the mortality decision and that BCL2 proteins 

localized to intracellular membranes, especially the mitochondrial outer membrane (76). BCL2 

governance of mitochondrial outer membrane integrity was significantly alluded to by a pair of 

1996 discoveries: 1) that egress of cytochrome c from the intermembrane space could induce 

apoptosis and 2) the elucidation of BCL-XL structure (77,78). BCL-XL was found to comprise a 

tertiary fold remarkably similar to those of bacterial pore-forming colicins A & E1 and 

diphtheria toxins—a central, mostly hydrophobic α-hairpin (α5-6) shielded from solution by 

six amphipathic α-helices. Research then coalesced around the premise that BCL2 proteins 

formed ion channels (79-82); subsequently, the liberation of cytochrome c was found to be a 

function of BAX and BAK and their homooligomerizations (83-87). 

* [An unfortunate early diversion in the BCL2 field was discovery of BCL-2 homodimers in cell extracts 

(43,88). It was not until five years later that non-ionic detergents were found to substantially alter the 

conformations of BCL2 proteins (71,89). Homodimerizations between full-length BCL-2 and BCL-XL 

isoforms were actually artifacts of extraction by non-ionic detergents (90). These detergents, like Triton 

X-100 or n-octylglucoside, destabilize the BCL2 core and induce eversion of their BH3 helices to allow 

homodimerization. These findings, however, pointed to the relevance of shortened forms of BCL-2, 

BCL-XL, and MCL-1, deleted of their stabilizing BH4 domains, that genuinely expose their BH3s to 

allow incarceration (91-94).]  

In addition to BCL-XL, the structures of antiapoptotic BCL-2, MCL-1, BCL-w, A1, & 

BCL-B, proapoptotic BAX & BAK, and BH3-only BID have been solved by x-ray 

crystallography and NMR (15,16,95-101). The multidomain proteins all share a conformation 

that is strikingly similar to that of BCL-XL; even BH3-only BID adopts an α-helical fold 
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reminiscent of the multidomain proteins. BID, however, is an outlier of its subclass, as other 

BH3-only proteins are intrinsically disordered in solution (102); BID requires proteolytic 

cleavage for activation which generates a carboxy-terminal p15 fragment that is α-helical but 

dynamically disordered when separated from its amino-terminal p7 fragment (103). 

For multidomain BCL2 proteins, the conserved BH domains 1-3 define a pocket on 

the protein surface that can accommodate an α-helix (Fig. 1.5). Solution structures of BAX and 

BCL-w (& BCL-XL) reveal that these proteins occlude this pocket with a hydrophobic C-

terminal α-helix that is common to all multidomain BCL2 members and can be utilized as a 

membrane anchor (16,104) (Yong Yao, personal communication). Whereas proapoptotic BAX 

is predominantly cytosolic, its co-executioner BAK obligately associates with mitochondrial 

outer membranes via its C-terminus where it is incarcerated by the mitochondrial porin 

VDAC2 (105). Localization to membranes via tail anchor is the typical means of targeting 

BH3-only proteins as well (106); BID again is an exception as it lacks a lengthy C-terminal 

helix but employs its hydrophobic central hairpin (α6-7) to target mitochondria (107).  

The hydrophobic pocket bounded at one end by BH1-2 (&3) of BCL-2 was initially 

identified by mutational analyses as being required for homodimerization and 

heterodimerization with BAX (88). A year later, BAX/BAK BH3 domains were revealed to be 

necessities for their homodimerizations and sequestration by antiapoptotic proteins (108,109). 

Solution of the BCL-XL structure led to speculation that the pocket formed by BH1-3 (and α3-

4) could act as an acceptor surface for another BH3 domain (78). This hypothesis was 

confirmed biochemically by the discovery of BH3-only BID, whose incarceration by BCL-2 was 

uncovered to be dependent on BID BH3 and the BCL-2 BH1-3 pocket (26), and structurally 
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by NMR of BCL-XL bound to an α-helical BAK BH3 peptide (110) (Fig. 1.6). To date, all the 

major antiapoptotic BCL2 proteins have been structurally resolved, as monomers or complexed 

with pocket-bound BH3 peptides. 

A number of studies have undertaken quantification of antiapoptotic/BH3 peptide 

affinities and have established that antiapoptotic BCL2 proteins promiscuously bind BH3s but 

with varying proclivities (101,111,112). For example, BAD is sequestered by BCL-2, BCL-XL, 

and BCL-w while NOXA is restrained only by MCL-1 and A1. Nevertheless, all antiapoptotics 

tightly incarcerate direct activator BH3s BID, BIM, & PUMA as well as BH3s from BAX & 

BAK (111). 
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Fig. 1.5 
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(1F16) 

Fig. 1.5 | BAX BH domains. Connolly surface representations of BAX with BH domains 
colored as in Fig. 1.3: BH1 (orange), BH2 (blue), BH3 (green), BH4 (purple). Top panel 
shows BAX canonical BH3 binding groove, bounded partly by BH1-3 & occluded by its C-
terminal (α9) membrane anchor. Bottom panel depicts fold-stabilizing (α1) BH4 helix. 
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Fig. 1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.6 | Connolly surface representations of BAX & BCL-XL
ΔC/BAX BH3 complex. BAX 

(top) in solution occludes its canonical BH3 binding pocket with a C-terminal membrane 
anchor (red). BCL-XL

ΔC (bottom) sequestering a BAX BH3 peptide. Helices are colored 
similar to Fig. 1.3. Surface residues are pigmented: polar (grey), nonpolar (yellow), acidic 
(red), basic (blue). 

BAX 
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BCL-XL
ΔC/BAX BH3 
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The BH4 region, identified last and least conserved sequentially, embodies the first α-

helix of the BCL2 core and is structurally distant from the hydrophobic pocket defined by 

BH1-3 (113,114) (Fig. 1.5). BH4, however, acts to stabilize the overall fold of the proteins 

(78,97,115). When the BH4 domain is proteolytically-cleaved from BCL-2, the protein 

reverses its anti-death role and becomes proapoptotic (116). Nuclear receptor Nur77 has been 

shown to bind BCL-2; this interaction triggers BH4 disengagement, BH3 eversion, and allows 

heterodimerization with BCL-XL (93,94). BCL-XS and MCL-1S, uncommon splicing 

variants which delete BH1 & 2, heterodimerize with and antagonize full-length BCL-XL and 

MCL-1 respectively (91,92). Proteolytic removal of BH4 from proapoptotic BAX has also been 

suggested to render the protein non-functional as a pore-former but retains antagonism of 

antiapoptotics (117). In neurons, BAK can be regulated by mRNA splicing, resulting in a 

protein that lacks BH1 & 2 and functions like a BH3-only signaler (118). These findings 

collectively uncover that multidomain BCL2 members can be transmuted into prodeath, BH3-

only-like proteins by post-transcriptional and -translational mechanisms. Their relevance in 

cellular mortality decisions, however, is not well-plumbed. 

What is clear is that BAX & BAK activation to pore competence encompasses multiple 

conformational intermediates (Fig. 1.1; detailed further in Appendix I). For instance, BAX 

targeting to membranes is consequential of exposure of the C-terminal α9 helix and this 

exposure correlates to eversion of the N-terminal α1 (119,120). The two pore-forming effectors 

evict their BH3 helices, normally packed against α5.6, for homodimerization or sequestration 

by antiapoptotic proteins (75,110,111,121) (Fig. 1.6). These rearrangements result in 

membrane insertion of the α5-6 hairpin to disrupt bilayer integrity (73,122,123). 
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2.1 | Summary 

The importance of BCL2 family proteins in the control of cell death has been clearly 

established. One of the key members of this family, BAX, has soluble, membrane-bound, and 

membrane-integrated forms that are central to the regulation of apoptosis. Using purified 

monomeric human BAX, defined liposomes, and isolated human mitochondria, we have 

characterized the soluble to membrane transition and pore formation by this protein. For the 

purified protein, activation, but not oligomerization, is required for membrane binding. The 

transition to the membrane environment includes a binding step that is reversible and distinct 

from the membrane integration step. Oligomerization and pore activation occur after the 

membrane integration. In cells, BAX targets several intracellular membranes but notably does 

not target the plasma membrane while initiating apoptosis. When cholesterol was added to 

either the liposome bilayer or mitochondrial membranes, we observed increased binding but 

markedly reduced integration of BAX into both membranes. This cholesterol inhibition of 

membrane integration accounts for the reduction of BAX pore activation in liposomes and 

mitochondrial membranes. Our results indicate that the presence of cholesterol in membranes 

inhibits the pore-forming activity of BAX by reducing the ability of BAX to transition from a 

membrane-associated protein to a membrane-integral protein. 

 

 

 

 

 



28 
 

2.2 | Introduction 

Genetically programmed apoptotic cell death occurs in all multicellular organisms (1). 

Control of the death decision prominently involves a three-part regulatory ensemble of 

proteins, the BCL2 family (2). Twenty-five genes comprise this family and they generate three 

functional classes of proteins: proapoptotic and antiapoptotic actors with a supporting cast of 

BH3-only proteins that modulate their interaction (3,4). To function as the apoptotic decision 

agent, these proteins collaborate to form a gateway, “pore”, in the outer mitochondrial 

membrane (OMM) (5-7). The formation of this pore requires the availability of active and 

uninhibited BAK or BAX in the OMM (8). BAX and many of the other proteins are soluble 

and move to the mitochondrial outer membrane in concert with the death signaling (9,10). 

Others have demonstrated the formation of BAX homo-oligomers in mitochondria and 

inferred a correlation with a mortality decision in the OMM (11-14). However, the nature of 

the BCL2 family protein interactions while in membranes is not clear. Furthermore, the 

molecular events and environmental conditions that trigger BAX transformation to an active 

state have remained elusive. Recent studies have indicated that suppression of BAX inhibition 

is critical in the mortality decision (15-17). While it is possible that negative regulation is a 

dominant theme in apoptosis, this gives no explanation of the mechanism by which BAX 

becomes situated in the OMMs and is availed of the negative regulation. Furthermore, if the 

regulation is entirely negative by antiapoptotic BCL2 family members in the OMM, then the 

escape of the remaining and vastly larger membrane surface of the cell from BAX predation is a 

mystery. 
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Both pore-forming and regulatory interactions of BCL2 family proteins occur at the 

mitochondrial outer membrane. Previously, we have shown that one proapoptotic protein, 

genetically engineered active BAX (BAXΔC), can form large pores in planar lipid bilayers (18). 

Subsequently, we characterized these pores in defined liposomes as consisting of dimers and 

tetramers of BAXΔC. The tetrameric pore was able to accommodate cytochrome c for release 

from the liposome (19). From the kinetics of pore activation upon addition of soluble 

monomeric BAXΔC, we concluded that the oligomerization into pores occurred after 

membrane insertion and postulated that it would be dependent upon the membrane 

environment. Therefore, we have undertaken studies to explore the role of membrane lipids on 

BCL2 family protein pore activation. 

In these studies, we have determined the BAXΔC pore activation in the presence of 

cholesterol and the enantiomer of cholesterol (20). Cholesterol is necessary for membrane 

function in eukaryotic cells, but the chemical and physical basis for the cholesterol requirement 

remains unclear (21). Cholesterol is synthesized in the endoplasmic reticulum and is 

internalized with the plasma membrane and by receptor-mediated endocytosis. From both the 

endoplasmic reticulum and the late endosomal pathway, cholesterol enters other compartments 

of the cell (22). In steroidogenic tissues, for example, adrenal and placenta, hormone 

production is initiated by side-chain cleavage in the mitochondrial matrix (23,24). In other 

cells, mitochondrial cholesterol oxidation occurs at lower rates but can become pathogenic 

when the cells are cholesterol overloaded (25). When cholesterol is taken up by mitochondria, 

it first resides in the OMM and is then transferred through the contact sites using the 
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peripheral benzodiazepine receptor to the matrix for oxidation (26,27). It has been suggested 

that movement of cholesterol from the OMM to the inner mitochondrial membrane, where 

oxidation occurs, is facilitated by a cholesterol recognition/ interaction amino acid consensus 

motif that is observed in the peripheral benzodiazepine receptor (28). In mammalian cells, the 

plasma membrane has the highest cholesterol content but significant cholesterol, oxysterols, 

and bile acids are found in the mitochondria because of the matrix oxidative production of 

these steroids (29,30). Cholesterol has been reported to be elevated in cultured tumor cells 

(31,32). Recently, bilayer cholesterol content has been shown to influence BAX 

oligomerization and trypsin resistance in liposomes and mitochondria (33). Others have 

reported complex relationships among lipids, cholesterol, BAX, and permeability transition 

pore activation (34). These observations have been used to explain the effects of cholesterol 

upon cellular apoptosis. We have studied the effect of cholesterol on BAX pore formation in 

liposomes and mitochondria and conclude that the cholesterol content of the plasma 

membrane protects it from the pore formation when BAX is activated. In particular, the 

addition of cholesterol to the outer membrane of mitochondria inhibits pore formation by 

BAX. We discuss the mechanism of cholesterol inhibition of BAX pore activation in terms of 

membrane binding and integration and speculate on how this might influence apoptosis in 

mammalian cells. 
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2.3 | Results 

Although the BCL2 family proteins are clearly the arbiters of a mortality decision, the 

biochemical steps that conclude in the mitochondrial death decision are not yet clear. We have 

pursued a reconstitution methodology to study these phenomena in order to clearly define the 

biochemical and biophysical processes in the reaction steps leading to the initiation of 

apoptosis. Initially, these studies revealed that a carboxy-terminally truncated form of active 

BAX, BAXΔC, could form a cytochrome c competent pore in liposomes (19). Hill analysis 

revealed that in liposomes, active BAXΔC inserted into the membrane as a monomer, formed a 

functioning pore as a dimer, and displayed a concentration-dependent progression to a tetramer 

complex that transferred cytochrome c out of the liposomes. We are revisiting this method of 

analysis in order to study the effects of lipid environment on BAX membrane integration and 

pore formation. 

Human BAX expression, purification, and studies of pore activation 

Native BAX in mammalian cells is a soluble protein that must be activated to induce 

apoptosis (3,35). This protein can be activated in vitro in several ways. In this study, we have 

used a genetically-engineered form of active human BAX, BAXΔC, which has a portion of the α-

helix 9 removed. In 0.1% n-octylglucoside, this form of human BAXΔC is monomeric with a 

molecular weight of 19,000 ± 1200 Da as determined by dynamic light scattering and SDS-

PAGE (Fig. 2.1A). In these studies, we used the human BAXΔC because we would employ 

human mitochondria to study pore formation in these organelles. The pore activation and 

stoichiometry of human BAXΔC have not been previously reported. The human and mouse 
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BAX proteins are very similar in sequence but arginine 64 in the critical BH3 region is replaced 

with a lysine. In addition, there is a rearrangement of the prolines adjacent to the first α-helix 

(residues 46–53). Proteolytic cleavage and phosphorylation in this region of BAX influence the 

mitochondrial translocation and pore formation (36,37). 

We concluded that confirmation of a similar mechanism of pore formation by the 

human protein was warranted. Using liposomes loaded with carboxyfluorescein (CF) at 

quenching concentrations, we studied the activation of pores by human BAXΔC (Fig. 2.1B). 

The time-series data normalized to the total dequenching for each preparation of liposomes are 

an exponential release. This is consistent with a single pore producing full dequenching from a 

liposome and the exponential time course representing pore activation in the liposomes. The 

measured time constants were used in a Hill analysis of the human BAXΔC pore activation (Fig. 

2.1C). The concentration dependence of human BAXΔC activation in liposomes indicates a 

pore activation stoichiometry of 2 and 4, similar to the previously published model for the 

murine protein (19).  
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A B 

Fig. 2.1 | Human BAXΔC pore-forming activity in liposomes. Using human BAXΔC, we 
studied the kinetics of pore activation in liposomes by the purified protein. The liposome 
assay was done as previously described (19). A, Preparation of human BAXΔC expressed 
and purified as described in Materials and Methods and run on SDS-PAGE gel to 
demonstrate size and purity. B, Time-series examples of human BAXΔC pore activation as 
added protein concentration is increased. Using the time-series data curve fitting to an 
exponential function, we determined the time constant and the extent of release. C, The 
time constants determined from the time series and concentration dependence of pore 
activation were subjected to Hill analysis. Each plotted point represents the average of 
two to three determinations with standard deviations shown when they were bigger 
than the symbol. The data were fitted to a polynomial using the Levenberg–Marquardt 
algorithm. The slope of the fitted line was determined at each point and is plotted in the 
inset graph. 
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Fig. 2.1 
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Mitochondrial preparation for the study of OMM permeability 

The permeability of the OMM is a key factor in the apoptosis death decision (38). 

These studies have used HeLa cell mitochondria and human BAX protein. We have adapted 

the fusion of liposomes with purified mitochondria to create a preparation for the study of 

OMM permeability (39,40). The unfused liposomes were removed by low-speed pelleting of 

the resulting mitochondria. The fused mitochondria (fM) have a normal double-membrane 

morphology (Fig. 2.2A). The captured CF produced photoconversion of diaminobenzidine 

and electron-dense deposition in the intermembrane space (Fig. 2.2A, photoconverted). CF-

containing mitochondria and liposomes were identified by this method, but the insoluble 

photoconversion product obscures the membranes (41,42). 

Cytochrome c-dependent oxygen consumption can be used to evaluate the continuity 

of the OMM (43). When our preparation was studied using a Clark electrode to determine site 

IV-dependent oxygen consumption in the presence of saturating substrate and oxygen, they 

consumed 43.1 ± 0.4 nAtom mg−1 min−1, which is similar to that of rat liver mitochondria 

(48.5 ± 0.4 nAtom mg−1 min−1) but less than that of skeletal muscle or kidney mitochondria 

(44). This rate of oxygen uptake suggests that in the preparation, the OMM is intact and 

cytochrome c is retained within the intermembrane space. Using the membrane-active peptide 

melittin, we interrupted the uptake of oxygen by the mitochondria as shown in Fig. 2.2B. This 

reduction is reversed by the addition of 100 μM horse cytochrome c to the electrode chamber. 

The oxygen consumption in these preparations is dependent upon ADP and phosphate and is 
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sensitive to azide. We conclude that our isolated mitochondria have an intact OMM and that 

cytochrome c is retained during the isolation procedure. 

Ca2+ dependence of fM permeability 

The fM preparation was performed in media containing ethylene glycol bis(β-

aminoethyl ether)N,N′-tetraacetic acid (EGTA) so that Ca2+ concentration is less than 10 nM. 

At this low calcium concentration, the CF is retained within the OMM barrier. Increasing the 

media calcium to 100 or 200 μM initiated rapid dequenching of the CF from the 

intermembrane space (Fig. 2.2C). Dequenching is normalized to the maximum dequenching 

produced by 1% Triton X-100. The dequenching is rapid and dependent upon calcium 

concentration and is consistent with activation of the voltage-dependent anion-selective 

channel (VDAC) of the OMM (45). 
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Fig. 2.2 
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Fig. 2.2 | Studies on isolated mitochondria after fusion with CF liposomes. A, 
Mitochondria were prepared and fused with 200 nm liposomes containing 20 mM CF as 
described in Materials and Methods. These mitochondria were then pelleted, fixed, and 
embedded for sectioning and electron microscopy. In all cases, the mitochondria have a 
traditional two-membrane morphology after fusion with liposomes. Exposure of the 
isolated mitochondria to UV light photoconverted the CF and photooxidized 
diaminobenzidine, producing the electron-dense depositions in the intermembrane 
space. Two large unilamellar liposomes that were used in the fusion loading of the 
mitochondria are seen on the right. The upper liposome was photoconverted and the 
lower one was not exposed to UV light (see Materials and Methods). B, After isolation 
and fusion with liposomes containing CF, the mitochondrial suspension was diluted to 1 
mg/mL protein and O2 consumption was measured. At the first arrow, 10 mM ascorbate 
and TMPD were added, initiating rapid O2 uptake that was dependent upon cytochrome 
c and cytochrome oxidase; at the second arrow, 200 nM melittin was added; at the third 
arrow, 100 μM horse cytochrome c was added. C, Mitochondria were isolated and fused 
with liposomes as described in Materials and Methods in the presence of 1 mM EGTA. 
Subsequently, the washed mitochondrial suspension was diluted 1:100 into the assay 
buffer or buffer added with 100 or 200 μM CaCl2 (from bottom to top), and fluorescence 
dequenching followed for the indicated times. All dequenching values were normalized 
to the 1% Triton X-100-initiated dequenching. 
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Presence of porin-like channel activity in the mitochondrial preparation 

The release of anionic CF by Ca2+ elevation suggests that VDAC is present but in a low 

conductance state in our fM preparation (45). We have directly assessed the channel activity of 

the fM in planar lipid bilayers. Using our preparation of mitochondria that was post-liposome 

fusion, we allowed these to interact with a planar lipid bilayer. After addition of the fM to the 

cis bilayer chamber, fusion transients were observed within 5 min. of continuous stirring. After 

fusions had occurred, the resulting bilayer currents were studied using a ± 60-mV voltage ramp 

or by voltage steps under voltage clamp (Fig. 2.3A and 2.3B). The ramp current pattern was 

typical of many studies of VDAC currents in mitochondrial membrane preparations or 

reconstituted VDAC protein (46,47). The conductance of these currents was decreased when 

the Ca2+ was reduced with EGTA, consistent with the reported calcium-dependent shift of 

VDAC to a low conductance channel (45,48) (Fig. 2.3C). The fM currents also displayed 

voltage-dependent inactivation as described for the VDACs (49). 
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Fig. 2.3 | Channel activity in membranes of liposome–fused mitchondria. A, Isolated, 
liposome–fM from cultured HeLa cells were studied in planar lipid bilayers as described 
in Materials and Methods. Mitochondria were added to the cis chamber of a planar lipid 
bilayer cuvette with a 450- to 150-mM KCl from the cis to trans chambers. After 3–7 
min., current levels stabilized and the cis solution was perfused to 150 mM KCl. Using 
voltage clamp configuration, command ramps (lower panel) were applied to the bilayer 
after fusion events were observed. B, Using buffer containing 100 μM CaCl2 ± 100 μM 
EGTA, we studied the stable voltage dependence of fM. Data were obtained by holding 
the indicated membrane potential for 10 s and using the average current of the final 2 s. 
EGTA (100 μM) was added to the cis chamber, and after 5 min., the voltage dependence 
was determined again. The high-calcium perfusion, voltage dependence, EGTA addition, 
and voltage dependence redetermination were repeated until the bilayer membrane 
collapsed (three cycles). These were averaged for this panel, and the standard deviation 
at each point is shown in the figure. C, Bilayer conductance was calculated from voltage 
ramps (± 60 mV) collected at 1.67 kHz with a 1.2 s duration for each ramp. The bilayers 
were formed and Ca2+ concentration was adjusted as described in (A). The currents were 
normalized to a peak conductance of 1 for comparison. 
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BAXΔC pore activation in the OMM 

Isolated mitochondria used in these studies were loaded with CF by pH-dependent 

fusion of liposomes with the OMM as described in Experimental Procedures. This fusion-

mediated transfer effectively loads the mitochondria intermembrane space with CF but at 

reduced concentration from that present in the liposomes. Therefore, the dequenching 

response of the mitochondria per mole of lipid is less than that of the primary liposomes. 

Consequently, in the assay of BAX pore activation using the fM, we have increased the 

concentration of mitochondria lipid to 4.3 μM, which compensated for the reduced 

dequenching from the fM preparation. The application of BAXΔC to this mitochondrial 

preparation produces a rapid time course of CF dequenching. As shown in Fig. 2.4A, the 

kinetics and concentration dependence of BAXΔC-initiated dequenching from mitochondria 

are qualitatively consistent with that observed in defined liposomes. There is a distinct 

difference between specific activity of BAXΔC pore formation in mitochondria and liposomes. 

The higher activity of BAX in liposomes can be compensated by correcting for the difference in 

lipid content in the assay (Fig. 2.4B). After this adjustment of the rate of pore activation for the 

increased lipid in the mitochondrial assay, the Hill analysis for pore formation in mitochondria 

closely resembles what we have observed in liposomes (Fig. 2.4C). Because of the additional 

lipid in the mitochondrial assay, the lowest BAXΔC concentrations (≈ 1 nM) do not generate 

sufficient activity for accurate analysis. 
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B 

Fig. 2.4 | BAXΔC pore activation in isolated mitochondria. Mitochondria were isolated 
from cultured HeLa cells and fused with liposomes using a modification of a previously 
described technique as described in Materials and Methods. A, Mitochondria were 
diluted into a 500 μL assay volume to give a protein concentration of 0.3 mg/mL and a 
phospholipid concentration of 4.3 μM. The fractional dequenching was fitted to an 
exponential model in order to determine the time constant (τ) for analysis of the kinetics 
of BAX pore activation. B, Comparison of the rate of BAXΔC pore activation in 
mitochondria (up triangle, open) and liposomes (circle, open). Both sets of data are fitted 
by Hill functions (black and gray lines, respectively). The rate of pore activation in 
mitochondria was then normalized for the increased lipid in this assay and then was 
fitted by the dotted black line. The normalized pore activation data points are not shown 
in this panel. C, The pore activation time constants that have been normalized for lipid 
concentration are plotted in the standard logarithmic form for Hill analysis. The data 
were fitted as in Fig. 2.1, and the fitted curve was plotted in black. The liposome fitted 
line is shown in gray for comparison. 

A 

C 

Fig. 2.4 
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Effect of cholesterol on BAX pore activation in defined liposomes 

BAX is found in the cytosol of most eukaryotic cells, but when activated in response to 

proapoptotic stimuli, it becomes integrated into the mitochondrial outer membrane and the 

endoplasmic reticulum (50). Because the membranes in which BAX integrates in vivo have less 

cholesterol than the plasma membrane, we have studied the effect of this sterol on interaction 

of BAX with membranes. 

Cholesterol-containing liposomes were prepared and characterized as described in 

Experimental Procedures. The final cholesterol concentration in the liposomes was 20 mol%, 

and the size of the liposomes was verified by dynamic light scattering. The effect of the 

cholesterol was to dramatically decrease the BAXΔC pore activation (Fig. 2.5A and B). As a 

consequence, τ values (time constants) were large as was the error in their determination. From 

these data, we could analyze the Hill plot but not the pore size. Here, we have succeeded in 

extending the Hill analysis to low enough BAX concentrations that we can discern the 

curvature in spite of the greater error in the measurements of the time constant. When we plot 

the time constants, the effect of cholesterol is dramatic and increases at lower BAX 

concentrations (Fig. 2.5C). 

The sterol-mediated inhibition of BAXΔC pore formation could be due to a direct and 

stereospecific interaction between steroids and the BAX protein. To test this, we prepared 

liposomes using the enantiomer of cholesterol. This analog of cholesterol has the configuration 

inverted at each asymmetric site in the cholesterol molecule (20). This compound was a 

generous gift from Dr. D. Covey of the Department of Developmental Biology, Washington 
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University School of Medicine. The comparison of pore activation in liposomes containing nat-

cholesterol (natural enantiomer of cholesterol) or ent-cholesterol (full enantiomer of 

cholesterol) indicates that the enantiomer is as effective as the natural compound at the 

inhibition of BAX pore activation (Fig. 2.5D). This suggested that the effect resulted primarily 

from cholesterol condensing and other effects upon the lipid membrane environment and not 

from a stereospecific interaction with BAX (51-53). 
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Fig. 2.5 | BAX pore activation and binding in liposomes ± cholesterol. Liposomes 
containing cholesterol were prepared as described in Materials and Methods. A, Selected 
examples of time-series dequenching by human BAXΔC in DOPC:DOPA:C (mole fraction, 
0.59:0.21:0.20) liposomes. Fractional dequenching was computed by comparison with 
Triton X-100 dequenching. B, Hill analysis of the human BAXΔC pore activation in 
DOPC:DOPA:C liposomes. Each determination of the time constant is shown with the 
standard deviation error bars (n ≥ 3). The series of time constants was fitted to a 
polynomial, and the slope of the fitted line is determined and presented in the inset plot. 
Also shown is the fitting from Fig. 2.1C in DOPC:DOPA liposomes, indicated by the dotted 
line. C, Comparison of the concentration dependence of the time constant for pore 
activation in DOPC:DOPA (up triangle, open) and DOPC:DOPA:C (diamond, filled) 
liposomes. Each of the determinations is shown with standard deviation (n ≥ 3). Dotted 
lines are the nonlinear least-squares fitting of the time constants to the Hill equation. D, 
Comparison of BAX pore activation in liposomes composed of DOPC:DOPA:C (up triangle, 
open) and DOPC:DOPA:ent-C (mole fraction, 0.59:0.21:0.20) (circle, open). Each of the 
determinations is shown with standard deviation (n ≥ 3). Dotted lines are the nonlinear 
least-squares fitting of the time constants to the Hill equation. E, Defined liposomes were 
suspended in 200 nM BAXΔC and incubated for 10 min. at room temperature. As 
indicated in the figure, the liposomes were ± cholesterol. The liposomes were 
sedimented at 150,000 × g as described in Materials and Methods to give the pellet (P) 
and alkaline extraction (AE) or supernatant (S). Each sample was separated by SDS-PAGE 
with silver staining. The region at 19–20 kDa of the gel was analyzed for density, and the 
percent distribution of the protein in each fraction was calculated for the figure. 
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Effect of cholesterol on BAX pore activation in mitochondria 

The inhibition of BAXΔC pore activation by the inclusion of cholesterol in the liposome 

membrane composition is dramatic. The simple composition of our liposomes might 

contribute to this inhibition and generate an artificially large inhibition that will not be seen in 

a more complicated membrane. We wanted to test the effect of cholesterol in a physiologic 

membrane in which we could alter the composition in a known fashion. Our fM fulfilled these 

requirements. The native mitochondria supported BAXΔC pore formation well, and by fusing 

them with dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidic acid (DOPA)/C 

liposomes, we could increase the cholesterol content of the OMM to at least 16 mol% during 

the fusion step. It has previously been shown that the cholesterol of the OMM is slowly 

metabolized in isolated mitochondria, indicating that the elevated cholesterol was maintained 

during our experiments (23). The addition of cholesterol to OMM produced a substantial 

inhibition of the pore activation (Fig. 2.6). However, this reduced the BAXΔC activity to such 

an extent that it was not possible for us to characterize the effects on oligomerization and pore 

size. 
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Fig. 2.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.6 | Inhibition of BAX∆C pore activation by sterols in mitochondria. The effect of 
cholesterol on BAX pore activation in isolated mitochondria fused with liposomes 
containing 20 mol% cholesterol. Pore activation in these mitochondria (circles, open) was 
greatly reduced compared to mitochondria fused with DOPC:DOPA liposomes (down 
triangle, open). Mitochondria were also fused with liposomes prepared using the 
enantiomer of cholesterol (up triangle, open). The dotted lines are the results of 
nonlinear least-squares fitting of the time constants for pore activation in mitochondria 
fused to liposomes and cholesterol liposomes. Time constants of pore activation in 
mitochondria fused with liposomes prepared with the enantiomer of cholesterol are not 
fitted. 
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BAX interaction with liposome membranes 

BAX pore formation requires the translocation of the soluble BAX protein to a bilayer 

membrane. This step is critical in vivo and is thought to be a consequence of BAX activation in 

cells (37,54,55). The mechanism of the membrane translocation of BAX must progress along a 

binding followed by an integration model (56). The progress of translocation will be influenced 

by contributions from both the protein structure and the membrane environment. The 

interaction of BAX with membranes can be clearly shown in a defined liposome experimental 

system (Fig. 2.5E). Furthermore, the effect of cholesterol appears to be a reduction of 

membrane-incorporated BAX protein. We have extended the use of defined liposomes to the 

study of BAX membrane translocation by employing surface plasmon resonance. In this 

approach, defined liposomes were supported at the sensor surface using the hydrophobic chips 

(L1) from the Biacore Corporation (57). With the use of these immobilized liposomes, it was 

possible to study the interaction of BAXΔC with the liposome bilayer membrane in 

concentration- and time-dependent experiments. 

For three preparations of activated BAXΔC, the concentration dependence and time 

course of binding and membrane integration were determined and averaged (Fig. 2.7A). The 

membrane-associated BAX populations were characterized by total binding to supported 

liposome membranes at the end of the injection period (60 s) and the mean stable bound 

protein after an extended wash period (300–350 s). These populations were determined and 

are plotted in Fig. 2.7B as the average of the individual trials along with the fitted lines. The 

total BAX membrane binding at 60 s was tested against one- and two-state interaction models. 
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A χ2 analysis indicated a two-state model to be preferable with residuals that were reduced 10-

fold. The resulting high- and low-affinity estimates for membrane binding are listed in Table 

2.1. The concentration dependence of BAX integration into the liposome membrane was 

clearly dominated by a single interaction, and the results of that analysis are also presented in 

Table 2.1. From this analysis of the binding and integration curves, the size of the membrane 

populations of BAX was estimated and is presented as mole fractions to correct for small 

changes in liposome immobilization on the Biacore chip. Inspection of these fitted results for 

membrane association reveals three populations of membrane-associated BAX: high- and low-

affinity populations that rapidly dissociate and the membrane-integrated fraction that slowly 

dissociates. The ratio of total membrane-bound to membrane-integrated BAX increases at low 

BAX concentrations and then begins to fall as membrane capacity becomes saturated (Fig. 

2.7C). 
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Fig. 2.7 
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Fig. 2.7 | BAX∆C binding to supported DOPC/DOPA liposomes. The binding and 
membrane integration of BAX∆C were studied by surface plasmon resonance using 
supported liposomes. A, BAX∆C was injected over an L1 chip covered with immobilized 
DOPC/DOPA (74:26 mol%) liposomes as described in Materials and Methods. This 
protein was prepared as described above without the use of detergent. Prior to exposure 
of the BAX∆C to detergent, the protein did not bind to the liposomes as shown by the 
open circles (○ ○ ○) at the bottom of the graph that indicate the averaged RU response 
for the 25–3000 nM BAX∆C concentration range. After treatment with detergent, the RU 
response for the following concentrations is shown: 25.8 nM (solid), 51.7 nM (dash), 
103.7 nM (dot), 207 nM (dash–dot), 414 nM (dash–dot–dot), 828 nM (short dash). The 
injection phase is indicated by the solid line and the wash phase is denoted by the 
dashed line at the top of the graph. B, Comparison of membrane-associated (□) and 
membrane-integrated (○) protein using the criteria described in the text and calculating 
the average values and standard deviation as described in Materials and Methods. The 
dotted lines represent the best fit to an interaction model as described in the text. C, The 
ratio of binding and integration fraction of protein plotted as the added concentration of 
BAX∆C is increased. Means and standard deviations are computed as described in 
Materials and Methods. 
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Table 2.1 | Analysis of BAX∆C membrane interaction 

Type of membrane 
interactiona 

K1 (M) BAX 
(mole fraction)b 

K2 (M) BAX  
(mole fraction)b 

DOPC:DOPA     
    Membrane binding 2.2 ± 0.4 × 10-6 5.9 ± 0.7 × 10-3 1.37 ± 0.45 × 10-8 0.78 ± 0.31 × 10-3 
    Membrane integration   2.5 ± 0.27 × 10-7 1.8 ± 0.07 × 10-3 
     
DOPC:DOPA:C     
    Membrane binding 1.6 ± 1.2 × 10-6 8.6 ± 4.2 × 10-3 1.4 ± 0.46 × 10-8 1.2 ± 0.2 × 10-3 
    Membrane integration   1.06 ± 0.22 × 10-8 0.86 ± 0.3 × 10-3 
 

a  As described in the text, the BAX membrane populations were identified by binding and integration with 
the membrane. 
b  We have used mole fraction to represent membrane-associated BAX populations to allow a direct 
comparison between experiments as a membrane concentration (58). 
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BAX interaction with liposome membranes containing cholesterol 

In cells, BAX pores are described in the OMM but pores in other membranes have not 

been noted. Specifically, pores in the plasma membrane produce osmotic lysis and necrosis 

(59,60). The osmotic lysis of cells would be inconsistent with the apoptotic program of cells, 

and the molecular basis for this membrane selectivity is important to explaining the physiology 

of cell death. One of the distinctions between intracellular membranes and the plasma 

membrane is the high cholesterol composition of the plasma membrane in most cells. Using 

cholesterol-containing liposomes and mitochondria, we and others observed reduced BAX pore 

activation (33). In the preceding section, we have shown that BAXΔC interaction with 

membranes involves a rapid but reversible binding to the membrane followed by integration 

into the membrane, resulting in a very slow dissociation of the integrated protein population 

from the bilayer. Using surface plasmon resonance, we investigated the effect of cholesterol on 

the liposome binding and integration of BAX. 

The cholesterol-containing liposomes loaded onto the L1 chip similarly to the 

DOPC:DOPA liposomes and blocked albumin access to the chip surface (see Experimental 

Procedures). The interaction of human BAXΔC with liposome membranes containing 

cholesterol is shown in Fig. 2.8. As with the DOPC:DOPA liposomes, detergent activation of 

human BAXΔC was required for significant interaction with the cholesterol-containing 

membranes. For three preparations of activated BAXΔC, the concentration dependence of 

binding and membrane integration were determined and averaged (Fig. 2.8A). Visual 

inspection of BAXΔC interaction with DOPC:DOPA:C liposomes indicated that it was 
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distinct from the BAXΔC interaction with DOPC:DOPA liposomes. The initial membrane 

association was still rapid and larger for the cholesterol-containing membranes. Paradoxically, 

from this larger pool of membrane-associated BAX, the membrane integration was reduced 

(Fig. 2.8B). Analysis of the concentration-dependent membrane association once again 

demonstrated both low- and high-affinity binding populations as shown in Table 1. The 

binding pools were approximately 60% larger than those in the DOPC:DOPA liposomes. In 

spite of this, the integrated fraction was significantly reduced and reached a maximum value 

that was 58% of that seen in the liposomes without cholesterol. In addition, the ratio of 

membrane-integrated to membrane-associated BAX demonstrated a very distinct 

concentration dependence in that there was no increase of the integrated fraction at low 

concentrations of added BAX (Fig. 2.8C). 
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Fig. 2.8 
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Fig. 2.8 | BAXΔC binding to supported DOPC/DOPA/cholesterol-containing liposomes. 
The binding and membrane integration of BAXΔC were studied by surface plasmon 
resonance using supported liposomes containing cholesterol. A, BAXΔC was injected over 
an L1 chip covered with DOPC:DOPA:C (59:21:20 mol%) liposomes. This protein was 
prepared as described in Materials and Methods without the use of detergent. Prior to 
exposure of the BAXΔC to detergent, the protein did not bind to the liposomes as shown 
by the open circles (○ ○ ○) at the bottom of the graph that indicate the averaged RU 
response for the 25–3000 nM BAXΔC concentration range of unactivated protein. After 
treatment with detergent, the RU response for the following concentrations is shown: 9 
nM (solid), 17.9 nM (dash), 35.8 nM (dot), 71.7 nM (dash–dot), 287 nM (dash–dot–dot), 
573 nM (short dash). The injection phase is indicated by the solid line and the wash 
phase is denoted by the dashed line at the top of the graph. B, Comparison of 
membrane-associated (up triangle, open) and membrane-integrated (down triangle, 
open) protein using the criteria described in the text and calculating the average values 
and standard deviation as described in Materials and Methods. The dotted lines 
represent the best fit to an interaction model as described in the text. C, The ratio of 
binding and integration of protein plotted as the fraction integrated as concentration of 
BAXΔC is increased. Means and standard deviations are computed as described in 
Materials and Methods. 
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2.4 | Discussion 

Because BCL2 family proteins are central arbiters of the mitochondrial mortality 

decision, (3) we have undertaken a detailed analysis of their biochemical activities. Although 25 

genes comprise this family and they generate both pro- and antiapoptotic proteins, (8) 

apoptosis regulation centers on the activation of a “pore” in the mitochondrial outer membrane 

by BAX and BAK (61). We have taken the view that by studying this pore activation in detail, 

it will become possible to clarify the influences of the regulatory BCL2 family members. 

Therefore, we have compared BAX pore activation in liposomes with that activity in 

mitochondria. Our reconstitution approach permitted a detailed study of the stages of BAX 

membrane translocation using surface plasmon resonance. This analysis was applied to the 

mechanism of cholesterol inhibition of BAX pore activation. 

Mitochondrial preparation for the study of BAXΔC pore activation 

The in vivo death decision polling occurs in the OMM, which has a complex 

composition of protein and lipid. We have developed a mitochondrial preparation in which to 

study the translocation and pore-forming activity of BAX protein. Photoconversion of the CF 

produced deposition of an electron-dense polymeric product in the intermembrane space 

representing the localization of the CF between the inner mitochondrial membrane and OMM 

(62). We conclude that the fM preparation is an intact double-membrane mitochondrion 

having an OMM that provides a diffusion barrier similar to that described for native 

mitochondria (39,63,64). 
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BAXΔC pore activation in the OMM 

Our mitochondrial preparation, fM, satisfied morphologic, metabolic, and OMM 

functional criteria to be a useful preparation for the study of BAX pore-forming activity. By 

using the fM preparation, we are able to study the activation of human BAXΔC in some detail. 

The pore activation rate and kinetics in mitochondrial and liposome BAXΔC activity are 

comparable, as shown in Fig. 4C. The activation of this pore is proposed to be a critical decision 

point in cell death, with the OMM forming the environment for the BCL2 family proteins to 

negotiate this decision (3,8,65). By using fM, a strong correlation with the pores that we have 

characterized in defined liposomes is apparent. The specific activity of the purified pore-

forming protein is very similar once the necessary correction of the lipid concentration in our 

assays is considered. Our Hill analysis suggests that the added BAX undergoes a two-stage 

oligomerization in the membrane that is consistent with our studies in defined liposomes. This 

comparison suggests that the BAX forms a dimer and tetramer pore in the OMM, a model that 

is consistent with chemical cross-linking of BAX in the OMM (13,66). 

Effect of cholesterol on BAX pore activation in defined liposomes and mitochondria 

Cholesterol is an important component of eukaryotic membranes, having many effects 

upon membrane characteristics and the activity of membrane components. In beginning these 

studies, we were attracted by the possibility that the difference in cholesterol content between 

the plasma membrane and the OMM was an important factor in directing the formation of 

BAXΔC pores. Our data and the data of others support this conclusion (33). Adding cholesterol 

(≈ 20 mol%) to liposomes and the OMM significantly inhibits BAXΔC pore formation. This 
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has more cholesterol than the concentrations reported to be present in the OMM and is less 

than the cholesterol content of the plasma membranes (23,32,67,68). Therefore, we conclude 

that the sterol concentrations of defined liposome membranes can play a role in regulating the 

pore formation by BAX. To verify that cholesterol was effective in a complex lipid 

environment, we used liposomes to adjust the cholesterol content of the mitochondrial outer 

membrane. Direct analysis of the cholesterol content of the fM indicates that the incorporation 

was successful and produced a cholesterol concentration of ≈20 mol%. Although cholesterol 

side-chain oxidation can be brisk in isolated mitochondria, this occurs in the inner membrane, 

whereas outer-membrane cholesterol is quite stable and not oxidized in the isolated organelle 

(23). Therefore, our experiments show that the incorporation of exogenous cholesterol into the 

OMM reduced BAXΔC pore formation substantially compared with mitochondria fused with 

liposomes containing only phospholipids. The observation that the cholesterol effect was 

similar in the simple liposome and the complex mitochondrial membrane environment seems 

to favor a direct interaction between the sterol and the BAX protein. Direct interactions are 

also suggested by the putative cholesterol recognition/interaction motif in α-helix 5 (at 

positions 113–120) (28,69). However, in both liposomes and mitochondria, the ent-cholesterol 

was as effective as the natural compound in reducing BAX pore formation, strongly indicating 

that cholesterol exerts its effect by influencing the lipid environment and having secondary 

effects upon BAX pore formation (20,70). In addition, the reduced pore activation by ent-

cholesterol at high BAX concentrations in both liposomes and mitochondria may reflect chiral 
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sterol–phospholipid interactions that are reported for the ent-cholesterol in phospholipid 

monolayers (71). 

We conclude that cholesterol could have a significant effect on the mortality decision in 

cells that are overloaded with this steroid. Mitochondrial cholesterol overload has rarely been 

studied but has been observed in tumor cell lines (31,72,73) and in cultured cells where 

mitochondrial cholesterol has been increased pharmacologically (33). Likewise, cholesterol 

depletion is reported to enhance apoptosis in statin treatment (74). However, the 

mitochondrial membrane environment is complex and steroid oxidation is an active process in 

these organelles (23,24). Therefore, when multiple membrane parameters are changed, 

decreased permeability transition pore activation has also been reported (34). Our studies have 

focused on cholesterol in a controlled experimental situation to understand the mechanism by 

which cholesterol inhibits BAX pore activation. 

The interaction of BAXΔC with liposomes studied by surface plasmon resonance 

In order to address the mechanism of cholesterol inhibition of BAX pore activation, we 

have used surface plasmon resonance to compare the interaction of BAXΔC with immobilized 

liposomes (± cholesterol). Surface plasmon resonance has been applied to the study of 

membrane binding and integration of a number of pore-forming proteins and peptides (75-79). 

We have used the attached liposome configuration to quantitatively study the rapid binding of 

soluble BAXΔC and concentration-dependent membrane integration of the membrane-bound 

protein. The data in Fig. 7 clearly demonstrate that the membrane binding of BAXΔC is 

completely dependent upon detergent activation of the purified protein. The maximum 
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response to nonactivated BAXΔC was ≈5 RU, which is consistent with the predicted response 

from the mass of nonassociated protein [3.3 μM BAXΔC] injected over the supported 

liposomes. Therefore, essentially no membrane association occurs by the nonactivated BAX 

protein. In cells, BAX also does not associate with the mitochondrial membrane until it is 

activated (54,61). 

These surface plasmon resonance studies confirm that the interaction of activated BAX 

with liposome membranes clearly displays the two observed stages of binding and integration 

(54). The binding stage is rapid and displays high- and low-affinity components. Membrane 

integration of BAX is slower but dissociates very slowly, if at all. Analysis of the concentration 

dependence of binding indicates a high- and a low-affinity population of membrane-associated 

BAX. The concentration dependence of BAX membrane integration suggests a single 

population. We plotted the ratio of membrane-integrated to total membrane-associated BAX 

to study the relationship between these two. In the DOPC/DOPA liposomes, the ratio has an 

increasing phase, suggesting that binding of BAX to the liposomes enhances the integration 

step. Membrane binding and integration of BAX saturate even though no protein or typical 

molecular receptor is present in the membrane. This saturation occurs as the maximum mole 

fraction (solubility) of the BAX protein associated with the membrane surface or integrated 

into the membrane is reached. This saturation produces the falling ratio of membrane-

integrated to total membrane-associated BAX as higher concentrations of added BAX engage 

nonproductive modes of membrane association. Interestingly, in the DOPC/DOPA/C 

membranes, the increasing ratio at low BAX concentration is eliminated. However, since both 

binding populations are increased in the DOPC/DOPA/C membranes, the integration 
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promoting step and its cholesterol inhibition must occur after the binding steps that we have 

observed. 

Analysis of the cholesterol inhibition of BAXΔC pore activation 

The results of our analysis of BAX association with membranes are presented in Table 

1. In this table, the effect of cholesterol on BAX integration into bilayer membranes is 

apparent. BAX binds to a greater extent (both high- and low-affinity pools are increased by 

60%) to membranes that contain cholesterol, but membrane integration is dramatically 

inhibited (42% reduction). These changes produce the inhibition of BAX pore formation that 

we observe in liposomes and mitochondria. The effect upon BAX pore activation is consistent 

with our proposed mechanism of pore activation that includes the in-membrane dimer and 

tetramer oligomerization of BAX protein. In this model of in-membrane oligomerization, a 

reduction of membrane integration by cholesterol will suppress pore activation. Cholesterol is 

known to have a condensing effect upon membranes by reducing the phospholipid area that is 

especially prominent for the liquid-disordered phase that we have in our DOPC/DOPA 

liposomes (52,80). This condensation can be observed as a lateral phase separation in 

membranes of appropriate composition (81). Membrane condensation itself could reduce BAX 

integration without a direct cholesterol–BAX interaction. The equivalence of cholesterol and 

ent-cholesterol inhibition at low BAX integration levels favors membrane condensation over 

direct sterol–protein interaction. The increased inhibition by ent-cholesterol as BAX 

integration approaches membrane-saturating levels might reflect stereospecific cholesterol 

interactions with BAX or with membrane phospholipids (71). If we extrapolate the effect of 
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cholesterol upon the concentration dependence of membrane integration, it appears to explain 

the inhibition of pore activation. Thus, we have no evidence to suggest stereospecific 

interaction with the BAX and inhibition of the in-membrane oligomerization steps. However, 

this does not necessarily contrast with the prior report on effects of cholesterol on BAX (33). 

That work compared the BAX integrated to the total membrane-associated protein using 

trypsin sensitivity. This measure is very similar to the ratio that we calculate, and although we 

observe that the ratio in DOPC/DOPA/C membranes has a distinct BAX concentration 

dependence, there is a range where it is similar to that in DOPC/DOPA membranes. Our data 

only support a cholesterol effect on the membrane integration of BAX that is mediated by 

altering the membrane environment. 

There have now been three investigations showing that the pore-forming activity of 

BAX is inhibited by cholesterol in liposome membranes. All have increased the cholesterol of 

the OMM to produce BAX inhibition in that membrane also. By comparison with our results, 

the cholesterol levels of cell surface membranes will certainly reduce BAX pore formation. It 

remains to be demonstrated how the cholesterol levels of intracellular membranes change and 

influence cell death. Resistance of tumor cells to therapy, the persistence and growth of 

atheromatous lesions and their final rupture, the extent of reperfusion cell death in infarct and 

stroke regions, and skeletal muscle apoptosis may all be affected by cholesterol levels and the 

inhibition of BAX activity. 
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2.5 | Conclusion 

The 25 BCL2 family proteins are central regulators of apoptosis. As one of these, BAX is a 

critical instigator of apoptosis by transitioning from a soluble protein to a membrane-integrated 

pore. We have characterized this transition in liposomes and human mitochondria. Activation 

of the soluble protein is required for membrane binding, membrane integration, and in-

membrane oligomerization to form pores. Cholesterol is a major inhibitor of BAX pore 

activation in mitochondria and liposomes. This inhibition does not require direct interaction 

with the BAX protein but appears to function on the membrane environment to inhibit BAX 

integration into the membrane bilayer. 
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2.6 | Experimental Procedures 

Preparation of BAXΔC 

Two methods for producing recombinant BAXΔC were employed. For dequenching 

experiments, the cDNA for human BAX, with the putative transmembrane carboxy-terminal -

helix truncated, was subcloned into pGEX-KG vector, expressed in BL21(DE3) Escherichia coli, 

and purified as a glutathione S-transferase fusion protein. After harvesting by centrifugation, 

cells were resuspended in lysis buffer [phosphate-buffered saline, pH 7.4, 1% Triton X-100, 1 

mM DTT, and Complete Protease Inhibitor Cocktail (Roche, Indianapolis, IN)] and 

sonicated, and the clarified lysate was applied to glutathione–agarose. Resin was subjected to 

high salt wash (including 0.1% Triton X-100) and flushed with cleavage buffer [50 mM Tris, 

pH 7.5, 150 mM NaCl, 0.1% n-octyl-β-D-glucopyranoside (OG), 2.5 mM CaCl2, and 1 mM 

DTT], and BAXΔC was cleaved from glutathione S-transferase tag using thrombin (Novagen, 

Madison, WI). 

For surface plasmon resonance experiments, human BAXΔC cDNA was subcloned into 

pTYB1 vector (NEB, Ipswich, MA), expressed in BL21(DE3) E. coli, and purified as an 

intein/chitin-binding domain fusion protein. After harvesting by centrifugation, cells were 

resuspended in lysis buffer [phosphate-buffered saline, pH 7.4, and Complete Protease 

Inhibitor Cocktail (Roche)] and sonicated, and clarified lysate was applied to a chitin affinity 

column. Resin was subjected to high salt wash followed by flushing with cleavage buffer (20 

mM Tris, pH 8.0, 500 mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), and 50 mM 

DTT) and incubated at 4 °C for 48 h to allow intein self-cleavage and release of recombinant 
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BAXΔC. Eluted proteins were estimated to be > 95% pure by Coomassie staining SDS-PAGE 

gels and stored at 4°C. BAXΔC was activated by addition of 2% OG for 1 h at 4°C and then 

dialyzed overnight against EB (10 mM HEPES, pH 7.0, 100 mM KCl, and 0.01% NaN3). 

BAXΔC retained pore-forming capacity for > 72 h after dialysis with no diminution of activity. 

Liposome preparation by reverse-phase method 

Liposomes were prepared using the reverse-phase procedure of Szoka and 

Papahadjopoulos (82). Lipids were obtained as solutions in chloroform from Avanti Polar 

Lipids, Inc. (Alabaster, AL). Mixtures of DOPC and DOPA (monosodium salt) and 5-

cholestene-3β-ol [cholesterol (C); Sigma-Aldrich, St. Louis, MO] were prepared at a mole 

fraction ratio of DOPC:DOPA=0.74:0.26 or DOPC:DOPA:C=0.59:0.21:0.20 in chloroform. 

Chloroform was first evaporated under a stream of N2 gas and then further removed by vacuum 

(10− 5 Torr) for 2 h. Dried lipids were stored in N2 gas at −20°C. CF (molecular weight = 376 

Da) (Molecular Probes, Eugene, OR) was prepared at 20 mM in EB, adjusted to pH 7.2, and 

stored at 4°C. Dried lipids were reconstituted by addition of 1 mL ethyl ether and 0.5 mL CF 

solution. The suspension was sonicated at 1200 W for 20 s, producing a stable suspension, and 

ether was evaporated on a rotary evaporator at 40 rpm under reduced pressure (water 

aspiration) for 13 min. at room temperature. The 0.5 mL suspension was supplemented with an 

additional 0.5 mL of the 20 mM CF solution. This mixture was passed through a 22-gauge 

needle affixed to a mini-extruder (Avanti) containing a 200-nm membrane (Nuclepore, 

Pleasanton, CA) for three complete cycles. The extravesicular CF was removed by passing the 

liposome–dye mixture over a 1 × 20 cm Sephadex G-25-80 (Sigma, St. Louis, MO) column in 
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EB. A liposome peak was collected and analyzed by dynamic light scattering (N5 Submicron 

Particle Size Analyzer, Beckman Coulter, Fullerton, CA), with a diameter of 207 ± 12.5 nm. 

Phospholipid concentration in this fraction was determined to be 3.3 mg/mL (83). 

Dequenching analysis of BAX pore activation 

We have used the analysis of dequenching to study the activation of pores in bilayer 

membranes (19,84-86). Using monodisperse unilamellar vesicles, we studied the activation of 

membrane pores by measurement of the increased fluorescence as CF exits from the membrane 

compartment and is diluted into the assay volume. All assays were done at a total lipid 

concentration of 0.4 ± 0.05 μM. The time dependence of the dequenching from our liposome 

and mitochondria preparations is well described in Eq. (1), without additional exponential 

terms. 

F520 = F0A1(1 − e(time/τ)) + m × time    (1) 

The formation of a 10- to 30-Å pore in a 200-nm vesicle (or mitochondrion, see Fig. 2) will 

permit the equilibration of CF with the media within 30–100 ms (87,88). In the timescale of 

our assay, a single pore opening will not be resolved and the exponential dequenching we 

observe represents the kinetics of pore activation. A linear component in the time series was 

frequently not observed but represents pores that are unstable and which close before single 

vesicle dequenching is complete with subsequent pore activation being required to complete 

dequenching (89). For a time-series experiment, the fractional dequenching at each time point 

was determined by normalizing the fluorescence (Fl) with the Triton X-100-generated total 

dequenching for each assay [Eq. (2)]. 
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F520 = (Fltime – Flbaseline) / (FlTriton X100 – Flbaseline)   (2) 

The analysis of BAX pore activation was undertaken by determining the time constant, τ, and 

the total exponential fluorescence change, A1, for each time-series dequenching. The kinetic 

constants were determined by nonlinear least-squares analysis using the Levenberg–Marquardt 

algorithm, which yielded χ2 values of < 0.001 for each time series.  

Assessment of BAXΔC –liposome interaction by centrifugation and silver staining 

OG-activated BAXΔC was dialyzed overnight against EB. BAX was applied to liposomes 

± cholesterol (1.1 μM total lipid concentration), incubated for 10 min. at room temperature, 

and ultracentrifuged at 150,000 × g for 20 min. at 4°C. The supernatant was collected and the 

proteoliposome pellet was subjected to alkaline extraction by resuspension in 100 mM sodium 

carbonate for 30 min. on ice. Samples were again ultracentrifuged and supernatant and pellet 

fractions were collected. After SDS-PAGE and silver staining, relative intensities of BAX bands 

were quantified using QuantityOne software (Bio-Rad, Hercules, CA). 

Preparation of mitochondria 

Mitochondria were prepared from cultured cells following published procedures 

(90,91). The mitochondria were isolated from HeLa cells maintained in culture where the 

unstimulated rate of apoptosis is < 5%. We used 250 mM sucrose for osmotic stabilization (pH 

7.0, 10 mM HEPES) and added 1 mM EGTA to maintain low Ca2+. All procedures were 

performed at 4°C on ice baths except as noted. Cell cultures were washed with ice-cold sucrose 

solution to remove media and serum, and the cells were mechanically scraped from the dishes. 

After homogenization (40 strokes with a loose Dounce), the nuclei and undisrupted cells were 
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removed by centrifugation at 500 × g. Mitochondria were then collected by centrifugation at 

9000 × g. The mitochondrial pellet was resuspended, and protein concentration was 

determined using the Micro BCA Protein Assay Kit (Pierce Chemical Co., Rockford, IL). The 

mitochondria were suspended at 1 mg/mL protein in the unilamellar liposome preparation for 

fusion as described previously (39,40). The CF-loaded liposomes were 1 mM in lipid and 

contained 2 × 1012 liposomes/mL. The mitochondria and liposomes were incubated together at 

15°C for 60 min. and then the pH dropped to 6.5 by addition of 60 μL of 100 mM PIPES (pH 

6) for 5 min. The fM were pelleted at 9000 × g and washed two further times in 250 mM 

sucrose buffer to remove unfused liposomes. Lipid analysis by Dr. Richard Gross of the 

Department of Medicine at Washington University allowed us to adjust the fusion protocol in 

order to incorporate the desired amount of cholesterol into the mitochondria. This analysis 

showed that the liposome fusion increased DOPA to three times the DOPA in the isolated 

mitochondria before fusion (92). We used this ratio to calculate the OMM cholesterol 

concentration, which increased to 16 ± 0.4 mol%, when we were using liposomes containing 20 

mol% cholesterol. Cholesterol in liposome and mitochondria preparations was converted to 

trimethylsilyl ethers and determined using gas chromatography–mass spectrometry by Dr. Dan 

Ory of the Department of Medicine, Washington University School of Medicine (93). 

Mitochondria fused to these levels were used in all of the experiments to test the effect of 

cholesterol on BAX activity in mitochondria. 
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Electron microscopy and photoconversion of the mitochondrial preparations 

Mitochondria were purified as above and fixed with 2.5% glutaraldehyde in 0.1 M 

sodium cacodylate for 30 min. on ice, after which they were spun at top speed in a tabletop 

microcentrifuge to form a tight pellet. After rinsing, the pellet was sequentially stained with 

osmium tetroxide and uranyl acetate and then dehydrated and embedded in Polybed 812. 

Tissue was thin sectioned on a Reichert–Jung Ultracut, viewed on a Zeiss 902 electron 

microscope, and recorded with Kodak E.M. film. For photoconversion, the mitochondria were 

washed after fixation and treated with 6 mM potassium cyanide and then suspended in 

cacodylate buffer with 2.8 mM 3,3′-diaminobenzidine tetrahydrochloride for exposure to a 75-

W xenon lamp. After 6 min., the mitochondria are washed by centrifugation and processed for 

electron microscopy as above. 

Measurement of mitochondrial oxygen consumption 

Mitochondria were prepared as described above. Mitochondria at a protein 

concentration of ≈ 1 mg/mL  were placed into the Instech dissolved oxygen measuring system 

(Warner Instruments, Hamden, CT) in 150 mM KCl (pH 7.0), 1 mM EGTA, and 5 mM 

DTT at 20°C. The buffer was equilibrated with 95% O2 and stored in an airtight syringe prior 

to use. The concentration of dissolved O2 was corrected for atmospheric pressure. During the 

assay, the mitochondria were sequentially treated with 5 mM malate, 5 mM ADP, 2 μM 

rotenone, 5 mM succinate, 10 mM ascorbate, and N,N,N,N-tetramethyl-p-phenylenediamine 

(TMPD) and a baseline obtained in 10 mM azide. After the addition of ascorbate–TMPD, the 

rate of oxygen consumption was dependent upon site IV, which employs cytochrome c and 
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cytochrome oxidase in the transfer of electrons to molecular oxygen (94). The rates of oxygen 

consumption were normalized for protein concentration. 

Planar lipid bilayer studies on isolated fM 

Planar lipid bilayers were prepared from the phospholipids DOPC:DOPA (74:26 

mol%). Phospholipids were obtained from Avanti Polar lipids in chloroform solution and were 

mixed to the correct ratio, and the chloroform was removed under nitrogen. The lipids were 

then stored under nitrogen at −20 °C until dissolved in decane at 20 mg/mL. Briefly, 2 μL of 

lipid solution was applied to 0.25 mm orifice of a polystyrene cuvette (Warner Instruments), 

and the solvent was allowed to evaporate. The cuvette was then placed into a bilayer chamber 

and connected to a bilayer clamp (BC525-c; Warner Instruments) by Ag/AgCl electrodes via 

agar bridges. Data were collected using CLAMPEX 9.0 (Axon Instruments, Foster City, CA), 

archived on videotape using a Neurocorder DR-484 (Neuro Data Instruments, Delaware 

Water Gap, PA), and analyzed using Origin (OriginLab Corporation, Northampton, MA) and 

CLAMPFIT (Axon Instruments). Bilayers were formed by spreading with a polished glass rod 

and allowed to thin to a capacitance of 0.4 μF/cm2, at which point the noise was typically 0.2 

pA and the leak conductance was 2 pS. The salt concentrations are described in the appropriate 

figure legends. Outward (positive) currents were defined as K+ moving cis to trans. All solutions 

were buffered to pH 7.0 with 10 mM K-HEPES. Mitochondria (10 μg of protein) were added 

to the cis chamber with mixing. To vary calcium concentration, we added EGTA and CaCl2 as 

indicated. The milliQ water employed for buffers in these studies averaged 30 μM Ca2+, and 
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mitochondrial isolation buffer contained 1 mM EGTA to reduce free Ca2+ to < 1 μM. Calcium 

was varied by adding 100 μM CaCl2 or 100 μM EGTA to the bilayer chamber. 

Surface plasmon resonance studies of BAX–liposome interaction 

These studies were done using Biacore X instrumentation and software (Biacore 

Division of GE Healthcare, Uppsala, Sweden) at an ambient temperature of 20°C. Buffers were 

filtered through 0.22 μm filter prior to use. Liposomes were prepared as described above. The 

buffer was EB unless noted. The sensor surface of an L1 chip (Biacore) was equilibrated in EB. 

Liposomes were injected at a phospholipid concentration of 0.6 mg/mL across the sensor 

surface at a flow rate of 3 μL/min. for 12 min. Loosely associated liposomes were washed from 

the surface by increasing the flow rate of running buffer to 500 μL/min. for 30 s. Bovine serum 

albumin (1 mg/mL) was injected at 15 μL/min. for 2 min. to ascertain the extent of liposome 

coverage of the surface and to block remaining nonspecific binding sites (58). The 

DOPC:DOPA liposomes loaded to 13 ± 0.9 ng lipid/μm2 and the DOPC:DOPA:C liposomes 

loaded to 12.3 ± 1.2 ng lipid/μm2. Variation in loading was primarily due to variation in the 

liposome size distribution. BAXΔC protein was injected over supported liposomes at 30 

μL/min., and the dissociation was observed for 5 min. at the same flow rate at which the protein 

was injected. The response was corrected for injection artifacts. Data were analyzed and 

displayed using BIAevaluation (Biacore) and Origin 7.5 (OriginLab Corporation) software. At 

each concentration of BAX protein, the line presented results from the averaging of two to four 

independent binding studies. The standard deviation from this averaging is shown in the 

binding plots when its value is larger than the symbols or line that is being displayed.  
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3.1 | Summary 

 The cell suicide program of apoptosis is regulated not only by protein constituents but 

also lipids and steroids. The BCL2 protein family provides a conduit through which 

lipid/steroid imbalance effects cell death. As we’ve demonstrated, membrane cholesterol 

inhibits the pore-forming ability of BAX by interfering with its bilayer integration. The 

functional locales of BAX, mitochondria, perform many enzymatic modifications of cholesterol 

to generate oxysterols and bile acids. These molecules are known to induce apoptosis in a 

variety of cell types but the molecular mechanisms are poorly characterized. In this chapter, we 

extend our BAX-vesicle leakage assay to investigate the effects of steroids 25-hydroxycholesterol 

(25-HC) and lithocholic acid (LCA) on the efficiency of BAX pore activation. At low 

micromolar concentrations, 25-HC accelerates formation of BAX pores. This promotion by 

25-HC lies in contrast to inhibition by cholesterol; we attribute this functional disparity to the 

two sterols’ oppositional effects on membrane fluidity, with cholesterol condensing the bilayer 

and 25-HC spreading it. The bile acid lithocholic acid was found to activate BAXΔC at sub-

critical micelle concentrations whereas activation of full-length BAX required micellar LCA.  

From these data, we conclude that instigation of cellular apoptosis by 25-HC and LCA is likely 

a product of cell stress recognition, not direct allosteric perturbation of inactive BAX, but the 

two steroids may intensify BAX’s membrane attack by modulation of bilayer physical 

properties. 
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3.2 | Introduction 

 Lipids compose the local environment in which the BCL2 family functions. While the 

proteinaceous machinery of mitochondrial apoptosis has been subjected to intense scrutiny, 

complementary research into lipidic components has lagged (1). During apoptosis, the lipid 

composition of MOM is altered substantially, especially by oxidative stress (2). Most of the 

phospholipid changes, however, appear to occur subsequent to mitochondrial outer membrane 

permeabilization (MOMP) with the exception of lysolipid (including monolysocardiolipin) 

accumulation (1) and likely play at most an amplificatory role in forwarding the death signal. 

 Mitochondria are cholesterol-poor organelles (3) but, as we and others have 

demonstrated, the presence of cholesterol in vesicle and mitochondrial outer membranes 

(MOM) inhibits the efficiency of BAX pore activation (4-6). Enhancement of the 

mitochondrial cholesterol store has been implicated in the pathogeneses of steatohepatitis, 

(hepato)carcinomas, and Alzheimer’s disease (7). Mitochondrial cholesterol pools are dynamic 

as the organelles perform cholesterol modifications necessary for steroid, bile acid, and oxysterol 

syntheses. Besides acting in cellular signaling, conversion of cholesterol into an oxysterol 

significantly improves solubility and facilitates clearance from the system during states of 

cholesterol excess (8).  

The relationship between elevated levels of oxysterols and atherosclerosis has been 

widely-investigated using both in vivo and in vitro models; evidence is mounting that oxysterols 

also play a role in the pathogenesis of degenerative diseases like Alzheimer’s and Parkinson’s 

diseases, multiple sclerosis, and age-related macular degeneration (9-12). Oxysterols are known 
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to be inducers of apoptosis in a variety of cell types (13) and the apoptotic signal is propagated 

by both death receptor and mitochondrial pathways (but the latter appears to be dominant) 

(14). Of vascular wall constituent cell types, 25-hydroxycholesterol (25-HC) can instigate 

apoptosis in monocyte/macrophage, aortic endothelial, and smooth muscle cells (15-17). 

Lymphoid cell lines have also been observed to undergo apoptosis after exposure to 25-HC 

(18). A number of reports have demonstrated that oxysterols induce cytochrome c release in a 

variety of cell types (14). In vascular SMCs, oxysterol-induced apoptosis appeared to be 

dependent on BAX translocation to mitochondria (19,20). In macrophage-like cell lines, 

siRNA knockdown of BAX completely ablated apoptosis induced by 25-HC (21) while 

overexpression of BCL-2 could partially suppress cell death (22).  

 Besides oxysterols, other physiologically-significant cholesterol derivatives are bile acids. 

These molecules act essentially as biological detergents, secreted into the intestinal lumen to 

solubilize ingested lipids. High concentrations of bile acids, however, are toxic and can induce 

apoptotic and necrotic cell death. Multiple studies have demonstrated that bile acids induce 

apoptosis in a variety of cell types, including colon cancer cells and hepatocytes (23-31). 

Though the direct mechanism is not well-characterized, cell death by bile acids appears to be a 

function of both intrinsic and extrinsic apoptotic pathways. Several studies have found that bile 

acids can induce mitochondrial dysfunction (32-37); unclear is the molecular specificity of this 

relationship, be it a detergent-like disruption of mitochondrial membranes or protein 

interaction. 
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 Our collaborators Drs. Bryson Katona & Doug Covey discovered that the prominent 

intestinal bile acid lithocholic acid (LCA) could induce apoptosis in cultured colon 

adenocarcinoma cells and that BAX translocation to mitochondria occurred rapidly in response 

to application of the bile acid. This finding piqued our curiosity, as BAX activation has been 

(until recently) largely nebulous and revelation of a non-proteinaceous, but physiologically-

tolerable, activator could prove pharmacologically useful. 
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3.3 | Results 

 For this chapter, two forms of BAX were employed—C-terminally truncated BAX 

(BAXΔC) and full-length BAX. While BAXΔC was useful as a probe of the final step of BAX 

activity, i.e. the kinetics of pore formation (Chap. 2), we sought to more closely mimic the 

physiological molecule and its regulation, thus experimental adoption of full-length BAX. Also 

adopted into our regime was BH3-only protein BID which is the prototypical BAX-activating 

protein; activation of BID into apoptotically-proficient cBID was performed by cutting the 

protein with recombinant caspase-8. Hence, for this chapter, we use two BAX forms (BAXΔC & 

FL BAX) and two activation methods (incubation with detergent & cBID) (38,39). Also, LUV 

compositions differ depending on which BAX is under study. Vesicles encapsulate either 5(6)-

carboxyfluorescein (0.38 kDa) for BAXΔC or 10 kDa FITC-dextran for BAX. The two 

formulations were necessary because while native BAXΔC interacts very weakly with membranes 

(and fails to induce leakage), full-length BAX binds more avidly and can generate small 

disruptions sufficient for small dye leakage (see Chap. 4). 

25-hydroxycholesterol enhances BAXΔC pore activation 

  Since we found that cholesterol inhibited BAXΔC-mediated vesicle leakage and that 

oxysterols have been shown to induce apoptosis, we were curious as to whether the cholesterol 

derivative 25-hydroxycholesterol (25-HC) could promote BAX activity in our reconstituted 

leakage assays. Incorporation of 25-HC to the vesicles was accomplished simply by diluting the 

oxysterol into assay cuvets—25-HC is more hydrophilic than cholesterol but readily partitions 

from an aqueous environment into bilayers (40). As depicted in Fig. 3.1, 25-HC does indeed 
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have an effect contrary to that of cholesterol—the oxysterol accelerates pore formation by 

detergent-activated BAXΔC. Promotion of leakage by 25-HC is dramatic as shown by the 

representative traces in Fig. 3.1A. Visual examination of the data suggested that the leakage-

enhancing effect of 25-HC saturates at high concentrations of the oxysterol. To quantify the 

degree of this acceleration of pore formation, we applied the method from Chap. 2 and fit the 

leakage traces to a single exponential to extract time constants, τ (4,41). From this kinetic 

analysis, we observed the leakage enhancing effect of 25-HC is most pronounced below 10 μM 

with the time constants dropping from ≈110 to under 50. Effectively, the oxysterol can double 

the leakage rate elicited by BAXΔC (Fig. 3.1B). 
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Fig. 3.1 | 25-hydroxycholesterol accelerates BAXΔC pore formation. A, CF LUVs (70:30 
DOPC:DOPA), 5 μM total lipid, were equilibrated (1 hr) with indicated solution 
concentrations of 25-HC. Detergent-activated BAXΔC (see Chap. 2) was then added to 
induce CF leakage at 22°C. B, BAXΔC pore acceleration saturates above 10 μM 25-HC. CF-
leakage traces (not shown) were fit to a single exponential [Chap. 2, Eq. 1: F520 = F0A1(1 
− e(time/τ)) + m × time] to extract τ values. τ values at constant [BAXΔC] were then plotted 
as a function of 25-HC concentration. 
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cBID activates BAX and is potentiated by cardiolipin 

 The membrane targeting specificity of the BCL2 family is partly dependent on a unique 

lipid—cardiolipin (CL). This anionic lipid comprises four acyl chains and is synthesized in 

mitochondria. Previous studies have indicated that cardiolipin acts in a receptor-like fashion for 

BH3-only protein BID, which is typically localized to the cytosol (42-44). As we were 

interested in investigating the regulatory sequence of BAX activation leading to pore formation, 

not only that final step, it was necessary to assess the fidelity of our reconstituted vesicle leakage 

system. 

 We first employed LUVs comprising the small dye 5(6)-carboxyfluorescein (0.38 kDa). 

This formulation, however, proved to be ill-suited as BAX and cBID separately induced 

substantial leakage (see Chap. 4). We then adapted a method devised by Kuwana et al. whereby 

a large dye, 10 kDa dextran conjugated to FITC (FD10), was incorporated into LUVs (45). 

Illustrated in Fig. 3.2, these FD10 vesicles provided a useful means of observing cBID-BAX 

pore activation. Notably, and in accordance with prior findings, replacement of 10 mol% 

DOPA with 10 mol% CL in our vesicles drastically accelerated leakage (Fig. 3.2, black vs. 

magenta traces). Inclusion of CL more than 5-fold enhanced the efficacy of cBID-BAX 

activation (red vs. magenta traces). BAX by itself caused only trivial leakage, also in agreement 

with its default intracellular inactivity (green trace). These results revealed that our 

experimental model broadly recapitulates the physiological process and would likely be 

extensible for addition of modulating factors (e.g. oxysterols). 
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Fig. 3.2 | Cardiolipin dependence of cBID activation of BAX. The presence of 
mitochondrial lipid cardiolipin substantially enhances BAX pore formation. LUVs 
encapsulating FD10 were synthesized with a composition of 70:20:10 DOPC:DOPA:CL or 
70:30 DOPC:DOPA (mol%) and diluted into cuvets for a final concentration of 10 μM 
total lipid. BAX ± cBID was then added to LUVs and leakage monitored at 22°C. 
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25-hydroxycholesterol enhances cBID-BAX pore activation 

 Having established the viability of our cell-free system including full-length BAX and 

activator cBID, we then revisited incorporating 25-HC. Since the oxysterol proved effective in 

promoting LUV poration by a detergent-treated, truncated BAX, we hypothesized that 25-HC 

would similarly affect poration by native BAX + cBID. Of concern to us was the inclusion of 

another protein (cBID) and the unusual diphospholipid CL and their potential confounding 

effects. These concerns turned out to apparently unwarranted as 25-HC enhanced vesicle 

leakage by BAX as it did in Fig. 3.1. 

 Time courses in Fig. 3.3A & B show dose-dependent 25-HC promotion of BAX pore 

formation as elicited by 10 nM and 20 nM cBID respectively. To better illustrate this 

acceleration, the inverse times to half-maximal dequenching (1/t1/2) were plotted in Fig. 3.3C. 

(Unlike τ [in Fig. 3.1B] which decreases as BAXΔC pore formation becomes more rapid, 1/t1/2 

increases as full-length BAX pore formation accelerates. The second metric was devised since 

cBID-BAX pore activation shows an initial lag phase and cannot be fit by a single exponential 

like BAXΔC pore activation.) Congruous with the enhancement of BAXΔC pore formation, 

promotion of cBID-BAX pore formation levels off above 10 μM 25-HC (Fig. 3.3C). 

Interestingly, the oxysterol enhances activation by 10 nM cBID proportionately greater than by 

20 nM cBID; the rate of leakage induced by 10 nM cBID-BAX increases 62% (2.1×10-4 s-1  

3.4×10-4 s-1) while the rate of 20 nM cBID-BAX increases only 41% (2.7×10-4 s-1  3.8×10-4 s-

1). 
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 Visual comparison of the leakage kinetics between Fig. 3.2 and 3.3 reveals a large 

disparity—the leakage in Fig. 3.2 is very rapid relative to that in Fig. 3.3. The source of this 

discrepancy is the age and aggregation state of the BAX protein preparations. Frustratingly, 

BAX aggregates over time and loses as much as ½ of its activity in one week (46,47) (data not 

shown). For Fig. 3.2, the BAX was freshly purified but for Fig. 3.3 the protein had been in 

storage at 4°C for a couple weeks. These experiments were performed prior to our discovery of 

this complication. While the two datasets in Fig. 3.2 and 3.3 cannot be directly compared, 

meaningful comparisons of the data in 3.3 can be made since all were collected on the same day. 
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Fig. 3.3 | 25-hydroxycholesterol accelerates full-length BAX pore formation. A & B, 
LUVs (10 μM lipid) encapsulating FD10 were equilibrated with indicated solution 
concentrations of 25-HC for an hour; vesicle composition was 70:20:10 DOPC:DOPA:CL 
(mol%). 100 nM BAX and 10 nM cBID (A) or 20 nM cBID (B) were then added to induce 
FD10 leakage. Assays were performed at 22°C. C, Saturation of 25-HC enhancement of 
BAX pore formation. 1/t1/2 values were derived from curves in A & B and defined as the 
inverse of the time to half-maximal leakage. 1/t1/2 values were then plotted as a 
function of 25-HC concentration at constant [BAX] (100 nM) and two concentrations of 
activator cBID (10 & 20 nM). 
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Bile acids can activate BAX 

 Biochemical studies have indicated that synthetic, non-ionic detergents alter the 

conformation and activate the pore-forming capacity of BAX (38,48-50); conversely, the 

zwitterionic detergent CHAPS elicited no such changes. Notably, these detergent-evoked BAX 

alterations required the presence of detergent micelles. Given that bile acids act as physiological 

non-ionic detergents and have been demonstrated to induce apoptosis, we adduced a 

reductionist mechanism whereby bile acids could directly activate BAX to drive cells to their 

deaths. Graciously provided by Drs. Katona & Covey, we incorporated lithocholic acid (LCA), 

a known apoptosis promoter, to our BAX-LUV leakage system. Initial experiments were 

promising—non-active BAXΔC could be effectively activated by micromolar concentrations of 

LCA (Fig. 3.4A). Importantly, the tested concentrations—1-100 μM—are well-below the 

critical micelle concentration of LCA (≈275 μM).  LCA’s activating effect on BAXΔC also 

displayed intriguing concentration dependence. A second bile acid, chenodeoxycholic acid 

(CDCA), was also tested; this bile acid was previously shown to elicit mitochondrial 

cytochrome c release (32,33,36). CDCA also provoked BAXΔC pore activation, albeit less 

efficiently (data not shown). 

 Having success in purification of full-length BAX, we chose to revisit our bile acid 

activation findings. Using the same activation protocol, we found that full-length BAX was 

resistant to the detergent and required LCA micelles to produce an active protein, similar to 

BAX activation by synthetic, non-ionic detergents (Fig. 3.4B). Only with LCA concentrations 
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of 400-800 μM was even mild activation demonstrated. Parallel assays with CDCA (CMC ≈10 

mM) revealed no BAX activation (data not shown). 
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Fig. 3.4 | Lithocholic acid activations of BAXΔC and full-length BAX. A, Non-micellar 
lithocholic acid (LCA; critical micelle concentration ≈275 μM) activates BAXΔC. Non-
active, detergent-free BAXΔC was incubated overnight with indicated concentrations of 
LCA and applied to CF LUVs (5 μM lipid) at 22°C; vesicle composition was DOPC:DOPA 
70:30 (mol%). B, Full-length BAX activated by LCA micelles. BAX was incubated 
overnight with indicated concentrations of LCA and applied to FD10 LUVs (5 μM lipid) at 
22°C; vesicle composition was DOPC:DOPA 70:30 (mol%). LCA solution concentration in 
the assay cuvets was <4 μM which failed to cause dye leakage (data not shown). 
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3.4 | Discussion 

25-HC promotion of BAX pore formation 

The mechanisms of cholesterol homeostasis and related pathogeneses have been under 

investigation for some time. Well-established is the notion that cellular proteins directly bind 

to cholesterol and other steroids to mobilize the sterols and effect changes in various signaling 

and synthesis pathways. Becoming recognized is that sensing of bulk membrane environment 

modulation also contributes to cellular recognition of sterol content, as well as to the apoptotic 

and pathological effects of sterol imbalance (40,51). 

Having two hydroxyl groups (one on each end) affords 25-hydroxycholesterol much 

greater solubility in aqueous solution than cholesterol. Whereas cholesterol orients 

perpendicular to the membrane surface to maximize hydrogen bonding for its 3-OH, 25-HC 

can adopt a variety of orientations, including parallel to the plane of the bilayer where both 

hydroxyls are solvent-exposed (13,40,52). Thus cholesterol condenses and thickens the bilayer 

by decreasing the mobility of phospholipid acyl tails while 25-HC can induce an opposite 

bilayer effect.  

We attribute the acceleration of BAX pore formation by 25-HC to the sterol’s capacity 

to increase the mean area per lipid, i.e. spread apart the lipids, to facilitate BAX membrane 

integration. This effect is the converse of our finding that cholesterol inhibits poration by 

suppressing BAX membrane integration (4-6). Enhancement of pore activation by 25-HC was 

demonstrated regardless of how a membrane-competent BAX form was generated, by both 

detergent and BH3-only activator cBID. Significantly, enhancement was noted at ≤1 μM 25-
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HC, suggesting that even mild intracellular accumulation of the oxysterol could render 

mitochondrial membranes more susceptible to BAX predation and tilt the life/death balance 

toward apoptosis. 

Bile acid activation of BAX 

 Elucidation of BAX (& BAK) activation and identification of BAX/BAK regulators 

are the subjects of continuing research. Preliminary work on the naturally-occurring bile acid 

lithocholic acid hinted that it may be one of these strongly sought after BAX activators. 

Unfortunately, in vitro interrogation of this hypothesis provided mixed results at best. Deletion 

of the C-terminal α-helix of BAX allowed activation by monomeric, non-micellar LCA. 

Conversely, full-length BAX required LCA micelles to elicit a pore-competent conformation, a 

finding reminiscent of previous reports employing non-physiological detergents (38,48,50). 

This ninth α-helix (truncated from BAXΔC) serves to address BAX to mitochondrial 

membranes yet also stabilizes its globular, cytosolically-localized conformation (53-55). Given 

that it is unlikely for bile acids to sufficiently accumulate inside cells to generate micelles—such 

aggregates would disrupt membranes and instigate necrosis—physiological detergents like LCA 

probably induce apoptosis by typical cell stress recognition pathways. Indeed, after failure to 

produce active BAX in vitro by low concentrations of LCA, Dr. Katona uncovered that LCA 

exerts an apoptotic influence via increased oxidative stress, which leads to caspase-8 activation, 

BID cleavage, and subsequently BAX/BAK activation (56). 

Though LCA seems to compel apoptosis via stress pathways rather than direct 

remodeling of inactive BAX, the hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) 
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has been shown to protect isolated mitochondria against BAX membrane integration and 

cytochrome c liberation (57). TUDCA was chosen as protective agent since it is used as a 

therapy against chronic cholestatic liver diseases and can inhibit apoptosis in hepatocytes and 

non-liver cells alike (58). Protection by TUDCA appears to be conferred at least partly by 

stabilization of organelle membranes (59). 

 In conclusion, we have employed a simplified reconstitution scheme to illuminate that 

steroids can enhance the activity of proapoptotic BAX. A direct alteration of BAX structure by 

low micromolar 24-HC and LCA are not supported but instead their modulation of 

membrane properties facilitates BAX perforation. In cells, where the balance between life and 

death is finely calibrated, even small perturbations can have dire consequences. 
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3.5 | Experimental Procedures 

Protein expression and purification 

 BAXΔC was produced as described in Chap. 2. For oxysterol experiments, BAXΔC was 

purified in the presence of detergent to activate the protein. For bile acid experiments, BAXΔC 

was prepared detergent-free so as to leave the protein inactive unless activated by incubation 

with bile acids. Purifications of BAX and BID are fully described in Chapter 4. Briefly, full-

length BAX and BID were expressed as chitin-binding domain/intein fusion proteins and 

purified without detergent. After affinity column binding and on-column cleavage, proteins 

were further polished by anion exchange FPLC. BID was then cut by addition of caspase-8 to 

generate the active form, cBID. 

 For activation of BAXΔC and BAX by bile acids, the steroids were first dissolved in 

isopropanol to generate 35 mM stock solutions. From these stocks, the bile acids were diluted at 

least 44-fold into 10 μ M BAXΔC/BAX solutions to produce figure-indicated solution 

concentrations of bile acid. Protein/bile acid mixtures were then incubated overnight at 4°C for 

use in dequenching assays. Protein/bile acid mixtures were diluted at least 200-fold into assay 

cuvets, producing a final bile acid solution concentration of <4 μM, a quantity that resulted in 

no dye leakage. 

Large unilamellar vesicle preparation 

 LUVs were prepared by two methods. Carboxyfluorescein-containing liposomes of 

indicated lipid compositions were produced by the ether/buffer emulsification & evaporation 

(“reverse phase”) method detailed in Chap. 2. For LUVs containing 10 kDa FITC-dextran 



97 
 

(FD10), 200 nm vesicles were prepared by freeze-thawing and extrusion. Ten mg total lipid 

(dissolved in chloroform) were mixed to yield indicated compositions; chloroform was 

evaporated by nitrogen then lipids further dried under vacuum for two hours. Equilibration 

buffer (EB; 10 mM HEPES-KOH, pH 7.0, 100 mM KCl, 0.5 mM DTT) was supplemented 

with 50 mg/mL FD10 and added to dried lipid films and lipids rehydrated by a 30 s immersion 

in a bath sonicator. The mixture was then subjected to ten freeze/thaw cycles in liquid nitrogen 

and extruded 15 times through a membrane with 0.2 μm pores. Extravesicular FD10 was 

removed by Sephadex G-200 gel filtration respectively. 

 For oxysterol experiments, stocks of 35 mM 25-HC in isopropanol were generated. 

These stocks were diluted >700-fold into assay cuvets to yield figure-indicated solution 

concentrations, followed by addition of LUVs. LUV/oxysterol mixtures were then incubated 1 

hr at room temp to allow equilibration of the oxysterol between aqueous buffer and liposome 

bilayers. 
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CHAPTER 4 
 

BAX & BCL-XL Independently Insert Into Membranes, 
a Process Accelerated by Membrane-Bound Activators 

tBID & BIMS 
 
 

(The content of this chapter has been adapted from Christenson, E. T., Schlesinger, P. H. 
(2011) (in preparation)) 
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4.1 | Summary 

The BCL2 protein family is a primary regulator of apoptosis and its interaction 

network converges at the proapoptotic BAX/BAK nexus. BAX has soluble, membrane-bound, 

and membrane-integrated forms that are central to the management of mitochondrial 

permeabilization. These states—which lead to BAX oligomerization, pore formation, and 

cytochrome c egress—are modulated by antiapoptotic multidomain and proapoptotic BH3-

only proteins. Using purified recombinant BCL2 proteins and defined liposomes, the 

soluble→membrane transitions and pore activity modulations have been characterized. Direct 

activators cBID and BIMS instigate BAX pore formation, a process inhibitable by BCL-XL, and 

these oppositional functions are dosage-dependent. Compared to cBID, BIMS is more efficient 

an activator and less suppressible by BCL-XL. Real-time kinetic measurements of protein-

membrane binding reveal that BAX, cBID, BIMS, and BCL-XL are each capable of adsorbing to 

membranes and these adsorptions include a rapid binding step that is reversible and distinct 

from a subsequent membrane integration step. The integrated forms of each protein have 

comparable affinities for membranes indicating that the peripheral binding step is most 

determinative for their in-membrane concentrations. Of the four studied BCL2 proteins, BIMS 

apparent affinity for membranes is strongest with 1.7×, 2×, & 13× the strengths of BCL-XL, 

cBID, & BAX respectively. The membrane-integral forms of cBID and BIMS are capable of 

driving BAX and BCL-XL to tight membrane affinity conformations but the two BH3s’ 

recruiting efficiencies are equivalent, suggesting a complementary activation mechanism besides 
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strictly utilizing a membrane interaction scaffold. Overall, these data reveal receptor-like roles 

for cBID & BIMS for soluble BCL2 proteins during the initiation of apoptosis. 

4.2 | Introduction 

BCL2 family proteins are central regulators of apoptosis and comprise anti- and 

proapoptotic effectors partially defined by sequence conservation in four BCL2 homology 

(BH) domains (1,2). The family is further subclassified according to the number of BH 

domains each member contains. Antiapoptotic proteins (e.g. BCL-2, BCL-XL) are 

multidomain—encompassing three or four BH domains—and share a core tertiary fold 

consisting of a central, mostly hydrophobic α-helical hairpin surrounded by six amphipathic 

helices (3). Multidomain proapoptotic members (i.e. BAX, BAK—the apoptosis 

“executioners”) contain BH1-3 and counterintuitively display tertiary structures nearly 

identical to their antagonists (4,5). BH3-only proteins compose the third subclass and are 

stationed about the cell, serving to integrate disparate cell stress signaling pathways. In general, 

BH3-only proteins are predicted to be intrinsically-disordered, except BID whose α -helical 

arrangement mimics the multidomain proteins (6-9). 

Solution interactions between antiapoptotic and BH3-only proteins and peptides have 

been fairly well characterized and quantified via in vitro reconstitution regimes and detergent 

extractions from organelles and whole cells; a recent and thorough examination by B.H. Oh 

and coworkers comprised an array of antiapoptotics and their binding affinities to BH3 

peptides from BAX/BAK and numerous BH3-only proteins (10). Conversely, solution 

interactions between BAX/BAK and BH3-only proteins/peptides have historically proven 
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difficult to detect, leading to two competing models of activation—derepression of intrinsically 

active BAX/BAK vs. direct activation of inert BAX/BAK through a transient, hit-and-run 

interaction (11-13). The direct activation model was further refined by Kim et al. and Leber et 

al. in their hierarchical and embedded-together schemes (14,15). 

A significant aspect that has been largely overlooked in biochemical elucidation of 

BCL2 protein function is the solublemembrane transition. Many studies on membrane 

targeting have relied on cellular expression of truncated BCL2 family protein constructs and 

most often implicate the proteins’ carboxy-termini as membrane addressing sequences. The 

death effector BAX is considered dormant when cytosolically dispersed but can nevertheless 

receive an activating signal inducing redistribution of the protein to cellular membranes. Due to 

the aforementioned inconsistency in detecting BAX-BH3-only protein interactions in solution, 

the mechanism, especially localizations, of BAX activation are speculative. 

BCL-XL is known to reside both on intracellular membranes and in the bulk cytosol 

whereas BAX and BID are largely cytosolic, though BAX can be “loosely associated” with 

mitochondria (16-18). Previous in vitro assays on BAX, however, showed it could transiently 

interact with liposome membranes and expose its amino-terminus for antibody binding and, 

more recently, electron paramagnetic resonance spectroscopy of spin-labeled BAX 

demonstrated the protein’s intrinsic membrane binding functionality (19,20). BAX activator 

cBID (caspase-8 cut BID) has also been shown to disrupt membranes—rendering LUVs CF-

permeant—while BIMS, the most potent apoptosis-inducing BIM isoform, constitutively 

localizes to mitochondrial membranes (21,22). Targeting of BID & BIM BH3 peptides to 
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membranes strongly amplifies their capacity to induce mitochondrial cytochrome c egress and 

vesicular BAX pore formation (23-25). 

Thus we sought to further illuminate the process by which BAX adsorbs to membranes, 

a necessary precursor to its in-membrane oligomerization and pore formation (26). By adopting 

the now standard vesicle leakage assay (24,27,28), we demonstrate the physiological relevance of 

our reconstituted system; kinetic analysis of LUV permeabilization reveals that BIMS more 

efficiently than cBID provokes BAX pore activation and is less suppressible by BCL-XL. Surface 

plasmon resonance spectroscopy allows real-time measurement of membrane interaction by 

soluble BCL2 proteins and these data are well-fit by a two-step binding mechanism as described 

previously (29). Further application of this technique demonstrates that membrane-bound 

BH3-only activators are sufficient and functionally comparable for recruiting BAX and BCL-

XL. 
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4.3 | Results 

Vesicle membrane poration by BCL2 proteins 

BAX, BCL-XL, cBID & BIMS differentially permeabilize LUVs 

To confirm that these proteins can independently interact with membranes, LUVs 

encapsulating 20 mM carboxyfluorescein (MW: 0.38 kDa) were synthesized with a lipid 

composition modeling the mitochondrial outer membrane. As shown in Fig. 4.1A, 50 nM 

monomeric BAX, monomeric BCL-XL, cBID (native p7/p15 complex (8)), & BIMS are each 

capable of interacting with vesicles as revealed by CF dequenching. BIMS is by far the most 

effective in permeabilizing vesicles, which corresponds to the protein’s poor solubility and 

requirement of detergent to alleviate aggregation during purification. CF-leakage rate of BAX, 

BCL-XL, and cBID are similar and substantially slower than that of BIMS. 

Conversely, similar concentrations of BCL-XL, cBID, and BIMS individually induce 

trivial LUV leakage of 10 kDa FITC-dextran (FD10) (Fig. 4.1B), revealing that these proteins’ 

membrane interactions slightly disrupt bilayer integrity, rendering it permeant to small 

molecules but not to macromolecules. BAX, however, at 50 nM displays a low-level capacity to 

release FD10 from liposomes (Fig. 4.1B); this intrinsic activity is suppressible by addition of 10 

nM BCL-XL (data not shown) lending evidence that monomeric BAX (and BAK) can 

stochastically autoactivate (30-34). 
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Fig. 4.1 | Vesicle interaction and differential permeabilization by recombinant BCL2 
proteins. In all cases, LUVs were diluted into 1 cm assay cuvets to a lipid concentration 
of 10 μM (1 mL total volume) and brought to 37°C. BAX, BCL-XL, cBID, & BIMS were then 
diluted 100-fold from 5 μM stocks, resulting in 50 nM solution concentrations and 1:200 
protein:lipid molar ratios. A, LUVs comprising the small dye (0.38 kDa) 5(6)-
carboxyfluorescein were incubated with indicated BCL2 proteins. B, LUVs encapsulating 
10 kDa FITC-dextran (FD10) were incubated with indicated BCL2 proteins. 
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BAX is more efficiently activated by BIMS than cBID 

To further validate our reconstituted in vitro experimental system, BAX pore activation 

by BH3-only direct activators cBID and BIMS was assessed. Cut or truncated BID is a 

commonly used activator but very little biochemical characterization of BIM has been 

performed, thus we sought to make direct comparisons on the efficacies of the two BH3-only 

proteins. On a dose-dependent basis, cBID and BIMS are both effective accelerators of BAX 

pore formation (Fig. 4.2). However, per nM of BH3-only protein, BIMS (Fig. 4.2B) is a more 

effective BAX activator than cBID (Fig. 4.2A); the inverse times for half-maximal LUV 

dequenching are plotted to demonstrate this activation disparity (Fig. 4.4A). Interestingly, at 

50 nM BAX, cBID-BAX activation saturates at roughly 50 nM activator and the cBID EC50 is 

12 nM. Conversely, BIMS-BAX activation saturates well above 100 nM activator and the BIMS 

EC50 is 40 nM. 
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Fig. 4.2 | BAX pore activation by cBID & BIMS. Leakage experiments were similar to Fig. 
4.1 but proteins were diluted into 37°C assay cuvets sequentially—BAX, cBID/BIMS—to 
preclude spurious solution interactions at superphysiological concentrations, followed 
by addition of FD10 LUVs within 30 seconds. In all traces, [BAX] is 50 nM. A & B, FD10 
LUVs were incubated with BAX and concentrations of cBID/BIMS are noted accordingly. 
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Having examined the differential activation efficacy of BIMS and cBID, the extent of 

BCL-XL suppression of BAX pore formation was then investigated; depicted in Fig. 4.3A & B 

are leakage traces of 50 nM BAX + 20 nM activator subjected to escalating concentrations of 

inhibitory BCL-XL. These traces demonstrate that not only is cBID a less effective BAX 

activator, it is also more susceptible than BIMS to inhibition by BCL-XL. Stoichiometric 

addition of BH3-only activator and BCL-XL most strikingly make apparent their BAX 

activation inequivalencies as 50 nM inhibitor completely ablates leakage induced by 50 nM 

cBID + BAX but merely delays pore formation elicited by 50 nM BIMS + BAX (Fig. 4.3C & 

D). Per nM of BCL-XL, cBID-BAX pore activation is proportionately suppressed to a greater 

extent than BIMS-BAX pore activation (Fig. 4.4B). Were inhibition by BCL-XL equivalent at 

similar concentrations of BH3-only activator, the fitted lines would intersect the X-axis at the 

same point. Points on the x-axis of Fig. 4.4B represent the theoretical quantities of BCL-XL 

required for insurmountable suppression of BAX pore activation; 20 & 50 nM cBID can be 

fully inhibited by 27 & 33 nM BCL-XL while 20 & 50 nM BIMS require drastically greater 

[BCL-XL] (45 & 83 nM respectively). 
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Fig. 4.3 | BAX pore suppression by BCL-XL. Leakage experiments were conducted as in 
Fig. 4.2 and BCL2 proteins were added sequentially—BAX, BCL-XL, cBID/BIMS—and 
immediately followed by FD10 LUVs. In all traces, [BAX] is 50 nM and [BCL-XL] varies 
from 0 to 50 nM as indicated. A & B, BCL-XL dose-dependent suppression of 20 nM cBID 
(A) & BIMS (B) activation of BAX. C & D, BCL-XL dose-dependent suppression of 50 nM 
cBID (C) & BIMS (D) activation of BAX. 
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Fig. 4.4 | Kinetic analyses of BAX pore activation by cBID/BIMS and suppression by 
BCL-XL. Plotted are inverse values of the time for half-maximal leakage of FD10 from 
LUVs taken from traces in Fig. 4.2 & Fig. 4.3; 1/t1/2 values plotted on the y-axis decrease 
as rate of FD10 leakage slows. Dashed lines are exponential (A) and linear (B) fits. A, 
Differential BAX pore activation by cBID & BIMS. B, Differential suppressions by BCL-XL of 
cBID- & BIMS-BAX pore activation. Points on the x-axis indicate intercepts of linear fits. 
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Vesicle membrane binding by BCL2 proteins 

BAX, BCL-XL, cBID, & BIMS independently bind vesicle bilayers 

To glean insight into these proteins’ adsorption to membranes, surface plasmon 

resonance spectroscopy was exploited. SPR is advantageous in that it requires no potentially 

interfering modifications (such as fluorophore conjugation) of the components and the system 

can be monitored in real-time by direct measurement of mass accumulation near the sensorchip 

surface (demarcated in resonance units, RU). Two hundred nm LUVs—which retain their 

vesicular structure—can be immobilized on a sensor chip’s hydrogel matrix to provide bilayers 

for protein binding (35). Given the dimensions of the L1 sensorchip flowcell (2.4 × 0.5 × 0.05 

mm) and our LUVs, we estimate the experimental lipid concentration to be 250-300 μM. L1 

sensorchip surfaces saturate at ≈7000 RU vesicles; from bound vesicle/protein values and 

molecular weights, relative concentrations can be readily calculated. For simplicity, membrane 

binding parameters (Table 4.1) are reported with respect to moles of binding sites rather than 

moles of lipid. 

As shown in Fig. 4.5, each soluble BCL2 protein is independently capable of peripheral 

membrane interaction and assuming an integrated form. Kinetic parameters of protein-

membrane binding are presented in Table 4.1. The membrane binding traces of BAX, cBID, 

and BIMS are well-fit by a two-step sequential mechanism— *P M PM PM+   —

comprising a rapid peripheral binding step that is reversible and distinct from a subsequent and 

long-lived conformational change(s) and/or reorganization of the lipids. The rate equation was 

modified for cBID to account for dissociation of the N-terminal p7 fragment upon membrane 
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binding, rendering a membrane-integral p15 tBID (36). BCL-XL also displays a rapid peripheral 

binding step but the successive steps are more complicated. The drop in RU over the last 20-30 

s of protein injection is not artifactual as similar data were gathered using multiple protein and 

LUV preparations and sensorchips. Details on correcting the BCL-XL traces to account for 

signal loss, which we attribute to immobilized vesicle swelling on the sensorchip surface, are 

included in the Supplement. 

For the four proteins studied, their membrane affinities (Kd) vary over a 13-fold range 

with BIMS binding membranes most tightly and BAX most weakly (Table 4.1). The apparent 

Kd values, however, mask important details of the membrane interaction progression. 

Correlating with its poor solubility, BIMS peripherally binds most avidly (BIMS ka1 ≈ 4.3× 

BCL-XL ka1, 6× cBID ka1, & 35× BAX ka1); while their ka1 rates vary widely, the four proteins’ 

kd1 rates are fairly similar and very rapid, resulting in membrane peripheral affinities (Kd1) 

ranging from 5.5 μM (BIMS) to 145 μM (BAX). 

 Unlike the peripheral binding steps which display widely varying kinetics, the 

integration steps for BIMS, BCL-XL, cBID, and BAX are somewhat comparable and parameters 

(ka2) lie within a 4-fold range. Despite having the weakest membrane peripheral affinity, BAX 

integrates most rapidly but this integral form also dissociates from the membrane (kd2) more 

readily compared to membrane-integral BCL-XL, BIMS, and tBID. The integrated proteins’ 

membrane affinities (Kd2) vary over a 3-fold range and have half-lives greater than 3 hours. 

Overall, BIMS apparent affinity (Kd) for membranes is 1.7×, 2×, and 13× that of BCL-XL, 

cBID, and BAX respectively. 
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To clearly illustrate their accumulations on vesicles at equimolar concentrations, 

simulations of BCL2 protein-membrane interactions were compiled (Fig. 4.5E). The protein 

concentration input was 1250 nM (vs. 250 μM lipid) which approximates the highest (5:1000) 

protein:lipid ratio used in the LUV leakage experiments (Figures. 4.1-4.3). Simulated traces 

were also corrected to molar fractions to properly contextualize the protein adsorptions to 

bilayers. Correlating kinetics between the vesicle leakage and biosensor systems should be 

approached cautiously, however, because for SPR assays the solution protein concentrations are 

constant and the comparatively high concentration of vesicles are immobilized on a hydrogel 

matrix rather than diffusing freely in solution. 
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Fig. 4.5 | Real-time measurement of BCL2 protein-membrane binding by surface 
plasmon resonance spectroscopy. A-D, Displayed are sensorgram traces and data 
fittings of protein-membrane adsorption. Soluble BCL2 proteins were injected at 
indicated concentrations for 90 s (30 μL/min.) over immobilized LUVs then dissociation 
monitored for 10 min.; note the breaks from 150-500 s in plots. The experimental data 
were globally fitted to their corresponding two-step kinetic models described in 
Materials & Methods. Correction for RU signal loss during BCL-XL injections is described 
in the Supplement. E, Simulated traces of protein-membrane binding. Traces were 
corrected for protein molecular weights and presented as membrane mole fraction 
rather than mass bound (RU). Soluble protein concentration input to simulation was 
1250 nM, approximating 5 soluble molecules per 1000 vesicular lipids as applied to LUVs 
for leakage experiments in Fig. 4.1 (i.e. 50 nM protein + 10 μM vesicular lipid). 
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Table 4.1 | Kinetic parameters of BCL2 protein-membrane binding. 

  ka1 kd1 ka2 kd2 Kd1 Kd2 Kd 
  M-1 s-1 × 104 s-1 s-1 × 10-2 s-1 × 10-4 M × 10-6 × 10-3 M × 10-9 

BAX 0.55 0.8 7.3 1.0 145 1.37 199 
BCL-XL 4.44 0.44 1.9 0.5 9.91 2.63 26 
cBID 3.21 1.04 5.7 0.5 32.4 0.88 28 
BIMS 19.0 1.04 1.8 0.5 5.47 2.78 15 
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Membrane-bound tBID & BIMS robustly recruit BAX & BCL-XL 

Having examined the kinetics of membrane binding by each BCL2 protein, we then 

hypothesized that membrane-bound BH3-only proteins are sufficient to recruit the 

multidomain proteins to membrane-integral states. Previously, Oh et al. demonstrated that 

BID BH3 peptides tethered to vesicle surfaces potentiated BAX pore activity (24). We sought 

to expand on this finding by using full-length BH3-only proteins in our experimental regime 

which precludes the presence of non-membrane bound activators and allows delineation and 

temporally-resolved comparison of protein recruitment at the membrane. Kinetic assays of 

BAX/BCL-XL membrane binding were performed as before except tBID & BIMS were applied 

to LUVs prior to sensorchip immobilization. 

As anticipated, membrane-bound tBID and BIMS substantially enhance the membrane 

association of both BAX and BCL-XL (Fig. 4.6). Presence of the BH3-only proteins (one 

protein per 6000 lipids) in the membrane increases the integrated quantities () of BAX & 

BCL-XL and commensurately enhances the bound (peripherally associated + integrated) 

protein pool (). Unexpectedly, membrane-bound tBID and BIMS display similar efficiencies 

in recruiting the multidomain proteins (4.6A vs. 4.6C, 4.6B vs. 4.6D); this finding was 

surprising given the faster BAX pore activation elicited by BIMS than by cBID. During the 90 s 

injections, tBID & BIMS increase the BAX membrane integration rate ≈75%, from 0.073 s-1 to 

0.128 s-1 at all measured soluble concentrations. Conversely, tBID/BIMS enhance the 

membrane integration of BCL-XL (ka2 = 0.019 s-1) by progressively lower rates with increasing 

soluble protein concentration (120 nM - 0.031 s-1; 240 nM - 0.029 s-1; 480 nM - 0.028 s-1; 960 
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nM - 0.025 s-1; 1920 nM - 0.023 s-1) (Fig. 4.6E). Both BH3s recruit superstoichiometric 

quantities of BAX & BCL-XL; however, BCL-XL recruitment levels off at ≈1.7 × [BH3] while 

BAX recruitment continues to rise with increasing [soluble BAX] (≈4.5 × [BH3] at 3.8 μM 

BAX). These findings comport with an interaction model in which BAX transiently binds 

BID/BIM whereas BCL-XL sequesters BID/BIM strongly to prevent further propagation of 

death signals. 

To provide a negative control, BID BH3 mutant L90A,D95A (cBIDmut) was purified; 

in studies using BH3 peptides, this mutant was ineffective in eliciting cytochrome c release from 

isolated mitochondria and activating BAX in vitro (23,37). Interestingly, 50 nM cBIDmut 

weakly activated 50 nM BAX in FD10 leakage assays (Fig. 4.S2A), though at lower efficiency 

than 5 nM wild-type cBID. When applied to vesicles to assess recruiting efficiency of BAX and 

BCL-XL, cBIDmut (1 protein : 6000 lipids) also weakly recruited BAX (Fig. 4.S2B), accelerating 

the membrane integration (ka2) ≈10% from 0.073 s-1 to 0.08 s-1. Conversely, cBIDmut had no 

discernable recruitment of BCL-XL (data not shown). 
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Fig. 4.6 | Membrane-bound tBID & BIMS robustly recruit BAX and BCL-XL. LUVs (1 mM 
lipid) were preincubated with 170 nM cBID or BIMS in EB for three hours at room 
temperature prior to loading onto the Biacore sensorchip, resulting in a 1:6000 BH3-only 
protein:lipid ratio. BAX and BCL-XL injections commenced as in Fig. 4.5. Membrane-
bound values () were taken from the end of soluble protein injection and membrane-
integrated values () after 5 min. of dissociation; these values were converted into 
protein/1000 lipids from experimental RU values to facilitate analysis. Solid lines 
represent BAX/BCL-XL injections over tBID/BIMS-charged vesicles and dashed lines 
represent BAX/BCL-XL injections over bare vesicles. A, BCL-XL binding to vesicles ± tBID. 
B, BAX binding to vesicles ± tBID. C, BCL-XL binding to vesicles ± BIMS. D, BAX binding to 
vesicles ± BIMS. E, BAX & BCL-XL ka2 (integration) rates accelerated by membrane-bound 
BH3-only activators. BAX ka2 is accelerated by ≈75% regardless of membrane-bound BAX 
concentration whereas BCL-XL ka2 acceleration diminishes (65%20%) with increasing 
membrane-bound BCL-XL. Dashed lines represent BAX & BCL-XL ka2 in the absence of 
BH3-only activators and symbols+lines indicate ka2 accelerations in the presence of BH3-
only activators. 
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4.4 | Discussion 

Despite nearly two decades of work on the BCL2 protein family, the molecular 

mechanisms of their disparate functions are only recently becoming deciphered. Much of the 

difficulty in their study derives from the proteins’ conformational promiscuity and 

amphitropicity, properties that are modulated by their bulk environments and a variety of 

discrete regulatory molecules both proteinacious and lipidic. Another hindrance is that 

traditional methods of isolating membrane proteins (i.e. detergent extraction) radically alter 

BCL2 protein conformation and the proteins themselves can affect micellar aggregation (38-

42). Thus generating a consistent pool of recombinant protein for mechanistic in vitro studies 

has proven troublesome and, due to this constraint, the field has relied largely on biochemical 

assays that provide only functional snapshots and qualitative interpretations. 

Lipid bilayer interaction and disruption has long been established as a function of the 

BCL2 family with the latter evinced by BCL-XL structural homology to bacterial toxins (43). 

As an initial test for protein-membrane interaction, LUVs containing a small fluorescent dye 

(carboxyfluorescein) were subjected to leakage assays. The four proteins studied—BAX, cut 

BID, BIMS, and BCL-XL—represent the three main classes of the BCL2 family and all elicited 

leakage of CF at nanomolar concentrations and physiological pH. Early work on the channel-

forming capacities of multidomain BCL2 proteins typically employed C-terminally truncated 

and detergent-treated forms of the proteins (44,45). Vesicle permeabilization to small dyes by 

detergent-free BCL-XL
ΔC can be induced by acidic pH or tethering the protein to membranes 

via His-tag chelation of DOGS-NTA-Ni2+ lipids (46,47). BCL-2ΔC tethered to membranes also 
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can generate small pores, though the addition of tBID was required for this activity (48). The 

disparity in BCL-XL
ΔC and BCL-2ΔC poration may be attributable to vesicle composition, with 

the former using a simple 99:1 PC:DOGS-NTA-Ni2+ mixture and the latter a complex mixture 

comprising PC, PI, PE, PS, CL, & DOGS-NTA-Ni2+ to mimic the mitochondrial outer 

membrane. Among BH3-only proteins, native cBID and detergent-separated tBID have also 

been shown to porate vesicles (47,49). Recent electrophysiological work on BAD has indicated 

that it can form membrane channels and this activity is largely a consequence of its C-terminus 

(50,51). Peptides encompassing BAX α5 and BID α6 induce leakage of calcein from vesicles and 

the C-terminal ≈20 residues of BAX, BAK, and BCL-2 also have the capacity to release CF 

from liposomes (52,53). Taken together, it is apparent that BCL2 protein-membrane 

interaction slightly disrupts bilayer integrity from both the α5-6 hairpins and C-terminal 

domains. 

Much in vitro experimental work has been performed reconstituting vesicle leakage 

systems to model mitrochondrial permeabilization; however, BID has been nearly the exclusive 

BH3-only protein used for BAX or BAK activation. Inclusion of BH3 peptides in LUV leakage 

assays and in vitro translated proteins for mitochondrial cytochrome c releases have also revealed 

that BIM and PUMA can also directly activate BAX/BAK (14,54-57). Therefore we chose to 

compare the efficacies of recombinant, full-length (cut) BID and BIMS in activating BAX; BID 

was cut by caspase-8 but left unseparated to more accurately mimic the native environment (8). 

As we surmised, the kinetics of FD10 leakage from LUVs elicited by cBID and BIMS were 

substantially different, with BIMS being the more effective trigger of BAX poration. Kinetic 
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analysis of LUV leakage elicited by escalating concentrations of the two activators exposes that 

their capacities to activate BAX saturate at dramatically different concentrations. 

The strong efficacy of BIMS for activating BAX lies in contrast to a report by Terrones 

et al. in which BIML
ΔC and BIMEL

ΔC only weakly induced BAX pore activity even when 

tethered to vesicles (25); however, their data also showed that a myristoylated BIM BH3 

peptide was more potent in activating BAX than a myr-BID BH3 peptide. When applied to 

isolated mitochondria, recombinant BIML was ineffective in promoting cytochrome c release 

and BAX membrane integration (58). It seems likely that the isoforms’ functional disparities 

are a consequence of the relative accessibility of their BH3 domains as BAX 

coimmunoprecipitates with BIMS but not BIML or BIMEL (59,60). 

Having investigated the LUV leakage kinetics induced by BAX + BH3-only activator, 

we further interrogated the process by including antiapoptotic BCL-XL. In accordance with 

prior work, inclusion of BCL-XL inhibited LUV permeabilization by BAX in a dosage-

dependent manner (61). Surprising, however, was our finding that not only was BIMS more 

effective in driving BAX pore formation, it was less suppressible by BCL-XL than cBID-BAX 

activation (Fig. 4.4). Peptide binding studies of BCL-XL have consistently shown that the 

antiapoptotic protein sequesters BIM BH3 more tightly than BID BH3 (10,37,62). The greater 

proportional suppression by BCL-XL of cBID over BIMS suggests that binding affinity is not 

the sole determinant of inhibition. 

Our attention then turned to applying a real-time, quantitative method to BCL2 

protein-membrane binding. One point of contention in deciphering the mechanisms of the 
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BCL2 family is the relevance of solution interactions, especially by those of BAX. Yethon et al. 

demonstrated that BAX independently associates with LUVs and studies using BH3 peptides 

tethered to vesicles strongly hinted that BAX can bind membranes prior to becoming activated 

(19,24,25). As our SPR data reveals, BAX can bind membranes independently of extrinsic 

factors, as can its cousins BCL-XL, cBID, and BIMS. This adsorption is well-described by a two-

step mechanism whereby the soluble proteins assume a long-lived, membrane-integral form and 

the key disparity in their interaction progression lies in the initial, peripheral association. 

Relative to cBID and BAX, BCL-XL and BIMS have very rapid on-rates and their apparent 

affinities for membranes are also tighter. These data quantify the intrinsic membrane binding 

capacity of four representative members of the BCL2 family and clarify the mechanism 

proposed by Billen et al. in which BCL-XL outcompetes BAX for tBID in membrane binding 

and permeabilization (61) (Fig. 4.5E).  

Remaining unresolved was the origin of the disparity between BIMS- and cBID-BAX 

activation. We speculated that membrane-bound BIMS would more robustly recruit BAX than 

membrane-bound tBID in our real-time binding assays; this supposition proved to be incorrect 

as the two BH3-only activators were equivalent in escalating BAX integration. Membrane-

bound tBID and BIMS showed essentially identical recruitment of BCL-XL as well. Notably, 

tBID/BIMS recruitment of BCL-XL was saturable, unlike recruitment of BAX which was 

enhanced similarly regardless of soluble concentration. This result comports with the findings 

that BCL-XL sequesters tBID very strongly on membranes while tBID-BAX interaction is 

transient and exchangeable (36,47). The BH3-only protein BAD, when bound to vesicles, has 
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also shown a capacity to enhance BCL-XL-membrane binding, demonstrating that 

multidomain protein recruitment at the membrane surface is a function of the sensitizer 

subclass, not only of direct activator BH3s (63). 

This recruitment equivalency at the membrane surface suggests that the more rapid 

accumulation of BIMS on bilayers is the origin of its greater BAX pore activation rate. However, 

BAX membrane binding is weakest and thus the limiting step; the maximal rate of pore 

activation by BIMS and cBID would converge to similar values if membrane concentration of 

BH3s were the dominant parameter (Fig. 4.4A). Direct BAX-BIMS binding in solution would 

provide a plausible explanation for BIMS superiority over cBID in triggering BAX activation. 

Frustratingly, unlike those with antiapoptotic BCL2 proteins, BH3 domain interactions with 

BAX have proven resistant to investigation. By chemically enforcing α-helicity of BH3 peptides, 

Walensky et al. demonstrated direct binding by BID and BIM BH3s to BAX in solution (37); 

intriguingly, BIM SAHB bound BAX >30× tighter than BID SAHB. Conversely, FRET assays 

of BAX and full-length tBID indicated no interaction in the bulk solvent while the addition of 

vesicles facilitated association (36). Antiapoptotic MCL-1ΔC incubated with cBID interact in 

solution via canonical BH3 domain-pocket binding; this association is very slow to due to the 

dissolution kinetics of the two cBID fragments and subsequent exposition of the BID BH3 

domain (64). Solution interactions between BCL-XL
ΔC & tBID also have been detected and 

quantified via fluorescence cross-correlation spectroscopy, NMR, and isothermal titration 

calorimetry (47,65). Given the observations of greatly stronger affinity of BAX for BIM SAHB 

vs. BID SAHB, inaccessibility of the BH3 domain in cBID, and tBID-BAX binding solely on 
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membranes, it seems likely that BAX can become activated via BH3 interaction both prior and 

subsequent to membrane interaction. Strongly supporting this hypothesis is a recent report in 

which BIM (and also BAX) SAHBs were employed to evoke conformational intermediates of 

the BAX activation pathway (30). 

Solution interaction and activation of BAX by BIMS, but not cBID, also reconciles the 

differential suppression by BCL-XL of vesicle leakage. Whereas cBID could activate BAX only 

subsequent to their localizations at the membrane, BIMS would lack this kinetic barrier. BCL-

XL has a stronger affinity for bilayers than cBID, thus the antiapoptotic protein has the 

advantage in “outracing” cBID, and especially BAX, to their in-membrane functional sites (Fig. 

4.5E). BIMS, on the other hand, could bypass this constraint via activating BAX prior to 

membrane binding. In the bulk solution, BCL-XL and BAX would compete for BIMS binding, 

but this impediment to BAX activation is comparatively surmountable due to BAX having 

nearly as strong an affinity as BCL-XL (24 nM vs. 16 nM respectively) for BIM SAHB (37). 

The weak activation and membrane recruitment of BAX by cBID BH3 mutant 

L90A,D95A was unexpected as the corresponding peptide was ineffective in promoting 

cytochrome c release from mitochondria and the corresponding tBID mutant also ineffective in 

promoting LUV leakage (23,24). Previously reported, however, was a BH3-independent 

enhancement of BAX pore formation by BH3 mutant tBID G94A that was attributed to the 

protein’s alteration of bilayer architecture (25). Our vesicle leakage and membrane binding 

kinetic data is consistent with tBID promoting BAX poration via modulation of the bilayer 

structure; this BH3-independent effect is quite small as cBIDmut was less than 10% as efficient in 
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driving BAX pore formation and accelerated BAX membrane integration only 15% as well as 

wild-type tBID. 

In summary, we’ve demonstrated that BCL2 family proteins—anti- and proapoptotic 

multidomain and BH3-only—have intrinsic membrane binding capacity and quantified a two-

step mechanism of their membrane interactions. BH3-only activators bound to bilayers robustly 

recruit BAX and BCL-XL by enhancing their membrane integration rates. Kinetic analysis of 

vesicle leakage elicited by BAX reveals disparities in the activation efficacies of BIMS and cBID 

and lends support to a model whereby BAX can be activated by BH3 interaction both in the 

cytosol and on the mitochondrial outer membrane. 
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4.5 | Supplement 
 

Membrane poration by the BCL2 family has been proposed to be a function of the 

proteins’ modulation of bilayer curvature (28,49,53,66); by small-angle x-ray scattering, we have 

observed that BAX and BCL-XL promote oppositional negative and positive curvatures 

(Appendix V). We attribute SPR signal loss during BCL-XL injections to LUV swelling. The 

evanescent field and thus SPR signal decays as a function of distance from the basal metal 

surface and becomes essentially undetectable at 300 nm (67). Therefore, vesicle swelling 

induced by positive membrane curvature displaces vesicle (and bound protein) mass outside the 

detection volume. We presume that BCL-XL binds to membranes in a two-step fashion similar 

to BAX & BIMS. BCL-XL dissociation curves were fit to a three-component exponential decay 

to determine off-rates kd1 & kd2 and the rate of RU signal loss; global fitting established kd1 = 

0.44 s-1 & kd2 = 0.5 × 10-4 s-1. Fitting of the first 30-45 s of 120 nM & 240 nM BCL-XL 

injections then produced lower boundary ka parameters for simulating curves for higher 

concentrations of BCL-XL (Fig. 4.5B). Simulated curves were subtracted from the raw data 

traces to yield the degree of signal loss (Fig. 4.S1A) and the first derivatives of the signal loss 

residuals (Fig. 4.S1B) were then obtained to assess consistency between the rates of signal loss at 

the end of injection (association period) and beginning of wash (dissociation period). 

To verify that BCL-XL can induce LUV swelling in solution, vesicles (10 μM total 

lipid) were diluted into EB (10 mM HEPES-KOH, pH 7.0, 100 mM KCl, 0.5 mM DTT) and 

incubated with indicated ratios of protein for 2 hr. at room temperature; each ratio was 

performed in triplicate. Vesicles were then sized by dynamic light scattering in an N5 
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Submicron Particle Size Analyzer (Beckman Coulter) and values obtained from the unimodal 

distribution analysis peaks (Fig. 4.S1C). BAX, cBID, & BIMS (5 proteins / 1000 lipids) were 

also assessed for vesicle swelling activity but none produced statistically significant values 

different from the buffer control (data not shown). 
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Fig. 4.S1 | SPR trace correction of BCL-XL-membrane binding. A, Residuals from 
subtraction of simulated two-step binding curves from raw data traces at indicated 
concentrations of BCL-XL. B, Slope of the residuals traces from Fig. 4.S1A, to assess 
consistency between signal loss during and after injection. C, BCL-XL-induced LUV 
swelling in solution as determined by dynamic light scattering. 
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Fig. 4.S2 | tBIDmut weakly recruits BAX at the membrane surface. A, Dequenching 
assays were performed as in Fig. 4.2 and protein concentrations are noted in graphs. 
cBIDmut weakly activates BAX. For comparison, the blue trace is BAX + wt cBID as in Fig. 
4.2. B, SPR data traces and fittings of 7680 nM BAX injected over bare vesicles, vesicles 
charged with tBID, or vesicles charged with tBIDmut. Assays were performed as in Fig. 4.5 
w/ BAX injected for 90 s and dissociation monitored for 10 min. Data traces are averages 
of 2-3 independent experiments. tBIDmut accelerates BAX ka2 only 15% (0.073 s-1  0.08 
s-1) as efficiently as wt tBID (0.073 s-1  0.128 s-1). 
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4.6 | Experimental Procedures 

Protein purification 

Full-length cDNAs for human BAX, BCL-XL, and BID were subcloned into pTYB1 

vector (NEB; Ipswich, MA) and constructs verified by DNA sequencing; a C-terminal glycine 

was introduced into BID to alleviate in vivo intein tag autocleavage. BCL-XL, BID, and human 

BAX-PTYB1 expression constructs were transformed into BL21(DE3) E. coli and bacterial 

cultures grown in Terrific broth at 37°C until induction by 0.1 mM IPTG. Induced cultures 

were shaken for 16 hours at 23°C, bacteria were harvested by centrifugation, and pellets 

resuspended in lysis buffer (50 mM Tris, pH 8.0, 500 mM NaCl, 1 mM EDTA) + Complete 

protease inhibitor (Roche; Indianapolis, IN). Bacteria were lysed via three Microfluidizer 

passages at 1000 bar and lysate clarified by centrifugation. Clarified lysate was applied to chitin 

affinity resin followed by a high salt wash then equilibrated with cleavage buffer (lysis buffer + 

30 mM DTT) and incubated overnight at 4°C to allow cleavage from intein tag. Recombinant 

proteins were eluted, dialyzed against 20 mM Tris, pH 8.0, and polished by MonoQ anion 

exchange chromatography. BAX and BCL-XL were also gel filtered on a Superdex 200 column 

to remove non-monomeric species. BAX was initially monomeric but aggregated with time 

(20); BCL-XL was largely aggregated (≈90%), both after initial elution from affinity resin and 

anion exchange and SEC-purified monomeric BCL-XL also aggregated over time. Inclusion of 

1% CHAPS in BCL-XL purification mitigated aggregation only slightly. 

For BIMS, the full-length cDNA was subcloned into pTYB11 (NEB) and purified 

similarly to BAX, BCL-XL, and BID except 1% CHAPS was added to lysis, column wash, and 
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cleavage buffers, and no FPLC was performed. Purifications of BCL-XL and BID typically 

yielded 15-20 mg/L culture, BIMS 2.0 mg/L, and BAX 0.75 mg/L. Concentrations were 

quantified by micro BCA assay (Pierce) or spectrophotometrically at 280 nm and proteins 

stored in 20 mM Tris, pH 8.0, 250 mM NaCl, 5 mM DTT, 1 mM EDTA, 0.01% NaN3 (BIMS 

also contained 1% CHAPS) at 4°C. 

To generate cut BID (cBID), caspase-8 was added to BID (6 mg/mL) and incubated 

with 10 mM DTT overnight at room temperature. Mutants were generated via site-directed 

PCR mutagenesis. 

Large unilamellar vesicle preparation 

LUVs of 200 nm diameter modeling the mitochondrial outer membranes were 

prepared by freeze-thawing and extrusion. Ten mg total lipid (dissolved in chloroform) were 

mixed to yield a composition of DOPC:DOPE:DOPA:CL:cholesterol 49:28:10:5:8 

(mol/mol); chloroform was evaporated by nitrogen then lipids further dried under vacuum for 

two hours. Equilibration buffer (EB; 10 mM HEPES-KOH, pH 7.0, 100 mM KCl, 0.5 mM 

DTT) was added to dried lipid films and lipids rehydrated by a 30 s immersion in a bath 

sonicator; EB was supplemented with 20 mM 5(6)-carboxyfluorescein (CF) or 50 mg/mL 10 

kDa FITC-dextran (FD10) to yield liposomes for leakage assays. The mixture was then 

subjected to ten freeze/thaw cycles in liquid nitrogen and extruded 15 times through a 

membrane with 0.2 μm pores. Extravesicular CF or FD10 was removed by Sephadex G -25 or 

G-200 gel filtration respectively. 
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LUV leakage assays 

Dequenching of LUV-entrapped CF & FD10 were monitored by a Cary Eclipse 

fluorescence spectrophotometer (Varian; Palo Alto, CA) using a 1-cm path length 

thermostatted cuvette at 37°C. The fractional dequenching at each time point was quantified 

according to the equation (Ft – F0)/(F1 – F0) where Ft is the measured fluorescence of protein-

treated LUVs at time t, F0 is the initial fluorescence of the LUVs before protein addition, and F1 

is the fluorescence after complete LUV dissolution by addition of Triton X-100 to 0.2%. Lipid 

concentration of leakage assays was 10 μM after dilution into EB. 

Surface plasmon resonance assays of protein-membrane binding 

Experiments were performed using Biacore X100 instrumentation and software 

(Biacore division of GE Healthcare; Uppsala, Sweden) at an ambient temperature of 37°C. 

Biacore running buffer (EB) was filtered through a 0.22 μm filter and degassed prior to use and 

LUVs were prepared as described above; recombinant proteins were exchanged into EB by 

dialysis or gel filtration. The sensor surface of an L1 sensorchip was equilibrated with EB and 

LUVs were deposited by injecting 1 mM lipid for 10 minutes at a flow rate of 1 μL/min. BSA (1 

mg/mL) was then injected for two min. at 15 μL/min. to assess extent of vesicle cove rage of the 

surface and block remaining nonspecific binding sites (29,35). Proteins were injected over the 

supported LUVs for 90 s at a rate of 30 μL/min. to circumvent mass transport effects and 

dissociation monitored for >10 minutes. Response traces were corrected for baseline & 

injection artifacts and data were analyzed and displayed using Berkeley Madonna 8.3.8 
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(University of California, Berkeley, CA) and Origin 7.5 (OriginLab). Data were globally fit to 

binding models derived from schemes: 

I. 1 2

1 2
*a a

d d

k kP M PM PMk k+  

 

  BAX, BCL-XL, BIMS 

II. 1 2

1 2

a a

d d

k kNC M NCM CMk k+  

 

  cBID 

where P/NC corresponds to soluble protein, M to the membrane, PM/NCM to the 

membrane-associated protein, and PM*/CM to membrane-integrated protein conformations. 

Membrane affinity constants are calculated: kd1/ka1 = Kd1; kd2/ka2 = Kd2; Kd1×Kd2 = Kd. 

For kinetic experiments of BAX & BCL-XL membrane recruitment by BH3-only 

activators, assays were performed as above except LUVs (1 mM lipid) were preincubated with 

170 nM cBID/BIMS for three hours at room temperature to decorate the vesicles with BH3-

only protein (1 protein per 6000 lipids). 
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5.1 | Conclusions 

The process by which BAX effects cell death comprises three basic steps: mitochondrial 

translocation, membrane integration, and oligomerization culminating in bilayer 

permeabilization. The components of this dissertation describe our interrogations of these 

steps, largely employing biophysical measurements of cell-free, reconstituted experimental 

regimes.  

In Chapter 2, we established that cholesterol impedes BAX pore activation, which 

provides a rationale for the escape of cell outer membranes from BAX predation during 

apoptosis. Mitochondrial accumulation of cholesterol also provides a means for alleviating the 

pro-death function of BAX during cell stress. Using detergent-treated BAX—to bypass 

complicating activation factors—and dye-filled synthetic vesicles, we demonstrated that 

cholesterol severely impedes leakage induced by BAX while Hill analyses revealed that BAX 

retained oligomerization capacity. Development of a vesicle-mitochondria fusion technique 

allowed filling of the organelles with dye for leakage assays, providing a complex membrane that 

retains mitochondrial defense mechanisms against poration. These fused mitochondria 

recapitulated our finding that cholesterol inhibits BAX activity. Inclusion of the total 

enantiomer of cholesterol in leakage assays showed that BAX pore inhibition by cholesterol is 

due to the sterol’s influence on bilayer architecture rather than a stereospecific interaction with 

the protein. Real-time SPR spectroscopic measurements uncovered that bilayer cholesterol 

exerts its influence on BAX function by mitigating the protein’s integration into membranes 

and thus permits fewer in-membrane BAX monomers for assembly into pore structures. 
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Chapter 3 detailed our investigation into the effects of cholesterol derivatives—

oxysterols and bile acids—on BAX activity. As with cholesterol, oxysterols and bile acids are 

associated with a number of pathological conditions and while mitochondria are typically 

cholesterol-poor organelles they perform many chemical modifications of the sterol. Whereas 

cholesterol inhibited BAX membrane permeabilization, 25-hydroxycholesterol accelerated it; 

importantly, the oxysterol promoted leakage by BAX when activated either by non-

physiological detergent or BH3-only protein cBID. Most of this poration enhancement arose at 

physiologically-plausible solution concentrations up to 5 μM 25-HC. Bile acids are natural 

detergents used to solubilize dietary fats but are toxic at high concentrations. With the finding 

that lithocholic and chenodeoxycholic acids induce apoptosis in colon cancer cells, we reasoned 

that BAX may be activated by the bile acids. Intriguingly, both LCA and CDCA activated C-

terminally truncated BAX at low μM (sub-CMC) quantities. Unfortunately, activation of full-

length BAX, which includes the auto-inhibitory C-terminal helix, requires micellar bile acids. 

Thus we conclude that while bile acids promote destabilizing the soluble fold of BAX, in 

isolation they are most likely insufficient to elicit a death-effecting conformation. 

The mechanism by which BCL2 proteins mitochondrially translocate was clarified by 

the investigations composing Chapter 4. Direct interactions between BAX and BH3-only 

proteins have been inconsistent and difficult to detect, fostering confusion over the process and 

localization of BAX activation. For the first time, two BH3-only direct activators were 

compared in their efficacies for triggering BAX poration. We demonstrated that BIMS, relative 

to cBID, more strongly potentiates BAX activity and is less suppressible by antiapoptotic BCL-

XL. We established that soluble BCL2 proteins have intrinsic membrane-binding capacity and 
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quantified their affinities for bilayers; BCL-XL binds membranes much more avidly than BAX, 

effectively “outracing” the proapoptotic protein to its membranous active sites. Vesicle-bound 

activators tBID & BIMS were then shown to be equivalent in recruiting BAX & BCL-XL, 

suggesting that BIMS more efficiently than cBID activates BAX by a means other than strictly 

employing bilayers as interaction scaffolds. 

Appendix I integrates a comprehensive array of data pertaining to BAX/BAK 

conformational alterations and mechanistic details of bilayer disruption to synthesize a new 

structural model of BAX/BAK pore activation. This model uncovers stages of BAX/BAK 

oligomer assembly that remain largely obscure and provides a framework for continued 

investigation of this deadly complex. 

 Chronicled in Appendices II-V are complementary interrogations of BAX, BCL-XL, 

and cBID interactions. The contents of Appendix II reveal that BAX activation and 

oligomerization are separable events and demonstrate the feasibility of fluorescence correlation 

spectroscopy in study of the BCL2 family. Appendix III provides confocal microscopic 

visualizations of BAX-membrane distortions and for the first time directly demonstrates that 

BAX accumulates at pore edges. Also characterized are what we dubbed BAX mega-pores—

micron-diameter membrane inclusions with half-lives on the minute to hour time scale. 

Integrating these discoveries with prior work uncovering a proteolipidic (toroidal) nature of 

BAX pores, we also extend membrane line tension theory to postulate a mechanism of BAX 

pore nucleation, persistence, and closure. Appendix IV comprises our investigation via 

fluorescence correlation spectroscopy of BAX auto-assembly and modulation by cBID & BCL-

XL. Correlating with our findings in Chapter IV, BAX demonstrates by FCS intrinsic 
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peripheral and integral membrane binding capability and that activator cBID accelerates this 

process. Inclusion of antiapoptotic BCL-XL abrogates BAX oligomerization at multiple discrete 

steps: simultaneous BAX & BCL-XL addition to vesicles prevents BAX oligomerization but not 

membrane integration while preincubation of vesicles with BCL-XL, prior to BAX addition, 

prevented BAX membrane integration (and subsequent oligomerization). Excess addition of 

cBID rescues higher-order BAX assembly from repression by BCL-XL. Finally, the oligomeric 

dynamism of BAX assembly was directly measured and these complexes increase in size in a 

time dependent manner, further supporting the hypothesis that BAX permeabilizes membranes 

by nucleating toroidal disruptions. Appendix V encompasses investigation by small-angle x-ray 

scattering of BAX pore structures. We and our collaborators uncovered that BAX and BCL-XL 

generate opposing Gaussian membrane curvatures (negative & positive respectively) to regulate 

bilayer integrity. Toroidal, proteolipidic pores are consequent of negative curvature generation 

and our study provides the first structural evidence of the BAX lipidic pore. BCL-XL was found 

to suppress negative curvature induced even by non-BCL2 molecules, providing a physical 

rationale for previous observations that BCL-XL inhibits cell death even in the absence of BAX 

binding. 

 In aggregate, the contents of this dissertation quantify and temporally resolve 

unplumbed steps of BAX pore activation and deepen our understanding of the protein’s 

physical deformation of membranes. 
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5.2 | Future Directions 

 Youle and Strasser previously deemed the biochemical mechanism of BAX/BAK 

activation to be the “holy grail of apoptosis research” (1). We’ve established that BAX and its 

brethren independently adsorb to biological membranes and that membrane-bound activators 

are sufficient to recruit BAX (& BCL-XL) to membrane-integral states. The readily apparent 

next question to be resolved is the existence and relevance of BAX interactions with BH3-only 

activators in solution. Cell-free FRET assays have indicated that BAX and activator tBID do 

not bind in solution (2). Deletion of the C-terminal membrane anchor of PUMA mitigates 

mitochondrial targeting but nevertheless induces apoptosis and BAX N-terminus exposure (3). 

Conversely, deletion of the membrane anchor of BIMS has been shown to abolish its prodeath 

activity, suggesting that mitochondrial targeting is a necessary prerequisite for BAX activation 

(4). To rectify this conundrum, direct BAX interactions by BIM/PUMA in solution could be 

probed by FRET or FCS using physiological, nanomolar protein concentrations. This 

experimental regime is easily extensible to include antiapoptotic proteins like BCL-XL.  

BAX has been shown to comprise two binding sites for activation by BH3 peptides—

the canonical BH3 groove and a shallow activation groove on the opposite side of the protein. 

Employment of engineered, intramolecular disulfide tethers and deletions of α1 or α9 could 

allow entrapment of BAX conformations and facilitate investigation of the details of BH3 

domain interactions (5-7). Engineered BAX conformational restraints would also be useful for 

interrogations of BAX unfolding mediated by membrane adsorption. 

The structure of membrane-integral, active BAX has been sought for nearly 15 years. 

This investigation has proven technically challenging as the protein seemingly resists 
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crystallization, which is not surprising given its propensity to aggregate, while detergent-

micellar BAX forms large complexes whose hydrodynamic volume is not amenable to solution 

NMR (8). Potential remedies for these experimental obstacles include generating BAX mutants 

that fail to oligomerize—G108E and G67R BAX mutants are oligomerization-defective, likely 

due to disruption of reciprocal BH3 helix:BH3 groove binding (9). Employment of cholic acid 

as membrane mimetic may mitigate large complex formation as this detergent activates BAX 

but generates macromolecular assemblies smaller than 50 kDa (Appendix II). Reconstitution of 

BAX into lipid bicelles for solution NMR is an attractive possibility but may be unfeasible due 

to the protein’s distortion of bilayer architecture (Appendices III & V). 

Deeper understanding the process of BAX activation and its structural details will 

facilitate rational therapeutic drug design. The anticancer compound ABT-737 mimics the 

BH3 domain of BAD and was developed via an NMR-based screen of small molecules which 

antagonize prosurvival BCL2 proteins (10). Similarly, compounds mimicking BH3 domains of 

activator proteins could be devised to more effectively oppose antiapoptotic BCL2 proteins 

(11) and simultaneously trigger activations of BAX/BAK. The opposite strategy could also 

prove fruitful, specifically in development of drugs that occlude the binding interfaces of 

BAX/BAK to prevent their activations or oligomerizations and subsequent cell death. 

Tantalizing are the prospects of discovering compounds that modulate BCL2 protein 

function and devising carriers for compound delivery to specific tissues. We’ve previous 

demonstrated that molecularly-targeted nanoparticles can efficiently distribute the cytolytic 

peptide melittin to mouse tumors to reduce their growth (12). Application of this method, in 
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concert with BCL2-modulating drug design, may permit delivery of small molecules or peptides 

to relevant tissues for promotion or suppression of cell death (13,14). 

 Another promising research avenue encompasses the lipid dependence of BAX/BAK 

function. Mitochondrial lipid cardiolipin provides targeting specificity for BH3-only activator 

tBID but whether BIM, PUMA, BAD, etc. migrate preferentially to certain intracellular 

membranes is unknown. Though we and others found that cholesterol dampens BAX poration, 

not uncovered was whether the sterol suppresses steps of the permeabilization pathway prior to 

BAX membrane integration e.g. recruitment of BH3-only activators or oppositional 

antiapoptotic BCL2 proteins. BAK is constitutively mitochondrially-bound and may 

countervail cholesterol inhibition of BAX; this potential compensatory mechanism thus 

warrants further scrutiny. 

 Complementary to our studies, BAX pore suppression by cholesterol has also been 

demonstrated using cellular models (15,16). These reports employed drug-treated HeLa cells 

and hepatocarcinoma cells to generate cholesterol-amplified mitochondria. Cancers very often 

aberrantly overexpress or inactivate BCL2 family members and drug-treatment may introduce 

spurious and unnoticed metabolic defects thus further validation of cholesterol’s repression of 

apoptosis should be characterized in a bona fide model of pathogenic cholesterol accumulation, 

for instance using npc1-/- mice. Anomalous cellular restriction of apoptosis can generate necrotic 

death or autophagy and discernment of BCL2 family dysregulation by cholesterol could 

provide another means for elucidating the crosstalk between various cell death pathways. 
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I.1 | Reconfiguration 

BAX & BAK undergo significant structural remodeling to become competent for pore 

formation. Frustratingly, elucidations of the membrane-active BAX/BAK structures have 

proven resistant to standard techniques like NMR and x-ray crystallography. Thus the precise 

conformational alterations have largely been obscure but a few recent studies have more clearly 

delineated the temporal process of this reconfiguration (1-5). BAX’s putative pore-forming 

domain, the α5-6 hairpin, is protected from solution by the encompassing amphipathic helices 

(6) (Fig. 1.3); deletion of this hairpin abrogates the poration functionality of BAX (7,8). 

Topological labeling of activated BAX has indicated that α5-6 and α9 helices are buried in 

mitochondrial membranes (9). A few other lines of experimentation provided support for the 

α5-6 insertion hypothesis: electrophysiological investigation of BCL-2 channel formation (10) 

and interrogation of detergent-induced unfolding of BAX and BCL-XL (6,11,12). Generation 

of pore competent BAX thus entails exposure of α5-6 by global destabilization of the protein’s 

tertiary fold. These evidences provided for adoption of the umbrella model (13) from the study 

of bacterial colicins, which posits that membrane permeabilization is effected by 

transmembrane insertion of a hydrophobic hairpin while the remaining helices lie at the 

bilayer/solution interface. Unlike the membrane-active forms of colicins, which emerge 

spontaneously upon membrane interaction, evocation of a corresponding BAX/BAK 

conformation is a tightly-regulated process. 

The first BAX conformational change discovered was its detergent-induced unfolding 

and consequent homodimerization and heterodimerization with BCL-XL (14); this unfolding 

also everts BAX α1/BH4 to render a buried epitope (residues 12-24) available for 6A7 antibody 
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binding (15). Deletion of the predicted C-terminal membrane anchor (α9) was then 

demonstrated to abrogate mitochondrial translocation (16,17). Intriguingly, α9 deletion also 

promotes α1 eversion as indicated by 6A7 antibody binding (18,19). Under non-stressed 

conditions, thiol-reactive crosslinkers intramolecularly tether the BAK N-terminus to α6; this 

crosslink is lost after cell death initiation (20). Upon apoptotic stimulus, α1 of mitochondrially-

translocated BAX becomes protease-sensitive and deletion of the first 19 amino acids promotes 

BAX membrane insertion (17). Immunostaining of fixed & permeabilized cells has indicated 

that, in vivo, eversion of α1 is downstream of death signal initiation as BAK and 

mitochondrially-targeted BAXS184V (α9 point mutant) did not expose the α1 antibody epitope 

until after a cell stressor is applied (18,21). This suggests that exposures of the two helices are 

separable events. Conversely, more recent reports indicate that BAK and mitochondrial BAX 

obligately expose their α1 or demonstrate that α1/α9 dislocation is concomitant. (5,19,22). 

A number of instigators of BAX α1/BH4 eversion have been identified. BH3-only 

BAX activators tBID & PUMA and a BIM BH3 peptide all interact with and dislocate the N-

terminal BAX helix (4,23,24). The activating interaction of tumor suppressor p53 with BAK 

was mapped to α1 of the pore-former (25). Transient BAX interaction with vesicle bilayers also 

triggers reversible dislodging of α1 (26). Gavathiotis et al. and Kim et al. have produced 

evidence that dislocation of α1 allosterically induces exposure of α9 (3,5). In aggregate, these 

findings reveal that the N & C-terminal helices reinforce the globular, monomeric fold of BAX 

(5,6,27).  
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Extrication of the BAX autoinhibitory α1/BH4 & α9 helices appears to be the initial 

stage of generating a membrane-permeabilizing conformation (Fig. I.1). After α1/BH4 

dislocation and α9 mobilization, the BH3 helix (α2) of BAX/BAK everts and its previously 

buried, hydrophobic face becomes available for antibody binding (2,3). These newly liberated 

BAX/BAK BH3s helices, no longer packed against the protein core (Fig. 1.3), are then available 

for propagating the autoactivation cascade (3,28,29), homodimerization (2,30), or 

incarceration by antiapoptotics (31-33). 
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Fig. I.1 
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Fig. I.1 | BAX translocation. A, Soluble, monomeric BAX equilibrates between aqueous 
and membrane-adsorbed states. B, Interaction with a bilayer can induce eversion of BAX 
α1 & 9 to allow membrane anchoring. Presence of a BH3-only activator (tBID/BIMS) can 
accelerate α9 mobilization and anchoring by interacting with and dislocating α1 (A). BAX 
PDBs adapted: 1F16, 2K7W 
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Generation of the culminating, pore competent BAX/BAK conformation entails 

dissolution of the conserved hydrophobic core (encoded by BH1 & 2) which reinforces close 

packing of the α5-6 hairpin (Fig. I.2). This final step, which would permit membrane insertion 

of the pore-forming hairpin, is alluded to by a few evidential lines. Tellingly, mutation to 

alanine of an invariant tryptophan in BH1 of BCL-XL significantly destabilizes the tertiary fold 

and accelerates vesicle leakage induced by the protein (34). BAXΔC & BAKΔC, deleted of their 

α9 membrane anchors (but retaining both invariant BH2 tryptophans), are dispersed as 

cytosolic monomers when expressed in cells (2,5). Further truncation of BAXΔC, to remove α8 

(and the more C-terminal BH2 tryptophan), induces cytosolic aggregation of the protein (35); 

intriguingly, this BAX truncation also fosters detergent-free interaction with BIM. A pair of 

crosslinking studies concluded that formation of the second activated BAX/BAK interface is 

consequential of BH3 helix ingress to the BH3 groove (see two paragraphs down) (1,36). 

To summarize, we propose that the conformational rearrangement of BAX/BAK into 

their active states encompasses four steps: 1) eversions of α1 & 9, 2) eviction of the BH3 helix 

(α2), 3) disruption of the tryptophan staple restraining α5-6, and 4) spontaneous insertion of 

the hairpin. 
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Fig. I.2 

 

 

 

 

 

 

Fig. I.2 | BAX integration. BAX assumes its in-membrane monomeric state after 
disruption of the hydrophobic core that coordinates tight packing of the α5-6 hairpin. 
This collapse can occur spontaneously or is enhanced by BH3 helix (from tBID, BIMS, or 
integrated BAX) intercalation into the BAX BH3 groove. BAX acceptance of donor BH3 
helix is homology modeled on BCL-XL

ΔC/BIM BH3 complex (PDB: 1PQ1). For visual clarity, 
BAX α1 is deleted from integrated BAX. 
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I.2 | Oligomerization 

These previous stages describe only alterations of the monomeric species but 

mitochondrial permeabilization requires BAX/BAK oligomerization. The structural basis of 

this higher-order assembly is slowly coming unveiled. Early mutational studies revealed the 

necessity for intact BH1 & BH3 domains in dimerization (30,37,38). The canonical BH3 

groove—encompassing α2-5—was defined by a deletion/chimæra study as the minimal BAX 

unit competent for multimerization (39). This finding was followed up by Dewson et al. who 

employed disulfide trapping of introduced cysteines to uncover that activated BAK 

homodimerizes via symmetric domain swapping (BH3 helix:BH3 groove interactions) (2). 

Recombinant BAKΔC has its poration activity severely ablated by substitution with valine of an 

invariant BH1 glycine (40) and mutation to glutamic acid of the homologous BH1 glycine in 

BAX permits only dimer formation (5). Electron paramagnetic resonance spectroscopy of spin-

labeled BAX & BAK demonstrates that, as homodimers, their BH3 helices form an interface 

and lie antiparallel (40,41). Membrane-bound BAX and activator tBID also can remain 

engaged, apparently via BAX BH3 groove:tBID BH3 helix interaction, as adduced by FRET 

assays (42). Taken together, the evidence has become clear that activated BAX & BAK retain 

their canonical BH3 grooves to function as acceptor sites of donor BH3 helices (Fig. I.3). 
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Fig. I.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.3 | BAX dimerization. Overhead and side views of BAX reciprocal domain swap via 
BH3 helix:BH3 groove interactions. BAX α1 is deleted for visual clarity. 
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Reciprocal exchange of BH3 helices provides only a means for BAX/BAK 

dimerization; a second binding surface is required for oligomer accretion. Little evidence 

pertains to this obscurity, unfortunately. One publication indentifies an α6:α6 interface by 

which BAK symmetric dimers can further assemble (1). Another study mapped BAX interfaces 

via introduced crosslinks; these were performed in Triton X-100, (a detergent whose fidelity as 

a membrane mimetic is questionable) but the data are at least partly reconcilable with BH3 

helix:BH3 groove & α6:α6 interfaces (36). Distance constraints determined by EPR are also 

somewhat, though not entirely, consistent with the α6:α6 hypothesis (40) (Fig. I.4). 

One potential missing puzzle piece is whether BAX/BAK α1 contributes to an 

oligomer interface. Microsomal glycosylation mapping suggests that a peptide embodying BAX 

α1 assumes a transmembrane orientation while NMR of detergent-treated BAX indicated that 

α1 is excluded from micelles. Reconciling this apparent disparity, ATR spectroscopy has 

revealed that a BAX α1 peptide is shifted to a membrane parallel orientation at the 

headgroup/solvent interface by cardiolipin (43,44). One study implies a role for BAX α1 in 

oligomerization, having concluded that BAX deleted of the helix functions as a BH3-only 

protein and requires full-length BAX to foment mitochondrial permeabilization (45). 

I.3 | Pore Formation 

The preceding amasses evidence pertaining to the proteinaceous structure of oligomeric 

BAX/BAK but fails to describe the nature of the membrane pore itself. The best characterized 

biological pores are β-barrels, like porins. Structures of a number of these proteins have been 

solved to high resolution by x-ray crystallography and NMR. Pores induced by α-helical 

peptides and proteins are considerably more labile and less acquiescent to interrogation, 
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prompting introduction of multiple models of pore formation, predominantly the barrel-stave 

and toroidal (lipidic) schemes. The barrel-stave model describes bilayer pores whose edges are 

composed of transmembrane α-helices that shield the lipid acyl chains from an aqueous milieu; 

alamethicin is a prominent barrel-stave pore-forming peptide. 

Most membrane-disrupting peptides, however, are better described by the toroidal 

model, in which peptides and lipid head groups cooperate to line pore edges resulting in 

continuity (and lipid exchange) between bilayer leaflets. A growing body of data, produced by 

our lab and others, strongly support a toroidal, proteolipidic pore as the means by which 

BAX/BAK effects membrane permeabilization (Fig. I.4). 
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Fig. I.4 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.4 | BAX oligomerization. BAX accumulates, locally induces negative Gaussian 
curvature, and cooperates with lipids to organize toroidal pores through which 
cytochrome c can escape. BAX α1 is deleted for visual clarity. 
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First suggesting the lipid dependence and toroidal nature of BAX pores was the 

observation that BAX destabilizes bilayers and produces arbitrary, rather than stepwise, 

variations in membrane permeability (46). Corroborating this report were demonstrations of 

BAX poration dependence on intrinsic lipid curvature and BAX induction of lipid transfer 

between leaflets (47-50). More recently, x-ray diffraction was employed to glean details of 

membrane structures induced by BAX α5 peptides (51); presence of the peptide in oriented 

membranes bent the discrete leaflets into contiguous monolayers in pore rims. Our work, using 

confocal microscopy and small-angle x-ray scattering, confirms and extends these findings that 

BAX evinces proteolipidic, toroidal pores (Appendices III & V). 

A key underlying and largely unexamined premise of BCL2 protein family study 

remains the umbrella model (13) of unfolding and subsequent pore formation. Specifically, that 

BAX/BAK unfold and orient their pore-forming α5-6 hairpins in a transmembrane, barrel-

stave fashion (52). This rearrangement almost certainly would dissolve the BAX/BAK BH3 

grooves, thus it is difficult to reconcile in-membrane dimerization via BH3 helix:BH3 groove 

interactions with the adopted umbrella model. Further weakening the case for the umbrella, 

barrel-stave model is the BAX/BAK α5-6 hairpins are, in fact, too short to span mitochondrial 

membranes (53). Therefore, we propose eschewing the umbrella scheme and instead adapting a 

competing hypothesis of colicin pore formation—the penknife model (54). This model posits 

that colicin A arranges its α-hairpin roughly parallel to the membrane-water interface to 

instigate pore formation. In actuality, a wide array of evidence has been marshaled in support of 

both models pertaining to colicin poration, suggesting that the two arrangements exist in 
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equilibrium (55,56). This insight may be apposite to BAX/BAK function but given our present 

knowledge is speculative at best. 

Our proposed quasi-penknife model integrates a host of information regarding 

BAX/BAK structural rearrangement and assembly and their perturbations of bilayer 

architecture. It is further supported by evidence relating to α-hairpin orientation across the 

three BCL2 subclasses. For instance, solid-state NMR of BCL-XL
ΔC treated with detergent and 

reconstituted into oriented bilayers demonstrated that the protein’s α5-6 helices can tilt relative 

to membrane normal (12).  The corresponding hairpin of BH3-only tBID has been shown to 

only shallowly tilt into the bilayer by EPR and solid-state NMR (57,58). Oriented circular 

dichroism has revealed that peptides derived from BAX α5 also assume a tilted, non-bilayer-

spanning orientation (51,59). Most pertinently, Oh et al. determined via EPR that the α5-6 

hairpin of spin-labeled, oligomeric BAKΔC is partly exposed to the hydrophobic bilayer interior 

but α6 is immersed less than 1 nm, strongly implying a shallow tilt rather than transmembrane 

arrangement of the hairpin (40). 
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APPENDIX II 
 

Detergent-Activated BAX Protein is a Monomer 
 
 

(The content of this chapter has been adapted from Ivashyna, O., García-Sáez, A. J., Ries, J., 
Christenson, E. T., Schwille, P., Schlesinger, P. H. (2009) J Biol Chem 284, 23935-23946) 
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II.1 | Summary 

BAX is a pro-apoptotic member of the BCL-2 protein family. At the onset of apoptosis, 

monomeric, cytoplasmic BAX is activated and translocates to the outer mitochondrial 

membrane, where it forms an oligomeric pore. The chemical mechanism of BAX activation is 

controversial, and several in vitro and in vivo methods of its activation are known. One of the 

most commonly used in vitro methods is activation with detergents, such as n-octyl glucoside. 

During BAX activation with n-octyl glucoside, it has been shown that BAX forms high 

molecular weight complexes that are larger than the combined molecular weight of BAX 

monomer and one detergent micelle. These large complexes have been ascribed to the 

oligomerization of BAX prior to its membrane insertion and pore formation. This is in contrast 

to the in vivo studies that suggest that active BAX inserts into the outer mitochondrial 

membrane as a monomer and then undergoes oligomerization. Here, to simultaneously 

determine the molecular weight and the number of BAX proteins per BAX-detergent micelle 

during detergent activation, we have used an approach that combines two single-molecule 

sensitivity techniques—fluorescence correlation spectroscopy and fluorescence-intensity 

distribution analysis. We have tested a range of detergents as follows: n-octyl glucoside, dodecyl 

maltoside, Triton X-100, Tween 20, CHAPS, and cholic acid. With these detergents we 

observe that BAX is a monomer before, during, and after interaction with micelles. We 

conclude that detergent activation of BAX is not congruent with oligomerization and that in 

physiologic buffer conditions BAX can assume two stable monomeric conformations, one 

inactive and one active. 
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II.2 | Introduction 

BAX is a pro-apoptotic member of the BCL-2 protein family. In a simplified apoptosis 

model, monomeric inactive BAX is localized in the cytoplasm of healthy nondying cells (1). 

During apoptosis BAX is activated and translocates to the outer mitochondrial membrane (2) 

where it inserts as a monomer (3), undergoes oligomerization (4), and forms a pore through 

which cytochrome c and other apoptotic factors are released into the cytoplasm. Once in the 

cytoplasm, these apoptotic factors induce the activation of the effector caspases that execute the 

cell death process. This mechanism, which is generally correct, requires that soluble BAX 

becomes integrated into the mitochondrial membrane where it forms a functional oligomeric 

pore capable of cytochrome c release. However, the molecular mechanism of BAX activation 

remains controversial (5, 6). 

It has been understood for some time, but frequently ignored, that activity of the BCL-

2 family proteins is exhibited in cells when these proteins are associated with the hydrophobic 

environment of membranes. Therefore, it has always seemed that attention to the effect of 

hydrophobic environments on the BCL-2 family proteins would be rewarding. It has been 

shown that BAX can be directly activated by treatment with nonionic detergents such as n-

octyl glucoside, dodecyl maltoside, and Triton X-100 (1, 7). During activation by nonionic 

detergents, to gain the ability to form pores in a bilayer membrane, BAX needs to undergo a 

major conformational transition from a globular protein with two pore-forming α-helices 5 and 

6 hidden in the protein core (8) to a conformation in which these two helices are exposed and 

inserted into a lipid membrane (3, 5, 9). The nature of this active conformation of BAX is 
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important for the understanding of the death decision in cells. Most proposals suggest that in a 

cell this activated form of BAX protein is initiated and maintained by the interactions with 

other proteins, such as tBID, or by BAX itself as a homo-oligomer (7, 10). 

Nonionic detergents have been commonly used to activate BAX for in vitro studies 

because they are reliably effective and simple to employ. However, little is known about the 

detailed molecular mechanism of BAX activation by these detergents and its comparability with 

in vivo activation of BAX. What is known is that concentrations of detergent above their 

critical micelle concentration (CMC) are necessary for BAX activation. This suggests that, to 

be activated, BAX needs to interact with detergent micelles instead of monomeric detergent 

molecules. For example, in the case of BAX activation by n-octyl glucoside, it has been shown 

that n-octyl glucoside concentration should be 1% (w/v) (7), which is well above the CMC for 

this detergent (0.6% w/v) (11). In addition, it has also been shown that above their individual 

CMC concentrations most BAX-activating detergents produce a change in BAX conformation 

that can be detected by a conformation-sensitive 6A7 antibody against BAX (1, 12, 13). In 

cellular experiments this feature of BAX reactivity to 6A7 antibody is commonly associated 

with the onset of apoptosis (14, 15). However, CHAPS does not generate the antibody-

detected conformational change or the activation of BAX. The small micelle size of this 

detergent (10 kDa) suggests that perhaps BAX cannot adopt an activated state with this 

detergent. However, cholic acid with even smaller micelle size (4 kDa) can partially activate 

BAX (1). 
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Many important detergent properties are associated with micelles. The formation of 

detergent micelles in solution is concentration-dependent beginning at the CMC. The CMC 

value for a detergent has practical importance because in most cases only monomers of 

detergent can be removed by dialysis, and therefore, it is easier to remove detergent monomers 

for a detergent with high CMC value than for a detergent with low CMC (11). For BAX this 

same consideration applies to its activation with n-octyl glucoside (CMC ∼23 mM) as 

compared with its activation with Triton X-100 (CMC ∼0.25 mM). The ease of dialysis is 

why, in most cases, OG is used to activate BAX in vitro. 

It has been shown by analytical gel filtration that, when incubated with n-octyl 

glucoside, BAX creates complexes with molecular weight larger than the combined size of a 

BAX monomer (21 kDa) and an n-octyl glucoside micelle (∼26 kDa) (7, 11). It has also been 

shown that in defined liposomes BAX pore formation requires oligomerization (16). These 

data combined with the knowledge that oligomerization is important for the biological 

function of BAX led to a hypothesis that BAX oligomerizes during its detergent activation 

prior to membrane insertion (7). However, it has been shown that in vivo activated BAX inserts 

into the outer mitochondrial membrane as a monomer (3), and to create a pore, BAX 

undergoes oligomerization in this membrane (4). This discrepancy between the oligomeric state 

of active BAX prior to its insertion into a lipid membrane in vivo (monomer) and in vitro 

(possibly hexamer or octamer) led us to study the oligomerization state of BAX in detergent 

micelles. The important issue is whether BAX activation requires protein oligomerization or 

whether active BAX conformation can be generated from a single protein monomer. To solve 
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this issue we used two single-molecule sensitivity techniques: fluorescence correlation 

spectroscopy (FCS) (17) and fluorescence-intensity distribution analysis (FIDA) (18). 

Combined use of FCS and FIDA allows simultaneous determination of the apparent molecular 

weight and the number of fluorescently labeled BAX monomers per protein-detergent micelle. 

Our results are consistent with previously established results in which BAX forms high 

molecular weight protein-detergent micelles with n-octyl glucoside (4) and show that BAX is 

present as a monomer in these complexes. In addition, we determined the apparent molecular 

weight and the number of BAX proteins bound per protein-detergent micelles formed by BAX 

and micelles of five additional detergents (dodecyl maltoside, Triton X-100, Tween 20, cholic 

acid, and CHAPS). Our data show that BAX is a monomer before, during, and after 

interaction with the micelles of all tested detergents.  

 

 

 

 

 

 

 

 

 

 

http://www.jbc.org/content/284/36/23935.long#ref-17�
http://www.jbc.org/content/284/36/23935.long#ref-18�
http://www.jbc.org/content/284/36/23935.long#ref-4�


174 
 

II.3 | Results 

Detergent-activated Fluorescently Labeled BAXΔC Can Release Cytochrome c from Isolated 

Mitochondria 

For the FCS and FIDA experiments, we prepared recombinant, fluorescently labeled 

human BAXΔC containing a fluorophore at a single cysteine residue (Fig. II.1A & B). Human 

BAXΔC contains two indigenous cysteines (Cys-62 and Cys-126), which we considered 

inappropriate for fluorophore conjugation due to structural and functional reasons (8). 

Previously full-length BAX with G40C, C62A, and C126A mutations has been reported to be 

functional in vivo (3). Therefore, we removed cysteines, Cys-62 and Cys-126, by mutation to 

alanine and added an additional cysteine residue in place of glycine 40 creating 

BAXΔC(G40C) (Fig. II.1A). BAXΔC(G40C) labeled with Bodipy FL maleimide fluorophore 

became fluor-BAXΔC. 

To check the biological activity of the fluor-BAXΔC protein, we studied its ability to 

release cytochrome c using mitochondria isolated from HeLa cells (Fig. II.1C). Our results show 

that fluor-BAXΔC activated with 2% (w/v) n-octyl glucoside releases cytochrome c from 

isolated mitochondria similar to BAXΔC but with slightly lower efficiency. For both proteins 

significant cytochrome c release required detergent activation, suggesting that the detergent 

activation of fluor-BAXΔC was comparable with the detergent activation of the BAXΔC (7, 

12, 26). In each cytochrome c release experiment the final concentration of n-octyl glucoside 

was 0.005% (w/v) or lower, which is well below the CMC for this detergent (0.6% w/v) (11), 

http://www.jbc.org/content/284/36/23935.long#F1�
http://www.jbc.org/content/284/36/23935.long#ref-8�
http://www.jbc.org/content/284/36/23935.long#ref-3�
http://www.jbc.org/content/284/36/23935.long#F1�
http://www.jbc.org/content/284/36/23935.long#F1�
http://www.jbc.org/content/284/36/23935.long#ref-7�
http://www.jbc.org/content/284/36/23935.long#ref-12�
http://www.jbc.org/content/284/36/23935.long#ref-26�
http://www.jbc.org/content/284/36/23935.long#ref-11�


175 
 

so that detergent micelles played no role in the release of cytochrome c or the maintenance of 

the active BAXΔC conformation during the assay. 
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Fig. II.1 

 

 

 

 

 

 

 

 

 

Fig. II.1 | A, schematic structure of human BAXΔC(G40C). Introduced mutations and 
their relative position with respect to the helices and BCL-2 homology domains are 
indicated with arrows. B, SDS-PAGE of purified recombinant proteins; protein standards 
with molecular weight indicated (lane 1), human BAXΔC(G40C) (lane 2), human BAXΔC 
(lane 3), and human fluor-BAXΔC (lane 4). C, cytochrome c release from mitochondria 
isolated from HeLa cells. Mitochondria isolated from HeLa cells were incubated for 20 
min at 37 °C with 100 nM of the indicated recombinant protein. Where indicated, 
protein was activated by incubation with 2% (w/v) n-octyl glucoside for 1 h at 4°C after 
which the protein/detergent mixture was diluted to obtain a final detergent 
concentration of 0.5% (w/v) and the 100 nM protein concentration used in the assays. 
Cytochrome c content of each fraction was normalized for the basal release of 
cytochrome c in mitochondria samples with only detergent added and in mitochondria 
samples without detergent or protein added. Error bars were calculated based on three 
independent experiments. 
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Surface Plasmon Resonance Studies of Membrane Binding and Integration by BAXΔC and Fluor-

BAXΔC 

Direct analysis of the membrane binding and integration by detergent-activated fluor-

BAXΔC was compared with that of BAXΔC using surface plasmon resonance (SPR) as 

described previously (22) (Fig. II.2). SPR has been applied to the study of membrane binding 

and integration of a number of pore-forming proteins and peptides (27, 28), including BAX 

(22). Using this technique it is not necessary to label or chemically modify the protein under 

study. Therefore, we could use this method to determine the effect of the mutations and the 

added fluorophore on fluor-BAXΔC membrane binding and integration by comparison with 

the same properties of BAXΔC.  

These SPR experiments were done using cardiolipin-containing liposomes 

(DOPC:DOPA:cardiolipin 70:20:10 mol %) immobilized on the SPR-chip surface, and the 

proteins of interest were injected over this surface. Both BAXΔC and fluor-BAXΔC required 

n-octyl glucoside activation to generate significant interaction with liposome membranes (Fig. 

II.2, A and B).  

To determine the concentration dependence of BAX integration into the liposome 

membranes, we sequentially injected increasing concentrations of BAX over the same liposome-

covered surface and determined the amount of BAX integrated into the lipid membrane based 

on sensorgram response after 300 s of washing. Our results show that, when activated with n-

octyl glucoside, fluor-BAXΔC and BAXΔC have comparable integration into the liposome 

membrane (Fig. II.2C). This similarity in membrane integration suggests that the slight 
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decrease in cytochrome c release by fluor-BAXΔC (Fig. II.1C) is not the result of reduced 

membrane retention of the labeled protein but possibly a result of reduced stability of the in-

membrane open pore conformation. However, despite a possible reduction in the stability of 

fluor-BAXΔC pores, the cytochrome c release experiments (Fig. II.1C) together with the SPR 

binding data (Fig. II.2) suggest that both BAXΔC and fluor-BAXΔC, when activated with n-

octyl glucoside, follow a similar mechanism of membrane interaction and pore formation.  
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Fig. II.2 

 

 

 

 

 

 

 

 

 

Fig. II.2 | Surface plasmon resonance data of fluor-BAXΔC and BAXΔC binding to 
cardiolipin-containing liposomes (200 nm in diameter; DOPC:DOPA:CL 70:20:10 
mol %). Increasing concentrations of protein activated with 2% (w/v) n-octyl 
glucoside was flowed over immobilized liposomes. Protein accumulation on the 
surface of the liposomes is shown with response units (RU) (28). A, data for fluor-
BAXΔC binding. B, data for BAXΔC binding. C, results of concentration dependence 
analysis of protein integration into liposomes for BAXΔC (squares) and fluor-BAXΔC 
(triangles). 
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Analytical Gel Filtration of BAXΔC(G40C) with n-Octyl Glucoside or CHAPS Present 

To show that fluor-BAXΔC interacts with detergent micelles of n-octyl glucoside and 

CHAPS comparably with BAXΔC, we performed analytical gel filtration following the 

procedure of Antonsson et al. (7). We carried out our analytical gel filtration studies using 

BAXΔC(G40C) incubated with either 2% (w/v) n-octyl glucoside or CHAPS (Fig. II.3). The 

obtained results show that in the absence of detergents BAXΔC(G40C) eluted as a monomer 

with a molecular mass of slightly less than 25 kDa (Fig. II.3A), whereas in the presence of 2% 

(w/v) n-octyl glucoside, protein eluted at a molecular mass slightly below 440 kDa (Fig. II.3C). 

In contrast, when BAXΔC(G40C) was incubated with and eluted in the presence of 2% (w/v) 

CHAPS in the column, protein eluted mostly (73%) as a monomer in a broad peak (Fig. II.3B). 

These results are consistent with previously reported analytical gel filtration of BAXΔC (7) and 

show that mutant BAXΔC(G40C) interacts with micelles of n-octyl glucoside and CHAPS 

similarly as BAXΔC.  
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Fig. II.3 

 

 

 

 

 

 

 

Fig. II.3 | Analytical gel filtration of BAXΔC(G40C) incubated with indicated 
detergents. BAXΔC(G40C) was incubated with 2% (w/v) of indicated detergent for 1 h 
at 4°C. BAXΔC(G40C) incubated with detergent was passed through a Superdex-200 
column equilibrated with 10 mM HEPES/KOH, pH 7.0, 300 mM KCl buffer containing 2% 
(w/v) of the same detergent in which BAX was incubated. The Superdex-200 column 
was calibrated with two protein standards. A, BAXΔC(G40C) without detergents. B, 
BAXΔC(G40C) + 2% (w/v) CHAPS. C, BAXΔC(G40C) + 2% (w/v) n-octyl glucoside. D, 
standards (chymotrypsinogen, 25 kDa, and ferritin, 438.7 kDa). 
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Activation of BAX with Nonionic Detergents 

Compared with the amount of protein required for the analytical gel filtration studies, 

the amount of fluor-BAXΔC required for the FCS and FIDA analyses is at least 100 times 

lower. Therefore, we decided to extend the range of the detergents used in our study. We chose 

n-octyl glucoside, CHAPS, Triton X-100, dodecyl maltoside, and Tween 20 because these 

detergents have specific and known effects on BAXΔC activity (7, 26). We also chose cholic 

acid because of its similarity in structure to CHAPS, because it is a physiologic detergent and 

because it can activate BAX (1). In all cases the 2% (w/v) concentration of the detergent was 

well above the CMC (11). 

Before proceeding to the FCS and FIDA studies, we first tested the ability of all chosen 

detergents to activate BAXΔC using an assay of carboxyfluorescein release from liposomes (Fig. 

II.4A) (22). For these experiments we used recombinant human BAXΔC purified from E. coli 

cells without detergent. This BAXΔC protein was monomeric (23 ± 4 kDa as determined by 

dynamic light scattering) and had very low (<10%) carboxyfluorescein release activity. Upon 1 

h of incubation at 4°C with selected nonionic detergents (n-octyl glucoside, dodecyl maltoside, 

Triton X-100, and Tween 20), BAXΔC released carboxyfluorescein from liposomes (Fig. 

II.4A), indicating that protein became activated. Incubation with cholic acid, an ionic 

detergent, also resulted in activation of BAXΔC. However, upon a similar 1-h incubation at 

4°C with CHAPS (detergent known for its inability to activate BAX) no significant 

carboxyfluorescein release was observed. 
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Similar carboxyfluorescein release results were obtained for BAXΔC(G40C) incubated 

with all six detergents (Fig. II.4B). Comparison of the maximum carboxyfluorescein release 

values for both proteins after 90 min presents two instructive observations (Fig. II.4C). First, 

upon incubation with all detergents BAXΔC has almost a 20% higher carboxyfluorescein 

releasing activity than its mutant, BAXΔC(G40C). Second, for both proteins incubation with 

Triton X-100 resulted in the most activated form of BAX followed by n-octyl glucoside, 

dodecyl maltoside, cholic acid, and Tween 20, whereas CHAPS failed to activate either of the 

two proteins. 
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Fig. II.4 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.4 | Release of CF from liposomes by the detergent-activated BAXΔC and 
BAXΔC(G40C). A, monomeric inactive BAXΔC was incubated for 1 h at 4°C with 2% 
(w/v) n-octyl glucoside (OG), 0.6% (w/v) dodecyl maltoside (DM), 0.076% (w/v) Triton 
X-100 (TX), 0.038% (w/v) Tween 20 (Tw), 2% (w/v) CHAPS, or 2% (w/v) cholic acid 
(ChA). During this incubation the concentration of each detergent was above the CMC, 
whereas protein concentration was 70 μM. Before addition to liposomes protein was 
diluted to 50 nM. Total lipid mass in each assay was 17.5 μg. Liposomes composition 
was DOPC:DOPA 70:30 mol %. Final detergent concentration in the release assays was 
below the CMC for each detergent. Releases were normalized to carboxyfluorescein 
release by 20% Triton X-100 and corrected for basal carboxyfluorescein release by each 
detergent. Each release curve represents an average of at least three independent 
experiments. B, release of carboxyfluorescein from liposomes by detergent-activated 
BAXΔC(G40C). Protein was treated the same way as BAXΔC in A. C, single point 
comparison of the carboxyfluorescein release values at 90 min for BAXΔC and 
BAXΔC(G40C) activated with indicated detergents. Representative error bars are 
shown for each release curve. 
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CD Spectroscopy on BAXΔC in Detergent Micelles 

Circular dichroism measurements were performed to determine whether any 

significant secondary structure changes occur in BAXΔC during interaction with detergent 

micelles. BAXΔC without detergent produced CD spectra with strong α -helical pattern (Fig. 

II.5). In the presence of micelles of Triton X-100, Tween 20, or cholic acid, no significant 

changes in the BAXΔC spectra were observed. However, in the presence of micelles of n-octyl 

glucoside or dodecyl maltoside, a slight increase in the α-helical content of BAXΔC CD spectra 

was observed. The CD spectra of BAXΔC in the presence of CHAPS were not collected 

because of high CD signal from CHAPS (because of presence of amide bond in CHAPS 

structure). 
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Fig. II.5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.5 | CD spectroscopy of BAXΔC in the presence of detergent micelles in 10 
mM HEPES, pH 7.0, 100 mM KCl. A, comparison of the CD spectra for BAXΔC alone 
and in the presence of either 0.08% Triton X-100 (TX), 0.04% Tween 20 (Tw), or 2% 
cholic acid (ChA). B, comparison of the CD spectra for BAXΔC alone and in the 
presence of either 2% n-octyl glucoside (OG) or 0.6% dodecyl maltoside (DM). 
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FCS Detection Volume Is Not Affected by the Presence of Detergents 

The maintenance of consistent detection volume is critical for accurate comparison of 

FCS characteristics of different particles. Size and shape of the FCS detection volume depend 

on a number of parameters, one of which is the refractive index of solution (29, 30). The latter 

can be affected by the presence of detergents leading to the distortion of the FCS detection 

volume. 

Commonly AlexaFluor 488 dye is used for calibration of the FCS detection volume 

(30, 31). During this calibration procedure the diffusion time (τD) of the dye molecules and the 

structure parameter of the FCS detection volume (ω) were obtained by fitting the measured 

autocorrelation curve using Equation 1. Using such analysis for AlexaFluor 488 diffusing freely 

in solution in the absence of detergent, we get the following values: τ D 22.7 ± 0.9 μs, ω = 5.5 ± 

0.8. To determine whether the presence of detergent has an effect on our FCS measurements, 

we determined τ D and ω values for AlexaFluor 488 in solution containing increasing 

concentrations of n-octyl glucoside detergent (Fig. II.6). The results of these experiments show 

that over the range of 0–5% (w/v) of n-octyl glucoside, the diffusion time of the dye and the 

structure parameter of the detection volume do not change indicating that the FCS detection 

volume is not affected by the detergent presence. Similar experiments were done with the rest of 

the detergents, and they yielded analogous results (data not shown). 
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Fig. II.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.6 | Effect of detergent on the shape and size of the FCS detection volume. 
Measurement of the diffusion time (τD) of AlexaFluor 488 and the structure parameter of 
the detection volume (ω) at various detergent concentrations. n-Octyl glucoside was used 
as a detergent of choice, whereas buffer composition was 10 mM HEPES, pH 7.2, 100 mM 
KCl. Error bars were calculated based on nine 10-s measurements. For some data points 
error bars are smaller than the symbol. 
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FCS Characterization of Fluor-BAXΔC in Detergent Micelles 

We used fluorescence correlation spectroscopy to confirm the detergent-dependent 

change in the apparent molecular weight of BAXΔC protein as seen by analytical gel filtration. 

The diffusion characteristics of fluor-BAXΔC were studied in the absence and in the presence 

of 2% (w/v) of selected detergents (Fig. II.7 and Table II.1). The FCS diffusion times were 

obtained by fitting the autocorrelation curves (Fig. II.7) and are shown in Table II.1. Fluor-

BAXΔC incubated with 2% (w/v) of either n-octyl glucoside, dodecyl maltoside, Triton X-100, 

or Tween 20 had a significant increase in diffusion time, τ D, compared with the diffusion time 

of fluor-BAXΔC monomer in the absence of detergent. In contrast, the diffusion time of fluor-

BAXΔC in the presence of 2% (w/v) CHAPS or cholic acid did not increase significantly 

(Table II.1).  
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Fig. II.7 

 

 

 

 

 

 

 

Fig. II.7 | Normalized FCS autocorrelation curves of fluor-BAXΔC incubated with 
various detergents, as indicated (OG, n-octyl glucoside; DM, dodecyl maltoside; TX-
100, Triton X-100). For each autocorrelation experiment, protein was incubated in 10 
mM HEPES/KOH, pH 7.2, 100 mM KCl, with 2% (w/v) of the indicated detergent at 4 °C 
for 1 h. In each graph the normalized autocorrelation curve for fluor-BAXΔC in the 
absence of detergent (dashed line), normalized autocorrelation curve for fluor-BAXΔC 
incubated with 2% (w/v) of the indicated detergent (solid line), and normalized 
autocorrelation curve for fluor-BAXΔC after detergent was diluted to the 
concentration below its CMC (dotted line). Raw data for each autocorrelation curve 
are shown with thin jagged line. See Table II.1 for the numerical results of the analysis 
of these autocorrelation curves. 
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Table II.1 | Results of the FCS studies with fluor-BAXΔC-detergent micelles 

The molecular weight of the fluor-BAXΔC-detergent micelles was calculated using 
Equation 6. 

Fluor-BAXΔC [Detergent] 2% (w/v) After Detergent Dilution 
+ τD Mol. mass [Detergent] (w/v) τD Mol. Mass 

 μs kDa % μs kDa 
No detergent 91±4  0 91±4  
n-Octyl Glucoside 223±5 280±12 0.003 100±5 25±1 
Triton X-100 366±8 1236±223 0.003 158±4 99±2 
Dodecyl Maltoside 262±21 453±31 0.003 90±4 18±1 
CHAPS 115±4 38±1 0.004 87±3 17±1 
Cholic acid 124±5 48±1 0.003 86±2 17±1 
Tween-20 161±12 105±2 0.003 112±3 35±1 
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Using Equation 6 and the diffusion time of the fluorescent particles, we calculated the 

apparent molecular weight of the BAXΔC-detergent micelle complexes for each detergent 

(Table II.1). The apparent molecular weight of fluor-BAXΔC in the presence of n-octyl 

glucoside and CHAPS calculated from the FCS data are the same as the molecular weight 

obtained by analytical gel filtration of BAX in the presence of these detergents (Fig. II.3). The 

large molecular weight complexes of BAX generated in the presence of n-octyl glucoside, 

dodecyl maltoside, and Triton X-100 detergents were significantly larger than the sum of BAX 

and micelle of the respective detergents. 

To determine the size of fluor-BAXΔC after interaction with detergent micelles, we 

removed micelles by diluting detergent concentration below CMC. In most cases this resulted 

in dissociation of the protein-detergent micelles as well as of the detergent micelles in solution. 

Each measurement of fluor-BAXΔC size after detergent dilution was done at least 1 h after 

dilution to allow dissociation of the detergent micelles bound to the protein. In all cases the 

diffusion time of fluor-BAXΔC decreased significantly upon detergent dilution (Table II.1 and 

Fig. II.7). For all detergents, except Triton X-100, the diffusion time decreased close to that of 

fluor-BAXΔC monomer. These observations indicate that upon detergent dilution the 

molecular weight of the protein-detergent micelle complexes is reduced, and for most of the 

detergents this molecular weight is reduced to that of a fluor-BAXΔC monomer. In addition, it 

should be mentioned that n-octyl glucoside-treated fluor-BAXΔC used in the FCS dilution 

experiments was used with similar dilution as in the cytochrome c release experiments (Fig. 

II.1C).  
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Fluorescence Intensity Distribution Analysis of Fluor-BAXΔC in Detergent Micelles 

Analysis of the distribution of the photon counts in the FCS data sets was used to 

determine the number of fluor-BAXΔC molecules per protein-detergent micelle formed with 

micelles of all tested detergents. This analysis used the FIDA algorithm developed by Kask et al. 

(18). Using FIDA we determined fluorescence brightness of BAX molecules before, during, and 

after interaction with detergent micelles. Comparison of these fluorescence brightness values 

shows that BAX is a monomer in all cases (Table II.2). However, in case of dodecyl maltoside 

and Triton X-100, the calculated values of fluorescence brightness per protein-detergent 

micelle were 90% higher than the fluorescence brightness of the fluor-BAXΔC monomer. It is 

possible that BAX is dimerized in micelles of these detergents. Interestingly, in the presence of 

cholic acid or Tween 20 protein fluorescence brightness decreased by 36 and 15%, respectively, 

whereas in the presence of the rest of the detergents protein fluorescence brightness increased 

or stayed the same as in the absence of detergents. Therefore, because protein fluorescence 

brightness was clearly affected by the detergent we studied this effect directly. 
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Table II.2 | Analysis of the fluorescence-intensity distribution of the fluor-BAXΔC 
protein detergent-micelle complexes 

Protein (at the concentration indicated in the table) was preincubated with detergent 
for 1 h at 4°C. Upon incubation with detergent, the protein was diluted below 0.5 μM 
into a solution containing the identical detergent concentration as during activation. The 
measurements were done immediately upon this dilution. Mean and standard 
deviations of the brightness values were calculated based on nine measurements at 50 s 
each.  

Fluor-BAXΔC [Detergent] 2% (w/v) After Detergent Dilution 
+ Fluorescence 

Brightness 
25 μM BAX 

Fluorescence 
Brightness 
3 μM BAX 

[Detergent] (w/v) Fluorescence 
Brightness 

 kHz kHz % kHz 
No detergent   0 5.5±0.1 
n-Octyl Glucoside 7.4±0.2 7.2±0.3 0.003 4.7±0.2 
Triton X-100 10.5±0.1 10.4±0.1 0.003 7.1±0.1 
Dodecyl Maltoside 8.5±0.1 10±0.1 0.003 5.0±0.1 
CHAPS 5.9±0.1 5.8±0.1 0.004 5.6±0.1 
Cholic acid 3.49±0.06  0.003 4.71±0.09 
Tween-20 4.70±0.24  0.003 5.41±0.06 
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For three detergents where micelle size was significantly increased by the addition of 

BAX (n-octyl glucoside, dodecyl maltoside, and Triton X-100), we varied the degree of protein 

to detergent ratio while holding either detergent or protein concentration constant. First, we 

varied the concentration of the fluor-BAXΔC from 25 to 3 μM while keeping detergent 

concentration constant at 2% (w/v). We reasoned that, if fluor-BAXΔC forms oligomers in 

micelles, the decrease in protein concentration while keeping detergent concentration constant 

would lead to a change, e.g. reduction, of the oligomeric state of protein in detergent micelles. 

Such change in the oligomeric state of protein with increasing detergent concentration has been 

previously demonstrated for some transmembrane peptides in detergent micelles (32). In this 

case there was no significant change in the fluorescence brightness of the fluor-BAXΔC-

detergent micelles (Table II.2).  

Second, we measured the effect of increasing detergent concentration on the 

fluorescence brightness of fluor-BAXΔC at constant protein concentration. If protein 

fluorescence brightness increases because of the presence of detergent, then the total 

fluorescence intensity of the sample containing constant protein concentration will increase 

with increasing detergent concentration. As shown in Fig. II.8A (empty circles), for constant 

protein concentration in the presence of increasing n-octyl glucoside concentrations total 

fluorescence intensity increases. Furthermore, fluorescence brightness per particle of protein-

detergent micelles determined by single-component fitting of resulting FCS autocorrelation 

curves also increased (Fig. II.8A, filled squares). The ratio of the total fluorescence intensity to 

the fluorescence brightness per particle (also known as cpp) represents the average number of 

http://www.jbc.org/content/284/36/23935.long#ref-32�
http://www.jbc.org/content/284/36/23935.long#T2�
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particles in the FCS observation volume. As expected, this number stayed constant for all n-

octyl glucoside concentrations clearly showing that increase in n-octyl glucoside concentration 

leads to increase in protein fluorescence brightness. For n-octyl glucoside the FCS and FIDA 

yield similar protein fluorescence brightness values (Table II.2 and Fig. II.8). Such an agreement 

between FCS and FIDA results further shows that fluor-BAXΔC is present as a monomer in n-

octyl glucoside micelles.  

Analogous detergent titration experiments were performed for the rest of the 

detergents giving the same result that protein fluorescence brightness of the fluor-BAXΔC is 

changing with increasing concentrations of detergent (Fig. II.8C). In addition, in the n-octyl 

glucoside titration experiment gradual increase in the protein diffusion time was observed 

together with increase in protein fluorescence brightness. This observation suggests that with 

increasing n-octyl glucoside concentration protein-detergent micelles grow in size (Fig. II.8B).  

For all tested detergents after micelle removal by dilution, the fluorescence brightness of 

the fluor-BAXΔC returned to that of a protein monomer. However, upon removal of Triton 

X-100 protein fluorescence brightness decreased but was still 29% higher than that for the 

protein monomer in the absence of the detergent. This result suggests incomplete dissociation 

of the Triton X-100 molecules from BAX and is in accordance with the FCS diffusion time, 

which shows that upon Triton X-100 dilution below CMC, the apparent molecular weight of 

the fluor-BAXΔC was higher than that of a protein monomer. 
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Fig. II.8 

 

 

 

 

 

 

 

 

 

 

Fig. II.8 | Enhancement of the fluor-BAXΔC fluorescence intensity upon interaction with 
detergents. A, constant concentration (3 μM) of fluor-BAXΔC was incubated with 
increasing concentrations of n-octyl glucoside (OG) for 1 h at 4°C. The fluorescence 
intensity of the protein samples incubated with detergent was measured using ConFocor 
3 (Zeiss, Germany). For each measurement the protein incubated with detergent was 
diluted to a final concentration of 24 nM in EB buffer containing the same detergent 
concentration as in the protein sample. All measurements were done at 22°C. cpp values 
were determined using the single-component fit of the FCS autocorrelation curves. B, 
increase in the apparent molecular weight (MW) of BAXΔC upon interaction with 
micelles of n-octyl glucoside. Molecular weight values were calculated using Equation 6. 
C, change in the cpp value of fluor-BAXΔC with increasing detergent concentration. 
Samples were prepared, and measurements were done similar to the Fig. II.6A. 
Detergent abbreviations are similar to Fig. II.5. 

http://www.jbc.org/content/284/36/23935.long#disp-formula-6�
http://www.jbc.org/content/284/36/23935.long#F6�
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FCCS Analysis of BAXΔC in Detergent Micelles 

To show the absence of BAX oligomerization in detergent micelles, FCCS analysis was 

used. FCCS is a variation of the FCS that allows determination of the degree of interaction 

between two fluorescent molecules or macromolecular assemblies. In these experiments we used 

two types of fluorescently labeled BAX as follows: fluor-BAXΔC and Bodipy 630/650 

maleimide-BAXΔC. The degree of interaction between these two proteins in detergent 

micelles is proportional to the cross-correlation value that is determined by FCCS analysis. The 

results of these FCCS experiments show low cross-correlation values between two fluorescent 

forms of BAXΔC compared with the theoretically predicted cross-correlation value of BAXΔC 

dimer. These FCCS results suggest the absence of interaction between the two fluorescent 

variants of BAXΔC in detergent micelles of all tested detergents (Fig. II.9). 
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Fig. II.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.9 | Results of the FCCS experiments with fluor-BAXΔC (50% labeled) and Bodipy 
630/650 maleimide-BAXΔC (80% labeled) in the presence of the indicated detergents. 
Lane 1, cross-correlation standard (double-stranded RNA with AlexaFluor 488, Cy5 
labels); lane 2, no detergent present; lane 3, +2% n-octyl glucoside; lane 4, +2% Triton X-
100; lane 5, + 2% CHAPS; lane 6, + 2% cholic acid; lane 7, + 2% Tween 20; lane 8, + 2% 
dodecyl maltoside; lane 9, maximum expected cross-correlation value for a formation of 
protein dimer from a mix of 50 and 80% labeled protein. Experiments were done in 10 
mM HEPES, pH 7.2, 100 mM KCl buffer at 22 °C. All detergent concentrations are given in 
% of w/v. 
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II.4 | Discussion 

Fluorescently Labeled BAXΔC Is Active 

To apply FCS to the study of BAX, we generated a soluble form of the protein. We 

employed the BAXΔC in these solution studies of the protein activity and oligomerization 

because we found that it remained in solution and could be activated by detergent throughout 

all the manipulations that were used in these studies. To label this protein with a fluorophore, 

we substituted endogenous cysteines with alanine (C62A and C126A) and converted glycine 

40 in an unstructured region of BAX to a cysteine. The position of these changes in the 

BAXΔC protein are shown not to interfere with the function of the full-length BAX in vivo 

(3), and the resulting protein was well expressed by bacteria. The added cysteine was exposed in 

the engineered protein and formed disulfide cross-linked BAXΔC(G40C) dimers at high 

concentrations (data not shown). After substitution with the fluorescent probe, the disulfide 

formation did not occur. Therefore, further characterization of the activity of the engineered 

protein was performed on the fluor-BAXΔC.  

To assess the functional capability of fluor-BAXΔC, we tested its ability to promote 

cytochrome c release from isolated mitochondria as compared with that of BAXΔC. Because 

our engineered BAXΔC was based upon the human protein, we used mitochondria isolated 

from HeLa cells to study cytochrome c release (33). In these experiments we observed that 

fluor-BAXΔC releases 71 ± 15% of the mitochondrial cytochrome c when activated with n-

octyl glucoside, whereas BAXΔC releases 100 ± 30% (Fig. II.1). Based on this result we 

conclude that mutation and fluorophore labeling of BAXΔC alter pore forming activity of this 

http://www.jbc.org/content/284/36/23935.long#ref-3�
http://www.jbc.org/content/284/36/23935.long#ref-33�
http://www.jbc.org/content/284/36/23935.long#F1�
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protein but only in a minor way. In addition, to these experiments, we also studied the ability of 

various detergents to activate BAXΔC and its mutant in liposomes (Fig. II.4). Again we saw a 

reduction in pore activation by the mutant protein. However, it is clear that the reduction is 

consistent across the range of tested detergents (Fig. II.4C). Finally, we compared the 

integration of BAXΔC and its mutant into lipid membranes using SPR. We have recently 

developed methods to quantitatively study binding and integration of BAX to membranes 

using SPR (22). In those studies protein integration into lipid membranes was critical for pore 

formation and only occurred after protein incubation with n-octyl glucoside. In the SPR 

comparison mutant of BAXΔC, BAXΔC(G40C) was fully functional and integrated into lipid 

membranes as well as BAXΔC (Fig. II.2). Taken together these studies indicate that 

BAXΔC(G40C) is fully functional, but its specific activity for pore formation is slightly 

lessened by the introduced mutations, possibly due to lower oligomerization rate or changed 

pore topology.  

Fluor-BAXΔC Forms High Molecular Weight Protein-Detergent Micelles with Most Activating 

Detergents 

BAXΔC has been shown to form high molecular weight complexes with n-octyl 

glucoside but not with CHAPS (7). To show that our mutated BAX, BAXΔC(G40C), can 

form high molecular weight complexes with n-octyl glucoside and not with CHAPS, we 

performed analytical gel filtration studies similar to those in Ref. 7. The results of these 

analytical gel filtration experiments show that in the presence of 2% (w/v) of n-octyl glucoside, 

BAXΔC(G40C) elutes at a molecular mass slightly below 440 kDa, whereas in the presence of 

http://www.jbc.org/content/284/36/23935.long#F4�
http://www.jbc.org/content/284/36/23935.long#F4�
http://www.jbc.org/content/284/36/23935.long#ref-22�
http://www.jbc.org/content/284/36/23935.long#F2�
http://www.jbc.org/content/284/36/23935.long#ref-7�
http://www.jbc.org/content/284/36/23935.long#ref-7�
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2% (w/v) CHAPS this protein elutes mostly as a monomer (73%). These results are similar to 

the previously published results for BAXΔC (7) indicating that mutations introduced into 

BAXΔC do not interfere with formation of high molecular weight complexes of this protein 

with n-octyl glucoside.  

Next we proceeded to measure the molecular weight of fluor-BAXΔC in the presence 

of n-octyl glucoside and CHAPS using FCS. In the FCS experiments we measured the diffusion 

time, τD, of fluor-BAXΔC molecules in the presence of 2% (w/v) of these detergents. Then by 

using Equation 6, we calculated the molecular weight of the fluor-BAXΔC protein-detergent 

micelle complexes (Table II.1). The molecular weights of BAXΔC protein-detergent micelle 

complexes determined by FCS and analytical gel filtration were fairly similar, further 

demonstrating that mutagenesis and fluorescent labeling of BAXΔC do not affect the 

interactions of this protein with n-octyl glucoside and CHAPS. This result also shows that FCS 

can be used to determine the apparent molecular weight BAXΔC with other detergents. 

Therefore, we extended the range of detergents used in our study to dodecyl maltoside, Triton 

X-10, Tween 20, and cholic acid. As a result of these FCS studies, we determined that fluor-

BAXΔC forms high molecular weight complexes in the presence of activating nonionic 

detergents (n-octyl glucoside, dodecyl maltoside, Triton X-100, and Tween 20). However, in 

the presence of cholic acid, activating ionic detergent, fluor-BAXΔC does not form high 

molecular weight complexes. Fluor-BAXΔC also did not form high molecular weight 

complexes with CHAPS, a zwitterionic detergent known for its inability to activate BAXΔC. 

http://www.jbc.org/content/284/36/23935.long#ref-7�
http://www.jbc.org/content/284/36/23935.long#disp-formula-6�
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In addition, all of the tested activating detergents did not induce significant secondary structure 

changes in the BAXΔC protein (Fig. II.5).  

For the studies of BAXΔC pore formation in lipid membranes, it is desirable that 

detergent is removed after BAXΔC activation because detergent at concentrations above the 

CMC can alter the integrity of lipid membranes. Therefore, it is important to know the 

molecular weight of BAXΔC after interaction with detergent micelles. To determine the latter, 

excess detergent was removed from fluor-BAXΔC by dilution below the CMC. After removal 

of detergent micelles, the molecular weight of fluor-BAXΔC decreased to that of the fluor-

BAXΔC monomer for most of the detergents (Table II.1). The results for fluor-BAXΔC 

treated with Triton X-100 were an exception. Upon Triton X-100 dilution the molecular 

weight of fluor-BAXΔC was five times larger than that of fluor-BAXΔC monomer. There are 

two possible explanations for this result. The first explanation is based on incomplete 

dissociation of Triton X-100 molecules bound to fluor-BAXΔC upon detergent dilution, and 

the second explanation is possible formation of fluor-BAXΔC homo-oligomers. To 

differentiate between these two explanations and to determine the stoichiometry of fluor-

BAXΔC before, during, and after interactions with detergent micelles we performed FIDA.  

BAXΔC Is Present as a Monomer in Protein-Detergent Micelles 

To further investigate the stoichiometry of the fluor-BAXΔC-detergent micelles, we 

performed FIDA on the FCS data (Table II.2). The fluorescence brightness of the individual 

protein-detergent micelles varied ∼90% as a function of the detergent used, but all of them 

contained one BAX protein molecule. The reason for such variation of the fluorescence 

http://www.jbc.org/content/284/36/23935.long#F5�
http://www.jbc.org/content/284/36/23935.long#T1�
http://www.jbc.org/content/284/36/23935.long#T2�
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brightness of the protein monomer in various detergents was because of the enhancement or 

quenching of the Bodipy FL fluorophore brightness upon transfer into the hydrophobic 

environment of a detergent micelle. Similar effects of the fluorophore brightness enhancement 

were reported previously for the fluorescently labeled diphtheria toxin T-domain interacting 

with detergent micelles (34). In our case there appears to be an enhancement of the 

fluorescence brightness of fluor-BAXΔC in the presence of n-octyl glucoside, dodecyl 

maltoside, and Triton X-100 detergents, and a decrease in protein fluorescence brightness in 

the presence of cholic acid and Tween 20. Studies of detergent titration into constant protein 

concentration show that this effect is because of the enhancement of the fluorophore brightness 

and not because of protein oligomerization (Fig. II.8). In addition, detergent dilution studies 

show that upon detergent dilution, which leads to the dissolution of the fluor-BAXΔC-

detergent micelles, the fluorophore brightness of the protein returns to that of the protein 

monomer prior to the interaction with detergent micelles (Table II.2).  

The FIDA results mean clearly that before, during, and after interaction with detergent 

micelles the fluor-BAXΔC protein is a monomer. This observation suggests that BAXΔC 

interaction with micelles is fundamentally different from the interaction that it establishes in 

bilayer membranes. In a bilayer membrane BAXΔC assumes conformation, which allows 

assembly of homo-oligomers resulting in pore formation. In contrast, in a detergent micelle 

BAXΔC assumes conformation that in the case of nonionic detergents leads to a dramatic 

enlargement of the resulting protein-detergent micelle without necessary protein homo-

oligomerization (Table II.1 and Fig. II.3). Because this increase in size can no longer be 

http://www.jbc.org/content/284/36/23935.long#ref-34�
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attributed to additional BAX molecules per micelle, it must be due to the incorporation of 

additional detergent.  

To study the interaction of the fluor-BAXΔC with detergent micelles, we used 

detergents at 2% (w/v) concentration, which is well above the CMC for all tested detergents. If 

expressed in molar units, this detergent concentration will be on the order of millimolars for all 

tested detergents (n-octyl glucoside, 68 mM; Triton X-100, 32 mM; CHAPS, 33 mM; dodecyl 

maltoside, 40 mM). In contrast, in all of the experiments the concentration of fluor-BAXΔC 

during incubation with detergent was 20–30 μM. Solution containing 20–30 μM protein and 

>30 mM detergent has an excess of detergent micelles over the number of protein molecules. 

Fleming (32) has shown that an excess of detergent micelles moves the protein to a more 

dissociated state. Fleming (32) also shows that for a glycophorin A transmembrane α-helix, 40% 

of dimers of this α -helix are detected for a 40 times lower mole ratio of protein to detergent 

than was used in our experiments. This demonstrates that if fluor-BAXΔC is forming 

oligomers in detergent micelles, then we would not have been prevented from detecting them. 

The above outlined argument together with the FCCS results (Fig. II.9) led us to the 

conclusion that fluor-BAXΔC is present as a monomer in detergent micelles.  

The outcome of this conclusion is that during and after detergent activation BAXΔC is 

a monomer. Therefore, this protein has two stable monomeric conformations in physiological 

buffer conditions, one inactive and one active. Second, this implies that the detergent-activated 

species of BAX is a monomeric protein, and the large molecular weight in the presence of the 

micelles of nonionic detergents is a result of the detergent component of the complex.  

http://www.jbc.org/content/284/36/23935.long#ref-32�
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Consequences for the Physiological Activation of BAX 

These studies suggest that detergent activation of BAX is not merely a mimicry of the 

physiologic BAX activation. The characteristics of the detergent activation indicate two 

intriguing characteristics that may concern in vivo activation of BAX. First, because BAX 

remains active after we effectively remove the detergent substrate upon which it has activated, 

there must be two stable conformations of monomeric solution BAX, one active and the other 

inactive. Because this activation requires a large template and is distinct from the oligomer-

competent conformation, which BAX assumes in membranes, we can consider the possibility 

that BAX is activated as a soluble protein and then integrates into the membrane. Second, the 

existence of a soluble active form of BAX suggests that this process can be reversed, which is a 

potential therapeutic approach.  

II.5 | Conclusion 

In this work we studied in detail the process of BAXΔC activation by nonionic 

detergents. Based on the results of our study we conclude that BAXΔC is a monomer before, 

during, and after interaction with detergent micelles. In this study we used fluorescently labeled 

analogue of BAXΔC in combination with two single-molecule sensitivity techniques (FCS and 

FIDA). Because the determination of the oligomeric state of proteins in detergent micelles is 

important for structural and functional studies of integral membrane proteins (35, 36), we are 

hopeful that the method presented here can be used for other proteins.  
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II.6 | Experimental Procedures 

All chemicals used in this paper were from Sigma, unless otherwise stated. All lipids were 

obtained from Avanti Polar Lipids. Fluorescent dyes for protein labeling were purchased from 

Molecular Probes. 

Protein Constructs, Protein Purification, and Protein Labeling 

The cDNA for human BAX with 19-amino acid truncation on the C terminus 

(BAXΔC) was fused to the C-terminal intein/chitin-binding domain of the pTYB1 vector 

(New England Biolabs) (8). Three mutations (G40C, C62A, and C126A) were introduced 

into each of the DNA plasmids using a QuikChange mutagenesis kit (Stratagene), and the 

presence of mutations was confirmed by sequencing. The resulting construct and purified 

protein were dubbed as BAXΔC(G40C). All proteins (human BAXΔC and human 

BAXΔC(G40C)) were purified from BL21(DE3) Escherichia coli cells without detergent. 

Briefly, bacterial cultures were grown at 37°C in Terrific Broth (19) to an A600 of 1.5–2.0, and 

then the cultures were induced with 0.1 mM isopropyl 1-thio-β-d-galactopyranoside (Research 

Products International. Corp., Mt. Prospect, IL), and the temperature was dropped to 25 °C. 

After 12–15 h, bacteria were collected via centrifugation; the resulting pellet was resuspended 

in lysis buffer (phosphate-buffered saline, pH 7.2, 1 mM EDTA, 0.25 mM 

phenylmethylsulfonyl fluoride), and cells were broken by four passages through a 

Microfluidizer (Microfluidics) at 1000 bar. Lysate was clarified by centrifugation, and the 

supernatant containing BAX was incubated with chitin affinity resin (New England Biolabs) 

overnight at 4°C on a rocker. Resin was subjected to a high salt wash and then equilibrated in 

http://www.jbc.org/cgi/redirect-inline?ad=Avanti%20Polar%20Lipids�
http://www.jbc.org/cgi/redirect-inline?ad=Molecular%20Probes�
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cleavage buffer (10 mM HEPES/NaOH, pH 8.0, 100 mM NaCl, 50 mM dithiothreitol) and 

incubated for 48 h at 4°C. The purity of the proteins were assessed by SDS-PAGE. 

BAXΔC(G40C) was labeled with Bodipy FL c5-maleimide (Molecular Probes) according to the 

manufacturer's protocol. Labeled protein was separated from the free dye using a Sephadex G-

25 column. The degree of protein labeling was determined using a NanoDrop 

spectrophotometer (Thermo Scientific) by measuring absorbance at 280 nm (for protein 

concentration) and 504 nm (for Bodipy FL concentration). Resulting protein was ∼ 80% 

labeled and was stored in EB buffer (10 mM HEPES/KOH, pH 7.2, 100 mM KCl) at 4°C.  

Incubation of BAX with Detergent Micelles 

Prior to FCS studies and cytochrome c and carboxyfluorescein release experiments, 

fluorescently labeled BAXΔC(G40C) or BAXΔC (20–30 μM) was incubated with 2% (w/v) 

of the indicated detergent in EB buffer for 1 h at 4 °C. For FCS studies of the fluor-BAXΔC in 

detergent micelles, after incubation with detergent, protein was diluted to a concentration 

below 0.5 μM in a solution containing the same detergent concentration as the activated 

protein. This dilution was done to ensure that the fluorescent signal emitted by the protein 

sample is within the dynamic range of the detector in the ConFocor 3 (Zeiss, Germany). To 

remove detergent micelles for the cytochrome c release and for the FCS studies of post-micelle-

activated fluor-BAXΔC, the BAX/detergent mixture was diluted below the CMC of each 

particular detergent. The disappearance of micelles occurred at different rates (<1 min for OG 

and longer but <60 min for Triton X-100) but was allowed to finish before further studies on 

the sample (cytochrome c release or FCS) proceeded. 

http://www.jbc.org/cgi/redirect-inline?ad=Molecular%20Probes�
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Cytochrome c Release Assay 

Mitochondria from HeLa cells were isolated using a previously published procedure 

(20). Isolated mitochondria were resuspended in 10 mM HEPES/KOH, pH 7.4, 100 mM 

KCl, 1 mM EGTA, 200 mM sucrose. For the cytochrome c release assay isolated mitochondria 

were incubated with 100 nM of protein that was detergent-activated but micelle-diluted as 

described above or inactive protein at 37°C for 20 min. After the incubation with BAX protein 

or detergent control solutions, mitochondria were spun down at 10,000 × g for 10 min at 4°C 

and then pellet and supernatant fractions were collected and stored at −20°C. For the 

cytochrome c release assay we used 0.5 μg of mitochondria in a 30 μl volume. Protein 

concentration in the preparation of isolated mitochondria was determined by protein assay 

(Bio-Rad). Cytochrome c content in the pellet and supernatant fractions was determined using 

TiterZyme EAI human cytochrome c enzyme immunometric assay kit (Assay Designs) in 

combination with Synergy HT plate reader (Bio-Tek Instruments, Inc.). 

Surface Plasmon Resonance Studies of BAX Binding to Liposomes 

These studies were done using Biacore X instrument (GE Healthcare) at an ambient 

temperature of 25°C. Liposomes with lipid composition of DOPC:DOPA:bovine heart 

cardiolipin (70:20:10 mol %) were prepared using the reverse-phase evaporation method (21) 

following the procedure described in detail in Ref. 22. The buffer was EB unless otherwise 

noted. The rest of the experimental conditions, experimental protocol, and data analysis were 

the same as described previously (22). 
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Analytical Gel Filtration 

Analytical gel filtration experiments were performed on a Superdex 200 HR 10/30 

column (GE Healthcare) equilibrated with 20 mM HEPES/KOH, pH 7.5, 300 mM KCl, 0.2 

mM dithiothreitol. In the corresponding samples, 2% (w/v) of the indicated detergent was 

included in the equilibration buffer. Prior to loading the sample on the column, 2.5 nmol of 

BAXΔC(G40C) were incubated in 2% (w/v) of the corresponding detergent for 1 h at 4°C. 

Then samples were loaded into the column and run at 0.5 ml/min. BAXΔC(G40C) elution 

was detected by light absorption at 280 nm. 

Carboxyfluorescein Release Assay 

Liposomes containing 50 mM carboxyfluorescein (CF) were prepared following the 

procedure described previously (22). Incubation with detergent protein was diluted into wells 

in a black bottom 96-well plate (NUNC, Denmark) using EB buffer. Liposomes (200 nm in 

diameter, DOPC:DOPA, 70:30 mol %) were added to the wells last. Immediately upon 

addition of liposomes, measurement of CF fluorescence was done using a Synergy HT plate 

reader (Bio-Tek Instruments, Inc.). CF releases for all protein samples containing detergent 

were corrected for the base-line CF release in the presence of detergents without protein. Data 

were analyzed in Origin 6.1 (OriginLab Corp.).  

Circular Dichroism Spectroscopy 

Samples for CD spectroscopy were prepared at 5 μM protein concentration in 10 mM 

potassium phosphate buffer, pH 7.0. Detergents (n-octyl glucoside (2% w/v), dodecyl 

maltoside (0.6% w/v), Triton X-100 (0.08%), Tween 20 (0.04% w/v), cholic acid (2% w/v)) 

http://www.jbc.org/content/284/36/23935.long#ref-22�
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were added to protein samples 1 h prior to measurements and stored at 4°C. Samples were 

measured at 20°C on Jasco J-715 spectropolarimeter using a 1-mm path length cell. Data were 

collected every 0.1 nm at 50 nm/min scan speed from 260 to 200 nm, and results were averaged 

from five scans. Because of high CD signal from Triton X-100 at 200 nm for samples 

containing this detergent, data were collected from 240 to 205 nm. Spectra for all protein 

samples containing detergent were corrected for the base line of detergents in the absence of 

protein. 

FCS, FCCS, and FIDA Analyses, Instrumentation, and Measurements 

LSM 510 ConFocor 3 system coupled with a Zeiss Axiovert 200 M inverted 

microscope (Zeiss, Germany) was used for FCS and FIDA experiments. A water immersion C-

Apochromat ×40 objective (Zeiss, Germany) focused the excitation light to a diffraction-

limited spot. The pinhole size was set to 70 μm for 488 nm excitation laser light. The excitation 

light of a 25-milliwatt 488 nm argon laser was set at 1% of the acousto-optical tunable 

transmission. Laser power in the sample was 7 microwatts. In front of the detector LP 530-nm 

filter was used. For the FCS and FIDA analyses, each sample was measured at least nine times 

for 50 s. The detection volume was previously calibrated with free Bodipy FL maleimide in 

solution (diffusion time 22.6 ± 0.5 μs, structure parameter 5.0 ± 0.4). 

FCS Analysis 

FCS measurements provide three characteristic parameters for interpretation as 

follows: τD, diffusion time of a fluorescent particle (i.e. the average time a particle spends in the 

detection volume); N, number of fluorescent particles in the detection volume, and the 
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counts/particle (cpp) or the average fluorescent intensity per particle. These parameters are 

extracted by performing a fit of FCS auto-correlation data to one component diffusion model 

as shown in Equation 1, which takes into account photophysical dynamics of fluorophores, 

 

In this equation G(τ) is the auto-correlation function; τ is the lag time; T is the fraction of 

molecules in the triplet state; τT triplet decay time; ω is the structure parameter (aspect ratio) of 

the Gaussian detection volume. Fitting of the FCS auto-correlation curves was done using 

Equation 1 with software written in MATLAB (Mathworks) using a weighted nonlinear least 

squares fitting algorithm. 

Calculation of Protein-Detergent Micelle Molecular Weight Based on FCS Diffusion Time 

For a particle in solution the diffusion time is inversely proportional to the diffusion 

coefficient as shown in Equation 2, 

 

In general, protein molecules diffusing in solution are assumed to approximate a spherical shape 

permitting the Einstein-Stokes relationship to be used in evaluating the diffusion constant as 

shown in Equation 3, 

 

where, kB is the Boltzmann constant; T is temperature in degrees Kelvin; η is viscosity of 

solution in which particle is diffusing, and R is the radius of the spherical particle. The radius of 

http://www.jbc.org/content/284/36/23935.long#disp-formula-1�
http://www.jbc.org/content/284/36/23935.long#disp-formula-1�
http://www.jbc.org/content/284/36/23935.long#disp-formula-2�
http://www.jbc.org/content/284/36/23935.long#disp-formula-3�
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diffusing particle depends on the molecular weight of the particle (R ∝ (MW)). Under these 

conditions a relationship can be established between the FCS diffusion time of a particle and its 

molecular weight as shown in Equations 4 and 5. 

 

 

In the case of BAXΔC, we know diffusion time of a BAXΔC monomer, τ D,monomer, and its 

molecular weight, MWmonomer = 19 kDa. We also know the diffusion time of BAXΔC protein-

detergent micelle, τD,oligomer. Using Equation 5 we can determine the apparent molecular weight 

of the BAXΔC protein-detergent micelle as shown in Equation 6. 

 

FCCS Analysis 

FCCS employing BAX labeled with dyes having nonoverlapping fluorescence spectra 

and a two-channel collection of data was used to determine the presence or absence of BAX 

homo-oligomers in detergent micelles (23, 24). Using Bodipy FL maleimide-BAXΔC and 

Bodipy 630/650 maleimide-BAXΔC, we studied cross-correlation in micelle-associated 

protein. The cross-correlation value, a ratio of the number of the fluorescent complexes 

containing both proteins of interest to the number of the fluorescent species of one of the 

proteins, was used to estimate the micelles with more than one BAX molecule. As a positive 

control and as a calibration sample, the 21-bp-long double-stranded RNA labeled with 

AlexaFluor 488 and Cy5 on each 3′-end was used (25). 

http://www.jbc.org/content/284/36/23935.long#disp-formula-4�
http://www.jbc.org/content/284/36/23935.long#disp-formula-5�
http://www.jbc.org/content/284/36/23935.long#disp-formula-5�
http://www.jbc.org/content/284/36/23935.long#disp-formula-6�
http://www.jbc.org/content/284/36/23935.long#ref-23�
http://www.jbc.org/content/284/36/23935.long#ref-24�
http://www.jbc.org/content/284/36/23935.long#ref-25�


214 
 

Fluorescence Intensity Distribution Analysis 

Analysis of the fluorescence brightness of a particle can provide an additional measure 

of the number of fluorescent proteins associated with a detergent micelle. The particle 

fluorescence brightness determined by FIDA is extracted by fitting the distribution of the 

number of photon counts and is similar to the cpp value determined by FCS for a 

monodisperse fluorophore solution. Determination of the particle brightness of the BAX-

detergent micelle and comparison with particle brightness of monomeric BAX molecules 

estimate the number of BAX molecules in detergent micelles. FIDA was performed according 

to Kask et al. (18). The raw data of photon arrival times was binned to 20 μs, and photon 

counting histograms were constructed. Parameters describing the detection volume were 

determined in a solution of fluor-BAXΔC in the absence of detergent. As indicated, histograms 

were fitted to model functions for one or two components, as described in Kask et al. (18) 

subtracting a background of 310 Hz for the buffer solution. 

 

 

 

 

 

 

 

 

http://www.jbc.org/content/284/36/23935.long#ref-18�
http://www.jbc.org/content/284/36/23935.long#ref-18�
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APPENDIX III 
 

Evidence for a Giant BAX Pore 
 
 

(The contents of this chapter were adapted from Ivashyna, O., García-Sáez, A. J., Christenson, 
E. T., Schwille, P., Schlesinger, P. H. (2011) (in preparation)) 
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III.1 | Summary 

BAX is a proapoptotic member of the BCL2 protein family that induces 

permeabilization of the outer mitochondrial membrane, likely via oligomeric pores. In vitro 

reconstitution experiments strongly support BAX oligomerization and membrane poration 

which correlates with genetic and biochemical evidence. The size and composition of BAX 

pores remains controversial, however, largely due to the absence of high-resolution structural 

information on membrane-affiliated BAX. To interrogate BAX pore formation and its long-

term effects on artificial lipid membranes we developed a system consisting of giant unilamellar 

vesicles (GUVs) and recombinant fluorescently-labeled BAX and unlabeled BH3-only activator 

cBID which we studied using confocal microscopy. Our data show that BAX can bind and 

permeabilize lipid bilayers of GUVs and prolonged exposure of GUVs to BAX leads to 

dramatic morphological changes in and disintegration of GUV structure. In addition, we found 

that in the large format of GUVs BAX forms giant pores which we have termed mega-pores. 

The line tension in the rim of a BAX mega-pore was calculated to be 3.7±1.7 fN while the size 

distribution of these pores was 5-20 μm and lifetime ranged from 8 min. to many hours. The 

presence of BAX mega-pores supports the proposal that BAX can form pores of varying 

diameters, not only on the nanoscopic scale but also the microscopic, and suggests there is no 

upper limit on the number of BAX monomers that can participate in a BAX pore. 
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III.2 | Introduction 

BCL-2 associated protein X (BAX), a member of the B-cell lymphoma-2 (BCL2) 

protein family, is directly involved in controlling integrity of the outer mitochondrial 

membrane (OMM) (1). In a cell, the function of BAX is to permeabilize the OMM, possibly 

via formation of oligomeric pores, through which mitochondrial intermembrane proteins can 

escape into the cytoplasm and activate the cascade of caspases which dismantle the cell. 

However, such BAX pores have not been directly observed in vivo but only via cell-free 

reconstitution schemes. In vitro BAX pores were observed in systems consisting of purified 

BAX and artificial lipid membranes – in most cases represented by the unilamellar lipid vesicles 

of 0.1-0.2 µm in diameter (2-4). Such small liposomes can only be imaged by electron 

microscopy where samples have to be dried and fixed prior to imaging, which conceivably can 

introduce artifacts (5). Therefore, we developed an in vitro system consisting of fluorescence-

labeled (fl-) BAX, BH3-only direct activator cut BID (cBID), antiapoptotic BCL-XL, and giant 

unilamellar vesicles (GUVs) – with diameters ranging from 10-100 µm – which can be non-

invasively studied in physiological buffer conditions over relatively long periods of time.   

We began our studies by establishing the ability of fl-BAX to form pores in unilamellar 

vesicles of 0.2 µm in diameter, after which we transitioned to confocal imaging studies of fl-

BAX binding and permeabilization of GUVs. To ensure that fluorescence-labeling of BAX did 

not interfere with its ability to permeabilize lipid membranes, we produced two forms of fl-

BAX, labeled with structurally distinct fluorophores. The relevance of our experimental regime 
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is evinced by employing cBID to enhance the permeabilization activity of BAX and BCL-XL to 

suppress BAX poration. 

Confocal microscopy experiments allowed observation of  intriguing BAX effects on 

the morphology and stability of GUVs, the most striking being formation of gigantic BAX 

pores which we have dubbed BAX mega-pores. To characterize these pores with respect to 

other known types of giant pores in GUVs we measured the line tension in the rims and the 

lifetimes of these mega-pores. Our evidence reveals that BAX mega-pores are the most stable 

giant pores yet observed. While BAX mega-pores should not exist in a cellular environment, 

their interrogation provides insight into the assembly of mitochondrial, nanoscale pores. 
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III.3 | Results 

Fluorescently-labeled BAX is functional 

For our imaging experiments human full-length BAX—with a single cysteine residue 

engineered at position 4 (S4C) and the two endogenous cysteines, C62 and C126, mutated 

to serine and alanine respectively—was produced in E. coli without use of detergent as 

described in Methods section. This protein was labeled with Alexa Fluor 488 dye (BAX-G) or 

with Atto 655 dye (BAX-R). The two dyes were used to ensure that fluorescence labeling does 

not interfere with the liposome permeabilization activity of BAX. The liposome 

permeabilization activity of both fluorescently labeled proteins was checked using assay of 

carboxyfluorescein release from liposomes (6,7). In this assay cBID was used to activate the 

liposome permeabilization by BAX. However, without the addition of cBID, BAX produced a 

slow release of carboxyfluorescein from liposomes, suggesting an intrinsic permeabilization 

activity of BAX in our preparation (8) (Fig III.1).  Interestingly, addition of BCL-XL, an 

inhibitor of BAX pore formation, inhibited only the cBID induced permeabilization of 

liposomes by BAX but not the permeabilization of liposomes induced by BAX alone, (Fig. 

III.1B). However, the intrinsic permeabilization activity of BAX was inhibited by BCL-XL, 

when both proteins were added simultaneously to liposomes in the absence of cBID.  

 Further verification of fl-BAX functionality was done using GUVs prepared from 

DOPC:bovine heart cardiolipin mixture of 80:20 mol% (Fig. III.1C). In these experiments 

BAX-R (25 nM), BAX-G (25 nM), cBID (4 nM), and free Alexa 546 dye (1 µM) were added to 

GUVs and time series of images were taken to follow the GUV permeabilization. As a result 
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BAX bound and permeabilized GUVs (Fig III.1C). BAX binding to the GUVs can be seen 

from the time-dependent increase in the fluorescence in the GUV membranes, while 

permeabilization of GUVs can be seen from the filling of GUV lumen with free dye and with 

BAX (Fig. III.1C).  

We also tested the effect of BCL-XL on BAX binding and permeabilization of GUVs 

(Fig. III.1D-E). In these experiments, as expected BCL-XL prevented pore formation by BAX 

without inhibiting the ability of BAX to bind GUV membranes (Fig. III.1D). However, when 

liposomes were initially preincubated with BCL-XL and cBID for one hour and then BAX 

added, no BAX binding to GUVs was observed, suggesting that BCL-XL, when present in a 

lipid membrane, inhibits BAX binding to the membrane (9) (Fig. III.1E). Taken together, 

these results show that both fluorescence-labeled BAX proteins can bind lipid membranes and 

form pores in liposomes and thus recapitulate native BAX function. 
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Fig. III.1 
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Fig. III.1 | Assays of liposomes permeabilization by BAX. A, Kinetics of 
carboxyfluorescein release from liposomes. Each release curve is normalized and 
represents an average of three independent measurements. Protein concentrations 
used: 100 nM wild-type (wt) BAX, 100 nM BAX-R, 100 nM BAX-G, 10 nM cBID, 100 
nM BCL-XL. Total lipid concentration was 16 μM, while lipid composition was 
DOPC:cardiolipin 80:20 mol%. B, End point measurement of the % release one hour 
after addition of indicated proteins to liposomes filled with carboxyfluorescein. C, 
Confocal microscopy images of GUV permeabilization by BAX-R (25 nM) and BAX-G 
(25 nM) activated with cBID (4 nM). Alexa 546 was used as a small soluble 0.5 kDa 
dye to follow the GUV permeabilization (1 μM). Time stamps indicate time after 
protein addition to GUVs. D, Confocal microscopy images with overlayed spectral 
channels from BAX-R and BAX-G of BAX binding to GUVs in the presence of BCL-XL 
(50 nM) and cBID (4 nM). BAX-R and BAX-G total concentration is 50 nM. E, BAX 
does not bind GUVs preincubated for one hour with 50 nM BCL-XL and 4 nM cBID. 
In all images scale bar is 20 μm. 
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Morphological changes in GUVs upon BAX binding 

The ability of BAX to from pores in GUVs has been reported previously but not with a 

fluorescence-labeled protein or with the intent to characterize the evolution of membrane 

morphology upon prolonged interaction with BAX protein (10,11). Here, we used confocal 

microscopy to establish the effect of the fl-BAX on GUVs. We determined that incubation 

with 50 nM BAX and 4 nM cBID allowed us to simultaneously observe the accumulation of fl-

BAX in and permeabilization of the GUV membrane (Fig. III.1C) and that the GUVs were 

stable for 7 to 8 hours after protein addition.  However, after 24 hours this preparation became 

a mass of collapsed GUV remnants, reflecting the gross distortions by BAX of bilayer 

architecture (Fig. III.2F).  After one hour of incubation with this BAX concentration, 100% of 

GUVs were permeabilized and had homogeneous distribution of labeled BAX on the bilayer 

membrane. At the same time, in these experiments, we noted variable fluorescence intensity in 

various GUV membranes, representing a diversity of BAX concentration in these membranes 

(Fig. III.S1A). We hypothesize that this heterogeneity of BAX binding to GUVs stems from 

variation in cardiolipin content of the GUVs which is known to affect the BAX, BAK, and 

cBID binding (2,5,12) (See Supplement Discussion). After 3-4 hours of incubation with BAX 

and cBID the heterogeneity of BAX binding to GUVs was no longer visible suggesting BAX 

saturation in the lipid membrane of GUVs (Fig. III.2A). Prolonged incubation of GUVs with 

these concentrations of BAX and cBID led to major morphology changes in the GUVs. The 

vesicles change shape from spherical to potato- and tubule-like forms reflecting BAX-induced 

changes in the elastic coupling to lipid bilayer forces in membranes (Fig. III.2A-D). 
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Additionally, we observed formation of gigantic BAX mega-pores and other large visible BAX 

aggregates in GUV membranes (Fig. III.2B, 3, 4). During incubation with BAX occasional 

GUVs ruptured into smaller liposomes (Fig. III.2E-F) and by 24 hours of incubation with BAX 

almost no GUVs were left in the observation chamber. These proceedings clearly defined the 

time period when these GUVs could be studied by confocal microscopy. BAX binding to 

GUVs and consequent deformation and rupture of GUVs is dependent upon BAX 

concentrations demonstrating that mass action and thermodynamics governs these processes. 
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Fig. III.2 
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Fig. III.2 | BAX binding to GUVs: confocal microscopy images. A, Distortion of spherical 
GUVs by BAX. B, Aggregates of BAX in GUV membranes. C, Agglomeration of GUVs after 
four hours of incubation with BAX. D, Formation of tubule-like lipid membrane 
structures after 7-8 hours of incubation with BAX. E, Rupture and collapse of GUVs upon 
BAX addition. Time steps represent the time after BAX addition. F, Transformation of 
GUV shape upon BAX binding (4 nM cBID and 50 nM combined concentration of BAX-R 
and BAX-G). In all images scale bar is 20 μm. 
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BAX forms long lived mega-pores in GUVs 

While using confocal microscopy to study BAX-R and BAX-G binding to GUVs in the 

presence of cBID, we were intrigued by the formation of giant BAX pores which we named 

BAX mega-pores (Fig. III.3, 4). These pores ranged from 5-20 µm in diameter (Fig. III.4D), 

appeared within 10 minutes of BAX addition to GUVs, and were extremely stable, with 

lifetimes of 8 minutes up to many hours. Interestingly, all observed BAX mega-pores had 

increased BAX concentration in the rim of the pore, which can be seen from increased 

fluorescence signal from the membrane portion creating the pore edge. In addition, these mega-

pores did not expand or lead to GUV collapse (13). Although the mega-pores usually closed 

over the observation period of 1-2 hours, the presence of a simple obstacle in the pore closure 

path, e.g. another liposome, was observed to arrest the closure process (Fig. III.3C). For 

comparison, an impedimentary lipid vesicle present in the closure path of a giant pore opened 

by the stimulation with visible light was cut into two vesicles when the pore closed (14). This 

observation shows that BAX reduces the line tension in the pore rim, thus resulting in the 

arrest of the pore closure by an impedimentary vesicle. The line tension is the energy per unit 

length of the membrane contour at the pore edge, and it arises due to the exposure to water of 

the hydrophobic lipid tails in the rim of the pore. In GUVs where a BAX mega-pore did close, 

fl-BAX concentrated at the rim of the pore dispersed over the GUV surface producing a 

homogeneous BAX fluorescence signal (Fig. III.3B, 4A). Additionally, GUVs which have gone 

through the process of the mega-pore formation and closure did not have another mega-pore 

open and appeared to be stable for hours afterwards. 
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Fig. III.3 

 

 

 

 

 

 

 

 

 

 

Fig. III.3 | BAX mega-pore visualization. A, 3D reconstruction of the BAX mega-pore 
shown together with confocal images used to produce this reconstruction. Values in μm 
indicate distance from the bottom of a GUV resting on the coverslip surface. B, Confocal 
images of the time series of opening, persistence, and closure of the BAX megapore. 
Arrow in the first image indicates the position at which the BAX mega-pore opened. 
Time stamps represent time since the opening of the pore. C, Confocal images of other 
examples of BAX mega-pores. 
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Size distribution of BAX mega-pores 

 To determine whether a correlation exists between the sizes of BAX mega-pores and 

GUVs, we performed the Pearson’s correlation test. In this test we compared the distribution of 

BAX mega-pore diameters with diameters of encompassing GUVs (Fig. III.4C-D); only weak 

correlation was found between these two sets of values (with the Pearson correlation coefficient 

of 0.25). The maximum value for the Pearson correlation coefficient is 1 which corresponds to 

a direct positive correlation between two sets of values, i.e. increase in the value of one data set 

leads to linear increase in the values of the other data set. The relatively small correlation 

between the diameter of a mega-pore and its cognate GUV diameter weakly suggests that the 

larger the GUV the larger mega-pore it can accommodate. However, a GUV with a certain 

diameter can have mega-pores of various diameters which are most likely distributed around a 

certain mean value. For example, a GUV 22 µm in diameter can support a mega-pore of 15±5 

µm (n=3) (Fig. III.4D). The latter observation suggests that there is effectively no limit on the 

number of BAX monomers participating in the formation of a BAX mega-pore and reveals a 

continuum of BAX mega-pore sizes. 

Line tension in the rim of a BAX mega-pore 

Kinetics and thermodynamics of giant pores in GUVs can be explained by theoretical 

models (14,15) where the energy rE  of a pore of radius r  is described as 

    σππ 22 rrEr −Γ=     (Eqn. 1) 

where Γ  is the line tension while σ  is the surface tension. Interplay between line and surface 

tension allows opening, persistence, and closure of giant pores in GUVs. Following the model 
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of Brochard-Wyart F. et al. (16) the life of a pore in a GUV can be described in four steps: (i) 

pore opens due to an increase of the membrane surface tension (σ ) which can be induced by 

application of an electrical field (17,18), insertion of molecules with non-zero spontaneous 

curvature such as detergents (14), or insertion of BAX α5-derived peptides (19); (ii) while the 

surface tension term in Equation 1 is larger than the line tension term the pore expands to some 

critical radius ( cr ); (iii) while the surface tension and line tension terms in the equation 1 are 

equal (i.e. pore energy 0=Ε r ) the pore exists in an unstable equilibrium state; (iv) when the 

line tension begins to increase the pore initiates closure. Using this theoretical framework the 

line tension in the rim of the pore during the pore closure stage can be calculated using  

πη3
2Γ

−=k     (Eqn. 2) 

where k  is the slope of the )ln(2 rR  versus time and η  is the solution viscosity (1.035×10-3 

Pa·s for 30 mM sucrose solution), R  is the radius of a GUV containing a pore of radius r . 

Examples of the evolution of BAX mega-pore radii ( r ) are shown in Figure III.4B-C. From 

these data we estimate the line tension in the rim of the BAX mega-pore to be 3.7±1.7 fN 

(n=3) which is four orders of magnitude lower than the line tension of a pore opened by 

intense illumination of a DOPC vesicle (Γ= 20.7±3.5 pN) (14) and two orders of magnitude 

lower than the line tension of a detergent stabilized giant pore (0.2 pN). 

The ability of the BAX to reduce the line tension of artificial lipid membranes has been 

reported previously but without a direct measurement of the line tension (20). Here, we 

quantify BAX reduction of bilayer line tension and find the protein to be drastically more 

effective in eliciting membrane poration than other previously studied effectors. It is 



233 
 

hypothesized that cone-shaped detergents reduce the line tension in giant lipid pores based on 

their propensity to partition to the high curvature regions in the edge a pore (14,21). Therefore, 

the ability of BAX to reduce line tension lower than that of detergents indicates that BAX is a 

remarkable protein evolutionarily crafted to stabilize edges of lipid membranes. 

Interestingly, the line tension generated by full-length BAX is three orders of 

magnitude lower than the line tension generated by the pore-forming BAX α5 peptide in a 

supported lipid bilayer (Γ= 3.8±0.4 pN) (19).  This disparity indicates that the full length 

protein is able to stabilize the pore edge more efficiently than a single α-helix of BAX, 

suggesting that the non-pore forming helices of BAX also contribute to edge stabilization. 

Previously the non-pore forming helices were attributed two major roles in the function of 

BAX: first, to shield the pore-forming helices of BAX (α5-6) from interaction with lipid 

membranes in the inactive conformation of BAX (22); and second, to facilitate the 

communication between BAX and other proteins involved in the apoptosis decision via BH3 

domain interaction. Our findings ascribe a third role for these non-pore forming helices of 

BAX: stabilizing the edges of BAX mega-pores and thus likely stabilizing the edges of kindred 

nanoscopic BAX pores. A substantial fraction of this improved edge stabilization of the full-

length protein vs. the α5 peptide is probably an effe ct of BAX homo-oligomerization which 

locally concentrates the α5s (23-25). 
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Fig. III.4 
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Fig. III.4 | Analysis of line tension and distribution of BAX mega-pore diameters. A, 
These confocal images represent an overlay of three channels: red (BAX-R), green (BAX-
G), and pink (free dye Alexa 546). Time stamps indicate time after protein addition to 
GUVs. The GUV positioned in the center of each frame has a daughter liposome inside. 
The outer GUV develops a BAX mega-pore; the inner liposome is then ejected thorough 
the BAX mega-pore and the mega-pore then closes. Scale bar is 40 μm. B, The R2ln(r) 
versus time plot for the GUV shown in panel A. C, The R2ln(r) versus time plot for the 
GUV shown in Fig. 3B. D, Bar plot of GUV diameters (gray bars) and corresponding 
diameters of BAX mega-pores (white bars). Number of GUVs used for this plot is 44. E, 
Result of Pearson correlation test for the correlation between GUV and corresponding 
BAX mega-pore diameters. Pearson correlation test value is 0.25 (maximum possible 
value is 1). 
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The lifetime of BAX mega-pore 

The lifetime of lipid pores in DOPC vesicles immersed in water solution is estimated to 

be 10-200 ms which can be extended by increasing the viscosity of solution (15). Therefore, 

66% glycerol solution, having 30 times higher solution viscosity than water, is commonly used 

to measure the lifetimes of giant lipid pores (14,26,27). The reported lifetimes of giant pores in 

66% glycerol ranges from seconds for lipid pores opened by a physical method to minutes for 

lipid pores stabilized with detergent (14) while the lifetime of BAX mega-pores ranges from 8 

min to many hours when measured in 30 mM sucrose solution (which has viscosity very close to 

that of water). Hence, if the lifetimes of all three types of giant pores are compared in the same 

solution, the BAX mega-pore will have the longest lifetime, as explained by the extremely low 

line tension measured in the rim of this pore. 
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III.4 | Discussion 

The size and oligomeric state of a BAX pore is somewhat controversial in the field of 

apoptosis. In fact, the BAX pore has not been observed in vivo by electron microscopy in 

mitochondria of cells undergoing apoptosis, where BAX appears to aggregate at the fission sites 

on the surface of the OMM (28). Nonetheless, in vitro studies using electrophysiological and 

pore-sizing techniques have shown that BAX forms pores of 2-5 nm in diameter 

(7,10,11,29,30) while electron and atomic force microscopies revealed the formation of 100-

200 nm disruptions in liposomes and supported lipid bilayers incubated with BAX (5,23,31). 

In light of this controversy about the size and composition of BAX pores, our observations of 5-

20 µm diameter BAX mega-pores in GUVs support the hypothesis that BAX is able to form 

pores of various sizes (32).  

 In addition to extremely large diameters, BAX mega-pores also exhibited uncommonly 

long life times ranging from 10 min to hours. Based on the lifetime and size, these BAX mega-

pores are very similar to the giant pores formed in GUVs by detergents or by the physical 

disruption of GUVs (14-16,18,26,27,33). The latter two types of giant pores can be 

differentiated on the basis of the magnitude of the force responsible for closing a pore – the line 

tension (14,21). The line tension is highest in giant pores opened by physical disruption (10-20 

pN) (14,33) and is two orders of magnitude lower in the giant pores stabilized by detergents 

(0.2 pN) (14). Therefore, to characterize the BAX mega-pores with respect to the other two 

known types of giant pores we used an established microscopy technique to measure the line 

tension in the rim of the BAX mega-pore; this quantity was ascertained to be two orders of 
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magnitude lower than the line tension in the rim of a detergent stabilized giant pore (16). 

Furthermore, integrating this line tension measurement with other knowledge of BAX 

interaction with lipid membranes, we introduce a model of the formation, persistence, and 

closure of BAX mega-pores. 
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Fig. III.5 

 

 

 

 

 

 

Fig. III.5 | Model of BAX interaction with lipid membranes. A, Schematic of BAX 
binding, integration and oligomerization in a lipid membrane. B, Proposed 
mechanism of BAX mega-pore opening and closure. 
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Model of BAX mega-pore formation, persistence, and closure 

We propose the following mechanism for BAX mega-pore assembly based on GUVs 

shown in Figures III.3 and III.4. In this mechanism BAX inserts into a lipid membrane from 

the outside of a GUV and transforms from a globular soluble protein (22) to a membrane-

integrated protein with an extended structure shallowly inserted into the membrane (3,34) 

(Fig. III.5A). BAX insertion produces a dramatic area increase in the outer membrane leaflet 

while the area of the inner leaflet remains unperturbed (Fig. III.5B). The localized area 

differential between the two membrane leaflets induces curvature frustration and increase in 

the surface tension of the membrane (35,36) (Δσ>0). When surface tension increases to a 

critical value the membrane structure ruptures and the mega-pore is formed. Once the pore is 

formed its line tension provides a force for reclosure of the mega-pore which counteracts the 

surface energy such that the GUV continues to persist and does not collapse (See also Eqn. 1). 

However, now through the open mega-pore soluble BAX is able to diffuse into the lumen of 

the GUV and insert into the inner leaflet of the GUV membrane. This results in an area 

increase of the inner leaflet leading to an increase in surface tension in this leaflet. Meanwhile, 

membrane BAX has accumulated in the rim of the pore, reducing line tension and decreasing 

the rate of pore closure as surface energies of the inner and outer leaflets equilibrate (Fig. 

III.5B). Consequently the BAX mega-pore closes very slowly over tens of minutes even though 

the surface energy of the two leaflets is equalizing. After pore closure, membrane-integral BAX 

monomers, dimers, or small oligomers diffuse away from the position where the membrane 
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resealed such that within seconds after pore closure no heterogeneities are observed on the 

GUV surface (Fig. III.3B, 4A). 

BAX mega-pore: connection to physiology 

It is clear that the BAX mega-pore structures we observed in GUVs cannot occur in 

vivo simply due to their size (5-20 µm) versus the size of mitochondria (0.2-1 µm). Furthermore 

BAX mega-pores scaled for the smaller size of mitochondria would need to be scaled for the 

reported localization of BAX to fission sites (28). Also, the simple lipid composition of our 

synthetic GUVs (DOPC:cardiolipin, 80:20 mol %) provides only a basic mimic of the complex, 

heterogeneous distribution of lipids and proteins of mitochondrial outer membranes. 

Therefore, on the mitochondrial surface BAX has a relatively limited membrane area to form 

protein-membrane complexes, while on the surface of GUV membrane the area available to 

BAX is many times greater and can generate the mega-pores that we observed. Nevertheless, 

mechanistic insights gleaned from microscale BAX mega-pores are applicable to nanoscale, 

mitochondrial BAX pores. 
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III.5 | Conclusion 

 The existence of microscopic BAX mega-pores further supports the hypothesis that 

BAX can form a variety of pore sizes in artificial lipid membranes and that the BAX pore is a 

lipidic pore stabilized by the presence of the BAX protein in the pore rim (20,30). 

Accumulation of BAX in the pore rim not only reduces the line tension to extremely low values 

but also leads to the dramatic increase of the pore lifetime. Furthermore, existence of BAX 

mega-pores implies that theoretically an unlimited number of BAX monomers can participate 

in the formation of a BAX mega-pore, i.e. the larger the diameter of a mega-pore, the bigger the 

number of BAX monomers participating in the formation of this mega-pore.   

BAX is not the first protein which is reported to form giant pores in GUVs. For 

example, protein talin and other FERM domain-containing proteins have been shown to 

stabilize the edges of giant pores in GUVs but only in conditions of zero salt concentration 

(37,38). At physiological salt concentrations these proteins do not promote the formation of 

giant pores. Furthermore, the physiological relevance of pore stabilization by talin and other 

FERM domain-containing proteins is not clear—the in vivo function of these proteins is to 

connect actin filaments to the cell membrane. In contrast to these proteins, BAX forms giant 

pores in physiologic buffer conditions and is a bona fide pore-forming protein whose activity is 

directly linked to its cellular function, thus making the discovery of the ability of BAX to form 

mega-pores more significant. 
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III.6 | Experimental Procedures 

Protein preparation and labeling. 

Human cDNA for BAX, BID and BCL-XL were subcloned into pTYB1 vector (New 

England Biolabs). For production of the fluorescently-labeled BAX two endogenous cysteines 

of BAX were substituted (C62S, C126A) and additional cysteine was engineered, S4C. All 

proteins were expressed in BL21(DE3) E. coli, and purified as an intein/chitin-binding domain 

fusion protein without use of detergents similar to Ivashyna et al. (6). Purified proteins were 

estimated to be >95% pure by Coomassie staining SDS-PAGE gels and stored at 4°C. BID was 

cut with recombinant caspase-8 to produce cBID. Mutant BAX with single cysteine was labeled 

according to the manufacturer’s protocol with Alexa Fluor 488 maleimide (Invitrogen) and 

Atto 655 maleimide (AttoTech).  

Protein functionality check  

Functionality comparison of the fluorescently-labeled BAX to the wild-type BAX was 

performed using liposome-carboxyfluorescein leakage assays and fluorescence was measured by 

96-well plate format (Tecan) (6). All release assays were done in triplicate using 10 mM 

HEPES, pH 7.2, 100 mM KCl buffer, at room temperature. Protein concentrations used: BAX 

(100 nM), BAX-R (100 nM), BAX-G (100 nM), cBID (10 nM), BCL-XL (100 nM). Total 

lipid concentration in each release assay was 16 µM; liposomes were prepared from 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC):bovine heart cardiolipin (80:20 mol%; Avanti Polar 

Lipids) using a reverse phase method and containing 50 mM carboxyfluorescein (Invitrogen).  
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Preparation of giant unilamellar vesicles 

GUVs were prepared by the electroformation method (39) from a lipid mixture 

containing 80 mol% DOPC and 20 mol% bovine heart cardiolipin. For the confocal 

microscopy observation 50 µl of solution containing GUVs was transferred into a Lab-Tek 

observation chamber (Fisher Scientific) containing 450 µl of 10 mM HEPES, pH 7.2, 100 mM 

KCl and a mixture of BAX, cBID and BCL-XL. 

Confocal Microscopy  

Assays were performed at 22°C on a laser-scanning confocal microscope Meta 510 

system (Carl Zeiss) using 40× NA 1.2 UV-Vis-IR C Apochromat water-immersion objective. 

For excitation the 488 nm line of an Argon-ion laser (25 µW) and the 633 nm line of the HeNe 

laser (15 µW) were used. Collection and processing of images was done using Zeiss software 

provided with the microscope (AIM, version 4.2). 

Line tension measurement  

Calculations were performed using the theoretical framework developed by Brochard-

Wyart F. et al. (16). For this time lapse confocal microscopy images of GUVs which developed 

mega-pores were analyzed to derive a time-dependent relationship between the radius of a 

GUV (R) and the radius of a BAX mega-pore (r). Then a scatter plot of )ln(2 rR  versus time 

was plotted in Origin 6.0 and fitted to a line. The slope of a fitted line was used to calculate the 

line tension of a mega-pore using Equation 2. 
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III.7 | Supplement 

Heterogeneity of BAX binding to GUVs 

In all confocal microscopy experiments the lipid composition of GUVs was 

DOPC:bovine heart cardiolipin (80:20 mol%). Assuming homogeneous distribution of lipids 

among GUVs during electroformation we expected homogeneous BAX binding to GUVs, i.e. 

similar fluorescence brightness of bound BAX on the GUV surface for all GUVs in an 

observation chamber. However, we observed wide variation in the amount of BAX binding to 

GUVs electroformed from the same lipid mixture, which can be seen in the different 

fluorescence intensity of GUV membranes (Fig. III.S1A). We hypothesize that this 

heterogeneity of BAX binding to GUVs is based on the heterogeneity of lipid distribution 

among GUVs during the electroformation. In particular, we hypothesize that the heterogeneity 

comes from unequal distribution of cardiolipin among the GUVs. Cardiolipin is known for its 

ability to promote non-lamellar lipid bilayer formation (i.e. lipid bilayers with high curvature) 

and in our GUV preparations with 80:20 mol% of DOPC:cardiolipin we observe formation of 

both unilamellar and multilamellar vesicles (Fig. III.5B), with the multilamellar vesicles 

showing high curvature regions. We hypothesize that these multilamellar vesicles contain 

higher concentration of cardiolipin than the rest of the vesicles from the same GUV 

preparation. However, we do not have a direct way to measure the cardiolipin concentration in 

these vesicles.  
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Fig. III.S1 | Heterogeneity of BAX binding to GUVs. GUVs were prepared by 
electroformation from DOPC:bovine heart cardiolipin (80:20 mol%) and added to 
the solution containing BAX-R (50 nM), BAX-G (50 nM) and cBID (10 nM). The 
confocal image was taken approximately 30 minutes after mixing. The confocal 
image is an overlay of red and green channels corresponding respectively to BAX-R 
and BAX-G. A, Confocal image of the field view of multiple GUVs with the 
fluorescently labeled BAX bound. Scale bar is 50 µm. B, Confocal image of a giant 
multilamellar vesicle containing high concentration of the bovine heart cardiolipin 
which resulted in the production of high curvature in the portions of this vesicle. 
Images A and B were taken in the same chamber, indicating that these vesicles 
were from the same preparation and were exposed to the same concentration of 
the cBID and fluorescent BAX. Scale bar is 20 µm. 

Fig. III.S1 
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APPENDIX IV 
 

FCCS Study of BAX Self-Assembly and Modulation by 
BCL-XL & cBID 

 
 

(The content of this chapter has been adapted from Ivashyna, O., García-Sáez, A. J., 
Christenson, E. T., Schwille, P., Schlesinger, P. H. (2011) (in preparation)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



250 
 

IV.1 | Summary 

It is widely accepted that during apoptosis, permeabilization of the outer mitochondrial 

membrane by the pore-forming members of the BCL2 protein family is a critical point after 

which the cell cannot be resuscitated. However, without direct evidence of how they interact in 

bilayers the molecular mechanism of the mitochondrial permeabilization remains controversial. 

Here we have reconstituted the pore formation by protein BAX in giant vesicles and show that 

in this environment BAX can form a heterogeneous distribution of coexisting pore sizes 

ranging from 1 nm to 20 μm in diameter. Evidence is provided by directly examining 

oligomerization and mobility change of BAX molecules in GUVs by fluorescence cross-

correlation spectroscopy and by studying the large complexes by confocal microscopy. We show 

that in the presence of BCL-XL, an inhibitor of BAX pore formation, membrane bound BAX 

was primarily monomeric. We also show that, in the large length scale format of a GUV, BAX 

form structures that reveal its affinity for highly curved membranes, and that it dramatically 

reduces line tension while stabilizing its lipidic pores. Finally, our results demonstrate that BAX 

forms pores by increasing membrane surface energy and changing curvature of lipid 

membranes, thus manifesting an ability to sculpt lipid bilayers. 
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IV.2 | Introduction 

BAX is a pro-apoptotic member of the BCL2 protein family and its paramount 

function is to permeabilize the OMM during apoptosis (1,2). Upon apoptotic stimulation 

BAX translocates to the OMM where it changes conformation, inserts as a monomer, and then 

undergoes in-membrane homo-oligomerization to form a pore. Once the BAX pore is formed, 

cytochrome c and other mitochondria-resident proteins escape into the cytoplasm where they 

activate the cascade of caspases that dismantle the cell. To date the structure of the inactive, 

cytoplasm-resident, form of BAX is known (3); however, the structure of the active, membrane-

integrated, form of BAX remains unsolved. The absence of a membrane structure for this 

protein has lead to a vigorous debate about:  the nature of the BAX pore (lipidic versus barrel-

stave) (4-6), the number of BAX monomers participating in the pore formation (7-10), the 

possible molecular interactions formed among them in a pore (11,12), and  the progression and 

variety of pores formed by BAX (i.e. dimer, tetramer and higher order polymers (4,5,13,14). To 

address these questions we used two-focus two-color scanning FCCS (15-17) to non-intrusively 

measure the mobility and self-association of the fluorescently-labeled BAX in a hydrated lipid 

membrane of GUVs for 5-7 hours after BAX insertion into the lipid membrane (See Chapter 5 

for the confocal microscopy analysis of the fluorescent BAX binding to GUV). In these FCCS 

experiments the microscope output was multiplexed for simultaneous determination of the 

membrane diffusion coefficients and concentrations of BAX-R, BAX-G and BAX-RG 

complexes and the analysis of the BAX pore activation. Using the membrane diffusion 

coefficients for the monomeric BAX-R and BAX-G proteins and for the BAX-RG complexes 
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we estimated the hydrodynamic radius of these complexes in lipid membranes which is close to 

the reported in the literature values. Furthermore, using the values for the membrane diffusion 

coefficient we were able to clearly differentiate between two monomeric species of BAX in lipid 

membranes – membrane associated and membrane integrated BAX. In support of this analysis 

we used cBID to activate BAX and BCL-XL to regulate the membrane integration and self-

association of BAX. 
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IV.3 | Results 

BAX is monomeric in solution and oligomerizes only in lipid membranes 

It was recently shown by a FRET study that BAX does not oligomerize prior to 

membrane binding (14). To confirm this finding, we compared the cross-correlation of BAX-R 

& BAX-G in the presence or absence of GUVs. Using FCCS we observe a similar result that 

BAX-R and BAX-G in the presence of cBID are monomeric and do not oligomerize in solution 

(Fig. IV.1A). In solution, the diffusion coefficient for BAX-G is 114±6 µm2/sec (mean±s.e., 

n=3) and for BAX-R it is 134±12 µm2/sec (mean±s.e., n=3) which is similar to that of 

monomeric tBID and BCL-XL (17). Having established the membrane-binding functionality of 

BAX (Fig. IV.1A), FCCS measurements were done on a population of GUVs (10 min 

measurement time per GUV) (Fig. IV.C). We observe oligomerization of BAX-R and BAX-G 

only in the environment of a lipid membrane as shown by the increased cross correlation in Fig. 

IV.1C (blue line). 
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Fig. IV.1 | FCCS on BAX in solution and a lipid membrane. A, Confocal microscopy 
images of BAX-GUV binding. BAX-R (25 nM), BAX-G (25 nM) and cBID (4 nM) were 
added to GUVs upon which collection of the time-series of images was initiated. Time 
stamps represent the time after protein addition to GUVs. B, Normalized auto-
correlation curves and cross-correlation curve (blue) for BAX-R and BAX-G in solution in 
the presence of cBID. C, Normalized auto-correlation curves and cross-correlation 
curve (blue) for BAX-R and BAX-G in a GUV membrane in the presence of cBID. 

Fig. IV.1 
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In a lipid membrane BAX forms a population of varying in size oligomers 

Two-color two-focus scanning FCCS allows simultaneous measurement of the 

fluorescent protein concentration, diffusion coefficient and self-association in a lipid 

membrane (15-18). To study BAX self-association in a lipid membrane we used BAX-R and 

BAX-G proteins (50 nM total concentration) activated with 4 nM cBID (as was determined by 

the confocal microscopy experiments described in Appendix III). 

The FCCS analysis of membrane BAX produced a clear result that BAX protein 

complexes increased in size with time as can be seen from the decrease in the average mobility of 

these BAX-RG containing complexes (Fig. IV.2D, blue squares). At the same time the number 

of membrane BAX particles (which include monomers and oligomers) was increasing, so it was 

clear that for the >6 hours of these experiments BAX was continuing to accumulate in the 

membrane.  Each time point on the Figure IV.2C and IV.2D represents an independent GUV 

measurement such that amount of BAX in the membrane and the average diffusion coefficient 

of the BAX particles is not uniform and reflects the variation in the vesicle lipid composition 

(See Appendix III for discussion). 

The average diffusion coefficient of BAX-RG complexes in GUV membranes 

incubated for five hours with 50 nM of the fluorescent BAX and 4 nM cBID is 2.0±0.4 

µm2/sec (mean±s.d., n=21) which is slower than the membrane diffusion coefficient of 

monomeric tBID and BCL-XL
ΔC measured by the same technique (5 µm2/sec) (17) suggesting 

formation of a bulky, slowly-diffusing BAX-RG complex in a lipid membrane (Table IV.1). 

Since the diffusion coefficient of a particle in a lipid membrane depends on the in-membrane 
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hydrodynamic diameter of the particle, we can use the value for the diffusion coefficient of 

BAX-RG complexes to determine their approximate in-membrane hydrodynamic diameter 

using a modified Saffman-Delbruck formula (19) but for this the membrane diffusion 

coefficient of a BAX monomer must be determined. 
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Fig. IV.2 | Two-color two-focus scanning FCCS experiments on BAX. A & B, FCCS of 
BAX-R/BAX-G cross-correlation (50 nM total BAX concentration) in the presence of 50 
nM BCL-XL and 4 nM cBID. C & D, FCCS of BAX-R/BAX-G cross-correlation (50 nM total 
BAX concentration) in the presence of 4 nM cBID (BCL-XL absent). E, Schematic of 
various diffusion species of BAX in a lipid membrane. 
 

Fig. IV.2 
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BCL-XL prevents the self-assembly of BAX in lipid membranes 

To determine the membrane diffusion coefficient of a BAX monomer, BAX self-

assembly and pore formation in a lipid membrane should be inhibited. This was accomplished 

by using full length human BCL-XL protein which is an anti-apoptotic member of the BCL2 

family that inhibits BAX pore formation (20). When GUVs were preincubated with BCL-XL 

(50 nM) and cBID (4 nM) for one hour and then BAX (50 nM) was added, no binding of BAX 

to GUV membranes was observed (Fig. III.1E, Appendix III) which does not allow for the 

FCCS measurements. However, this observation reflects the ability of BCL-XL to sequester 

cBID in an inactive complex which is unable to activate and promote membrane integration of 

BAX (14,17,20). Simultaneous addition to GUVs of BAX, cBID and BCL-XL at these same 

concentrations resulted in sufficient membrane binding of BAX for the FCCS measurements 

but did not result in GUV permeabilization (Fig. III.1D, Appendix III). Comparison of the 

fluorescence intensity of BAX-R accumulation in the GUV membranes in the presence and 

absence of BCL-XL shows that in the presence of BCL-XL the amount of BAX binding to the 

GUV membranes is lower than in the absence of BCL-XL (Fig. IV.3).  

Based on the results of the FCCS experiments shown in Figure IV.2A&B in the 

presence of BCL-XL the membrane concentration of BAX increased over 7 hours and its 

diffusion coefficient decreased from 8.3±1.0 µm2/sec (mean±s.d, n=6) to 5.2±0.7 µm2/sec 

(mean±s.d., n=26). The latter diffusion coefficient value is typical of a transmembrane alpha-

helical peptide (21) and it is also similar to the in-membrane diffusion coefficient of 

monomeric membrane integrated tBID or C-terminal truncated BCL-XL described by the 
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Saffman-Delbruck model of membrane protein diffusion (Table IV.1) (17,22). In addition, we 

observed no cross-correlation between BAX-R and BAX-G at this concentration of BCL-XL 

(Fig. IV.2B). Based on these data we conclude that the diffusion coefficient of membrane 

integrated BAX monomers is 5.2±0.7 µm2/sec.  

Furthermore, we propose that the gradual decrease in the membrane diffusion 

coefficient of BAX in the presence of inhibiting concentrations of BCL-XL represents the 

transition of BAX from being a monomeric membrane-associated protein sliding on the 

membrane surface with fast diffusion to becoming a monomeric membrane-integrated protein 

with appropriately slower diffusion (Fig. IV.2E). However, we do not discount the possibility 

that the monomeric integrated BAX forms heterodimers with BCL-XL in lipid membranes 

(20). In the Saffman-Delbruck theory scaling of the diffusion coefficient with the in-membrane 

diameter of the protein is logarithmic implying that integrated monomeric BAX would have 

membrane diffusion coefficient similar to that of a BAX/ BCL-XL heterodimer. 
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Fig. IV.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV.3 | Comparison of BAX-R binding to GUV membranes in the presence and 
absence of BCL-XL. A, Map of fluorescence intensity changes in a line scan through the GUV 
membrane (vertical direction) with time (horizontal direction). This membrane trace comes 
from a GUV exposed only to BAX-R protein and cBID. B, Change in cumulative fluorescence 
intensity in membranes of GUVs exposed to BAX-R and cBID in the absence and presence of 
BCL-XL. The trace for the last point in each measurement is shown in A and C. C, Map of 
fluorescence intensity changes in a GUV exposed to BAX-R, cBID, and BCL-XL. In these 
experiments following protein and lipid concentrations were used: 25 nM BAX-R, 25 nM 
BAX-G, 50 nM BCL-XL, 4 nM cBID, and 5 μM total lipid. 
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Table IV.1 | Comparison of BAX diffusion coefficients with lipid diffusion coefficients. 
Type of molecule Diffusion coefficient, 

µm2/sec 
in-membrane 

diameter,  
nm 

in solution:   -  
     monomeric inactive BAX 114±5  
     monomeric tBID (17) 143±9  
     monomeric BCL-XL

ΔC (17) 78±10  
in a lipid membrane:   
    lipids 10.0±0.5 1 
    monomeric membrane associated BAX 8.3±1.0 - 
    monomeric membrane integrated BAX 5.2±0.7  ≈1  
    monomeric tBID (17) 5.0±0.3 - 
    monomeric BCL-XL

ΔC (17) 4.8±0.7 - 
    BAX pore complex  
    (at 50 nM total BAX concentration ) 

2.0±0.4 53±12 
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Calculation of the BAX pore complex diameter  

Traditionally the Saffman-Delbruck equation is used to calculate the hydrodynamic 

radius of a membrane inclusion from its diffusion coefficient (21-25)  (See Eqn. 1 in the 

Experimentals section). It has also been shown that Saffman-Delbruck equation faithfully 

describes diffusion of membrane inclusions traversing both leaflets of a lipid membrane in the 

case of small proteins, however, in the case of larger membrane inclusions (for example, such as 

lipid rafts) this theory underestimates the diameter of membrane inclusions. As a consequence 

of this, a modified version of a Saffman-Delbruck equation has been developed by Petrov and 

Schwille for the description of the diffusion of large membrane inclusions (19) (See Eqn. 2 in 

the Experimental Procedures section). 

In the case of the diffusion of BAX in lipid membranes the diffusion coefficient of a 

BAX monomer (5.2±0.7 µm2/sec) is consistent with the Saffman-Delbruck theory, however, 

the diffusion coefficient of BAX-RG protein complex is two times slower than the diffusion of 

a BAX monomer and thus according Petrov and Schwille the in-membrane hydrodynamic 

diameter of this complex should be calculated according to the modified Saffman-Delbruck 

formula. As a result the diameter of the BAX-RG protein complex diffusing with diffusion 

coefficient of 2.0±0.4 µm2/sec is 53±12 nm. This value is one order of magnitude larger than 

the size of a BAX pore measured by the dextran blocking of a pore and by the electrophysiology 

methods (13,26). However, this value is consistent with the electron microscopy imaging of a 

BAX pore in liposomes and AFM measurement of the pore in supported lipid bilayers (4,27) 

where it has been shown that the diameter of a BAX pore can be 100-200 nm. 
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It is worth noting here that the calculated hydrodynamic radius of a BAX-RG complex 

does not necessarily represent the size of a pore formed by this complex. In spite of the obvious 

connection between the calculated diameter of a BAX-RG complex and the electron 

microscopy and AFM experiments, it is still possible that the size of the pore is smaller than 53 

nm and the rest of the size of the pore is occupied by the lipids trapped in the concerted motion 

of a lipidic pore. 

Titration of BAX in lipid membranes: mass action law 

We next asked a question whether by increasing the amount of BAX in a lipid 

membrane we can control for the size and the concentration of BAX-RG complexes. For this 

purpose the various amounts of total soluble BAX-R and BAX-G proteins were added to the 

constant concentration of GUVs and the FCCS measurements were done on these GUV 

populations. In each case BAX binding to GUVs was activated by the addition of 4 nM cBID. 

As a result of these experiments we find that with the increasing concentration of total BAX 

added to the system the higher concentration of BAX particles is found in a lipid membrane 

(Fig IV.4, grey bars). It is important to note that these BAX particles include monomers and 

oligomers of BAX. Additionally, with increasing concentration of BAX particles in a lipid 

membrane the greater number of the BAX-RG complexes was observed (Fig. IV.4, black bars). 

Analysis of the diffusion coefficients for the BAX-RG complexes formed at different total 

concentrations of BAX also showed an increase in the average size of these complexes (Table 

IV.2). Such correlation between the size and concentration of BAX-RG complexes with the 
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total concentration of BAX in a system shows that BAX pore formation follows the mass 

action law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. IV.4 

 

 

 

 

 

 

 

Fig.  IV.4  |  Titration  of  BAX.  BAX‐R  and  BAX‐G were  added  to GUVs  (5µM  total  lipid 
concentration)  in  the  presence  of  cBID  and  FCCS  measurement  were  done  on  a 
population  of no less than 10 GUVs upon 1‐2 hours after protein addition to GUVs. 
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Table IV.2 | FCCS results of the titration of BAX. Experimental conditions were the same 
as described in the legend to Fig. IV.4. The hydrodynamic diameter was calculated using 
modified Saffman-Delbruck formula (19). 

Total BAX 
concentration, 

nM 

BAX-RG 
complexes, 

particles/µm2 

measured diffusion 
coefficient, 

µm2/sec 

calculated in-membrane 
hydrodynamic diameter, 

nm 
50 7.9 2.0±0.4 53.2 
83 8.8 1.5±0.4 102.2 

100 9.6 1.4±0.3 120 
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Moderating the activity of BAX with cBID 

To study the effects of increasing concentrations of cBID onto the distribution of BAX 

particles in a lipid membrane we varied cBID concentrations in our FCCS experiments while 

keeping BAX and total lipid concentration constant.  As a result we observed correlation 

between the increase of cBID concentration and the resulting concentration of BAX particles 

in the lipid membrane (Fig. IV.5). However, the concentration of BAX-RG complexes did not 

follow this correlation pattern. The concentration of BAX-RG complexes in a lipid membrane 

remained constant (within the margin of error) for all cBID concentrations (Fig. IV.5, blue 

bars). This observation indicates that cBID must be affecting only the kinetics of BAX 

integration into the lipid membranes without a significant effect on the resulting concentration 

of the BAX oligomers. 

 

 

 

 

 

 

 

 

 

 



Fig. IV.5 

 

 

 

 

 

 

Fig. IV.5 | Effects of cBID titration on the distribution of the membrane forms of BAX. 
Results were obtained using two‐color two‐focus scanning FCCS analysis. 
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Interactions among BAX, cBID, and BCL-XL: rheostat model 

In Fig. IV.2 we have shown that BCL-XL inhibits oligomerization of BAX in a lipid 

membrane. However, we were intrigued to know whether the inhibitory effect of BCL-XL on 

BAX can be rescued by the addition of excess cBID. According to the rheostat model proposed 

by Korsmeyer et al. the apoptosis decision in cells depends on the relative concentrations of 

pro- and anti-apoptotic proteins (28). Therefore, in our minimal in vitro system we expect to 

observe an increase in the oligomerization of BAX in a lipid membrane containing BCL-XL 

when cBID concentration is increased due to the competition for cBID between BAX and 

BCL-XL (29). 

Simultaneous addition to GUVs of 50 nM BAX and BCL-XL at 1:1 protein to protein 

ratio with 4 nM cBID resulted in complete inhibition of BAX oligomerization as can be seen 

from the absence of BAX-RG complex formation, while in the absence of BCL-XL the same 

concentrations of BAX and cBID resulted in the formation of 16% of BAX-RG complexes 

(normalized to the total concentration of BAX particles in the membrane) (Fig. IV.6). This 

observation is consistent with the rheostat model where cBID can interact with both BAX and 

BCL-XL while having higher affinity for the interaction with BCL-XL (14,17,29) and thus 

when BCL-XL is present majority of the cBID molecules is sequestered in the interaction with 

BCL-XL (assuming 1:1 stoichiometry of protein binding) leaving few cBID molecules for the 

interaction with BAX. However, when excess of cBID is added—equimolar BAX, BCL-XL and 

cBID in the system—then there is sufficient cBID for the interaction with both BAX and 

BCL-XL, and as a result we observe rescue of the BAX-RG complex formation (Fig. IV.6). 
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Therefore, using a minimal in vitro system we were able to show that the outcome of the 

interaction among BAX, cBID, and BCL-XL can be described by the rationale of the rheostat 

model. 
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Fig. IV.6 

 

 

 

 

 

 

Fig. IV.6 | BAX, cBID, and BCL-XL: rheostat model. Results were obtained using two-
color two-focus scanning FCCS analysis. 
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IV.4 | Discussion 

For use with two-color two-focus FCCS we produced two forms of the fluorescently 

labeled full length BAX protein, BAX-R and BAX-G. These fluorescently-labeled BAX 

proteins have been shown to have the pore formation activity similar to that of the 

recombinant wild type BAX (See Appendix III for details). Furthermore, we show that these 

two fluorescent forms of BAX are monomeric in solution and oligomerize only in lipid 

membranes (Fig. IV.1).  

BAX binding to lipid membranes: associated versus integrated BAX  

Using two-color two-focus scanning FCCS we show that prior to oligomerization in a 

lipid membrane monomeric BAX associates with the lipid membrane, and then becomes 

membrane integrated. The transition between the membrane associated and integrated forms 

of BAX most likely occurs via a conformational change, which is aided by cBID protein already 

present in the membrane. We differentiate between these two monomeric forms of BAX based 

on their diffusion coefficient: membrane-associated monomeric BAX, due to incomplete 

insertion into a lipid bilayer, has faster diffusion coefficient (8 μm 2/sec) than the monomeric 

membrane-integrated BAX (5 μm 2/sec). It is important to note, that this transition from 

associated to integrated BAX could only be observed by scanning FCCS in the presence of 

BCL-XL protein in GUV membranes. BCL-XL slows down membrane binding of BAX, and 

thus allowed us to observe this transition process. BCL-XL has been proposed to inhibit the 

pore formation by BAX in three ways: by directly binding monomeric integrated BAX, by 

binding cBID protein and thus eliminating it as an activator of BAX, and by preventing BAX 
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binding to a lipid membrane (20,30). However, the mechanism of the last inhibition pathway is 

not clear. Therefore, BCL-XL inhibition of BAX binding, oligomerization, and pore formation 

in lipid membranes, which were observed in our experiments, agree with literature.  

In the absence of BCL-XL in the membrane, the association and integration of BAX is 

rapid, and cannot be resolved by the scanning FCCS. In this case we observe the decrease in the 

average diffusion coefficient of BAX from 5 μm2/sec to 2 μm 2/sec, which likely represents the 

transition from monomeric integrated BAX to a proteo-lipidic complex containing multiple 

BAX monomers. Furthermore, the time frame of the BAX transition from the associated to 

integrated protein in the presence of BCL-XL is longer than the time frame of the transition 

from the monomeric membrane integrated protein to the proteo-lipid complex in the absence 

of BCL-XL (Fig. IV.2B&D), thus supporting our proposal that BCL-XL slows down the process 

of BAX integration in a lipid membrane. Our observation of the transition from membrane 

integrated to membrane associated forms of BAX can be further supported by the SPR studies 

(31) and by the studies of the conformation of BAX loosely associated with the lipid membrane 

of LUVs (32).  

Self-assembly of BAX in lipid membranes  

It has been shown that in order to form a pore in artificial lipid membranes, BAX must 

undergo self-assembly in the lipid membrane environment (4,10,13,14,33) while in vivo, during 

apoptosis, BAX has also been shown to form large aggregates (10,34,35). Therefore, our 

observation of the BAX-RG complex formation was expected. However, what was unexpected, 

is the progressive decrease in the diffusion coefficient of BAX upon membrane integration. 
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According to the Saffman-Delbruck formula, diffusion of a membrane protein is primarily 

affected by the in-membrane hydrodynamic diameter of the protein. Therefore, dimerization 

and even tetramerization of a protein in a lipid bilayer would not result in a significant change 

in the diffusion coefficient of the resulting complex, compared to that of a monomer (36,37). 

Therefore, our observation of the significant decrease in the diffusion coefficient of BAX-RG 

complex compared to that of a BAX monomer, indicates that BAX is not simply oligomerizing, 

but most likely is forming lipidic pores (4,6,38). These lipidic pores involve lipids which 

contribute to the size of the in-membrane hydrodynamic diameter of a complex (See Fig. IV.2E 

for a proposed model of a BAX lipidic pore). Therefore, our estimation of the diameter of these 

slowly diffusing BAX-RG proteo-lipidic complexes most likely over-estimates the size of pores 

formed by these complexes in a lipid bilayer. However, we do not have direct experimental 

evidence for the presence of pores in these complexes. The reason for our assumption, that 

these BAX-RG proteo-lipidic complexes contain a pore, is based on the transmission electron 

microsocopy and AFM measurement of the BAX pore diameters, which show that BAX is 

capable of forming pores with the diameter of 100-200 nm. Calculated in-membrane diameter 

of a BAX-RG complex falls into this range.  

Rheostat model: connection to physiology  

The finding that pro- and anti-apoptotic proteins of the BCL2 family can 

heterodimerize, and that their relative concentrations to each other affects the decision whether 

a cell should undergo apoptosis, lead to the proposal of the rheostat model by Korsmeyer et al. 

(28). The results obtained using our model system of BAX pore formation in GUVs support 
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this hypothesis (Fig. IV.6). These results show that, when equimolar concentrations of BAX 

and BCL-XL are present in a lipid membrane together with low concentration of cBID, there is 

no oligomerization and pore formation by BAX. However, when cBID is added, such that there 

is approximately one cBID molecule for each BAX and BCL-XL molecule, then oligomerization 

and pore formation by BAX is rescued. Similarly, in the presence of low cBID concentration 

and the complete absence of BCL-XL, BAX is able to oligomerize and form pores.  

The results of scanning FCCS shown that BAX, cBID and BCL-XL obey the law of 

mass action (Fig. IV.4, IV.5, IV.6). These results show that increase in the concentration of 

soluble protein leads to the concentration increase of the membrane bound protein, with a 

certain saturation limit. Results of the titration experiments with BAX-R and BAX-G show 

that not only the total concentration of membrane bound BAX monomers increases, but also 

that the distribution of BAX-RG proteo-lipidic complexes changes, resulting in the larger mean 

diameter of complexes (Table IV.2). 

IV.5 | Conclusions  

The work presented in this appendix represents the first example of the application of 

two-color two-focus scanning FCCS to study oligomerization and pore formation by BAX in 

lipid membranes of GUVs. The results of this study provide an insight into the mechanism of 

BAX pore formation in lipid membranes and the regulation of this mechanism by the pro-

apoptotic BH3-only protein cBID and anti-apoptotic protein BCL-XL. These results show that 

BAX binds lipid membranes containing cBID as a monomer, by first associating with the lipid 

membrane, likely via electrostatic interaction, and then undergoing conformational transition 

to become a membrane integrated protein, likely due to the interaction with cBID. Once in 
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lipid membrane, integrated BAX monomers initiate self-association which leads to the 

formation of pores. Formation of pores reduces the concentration of monomeric BAX 

monomers in the lipid membrane, thus allowing for the integration of additional BAX 

proteins. This continual insertion of BAX monomers into the lipid membrane leads to increase 

in the average BAX pore size resulting in the heterogeneous distribution of BAX pores. Increase 

in the number of BAX pores in the lipid membrane leads to the disruption of elastic forces of 

the lipid membrane, thus leading to the deformation and destruction of GUVs.  
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IV.6 | Experimental Procedures 

Protein purifications and labelings were performed as described in Chapter 4 & 

Apendix III. 

Sample preparation for the FCCS experiments 

 For the FCCS experiments GUVs were prepared from a lipid mixture of DOPC:bovine 

heart cardiolipin (80:20 mol%) using the electroformation method described in Appendix III. 

After the preparation 50 µl of GUVs were transferred to an observation well containing 450 µl 

of 1xEB buffer (10 mM Hepes, pH 7.2, 100 mM KCl) and a mixture of proteins (BAX, cBID, 

BCL-XL) depending on the experiment. For all experiments observation chambers (8 well 

LabTak, Nunc) were treated for at least one hour with a solution containing 4 mg/ml BSA. 

BSA treatment was done with the purpose to prevent protein adsorption to the plastic walls of 

the observations chamber.  All FCCS measurements were performed at room temperature (22 

°C) in a dark room. 

Fluorescence cross-correlation spectroscopy 

FCCS measurements were performed on a laser-scanning microscope Meta 510 system 

(Carl Zeiss) using 40× NA 1.2 UV-Vis-IR C Apochromat water-immersion objective. For 

excitation the 488 nm line of an Argon-ion laser (25 µW) and the 633 nm line of the HeNe 

laser (15 µW) were used, while detection was done using a home-built detection unit at the 

fiber output channel. A dichroic mirror and band-pass filters (D555, HQ520/40 and 

HQ700/75; AHF Analyze Technik) were used behind a collimating achromat to split the 

emission for the dual-color detection and to reject residual laser and background light. We then 
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used achromats (LINOS Photonics) to image the internal pinhole onto the apertures of the 

fibers connected to the avalanche photodiodes (APD, PerkinElmer). The photon arrival times 

were recorded in the photon mode of the hardware correlator Flex 02-01D 

(http://correlator.com). 

For scanning FCCS, the detection volume was repeatedly scanned perpendicularly 

through the equator of a GUV. We controlled its movement directly with the Zeiss LSM 

operation software. We used the frame mode with Nx2 pixels to scan the two parallel lines. We 

measured their distance d by repeatedly scanning over a film of dried fluorophores and 

measuring the distance between the bleached traces in a high-resolution LSM image. 

Data analysis was performed with software written in MATLAB (MathWorks). For 

scanning FCCS, we binned the photon stream in bins of 2 µs and arranged it as a matrix such 

that every row corresponded to one line scan. Corrected for movements of the membrane was 

done by calculating the position of the maximum of a running average over several hundred line 

scans and shifting it to the same column. We fitted an average over all rows with a Gaussian and 

we added only the elements of each row between -2.5σ and 2.5σ to construct the intensity trace. 

We computed the auto- and cross-correlation curves of the resulting intensity traces with a 

multiple tau correlation algorithm and fitted them with a nonlinear least-squares fitting 

algorithm. In all FCCS data processing, we excluded from further analysis irregular curves 

resulting from major instabilities identified by distortions of the curves and a systematic change 

in the intensity trace. For details of data fitting see Supplementary information. 
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Calculation of the diameter for the BAX pore complex 

According to the Saffman-Delbruck theory of the diffusion of particles in lipid 

membranes translational diffusion coefficient ( D ) of the particle depends on the radius ( R ) of 

the particle in the following way 
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where memµ  is membrane viscosity, solµ  is solution viscosity, h is membrane thickness, 

T temperature, Bk  is Boltzmann constant, and γ  is Euler's constant (0.5772) (22). Schematic 

representation of a diffusing particle in a lipid membrane is shown in Figure IV.7. 

 

Fig. IV.7 | Schematic representation of the hydrodynamic model of a particle diffusing in a lipid 
membrane described by the Saffman-Delbruck equation (Eqn. 1). 
 

 As was mentioned previously that Saffman-Delbruck formula describes well diffusion 

of small proteins in a lipid membrane but fails to describe the membrane diffusion of larger 

complexes such as lipid rafts (19). Since BAX-RG proteo-lipidic complexes have diffusion 

coefficient two times smaller that the diffusion coefficient of a BAX monomer we used 

modified Saffman-Delbruck formula (17) to determine the in-membrane hydrodynamic radius 
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of these complexes. In our analysis we made assumptions that membrane viscosity is 0.7 cP (15), 

membrane thickness is 5 nm. The expression for the modified Saffman-Delbruck formula is 

following 
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where, ε  is the reduced radius, memsolR µµε 2= , while 1c , 2c , 1b , and 2b  are constant 

( 0.737611 =c , 0.521192 =c , 74819.21 =b , 61465.02 =b  ). 

To calculate the error for this value we used the fact that membrane viscosity is not very 

well defined and according to Ramadurai et al. (15) it varies for a lipid membrane composed of 

DOPC/DOPG mixture from 0.6 cP to 0.8 cP. Using this uncertainty in the actual value for the 

membrane viscosity together with the fact that lipid composition used in our work has similar 

viscosity as the one used in Ramadurai et al. based on the measurements of translational lipid 

diffusion we estimated that standard error for the diameter of the BAX pore complex is 12 nm. 

Therefore, we estimate that the diameter of the BAX pore complex in a lipid membrane is 

53±12 nm. 
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V.1 | Summary 

The morphologic expression of programmed cell death, apoptosis, has a clear genetic 

basis on the B cell lymphoma-2 (BCL2) family of proteins. Critical interactions among BCL2 

protein members occur in the outer mitochondrial (OM) membrane where they control 

mitochondrial function and permeability to initiate the mortality decision via cytochrome c 

release (1,2). While BCL2 regulation of apoptosis has been demonstrated, difficulties 

elucidating intra-membrane binding partners, and tracking protein structure after membrane 

insertion, oligomerization, and direct binding have made a consistent, molecular picture elusive 

(3-5). Here we report a parallel mode of BCL2 action, mediated by induced membrane 

curvature, with recombinant BAX (pore forming), BID (activator) and BCL-XL (inhibitor). 

Using synchrotron x-ray scattering, we found activated BAX induces strong negative Gaussian 

membrane curvature topologically necessary for pore formation and other membrane 

destabilizing mechanisms. Fluorescence microscopy demonstrated this behavior correlates with 

vesicle permeation and is cognate to that of antimicrobial peptides and cell-penetrating peptides 

(6,7). Furthermore, x-ray evidence suggests BCL-XL generates a complementary membrane 

curvature that cancels out the pore-enabling curvature induced by BAX. Consistent with a 

membrane-mediated mechanism, curvature generated by BCL-XL similarly suppresses negative 

Gaussian curvature induced by pore-forming peptides unrelated to BCL2 proteins, and in pure 

lipid systems without proteins. These observations are supported by a model based on linear 

membrane elasticity. 



V.2 | Introduction 

To characterize membrane poration and its regulation, recombinant full-length human 

BAX, caspase-8-cleaved BID (cBID), and BCL-XL were studied in cell-free assays. BAX, BID, 

and BCL-XL have remarkably similar secondary structures given their drastically different 

functions (3,8). The multidomain executioner proteins BAX and BAK present obligate but 

alternate gateways to mitochondrial outer membrane permeabilization (MOMP). BAX is 

available as a stable soluble full-length protein as found in the cytosol of healthy cells. BID, 

widely used to activate BAX, has a single BCL2 homology (BH) domain and belongs to the 

large BH3-only pro-apoptotic subfamily. BCL-XL has all four BH domains and is an inhibitor 

of apoptosis prominent in oncogenic transformation (1-5). 

Unilamellar vesicles, both large (≈200 nm LUVs) and giant (≈10 μm GUVs), were 

prepared at different lipid compositions mimicking mitochondrial membranes, primarily with 

unsaturated (dioleoyl-) lipids (to avoid liquid-gel transition) like dioleoylphosphatidyl choline 

(DOPC), and lipids with nonzero intrinsic (spontaneous) curvature c0, such as unsaturated 

ethanolamine (PE) and cardiolipin (CL). CL is concentrated mainly at highly curved contact 

sites (25 w% or ≈16 mol%) that connect the outer (≈3 mol%) to the inner mitochondrial 

membrane (≈10 mol%) (9,10). With a ternary lipid system comprising anionic CL, 

zwitterionic DOPE and DOPC, we can independently adjust membrane charge density and 

intrinsic curvature through typical ranges of physiological compositions to study the effects of 

BAX, cBID, and BCL-XL. Vesicles were incubated with ternary mixtures of BAX (pore 

former), BCL-XL (inhibitor/antagonist), and cBID (activator/agonist) at defined 
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stoichiometries (BAX/lipid molar ratios at 1/500-1/600) under physiological relevant 

conditions (pH 7.0, 100 mM KCl).  

V.3 | Results & Discussion 

Tracking efflux from dye-loaded GUVs with confocal microscopy allowed macroscopic 

characterization of pore formation, and results were consistent with cell-based experiments. 

With a lipid composition of 70/20/10 mol% PE/PC/CL, we observed complete dye efflux 

from all GUVs with cBID-activated BAX (≈0.35 μM, cBID/BAX ≈1:1) in several tens of 

minutes (Fig. V.1A-C), whereas addition of equimolar BCL-XL significantly suppressed BAX-

induced dye leakage, as expected, with most GUVs full of dye hours after introduction (data not 

shown). 
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Fig. V.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. V.1 | Verifying permeabilization activity of activated BAX in GUVs. A-C, Confocal 
microscopy of 70:20:10 PE:PC:CL GUVs (+1% DiO, green) filled with 4 μM Alexa-Fluor 
633 C5-maleimide dye (1.3 kDa, red). Scale bar is 20 μm. Panels B and C track dye 
leakage of same vesicles after introducing 0.35 μM cBID-activated FL BAX (15 and 30 
minutes later, respectively). Movie of GUV evolution in supplement. 
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High-resolution synchrotron small angle x-ray scattering (SAXS) revealed nanoscopic 

details of the protein-membrane interactions. Before exposure to BAX, SAXS data measured 

from LUVs at 75/20/5 mol% PE/PC/CL showed a broad feature consistent with the form 

factor of single lipid bilayers and typical of LUVs (Fig. V.2A, bottom trace). Incubating LUVs 

at 37°C with full-length (FL) BAX at 1/500 protein/lipid (P/L) molar ratio (≈25 μM protein 

to ≈12.5 mM lipids), activated with cBID (1:1 or ⅕:1) cBID/BAX molar ratio with similar 

result, latter not shown), gave rise to a drastically different diffraction signature. SAXS data 

displayed many sharp correlation peaks (Fig. V.2A, red trace) with q-value ratios √2, √3, √4, √6, 

√8, √9, and so on, that indexed precisely (Fig. V.2B) to a Pn3m (Q224) ‘double-diamond’ lattice, 

an inverse bicontinuous cubic phase where two non-intersecting water channels are separated 

by a lipid bilayer (11) (Fig. V.2C). The centre of the bilayer traces out a minimum surface with 

negative Gaussian curvature K (also known as saddle-splay curvature). Like a saddle, the surface 

curves upwards (principal curvature c1) in one direction and downwards (c2) in the orthogonal 

direction, so that the Gaussian curvature K≡c1c2<0. Negative Gaussian membrane curvature is 

broadly enabling: saddle-shaped (anticlastic) surfaces line the hole of a torus, the base of a bleb, 

and the neck of a bud, but are absent on spheres (which lack holes). Consistent with this 

physical picture, extensive mitochondrial fragmentation occurs almost simultaneously with 

MOMP in a caspase-independent fashion (12), and significant crosstalk has been reported 

between machineries of apoptosis and mitochondrial dynamics: BAX and BAK can promote 

mitochondrial fusion and fission (13-15); conversely, Drp1 from the mitochondrial fission 
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machinery is recently shown to stimulate BAX oligomerization and resultant MOMP in a 

manner sensitive to the spontaneous membrane curvature (16). 

Slope fitting of measured peak q-values (Fig. V.2B) gave a lattice constant dPn3m of 

15.58±0.03 nm. A weak Im3m (Q229) cubic phase was sometimes also observed (Fig. V.2C), 

with a lattice constant that related to the Pn3m phase by the Bonnet ratio (1.279), indicating 

equivalent Gaussian curvature in the two coexisting cubic phases (11). Accounting for 

membrane thickness (2.5 nm), effective lipidic pore diameter in the Pn3m phase is ≈11.6 nm, 

which is sufficiently large for cytochrome c efflux. The apoptotic pore is known to be highly 

variable in size, and our result is comparable to those derived from vesicle leakage studies with 

BAX proteins (1-4 nm (8)) and truncated BAX peptides (11.6 nm (17), ≈4.6 nm (18)), from 

patch clamp conductance studies (1-6 nm (19)) and from cryo-electron microscopy of BAX-

permeabilized liposomes that revealed BCL-XL-inhibitable openings of varying sizes (25-100 

nm (20)). 

In vivo, BAX must be activated to cause apoptosis (1-5,21). Experimentally, we have 

triggered BAX activation to a pore-forming state with the active form of BID (cBID), or with 

nonprotein factors like non-ionic detergent and pH cycling (8,22,23). In addition, we have used 

both FL BAX and BAXΔC (transmembrane domain removed) activated by these protocols (see 

methods) to study their capacity to generate pore-forming geometries with bilayer membranes. 

With 85/7/8 PE/PC/CL LUVs, all the different activation methods induced drastically 

stronger cubic phases than native untreated FL BAX (Fig. V.2F) or BAXΔC (data not shown). 

Strikingly, different activation routes resulted in porous cubic structures with slightly different 
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amounts of negative Gaussian curvature, but activation by cBID consistently generated the 

strongest correlation peaks as well as the most negative Gaussian curvature (Fig. V.2F-G).    

When BCL-XL was introduced with cBID-activated FL BAX (½:1:1 molar ratio), all 

correlation peaks corresponding to negative Gaussian membrane curvature generation 

weakened and systematically shifted to lower q-values (Fig. V.2A, blue trace), with an indexed 

dPn3m of 21.59±0.04 nm. Weaker peak intensities indicate reduced occurrence of the cubic 

phase. The increased lattice constant reflects decreased saddle-splay curvature within the cubic 

phase, because the average Gaussian curvature is inversely proportional to the square of the 

cubic lattice constant (11) (Fig. V.2B). At BCL-XL to BAX molar ratios 1:1 and greater, all 

correlation peaks were fully quenched (Fig. V.2A, top two traces), signaling the absence of 

saddle-splay curvature characteristic of porated spongy phases.  

The physiologic functions of BAX (pore formation), cBID (BAX-activator) and BCL-

XL (inhibitor of pore formation) in OM membranes are entirely consistent with the structural 

tendency each protein introduces when incorporated into liposomes composed of OM 

membrane-like lipids. BCL-XL’s antagonistic action against BAX’s pore forming activity and 

ensuing inhibition of cytochrome c release can be correlated with its suppression of negative 

Gaussian curvature generation, a crucial ingredient for pore formation. Supporting this 

interpretation, we consistently found BCL-XL reduced correlation peak intensities (less pores) 

and increased the cubic lattice constant (lower curvature) before complete shutdown of BAX. 

We find BAX activity is strongly influenced by the composition of mitochondrial 

lipids, which have distinct spontaneous curvatures: neutral (c0≈0) for PC, negative (c0<0) for 
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PE(24), and tunable for CL depending on the bound cation (25) (c0≈0 with monovalent salt, 

Js<0 with divalent cations like Ca2+ and Mg2+). To modify effective membrane c0, we varied PE 

content. PE headgroups are small compared to their tails (wedge-shaped) and tend to bend the 

lipid monolayer towards the water region and away from the hydrocarbon chain region 

(negative intrinsic curvature) (24). By increasing PE content to 85/12/3 PE/PC/CL, FL BAX 

was enough to induce cubic correlation peaks (Fig. V.2D, bottom red trace) without help from 

activator cBID. Conversely, increasing CL from 3 mol% (Fig. V.2D) to 8 mol% (Fig. V.2F), 

keeping PE at 85 mol%, gave significantly weaker cubic correlation peaks for FL BAX alone. 

This decrease is more pronounced in the absence of cBID, whose targeting of mitochondria 

(26) and activation of BAX (20) are widely cited as CL dependent. We next examined 

membrane structures induced by BAX, activated using all three different methods, for a broad 

range of lipid compositions relevant to mitochondrial membranes (Fig. V.2H for phase diagram 

of ternary PE/PC/CL liposomes with activated BAX at P/L=1/500). Occurrence of porous 

phases correlates with high PE and low mitochondrial-like CL levels. No porous cubic phases 

were observed when CL content approached and exceeded levels found in the inner 

mitochondrial (IM) membrane (10-16 mol%) (9,10), the integrity of which remains 

undisturbed following BID/BAX-induced cytochrome c release (27,28). 
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Fig. V.2 
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Fig. V.2 | cBID activates BAX to induce saddle-splay curvature, while BCL-XL suppresses 
curvature generation. A, Experimental SAXS data on 75/20/5 PE/PC/CL LUVs, offset 
vertically for comparison. While FL BAX alone was insufficient, 1:1-activation with cBID 
(red) precipitated a dominant cubic Pn3m phase. Annotations denote BCL-XL/BAX molar 
ratio (X), showing clear suppression of BAX-induced cubic diffraction peaks at high X. B, 
Pn3m peak indexing for X=0 (red) and ½ (blue) gave lattice constants d=15.58±0.03 nm, 
21.59±0.04 nm respectively. Peak q-values relate Miller indices (h, k, l) to d by 
q=2π√(h2+k2+l2)/d, so a left shift on log-log plot denotes an increase in d, with a 
commensurate decrease in saddle-splay curvature because K ≈2πχ/d2A0, with Euler 
characteristic χ and unit cell surface area A0 (11). C, Top schematic show double-
diamond topology of inverse bicontinuous cubic Pn3m phase, bottom show 
representative repeating units of cubic Pn3m and Im3m. D, FL BAX alone induced cubic 
phases in 85/12/3 PE/PC/CL. Annotations denote X. E, Peak positions in D indexed for 
X=0 (red) and X=½ (blue). Triangle and square markers denote Pn3m and Im3m peak q-
values respectively. At X=0, dPn3m=14.98±0.03 nm, dIm3m=19.1±0.1 nm. At X=½, 
dPn3m=16.87±0.03 nm, dIm3m=21.34±0.03 nm. F, Different methods of activating BAX gave 
rise to the same class of curvature with 85/7/8 PE/PC/CL LUVs, with dPn3m comparison in 
G. H, Composite protein-membrane phase diagram for BAX (P/L=1/500) activated with 
all 3 methods in ternary PC/PE/CL LUVs show propensity for porous states at high PE 
and low CL.  
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Although BAX and BCL-XL are structurally similar, they remodel membranes in 

drastically different ways.  BCL-XL did not induce sharp correlation peaks for a broad range of 

lipid compositions, suggesting its curvature generation ability is weaker than BAX’s. 

Considering PE’s strong role in BAX-induced porous phases, we examined the action of BCL-

XL on pure hydrated PE lipids, which possess sufficient negative c0 to self-assemble into an 

inverted hexagonal (HII) lipidic phase (peak q-positions at 1:√3:√4:√7 ratios, Fig. V.3A). The 

HII PE phase has negative curvature only along one direction (11) (and zero curvature 

orthogonally, so that H≡c1+c2<0, but K≡c1c2=0). SAXS data showed that BCL-XL was able to 

grow porous cubic phases that have negative curvature along one principal direction and 

positive curvature along the other (c1c2<0). This suggests that BCL-XL has restructured the 

negative mean curvature target membrane to produce new positive curvature. Isotropic 

generation of positive curvature leads to positive Gaussian curvature. Since both BAX and 

BCL-XL can act on the OM membrane, we need to understand how positive Gaussian 

curvature induced by BCL-XL interacts with negative Gaussian curvature induced by BAX (Fig. 

V.3B for possible picture). 

We developed a theoretical model for mixtures of two membrane-bound proteins, one 

inducing negative GC (BAX-like), the other positive GC (BCL-XL-like). Each protein is taken 

to induce local principal curvatures in the membrane, ξ 1 and ξ 2, which works against the 

membrane deformations given by the Helfrich free energy, FHelfrich=(B/8)∫dA(c1+c2)2, with the 

integral over the membrane area, and bending rigidity B. The energy of a single protein is 

EProtein=(∆E/2)[(c1-ξ1)2+(c2-ξ2)2], where ΔE(ξ1
2+ξ2

2)/2 is the energy cost of binding a protein to 
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a flat membrane, and the induced principal curvatures depend on the protein type (see 

supplementary for calculation details). Analogous to classical nucleation theory, the free energy 

scales as E=-σπr2+τ2πr for a pore of radius r and pore rim line tension τ on a membrane with 

effective surface tension σ. This model exhibits an energy barrier Ebarrier=πτ2/σ at a radius r0=τ/σ. 

When this energy is comparable to thermal energy, pore formation becomes favourable. We 

find that BAX-like K<0-inducing proteins universally suppress the free energy barrier, while 

BCL-XL-like proteins inducing positive Gaussian curvature (K>0) enhance it. Mixtures of 

proteins inducing competing curvatures can control pore formation via the free energy barrier 

(Fig. V.3C). Setting ξ 1≈0.5 nm-1, commensurate with the curvature on the inside of a pore, and 

ΔE(ξ1
2+ξ2

2)/2≈4kBT, we find ξ 2=-0.05 nm-1 induces an average Gaussian curvature of -0.022 

nm-2, consistent with a Schwartz’ D (Pn3m) surface of lattice size 17 nm (11). We use 

ξ1=ξ2=0.375 nm-1 for K>0-inducing proteins. Even at very modest area fractions, a K>0-

inducing protein will inhibit pore formation by raising the energy barrier drastically (Fig. 

V.3C). The precise values used for constants do not change the generic behaviour observed in 

the model, and computed dPn3m grows with increasing BCL-XL/BAX ratio (Fig. V.3D) in good 

agreement with our measured lattice constants. 
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Fig. V.3 
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Fig. V.3 | BCL-XL introduces positive curvature to curb BAX-induced pore formation. A, 
Annotations denote BCL-XL/lipid molar ratios (X/L). Hydrated PE self-assembles into a HII 
phase (negative mean curvature, dark blue) with dH=7.5 nm and principal curvatures 
c1<0 and c2=0, but addition of BCL-XL grew cubic phases (dPn3m=13.2 nm, dIm3m=16.9 nm) 
with c1<0 and c2>0, indication that positive curvature was introduced into the system. B, 
Schematic portray possible end-states when curved membrane patches interact.  
Saddle-splay patches (K<0, green) induced by proteins can come together to stabilize a 
pore, while introducing patches of isotropic positive curvature (K>0, orange) separate 
saddle defects to frustrate pore formation and leave an “egg-carton” surface (29). C, 
Barrier height of pore opening in mixtures of positive (orange) and negative (green) 
Gaussian curvature-generating proteins in theoretical model. Bare line tension τ0=10-11 
J/m, bare surface tension σ0=10-3 N/m. Barrier without proteins E0=π τ02/σ0, with 
contours spaced 10 kBT apart. D, Pn3m lattice constants grow with increasing molar 
ratio of K>0-generating proteins to K<0-generating proteins in theoretical model, and 
the range of lattice constants are in rough agreement with experimental data on BAX 
and BCL-XL. 
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Taken together, these observations propose the possibility that BCL2 family proteins, 

in addition to direct protein-protein binding, may also interact with one another via a 

membrane-curvature mediated mechanism. To test our hypothesis, we examined whether BCL-

XL could be used to turn off pore-formers other than BAX. Cell-penetrating peptides (CPPs) 

and antimicrobial peptides (AMPs) are obvious targets that can generate pores through 

negative Gaussian curvature (6,7). Mitochondrial membranes also resemble bacterial 

membranes (presence of CL, rich in PE and low cholesterol) (30). We incubated 80/20 PE/PS 

(phosphor-L-serine) LUVs with varying BCL-XL levels while the cell-penetrating peptide TAT 

is kept at a peptide/lipid (P/L) molar ratio of 1:40. TAT induced correlation peaks 

characteristic of coexisting lamellar Lα (peak q-positions at 1:2:3 ratio), Pn3m cubic, and 

inverted hexagonal HII lipid phases (6) (Fig. V.4A, bottom trace). Upon raising BCL-XL/lipid 

molar ratios (X/L), BCL-XL first quenched diffraction peaks of the HII phase at X/L=1/500, 

before completely suppressing the TAT-generated Pn3m peaks at X/L=1/100. Synthetic cell-

penetrating peptides, polyarginine-(polyethylene-glycol) or R4(PEG)XR4, were also tested with 

BCL-XL. R4(PEG)5R4 restructured 80/20 PE/PS LUVs to give diffraction peaks similar to 

TAT’s, and BCL-XL was again able to suppress all correlation peaks (Fig. V.4B) in a manner 

analogous to its antagonistic effect on BAX. Strikingly, BCL-XL can even quench negative 

Gaussian membrane curvature in a pure lipid system. High monovalent salt (300 mM KCl) was 

used to restructure 80/20 PE/PS LUVs into porous cubic phases (Pn3m and Im3m) with a 

coexisting hexagonal HII phase (Fig. V.4C). Incubation with BCL-XL suppressed the low-q 

cubic diffraction peaks, while higher BCL-XL levels grew the lamellar Lα phase at the expense of 
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the HII phase (Fig. V.4C, top trace), consistent with BCL-XL’s generation of positive curvature. 

In line with a membrane-mediated mechanism, BCL-XL was able to suppress negative Gaussian 

membrane curvature generation across a broad range of systems, ranging from pore forming 

peptides drastically different from BAX in charge, hydrophobicity and molecular weight, to a 

pure lipid system lacking protein-protein interactions. 
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Fig. V.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. V.4 | BCL-XL inhibits pore formers unrelated to the BCL2 family. A, TAT in 80/20 
PE/PS liposomes generated Pn3m (diffraction peaks at low q) and HII phases 
suppressible by high BCL-XL/lipid levels (X/L, annotated), leaving only the lamellar Lα 
phase. B, R4(PEG)5R4 in 80/20 PE/PS induces Pn3m and HII phases, both suppressed at 
high X/L. C, 300 mM KCl can induce 80/20 PE/PS liposomes into cubic and hexagonal 
phases, but increasing X/L blocked any growth of cubic peaks.  
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V.4 | Conclusion 

The formulation of BCL2 regulation has largely been based on BH3 domain 

interactions. Specific protein-protein contacts produce allosteric and displacement changes that 

modulate protein activity to control apoptosis (2-5). Our findings here demonstrate that in 

addition to BH3-mediated interactions between family members, a parallel mechanism 

mediated by BCL2 induced mitochondrial membrane curvature plays an important role. It is 

possible that under different biological conditions, specific protein-protein interactions can 

appear dominant or secondary (5,21,31,32). This model comports well with a recent finding 

that reduced BH3 interactions between BAX and BCL-XL do not suppress inhibition of 

apoptosis (33), and suggests a new general class of strategies for engineering apoptosis. 

V.5 | Experimental Procedures 

Protein/peptide preparation 

Recombinant human BCL-XL, cBID, and BAX (both FL and truncated (ΔC19)), were 

produced as intein constructs, expressed in BL21 (DE3) E. coli, isolated and purified without 

exposure to detergent (22,23). All proteins were found homogeneous (denaturing gel 

electrophoresis) and monomeric (fluorescence correlation spectroscopy) at physiological salt 

conditions. Octyl glucoside-activated BAX (OG BAX) was obtained by incubating BAXΔC 

with 1% (w/v) OG for 1 h at 4°C, and dialyzing for 4 h at room temperature against pH 7.0 

buffer (10 mM Hepes, 100 mM KCl). pH-activated (pH BAX) was prepared by dialyzing 

against pH 5.0 buffer (10 mM NaOAc, 100 mM KCl), then back against pH 7.0 buffer just 

before sample preparation. Activation by cBID involved mixing FL BAX or BAXΔC with cBID 
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at 1:1 or 5:1 stoichiometry. Cell penetrating peptide TAT 47-57 (trans-activator of 

transcription protein transduction domain from HIV-1) was purchased (Anaspec) and 

R4(PEG)XR4 peptides were prepared using automated solid-state synthesis (Protein Sciences 

Facility, University of Illinois). 

GUV preparation for confocal microscopy 

1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC), 1,2-Dioleoyl-sn-Glycero-3-

Phosphoethanolamine (DOPE), 1,2-Dioleoyl-sn-Glycero-3-Phospho-L-Serine (DOPS, sodium 

salt), bovine liver L-α-phosphatidylinositol (PI, sodium salt), bovine heart cardiolipin (CL, 

sodium salt) were purchased from Avanti Polar Lipids. Giant unilamellar vesicles (GUVs) 

labelled with DiO (Invitrogen) were prepared using electroformation. Lipid solutions in 

chloroform were desiccated on indium tin oxide (ITO) coated glass slides and swelled in 100 

mM sucrose solution containing Alexa Fluor 546 C5-maleimide or succinimidyl ester dye (≈1 

kDa, non-reactive after Tris pretreatment) under 10 Hz sinusoidal AC electric field. After 

GUV detachment with 4 Hz square AC, suspension was diluted 100× into 100 mM glucose, 

100 mM KCl medium and imaged in a 200 μl chamber with a Leica TCS SP2 laser scanning 

confocal microscope (63×, 1.4 N.A.). 

LUV preparation for x-ray measurements 

Lipid solutions in chloroform were dried under N2 and desiccated overnight under 

vacuum, then rehydrated in pH 7.0 buffer to 20 mg/ml at 37°C overnight before sonication to 

clarity and extrusion through 0.2 μm Nucleopore (Whatman) filters to yield  large unilamellar 

vesicles (LUVs). BCL2 proteins were mixed with LUVs at specific molar stoichiometries 
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(BAX:lipid = 1:500 or 1:600) while cell-penetrating peptides were introduced at peptide-to-

lipid molar ratios (P:L) just below the isoelectric point (P:L=1:40). Samples were incubated at 

37°C overnight and sealed in quartz capillaries. 

Synchrotron x-ray scattering 

Small angle x-ray scattering (SAXS) data were collected on BL4-2 (9-11 keV) at 

Stanford Synchrotron Radiation Laboratory (Palo Alto, CA), BL7.3.3 (10 keV) at Advanced 

Light Source (Berkeley, CA), and BESSRC-CAT (BL12-IDC) and BioCAT (12 keV) at the 

Advanced Photon Source (Argonne, IL). Scattered intensity was collected with MAR-Research 

(Hamburg, Germany) CCD detector (79 μm pixel)  and integrated using NIKA 

(http://usaxs.xor.aps.anl.gov/staff/ilavsky/nika.html) on Igor Pro (Wavemetrics) and FIT2D 

(http://www.esrf.eu/computing/scientific/FIT2D/). 
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