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Central to the field of condensed matter physics is a decades old outstanding problem in the 

study of glasses – namely explaining the extreme slowing of dynamics in a liquid as it is 

supercooled towards the so-called glass transition. Efforts to universally describe the stretched 

relaxation processes and heterogeneous dynamics that characteristically develop in supercooled 

liquids remain divided in both their approaches and successes. Towards this end, a consensus on 

the role that atomic and molecular structures play in the liquid is even more tenuous. However, 

mounting material science research efforts have culminated to reveal that the vast diversity of 

metallic glass species and their properties are rooted in an equally-broad set of structural 

archetypes. Herein lies the motivation of this dissertation: the detailed information available 

regarding the structure-property relationships of metallic glasses provides a new context in which 

one can study the evolution of a supercooled liquid by utilizing a structural motif that is known 

to dominate the glass. 
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𝐶𝑢64𝑍𝑟36 is a binary alloy whose good glass-forming ability and simple composition makes it a 

canonical material to both empirical and numerical studies. Here, we perform classical molecular 

dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid 

𝐶𝑢64𝑍𝑟36, while focusing on the roles played by atomic icosahedral ordering – a structural motif 

which ultimately percolates the glass’ structure. Large data analysis techniques are leveraged to 

obtain uniquely detailed structural and dynamical information in this context. In doing so, we 

develop the first account of the origin of icosahedral order in this alloy, revealing deep 

connections between this incipient structural ordering, frustration-limited domain theory, and 

recent important empirical findings that are relevant to the nature of metallic liquids at large. 

Furthermore, important dynamical landmarks such as the breakdown of the Stokes-Einstein 

relationship, the decoupling of particle diffusivities, and the development of general “glassy” 

relaxation features are found to coincide with successive manifestation of icosahedral ordering 

that arise as the liquid is supercooled. Remarkably, we detect critical-like features in the growth 

of the icosahedron network, with signatures that suggest that a liquid-liquid phase transition may 

occur in the deeply supercooled regime to precede glass formation. Such a transition is predicted 

to occur in many supercooled liquids, although explicit evidence of this phenomenon in realistic 

systems is scarce. Ultimately this work concludes that icosahedral order characterizes all 

dynamical regimes of 𝐶𝑢64𝑍𝑟36, demonstrating the importance and utility of studying 

supercooled liquids in the context of locally-preferred structure. More broadly, it serves to 

confirm and inform recent theoretical and empirical findings that are central to understanding the 

physics underlying the glass transition.   
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Chapter 1: Introduction 

1.1 An Overview of Supercooling and the Glass Transition 

When cooling a liquid at a moderate pressure, one expects that the liquid will freeze and form a 

solid upon reaching the melting temperature, 𝑇𝑀. The most intuitive example of this, of course, is 

that of water. At standard atmospheric pressure (1.01 × 105𝑃𝑎), liquid water can be cooled to 

𝑇𝑀 = 273 𝐾 , where it undergoes a first-order phase transition to form a solid. At 𝑇𝑀, the liquid 

phase of water possesses a higher free energy than does its solid phase, hence the system will 

release energy as latent heat in order to occupy the highly ordered, crystalline ground state that 

we know as ice*. It turns out that this freezing process is not guaranteed. Indeed, by cooling 

water and other liquids rapidly one can obtain a material that persists as a liquid below 𝑇𝑀; this is 

known as a supercooled liquid. Although supercooled liquids exist in a metastable phase – the 

crystal does minimize the free energy below 𝑇𝑀, after all – they can persist as ergodic liquids 

well below 𝑇𝑀
1,2†. How do supercooled liquids differ from high-temperature liquids? What is the 

relationship between supercooling and glass formation? Can new phases of matter be accessed 

from this metastable one? Herein lies a major subfield of condensed matter physics. 

                                                 
* Although there are many phases of ice, the single phase that is formed under typical atmospheric conditions 

consists of crystal possessing a hexagonal symmetry. This phase is known as Ih
64

. 
† The process of avoiding crystallization to obtain a persistent supercooled liquid is neither trivial nor is it 

guaranteed. A. Cavagna and A. Angell provide important insights regarding the metastability limit in supercooled 

liquids7,65.  
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 Only a brief discussion of the temperature-dependent behavior of a supercooled liquid is needed 

to motivate the three afore posed questions. Figure 1.1 depicts the viscosity-temperature curve 

for a simple binary liquid, Cu64Zr36, along with several ‘landmark’ viscosity values for familiar 

materials at room temperature3. Liquid Cu-Zr experiences a relatively modest growth in viscosity 

as it is cooled from 3000 K to the liquidus temperature (𝑇𝑙), which is akin to 𝑇𝑀. Further rapid 

cooling produces a supercooled liquid, whose viscosity begins to grow rapidly with decreasing 

temperature. In a narrow range of supercooling, the system goes from being water-like in its 

ability to flow, to having the consistency of honey, and then to having the consistency of tar. 

Once the system’s viscosity reaches 1012𝑃𝑎 ∙ 𝑠, the material is formally considered to be a glass. 

The temperature at which this occurs is called the calorimetric glass transition temperature (𝑇𝑔). 

 

 

Figure 1.1. A viscosity-temperature curve (VFT-fit) for a binary liquid, 

Cu64Zr36. Approximate viscosity measurements are provided for common 

materials at room temperature. The liquidus temperature, 𝑇𝑙, is 

approximately 1230 K10. 
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The precise definition of 𝑇𝑔 is a purely functional one: the supercooled liquid does not undergo a 

phase transition here; neither its structure nor its dynamics undergo a drastic change at this 

temperature4–7. This is quite confusing at first glance – if there is no “true” glass transition, then 

what is a glass anyway*? In short, a glass is supercooled liquid that has fallen out of equilibrium 

(albeit metastable equilibrium) †. In a temperature range very close to 𝑇𝑔, the supercooled liquid 

becomes so viscous that it can no longer ergodically explore phase space in a reasonable amount 

of time; here, the system’s dynamics are so slow that it can no longer flow on a typical 

laboratory time scale. Let us take a moment to build some intuition for just how sluggish things 

are at 𝑇𝑔. 

The longest running, and perhaps least eventful, experiment in recorded history is an ongoing 

measurement of the rate of flow of tar8. In 1927, Thomas Parnell heated some tar, placed it in a 

funnel, and let it settle. After allowing the tar to settle for three years, Parnell cut the bottom of 

the funnel and timed how long it would take for a drop of tar to form and separate from the 

funnel; the experiment finds that roughly one drop falls every decade. This implies that tar’s 

viscosity is approximately eleven orders of magnitude larger than that of water, and yet is two 

orders of magnitude smaller than the viscosity of a liquid at 𝑇𝑔 (see Figure 1.1). Thus if the 

experiment were repeated using a liquid that was supercooled down to 𝑇𝑔, it would take roughly 

a millennium for a drop to form and separate. This is what is meant when one says that a 

supercooled liquid ceases to flow on a laboratory time scale at 𝑇𝑔.  Mind that further cooling 

beneath 𝑇𝑔 will result in continued tremendous growth in the glass’ viscosity, so that the 

                                                 
* I was told in my middle school science class that a glass is “a solid that flows.” That explanation made no sense to 

me then, and it still makes no sense. 
† Although the supercooled liquid is, by definition, out of thermodynamic equilibrium, it is ergodic and its 

dynamical correlation functions obey time translation invariance. This is no longer true below 𝑇𝑔. 
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millennium needed to form a drop will quickly become millions of years or longer. This 

immediately dispels the myth that glass flowing over time at room temperature is the mechanism 

responsible for ancient cathedral windows being thicker at the bottom than at the top9*. Indeed, 

as common experience suggests, glasses well below 𝑇𝑔 are truly rigid solids. 

1.2 Two-Step Relaxation processes Near TG 

Given the importance of time scales in the classification of glasses, it is natural to ask: are new 

physical mechanisms at play near 𝑇𝑔? Instead, is a simple physical mechanism responsible for 

the viscous slowdown beginning at high temperatures, and does this simply lead to a runaway 

slowdown that inevitably becomes inaccessible by laboratory timescales? Despite the lack of a 

“fundamental” glass transition temperature, some spectacular physics do appear to be at play in 

its vicinity†. Viewing the temperature dependence of the dynamical correlation functions of a 

supercooled liquid makes this clear. 

                                                 
* Zanotto and Gupta estimate that such a process would require the windows to be far older than they actually are – 

they would need to be more than a billion times older than the age of the universe.  
† It has even been suggested that the tremendous viscous slowdown exhibited by supercooled liquids is a signature 

of a phase transition that resides beneath 𝑇𝑔
6,26 
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Figure 1.2 displays dynamical correlation functions for a liquid across a wide range of 

temperatures. Figure 1.2a contains, on a log-log scale, the mean-squared displacement (MSD) 

time trajectory for an average atom in simulated liquid Cu64Zr36. For this system, 𝑇𝑙 is 

approximately 1230 K10 and 𝑇𝑔 is near 750 K11.  At 2000 K, the system is well within its 

thermodynamic equilibrium liquid phase. Here an atom’s MSD trajectory is straightforward: for 

roughly 100 fs, an atom travels away from its initial position at a constant speed 𝑣 without 

experiencing any collisions. Once the atom collides with one of its neighbors, it proceeds to 

experience uncorrelated collisions in approximately 100 fs intervals, resulting in diffusive 

motion. Indeed, the long-time asymptote of 〈𝛿𝑟2(𝑡)〉 is linear in time, which is precisely the 

behavior one would expect from a particle undergoing a random walk4. Upon cooling, one 

expects a trivial downward shift in  〈𝛿𝑟2(𝑡)〉 (on the log-log scale) to accompany the kinetic 

reduction in the atom’s speed. This, however, is not the prevailing effect observed when 

supercooling the liquid well below 𝑇𝑙. At low temperatures, the atom’s MSD trajectory is 

Figure 1.2. Dynamical correlation functions of simulated Cu64Zr36 for multiple temperatures. (a) The mean-squared 

displacement trajectory of an ensemble atom in the liquid. (b) The time-averaged shear-stress autocorrelation 

function. Both correlation functions exhibit the development of a distinct plateau feature at low temperatures, which 

is characteristic of the imminent glass transition.   
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found to enter a plateau after the first collision. The interpretation of this is that the 

subsequent collisions experienced by the atom are no longer uncorrelated, rather, the 

collisions correlate in such a way that the atom remains localized in a narrow region of 

space for an extended duration of time. Stated more simply, the atom is caged by its 

neighboring atoms (and those atoms are caged by their neighbors…).  The plateau is seen 

to lengthen with decreasing temperature. At 750 K, this caging effect is long-lived – it takes 

approximately a nanosecond for the cage to break down, so that the atom can begin to 

diffuse*.  

Figure 1.2b contains the shear-stress autocorrelation function for liquid Cu64Zr36 for 

multiple temperatures. The behavior of this function reflects the amount of time it takes for the 

liquid’s atoms to rearrange in response to a shear-stress so as to accommodate, and thus 

dissipate, the stress. That is, it reflects the liquid’s ability to flow. A solid’s shear-stress 

autocorrelation function never decays to zero, hence a solid never flows. As seen in the analysis 

of the MSD trajectories, all of the temperature curves exhibit the same decay behavior within 

approximately 100 fs of a shear event – this initial relaxation is the result of the ballistic motions 

of the liquid’s atoms. The subsequent behavior of the autocorrelation function depends strongly 

on temperature. At 2000 K, the function proceeds to exhibit a simple exponential decay to 0: 

 〈𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)〉 ∝ 𝑒−𝑡
𝜏⁄      (𝑇 ≫ 𝑇𝑔) 

(1.1) 

                                                 
* Once the atom escapes from a cage, it will soon find itself trapped in another cage. This is not apparent in Figure 

1.2a because time is plotted on a log scale. After the atom leaves the cage, the subsequent ticks on the logarithmic 

time scale correspond to times greater than that needed for the subsequent cages to break down, hence the atom 

proceeds to diffuse on this long time scale. 
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Upon approaching 𝑇𝑔, on the other hand, the initial ballistic decay of the function leads to a 

sustained plateau. The function’s departure from this plateau is non-exponential. Instead, it is 

well-described by a stretched exponential form*, 

 〈𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)〉 ∝ 𝑒−(𝑡
𝜏⁄ )

𝛽

     (𝑇 ≈ 𝑇𝑔) 
(1.2) 

where 𝛽(𝑇) < 1 and increases monotonically with temperature12.  

The dynamical correlation functions in Figure 1.2 contain essential information about the nature 

of supercooled liquids and the glass transition. They allow us to understand how liquids in 

thermodynamic equilibrium are different from supercooled liquids that are ergodic yet only 

metastable. Furthermore, they reveal that new physical mechanisms do in fact arise near 𝑇𝑔. The 

most striking feature of both correlation functions near 𝑇𝑔 is that they are characterized by a two-

step relaxation process that is separated by a plateau. The initial, fast decay that leads the 

correlation function into the plateau is known as the 𝛽 relaxation process, and the eventual decay 

from the plateau to zero is the 𝛼 relaxation process. This is a general feature of dynamical 

correlation functions of deeply supercooled liquids. A. Cavagna succinctly describes this as 

being an “equilibrium fingerprint of glassiness.”6 What he means by this is that the plateau 

feature arises in a supercooled liquid that is still ergodic (and hence in “equilibrium”); thus it is 

an indicator that the glass transition is imminent, which arises before the supercooled liquid 

actually falls out of metastable equilibrium. Posed another way, this phenomenon will manifest 

in a supercooled liquid that is near 𝑇𝑔 regardless of the length of the laboratory time scale. This is 

one of the most resounding pieces of evidence that the glass transition is indeed more than just a 

runaway timescale dilation. 

                                                 
* This is known as the Kohlrausch-Williams-Watts function. 
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The discussion of the MSD trajectories in Figure 1.2a seems to provide a clear interpretation of 

the physical meaning of the plateau for both dynamical correlation functions. At low 

temperatures, atoms form cages around one another, and before a given cage breaks apart, an 

atom within it is temporarily “frozen” in place*. It is also natural to assert that, during caging, 

atoms cannot rearrange to accommodate shear-strains. Once the cage breaks, the supercooled 

liquid can proceed to flow, and fully relax in response to a shear-strain. Hence the plateau in the 

shear-stress autocorrelation function appears to be explained by structural caging as well. We 

seem to be making good progress towards explaining the glass transition: supercooling a liquid 

leads to the development of stiff but transient cage-like atomic structures. Further supercooling 

leads to longer-lived cages, and hence an extended plateau that separates the liquid’s two-step 

relaxation processes. The liquid’s relaxation time (e.g. the time-integral of the shear-stress 

autocorrelation function) grows rapidly as the plateau grows; eventually, the plateau becomes so 

sustained – the atoms remain caged for such extended amounts of time – that the supercooled 

liquid can no longer explore phase space on the laboratory time scale and it forms a glass.  

This synopsis of glass formation does capture many of the important aspects of this process, but 

provides little explanation of why these things happen. What leads to the initial onset of caging? 

What is the nature of the structures responsible for caging – are they merely rigid and dense 

amorphous configurations of atoms? Though we have an equilibrium indicator of impending 

glassiness, what determines the temperature range where this comes into play? Is caging the only 

viable explanation for the plateau? To gain insight into these questions and others, we look to the 

extensive and diverse theoretical works that have been developed in this vein. 

                                                 
* The parameter used to characterize the duration of the dynamical plateau is known as the non-ergodicity parameter 

for this reason. A system cannot ergodically explore phase space while its particles are stuck in cages. 
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1.3 Theories of Supercooled Liquids and Glasses 

When surveying the prominent theories and models that describe supercooled liquids and 

glasses, it becomes clear that features of rapid viscous slowdown and two-step relaxation are 

reproduced by many different mathematical systems. It is surprising to find, for instance, that 

some mean field spin systems exhibit the exact same two-step relaxation processes that are seen 

in supercooled liquids, while these systems have no real space structures13. These spin systems 

cannot exhibit caging effects, as all of their spins interact with one another without preference, 

and yet they produce the same plateau features that we ascribed to caged particle dynamics. This 

example hints at the complexities one faces when searching for a theoretical treatment of the 

supercooled regime. Although there is no complete theory of supercooled liquids, the prominent 

theories frequently complement one another – where one theory fails, another holds. 

Furthermore, these theories generally appear to point in the same direction, though from different 

starting points. The following are very brief summaries of the theories of supercooled liquids that 

are most relevant to the content of this dissertation. Naturally, they will be used to provide 

context for and as points of comparison with the original results that are presented in the 

following chapters. 

1.3.1 Mode-Coupling Theory & p-spin Models 

Mode-coupling theory (MCT) stands out amongst supercooled theories as an analytic approach 

to describing the dynamical slow down and two-step relaxation exhibited by supercooled 

liquids14–16. Starting from the perspective of simple liquid dynamic theory, MCT uses the static 

structure of a liquid – as described by a two-point spatial correlation function of atomic 
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positions* – and yields a closed set of equations for a dynamical correlation function, 𝜙(𝑘, 𝑡), of 

the liquid.† The triumph of MCT is that 𝜙(𝑘, 𝑡) appropriately develops the two-step relaxation 

feature as the liquid is supercooled. Moreover, the manner in which 𝜙(𝑘, 𝑡) decays into (𝛽) and 

from (𝛼) the plateau agrees closely with experimental and numerical measurements. Although 

MCT correctly captures the early (high-temperature) development of “glassy” features, it suffers 

from a glaring problem: it predicts that a liquid’s viscosity (relaxation time) diverges at a 

temperature higher than 𝑇𝐺. Namely, it predicts that the viscosity grows as a power law: 

 𝜂(𝑇) =
𝑚

(𝑇 − 𝑇𝐶)𝛾
 

(1.3) 

where 𝜂(𝑇) is the temperature-dependent liquid viscosity, and 𝑇𝐶, 𝑚, and 𝛾 are positive-valued 

fitting parameters. 𝑇𝐶 is known as the mode-coupling temperature – this is the temperature where 

MCT notoriously predicts that the liquid’s viscosity diverges. High-temperature fits of liquid 

viscosity data show that the power law scaling describes well the growth of 𝜂(𝑇) up until the 

vicinity of  𝑇𝐶, which is typically larger than 𝑇𝐺 by a factor of approximately 1.2. At 𝑇𝐶 , the 

plateau in 𝜙(𝑘, 𝑡) diverges in length, meaning that the system no longer undergoes 𝛼 relaxations 

and thus is no longer ergodic. 

Given the earlier phenomenological discussion of the glass transition, it is trivial to see that 

MCT’s prediction at 𝑇𝐶 is incorrect – one can supercool liquids to this temperature and find that 

their viscosities remain finite here and below‡. It turns out that the premature failure of MCT 

                                                 
* Specifically, it uses the static structure factor, 𝑆(𝑞), as input. This quantity can be measured directly via x-ray 

diffraction and neutron scattering experiments. 
† The dynamical correlation function that is solved for is related to the self-intermediate scattering function. This 

measures density-density correlations as a function of time. 
‡ It would be far more compelling if MCT fits predicted that 𝑇𝐶 < 𝑇𝐺. In this case, it is not so obvious that the 

viscosity doesn’t eventually diverge (due to a phase transition), and yet we cannot reach this temperature without 

forming a glass first. Indeed, this scenario is brought into consideration by the so-called Kauzmann entropy crisis.  
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indicates that a new liquid relaxation mechanism comes into play near 𝑇𝐶, which is not included 

in the MCT framework. To identify this mechanism it is fruitful to first briefly turn to p-spin 

theory to understand the cause of the divergence, but first a certain point must be emphasized. 

MCT does appropriately capture the onset of two-step relaxation in a liquid, but fails prior to 𝑇𝐺. 

Whatever new mechanism begins to participate near 𝑇𝐶 must (1) prevent the divergence of the 

liquid’s viscosity and (2) contribute to the two-step relaxation that occurs below 𝑇𝐶. 

First and foremost, p-spin models are mean-field spin systems that produce dynamical equations 

that are formally (and coincidentally) equivalent to those in MCT17,18. Furthermore, a p-spin 

model is generally much more transparent than is the MCT framework19,20. This explains why it 

is appropriate to introduce a p-spin model in the context of supercooled liquids to understand the 

failure of MCT18,20,21. The following synopsis follows closely the introduction provided by T. 

Castellani and A. Cavagna13. A simple p-spin Hamiltonian (where 𝑝 = 2) is given by 

 
𝐻 = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

〈𝑖,𝑗〉

 

(1.4) 

where 𝜎𝑘 is a random spin degree of freedom and 𝐽 couples the spins. 𝐽 is given by a probability 

distribution, hence the system is a mean-field one and has no lattice structure. 𝐽 is restricted to be 

constant on the timescale of fluctuations of 𝜎𝑘 – that is, the disorder in the system is “quenched”. 

The first connection between this p-spin model and supercooled liquids can be gleaned from the 

behavior of the dynamical correlation function 

 C(t) = ∑ 𝜎𝑖(𝑡 + 𝑡𝑜)𝜎𝑖(𝑡𝑜)

𝑖

 

(1.5) 

which, at low temperatures, exhibits the telltale two-step relaxation shape. 
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One can calculate the gradient of the p-spin system’s potential energy to find the minima of its 

energy landscape. The Hessian then provides information about the shape of a given energy 

minimum in phase space. Specifically, positive eigenvalues indicate a positive energy curvature 

along the corresponding eigenvectors, whereas a non-positive eigenvalue describes a flat or 

convex energy curvature. It is found that, for 𝑇 > 𝑇𝐶, the Hessian for an average minimum has 

multiple non-positive eigenvalues. Thus, above the mode-coupling temperature, the system can 

freely travel from minimum to minimum in phase space by travelling through the saddle points 

associated with these eigenvalues. The process of the system dynamically “finding” a saddle 

point and leaving a minimum via it corresponds to an 𝛼 relaxation. Decreasing temperature 

causes a positive shift in the eigenvalue spectrum, reducing the average number of saddle points 

available to a given energy minimum. At 𝑇 = 𝑇𝐶, the energy landscape undergoes a topological 

transition – the minima of the energy landscape no longer possess saddle points. At this 

temperature and below, the system can no longer ergodically explore phase space, as it is trapped 

in a single energy minimum. This manifests in 𝐶(𝑡) as a divergent plateau (the system never 𝛼-

relaxes), and explains the diverging power-law behavior predicted in Equation 1.3 by MCT. 

The satisfactory agreement between MCT and experiment for 𝑇 > 𝑇𝐶, leads one to believe that 

the energy landscape truly undergoes a topological transition at the mode coupling temperature. 

If this is the case, then a physical mechanism that is not included in MCT must be responsible for 

allowing the supercooled liquid to persist ergodically despite the lack of landscape saddle points. 

The mechanism of activated hopping proposed by Goldstein does just this. 
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1.3.2 Goldstein Activated Dynamics 

Goldstein also makes headway towards understanding supercooled dynamics by considering the 

role of an energy landscape22, but his discussion resides in the more familiar phase space of 

atoms interacting locally in three spatial dimensions. Because the interactions being considered 

are local in space, it doesn’t make sense to think of the entire liquid residing at an energy 

minimum in phase space at any given time. A local configuration of atoms in one region of the 

liquid may be rearranging, while other clusters of atoms are in their locally-preferred structures. 

Indeed, the notion of the system being in a global energy minimum is more cogent when 

thinking of a crystal. The major point to keep in mind is that any energy minima and relaxation 

processes (i.e. structural rearrangements) discussed by Goldstein are inherently local in nature.  

Goldstein proposed that a local configuration of atoms in an energy minimum can escape from 

the minimum via activated hopping. That is, thermal energy is utilized to permit local regions of 

the supercooled liquid to escape from wells in the energy landscape. This interpretation fits 

naturally into the two-step relaxation scenario: oscillations about energy minima correspond to 

the short 𝛽 relaxations leading into the “caged” plateau. Activated hopping then eventually 

allows the supercooled liquid to leave the minimum (and ergodically explore phase space), 

which corresponds to an 𝛼 relaxation. Goldstein made estimates of the temperature dependence 

of the energy barrier sizes (e.g. the depth of a typical well in the energy landscape) based on the 

number of atoms involved in a local rearrangement. He argued that the barrier size, ∆𝐸(𝑇), 

grows with decreasing temperature, and sought the temperature 𝑇𝑥, below which ∆𝐸(𝑇𝑥) ≫ 𝑘𝐵𝑇. 

Below 𝑇𝑥, activated hopping is the dominant mechanism for diffusion (𝛼 relaxation) in the 

supercooled liquid. 
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Remarkably, estimates of 𝑇𝑥 are very close to 𝑇𝐶  (𝑇𝐶 ≈ 𝑇𝑥 ≈ 1.2 × 𝑇𝐺), meaning that activated 

hopping begins to dominate the liquid dynamics as MCT breaks down23–25. This agreement is 

extremely fortuitous (and sensible, in hindsight) as it not only rectifies the divergence prescribed 

by MCT, but it also corrects for oversimplifications made by Goldstein. Recall that MCT 

predicts a topological transition in the energy landscape at 𝑇𝐶, after which ergodicity is broken 

because the liquid is trapped in an energy well*. This topological transition coincides with the 

condition that ∆𝐸(𝑇) ≫ 𝑘𝐵𝑇, which signals the need for activated hopping to restore ergodicity. 

On the other hand, Goldstein’s approximations provide no explanation for the observed two-step 

relaxation that occurs above 𝑇𝑥; clearly one then turns to the discussion of MCT and p-spin to 

understand that for 𝑇 > 𝑇𝑥, the process of finding and travelling between saddle points in the 

energy landscape leads to a two-step relaxation process. 

To summarize the crucial points made by MCT (p-spin) and Goldstein: as a liquid is 

supercooled, its ergodic exploration of phase eventually becomes impacted by the existence of 

minima in its energy landscape with 𝛽 relaxations corresponding to oscillations about these 

minima. In this temperature regime (𝑇𝑚 > 𝑇 > 𝑇𝐶)†, local regions of the liquid will remain 

caged within minima until they can find saddle points to escape their respective energy wells. 

This 𝛼 relaxation process crosses over to activated hopping near 𝑇𝐶 (𝑇𝑥), at which the energy 

landscape has undergone a topological transition so that the minima no longer possess saddle 

points and the energy barriers have become large compared to 𝑘𝐵𝑇. 

                                                 
* Activated hopping is impossible for a mean field system, which is why the p-spin system predicts that the liquid is 

completely trapped in a minimum for 𝑇 < 𝑇𝐶. 
† Note that signatures of two-step relaxation do not emerge immediately upon supercooling. One may have to 

supercool significantly below 𝑇𝑚 before developing a plateau feature in the liquid’s dynamical correlation functions.  
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These two theories make excellent headway towards understanding supercooled liquid dynamics, 

but they are vague with regards to the roles played by atomic structures. Goldstein’s discussion 

of the energy landscape appeals directly to clusters of atoms purposefully rearranging and notes 

that the number of atoms involved in such a process ought to increase with decreasing 

temperature. To this end, several theories address the topic of cooperative structural 

rearrangements, configurational entropy, and their effects on a supercooled liquid’s dynamics.  

1.3.3 AGDM Theory & Random First-Order Transition Theory 

Figure 1.3 depicts a schematic of the behavior of a supercooled liquid’s excess entropy as it is 

cooled through the glass transition. Here, the excess entropy, ∆𝑆(𝑇), refers to the difference 

between the entropy of the liquid and the entropy of the crystal at a given temperature. As 

explained by Kauzmann26, as the supercooled liquid falls out of metastable equilibrium, many of 

Figure 1.3 A schematic plot of the temperature dependence of a 

supercooled liquid’s excess entropy. At 𝑇𝐺 , the supercooled liquid falls 

out of metastable equilibrium, causing the entropy to level off. A blue 

dashed line indicates an extrapolation of the supercooled liquid regime.  
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its degrees of freedom “freeze out” and no longer contribute to the material’s specific heat (𝑐𝑝); 

hence 𝑐𝑝 drops rapidly near 𝑇𝐺. This then manifests as a rapid flattening of ∆𝑆(𝑇) below 𝑇𝐺. A 

naïve extrapolation of the metastable equilibrium data, shown as a dashed blue line, suggests an 

interesting phenomenon: at some temperature below 𝑇𝐺, denoted by 𝑇𝑘, the excess entropy of the 

supercooled liquid (which has hypothetically avoided glass formation) vanishes. This 

temperature, where the liquid and crystal entropies are the same, marks the occurrence of the so-

called Kauzmann entropy crisis*.  

Several theories attempt to explain the decrease in entropy that accompanies supercooling in the 

context of cooperative structural rearrangements within the liquid and the length scales 

associated with this cooperativity. Adam, Gibbs, and Di Marzio (ADGM) considered a 

cooperatively rearranging region to be the smallest region of a liquid that can rearrange 

independently from its surrounding atoms27,28. Within this region, then, configurations of atoms 

are interdependent and, as a whole, only sample a small number of preferred states, Ω†. Taking 

the number of atoms in the cooperative region to be 𝑛(𝑇) and the total number of atoms in the 

liquid 𝑁, then the configurational entropy of the liquid can be calculated by: 

 𝑆𝑐(𝑇) =
1

𝑁
ln (Ω

𝑁
𝑛(𝑇)⁄

) =
1

𝑛(𝑇)
ln(Ω) 

(1.6) 

One naturally finds that, as the configurational entropy (which is approximately equal to the 

liquid’s excess entropy) decreases with temperature, the number of particles involved in a 

                                                 
* Kauzmann actually argued that 𝑇𝑘 could likely not be reached before a supercooled liquid had first reached an 

inherent metastability limit, which would force it to crystallize rapidly26. Others, however, suspected that the 

vanishing of ∆𝑆 was indicative of a phase transition that would be the true glass transition for which 𝑇𝐺  was a mere 

precursor66. Recent experimental evidence suggests that the extrapolated crisis does not actually unfold1,67. 
† That Ω is small and only weakly temperature dependent is a strong assumption made by AGDM. 
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cooperatively rearranging region must increase. As argued by Goldstein, the hopping activation 

barrier is expected to scale with 𝑛(𝑇) so that 

 η(𝑇) = η𝑜𝑒
(

𝑐𝑛(𝑇)
𝑘𝐵𝑇

)
= η𝑜𝑒

(
𝑐′

𝑆𝑐(𝑇)𝑘𝐵𝑇
)
 (1.7) 

(𝑐 and 𝑐′ are constants) yields super Arrhenius growth in the liquid viscosity while supercooling, 

as expected. 

The random first order transition (RFOT) theory was developed in the same vein as AGDM, but 

pays closer attention to the details within the cooperatively rearranging regions of the liquid. It 

resembles nucleation theory in that it is concerned with the free energy costs associated with 

creating a droplet of atoms belonging to an amorphous state that differs from its surroundings. 

That is, it considers the penalty for creating interfaces between amorphous states as well as the 

entropic gain associated with a rearrangement. Unlike the nucleation process, the supercooled 

liquid still exhibits time translation invariance during this rearranging, subsequent 

rearrangements do not decrease the overall free energy of the liquid, and the system is not driven 

to any particular amorphous state. Thus what is being considered is a steady state balance 

between surface tension preventing rearrangements and the entropic drive to sample metastable 

states. RFOT provides an estimate of the length scale of a typical cooperatively rearranging 

region: 

 ξ ∝ (
1

𝑇 − 𝑇𝑘
)

(𝑑−𝜃)−1

 
(1.8) 

where 𝑑 is the dimensionality of the system and 𝜃 is a parameter associated with the geometry of 

the interfaces formed by cooperative regions. RFOT clearly delineates that metastable states are 
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inherently local and can only be defined within a region of liquid bounded by ξ(𝑇). Similar to 

ADGM, RFOT predicts that the number of atoms involved in cooperative rearrangements 

(𝑛(𝑇) ∝ ξ(𝑇)𝑑) grows with decreasing temperature in association with decreasing ∆𝑆(𝑇). At 𝑇𝑘, 

this length scale diverges as the entropic difference between the liquid and the solid vanishes 

(but the difference in their free energies do not vanish26). This corresponds to the supercooled 

liquid occupying a global metastable state, which is possible (i.e. the metastable state is still 

“local”) because ξ(𝑇) diverges at 𝑇𝑘. 

Ultimately, the length scale estimations of ADGM and RFOT* provide a measure of the 

activation barrier associated with hopping dynamics. This leads to an important functional form 

for liquid viscosity known as the Vogel-Fulcher-Tamman (VFT) law†29. 

 
η(𝑇) = η𝑜𝑒

(
𝜉𝑑

𝑘𝐵𝑇
)

= η𝑜𝑒
(

𝐴
𝑇−𝑇𝑘

)
 (1.9) 

 where 𝐴 and η
𝑜
 are constants. Irrespective of AGDM and RFOT, the VFT form is widely used 

as it tends to fit empirical data well in available temperature ranges; the real success of these 

theories is that they relate the rapid (super-Arrhenius) growth of a supercooled liquid’s viscosity 

with a growing static length scale associated with cooperative structural rearrangements.  

It is interesting to note that both ADGM and RFOT are structure and state agnostic theories. 

Even though RFOT hinges on the notion of interfaces between local metastable states, it does not 

discuss the details of these metastable states nor the mismatch that results from a local 

cooperative rearrangement. This is at significant odds with typical crystal growth in which the 

                                                 
* RFOT’s predicted ξ(𝑇) doesn’t yield the exact VFT form unless 𝜃 = 𝑑

2⁄ .  
† Note that η(𝑇) diverges at 𝑇𝑘. This feature is inherited from the aforementioned Kauzmann entropy crisis. Recent 

experiments suggests that VFT does not accurately describe η(𝑇) below 𝑇𝐺- that is, there is no divergence1,67.  
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notion of a mismatch of the nucleating crystal phase with the liquid is quite salient. While there 

are several methods devised to measure these structure-agnostic static length scales (𝜉𝑠) 30*, the 

measurements themselves find static length scales that only span a few interparticle distances 

and grow modestly with decreasing temperature31–34. This fails to meet relatively general and 

rigorous considerations which place lower and upper bounds on the supercooled liquid’s 

viscosity that depend on a growing static length scale35. These bounds strongly suggest that a 

rapidly growing 𝜉𝑠 should accompany the characteristic growth in viscosity observed near 𝑇𝐺
†. In 

light of this, perhaps it is appropriate to make stronger conjectures about the types of structures 

that participate in and result from cooperative rearrangements. This is the perspective of some 

more recent theoretical efforts, including those described in the following chapters of this work. 

1.3.4 Frustration & Avoided Criticality 

Unlike in supercooled liquids and glasses, the structural ordering associated with crystalline 

solids is unambiguous: the crystal possesses an obvious long-ranged order (LRO). Associated 

with this LRO is a unit cell containing a locally-preferred structure (LPS) of atoms that can tile 

three-dimensional space. Thus the short-ranged order (SRO) in an ideal crystal simply tessellates 

space to produce the crystal’s characteristic LRO. By contrast, x-ray diffraction measurements of 

supercooled liquids and glasses, which reflect spatial correlations between pairs of atoms, reveal 

a distinct lack of LRO. Figure 1.4 contains a pair correlation function, 𝑔(𝑟), of the real-space 

atomic structure of simulated Cu64Zr36 metallic glass. 𝑔(𝑟) is normalized such that a value of 

unity reflects a random distribution of atoms, thus the solid curve’s peaks and valleys convey 

spatial correlations and anti-correlations between pairs of particles. Unlike what one would find 

                                                 
* The methods used to measure static length scales, such as point-to-set measurements, can only be used in 

numerical studies thus far.  
† If the viscosity does diverge at some 𝑇 < 𝑇𝐺 , then 𝜉𝑠 must diverge as well. 
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in a crystal, pairs of atoms in the glass that are separated by more than 14 Å are apparently 

uncorrelated with one another. Despite the absence of LRO, the structure of the 2nd peak 

(corresponding to the structure of an atom and its next-nearest neighbors) and beyond indicates 

that the glass structure does possess SRO as well as medium-range order (MRO). It is natural to 

investigate the nature of this structural ordering, why it does not lead to a LRO in the glass, and 

how it might relate to the cooperative structural rearrangements that were considered in 1.3.3.  

In the 1950s, Frank and Kasper considered the LPS of collections of hard spheres and of atoms 

interacting via Lennard-Jones potentials36,37. They found that efficiently packed structures 

exhibited tetrahedral bonding and culminated in 13-atom clusters that formed icosahedra 

(consisting of one center atom and 12 vertex atoms). That is, the ground state in this local energy 

Figure 1.4 A real-space pair correlation function of simulated Cu64Zr36 glass. 

The curve reflects the probability of finding an atom at a distance 𝑟 from another 

atom in the glass. The dotted line shows the pair correlation function for an 

ensemble of random structures.  
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landscape is a LPS that cannot be tiled in three dimensional Euclidean space due to its fivefold 

rotational symmetries. This structure can, however, nest with itself to form extended structural 

domains. Much of Frank and Kasper’s work proves to be highly applicable for studying 

amorphous systems; indeed, icosahedral ordering is found to be prominent in many simple 

atomic liquids, especially in metallic liquids38–41. The inability to tile 3D space with icosahedra 

immediately brings to the foreground the concept of frustration: locally, atoms want to pack into 

clusters of icosahedra, but, unlike in crystals, it is impossible for the system to globally exhibit 

this ordering. Does this frustration manifest in important ways in supercooled liquids? In the 

following discussion, the phrase locally-preferred structure (LPS) will be used for generality, but 

one can keep the instance of icosahedral ordering in mind as a precise point of reference. 

Similar to RFOT, one can consider the thermodynamics involved when forming a domain of size 

𝜉 of a LPS*; a major advantage of this approach is that it does away with the vague context of 

metastable states. One then asks: what is the energetic gain for occupying locally-favored states, 

what is the cost associated with creating an interface with the bulk liquid, and how much strain is 

produced due to the degree of frustration that is associated with the LPS? This last notion of 

frustration-based strain acts to hinder the domain’s growth, preventing it from establishing LRO. 

Hence these domains are deemed frustration-limited domains (FLDs) and the thermodynamic 

theory describing their growth is known as frustration-limited domain theory (FLDT)42–44. FLDT 

formulates the statistical mechanics of the frustration of liquids in the context of three postulates 

that are outlined by Tarjus, Kivelson, Nussinov, and Viot44:  (1) “a liquid is characterized by a 

LPS which is different than that of the crystalline phase.” (2) “The LPS characteristic of a given 

                                                 
* Individual LPS clusters can share atoms with one another to create an “extended” structure, which is deemed a 

domain.  
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liquid cannot tile the whole space.” (3) “It is possible to construct an abstract reference system in 

which the effect of frustration is turned off. 45,46”  

FLDT argues that the abstract reference system, in which the LPS is not frustrated, exhibits a 

critical point transition at a temperature 𝑇𝐴
*. This critical point separates the high-temperature 

disordered liquid phase from the lower-temperature frozen phase in which the system 

ubiquitously conforms to the LPS. In reality, frustration will cause the liquid to avoid this critical 

point as it is cooled, and will instead yield FLDs that have broken up to a size 𝜉(𝑇). 𝜉(𝑇) grows 

as 𝑇 is lowered below 𝑇𝐴, and causes a rapid slowing of the liquid dynamics; it is responsible for 

a crossover from Arrhenius growth of the liquid’s viscosity to super-Arrhenius growth. Though 

avoided, the critical point is predicted to have a major impact on the liquid’s structure and 

dynamics. Specifically FLDT predicts that viscosity grows as: 

 𝜂(𝑇) = 𝜂𝑜exp (
𝐸∗(𝑇) + 𝐸∞

𝑘𝐵𝑇
) 

(1.10) 

where 𝜂𝑜 exp (
𝐸∞

𝑘𝐵𝑇
) is the Arrhenius contribution to the viscosity.  𝐸∗(𝑇) vanishes above 𝑇𝐴, but 

has the form: 

 𝐸∗(𝑇) = 𝑘𝐵𝑇𝐴 (1 −
𝑇

𝑇𝐴
)

𝛹

, (𝑇 ≤ 𝑇𝐴) 
(1.11) 

As in RFOT, 𝛼-relaxation is still associated with cooperative rearrangements, but in the context 

of FLDT the rearrangements occur within the FLDs. Thus in order for the liquid to relax, its 

atoms must cooperate across the length scale 𝜉(𝑇), whose growth is determined, in large part, by 

the frustration associated with the liquid’s LPS. Impressively, this frustration “degree of 

                                                 
* 𝑇𝐴 is predicted to reside above 𝑇𝑚 for pure liquids. 
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freedom” allows FLDT to accurately describe the wide range of non-exponential relaxation 

behaviors exhibited by different liquids.   

It is indeed found that the atoms participating in a liquid’s LPS also constitute the population of 

the slowest moving atoms in the liquid, and that the LPS exhibits an especially long relaxation 

time47–51. The most common criticism of FLDT, however, is that the connection between these 

local structures and extended FLDs is still not well understood, nor have growing FLDs been 

directly observed6,30. Recently, however, a survey of high temperature metallic liquid viscosity 

measurements revealed a surprising correlation between 𝑇𝐴 and 𝑇𝐺, adding new urgency to 

understanding the impact of the avoided critical point and the physical processes that become 

involved nearby. 

1.4 Crossover Behavior at TA & Structural Cooperativity 

1.4.1 Solid-like Features of a Liquid Below TA 

In the late 1980’s, Chen, Egami, and Vitek noted the importance of 𝑇𝐴 in metallic liquids52. Their 

study was based off data from a classical molecular dynamics (MD) simulation of liquid Fe*. In 

this work, 𝑇𝐴 was identified as the temperature beneath which the second moments of the liquid 

pressure and shear-stress fluctuations begin to deviate from a linear temperature dependence†. It 

was found that the liquid’s phonon density of states develops a low-frequency transverse phonon 

peak as the liquid is cooled through 𝑇𝐴. Below 𝑇𝐴, the liquid ceases to behave like a so-called 

                                                 
* It is prudent to note that computational limitations restricted this study to consider a system size and timescale that 

are several orders of magnitude smaller than the current simulation standards. Though the overall results and 

conclusions of the study have proven to be robust, it is apparent, in light of recent simulations, that some of the 

observations made were likely affected by these limitations.   
† The temperature 𝑇𝐴 (referred to as 𝑇𝑠 in the original paper) found by Chen et al. does correspond to the temperature 

below which the liquid viscosity crosses over from exhibiting Arrhenius growth to super-Arrhenius growth, as 

identified in FLDT, though the authors did not recognize this in the paper. 
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“simple liquid”, and begins to support shear phonons as well as long-ranged atomic-level shear 

stress spatial correlations. The development of these features are attributed to local pressures and 

tensions that develop within small clusters of atoms (e.g. an atom and its nearest neighbors). 

Atoms with small or large coordination numbers experience compressive and tensile stresses, 

respectively. These “misfit” clusters are then said to establish long-range elastic fields, which 

cause the liquid to exhibit some solid-like features. Chen et al. do not explain the relatively sharp 

onset of these features at 𝑇𝐴, though in hindsight one may attribute them to an avoided critical 

point. They do speculate that a significant structural change may accompany this crossover 

phenomenon. Incidentally, the authors noted, seemingly only for the sake of estimation, that 𝑇𝐴 

is roughly twice 𝑇𝐺 for liquid Fe. It turns out that this correlation holds true for many metallic 

liquids, though this wasn’t realized until decades later. 

1.4.2 The Onset of Cooperative Dynamics at TA 

In 2013, Iwashita, Nicholson, and Egami presented an analysis of MD data of several high-

temperature liquid metals to complement Chen et al.’s 1988 paper (on which Egami was also an 

author) and to provide a more detailed picture of the microscopic mechanisms that come into 

play at 𝑇𝐴 that serve to relieve the stresses associated with misfit clusters53. Accordingly, they 

introduced the concept of a local configurational excitation (LCE), in which an atom loses or 

gains a nearest neighbor, and measured the average lifetime of the configuration of an atom and 

its nearest neighbors, 𝜏𝑆𝐶𝐿 . A heuristic illustration of an LCE process is shown in Figure 1.5. 

This system connectivity lifetime (SCL) was measured by recording the nearest-neighbor* IDs 

associated with the cluster formed around each atom in the system, at a time step 𝑡𝑜 of a 

                                                 
* Here, a nearest neighbor was taken to be any atom that fell within a distance 𝑑𝑐𝑢𝑡 of a given atom. 𝑑𝑐𝑢𝑡 was chosen 

to be the location of the first minimum of the pair correlation function, though it was not reported if this value was 

updated with changing temperature. 
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simulation. The average number of nearest neighbors, 𝑁𝐶(𝑡𝑜), was computed, and the simulation 

time was advanced until the average number of original neighbors had decreased by 1*; the 

elapsed time corresponds to the local cluster time, 𝜏𝑆𝐶𝐿. That is, 

 𝑁𝐶(𝑡𝑜 + 𝑡𝑆𝐶𝐿) ≡ 𝑁𝐶(𝑡𝑜) − 1 
(1.12) 

 

𝜏𝑆𝐶𝐿(𝑇) was compared to the temperature-dependent Maxwell relaxation time, 𝜏𝑀(𝑇), which 

measures the shear-stress decorrelation time of a liquid, 

 𝜏𝑀 ≡
∫ 〈𝜎𝑥𝑦(𝑡)𝜎𝑥𝑦(0)〉𝑑𝑡

∞

0

〈𝜎𝑥𝑦(0)2〉
 

(1.13) 

to show, remarkably, that 𝜏𝑆𝐶𝐿(𝑇) ≈ 𝜏𝑀(𝑇) for 𝑇 > 𝑇𝐴. This, the authors argue, suggest that the 

local change in topology of an atomic cluster is the elementary excitation in a high-temperature 

liquid, which controls the liquid relaxation process (e.g. the viscosity). In this temperature 

regime, the mean free path of a transverse phonon, 𝜉𝑝, is shorter than the distance between 

                                                 
* It is noteworthy that an earlier paper by the same authors is cited in reference to the definition of 𝜏𝐿𝐶 . 

Unfortunately, the earlier paper utilizes a different measure of the local cluster lifetime than the one described in the 

supplemental materials. This has served as a point of confusion in subsequent research efforts. 

Figure 1.5 A two-dimensional schematic illustration of an LCE. Given an atom (center) and its nearest neighbors 

(atoms within a distance 𝑑𝑐𝑢𝑡), 𝜏𝑆𝐶𝐿 is a measure of the average time required for the atom to lose or gain a nearest 

neighbor. 
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nearest neighbors, hence all LCEs must be independent above 𝑇𝐴. Near 𝑇𝐴, 𝜉𝑝 appears to grow 

sufficiently so that LCE’s can become coupled through atomic vibrations. Here, the liquid is 

thought to become strongly influenced by the features of its energy landscape and by the long-

range elastic fields discussed by Chen et al. 

This work by Iwashita et al. explored important new features of the crossover phenomena 

occurring at 𝑇𝐴 and inspired new efforts to closely inspect experimental liquid viscosity data for 

signatures of these processes. It is prudent to note, however, that the correlation between the 

temperature, 𝑇1, at which 𝜉𝑝 surpasses the nearest neighbor distance, and 𝑇𝐴 is not particularly 

strong - especially in the context of the relatively sharp crossover observed at 𝑇𝐴. Furthermore, 

the discussion of phonons and long-range elastic strain fields is not developed much beyond the 

assertions made by Chen et al. Given these points, it is apparent that details of the mechanisms 

that become involved at 𝑇𝐴 require further investigation, where the observation that 𝜏𝑆𝐶𝐿(𝑇) ≈

𝜏𝑀(𝑇) (for 𝑇 > 𝑇𝐴) provides excellent headway towards this end.         

1.4.3 Surprising Empirical Results Regarding TA, FLDT, & Cooperativity 

Soon after the work by Iwashita et al. was published, Blodgett, Egami, Nussinov, and Kelton 

conducted a survey of experimental measurements of containerlessly processed metallic liquids 

to find several striking results regarding the dynamical crossover at 𝑇𝐴
54. First and foremost, it 

was found that all of the metallic liquids exhibited an intimate and unexpected connection 

between their respective values of 𝑇𝐴 and 𝑇𝐺 such that: 
𝑇𝐴

𝑇𝐺
⁄ = 2.02 ± 0.015. Second, it was 

shown that each liquid viscosity data set can be scaled by a respective constant, 𝜂𝑜, such that 

they all collapse onto a universal curve whose temperature scale is given by 𝑇𝐴. The functional 

form of the curve was determined by comparing high and low-temperature Vit106a liquid 
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viscosity data with a wide variety of popular viscosity fits, including the form predicted by 

FLDT* (equations 1.10  and 1.11) and the VFT form (equation 1.9)†. The FLDT form provided 

the most reliable fit across the broad temperature range. Utilizing the fitting parameters obtained 

from this procedure, the other liquid data can be collapsed onto a single curve by using only the 

scaling parameters 𝑇𝐴 and 𝜂𝑜. As noted above, the temperature scale can be set, with good 

accuracy, by using the relationship 𝑇𝐴 ≈ 2.02 × 𝑇𝐺. Additionally, it is found that the viscosity 

scaling parameter, on average, is given by the simple but surprising relationship 𝜂𝑜 ≈ 𝑛ℎ‡, where 

𝑛 is the liquid particle density and ℎ is Planck’s constant. Given these observations, one can 

argue that the procedure for collapsing the data is essentially fitting-parameter free§. 

The significance of these results is resounding – the fact that the viscosity data of both strong and 

fragile metallic liquids could be scaled onto a single curve across such a wide temperature is 

important in and of itself. The success of FLDT in describing this curve and the compelling 

correlation between 𝑇𝐴 and 𝑇𝐺 then suggest that the avoided criticality at 𝑇𝐴 is of fundamental 

importance for the ensuing viscous slowdown leading to 𝑇𝐺. Furthermore, the work by Chen et 

al.52 and Iwashita et al.53 indicate that this crucial dynamical crossover is also linked to the onset 

of cooperative dynamics that lead to a departure from simple liquid dynamics. These findings set 

the stage for several important questions: (1) Can the signature of an avoided critical point be 

observed through the detection of FLDs that grow upon cooling, and do these FLDs develop near 

𝑇𝐴? (2) Does the onset of cooperativity amongst LCEs have a clear structural manifestation in the 

liquid? (3) How does this cooperativity fit into the framework of FLDT? (4) How do the liquid 

                                                 
* A fifth fitting parameter is introduced the FLDT form (referred to as KKZNT) in the work by Blodgett et al. 
† The power law form predicted by MCT was not considered because the form cannot be used below 𝑇𝐶 , which 

resides above the low-temperature range of the viscosity data. 
‡ The relationship 𝜂𝑜 ≈ 𝑛ℎ is statistically less significant than is 𝑇𝐴 ≈ 2.02 × 𝑇𝐺  and requires further investigation.    
§ Despite this, the collapsed data shown in this paper does utilize fitted values for 𝑇𝐴 and 𝜂𝑜. The collapse is not so 

dramatic if one scales the data using the relationships 𝑇𝐴 = 2.02 × 𝑇𝐺  and 𝜂𝑜 = 𝑛ℎ. 
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features that manifest at 𝑇𝐴 relate to the characteristics of the material at 𝑇𝐺? That is, how can 

one explain the apparent intimate link between 𝑇𝐴 and 𝑇𝐺? All four of these questions will be 

explored through the use of numerical simulations and reported on in the following chapters of 

this dissertation. 

1.4.4 A Computational Approach to Studying TA 

Empirical scattering data and the resulting pair correlation functions do not show obvious 

signatures of extensive FLDs in glasses6. While this certainly does not rule out their existence, it 

does become clear that empirical results alone may not be sufficient to confirm the mechanisms 

that come into play near 𝑇𝐴; here, newly developing structural and dynamical signatures are 

expected to be especially subtle. A classical molecular dynamics (MD) simulation is a powerful 

theory-agnostic* tool that enables one to access the microscopic structural and dynamical details 

that reproduce the macroscopic properties of a material. One can formulate a reliable semi-

empirical potential to describe the forces between the atoms in a material7. The philosophy 

behind this approach, then, is that the appropriate Hamiltonian description of one’s ensemble is 

sufficient to simulate a material and to produce behaviors that closely reflect empirical 

measurements11,55. One ultimately assumes that the underlying microscopic details of the 

simulated system reflects, to an appreciable degree of accuracy, the microscopic interactions that 

take place in nature. 

                                                 
* Here, the phrase “theory-agnostic” should not be confused with first-principles (or ab-initio). Indeed, one adopts a 

statistical-mechanical description of an ensemble that determines the classical Hamiltonian of the system, which 

does not contain any electronic degrees of freedom.  
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There are metallic liquids that are ideal for study in the context of MD simulations due to their 

relative simplicity, useful properties, and good glass-forming ability (GFA)*56. Cu-Zr is a 

particularly attractive alloy; it is a binary system that exhibits a relatively good glass forming 

ability across a wide range of compositions57,58. For this reason, 𝐶𝑢64𝑍𝑟36
† is perhaps the most 

popular metallic liquid to simulate‡. There are a couple high-quality semi-empirical potentials 

that reproduce well the empirical data for 𝐶𝑢64𝑍𝑟36 liquid and glass11,47. Using these potentials, 

it has been shown that a Cu-centered icosahedron is the LPS of the amorphous phase of this 

system and that its presence dominates the structure of the glass39,59,60. Icosahedral clusters are 

also associated with dynamical heterogeneity in the system, as they possess the slowest-moving 

particles in the liquid47,59 and help to inhibit liquid relaxation at low temperatures61. Below 𝑇𝐺, 

extensive icosahedral ordering is responsible for enhancing the mechanical properties of the 

glass, such as its elastic rigidity59,62.  

In light of the extensive efforts that have been made to arrive at a theory of supercooled liquids, 

and given the numerous predictions that a rapidly-growing static length scale accompanies the 

glass transition, it is surprising to find that little effort has been made thus far to connect the 

excellent phenomenological work that has been done on 𝐶𝑢64𝑍𝑟36 with formal theoretical work. 

This is, in part, due to the fact that the temperature range over which icosahedral ordering has 

been studied in detail is limited. Furthermore, much of the analysis considers only a 

macroscopically-averaged view of the system’s icosahedral ordering, whereas microscopic 

details (e.g. domain sizes, relaxation times, and domain fluctuations) are needed to connect with 

formal theories. The task of accessing the microscopic details of icosahedral order in sufficiently 

                                                 
* The GFA of a liquid is ambiguous and can be indicated by several properties, such as the maximum casting 

thickness of the glass, the critical cooling rate, and the metastability of the supercooled liquid.  
† 𝐶𝑢64𝑍𝑟36 is amongst the three best glass forming compositions of this alloy68. 
‡ This does not include “model” systems such as Lennard Jones systems, which are widely utilized. 
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large systems, given data sets with sufficiently high time and temperature resolutions, quickly 

becomes a problem that falls under the umbrella of “big data analysis”.  

The research presented in the following chapters of this dissertation represents, in part, efforts to 

develop a framework for working with large data problems in the context of classical MD 

simulations. Using this framework provides us with access to previously unavailable microscopic 

details of 𝐶𝑢64𝑍𝑟36. With this information, we find that there are important connections between 

phenomenological simulation results, formal theoretical predictions, and the recent empirical 

findings made by Blodgett et al54. Amongst our results, we show that (1) 𝑇𝐴 is indeed associated 

with the growth of frustrated amorphous order, as suggested by the avoided critical point 

scenario of FLDT. (2) The development of these FLDs result from the onset of the cooperative 

dynamics described by Iwashita et al.53. (3) Tracking the icosahedral ordering as a function of 

temperature reveals that a rapidly growing length scale, associated with domains of connected 

icosahedra, arises in the liquid as it is supercooled towards 𝑇𝐺. (4) The timescale associated with 

rearrangements that occur within these growing domains is linked to longer-ranged 

cooperativity, and is related to the development of the two-step relaxation process and other 

standard glassy dynamical features of a supercooled liquid. Items 1, 2, and 4 are reported in a 

Letter that is presently under review63. Item 3 and an analysis of chemical ordering in the 

icosahedral network are discussed in a 2013 peer-reviewed publication60.  
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Chapter 2: Dynamical Regimes of Fragile 

Liquids 

2.1 TA: Avoided Criticality & the Onset of Cooperativity 

Sections 1.3.4 and 1.4 introduced the characteristic liquid temperature 𝑇𝐴, which, in short, is 

thought to be associated with: 1) A transition from Arrhenius to super-Arrhenius growth in liquid 

viscosity (liquid relaxation time) with decreasing temperature.1 2) The development of 

geometrically-frustrated amorphous order in relation to an avoided critical point (as predicted by 

frustration-limited domain theory or FLDT)1–4. 3) The onset of cooperative dynamics5 and the 

development of “solid-like” features in the liquid6. 4) And finally, possessing a strong correlation 

with 𝑇𝐺
7. This section will be used to demonstrate and analyze the manifestation of these features 

of 𝑇𝐴 in classical molecular dynamics (MD) simulation of liquid 𝐶𝑢64𝑍𝑟36.     

2.1.1 Locating TA  

From a conceptual standpoint, determining the value of 𝑇𝐴 for a liquid is trivial – one measures a 

relaxation time in the liquid, 𝜏𝑅, as a function of temperature and identifies the temperature 

below which 𝜏𝑅(𝑇) begins to exhibit super-Arrhenius growth. The empirical approach to this is 

to measure the liquid viscosity, which, as is seen in the Green-Kubo relation8, reflects the 

liquid’s shear-stress relaxation time: 
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 𝜂(𝑇) =
𝑉

𝑘𝐵𝑇
∫ 〈𝜎𝑖𝑗(𝑡)𝜎𝑖𝑗(0)〉𝑑𝑡

∞

0

 
(2.1) 

Here, 𝜎𝑖𝑗(𝑡) is an off-diagonal element of the time-dependent Cauchy shear stress tensor 

(represented in a cartesian basis)8, 𝑉 is the liquid volume, 𝑘𝐵 is Boltzmann’s constant, and 𝑇 is 

the system temperature. The angular brackets formally indicate an ensemble average, but in 

practice they indicate a long time average over initial conditions. Implicit in this time average is 

the assumption that the liquid is ergodic and exhibits time-translation invariance; that is, 

〈𝜎𝑖𝑗(𝑡 + 𝜏)𝜎𝑖𝑗(𝜏)〉 ≡ 𝐹(𝑡). Figure 2.1 shows the temperature dependence of the liquid viscosity 

for 𝐶𝑢64𝑍𝑟36, which was measured using the Green Kubo formula (equation 2.1)*. A high-

temperature fit (𝑇 > 1900𝐾) of the data is indicated by a red dashed line and reveals a clear 

Arrhenius form for 𝜂(𝑇) until the liquid is cooled to 1550𝐾. Below 1550 𝐾, 𝜂(𝑇) exhibits 

                                                 
* See the chapter 4 for further details regarding the calculation of 𝜂(𝑇). 

Figure 2.1 (Left) Liquid viscosity data, on a log-scale, versus inverse temperature for 𝐶𝑢64𝑍𝑟36. The red dashed line 

indicates the high temperature (𝑇 > 1900𝐾) Arrhenius fit for the data. 𝑇𝐴 (1550𝐾) is identified as the temperature 

below which 𝜂(𝑇) grows faster than the Arrhenius fit. (Right) The percent-residual of the viscosity data from the 

Arrhenius fit. This emphasizes the relatively clear onset of super-Arrhenius growth in 𝜂(𝑇).   
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super-Arrhenius growth - hence 𝑇𝐴 is determined to reside at 1550 𝐾 for this liquid, which is 

located well above its liquidus temperature, 1230 𝐾9. It is noteworthy that this dynamical 

transition occurs at such a high temperature. Indeed, current numerical studies often tacitly 

assume that metallic liquids relax only via a simple diffusive process in the vicinity of this 

temperature, whereas this crossover indicates that multiple liquid relaxation processes can be at 

play above 𝑇𝑙. More precisely, it is found that the rearrangement of local clusters in the liquid 

becomes a cooperative process below 𝑇𝐴, and that this contributes to the liquid’s accelerated 

viscous slowdown.       

2.1.2 The Onset of Cooperative Structural Rearrangements at TA  

The analysis performed in a paper by Iwashita et al.5 provides a framework for identifying the 

onset of cooperative structural rearrangements in metallic liquids. Similar to their approach, we 

measure the Maxwell relaxation time, 𝜏𝑀 (see equation 1.13), of 𝐶𝑢64𝑍𝑟36 to quantify the 

timescale over which the liquid sustains a solid-like elastic response to a shear stress. Over 

timescales greater than 𝜏𝑀, the liquid is able to flow in response to a shear stress, and thus relax. 

Naturally, a liquid’s Maxwell relaxation time is directly related to its viscosity: 

 𝜏𝑀 =
𝑘𝐵𝑇

𝑉〈𝜎𝑖𝑗(0)2〉
η 

(2.2) 



39 

 

In order to understand the process of liquid relaxation in the context of atoms rearranging to 

accommodate shear stresses, one introduces a timescale known as the local cluster time (LCT), 

𝜏𝐿𝐶. We define 𝜏𝐿𝐶 to be the average time required for an atom to lose or gain a nearest neighbor 

(a schematic of this process can be seen in Figure 1.5). Here we define the nearest neighbors of  

a given atom to be the atoms which contribute faces to that atom’s Voronoi cell*†. Though 

computationally costly, the radical Voronoi tessellation techniques provide a parameter-free 

                                                 
* The simulation of the liquid utilizes periodic boundaries, hence there are no surface effects to consider in the 

Voronoi analysis. 
† The Voronoi tessellation scheme involves a set of planes that are defined such that each plane bisects a line that 

connects two atoms. An atom’s Voronoi cell is then given by the set of planes that forms a closed surface containing 

the atom and enclosing the smallest volume. 

Figure 2.2 A comparison of the temperature-dependent Maxwell relaxation time with 

the local cluster time of 𝐶𝑢64𝑍𝑟36 (on a log scale). 𝜏𝐿𝐶
(𝐶𝑢)

 and 𝜏𝐿𝐶
(𝑍𝑟)

indicate the LCTs 

for Cu-centered and Zr-centered clusters, respectively. 𝜏𝐿𝐶  is the average local cluster 

time, irrespective of atom-type. 𝜏𝑖𝑑𝑒𝑎𝑙  is an estimate of the local cluster time for non-

interacting particles. 
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method for determining nearest neighbors that can accommodate polydisperse systems 

appropriately10–12. Its advantages over using a hard-cutoff method will be discussed in chapter 4.  

Figure 2.2 contains the Maxwell relaxation time and local cluster times for 𝐶𝑢64𝑍𝑟36 on a log-

scale versus inverse temperature. It is apparent that 𝜏𝐿𝐶
(𝐶𝑢)

> 𝜏𝐿𝐶
(𝑍𝑟)

 for all temperatures, and that 

the Cu-centered clusters become increasingly stable relative to the Zr-centered ones, with 

decreasing temperature. This is expected to an extent, given that Zr is larger than Cu* and thus 

has a larger coordination number (number of nearest neighbors) on average. This naively 

indicates that Zr has more opportunities to lose or gain neighbors than does Cu. That this 

disparity becomes enhanced with decreasing temperature is less trivial; this will be discussed 

further in the context of chemical ordering in the icosahedron network. Above 𝑇𝐴, the 𝜏𝑀 and 𝜏𝐿𝐶 

appear to collapse onto a single curve that approaches 𝜏𝑖𝑑𝑒𝑎𝑙 in the limit of large temperature. 

𝜏𝑖𝑑𝑒𝑎𝑙 is an estimate of the local cluster time for an ensemble of non-interacting atoms whose 

spatial distribution is that of the liquid. More specifically, 𝜏𝑖𝑑𝑒𝑎𝑙(𝑇) ≡
𝑑(𝑇)

2√〈𝑣2〉(𝑇)
, where 𝑑(𝑇) is 

the distance between the first maximum and the subsequent minimum in the liquid’s pair 

correlation function† and 〈𝑣2〉(𝑇) is the mean-squared velocity of the atoms‡. Thus one considers 

the average time needed for two atoms, moving freely in opposite directions, to leave one 

another’s approximate nearest neighbor shell. The rapid growth of 𝜏𝑀 and 𝜏𝐿𝐶 above 𝜏𝑖𝑑𝑒𝑎𝑙 then 

                                                 
* It is important, in order to exhibit good glass-forming ability, for a binary alloy to possess an atomic species size 

mismatch of at least 10%42. Indeed, Cu-Zr alloys exhibit a sufficient size mismatch: 𝑅𝑍𝑟/𝑅𝐶𝑢 ≈ 1.26 . This ratio  

can be obtained by either using Goldshmidt radii or “hard core” radii for Cu and Zr. Here, hard core radii are 

measured by finding the high-temperature (𝑇 = 3000𝐾) minimum distance of separation between Cu atoms and Zr 

atoms, respectively. 
† The location of first non-zero minimum in the pair correlation function is often used as the hard cutoff value for 

determining the nearest neighbors of an atom. 
‡ Naturally, 〈𝑣2〉 can be calculated for each of the atomic species simply using the equipartition theorem.  
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signifies the increasing importance of the liquid’s locally-packed structure in restricting particle 

motions.  

Figure 2.3 depicts the temperature dependence of the liquid relaxation time relative to the 

atomic rearrangement timescale, 
𝜏𝑀

𝜏𝐿𝐶
⁄ . For 𝑇 ≥ 𝑇𝐴, one finds that 𝜏𝑀 ≈ 𝜏𝐿𝐶. Upon further 

cooling, the growth in 𝜏𝑀 begins to accelerate such that 𝜏𝑀 > 𝜏𝐿𝐶 for 𝑇 < 𝑇𝐴. These observations 

provide valuable insight towards explaining the characteristic onset of super Arrhenius in 𝜂(𝑇) 

below 𝑇𝐴: for high temperatures, a simple change in coordination of individual atomic clusters is 

sufficient for relaxing the liquid. Hence a single relaxation mechanism - local cluster 

rearrangements - produces the simple high-temperature exponential growth in 𝜂(𝑇) upon 

Figure 2.3 The ratio 
𝜏𝑀

𝜏𝐿𝐶
⁄  versus temperature. An apparent crossover occurs at 

𝑇𝐴, such that 𝜏𝑀 ≈ 𝜏𝐿𝐶  for 𝑇 ≥ 𝑇𝐴, and 𝜏𝑀 > 𝜏𝐿𝐶  for 𝑇 < 𝑇𝐴. This signifies a 

change in the liquid relaxation mechanism upon cooling. 
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cooling. Below 𝑇𝐴, consecutive cluster rearrangements occur within the relaxation timescale. 

This suggests that, in order to dissipate the liquid’s elastic response to a shear stress, multiple 

cluster rearrangements must ensue in coordination with one another. As argued in FLDT and 

AGDM, the need to cooperatively rearrange larger regions of the liquid with decreasing 

temperature amounts to a growing activation energy barrier, which manifests as super Arrhenius 

growth in 𝜂(𝑇). Another perspective of this cooperative rearrangement is that, it is not until 

𝜏𝑀 > 𝜏𝐿𝐶 that local atomic clusters have time to rearrange in a solid-like environment in 

response to more distant shear stresses. It will be shown in a later section that the result of these 

cooperative rearrangements is the development and growth of geometrically-frustrated 

amorphous order. 

Beyond providing important insight towards the physical mechanisms underlying the dynamical 

crossover at 𝑇𝐴, the results presented in this section are important from a more practical 

standpoint as well. Although Iwashita et al. first demonstrated the relationship that 𝜏𝑀 ≈ 𝜏𝐿𝐶 for 

𝑇 > 𝑇𝐴
5, it was never shown that the temperature at which this relationship broke down 

coincided with the standard measure of 𝑇𝐴 – where 𝜂(𝑇) crosses over from Arrhenius to super 

Arrhenius growth. We directly confirm that these temperatures indeed correspond very closely 

with one another, lending important support that these two phenomena are indeed facets of the 

same crossover. Furthermore, all earlier measures of 𝜏𝐿𝐶 utilized a hard cutoff method for 

determining nearest neighbors, which was insensitive to polydispersity and perhaps to changing 

liquid density. The values of 𝜏𝐿𝐶 reported here employ a more meaningful definition of nearest 

neighbors by utilizing radical Voronoi tessellation. It is significant to find that the improved 

measure of 𝜏𝐿𝐶 yields improved statistics that ratify these earlier findings with higher confidence. 
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2.1.3 Violation of the Stokes-Einstein Relationship at TA  

Yet another dynamical landmark is found to reside at 𝑇𝐴 – the breakdown of the Stokes-Einstein 

relationship: 𝐷(𝑇) ∝
𝑇

𝜂(𝑇)𝑅
13. Though derived for a large sphere of radius 𝑅 diffusing through a 

solvent with viscosity 𝜂 at a temperature 𝑇, this relationship tends to hold well in high 

temperature liquids for which 𝐷 is the self-diffusion coefficient for similarly-sized particles or 

molecules. Upon supercooling, the relationship is found to break down due to the emergence of 

dynamical heterogeneity14–18;  slow-moving regions dictate the timescale of structural 

relaxations, which is measured by 𝜂, whereas fast-moving regions enhance 𝐷 such that 𝐷 ∝
𝑇

𝜂
 is 

Figure 2.4 The temperature dependence of the Stoke-Einstein ratio for Zr 

atoms diffusing through the Cu solvent in 𝐶𝑢64𝑍𝑟36. The deviation from the 

red dashed line near 𝑇𝐴 signifies a violation of the Stoke-Einstein 

relationship. 
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no longer valid*. This breakdown plays an important role in producing characteristic glassy 

dynamics in the supercooled liquid. Indeed it is found that the more stark the violation of Stokes-

Einstein, the more stretched the non-exponential decay becomes in the liquid’s dynamical 

correlation functions14.  

Figure 2.4 contains simulation data of the Stokes-Einstein ratio, 4𝜋
𝜂(𝑇)𝐷𝑍𝑟(𝑇)

𝑘𝐵𝑇
†, where 𝐷𝑍𝑟 is the 

coefficient of diffusion for Zr atoms. For high temperatures, the ratio is roughly a constant, 0.67, 

which is comparable to 1 𝑅𝑍𝑟
⁄ ≈ 0.65 1/Å‡ in accordance with the first-principles derivation of 

the relationship. Remarkably, it is found that the ratio deviates sharply from this value once the 

liquid is cooled below 𝑇𝐴. At first glance, this does not seem too surprising in light of the 

preceding results – the onset of local cooperative structural rearrangements enhances the 

structural relaxation time, but the resulting structures are not extensive enough nor are they 

sufficiently long-lived to inhibit the liquid’s diffusivity proportionally§. That being said, 

literature reviews of supercooled liquids suggest that the Stokes-Einstein relationship ought to 

hold until one reaches a deeply supercooled regime**19,20. This prediction appears to be heavily 

informed by empirical studies of molecular liquids, such as o-terphenyl, where the violation 

occurs near the mode coupling temperature21,22. By this standard, one would expect to see the 

breakdown occur near 900 𝐾 in 𝐶𝑢64𝑍𝑟36, rather than at 𝑇𝐴 = 1550 𝐾. Although empirical 

studies of the validity of the Stokes-Einstein relationship in metallic liquids are very limited, 

their results do support our findings23–25. Specifically, they show that the relationship breaks 

                                                 
* Specifically, 𝜂(𝑇) is found to grow far faster than 𝐷(𝑇) is able to decrease, so that at temperatures near 𝑇𝐺 , 𝐷 ≫

𝑇

𝜂
. 

† This is the Stokes-Einstein relationship assuming “slip” boundary conditions43. 
‡ Here, the Goldshmidt radius of Zr is used. 
§ It will be shown that these structures do eventually inhibit diffusion in the liquid, but at a significantly lower 

temperature. 
** Namely, one would expect the violation to occur near the mode coupling temperature, or 1.2 𝑇𝐺 . Here we observe 

the breakdown of the Stokes-Einstein relationship near 2 𝑇𝐺. 
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down far above the mode coupling temperature in metallic liquids, although they make no 

connection to 𝑇𝐴.  

Though simple in form and of fundamental importance, the Stokes-Einstein relationship is 

difficult to test both experimentally and numerically. Frequently, simulation-based studies utilize 

measurements of the 𝛼-relaxation time (𝜏𝛼) in lieu of the liquid viscosity – this is a “short cut” in 

that one can calculate both 𝐷 and 𝜏𝛼 using mean square displacement data*. It is not clear, 

however, that 𝜏𝛼 is a suitable approximation of 𝜂 in this context. Furthermore, the fact that the 

same microscopic quantity determines both 𝐷 and 𝜏𝛼 may cause a stronger coupling between 

these two quantities than is actually found between 𝐷 and 𝜂; hence the Stokes-Einstein 

relationship may appear to be more robust if one were to utilize 𝜏𝛼 to measure the structural 

relaxation time. Indeed a simulation-based study of liquid 𝐶𝑢64𝑍𝑟36 utilizing 𝜏𝛼in lieu of 𝜂 

found that the Stokes-Einstein relationship was valid until the liquid was supercooled to 

1050 𝐾26†, which is at odds with our direct check of the relationship.   

                                                 
* Furthermore, it is significantly more challenging to obtain converged numerical measures of 𝜂 than it is 𝜏𝛼. 
† This study’s results were also affected by their use of an unrealistic semi-empirical potential28. 
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It is interesting to note that the Stokes-Einstein relationship also breaks down well above the 

mode coupling temperature in water18. This breakdown accompanies a nearby fragile to strong 

transition and critical point*. It seems that the violation of Stokes-Einstein in 𝐶𝑢64𝑍𝑟36 occurs in 

a similar context, indicating that this is a signature of an avoided critical point at 𝑇𝐴. Our finding 

thus stands out as one of the few direct numerical tests of the Stokes-Einstein relationship in 

realistic metallic liquids, and provides important insight into the cause of the high-temperature  

violation that is observed in this system and other metallic liquids. Furthermore, it motivates 

empirical efforts to verify that this breakdown indeed occurs at 𝑇𝐴, whereas earlier studies less 

precisely concluded that the violation occurs ‘well above’ the mode coupling temperature.  

2.1.4 The Development & Growth of Frustration-Limited Domains  

Given that the crossover at 𝑇𝐴 is intimately connected to the development of cooperative 

structural rearrangements amongst locally-packed clusters of atoms and the breakdown of the 

Stokes-Einstein relationship, how does this crossover manifest in the structure of the liquid, if at 

all? This outstanding question is indeed a pressing one, yet it is frequently left unanswered in the 

                                                 
* This critical point marks a liquid-liquid phase transition in water. 

Figure 2.5 An illustration of typical Cu-centered icosahedral cluster of 

atoms in 𝐶𝑢64𝑍𝑟36. The gold spheres represent Cu atoms while the blue 

spheres are Zr atoms. The purple sphere marks the center Cu atom. The 

cluster consists of 13 atoms in total. 
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context of most static length scale theories. The use of our unique large data analysis framework 

allows us to make important headway towards investigating this matter.   

As discussed in 1.3.4, frustration-limited domain theory (FLDT)1, posits that, in avoiding the 

critical point at 𝑇𝐴, a liquid should begin to develop domains of amorphous order typified by the 

locally-preferred structure (LPS). These frustration-limited domains (FLD) are expected to 

become extensive as the liquid is supercooled and to play essential roles in shaping the system’s 

glassy dynamics. The LPS of 𝐶𝑢64𝑍𝑟36 is a Cu-centered icosahedral cluster of atoms (consisting 

of 13 atoms in total), which is illustrated in Figure 2.5*. In the glassy state, icosahedra are found 

to form highly connected structures by sharing atoms with one another- in the context of FLDT, 

these are the FLDs of 𝐶𝑢64𝑍𝑟36. To gauge the relative stability of these icosahedral clusters as a 

function of temperature, we measured the icosahedron lifetime, 𝜏𝑖𝑐𝑜𝑠, which is the average time 

it takes for an icosahedral cluster to be disrupted after it is first created. Here, a disruption even 

includes geometric distortions such that one of the faces on its Voronoi cell is no longer a 

pentagon. For this reason, it is not obvious that 𝜏𝑖𝑐𝑜𝑠 will exceed 𝜏𝐿𝐶 since the latter timescale 

requires a cluster to lose or gain an atom entirely. A comparison of these timescales is provided 

in the left panel of Figure 2.6. Near 3000 𝐾, the two lifetimes are comparable to one another. 

However, as the liquid is cooled it begins to become more impacted by its energy landscape and 

the lifetime of its LPS grows steadily beyond the average cluster lifetime. It is important to note 

that 𝜏𝐿𝐶 does not discriminate against any cluster types – included in it are the stable icosahedra 

themselves. Thus the growth depicted here is truly a lower bound on the growing stability of the 

LPS relative to other atomic configurations. 

                                                 
* See 1.4.4 for discussion and references regarding the background of icosahedral ordering in 𝐶𝑢64𝑍𝑟36. 
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Also shown in Figure 2.6 (right panel) is the temperature dependence of the populations of 

isolated and connected icosahedra, as well as the total icosahedron population, in a system size 

of 30,000 atoms*. For high temperatures, the population of icosahedra is small and is dominated 

by isolated members. Upon cooling, the number of connected icosahedra increases rapidly, and, 

remarkably, surpasses the isolated population at 𝑇𝐴. Below 𝑇𝐴, the total number of icosahedra 

grows exponentially with decreasing temperature, creating extensive FLDs of connected 

icosahedra. To our knowledge, these findings provide the first account for the structural impact 

of the onset of cooperativity at 𝑇𝐴. We’ve shown that as the liquid is cooled it becomes 

increasingly affected by its energy landscape, and thus the icosahedral clusters become stable 

relative to other atomic configurations. As the liquid begins to exhibit cooperative structural 

                                                 
* For temperatures above 850 𝐾 the populations scale exactly as 𝑁, the number of atoms in the liquid. This indicates 

that system size effects do not hinder the population growth until one is near 𝑇𝐺 ≈ 750 𝐾. 

Figure 2.6 (Left) The temperature dependence of the ratio of the icosahedral cluster lifetime to the local cluster 

time. (Right) The isolated, connected, and total populations of icosahedral clusters, versus inverse temperature, in a 

30,000 atom simulation of 𝐶𝑢64𝑍𝑟36 shown on a log scale. At 𝑇𝐴 the number of connected icosahedra exceed the 

isolated ones, and the total population begins to grow exponentially with inverse temperature. A dashed green line 

shows the exponential fit. 
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relaxation mechanisms at 𝑇𝐴, atoms rearrange amidst the relatively inert icosahedra and form off 

of them new, connected icosahedra. This also strongly suggests that the cooperative crossover is 

indeed associated with an avoided critical point: as predicted by FLDT, cooling through 𝑇𝐴 

results in the development of FLDs. We also find that these FLDs become extensive upon 

cooling, and begin to exhibit enhanced fluctuations in association with structural rearrangements.   

To track the growth and dynamics of FLDs in 𝐶𝑢64𝑍𝑟36, we measured the time and temperature 

evolution of the distribution of its FLD sizes. Here, the size of a FLD is given by the number of 

icosahedra participating in a single connected domain. Relevant weighted-averages of the sizes 

are given by:  

 �̅�(𝑡, 𝑇) ≡
∑ 𝑠𝑖

2
𝑠𝑖∈{𝑠}𝑡

∑ 𝑠𝑖𝑠𝑖∈{𝑠}𝑡

, �̅�(𝑇) ≡
∑ ∑ 𝑠𝑖

2
𝑠𝑖∈{𝑠}𝑡𝑡

∑ ∑ 𝑠𝑖𝑠𝑖∈{𝑠}𝑡𝑡
 

(2.3) 

Figure 2.7 (Left) The relative dynamical fluctuations in the icosahedron-domain (FLD) size on a log-scale versus 

inverse temperature. The high-temperature fluctuations exhibit a weak Arrhenius growth until the system is cooled 

to 𝑇𝐴. Below this crossover temperature, the FLD fluctuations become increasingly enhanced. (Right) The 

icosahedron domain size, �̅�, on a log-scale as a function of inverse temperature. Here, �̅� is defined as the average 

number of icosahedra found in a connected FLD.  
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where {𝑠}𝑡 the set of FLD sizes observed at time step 𝑡, and the summation index 𝑡 runs over all 

recorded time steps at temperature 𝑇. The former average represents the average FLD size at 

time 𝑡 and the latter is a time-averaged FLD size. Dynamical fluctuations are thus measured 

using the time-averaged deviation: 

 𝜎𝑠̅̅ ≡
√∑ (�̅�(𝑡, 𝑇) − �̅�(𝑇))2

𝑡

𝑁𝑡
 

(2.4) 

where 𝑁𝑡 is the total number of time steps. The left panel of Figure 2.7 shows the temperature 

dependence of the relative dynamical fluctuations, 
𝜎�̅�

�̅�
, on a log-scale. For high temperatures, 

where the liquid dynamics are simple and icosahedral ordering is depressed, the fluctuations 

exhibit only weak exponential growth with decreasing temperature. Cooling through 𝑇𝐴 produces 

a relatively sharp enhancement in FLD size fluctuations – the onset of cooperative dynamics and 

emergence of FLD-ordering results in FLDs that attempt to grow beyond their mean size before 

eventually breaking apart, thus bolstering 
𝜎�̅�

�̅�
. In a sense, these fluctuations represent failed 

attempts of the system locally sampling deeper regions of its energy landscape, which 

correspond to further propagating the system’s LPS*. Cooling the liquid is found to stabilize 

these more-extended FLDs and to thus enhance their mean size. The right panel of Figure 2.7 

shows the growth of �̅�(𝑇) with decreasing temperature. At 𝑇𝐴, the population of connected 

icosahedra begin to dominate the total icosahedron population, �̅�(𝑇𝐴) ≈ 2. This indicates that a 

typical icosahedral cluster in the liquid is connected to one other icosahedron. This average FLD 

size proceeds to grow tremendously under cooling – note that this exponentially-shaped curve 

                                                 
* It may seem strange that sampling “deeper” energy wells leads to structures that are bound to break apart. One 

must keep in mind that creating FLDs comes at an entropic cost, and that the free energy is what must be minimized. 

This, however, requires its own caveat – the true free energy minimum is the crystal when the liquid is supercooled. 

We are tacitly assuming that the liquid is constrained in its timescale from arriving at this true minimum.  
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appears on a log-scale*. This is a remarkable confirmation of essential predictions made by 

FLDT – amorphous order typified by the liquid’s LPS (Cu-centered icosahedra in 𝐶𝑢64𝑍𝑟36) 

begins to become prominent at 𝑇𝐴 and serves a rapidly growing static length scale that 

accompanies the supercooled liquid’s dynamical slowdown†. While it is not currently feasible to 

empirically observe the development of FLDs near 𝑇𝐴, these simulation results provide perhaps 

the strongest evidence that one could hope for. Because a real glass forming liquid is being 

simulated, one can make direct comparisons with experiments to verify findings. Empirically, 

one does observe the dynamical crossover to super-Arrhenius growth of 𝜂(𝑇) below 𝑇𝐴
7. 

Furthermore, diffraction experiments produce pair correlation functions that agree well with 

those obtained from simulations of 𝐶𝑢64𝑍𝑟36
27,28. The agreement between experiment and 

simulation in these measurements suggest that the underlying microscopic mechanisms are 

indeed captured by the simulation. It is important to note, also, that liquid simulation results are 

most reliable for high temperatures (near 𝑇𝐴). Here, liquid relaxation times are sufficiently short 

so that the limited simulation timescale is still representative of ergodic behavior. 

2.1.5 The Correlation Between TA & TG 

Of the four characteristics of 𝑇𝐴 summarized at the beginning of 2.1, the simplest relationship to 

confirm is perhaps the most intriguing one – that 𝑇𝐴 ≈ 2 × 𝑇𝐺. In the context of our work, 

confirming this correlation for simulated 𝐶𝑢64𝑍𝑟36 does not seem to accomplish much beyond 

adding this alloy to the long list of metallic liquids for which this relationship has been tested. 

However, it is valuable to test whether or not the relatively simple semi-empirical potential 

describing this alloy is accurate enough to reproduce a correlation between such disparate, but 

                                                 
* Indeed, it is found that �̅�(𝑇) ∝ 𝑒𝐴𝑒𝐵/𝑇

for 𝑇𝐴 < 𝑇. This is not a typo. 
† The matter of icosahedral ordering serving as a rapidly growing length scale will be discussed in more detail in a 

later chapter. 
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important temperatures. Furthermore, the preceding results and discussions in this section 

provide us with a context in which we can begin to surmise the origin of the surprising 

connection between 𝑇𝐴 and 𝑇𝐺. 

First we must discuss some practical limitations that effect all MD simulations. The timescales 

accessible to classical MD simulations are exceedingly short (~1 − 100 𝑛𝑠). For this reason, it is 

impossible to directly measure 𝑇𝐺 by finding the temperature at which 𝜂(𝑇) = 1012𝑃𝑎 ∙ 𝑠. 

Indeed, this corresponds to simulating a relaxation process that is approximately 103 𝑠 long, 

which is far beyond the scope of any simulation*. Rather, one identifies 𝑇𝐺 by looking for 

evidence of the liquid falling out of metastable equilibrium; this can entail looking for structural 

signatures of the system “freezing” beneath a temperature, or looking for a sudden drop in the 

supercooled liquid’s specific heat. The extracted value of 𝑇𝐺 can then be compared with 

empirical results. One can also locate the temperature at which a fitted form of 𝜂(𝑇) extrapolates 

to 1012𝑃𝑎 ∙ 𝑠†. Ultimately, it is important to note that the concept of the glass transition is 

somewhat ill-defined in the context of MD simulations‡. 

                                                 
* Both A. Cavagna19 and Y. Cheng et al.27 provide illuminating discussions of the limitations and implications of the 

“computer laboratory” timescale.  
† Given its simplicity and relatively good success, the VFT form is almost invariably utilized for such a task. 
‡ The value of 𝑇𝐺  is also fundamentally affected by the cooling rate one uses when supercooling a liquid. 

Fortunately, fragile liquids, such as 𝐶𝑢64𝑍𝑟36, are less sensitive to the cooling rate and 𝑇𝐺  likely shifts only by 

~10 𝐾 across typical rates19. 
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Upon falling out of equilibrium, the thermal expansion coefficient of the glass changes smoothly 

in a narrow temperature range from that of the liquid to a value similar to that of a crystal. Thus, 

we locate the approximate value of 𝑇𝐺 in 𝐶𝑢64𝑍𝑟36 by observing the temperature evolution of its 

volume. The left panel of Figure 2.8 indicates that a change in thermal expansivity occurs near 

750 𝐾. An independent study using the same potential finds the same volume behavior; they also 

find that a sharp change in specific heat occurs at 770 𝐾28. The right panel of the figure shows 

the temperature evolution of the ratio of the heights of the first maximum to the first nonzero 

minimum of the system’s partial and total pair correlation functions. As the system falls out of 

equilibrium, its structure “freezes” and the ratios suddenly become weakly temperature 

dependent. This occurs between 800 𝐾 and 750 𝐾 depending on the pair correlation function 

being considered. Thus, based on these phenomenological considerations, we find that 𝑇𝐺 resides 

near 750 𝐾 for this potential, which is in reasonable agreement with the empirically measured 

glass transition temperature for 𝐶𝑢64𝑍𝑟36, 737 𝐾9. We therefore find that our simulation results 

Figure 2.8 (Left) The temperature dependence of the volume per atom in 𝐶𝑢64𝑍𝑟36. A transition between a liquid 

and crystal-like thermal expansion coefficient occurs near 750 𝐾. (Right) The ratio between the height of the first 

maximum and first nonzero minimum of the partial and total pair correlation functions. The temperature evolution 

plateaus below approximately 750 𝐾. 
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also satisfy the empirically-observed correlation 𝑇𝐴 ≈ 2 × 𝑇𝐺 (where 𝑇𝐴 = 1550 𝐾 and 𝑇𝐺 =

750 𝐾) to reasonable accuracy.  

In summary, we have shown that 𝑇𝐴 acts as the “barrier” temperature separating the simple 

behavior of a high temperature liquid from the cooperative, heterogeneous dynamics that drive 

the increasingly viscous low temperature liquid. Interestingly, this crossover precedes the 

supercooled regime by several hundred Kelvin, yet cooperative and heterogeneous dynamics are 

typically thought to be characteristics of a supercooled liquid. In light of these findings and 

especially of the empirically-rooted relationship 𝑇𝐴 ≈ 2 × 𝑇𝐺, it seems reasonable to expect that 

important dynamical and structural features will arise in metallic liquids at temperatures that are 

considerably higher than current conventions predict. Furthermore, the observed onset of 

icosahedral ordering at 𝑇𝐴 serves not only as important support for FLDT, but also as a 

preliminary explanation for the apparent link between 𝑇𝐴 and 𝑇𝐺. Indeed, the state of 𝐶𝑢64𝑍𝑟36 at 

𝑇𝐺 is known to be dominated by its icosahedral networks (see 1.4.4 for more details), and the 

origin of this amorphous phase lies at the apparent avoided critical point at 𝑇𝐴. That being said, 

there is a major gap between the structure and dynamics developing at 𝑇𝐴 and those that are 

found to precede the glass transition. While 𝑇𝐴 exhibits early cooperative and heterogeneous 

dynamics, the “glassy” dynamics of a deeply supercooled liquid are associated with a 

pronounced two-step relaxation process and caged particle dynamics. We will now discuss the 

development of glassy dynamics in supercooled 𝐶𝑢64𝑍𝑟36 in the context of the structures and 

dynamics that originate at 𝑇𝐴. Furthermore, we will consider how these FLD-based features fit 

within the context of other theories of supercooled liquids, such as mode coupling theory, and 

Goldstein activated dynamics.    



55 

 

 

 2.2 Supercooled Regime: Higher Order Cooperativity & 

the Onset of Glassy Dynamics 

Section 1.2 provided an introductory discussion of the characteristic two-step relaxation process 

that develops, in association with caged particle dynamics, in a supercooled liquid as it nears 𝑇𝐺. 

Here we look at the development of glassy dynamics in the context of extensive and rapidly-

growing FLDs (connected domains of Cu-centered icosahedral clusters) in supercooled 

𝐶𝑢64𝑍𝑟36. It is necessary to develop a bridge to link the structural and dynamical features that 

emerge at the high temperature 𝑇𝐴 with the terminal, rigid icosahedron network that shapes the 

glass below 𝑇𝐺. We will show that a temperature, 𝑇𝐴 > 𝑇𝐷 > 𝑇𝐺, is closely associated with the 

onset of glassy supercooled liquid dynamics, and that, similar to 𝑇𝐴, this temperature is linked to 

the emergence of new structural cooperativity. Supercooling through 𝑇𝐷 produces tremendous 

growth in FLDs and rapid unification amongst them. Indeed, on the scale of the simulation 

(~3 × 104 atoms), the average FLD begins to contain a macroscopic number of icosahedra. 

Hence the FLD size becomes an extensive quantity as does its fluctuations. This leads to some 

surprising observations, which suggest that 𝑇𝐺 may be preceded by a liquid-to-liquid phase 

transition.  

2.2.1 Defining TD: The Onset of Glassy Dynamics  

To identify the temperature range in which supercooled 𝐶𝑢64𝑍𝑟36 exhibits a pronounced two-

step relaxation process, we analyze the time-trajectories of the mean squared-displacements 

(MSDs) of the liquid’s particles for different temperatures. Figure 2.9 contains mean squared-

displacement trajectories for liquid temperatures starting at 2000 𝐾 and decreasing to 800 𝐾 in 
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intervals of 100 𝐾. The trajectories are color coded to help distinguish between dynamical 

regimes. The red trajectories reside above 𝑇𝐴. Accordingly, one sees that the dynamics in this 

regime are simple – the atoms undergo free motion on the timescale of roughly 102 𝑓𝑠, and 

transition to diffusive motion over larger timescales. Here, much of the temperature dependence 

is a result of the simple kinetic reduction in the average speed of the atoms. Cooling through 𝑇𝐴 

results in a gradual but important change in the shape of the trajectories. The blue trajectories 

begin to enter the long-time diffusive motion asymptote (〈𝛿𝑟2(𝑡)〉 ~ 6𝐷𝑡) from above (that is, 

the trajectory is concave up). This signifies the development of physical processes that impede 

relaxation in the liquid. This, of course, corresponds to the onset of cooperative restructuring and 

the breakdown of the Stokes-Einstein relationship that was found in relation to cooling through 

Figure 2.9 The time trajectories of the mean squared-displacements of atoms in 

𝐶𝑢64𝑍𝑟36 on a log-log scale. The temperatures included in the plot are separated 

by 100 𝐾 intervals. Dynamical regimes are color coded. A distinct plateau 

feature develops for temperatures below 1100 𝐾. 
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the avoided critical point at 𝑇𝐴. The gap separating the free-motion timescale from the diffusive 

motion one is found to widen rapidly as one supercools below 1100 𝐾. This regime corresponds 

to the black trajectories. Here, one can clearly see the characteristic plateau feature emerge to 

separate the liquid’s 𝛽 and 𝛼-relaxation processes. Within this relatively narrow temperature 

range, the plateau extends by several orders of magnitude. This mirrors the tremendous viscous 

slowdown that is occurring simultaneously.   

The MSD-trajectories are presented once again, in Figure 2.10, but now on a time-axis that is 

scaled by the particle diffusivity, 𝐷(𝑇) = lim
𝑡→∞

〈𝛿𝑟2(𝑡)〉

6𝑡
. The eventual collapse of the trajectories 

onto a universal curve is a manifestation of a phenomenon known as the time-temperature  

Figure 2.10 MSD time-trajectories plotted on a log-log plot whose timescale is 

scaled by the temperature-dependent particle diffusivity. This scaling causes 

low-temperature trajectories to fall to the left of high-temperature ones. The 

apparent collapse of the trajectories for long times is a manifestation of the 

time-temperature superposition principle. 
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superposition principle*29. This indicates that the strong temperature dependence exhibited in 

Figure 2.9 is controlled by a characteristic timescale, which is proportional to 1 𝐷(𝑇)⁄ , that 

determines the long-time dynamics of the system. 𝑇𝐴 was defined by identifying the temperature 

below which the liquid relaxation time (reflected by 𝜂(𝑇)) departed from a simple exponential 

form. Similarly, given this timescale that characterizes long-time supercooled dynamics, we look 

to 𝐷(𝑇) to find an analogous crossover temperature in the supercooled regime of 𝐶𝑢64𝑍𝑟36.   

The diffusion coefficients for Cu and Zr atoms, and their composition-weighted average, are 

plotted on a log scale versus inverse temperature in the left panel of Figure 2.11. 𝐷𝐶𝑢 and 𝐷𝑍𝑟 

follow a simple exponentially-decaying curve across a wide temperature window that enters well 

into the supercooled regime. The right panel of the figure contains a plot of the ratio 
𝐷𝐶𝑢
𝐷𝑍𝑟

 versus 

inverse temperature; indeed, this ratio is nearly constant across this temperature range and is 

determined roughly by the inverse ratio of the atom’s effective radii:  𝐷𝑍𝑟
𝐷𝐶𝑢

≈ 𝑅𝐶𝑢
𝑅𝑍𝑟

= 0.79†. 

Supercooling through 1050 𝐾 produces a stark change in the diffusive dynamics of the system – 

the diffusion coefficients begin to deviate significantly from the exponential form, and drop 

much more rapidly with decreasing temperature. In terms of the characteristic timescale 

discussed above, this corresponds to the onset of super-Arrhenius growth of 𝜏𝐷(𝑇) ~ 
1

𝐷(𝑇)
. 

Hence, we label this crossover temperature, 𝑇𝐷 =  1050 𝐾, in analogy with 𝑇𝐴. 

                                                 
* The curve that is traced out by the lower-temperature trajectories can be fitted using a polynomial. This allows one 

to define a useful quantity, known as the non-ergodicity parameter, which allows one to quantify the caging plateau. 
† This ratio is calculated using the “hard-sphere” radii of the atoms, as obtained from the high-temperature partial 

pair correlation functions. Using Goldschmidt radii yields a similar ratio.  
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What is the physical significance of 𝑇𝐷? Reflecting on the MSD trajectories plotted in Figure 

2.9, the atomic diffusivity is proportional to the y-intercept of the long-time asymptote on the 

log-log scale. Thus, the dramatically-extending plateau feature that develops in the trajectories 

corresponds to the rapid drop in 𝐷(𝑇) that begins at 𝑇𝐴. We therefore conclude that 𝑇𝐷 marks the 

onset of the pronounced caged particle dynamics that typify the two-step relaxation process 

associated with supercooled liquids dynamics. As seen in the right panel of Figure 2.11, 𝑇𝐷 also 

corresponds to the temperature below which the Cu and Zr diffusivities sharply decouple from 

one another. Both of these observations indicate that a structural feature is emerging at 𝑇𝐷 that 

strongly affects the supercooled liquid’s dynamics. This becomes clear when one considers that 

Cu and Zr cease to diffuse via the same physical mechanism at 𝑇𝐷. Here, the system’s energy 

landscape begins to disproportionately impede the activation of the larger Zr atoms, whereas the 

Cu atoms likely participate in collective high mobility regions of the liquid30. This enhanced, 

Figure 2.11 (Left) The diffusion coefficients of Cu atoms, Zr atoms, and their composition-weighted average, on a 

log scale versus inverse temperature. A high-temperature inverse-exponential fit is indicated by a solid blue line. 

The diffusion coefficients depart from this inverse exponential at 𝑇𝐷 = 1050 𝐾. (Right) The ratio of Zr diffusivity to 

that of Cu versus inverse temperature. Supercooling through 𝑇𝐷 results in a sharp decoupling of particle diffusivities. 
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biased energy landscape effect, and the resulting structure that it produces, is then likely to be 

responsible for the caged particle dynamics that greatly depress the diffusivities of both species. 

Recently, an empirical study of a Zr-based metallic liquid also found that the diffusivities of the 

liquid’s components decouple at a temperature residing above the mode coupling temperature, 

lending support for our findings regarding 𝑇𝐷
31.  

Beyond its broader implications of structure-affected dynamics, the decoupling of 𝐷𝐶𝑢 and 𝐷𝑍𝑟 

at 𝑇𝐷, in conjunction with earlier measurements of 𝜏𝐿𝐶, provides us with more detailed 

information about the specific structure that develops at 𝑇𝐷. When Basuki et al. detected high-

temperature decoupling of diffusivities in a Zr-based metallic liquid, they found, as we did, that 

𝐷𝑍𝑟 is depressed relative to the diffusivities of the other components of the liquid31. They explain 

this dynamical asymmetry in the context of T. Egami’s local configurational excitations (LCE), 

arguing that there must be a larger activation barrier associated with changing the nearest 

neighbor coordination shell of Zr than there is for Cu, and that this encapsulates the depressed 

behavior of Zr. Interestingly, we find that this is not the case*. As shown in Figure 2.2, 𝜏𝐿𝐶
(𝑍𝑟)

<

𝜏𝐿𝐶
(𝐶𝑢)

 for all temperatures, indicating that it is systematically easier to change the coordination of 

Zr than it is Cu. This is counterintuitive in light of the fact that 𝐷𝑍𝑟 > 𝐷𝐶𝑢 and that both 

inequalities become stronger with decreasing temperature. Ultimately these contrasting 

relationships reflect a difference in the structural roles played by Cu and Zr. Although Zr is slow 

to diffuse at low temperatures, its nearest neighbor structure is less robust than is Cu’s. From the 

perspective of Cu-centered icosahedra being the LPS of 𝐶𝑢64𝑍𝑟36, Cu atoms uniquely reside at 

                                                 
* Confusion may have resulted from the fact that Egami et al.5 used a single hard cutoff value to determine the 

coordination shell of its atoms. This means that Zr’s coordination shell radius is likely underestimated, while Cu’s is 

overestimated. In this situation, Zr’s coordination shell only consists of its most intimate neighbors, while are less 

likely to change than are more distant neighbors. Cu suffers from the opposite scenario. Hence 𝜏𝐿𝐶
(𝑍𝑟)

 may be 

artificially inflated (but unintentionally so, surely) by the use of this single cutoff distance.  
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the center of these packed structures. While Zr atoms serve as stable vertex atoms in this cluster, 

their neighboring atoms that lay outside of the cluster may move freely relative to the 

icosahedron, thus changing the coordination of the Zr atom and depressing 𝜏𝐿𝐶
(𝑍𝑟)

. This hints at 

the crucial role played by Zr in connecting adjacent icosahedra to form an FLD; this matter will 

be discussed in detail in a later chapter.       

It is prudent to note that 𝑇𝐷 is close to the temperature where convention would suggest that the 

Stokes-Einstein relationship ought to break down and dynamical heterogeneities emerge 

(keeping in mind that these landmarks occur at 𝑇𝐴 instead, in 𝐶𝑢64𝑍𝑟36). Indeed, the decoupling 

of component diffusivities certainly indicate that dynamical heterogeneities become exceedingly 

pronounced at 𝑇𝐷, which may suggest why an empirical search for heterogeneities would first 

detect signatures here. That is, heterogeneities are expected to be small in extent and short-lived 

at 𝑇𝐴 – probes used in experiments to detect these heterogeneities may inadvertently average over 

them and thus conclude that the liquid is still homogeneous. It was noted earlier that some 

studies utilize the 𝛼-relaxation time, 𝜏𝛼, in lieu of 𝜂(𝑇) to test the Stokes-Einstein relationship, 

and that 𝜏𝛼 is calculated using long-time particle displacements, as is 𝐷(𝑇). In light of the results 

presented in Figure 2.11, perhaps these studies detect the breakdown of the inverse exponential 

decay of 𝐷(𝑇) at 𝑇𝐷, that manifests simultaneously in 𝐷(𝑇) and 𝜏𝛼, rather than the actual 

viscous decoupling of 𝜂(𝑇) and 𝐷(𝑇), which we found occurs at 𝑇𝐴. It would thus be fruitful to 

do a direct comparison of 
𝜂(𝑇)𝐷(𝑇)

𝑇
 versus 

𝜏𝛼𝐷(𝑇)

𝑇
 to verify this conjecture.  

2.2.2 Higher Order Cooperativity & FLDs  

Given the apparent emergence of a structural signature at 𝑇𝐷 that causes both a rapid decrease in 

atomic diffusivities and a decoupling of 𝐷𝐶𝑢 and 𝐷𝑍𝑟 in the supercooled liquid, we turn our 
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attention to the FLDs that emerged at 𝑇𝐴 to consider what roles they play in this supercooled 

regime. At 𝑇𝐷, the average FLD size, �̅�, is 10 (see Figure 2.7), which boasts a fivefold increase 

from the size measured at 𝑇𝐴. The main panel of Figure 2.12 shows, versus inverse temperature, 

the fraction of the liquid’s icosahedra that are contained in an average FLD. This includes data 

for simulation system sizes of 104 atoms and 3 × 104 atoms, respectively. Above 𝑇𝐷, a typical 

FLD contains a negligible fraction of icosahedra. Upon supercooling through 𝑇𝐷, this fraction 

beings to grow appreciably and, on the scale of these simulations, an average FLD begins to 

represent a macroscopic portion of the icosahedron population. Analogous behavior is exhibited 

by the dynamical fluctuations of the FLDs, as measured by 𝜎�̅� (equation 2.4), which is shown in 

Figure 2.12 (Main) The fraction of icosahedra contained in a single, average FLD as a 

function of inverse temperature for simulations of 104 atoms and 3 × 104 atoms. 

Cooling through 𝑇𝐷 (1050 𝐾), a macroscopic fraction of icosahedra are incorporated 

into the FLD (on the scale of the simulation). (Inset) The dynamical fluctuations in 

domain size as a versus inverse temperature for both system sizes. Enhanced 

fluctuations arise upon cooling through 𝑇𝐷.   
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the inset of Figure 2.12. Here, the fluctuations indicate attempts made by FLDs to grow beyond 

�̅� before collapsing. As the FLDs begin to incorporate a large fraction of the liquid’s icosahedra, 

the fluctuations are found to become dramatically enhanced. Both of these features support our 

interpretation that the supercooled dynamics developing at 𝑇𝐷 are indeed heavily influenced by 

the energy landscape, and that a major structural signature, i.e. extensive connected domains of 

icosahedra, is emerging in association with this. The decoupling of 𝐷𝐶𝑢 and 𝐷𝑍𝑟, then, is caused 

by a compositional dependence of the dynamics created by this structure. A crucial finding is 

that the Cu-centered icosahedra and the connected domains that they form are Zr-rich compared 

to the system composition (this result will be presented formally in a later chapter). Hence, solid-

like regions formed by FLDs preferentially incorporate Zr atoms, while liquid-like regions are 

Cu rich*. 

                                                 
* If one leaves a piece 𝐶𝑢64𝑍𝑟36 of metallic glass in storage for long enough, the sample’s surface will eventually 

take on a distinct Cu color. Though anecdotal, this does suggest that the more mobile, liquid like regions in the 

material are indeed Cu-rich. 
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It proves to be fruitful to also analyze the extensive FLD ordering at 𝑇𝐷 in the context of 

structural rearrangement timescales. Similar to our discussion of the onset of cooperative 

structural rearrangements at 𝑇𝐴, we introduce the timescale 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷, which measures the average 

lifetime of an icosahedron that participates in an FLD via an interpenetrating connection*. 

Similar to 𝜏𝑖𝑐𝑜𝑠, this measure is sensitive to geometric distortions of the icosahedron in addition 

to the loss or gain of vertex atoms. The motivation for defining this timescale is that 

interpenetrating icosahedra are found to serve as the most stable and highly-connected nodes in 

the FLD32, hence their lifetimes reflect the structural lifetimes inherent to FLDs. Figure 2.13 

                                                 
* The centers of interpenetrating icosahedra are Voronoi neighbors of one another, which is a major reason why 

many simulation studies focus on this type of connection (i.e. it is trivial to detect). This connection involves the two 

icosahedra sharing 7 atoms in total: 5 vertex atoms and their respective center atoms.   

Figure 2.13 The ratio of the Maxwell relaxation time, 𝜏𝑀, relative to 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷 and 

𝜏𝐿𝐶 , respectively, versus temperature. The two characteristic temperatures 

correspond to crossings of these ratios through 1, signifying the onset of 

cooperative dynamics on different scales. 
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displays a comparison of 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷 to the Maxwell relaxation time 𝜏𝑀 (see equation 2.2)  via the ratio 

𝜏𝑀 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷⁄ . Here it is found that 𝜏𝑀 < 𝜏𝑖𝑐𝑜𝑠

𝐹𝐿𝐷 for 𝑇𝐷 < 𝑇𝐷, indicating that the FLDs are relatively 

inert on the timescale during which the liquid responds elastically to shear stresses. Remarkably, 

once the liquid is supercooled through 𝑇𝐷, one finds that 𝜏𝑀 ≥ 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷 and thus the FLDs can begin 

to restructure within the timescale of the liquid relaxation process*. This suggests that FLDs can 

begin to cooperatively rearrange in response to shear stresses in the liquid and restructure in an 

elastic environment. This, then, is reflected in the enhanced dynamical fluctuations that were 

demonstrated in Figure 2.12 – the cooperative rearrangements manifest as attempts made by the 

liquid to locally sample deep regions of the energy landscape and briefly form exceedingly 

extensive FLDs.  

It is striking to find that the characteristic temperatures 𝑇𝐴 and 𝑇𝐷 serve as both structural and 

dynamical landmarks in their respective dynamical regimes. In the case of 𝑇𝐴, we find that the 

liquid relaxation time, measured via 𝜂(𝑇), begins to grow faster than exponentially undercooling 

and that this marked the early onset of cooperative atomic rearrangements that produced the 

initial FLDs. At 𝑇𝐷, the timescale measured by 1/𝐷(𝑇) begins to grow faster than exponentially, 

and large-scale cooperative motions within FLDs produce extensive growth of icosahedral 

ordering in the supercooled liquid, with connected domains of icosahedra beginning to 

incorporate macroscopic fractions of icosahedra. This emerging structural feature produces 

caged particle dynamics and causes a separation in dynamics based on atomic species. These 

considerations demonstrate a newfound unification between the features of the liquid at a 

relatively high temperature with more characteristic features associated with glassy dynamics. 

                                                 
* To be clear, what really matters is that the behavior of 𝜏𝑀/𝜏𝑖𝑐𝑜𝑠

𝐹𝐿𝐷 changes dramatically near 𝑇𝐷 – that 𝜏𝑀 ≈ 𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷 at 

𝑇𝐷 holds no special significance. Rather, it is important that 𝜏𝑀 ≫  𝜏𝑖𝑐𝑜𝑠
𝐹𝐿𝐷 for 𝑇 < 𝑇𝐷. 
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Furthermore, this connection begins to bring into focus the correlation 𝑇𝐴  ≈ 2 × 𝑇𝐺 – the glassy 

dynamics that precede the glass transition indeed originate at the avoided critical point at 𝑇𝐴
*. 

2.2.3 Mode Coupling, Activated Dynamics, & Criticality 

Although we have arrived at a relatively cogent picture of the structure and dynamics of liquid 

𝐶𝑢64𝑍𝑟36 both above and within the supercooled regime, we still must consider how the features 

of this picture fit into the context of some other prevalent theories of supercooled liquids†. 

Namely, we are interested in identifying the mode coupling temperature 𝑇𝑐, which coincided 

                                                 
* Of course it is still not apparent why 𝑇𝐴 is so nicely summarized as being specifically twice 𝑇𝐺 . The insight to 

explain why this is, is almost certainly inaccessible to our simulation-based study that focuses on broader 

phenomena.  
† Refer to 1.3 for an overview of these theories. 

Figure 2.14 Simulation-measured values of 𝜂(𝑇) for 𝐶𝑢64𝑍𝑟36 and the 

MCT-fitted and VFT-fitted functions. The mode-coupling temperature, 𝑇𝑐, is 

located at 887 𝐾. The Kauzmann temperature, 𝑇𝐾 , is located at 684 𝐾. 

(Inset) A magnified view of the departure of the MCT fit from the data. 
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with a dynamical crossover to thermally activated dynamics, and the Kauzmann temperature, 𝑇𝐾, 

where the VFT fit of 𝜂(𝑇) predicts a diverging viscosity. Figure 2.14 shows the viscosity data as 

a function of inverse temperature along with fitted curves associated with MCT and ADGM. The 

MCT fitted curve is of the form: 

 𝜂(𝑇) =
𝑚

(𝑇 − 𝑇𝑐)𝛾
 

(2.5) 

where 𝑚 = 2.26 𝑃𝑎 ∙ 𝑠 ∙ 𝐾𝛾 , 𝛾 = 0.966, and the mode coupling temperature is 𝑇𝑐 = 887 𝐾. This 

power law form fits well the viscosity data from 3000 𝐾 down to approximately 925 𝐾, where 

the curve begins to sharply deviate from the data. This can be seen clearly in the inset of the 

figure, which is a magnified view of the plot in the vicinity of 𝑇𝑐. As discussed in Chapter 1, 

MCT predicts that the energy landscape of the system undergoes a topological transition at 𝑇𝐶 

such that local energy minima no longer have saddle point directions through which the system 

can leave the minimum. 𝑇𝑐 is found to be roughly 1.2 × 𝑇𝐺 (𝑇𝐺 ≈ 750 𝐾), which is 

approximately what one expects for fragile supercooled liquids20. Here, the supercooled liquid’s 

dynamics are expected to become dominated by activated hopping. The VFT form for the fitted 

curve is: 

 η(𝑇) = η𝑜𝑒
(

𝐴
𝑇−𝑇𝑘

)
 (2.6) 

where 𝜂𝑜 = 1.53 × 10−3𝑃𝑎 ∙ 𝑠, 𝐴 = 876 𝐾, and the Kauzmann temperature is 𝑇𝐾 = 684 𝐾. At 

𝑇𝐾, the supercooled liquid’s equilibrium configurational entropy extrapolates to zero, indicating 
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the presence of a true thermodynamic phase transition to a glass*. The VFT curve fits well the 

viscosity data in the super-Arrhenius regime, overestimating the viscosity for 𝑇 > 𝑇𝐴.  

To begin our analysis of 𝐶𝑢64𝑍𝑟36’s structure and dynamics in the context of these theories we 

first note that 𝑇𝑐 and 𝑇𝐾 are both located at sensible values. Indeed, we expect 𝑇𝐷 to exceed 𝑇𝑐 as 

the former temperature marks the initial development of a two-step relaxation feature in the 

liquid’s dynamical correlation function, whereas 𝑇𝑐 corresponds to a terminal temperature at 

which the developed plateaus in the correlation functions would diverge if activated hopping 

were not available to restore ergodicity. Hence 𝑇𝐷 naturally and necessarily precedes 𝑇𝑐 in the 

supercooling process. Additionally, the VFT-fit predicts that the extrapolated divergence in 𝜂(𝑇) 

occurs beneath the glass transition: 𝑇𝐺 > 𝑇𝑘
†. This, of course, must be the case given a 

reasonable measurement of 𝑇𝐺 and a reliable VFT fit since 𝜂(𝑇) is known to be strictly finite for 

𝑇 < 𝑇𝐺 + Δ𝑇. Further discussion of the significance of 𝑇𝑘 in the context of 𝐶𝑢64𝑍𝑟46 can be 

found in Chapter 3.  

We now consider the behavior of the growing FLDs in the vicinity of 𝑇𝑐 to see if any 

distinguishing features arise in the system as activated dynamics begin to drive the system’s 

ergodic evolution. Figure 2.15 contains the relative FLD fluctuations across the entire 

temperature range that we considered, for two system sizes. The high-temperature behavior of 

this curve, e.g. the deviation from a slowly-growing Arrhenius fit at 𝑇𝐴, was previously discussed 

in the context of Figure 2.7. Beyond this departure, we find several remarkable features. First, 

the relative fluctuations obey the typical scaling of 1/√𝑁 that one finds in equilibrium33, 

                                                 
* As mentioned in Chapter 1, resent experimental evidence suggests that extrapolating 𝜂(𝑇) below 𝑇𝐺  using the VFT 

form overestimates the low-𝑇 empirical measurements of the viscosity. This suggests that the Kauzmann 

temperature may indeed be a mere figment of a naïve extrapolation. 
† It is notable that the glass transition predicted from the VFT fit, e.g. 𝜂𝑉𝐹𝑇(𝑇𝐺) = 1012𝑃𝑎 ∙ 𝑠, is 𝑇𝐺 ≈ 710 𝐾. Given 

the extent of the extrapolation made by the fit, this is in reasonable agreement with the adopted value 750 𝐾.  
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however this scaling breaks down upon cooling below 𝑇𝐷. The curve’s height at 925 𝐾 appears 

to grow as √𝑁 on our scaled fluctuation axis. Here, the relative fluctuations in the average 

icosahedron-domain size grow independently of system size. This means that finite fluctuations 

would develop even in the limit of infinite system size.  Second, below 925 𝐾, where the MCT 

power law fit begins to significantly deviate from 𝜂(𝑇), the fluctuations rapidly diminish and 

approach zero before the system reaches 𝑇𝐺, producing a distinct peak feature preceding 𝑇𝑐.  

Before discussing our interpretation of these prominent feature in Figure 2.15 , we must first 

take care to consider the validity of our simulation in the supercooled regime, where we know 

the simulation timescale will eventually fail to capture ergodic behavior in the system. In the 

Figure 2.15 The relative FLD-size fluctuations versus inverse temperature, plotted 

for two systems sizes. At 𝑇𝐴, the relative fluctuations deviate from the slowly-

growing Arrhenius form. Below 𝑇𝐷, the standard 1/√𝑁 scaling breaks down as the 

fluctuations begin to grow independently of system size. A distinct peak feature at 

925 𝐾 precedes the mode couple temperature, 𝑇𝑐 ≈ 890𝐾. 
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context of our present considerations, is the peak feature in Figure 2.15 merely a signature of our 

simulation falling out of equilibrium due to the rapid growth of the liquid relaxation time (𝜏𝑀) in 

this vicinity? Indeed, when this does happen, one would expect that measured dynamical 

fluctuations would become small. At 900 𝐾, where the fluctuations are already found to sharply 

decrease, we permit multiple independent simulations to equilibrate for Δ𝜏𝑒𝑞𝑢𝑖𝑙 ≈ 𝜏𝑀 × 104. The 

fluctuations are then measured across the timespan Δ𝜏𝑚𝑒𝑎𝑠 ≈ 𝜏𝑀 × 102. While these 

considerations do not rigorously guarantee that the observed dynamics at 900 𝐾 reflect truly 

ergodic behavior, they do strongly suggest that the peak feature is not simply a manifestation of 

supercooled liquid falling out of equilibrium. That being said, by 825 𝐾  we undoubtedly are no 

longer accurately describing equilibrium phenomena in the system. 

Carrying on with our analysis, it is at first glance quite surprising to find that the relative 

fluctuations begin to scale with system size below 𝑇𝐷. One may wonder how the FLDs can begin 

to “know” how large the system is if the FLDs do not yet span the system. This is reminiscent of 

critical phenomena in percolating systems; here, small changes in the FLD configurations - the 

breaking and forming of individual icosahedral clusters – result in enormous (e.g. extensive) 

changes in the connectivity of FLDs through the system. The right side of the peak, then, 

indicates that the icosahedron density has crossed a critical value such that the average size of the 

icosahedron network becomes robust in the face of the addition and removal of icosahedra. By 

870 𝐾, half of the atoms in the liquid participate in forming icosahedra at any given time. As 

noted above, this stabilization occurs very near 𝑇𝑐, where activated hopping is believed to 

become the main mechanism for liquid relaxation. To be clear, it is not correct to think that the 

icosahedron network persists as a rigid solid amidst a liquid background at 𝑇𝑐; in spite of the 

shrinking fluctuations, the FLDs do break apart and reform constantly as the supercooled liquid 
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evolves. By 825 𝐾, 95% of the (out-of-equilibrium) liquid’s icosahedra are contained in a single 

FLD – the icosahedron network percolates the 30,000 atom simulation volume.   

The features of this critical-like behavior suggest the possibility of a liquid-liquid phase 

transition residing in the supercooled regime of 𝐶𝑢64𝑍𝑟36. Indeed, the literature on liquid-liquid 

transitions (LLTs), which has been championed and pioneered most notably by H. Tanaka34–37, 

shares many common topics with the discussion provided in this dissertation. Central to both this 

topic and the present work are cooperative interactions amongst locally-preferred structures 

yielding bond-ordered medium ranged order in the liquid*. Here, we propose that the peak in 

Figure 2.15 separates a higher-temperature liquid phase, in which the system is dominated by 

disordered structure, and a low-temperature liquid phase, in which the system is dominated by 

                                                 
* It may interest the reader to know that the majority of the analysis presented in this work was conducted with 

almost no (conscious) influence from the literature on LLTs. It wasn’t until after the majority of this research was 

completed that I began to read these papers carefully. It was quite surprising to find that the literature so closely 

matched the narrative that I had developed to explain the behavior of 𝐶𝑢64𝑍𝑟36. This certainly lends strong support 

to the theory developed by H. Tanaka, whose predictions naturally and rather explicitly manifest themselves in this 

system.  

Figure 2.16 (Left) The fractional occupation of the icosahedron population of an average FLD. Cooling below 𝑇𝐷 

leads to a rapid percolation of the FLD. (Right) The FLD-occupation susceptibility demonstrates the sharp transition 

between the disorder-dominated and icosahedron-dominated phases of the system. 
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extensive domains of the locally-preferred structure (e.g. Cu-centered icosahedra). The nature of 

this second liquid phase, which lies entirely within the supercooled region of the phase diagram 

(at zero pressure), may then be instrumental in precipitating the tremendous viscous slowdown 

that ensues as the system is cooled towards 𝑇𝐺. This transition is conveyed well by Figure 2.16, 

which shows the rapid growth of the fractional occupation of the icosahedron population in an 

average FLD. Prior to the transition (𝑇 > 𝑇𝐷), the probability of observing an icosahedron 

participating in in a “macroscopically-sized” FLD is zero. After cooling through the liquid-liquid 

transition (𝑇 ≈ 900 𝐾), this probability is one. Note that in the limit of large 𝑁, the relative 

fluctuations depicted on an unscaled version of Figure 2.15 will go to zero for 𝑇 > 𝑇𝐷 and that 

this curve will closely match with the peaked FLD-occupation susceptibility plotted in the right 

panel of Figure 2.16*.  

While this picture of a LLT is compelling in light of many of the features of liquid 𝐶𝑢64𝑍𝑟34 that 

we have found, and although the glass is known to be dominated by icosahedral ordering38, there 

are important outstanding questions that we cannot yet answer. First, does the peak feature in 

Figure 2.15 truly reflect critical behavior? It is possible that subtle system size effects are at play 

and that the apparent size-independent scaling of the FLD fluctuations actually breaks down 

once one increases the system size sufficiently. Second, are there other measurements that can be 

made to rigorously show that this is indeed an actual phase transition? Can these signatures be 

detected empirically? Third, what would Figure 2.15 and Figure 2.16 look like if we were able 

to ensure that we were genuinely capturing equilibrium dynamics down to, say, 𝑇𝑘?  

                                                 
* In the limit of large 𝑁, the peak in Figure 2.15 will be centered at a higher temperature and will be narrower than 

the peak in the susceptibility. As we will discuss, this discrepancy may be an artifact of the unrealistically-fast 

quench rate used in our simulation and the fact that the liquid falls out of equilibrium at as it approaches 𝑇𝐺 .    
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With regards to the last question, some basic progress can be made by considering some existing 

studies of Cu-Zr glass. What would the relative fluctuation curve look like if we could simulate 

the quench rates used in experiments, and if we could dilate the timescale of our simulation 

sufficiently to observe ergodic behavior near 𝑇𝐺? Simulation-based studies suggest that we 

would observe further enhanced icosahedral ordering near 𝑇𝐺 than what we observe in our 

limited simulations38–41. Maozhi Li et al. and Zhang 𝑒𝑡 𝑎𝑙. find that utilizing slower cooling rate 

to reach 𝑇𝐺 augments the observed number of icosahedra and the medium-range order associated 

with the FLDs in the system. This is corroborated by E. Ma et al., who further demonstrate that 

aging 𝐶𝑢64𝑍𝑟36 at 800 𝐾 for 300 𝑛𝑠 results in an impressive increase in the number of 

icosahedra in the system. This is accompanied by an increase in the number of connections 

shared between icosahedra and an order of magnitude enhancement of 𝜏𝐿𝐶 in the system. These 

findings provide important evidence to support what our intuition already leads us to believe: as 

the system is quenched less rapidly and is given more time to relax, it is able to better explore the 

low-energy configurations of its energy landscape. This produces atomic configurations that 

more thoroughly manifest the LPS of the system – Cu-centered icosahedral clusters. Given these 

considerations, one cannot claim, if we were to remain in equilibrium throughout the 

supercooled regime, that the relative fluctuations in the FLD size would simply continue to grow 

with decreasing temperature*. That is, the peak feature in Figure 2.15 is bound to emerge simply 

considering the rapidly growing density of the icosahedron population in the (metastable) 

equilibrium supercooled liquid. These observations also suggest that the low-temperature side of 

percolation transition shown in Figure 2.16 would be even sharper were the liquid held in 

equilibrium – a completely-connected FLD may form above 825 𝐾, and a clear LLT temperature 

                                                 
* This is a relatively common (and prudent) argument that is made when readers first see the rather surprising peak 

feature in Figure 2.15 . 
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would lie in the narrow temperature range separating 
�̅�

𝑁𝑖𝑐𝑜𝑠
= 0 and 

�̅�

𝑁𝑖𝑐𝑜𝑠
= 1. This would thus 

produce a narrower susceptibility peak that is shifted towards higher temperature, leading to a 

closer agreement between the susceptibility curve and the relative fluctuations plotted in Figure 

2.15 (when the limit of large 𝑁 is taken).              

2.3 Summary & Outlook 

In summary, we analyzed across a broad temperature range the dynamics of a classical MD 

simulation of 𝐶𝑢64𝑍𝑟36 in the context of its locally-preferred structure (LPS) – Cu-centered 

icosahedral clusters of atoms. In doing so, we identified two characteristic temperatures, 𝑇𝐴 =

1550 𝐾 (𝑇𝐴 > 𝑇𝑙, the liquidus temperature) and 𝑇𝐷 = 1050 𝐾 (𝑇𝐷 > 𝑇𝑐, the mode coupling 

temperature). These temperatures mark the crossover from Arrhenius to super-Arrhenius 

behavior, with decreasing temperature, of liquid timescales controlled by 𝜂(𝑇) and 1/𝐷(𝑇), 

respectively.  

Cooling through 𝑇𝐴 results in the violation of the Stokes-Einstein relationship* and yields the 

onset of liquid dynamics that are controlled by cooperative structural rearrangements amongst 

neighboring clusters of atoms. This manifests structurally as the development of small, 

connected domains of icosahedral clusters. This is a rather remarkable confirmation of the 

predictions of frustration-limited domain theory (FLDT), and lends credence to the interpretation 

that 𝑇𝐴 is in fact an avoided critical point whose presence is instrumental in shaping the ensuing 

viscous slowdown of the liquid as it is cooled.  

                                                 
* Given that 𝜂(𝑇) departs from its exponential form at a higher temperature than 1/𝐷(𝑇) (𝑇𝐴 > 𝑇𝐷), it is obvious 

that the Stokes-Einstein relationship must be violated at 𝑇𝐴. That being said, it is far from obvious as to why these 

quantities depart from their exponential forms, why they do so at different temperatures, and where these 

temperatures are located. The reader may wonder why I am taking the time to point out this relatively simple 

observation. It turns out that such a point may not be so salient to, say, a referee who is evaluating the paper 

containing these findings.   
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Supercooling through 𝑇𝐷 marks the early development of the two-step liquid relaxation processes 

that characterize the liquid’s (metastable) equilibrium dynamics near 𝑇𝐺. Additionally, the self-

diffusivities of the liquid’s species, 𝐷𝐶𝑢(𝑇) and 𝐷𝑍𝑟(𝑇), become decoupled below this 

temperature. This strongly suggests that liquid begins to become strongly influenced by its 

energy landscape at 𝑇𝐷 and that a structural feature manifests that impedes the diffusive motion 

of Zr atoms disproportionately. This structural feature, we argue, is the Zr-rich and extensive 

frustration-limited domains (FLDs) of connected icosahedra, which have grown rapidly with 

supercooling. Measurements of the lifetimes of icosahedral clusters in the system suggest that 

these FLDs begin to restructure cooperatively near 𝑇𝐷 – this manifests via enhanced fluctuations 

of the average FLD size, �̅�. These fluctuations suddenly drop near 𝑇𝑐 (mode coupling), producing 

a striking peak in the 𝜎�̅�/�̅� curve. Remarkably, we find that 𝜎�̅�/�̅� appears to remain finite in the 

limit of large system size below 𝑇𝐷. To understand this possible critical behavior, we define an 

order parameter given by the fractional occupation of the icosahedron population in an average 

FLD, Ω ≡ �̅�/𝑁𝑖𝑐𝑜𝑠. A rapid transition from Ω = 0 to Ω = 1 is found, and a sharply peaked 

susceptibility resembles the behavior exhibited by 𝜎�̅�/�̅�. This suggests that a liquid-liquid 

transition (LLT) may occur between a disordered phase and a FLD-dominated phase in 

supercooled 𝐶𝑢64𝑍𝑟36, preceding the glass transition. Keeping in mind that this icosahedral 

order originates at 𝑇𝐴, above which the system behaves like a simple liquid, this analysis 

summarizes and unifies major features of all the dynamical regimes of 𝐶𝑢64𝑍𝑟36.  

Perhaps the most immediate and pressing issue that stands to be resolved, in the context of the 

above summary, is the further verification of the 𝑁-independent scaling of 𝜎�̅�/�̅� below 𝑇𝐷. It is 

feasible to perform the appropriate simulation and analysis on a system of 𝑁 = 105 atoms to test 
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the scaling beyond 3 × 104 atoms, but this is likely near the practical limit*. As is, the scaling 

found from 104 atoms to 3 × 104 is encouraging, but is certainly not definitive. Additionally, 

more rigorous checks of the ergodicity of the liquid beneath ~900 𝐾 are warranted. It would be 

valuable to utilize slower quench rates and longer equilibration times to confirm that the 

transition from Ω = 0 to Ω = 1 occurs in a narrower temperature range (if this is indeed what 

happens). Of course, one could utilize worse quench rates and equilibration times to attempt to 

“broaden” the LLT towards the same end. 

Perhaps this is too obvious to state explicitly, but one must look for empirical evidence of the 

LLT to the icosahedron-dominated phase in 𝐶𝑢64𝑍𝑟36 before it will be taken seriously by the 

glass community at large. Originally, our investigation of the dynamics of 𝐶𝑢64𝑍𝑟36 focused 

exclusively on features near 𝑇𝐴. This was ideal as the liquid relaxation times are sufficiently 

short here such that ergodic behavior is easily captured by MD simulations. However, our 

findings at 𝑇𝐴 inevitably led us to lower and lower temperatures as we hoped to connect the 

icosahedral ordering that emerged at this temperature with the percolating icosahedral network 

that is known to characterize the glass. It is both fortunate and very unfortunate that signature of 

then possible LLT occurs where it does: it begins at a high enough temperature where we can 

refer to our results with confidence, but extends to low enough temperatures where it is 

essentially impossible to guarantee the absolute reliability of our findings. In light of the above 

considerations, of what we would expect were we to remain in equilibrium, it is the author’s 

(biased) opinion that our interpretation of the low-temperature results are neither cavalier nor are 

                                                 
* The simulation itself is not the limiting performance factor – the use of GPUs allows us to increase 𝑁 without 

paying too high a price. Rather, the amount of data that must be recorded in order to conduct the appropriate 

analysis (e.g. particle positions and, from these, the Voronoi signatures) can easily reach the order of terabytes for 

104 atoms (when considering all the timesteps and temperatures that must be recorded), and this scales like 𝑁. 
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they unfounded. That being said, the universe does not care about my opinion*. We therefore 

hope that these findings will motivate and serve as a roadmap for future experiments to look for 

signatures of this LLT.    

In the following chapter we will focus on features of icosahedral ordering that manifest on a 

scale that is accessible by experiment. This entails looking at the temperature-evolution of the 

spatial pair-correlation functions of  𝐶𝑢64𝑍𝑟36 as well as the chemical ordering that is created by 

the icosahedron-network. 
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Chapter 3: Static Signatures of Dynamical 

Regimes 

In Chapter 2, we leveraged our ability to analyze microscopic, time-dependent features of 

simulated 𝐶𝑢64𝑍𝑟36 to gain new insights into the structural and dynamical phenomena that 

characterize its different dynamical regimes. Here we discuss static (long-time-averaged) 

measurements of the system that are accessible to empirical studies. We hope to connect 

temperature-dependent features in this data with the characteristic temperatures 𝑇𝐴 (1550 𝐾), 𝑇𝐷 

(1050 𝐾) and the ensuing rapid development of icosahedral order in supercooled 𝐶𝑢64𝑍𝑟36, 

which were discussed in Chapter 2. In this way, we create a road map for future experiments to 

check our results. 

We remind the reader that 𝑇𝐺 was found to reside near 750 𝐾, given the semi-empirical potential 

and quench rate that we utilize in our simulation. It must be emphasized that although we will 

present data ranging from 3000 𝐾 down to 600 𝐾, the low temperature data is not necessarily 

representative of equilibrium data. Below approximately 900 𝐾 the time averages conducted are 

not guaranteed to be sufficiently long to allow the system ergodically explore phase space*. In 

this temperature range, multiple independent simulations are analyzed for a given temperature to 

help correct for this. That being said, the topic of ergodicity will not be belabored in the 

forllowing sections, so it is important for the reader to keep these considerations in mind when 

viewing low-temperature data and to know that this matter is not a mere technicality.    

                                                 
* Despite this, it is not until 750 𝐾 that we see the system clearly “freeze” on our simulation timescale, which is how 

we identify 𝑇𝐺 . 
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3.1 Static Structure Factors & Pair Correlation Functions 

X-ray and neutron diffraction experiments provide measurements that yield atom-pair spatial 

correlation statistics in materials. The coherent-scattering intensity distribution can be used to 

calculate the static structure factor, 𝑆(𝑞), where 𝑞 = 4𝜋 sin(𝜃) /𝜆, which can be Fourier 

transformed to produce the real-space pair correlation function, 𝑔(𝑟). Chemical species-specific 

structural information can be obtained by tuning the x-ray energies through the species’ 

respective absorption edges – a technique called anomalous X-ray scattering1. Isotope 

substitution can be used with neutron scattering to also produce species-specific information in 

the distribution function. The species-specific spatial distribution of pairs of atoms is given by 

the partial pair correlation function (PPCF)2: 

 𝑔𝛼𝛽(𝑟) =
𝑁

4𝜋𝑟2𝜌𝑁𝛼𝑁𝛽
∑ ∑ 𝛿(𝑟 − |𝑟𝑖 − 𝑟𝑗|)

𝑁𝛽

𝑗=1

𝑁𝛼

𝑖=1

 

(3.1) 

where 𝑁 is the total number of atoms in the system, 𝛼 and 𝛽 index the atomic species being 

considered, 𝑖 and 𝑗 index the atoms of the appropriate species, and 𝜌 is the number density. Thus 

given an atom of type 𝛼, 𝑔𝛼𝛽(𝑟) reflects the probability of finding an atom of type 𝛽 a distance 𝑟 

away. The PPCF is normalized such that 𝑔𝛼𝛽(𝑟) = 1 for a random distribution of atoms. The 

(species-independent) total pair correlation function (TPCF) is thus given by the weighted sum 

of PPCFs: 

 𝑔(𝑟) = ∑ ∑ ∑
𝑁𝛼𝑁𝛽

𝑁2
𝑔𝛼𝛽(𝑟)

𝑁𝛽

𝑗=1

𝑁𝛼

𝑖=1𝛼,𝛽

 

(3.2) 

 



83 

 

The partial structure factors (PSFs) are related to the PPCFs through the equation: 

 𝑆𝛼𝛽(𝑞) = 1 +
4𝜋𝜌

𝑞
∫ 𝑟[𝑔𝛼𝛽(𝑟) − 1] sin(𝑞𝑟)𝑑𝑟

∞

0

 
(3.3) 

and the species-independent total structure factor (TSF) is given by: 

 𝑆(𝑞) = ∑
𝑐𝛼𝑐𝛽𝑓𝛼𝑓𝛽

(∑ 𝑐𝛼𝑓𝛼𝛼 )2
𝑆𝛼𝛽(𝑞)

𝛼,𝛽

 

(3.4) 

where 𝑐𝛼 is the molar fraction of the species, and 𝑓𝛼 is the atomic scattering factor. Here, we use 

the atomic number of a species for its scattering factor. Figure 3.1 contains the TPCF (Left) and 

the TSF (Right), and the partial functions that comprise them, for 𝐶𝑢64𝑍𝑟36 at 750 𝐾. The 

sequence of  peaks and troughs in 𝑔(𝑟) corresponds to distances where atoms are correlated and 

anti-correlated with one another. Thus a shell-like structure appears to form, on average, around 

an atom. In total, short (𝑟 < ~7Å) and medium (~7Å < 𝑟 < ~15Å) range order (SRO and 

MRO) manifests in the system, but no long range order (LRO) is detected by the pair correlation 

Figure 3.1 (Left) The total pair correlation function, 𝑔(𝑟), of 𝐶𝑢64𝑍𝑟36 at 750 𝐾 and the partial pair correlation 

functions that comprise it. 𝑔(𝑟) → 1 for large 𝑟, indicating that pairs of atoms become structurally uncorrelated at 

large distances in the glass – unlike what one would find in a crystalline structure. (Right) The total and partial 

structure factors for the same system. These directly reflect the coherent scattering intensities obtained from X-ray 

or neutron diffraction experiments, where 𝑞 = 4𝜋 sin(𝜃) /𝜆. 𝑔(𝑟) and 𝑆(𝑞) are related via Fourier transform.  
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function*. Notice that the PPCFs can have rich features, such as the distinct split-peak in the 

second shell of 𝑔𝐶𝑢𝐶𝑢(𝑟), that are subtle or even hidden in 𝑔(𝑟). In general, important structural 

information can be lost by averaging over the PPCFs – when species-sensitive measurements 

cannot be conducted, simulations are often utilized to produce PPCFs to augment the 

interpretation of the empirically-determined 𝑔(𝑟)†.  

3.1.1 Anomalous Thermal Contraction of the First Coordination Shell  

A recent analysis of empirical 𝑔(𝑟) data by Gangopadhyay et al.3 found a striking anomaly 

common to a wide variety of metallic liquids – nearly ubiquitously, the first peak position of a 

                                                 
* It is possible that some symmetries in the atomic structure can only be detected by higher-order correlation 

functions that are sensitive to bond orientation order19.  
† A major caveat here is that the simulation yields a 𝑔(𝑟) that actually matches closely with the empirical result. We 

produced 𝑔(𝑟) data that agreed well with experimental data for Cu-rich compositions of Cu-Zr20. The semi-

empirical potential that we utilize was formulated specifically for 𝐶𝑢64𝑍𝑟36 – deviations from this composition lead 

to larger discrepancies in the SRO features of 𝑔(𝑟) that are found by experiment. 

Figure 3.2 (Left) The first-peak position of the PPCFs and TPCF versus temperature. The peak is found to retract 

with increasing temperature for each PPCF, demonstrating that the anomalous thermal contraction exhibited by 𝑔(𝑟) 

is not the result of a shift in PPCF peak heights. (Right) The minimum distance recorded between pairs of atoms is 

also found to decrease with increasing temperature (𝑟𝑚𝑖𝑛
(𝑡𝑜𝑡𝑎𝑙)

= 𝑟𝑚𝑖𝑛
(𝐶𝑢−𝐶𝑢)

).  
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liquid’s 𝑔(𝑟) was found to contract with increasing temperature, despite the fact that each liquid 

possessed a positive temperature coefficient of volume expansion (
1

𝑉
𝑑𝑉/𝑑𝑇). 

The subsequent peaks are then found to expand sufficiently to account for the overall expansion 

of the liquid with increasing temperature. To understand this phenomenon, one must first 

consider the behavior of the individual PPCFs – it is possible that the first peak in each PPCF 

expands with increasing temperature and that a shift in the relative peak heights manifests as a 

contraction in the first shell of 𝑔(𝑟). If this is indeed what occurs, then there is no anomaly. 

Rather, there would be a consistent trend in the SRO favoring packing around an alloy’s smallest 

species. As concluded in the study, this is not the case; the first peaks of all the PPCFs do 

contract with increasing temperature. This trend is shown in Figure 3.2, in which the left panel 

contains the first-peak position for the PPCFs*. The right panel contains a plot of the minimum 

recorded pair distance versus temperature and shows a similar contraction, though this is less 

notable†.   

These findings indicate that all of these metallic liquids are undergoing a microscopic structural 

change that resembles the ordering that we have observed in 𝐶𝑢64𝑍𝑟36. The interpretation here is 

that at low temperatures the supercooled liquids have developed significant SRO according to 

the system’s locally-preferred structure (LPS). In the context of  𝐶𝑢64𝑍𝑟36, this is Cu-centered 

icosahedral clusters of atoms. These clusters then connect to form connected domains (a 

frustration-limited domain (FLD) in our system). As the liquid is heated, the MRO domains 

become less stable and the LPSs become disjoint from one another – this corresponds to the 

                                                 
* The 1st peak position is taken to be the value at which the correlation function is a maximum. 
† The thermal contraction of 𝑟𝑚𝑖𝑛  is to be expected to a degree – increasing the temperature symmetrically broadens 

the peaks of the PPCFs. Considered from another perspective, at a high temperature atoms collide with higher 

kinetic energies and thus can be found at closer distances than at low temperatures. 
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observed expansion in the 2nd and 3rd peaks of 𝑔(𝑟). On the other hand, the LPSs become 

unstable as well; this causes a typical atom to have fewer nearest neighbors packed in its vicinity, 

or in other words, the coordination number (CN) of the atom is reduced. Thus at higher 

temperatures, only tightly-bound clusters of atoms are able to persist. These stronger bonds have 

shorter bond distances, hence the atoms have fewer nearest neighbors and the nearest neighbor 

shell contracts.  

We provide support for this interpretation by analyzing the temperature dependence of the CNs 

of Cu, Zr, and their average, in 𝐶𝑢64𝑍𝑟36. The data presented in the left panel of Figure 3.3 

confirms that the average CN for each species indeed decreases with increasing temperature. 

From 750 𝐾 to 3000 𝐾, both species are found to lose roughly one nearest neighbor as the 

liquid’s low-temperature SRO becomes disrupted. Furthermore, the rate of loss of nearest 

neighbors appears to accelerate when the liquid is heated above 1550 𝐾, or 𝑇𝐴. Here it was found 

Figure 3.3 (Left) The average coordination number (CN) of Cu, Zr, and their atom, versus temperature. Both 

species are found to lose nearest neighbors with increasing temperature. The CN is calculated by integrating the 

appropriate PPCFs to their first minimums. (Right) The average CN of the species as determined by the number of 

Voronoi neighbors that they share. Here, the CN of Cu atoms decreases with decreasing temperature.  
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that cooperative rearrangements amongst atomic clusters cease to manifest in the liquid 

relaxation process, and the Stokes-Einstein relationship begins to hold. Thus this transition 

supports our findings that SRO begins to stabilize in the system below 𝑇𝐴. However, this 

acceleration does not appear in the peak contraction trends shown in Figure 3.2, except for in the 

Zr-Zr curve. This may indicate that tracking the peak maximum does not capture all of the 

details of the first shell contraction, or that the CN is not the only factor determining the 

contraction.  

Up to this point, the CNs being considered were calculated by integrating 𝑟2𝑔𝛼𝛽(𝑟) from 0 Å to 

𝑟𝑚𝑖𝑛
𝛼𝛽 *, and taking the appropriate linear combinations for the different species†. Thus CNs 

calculated in this way, which we’ll now call 𝐶𝑁𝑑𝑐𝑢𝑡, depend on these hard-cutoff distances and 

are insensitive to cluster geometries beyond the radial distribution of the neighbor atoms from 

the center atom.  Another method for determining the structural coordination of an atom and its 

neighbors is by performing a weighted Voronoi tessellation of the liquid structure4,5. In this 

instance, one considers an atom’s Voronoi neighbors to comprise its nearest neighbor shell. An 

atom’s CN can then be determined by counting the number of faces of its Voronoi cell – this will 

be distinguished as 𝐶𝑁𝑉𝑜𝑟𝑜. 𝐶𝑁𝑉𝑜𝑟𝑜 thus reflects the packing geometry of neighbor atoms about 

a center atom and is parameter independent. That being said, the Voronoi tessellation process is 

entirely impartial to the physics that we are concerned with  - there is no guarantee that a distant 

Voronoi neighbor and an atom are interacting in a meaningful way such that the atoms are 

“coordinated”. The average 𝐶𝑁𝑉𝑜𝑟𝑜
(𝛼)

, where 𝛼 labels the species of the central atom, are plotted in 

                                                 
* 𝑟𝑚𝑖𝑛

𝛼𝛽
 is the position of the first nonzero minimum of 𝑔𝛼𝛽(𝑟). 

† For example, 𝐶𝑁(𝐶𝑢) =
4𝜋𝜌

𝑁
(∫ 𝑁𝐶𝑢

2 𝑟2𝑔𝐶𝑢𝐶𝑢(𝑟)𝑑𝑟
𝑟𝑚𝑖𝑛

𝐶𝑢−𝐶𝑢

0
+ ∫ 𝑁𝐶𝑢𝑁𝑍𝑟𝑟2𝑔𝐶𝑢𝑍𝑟(𝑟)𝑑𝑟

𝑟𝑚𝑖𝑛
𝐶𝑢−𝑍𝑟

0
)   
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the right panel of Figure 3.3, and show striking differences to 𝐶𝑁𝑑𝑐𝑢𝑡
(𝛼)

. 𝐶𝑁𝑉𝑜𝑟𝑜
(𝐶𝑢)

 and 𝐶𝑁𝑉𝑜𝑟𝑜
(𝑍𝑟)

 are 

found to vary nearly linearly with temperature such that 𝐶𝑁𝑉𝑜𝑟𝑜
(𝐴𝑣𝑔)

 of an average atom is 

approximately a constant for all temperatures. That is, while Zr is found to lose Voronoi 

neighbors as the liquid is heated, Cu gains Voronoi neighbors. Ultimately, for a given species, 

the CNs calculated using the two methods approach one another with decreasing temperature. 

The opposite trends of 𝐶𝑁𝑐𝑢𝑡
(𝐶𝑢)

 and 𝐶𝑁𝑉𝑜𝑟𝑜
(𝐶𝑢)

 suggest that at high temperatures the clusters around 

Cu tend to be irregularly packed. Consider that, at 3000 𝐾, an average Cu atom only has 11 

neighbors within its cutoff distances, but has 13 Voronoi neighbors. This indicates that the 11 

neighbors are packed such that there are “gaps” in the cluster; Voronoi cells cannot have gaps, so 

distant atoms will fill the gaps left by the 11 intimate neighbors and contribute as Voronoi 

neighbors. As the temperature is reduced and the liquid becomes increasingly impacted by its 

energy landscape the Cu-centered clusters become more regularly packed (for instance, regular 

icosahedra form) and the discrepancy between the two methods diminish. The Zr atoms exhibit a 

different trend – as a Zr atom gains more packing neighbors, its number of Voronoi neighbors 

increase accordingly. This indicates that it is easier to create a regularly packed structure about 

the larger Zr atom using the smaller Cu solvent atoms. It is not clear why the different 𝐶𝑁𝑉𝑜𝑟𝑜
(𝛼)

 

possess such featureless trends as the temperature is adjusted, in contrast to the behavior of 

𝐶𝑁𝑑𝑐𝑢𝑡
(𝛼)

. The fact that 𝐶𝑁𝑉𝑜𝑟𝑜
(𝐴𝑣𝑔)

 is nearly constant across the entire temperature range suggests 

that these may be phenomena rooted in the fundamental tessellation process. 

Ultimately, our analysis supports the findings of Gangopadhyay et al.3 - that the anomalous 

thermal contraction of the first coordination shell in metallic liquids reflects the local loss of 

nearest neighbor atoms with increasing temperature. In the context of our earlier analysis, it 
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appears that SRO – the formation of relatively stable, increasingly coordinated local clusters of 

atoms (e.g. Cu-centered icosahedra) – begins to set in as the liquid is cooled to 𝑇𝐴. By utilizing 

weighted Voronoi tessellation methods, we also find that this ordering is associated with the 

development of more regularly-packed geometries for Cu-centered clusters        

3.1.2 Structural Signatures of Fragility  

Throughout Chapter 1 and 2, we discussed liquids whose viscosities (𝜂(𝑇)) exhibit super-

Arrhenius growth as the liquids are supercooled towards 𝑇𝐺 – this accelerated viscous slowing is 

deemed “fragile” behavior by the glass community. On the other hand, so-called “strong” liquids 

exhibit Arrhenius growth in 𝜂(𝑇) throughout the supercooled regime, indicating that a single 

relaxation mechanism persists across this temperature range to produce a robust exponential 

behavior. The canonical fragile and strong glasses are o-terphenyl and 𝑆𝑖𝑂2, respectively6, and 

many liquids are found to exhibit behaviors that lie between fragile and strong. The fragility of a 

liquid can thus be quantified by how steeply 𝜂(𝑇) approaches the calorimetric glass transition 

value of 1012𝑃𝑎 ∙ 𝑠. Hence the kinetic fragility index of a liquid is defined as6 

 𝑚 ≡ (
𝑑 (log 𝜂)

𝑑(𝑇𝐺/𝑇)
)

𝑇=𝑇𝐺

 

(3.5) 

As discussed in Chapter 1, the VFT-form, 𝜂(𝑇) = 𝜂𝑜(𝑇) exp(𝐴/(𝑇 − 𝑇𝐾)), can provide an 

excellent fit for supercooled-liquid viscosity data. In its derivation, the fragility, as determined by 

𝐴/𝑇𝑘, is related to the excess entropy of the configuration of the liquid compared to the 

material’s crystal structure. Mauro et al.7 argued that this link between a liquid’s fragility and its 

thermodynamic properties ought to have a structural signature. Specifically, it was posited that 

the fragility of a liquid should manifest through the rate of structural change that is exhibited 
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during supercooling – similar to the growth of 𝜂(𝑇) in a fragile liquid, the structure should be 

found to change rapidly near 𝑇𝐺. This was motivated by the observation that, when extrapolating 

high temperature empirical data of 𝑆(𝑞) down to 𝑇𝐺, fragile liquids exhibited a larger mismatch 

between the extrapolated curve with the actual data at 𝑇𝐺 than did strong liquids. In the absence 

of intermediate data in the supercooled region, it was argued that changes in the features of 𝑆(𝑞) 

in fragile liquids must accelerate in this narrow temperature range in order to match the data at 

𝑇𝐺. A structural fragility index, 𝛾, was introduced to quantify the magnitude of the 

aforementioned mismatch from the extrapolated curve. Figure 3.4 contains plots of the 

temperature-dependent data of the heights of the first and second peak of 𝑆(𝑞) for 𝐶𝑢64𝑍𝑟36. 𝛾 is 

indicated in the left panel of the figure, illustrating the extrapolation process described above.  

A survey of empirical data conducted by Mauro et al. revealed a clear correlation between 𝛾 and 

the kinetic signatures of fragility (namely, 𝐴/𝑇𝑘) for a variety of liquids, indicating that a liquid’s 

fragility is indeed reflected by the evolution of its structure. This is at odds with the widely-held, 

but vaguely-justified belief that the structural aspects of the glass transition are unimportant8. On 

the other hand, these empirical findings match closely with what we observe in 𝐶𝑢64𝑍𝑟36 – the 

initial onset of the super-Arrhenius growth of 𝜂(𝑇) at 𝑇𝐴 and its tremendous growth near 𝑇𝐺 

coincide with the early development and subsequent rapid proliferation of icosahedral ordering 

in the liquid. This study strongly suggests that similar structural ordering behavior should be 

expected to arise in other fragile liquids.  
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 The 𝑆(𝑞) peak height data displayed in Figure 3.4 exhibits the accelerated change in the liquid 

structure that was predicted by the empirical study. Furthermore, we find that the high-𝑇 and 

low-𝑇 asymptotes* appear to consistently cross near 𝑇𝐷, the temperature below which connected 

domains of icosahedra are found to grow rapidly and eventually percolate the system. Though 

this only superficially connects the structural signature of fragility with the observed icosahedral 

ordering in the system, we have found in a preliminary survey of experimental data that 𝑇𝐷 ≈

1.4 × 𝑇𝐺 appears as a crossover temperature in the same way for several other fragile liquids. 

                                                 
* We remind the reader that, due to limitations of the timescale accessible by the simulation, the low-𝑇 data 

determining this asymptote is no longer formally representative of the ergodic supercooled liquid. 

Figure 3.4 The temperature-dependent evolution of features of 𝑆(𝑞) for 𝐶𝑢64𝑍𝑟36. (Left) The evolution of the first-

peak height of 𝑆(𝑞). (Right) The evolution of the second-peak height of 𝑆(𝑞). Both features exhibit accelerated 

growth upon cooling through, approximately, 𝑇𝐴, leading to a “mismatch” between the low-𝑇 and high-𝑇 

extrapolated behaviors (dashed lines). This mismatch is proposed to be a structural signature of the liquid’s fragility, 

which is indicated in the left panel by 𝛾. 
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Taking advantage of our access to species-specific correlations, we now consider the temperature 

evolution of features of the PPCFs of 𝐶𝑢64𝑍𝑟36. To focus on longer-ranged ordering than the 

previously considered locally-packed clusters, we track the positions of the second-peaks of the 

PPCFs with changing temperature, as shown in Figure 3.5. Quite remarkably, we find that the 

peak trajectories of  𝑔𝐶𝑢𝐶𝑢(𝑟) and 𝑔𝑍𝑟𝑍𝑟(𝑟)  change abruptly at 𝑇𝐴 and 𝑇𝐷, respectively. Below 

these respective temperatures the second peaks are found to contract rapidly with decreasing 

temperature. More specifically, a broad second peak of the liquid contracts slowly under cooling 

Figure 3.5 The temperature evolution of the 2nd-peak position of the PPCFs and 

TPCF of 𝐶𝑢64𝑍𝑟36. Abrupt changes in the peak trajectories occur for 𝑔𝐶𝑢𝐶𝑢(𝑟) at 

𝑇𝐴 and for 𝑔𝑍𝑟𝑍𝑟(𝑟)  at 𝑇𝐷. 
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until a sharper peak emerges from within the broad one at the characteristic temperature. As the 

system is cooled further, this MRO feature becomes more sharply defined and the associated 

structure becomes more densely packed. This interpretation is informed by our analysis of the 

PPCFs, which we have decomposed into contributions from atoms that participate in icosahedra 

and those that do not. This decom position is shown for the PPCFs of 𝐶𝑢64𝑍𝑟36 at 750 𝐾 in 

Figure 3.6. Here we denote atoms participating in icosahedra as LPS (standing for locally-

preferred structure) and those that do not as nonLPS. In the top-left panel, it can be seen that the 

Figure 3.6 Decomposition of the PPCFs and TPCFs into contributions from LPS atoms (those that participate in Cu-

centered regular icosahedra) and nonLPS atoms (those that do not). The data here is for 𝐶𝑢64𝑍𝑟36 at 750 𝐾. 
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contribution of the correlations between pairs of LPS atoms is indeed responsible for the sharp 

second peak followed by the distinct shoulder in 𝑔𝐶𝑢𝐶𝑢(𝑟). Similar features can be found in the 

second-peaks of the other PPCFs, though the contribution from LPS atoms is less dramatic.  

The enhanced first and second peaks of the nonLPS-nonLPS PPCFs may appear to be counter 

intuitive at first glance – one would expect the LPS-LPS PPCF to dominate the system at 𝑇𝐺. 

This is indeed the case, however the normalization factor in Equation 3.1 depends on 1/𝑁𝑛𝑜𝑛𝐿𝑃𝑆
2 , 

which increases with decreasing temperature, and thus magnifies 𝑔𝑛𝑜𝑛𝐿𝑃𝑆(𝑟). To correct for this, 

we renormalize 𝑔𝐿𝑃𝑆(𝑟) − 1 and 𝑔𝑛𝑜𝑛𝐿𝑃𝑆(𝑟) − 1 (the total pair correlation functions for LPS 

atoms and nonLPS atoms, respectively) so that the correlation counts are measured relative to the 

total number of atoms in the liquid, rather than the number of LPS (or nonLPS) atoms, which 

changes with temperature*. These functions are plotted for a wide range of temperatures in 

Figure 3.7. The left panel of the figure demonstrates the rapid development of extensive 

domains of connected icosahedra in the system. At high temperatures, icosahedra form almost 

exclusively as isolated clusters of atoms, yielding only SRO signatures in 𝑔𝐿𝑃𝑆(𝑟). Upon 

supercooling, MRO features begin to develop and by 800 𝐾 correlations arise beyond 12 Å 

amongst the icosahedra†. As discussed in Chapter 2, this is very likely an underestimate of the 

degree and extent of icosahedral ordering that occurs under realistic laboratory conditions9,10. 

The trend exhibited by 𝑔𝑛𝑜𝑛𝐿𝑃𝑆(𝑟) with decreasing temperature is nearly reversed from the 

behavior of 𝑔𝐿𝑃𝑆(𝑟) – as the liquid is supercooled, fewer atoms participate in nonLPS 

configurations and the range of the ordering diminishes. Indeed, the extent of the MRO features 

of the correlation function eventually recede such that by 800 𝐾 they extend only weakly to 

                                                 
* These TPCFs are then rigidly shifted up by 1 so that a random distribution again yields a correlation of 1.  
† Fang et al. provide evidence that the MRO being formed by the icosahedra is specifically a Bergman-type 

supercluster21. 
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~8 Å. These findings support the interpretations that 𝐶𝑢64𝑍𝑟36 glass consists of an extensive 

icosahedron network amidst interspersed liquid-like regions of non-icosahedron configurations 

of atoms11,12.  

In the following section we will show that the distinction between LPS and nonLPS (icoshedron-

involved and not) atoms has a chemical aspect in addition to a structural one. That is, chemical 

ordering is involved in the formation of icosahedra and the connections formed amongst allows 

the icosahedron network to “tune” its local compositions.   

3.2 Chemical Ordering & Icosahedron Populations 

Structural models developed by Miracle et al.13,14 and a comprehensive study of metallic glassed 

conducted by Sheng et al.15 strongly suggest that the different types of short-ranged order (SRO) 

and medium-ranged order (MRO) exhibited by metallic glasses are determined largely by 

Figure 3.7 (Left) The total pair correlation function between atoms that participate in Cu-centered regular 

icosahedra. The TPCF is plotted for multiple temperatures, showing the development of icosahedral MRO in 

𝐶𝑢64𝑍𝑟36. (Right) The TPCF for atoms that do not contribute to the icosahedral ordering. By contrast, isolated 

liquid-like regions of nonLPS develop with decreasing temperature. 
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efficient packing schemes*. The locally-preferred structure (LPS) of a glass, then, is determined 

largely by the relative radii and concentrations of its species. The so-called critical ratio, 𝑅∗, is 

defined to be the ratio of the radius of a solute atom to the radius of the “average” solvent 

particle surrounding it: 𝑅∗ ≡
𝑅𝑠𝑜𝑙𝑢𝑡𝑒

�̅�𝑠𝑜𝑙𝑣𝑒𝑛𝑡
. This value is found to strongly dictate the type of local 

packing that is preferred in a glass. For 𝑅∗ ≈ 0.902, regular icosahedral type packing is 

preferred. According to these initial considerations it seems to be impossible for 𝐶𝑢64𝑍𝑟36 to 

develop icosahedral ordering: the Zr solute atoms are larger than the Cu solvent atoms, thus 

𝑅∗ > 1. This alloy is found to deviate from the model, yet it still adheres to the ascribed critical 

ratio for icosahedral. Cu behaves as the central solute atom with a combination of Cu and Zr 

atoms serving as the twelve vertex atoms. In Figure 3.8 we plot the average number of Cu and 

Zr atoms that are found in the shell of a regular icosahedron, with varying temperature. Zr 

                                                 
* It is important to note that the packing of hard spheres does not adequately capture all of the essential features of a 

glass’ structure. The atoms in a glass have an appreciable “softness” due to the harmonic quality of their potentials22. 

In fact, it has been found that hard sphere systems grow crystal-like order near the glass transition, rather than 

icosahedral order23.   

Figure 3.8 (Left) The number of Cu and Zr atoms, respectively, comprising the twelve-atom shell of an average 

icosahedron in  𝐶𝑢64𝑍𝑟36. The shell composition is found to incorporate Zr atoms with increasing frequency at low 

temperatures. (Right) The critical ratio 𝑅∗, is found to reside near 0.902, which is the ideal value for regular 

icosahedral ordering.  
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become incorporated into the average icosahedron shell with increasing frequency as the liquid is 

cooled and icosahedral ordering becomes prolific – this chemical ordering will prove to be of 

significant importance.  The right panel of the figure shows that corresponding values of 𝑅∗, as 

calculated by 𝑅∗ =
12𝑅𝐶𝑢

𝑁𝐶𝑢𝑅𝐶𝑢+𝑁𝑍𝑟𝑅𝑍𝑟
 where 𝑅𝐶𝑢 = 0.855 Å and 𝑅𝑍𝑟 = 1.06 Å*. We find that the 

average icosahedron composition indeed reflects the efficient packing scheme prescribed by 

𝑅∗ ≈ .902. To achieve this packing ratio, an icosahedron takes on a composition ranging from 

𝐶𝑢58.7𝑍𝑟41.3 at 3000 𝐾 to 𝐶𝑢56.7𝑍𝑟43.3 at 900 𝐾. How can the icosahedra achieve a composition 

that is Zr-rich in comparison to the global composition of the alloy, when over 60% of the 

material’s atoms are found to participate in icosahedra? The answer is: by forming Zr-rich 

connections.  

Before continuing, we note that a sharp feature appears below 900 𝐾 in the curves in Figure 3.8; 

this sudden growth in the representation of Zr atoms in the icosahedron shell coincides with the 

rapid percolation of the icosahedron domain. However, this may be an artifact of the system 

being insufficiently relaxed at these low temperatures. It is not clear that this is the case, 

however, as the deflection is found to reverse directions below 𝑇𝐺, where the system is surely 

insufficiently relaxed. 

                                                 
* These are effectively “hard sphere” radii – they are half the minimum pair-distances recorded in 𝑔𝐶𝑢𝐶𝑢(𝑟) and 

𝑔𝑍𝑟𝑍𝑟(𝑟) at 2500 𝐾.   
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Figure 3.9 shows  on a log scale versus inverse temperature the growing number of vertex, edge, 

face-sharing, and interpenetrating connections that form per icosahedron with decreasing 

temperature. The frequency of each connection type grows exponentially as the liquid is cooled 

below 𝑇𝐴, and this exponential growth accelerates for the non-interpenetrating connections for 

temperatures below 𝑇𝐷. An analysis of the chemical compositions of these connections show that 

the non-interpenetrating connections are all significantly Zr-rich in comparison with the 

icosahedron shell composition16. Near 𝑇𝐺, over 75% of the vertex-shared atoms, 80% of the 

edge-shared atoms, and 50% of the face-shared atoms are Zr atoms, whereas the shell 

composition is ~43% Zr. The composition of the interpenetrating connections, which require 

two icosahedra to share 7 atoms – 5 shell atoms are shared, and the Cu center of one icosahedron 

serves as a shell atom of the other (and vice versa) – matches nearly perfectly the icosahedron-

Figure 3.9 The number of vertex-sharing, edge, face, and 

interpenetrating connections present per icosahedron, plotted on a 

log scale versus inverse temperature. 
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shell composition. An interpenetrating connection involves the coordination of too many atoms 

for the icosahedra to preferentially share Zr atoms over Cu atoms in the shell.  

Though straight forward, this analysis of the chemical ordering that is mediated by the 

connections between icosahedra greatly informs our understanding of the utility of forming a 

highly-connected icosahedron network; furthermore, this is the first known account of this 

chemical ordering in Cu-Zr alloys. It is widely assumed by the current literature on Cu-Zr glasses 

and other icosahedron-forming systems that only the interpenetrating connections between 

icosahedra played an important role in the icosahedron network. While it is true that it is these 

connections that are chiefly responsible for making the network strong and elastic in the 

Figure 3.10 The concentration of: Cu atoms in an average icosahedron (red 

dashed-line), Cu atoms in the icosahedron domain (red circles), Cu atoms in 

non-icosahedron structures (yellow squares), Zr atoms in an average icosahedron 

(blue dashed-line), Zr atoms in the icosahedron domain (blue circles), Zr atoms 

in non-icosahedron structures (brown squares).  
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glass17,18, this bias is also partially a matter of mere convenience*. Here we see that non-

interpenetrating connections play an essential role in facilitating icosahedral ordering – they 

mediate the sharing of Zr atoms amongst icosahedra such that the icosahedra can exist in a 

locally Zr-rich environment while the composition of the overall icosahedron domain is, 

necessarily, closer to the alloy composition. Stated differently, icosahedron domains are not only 

limited by geometric frustration, they are also limited by the alloy’s composition. Non-

interpenetrating connections between icosahedra allow the local composition of the system to be 

“tuned” to accommodate icosahedral ordering.  

This chemical ordering begins to manifest on a macroscopic level as the liquid is supercooled. 

Figure 3.10 shows the concentration of Cu and Zr atoms, respectively, in an average 

icosahedron (LPS), in the population of all icosahedra (FLD), and in the population of atoms not 

involved in icosahedra (nonLPS). Below 𝑇𝐴, the composition of nonLPS population begins to 

become Cu-rich relative to the native alloy composition in order to accommodate the growing 

population of icosahedra. Below 𝑇𝐷, the compositions of the LPS and FLD deviate from one 

another – as the FLD becomes extensive with system size, Zr-rich connections form so that the 

local composition of the LPS is preserved, but the composition of the FLD approaches that of the 

alloy. Indeed, by 𝑇𝐺 the LPS composition is roughly 𝐶𝑢57𝑍𝑟43, whereas the FLD composition is 

𝐶𝑢60𝑍𝑟40, and the nonLPS regions of the glass are dramatically Cu-rich with a composition of 

𝐶𝑢73𝑍𝑟27. We thus conclude that supercooling 𝐶𝑢64𝑍𝑟36 leads to pronounced chemical ordering 

                                                 
* It is trivial to identify interpenetrating connections in the icosahedron network. Two icosahedra whose centers are 

Voronoi neighbors must be interpenetrating. Thus one can construct the interpenetrating network immediately from 

the results of the Voronoi analysis. Unfortunately, this convenience appears to bias much of the analysis towards this 

end. One of my first major projects as a graduate student was to write some Python code that would allow me to 

thoroughly analyze all connection types in the icosahedron network.  
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in the material such that the glass consists of a Zr-rich backbone of connected icosahedra amidst 

Cu-rich liquidlike defect regions.        

Lastly, we discuss the temperature-dependent evolution of the Cu, Zr, and total populations of 

the LPS and nonLPS structures in a simulation containing 3 × 104 atoms (Figure 3.11). The 

rapid exponential growth of the number of atoms involved in the LPS is quite striking – 

extrapolating this growth to low temperatures, where our simulation falls out of equilibrium, 

suggests that every atom in the system would participate in an icosahedron by 720 𝐾, were we 

able to continue to observe ergodic behavior here. This temperature resides significantly above 

the Kauzmann temperature (𝑇𝑘 ≈ 684 𝐾), where the VFT-extrapolation of 𝜂(𝑇) predicts that the 

liquid viscosity diverges. We argue that both frustration and system-composition constraints are 

bound to limit the growth of icosahedral ordering such that the extrapolated behavior to 720 𝐾 

Figure 3.11 The number of atoms participating in icosahedra and non-

icosahedra in a 3 × 104 atom simulation, on a log scale versus inverse 

temperature. 
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eventually breaks down. This barrier to icosahedral ordering may then cause 𝜂(𝑇) to fall beneath 

its VFT-extrapolated trajectory such that the divergence at 𝑇𝑘 is never realized. Of course, this is 

merely a conjecture at this stage, and is one that cannot be investigated using our current 

methodologies. That being said, it is natural to compare the extrapolated behaviors of these 

quantities: the supposed divergence at 𝑇𝑘 is intimately related to structural ordering in the system 

as the excess entropy of the liquid vanishes here. Yet, we find that the liquid structure becomes 

terminally-occupied by icosahedra above 𝑇𝑘. Perhaps our VFT fit of 𝜂(𝑇) did not include enough 

low-temperature data to provide a reliable extrapolation, and 𝑇𝑘 indeed resides near 720 𝐾. 

These considerations are highly speculative, but are worth being made.     

3.3 Summary & Outlook 

In this chapter, we analyzed static-signatures of the developing icosahedral ordering that 

ultimately dominates 𝐶𝑢64𝑍𝑟36 glass and connected them with recent empirical studies of 

metallic liquids. Our simulation reproduces the anomalous thermal contraction of the first 

coordination shell and supports the structural interpretation that explains this phenomenon3. We 

then analyzed the temperature evolution of the liquid static structure factor and pair correlation 

functions, supporting empirical findings that liquid fragility can be quantifiably-linked to 

measurable structural features7. 

A discussion of packing efficiency revealed that an icosahedron requires a composition that is 

Zr-rich relative to the alloy composition. Ultimately we find that non-interpenetrating 

connections between icosahedra allow icosahedra to preferentially share Zr atoms amongst one 

another and thus “tune” their local composition. This leads to dramatic chemical ordering in the 
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supercooled liquid, resulting in a highly-connected, Zr-rich rigid icosahedron network amidst 

Cu-rich liquid like defects in the glass.  

In retrospect, it is surprising that the chemical ordering that occurs in conjunction with the 

formation of the icosahedron network has been largely overlooked by most numerical studies of 

Cu-Zr. Indeed, the compositional requirements for forming specific local structures is well 

known14,15. Yet, our analysis appears to be unique - at least in the context of Cu-Zr alloys. The 

combined simplicity and magnitude of these findings makes this stand out, in my opinion, as one 

of the most resounding results presented in this dissertation. We must ultimately look for 

techniques that would allow empirical studies to detect this chemical ordering*. As a last remark, 

it is interesting to consider that 𝐶𝑢64𝑍𝑟36 is a better glass former than is 𝐶𝑢57𝑍𝑟43 even though 

the latter composition is nearly ideal for the formation of an individual icosahedron. This is 

likely due to the fact that having a more Cu-rich composition requires that icosahedra share Zr 

atoms, resulting in a more highly-connected and thus densely packed icosahedron network, 

which affects the macroscopic structure and overall dynamics of the material in a way that is 

amenable to glass formation.           
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Chapter 4: Methods 

4.1 LAMMPS Simulation 

The numerical simulations conducted in the context of this dissertation are classical molecular 

dynamics (MD) simulations that utilizes the LAMMPS (Large-scale Atomic/Molecular Parallel 

Simulator) software distributed by Sandia National Laboratories1. The results that we present 

come from two sets of simulations of 𝐶𝑢64𝑍𝑟36: 1) a set of 104-atom simulations2, 2) a set of 

3 × 104-atom simulations3. Both simulations utilize a semi-empirical potential developed by 

Mendelev et al.4, which describes many-body interactions using the Finnis and Sinclair (FS)5 

generalization of the embedded atom method (EAM)6,7. The potential was developed with an 

emphasis on reproducing both the liquid and glass properties of Cu-Zr alloys. It was shown to 

provide a very good description of the structures and some properties of 𝐶𝑢64.5𝑍𝑟35.5. The native 

units used by these simulations are the “metal” units (see LAMMPS manual). 

The 104-atom simulations evolved the atoms in the liquid according to a canonical (𝑁𝑉𝑇) 

ensemble, where the volume is set so that the average pressure is zero. A heat bath degree of 

freedom is introduced into the equations of motion to control the temperature of the system via 

Nose-Hoover thermostat algorithm8. The equations of motions are updated using a step size of 

5 𝑓𝑠*, and a quench rate of 1012 𝐾/𝑠 was used. Additional details can be found in our Physical 

Review B publication2. The simulation results were used to report the chemical composition of 

the icosahedron connections, as discussed in 3.2.  

                                                 
* A very important practical note: upon restarting a LAMMPS simulation, one must explicitly set the simulation 

timestep size once again otherwise the default step size will be used. This is not clearly stated in the LAMMPS 

manual and is an easy mistake to make that would have catastrophic consequences.   
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The 3 × 104-atom simulations utilized non-Hamiltonian equations of motion describing 

positions and velocities that sample an isothermal-isobaric (constant 𝑁, 〈𝑃〉, and 〈𝑇〉) ensemble9 

with 〈𝑃〉 = 0 𝑏𝑎𝑟𝑠.  The LAMMPS thermostat parameter 𝑇𝑑𝑎𝑚𝑝 was set to 0.5 𝑝𝑠 and the 

barostat parameter 𝑃𝑑𝑎𝑚𝑝 was set to 5.0 𝑏𝑎𝑟𝑠. The equations of motion were integrated using the 

verlet run style. Cubic periodic boundaries are utilized. Each simulation was initialized with a 

random atomic configuration that evolves at  𝑇 = 3300 𝐾 for 0.5 𝑛𝑠 to achieve equilibrium. The 

liquid was then quenched at a rate of 1011 𝐾

𝑠
 down to its target temperature and subsequently 

relaxed for 20 𝑛𝑠 before collecting structural and dynamical data. The integration time step 

during the quenching and relaxation period was 5 𝑓𝑠. The integration step was then decreased to 

2 𝑓𝑠 and data was collected in snapshots at each time step. For a given target temperature, 

atomic-level data, such as the positions and velocities, were recorded for  0.2 𝑛𝑠 and Voronoi 

analysis was performed for each time step (see 4.3); the system’s Cauchy stress tensor was 

recorded for 8 𝑛𝑠. To help ensure that the observed structural signatures represent the average, 

uncorrelated behavior of the system, additional independent simulations were conducted for each 

target temperature below 𝑇 = 1000 𝐾  as well as for 1050 𝐾, as 2200 𝐾, and 2500 𝐾.  To 

check for system size effects, independent simulations of 𝑁 = 10,000 were also conducted for 

each temperature.  

All aspects of the LAMMPS simulations, data collection, and analysis were conducted by Ryan 

Soklaski using the TACC computing clusters Lonestar and Stampede. The 3 × 104-atom 

simulations were performed using Stampede’s GPU nodes.   
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4.2 Calculating Particle Diffusivities 

The self-diffusion coefficients are calculated using the Green-Kubo formula for the velocity 

autocorrelation function: 

 𝐷 ≡ lim
𝑡→∞

1

𝑁
∑

〈|𝑟𝑖(𝑡) − 𝑟𝑖(0)|2〉

6𝑡

𝑁

𝑖=1

= lim
𝑡→∞

1

3𝑁
∑ ∫〈�⃑�𝑖(𝑡) ∙ �⃑�𝑖(0)〉𝑑𝑡

𝑡

0

𝑁

𝑖=1

 

(4.1) 

where the right equality holds rigorously only in the limit of infinite time and when time-

translation invariance holds, e.g. 〈�⃑�𝑖(𝑡′′) ∙ �⃑�𝑖(𝑡′)〉 = 𝑍(𝑡′′ − 𝑡′). In practice, both of these 

conditions are met satisfactorily – we find good agreement between our calculated values of 𝐷, 

and those that are calculated independently using the mean squared-displacement long-time 

asymptotes4. The angle brackets formally represent an ensemble average. Here, we replace this 

with an average over the initial conditions corresponding to 9 × 104 consecutive time steps. The 

time integral is computed using the trapezoidal discrete sum approximation, summing over 104 

timesteps. As seen in the right panel of Figure 4.1, the error of approximation associated with 

Figure 4.1 (Left) Velocity autocorrelation functions for multiple temperatures plotted versus log time. (Right) The 

percent error of approximation associated with using the trapezoidal sum method in lieu of an integral.  
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using the trapezoidal sum is less than 0.001% for temperatures above 800 𝐾, and never exceeds 

1%. Note in the left panel of Figure 4.1 that the high temperature velocity autocorrelation 

functions exhibit non-exponential, slowly decaying long-time tails that are common in fluids and 

are associated with the development of vortices10. One must be careful to check that the integral 

has converged sufficiently when these long tails are present. The value of the particle mean-

squared displacement is calculated using the equation: 

 〈|𝑟𝑖(𝑡) − 𝑟𝑖(0)|2〉 = 2 ∫(𝑡 − 𝑠)〈�⃑�𝑖(𝑡) ∙ �⃑�𝑖(0)〉𝑑𝑠

𝑡

0

 

(4.2) 

which, again, requires time-translation invariance to hold rigorously. We utilize the same 

ensemble average and time integral approximations here as described above. 

The merit of utilizing velocity autocorrelations in lieu of recording the atom mean squared-

displacement trajectories is that, for the latter measurement, one must track every instance that an 

atom passes through a periodic boundary and correct the trajectory to account for this “warp”. 

While this is not difficult, it is an extra step of analysis that can be avoided if one records the 

atom velocities. 

The velocity correlations were computed using a Python program, effic_diff_N30K.py, written 

by Vy Tran and Ryan Soklaski. The diffusion coefficients and mean squared-displacement 

trajectories were calculated and analyzed in an iPython notebook, New_Diffusion.ipynb, written 

and maintained by Ryan Soklaski. All relevant derivations, background research, and other 

related work was performed by Ryan Soklaski.    
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4.3 Calculating Viscosity 

The liquid viscosity was calculated using the Green-Kubo formula: 

 𝜂 =
𝑉

𝑘𝐵𝑇
∫〈𝜎𝑖𝑗(𝑡)𝜎𝑖𝑗(0)〉𝑑𝑡

∞

𝑜

 

(4.3) 

where 𝑉 is the system volume, 𝑇 is the temperature, 𝑘𝐵 is the Boltzmann constant, and 𝜎𝑖𝑗(𝑡) is 

an off-diagonal element of the time-dependent Cauchy stress tensor. The stress tensor can be 

calculated from summing atomic-quantities: 

 𝜎𝑖𝑗 =
1

𝑉
∑ (𝑚𝛼�⃑�𝑖

𝛼�⃑�𝑗
𝛼 + ∑ �⃑�𝑖

𝛼𝛽
(𝑟𝛼 − 𝑟𝛽)

𝑗
𝛽>𝛼

)

𝛼

 

(4.4) 

where 𝑚, �⃑�, and 𝑟 are the mass, velocity, and position of a particle. 𝛼 and 𝛽 are summation 

indices that run over each atom. 𝑖, 𝑗 are cartesian component indices. �⃑�𝛼𝛽 is the force exerted on 

particle 𝛼 due to particle 𝛽, with periodic boundaries used. This tensor excludes the many body 

force term that is included in the FS-EAM style potential. 𝜎𝑖𝑗 is formally symmetric when using 

the EAM-FS potential. This tensor is recorded from LAMMPS during simulations. The angular 

brackets in equation 4.3 are replaced with an average over initial conditions taken over 106 

consecutive timesteps. Simpson’s rule was used to approximate the integral. The error associated 

with this approximation was negligible.  

It is difficult to obtain converged values of 𝜂 – integrating the autocorrelation function of the 

macroscopic quantity 𝜎𝑖𝑗 produces significantly more noise than does, for example, the 

microscopic velocity autocorrelation function, which can be averaged over all of the atoms. This 

is why it is necessary to average over so many initial conditions and to use a relatively large 
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system size (3 × 104 atoms). Additionally, we utilize a trick derived by Daivis and Evans11 (see 

the appendix of the cited work) that allows the stress tensor to be re-summed to utilize all of its 

elements (rather than excluding its diagonal elements), and thus improve the statistics of the 

Green-Kubo integral. The revised form of the Green-Kubo relation is: 

 𝜂 =
𝑉

10𝑘𝐵𝑇
∫ ∑〈𝑃𝑖𝑗(𝑡)𝑃𝑖𝑗(0)〉

𝑖,𝑗

𝑑𝑡

∞

𝑜

 

(4.5) 

where 𝑖𝑗 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑥𝑦, 𝑦𝑥, 𝑥𝑧, 𝑧𝑥, 𝑦𝑧, 𝑧𝑦 (all entries of the 9-element tensor) and  

 𝑃𝑖𝑗 =
𝜎𝑖𝑗 + 𝜎𝑗𝑖

2
−

𝛿𝑖,𝑗

3
∑ 𝜎𝑘𝑘

𝑘

 
(4.6) 

These relationships hold only in isotropic fluids and cannot be used near 𝑻𝑮. We confirmed 

that equations 4.3 and 4.4 yield the same value of 𝜂, and found that the latter provides a better-

converged result. The Maxwell relaxation time is computed directly from 𝜂:  

 𝜏𝑀 =
𝑘𝐵𝑇

𝑉

𝜂

〈𝜎𝑖𝑗(0)2〉
 

(4.7) 

 

The stress tensor autocorrelation integrals were performed by Vy Tran and Ryan Soklaski in a 

Mathematica notebook maintained by Vy Tran. Further analysis, including matters regarding the 

Stokes-Einstein relationship, analytical fits, and data plots were conducted in the iPython 

notebooks, New_Diffusion.ipynb and Plotting_Data.ipynb, that were written and maintained by 

Ryan Soklaski. 
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4.4 Voronoi Analysis 

Voronoi analysis was performed utilizing the Voro++ software library written by Chris Rycroft. 

The high performance of this software was essential for the large volume of data that was 

processed. The Voronoi analysis was performed using weighted bisectors (with radii BLAH) and 

with periodic boundaries. The Voro++ code was modified by Ryan Soklaski so that the 

command-line utility can read from std-in and write to std-out.  

Voro++ does not natively support small face removal. Vy Tran wrote a program to remove small 

faces from Voronoi cells. A small face was removed from a Voronoi cell if that face comprised 

less than 0.5% of the cell’s surface area. This cutoff area was determined by finding the cutoff 

fraction which “stabilized” the average coordination number of the system: 
𝑑(𝐶𝑁)

𝑑(𝑐𝑢𝑡)
=

0 & 
𝑑2(𝐶𝑁)

𝑑(𝑐𝑢𝑡)2 > 0. A problem with removing faces using this method is that neighbor pairs are no 

longer guaranteed to by symmetric. That is, a face joining atom A and atom B may be a small 

face for A, but not for B. In this instance, the face is removed from A and not from B and thus A 

will be a neighbor of B but B will not be a neighbor of A. It was determined that this issue had 

no effect on our analysis, but it could easily manifest in other types of analysis. To avoid this 

issue, one can specify an absolute cutoff area rather than a relative fraction.  

The Voronoi analysis and small face removal was performed using the TACC facilities via a 

Python program, lammps_rewrite_serial.py, written by Vy Tran*. All relevant data collection and 

analysis was performed by Ryan Soklaski. 

                                                 
* Voro++ is called as a subprocess by Python in this program. 



113 

 

4.5 Pair Correlation & Static Structure Analysis 

Pair correlations were calculated for all recorded position timesteps. A binning algorithm was 

written so that pairs separated beyond 𝑑𝑐𝑢𝑡 (≈ 16 Å) were not considered. This is essential for 

improving performance efficiency as it reduces the complexity from the naïve 𝑁2 scaling. 

Periodic boundaries are accounted for using the minimum image method: 

 𝑑𝑖
𝛼𝛽

= min {|𝑟𝑖
𝛼 − 𝑟𝑖

𝛽
|, |𝑟𝑖

𝛼 − 𝑟𝑖
𝛽

| − 𝐿𝑖} 
(4.8) 

where 𝛼 and 𝛽 index atom IDs, 𝑖 ∈ {𝑥, 𝑦, 𝑧}, “min” takes the minimum value of its arguments, 𝐿𝑖 

is the simulation box length, and 𝑑𝑖
𝛼𝛽

 is the distance between atoms 𝛼 and 𝛽 along direction 𝑖. 

This restricts 𝑑𝑐𝑢𝑡 such that 𝑑𝑐𝑢𝑡 <
1

2
× min{𝐿𝑥, 𝐿𝑦 , 𝐿𝑧}. 

Pair correlations were measured between pairs of atoms that were distinguished by species type 

(e.g. Cu vs Zr), and structure type (e.g. participates in an icosahedron vs does not). 

The binning algorithm was developed by Vy Tran and Ryan Soklaski. A Python program 

(bin_ppc.py, written by Ryan Soklaski) was used to measure the partial pair correlation functions 

for all of the relevant distinctions of atoms, using the TACC facilities. The subsequent 

calculation of the total pair correlation functions, partial and total static structure factors, and all 

of the relevant analysis was conducted in an iPython notebook ppc_plot.ipynb that was written 

and maintained by Ryan Soklaski.      

4.6 Icosahedron Network Analysis & Cluster Lifetimes 

The average local cluster time, 𝜏𝐿𝐶, was measured by recording the time required for an atom to 

lose or gain a Voronoi neighbor. The average lifetime is then given by the weighted-average: 
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 𝜏𝐿𝐶 =
∑ 𝑡𝑖

2
𝑖

∑ 𝑡𝑖𝑖
 

(4.9) 

where 𝑖 runs over all lifetimes recorded for all atoms during a simulation. The icosahedron 

lifetimes, 𝜏𝑖𝑐𝑜𝑠, are calculated using the same methods, but here we detect all instances where an 

atom’s Voronoi signature becomes or departs from 〈0,0,12,0, … ,0〉*. Thus 𝑡𝑖 is the lifetime of a 

single regular icosahedron (with a Cu center). 

Two icosahedra are connected if they share one or more atoms. The icosahedron network is then 

described by utilizing the basic properties of a graph. The icosahedra at a given timestep 

constitute the nodes of the graph, and connections between icosahedra are mapped to edges 

between the corresponding nodes. A frustrated-limited domain (FLD) is formally classified in 

this analysis as connected subgraph. The distribution of connection types, FLD sizes, 

icosahedron composition, FLD composition, number of atoms involved in the icosahedron 

network, and icosahedron IDs are recorded for every timestep for which the atomic position data 

was stored. 

The above measurements were made using a Python program, voro.py, that was written by Ryan 

Soklaski. This program also measured the lifetime of local connectivity (or “Egami time”) (see 

Supplemental Materials of our preprint3). This analysis was performed using the TACC facilities. 

All analyses of the icosahedron population and composition data was performed in an iPython 

notebook, Icos_Network.ipynb, that was written and maintained by Ryan Soklaski. All analyses 

of the local cluster times, icosahedron lifetimes, and FLD properties (sizes, fluctuations, etc.) 

                                                 
* The signature of a Voronoi cell is 〈𝑛3, 𝑛4, … , 𝑛𝑗 , . . 〉, where 𝑛𝑗 denotes the number of faces possessing 𝑗 edges. 
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were performed in an iPython notebook, Plotting_Data.ipynb, that was written and maintained 

by Ryan Soklaski.  
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