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This dissertation contains two completely independent parts. In Part I, I investigate e�ective

�eld theories and their applications in lattice gauge theory. Quantum chromodynamics (QCD) as

a part of the standard model (SM) describes the physics of quarks and gluons. There are several

numerical and analytical methods to tackle the QCD problems. Lattice QCD is the dominant

numerical method. E�ective �eld theories, on the other hand, provide analytic methods to

describe the low-energy dynamics of QCD. To use the e�ective theories in lattice QCD, I develop

chiral perturbation theory for heavy-light mesons with staggered quarks�an implementation of

fermions on lattice. I use this e�ective chiral theory to study the pattern of taste splitting in

masses of the mesons with staggered quarks. I also calculate the leptonic decay constant of

the heavy-light mesons with staggered quarks to one-loop order in the chiral expansion. The

resulting chiral formula provides a suitable �t form to combine and analyze a large number of

decay constants of heavy-light mesons computed from di�erent lattice ensembles with various

choices of input parameters. I perform a comprehensive chiral �t to the lattice data for D

mesons computed by the MILC collaboration. Consequently, I determine the physical values

of the decay constants of D mesons. These precise results place narrow restrictions on the

Cabibbo-Kobayashi-Maskawa (CKM) matrix elements.

In Part II, I introduce the concept of a nonlinear eigenvalue problem by investigating three

nonlinear di�erential equations. First, equation y′(x) = cos[πxy(x)] is investigated. A discrete
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set of initial conditions y(0) = an, leading to unstable separatrix behavior, are identi�ed as the

eigenvalues of the problem. I calculate the asymptotic behavior of the initial conditions an and

their corresponding solutions for large n by reducing the equation to a linear one-dimensional

random-walk problem. Second, I investigate equation y′′(x) = 6[y(x)]2 + x, whose solutions are

called the �rst Painlevé transcendent. I calculate di�erent types of critical initial conditions that

give rise to separatrix solutions for this equation. I work out the asymptotic behaviors of the

initial conditions by reducing the problem to a linear Schrödinger equation. Finally, I investigate

the second Painlevé transcendent, corresponding to equation y′′(x) = 2[y(x)]3 + xy(x). I �nd

that this equation exhibits patterns similar to the �rst Painlevé equation.
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PART I

Staggered Chiral Perturbation Theory

• Chapter 1� Technical Introduction to Part I

• Chapter 2� Chiral Perturbation Theory for All-Staggered Heavy-Light Mesons

• Chapter 3� Charmed Pseudoscalar Meson Decay Constants

This part includes three chapters. In Chapter 1 quantum chromodynamics (QCD) is reviewed brie�y,

and some important numerical and analytical methods to tackle the QCD problems are discussed. Stag-

gered chiral perturbation theory (SχPT) is developed in Chapter 2. Finally, an application of SχPT in

calculating the decay constants of D mesons is presented in Chapter 3.





1
Technical Introduction to Part I

1.1 Quantum Chromodynamics

The standard model of strong, weak and electromagnetic interactions is a relativistic quantum

�eld theory that describes all known interactions of quark and leptons. This model is a gauge

theory based on the gauge group SU(3)×SU(2)×U(1); the electroweak interactions are described

by the SU(2)×U(1) gauge group, and the strong interaction is described by SU(3) gauge group.

Quantum chromodynamics (QCD), as a part of the standard model, studies the interactions

between quarks and gluons. In the standard model, there are six quark �avors: u (up), d (down),

s (strange), c (charm), b (bottom), and t (top), each of which has three colors transforming as

a triplet under the fundamental representation of the color SU(3) group.

1.1.1 The QCD action

The QCD action is composed of two parts describing matter (fermionic) and gauge �elds

SQCD =

∫
d4x[Lfermion + Lgauge] . (1.1)

The fermionic part of the Lagrangian density

Lfermion =

Nf∑
f=1

3∑
c=1

ψ̄f,c(D/−mf )ψf,c , D/ = iγµ(∂µ − igSAµ) , (1.2)

describes the quarks, with di�erent �avors and colors, and their interactions with gauge �eld

Aµ. Here, f and c denote the the �avor and the color of fermions, respectively, Nf is the number

of �avors, gS is the strong coupling constant, and the gauge �eld is a matrix in the color space
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Aµ = AaµT
a, where T a are the eight generators of the SU(3) gauge group. The gauge part, which

describes only the propagation and interactions of eight gluons, is

Lgauge = −1

2
TrFµνFµν , Fµν = ∂µAν − ∂νAµ − igS [Aµ, Aν ] . (1.3)

A general feature of gauge theories is that the observable quantities do not change under a gauge

transformation. For quark �elds, a gauge transformation is a local transformation of �elds in

the color space given by

ψ(x) → V (x)ψ(x) , (1.4)

where V (x) ∈ SU(3). Here a vector notation in the color index is used for ψ. The �eld strength

Fµν consequently transforms as

Fµν(x) → V (x)Fµν(x)V (x)† , (1.5)

and the QCD Lagrangian is then gauge invariant.

1.1.2 Running coupling constant

Integration of internal loops in Feynman diagrams yields divergent results. To �nd �nite results

and make sense of QFT, one needs to regularize the theory. There are several ways to do this, such

as momentum cuto� regularization, lattice regularization, and dimensional regularization. These

methods, in general, introduce a new energy scale Λ in the theory.1 Then a change in Λ can be

compensated by a change in the parameters of the theory so that all physical quantities become

independent of Λ. This leads to the concept of renormalized parameters and renormalization

group. The renormalized parameters then depend on the energy scale of the process. This

happens even for those parameters of the theory that are (super�cially) dimensionless such as

gS .
2 Considering one loop calculation in QCD, the renormalized (e�ective) strong coupling

constant at energy scale µ is

αS(µ2) =
g2
S(µ2)

4π
=

12π

(33− 2Nf ) ln(µ2/Λ2
QCD)

. (1.6)

1Even in dimensional regularization, a combination of a �xed dimension and a �xed dummy scale µ can be
translated to a cuto� scale Λ. See [1] for more details.

2 One can interpret the beta function as the anomalous dimension of the coupling constant gS .
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For Nf < 16, this relation shows that αS vanishes as µ → +∞, and also suggests that αS gets

large as µ→ ΛQCD. These asymptotic behaviors are two important features of QCD, which are

referred to as asymptotic freedom and con�nement, respectively.

The fundamental scale appearing in Eq. (1.6), ΛQCD ∼ 300MeV, provides a natural scale

to separate the quarks based on their masses. A quark Q is called heavy when its mass is much

larger than this fundamental scale, mQ >> ΛQCD. On the other hand, a quark q is called

light when its mass is much lighter than this fundamental scale, mQ << ΛQCD. Depending

on whether they are light or heavy, quarks show di�erent features in colorless particles such as

mesons. For instance, the quarkonium systems (Q̄Q) are hydrogen-like, while the corresponding

systems with light quarks (pions) are highly relativistic. This stems from the fact that, for

a system of heavy quarks, the e�ective coupling constant αS(m2
Q) is small, implying that on

length scales comparable to the Compton wavelength λQ ∼ 1/mQ the strong interactions are

perturbative and gluons act like photons in quantum electrodynamics (QCD), while this is not

the case for a system of light quarks.

1.1.3 Chiral symmetry

The quarks of the standard model are naturally divided into two classes: u, d and s are light

quarks, whereas c, b and t are heavy quarks. The light quarks sector of QCD posses a very

important symmetry in the limit of massless u, d, and s quarks.

Using the projection operators (1 ± γ5)/2, one can divide the quark �elds into left-handed

and right-handed parts as

ψR = 1
2(1 + γ5)ψ, ψ̄R = ψ̄ 1

2(1 + γ5), (1.7)

ψL = 1
2(1− γ5)ψ, ψ̄L = ψ̄ 1

2(1− γ5). (1.8)

Then, using a matrix notation in �avor space, the light sector of fermionic part of the Lagrangian

density in Eq. (1.1) can be written as

Llightfermion = ψ̄LD/ ψL + ψ̄RD/ ψR − ψ̄LMψR − ψ̄RMψL , (1.9)

whereM = diag(mu,md,ms). In the limit of massless u, d, and s quarks, the Lagrangian density

has two parts (the left-handed and right-handed parts) that can be transformed separately in

�avor space. Therefore, this Lagrangian density is invariant under a global U(3)L ×U(3)R
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transformation in the �avor basis

ψR → URψR, ψ̄R → ψ̄RU
†
R , (1.10)

ψL → ULψL, ψ̄L → ψ̄LU
†
L . (1.11)

This decomposes to SU(3)L × SU(3)R ×U(1)V ×U(1)A, where U(1)V is the singlet vector com-

ponent, i.e., the transformation with UL = UR = exp(iθ) I, and U(1)A is the singlet axial-vector

component, i.e., the transformation with UL = U †R = exp(iθ) I.3 Due to the anomaly appearing

in the quantum level, U(1)A is not a symmetry of QCD even in the limit of massless quarks.

In short, the light sector of the QCD action has SU(3)L × SU(3)R × U(1)V symmetry, in

the limit of massless quarks. But, this symmetry is assumed to be spontaneously broken, giving

rise to eight massless Goldstone bosons. This is addressed in chiral perturbation theory, which

is discussed in subsection 1.4.2.

1.2 Overview of approaches to tackle QCD

Straightforward perturbative calculations, in terms of the coupling constant, are not useful when

αS is large. Several numerical and analytical methods have been developed to tackle problems

in QCD in this regime. In the numerical approach, lattice QCD is the dominant method to

solve QCD problems from �rst principles. E�ective �eld theories, on the other hand, provide an

analytic way to study and organize QCD problems.

1.2.1 Lattice QCD

Lattice QCD is a way to solve the theory from �rst principles, which is developed based on the

Euclidean4 path integral. In the lattice approach the continuum, in�nite volume space-time is

replaced with a set of discrete points with �nite lattice spacing a and in �nite volume. The lattice

formulation helps us perform a numerical calculation on quantum �eld theories. However, in

practice, there are some restrictions in lattice calculations. It can be prohibitively expensive to

generate su�ciently big and �ne lattice con�gurations. This, in turn, can restrict the values of

quark masses to a range which may or may not correspond to their values in the physical world.

3 Instead of the chiral currents corresponding to the U(3)L ×U(3)R symmetry, one can use some linear
combinations of them, which transform under parity as vector and axial-vector currents. U(1)V and U(1)A refer
to the U(1) component of the vector and the axial-vector currents, respectively.

4 Euclidean, i.e., imaginary, time is obtained using the Wick rotation: x0 → −ix4. In Euclidean space-time,
the QCD action is replaced with its Euclidean version; sea Appendix A for details.
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Therefore the lattice data needs to be processed in order to extract physical quantities. This

process requires setting the lattice scale, taking the �nite volume e�ects into account, tuning

quark masses and extrapolating the lattice results to the continuum limit.

Extrapolation and interpolation are essential in extracting desired quantities from lattice

data. The process of interpolating and extrapolating, in general, can increase the level of un-

certainty. Therefore it is very helpful to take advantage of some analytic methods to restrict

the form of the �t functions and decrease the error resulting from extrapolation, and to some

degree, interpolation.

1.2.2 E�ective �eld theories

E�ective �eld theory (EFT) is a very powerful tool in quantum �eld theory. The basic strategy in

developing an e�ective theory is to integrate out unimportant degrees of freedom from the path

integral and describe the important physics in hand based on (approximate) symmetries of the

remaining degrees of freedom. As an application in QCD, e�ective theories can describe some

aspects of physics of systems involving very heavy and/or very light quarks. Chiral perturbation

theory (ChPT) and heavy quark e�ective theory (HQET) are two well-known e�ective theories

developed to investigate the low-energy dynamics in QCD.

As mentioned, any calculation in lattice QCD requires extrapolations and/or interpolations.

The e�ective �eld theories can play an important role in decreasing the uncertainty level by

providing appropriate �t forms. A simple way to proceed is to use the e�ective theories developed

in the continuum limit. The other option is to develop new e�ective theories based on the

symmetries of a lattice QCD action. This helps us have more control on artifacts of discretization

of the lattice action and be able to extrapolate the lattice results to the continuum in a more

systematic way.

Lattice actions may have di�erent symmetries depending on the formulations of quantum

�elds on the lattice. Here our focus is on lattice actions with staggered quarks, for which

staggered chiral perturbation theory (SχPT) is developed to study the low energy dynamics of

the lattice. The main achievement of the �rst part of this dissertation is to expand SχPT to

heavy-light staggered mesons (mesons with one heavy staggered quark and one light staggered

antiquark, or their antiparticles). Then, this theory is applied to extrapolate the lattice results

for decay constant of mesons, generated by the MILC collaboration, to the continuum limit while

the quark masses are extrapolated/interpolated to their corresponding physical values.
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1.3 Lattice QCD

The basic idea in lattice QCD is to replace the continuous Euclidean space-time with a 4 dimen-

sional lattice, with the spacing between the lattice sites denoted by a. The quark �elds, ψ(x)

and ψ̄(x), (or any other matter �eld) reside on the lattice sites. Then one needs to formulate a

discretized version of the fermionic sector of the QCD action. A simple way to perform this step

is to replace the derivatives and the space-time integral with �nite di�erences and a sum over the

lattice sites, respectively. However, this introduces a lattice action which is not gauge-invariant

for nonzero lattice spacing. Because of the vagaries of renormalization this is likely to mean that

the quantized theory still lacks gauge invariance in the limit a → 0 [5]. The alternative is to

construct a lattice theory that is gauge invariant even for a nonzero lattice spacing.

1.3.1 The QCD action on lattice

Having placed the quark �elds on the lattice sites, one needs to formulate a discretized version of

the fermionic sector of the QCD action. This step may violate some of the symmetries that the

QCD action posses in the continuum limit, such as Lorentz invariance or the chiral symmetry

in the massless quark limit. Consider the continuum action for a free fermion

S0
F[ψ, ψ̄] =

∫
d4xψ(x)(γµ∂µ +m)ψ(x) . (1.12)

The partial derivative can be discretized with the symmetric expression

1

2a

(
ψ(x+ aµ̂)− ψ(x− aµ̂)

)
, (1.13)

where x is a lattice site. Then the lattice version of Eq. (1.12) reads

S0
F[ψ, ψ̄] = a4

∑
x

ψ̄(x)
( 4∑
µ=1

γµ
ψ(x+ aµ̂)− ψ(x− aµ̂)

2a
+mψ(x)

)
. (1.14)

This expression has two problems: it is not gauge-invariant, and it su�ers from the existence of

doublers, unwanted extra states (as explained below).

Under the SU(3) gauge transformation, the quark �elds on each site transform as

ψ(x) → V (x)ψ(x) (1.15)

ψ̄(x) → ψ̄(x)V †(x). (1.16)
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In order to have a gauge invariant action, the links joining the neighboring sites need to change

in a speci�c way under the gauge transformation. This requires to de�ne a new �eld, denoted

by Uµ(x) and referred to as link variable, which lives on the link connecting the site x to the

neighbor site x + aµ̂. The link variables are group members of SU(3) group. Under the gauge

transformation they transform as

Uµ(x)→ V (x)Uµ(x)V †(x+ aµ̂) . (1.17)

This property of the link variables is essential to arrive at a gauge-invariant expression for the

lattice action

S0
F =

∑
x

ψ̄(x)

{∑
µ

γµ∇µψ(x) +mψ(x)

}
, (1.18)

where

∇µψ(x) =
1

2a

(
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

)
. (1.19)

The link variable Uµ(x) can be associated with the gauge �eld Aµ via the path ordered integral

(de�ned in the continuum QCD)

Uµ(x) = P exp

{
ig

∫ x+aµ̂

x
dyν Aν(y)

}
= 1 + iagAµ(x+ aµ̂/2) + . . . . (1.20)

This relation between link variables and gauge �eld will be used to de�ne gauge actions on the

lattice.

To address the second problem, the doubling problem, one can investigate the propagator

in momentum space derived from the action Eq. (1.14), with all link �elds Uµ = 1,

S(ap) =
1

i
∑

µ γµ sin(apµ) + am
. (1.21)

In the massless case, this propagator not only has a pole when p = 0, but also when pµ = 0 or

pµ = π/a for each µ = 1, . . . , 4, i.e., on all 16 corners of the Brillouin zone of the four dimensional

lattice. (The problem holds for the massive case as well.) Thus, instead of one fermion, this

naive action actually has 16 fermions which can appear in the quantum loops and contribute to

physical processes. This is the notorious doubling problem of lattice fermions. Several fermion

action implementations are proposed to address this issue. We focus on the Kogut-Susskind

implementation of fermions [2�4], the so-called staggered fermions.
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1.3.2 The gauge-invariant objects and the gauge action

The link variables are introduced in order to build a gauge-invariant expression for the fermionic

part of the action. However, one can build gauge invariant objects that do not involve any

fermion �elds. As a matter of fact these objects can be exploited to construct the gauge action

on lattice. This is not surprising because we already know that the link variables are associated

with the gauge �eld.

Consider the products of link variables around an elementary square loop (so-called plaque-

tte)

Uµν(x) = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aµ̂+ aν̂)U †ν (x+ aν̂) . (1.22)

It is easy to verify that Tr(Uµν) is gauge invariant. In general, the trace over products of link

variables around any closed loop on the lattice (a so-called Wilson loop) is a gauge invariant

quantity. The simplest gauge action, the original form introduce in Ref. [5], is then the sum over

all plaquettes

SG =
2

g2

∑
x

µ<ν∑
µ,ν

Re Tr(1− Uµν(x)) , (1.23)

where g is the bare coupling constant. This action reduces to
∫
ddx 1

2Tr FµνFµν up to terms of

O(a2). The O(a2) corrections can be reduced by using improved actions.

1.3.3 The doubling problem

The basic reason for fermion doubling on the lattice is that the Dirac equation is �rst order while

its lattice Hermitian version is a second order di�erence equation which doubles the number of

generic solutions per dimension. The following toy model shows that the origin of fermion

doubling lies in the use of symmetric form for the lattice derivative [6]. Consider the di�erential

equation

− i d
dt
f(t)− ωf(t) = 0, (1.24)

with the solution f(t) = f(0)eiωt. There is no unique way to derive the equivalent di�erence

equation in a lattice with �nite lattice spacing. For instance, replacing the derivative with the

right lattice derivative, one �nds

− i f
(
(n+ 1)a

)
− f

(
na
)

a
− ωf(na) = 0, (1.25)

with can be solved as

f(na) = (1 + iωa)nf(0) = en ln(1+iωa)f(0). (1.26)
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The continuum limit of this solution, a → 0, recovers the solution of the original di�erential

equation, i.e., f(t) = f(0)eiωt. However, if one wishes to respect the Hermiticity of the operator

i ddt , using the symmetric lattice derivative one obtains

− i f
(
(n+ 1)a

)
− f

(
(n− 1)a

)
2a

− ωf(na) = 0. (1.27)

This second order di�erence equation has two generic solutions:

ein(arcsinωa) and (−1)ne−in(arcsinωa) , (1.28)

where −π
2 < arcsin(ωa) < π

2 . These solutions exhibit di�erent characteristic behaviors in the

continuum limit. One solution recovers the solution of the original di�erential equation, while

the other one has an alternating sign factor (−1)n which does not possess a continuous limit.

Similar to the term with factor (−1)n in the toy model, the doubler solutions are pure

lattice artifacts having no continuum analog. As a matter of fact, these doubler solutions are

the fermionic modes appearing at the corners of the Brillouin zone where the function sin(pµa)

vanishes. One possible way to get rid of these unwanted fermionic modes is to decrease the

Brillouin zone by doubling the e�ective lattice spacing for each fermion �eld. One can think of a

24 hypercube of the lattice as a block over which the fermionic degrees of freedom are distributed,

in such a way that the e�ective lattice spacing for each fermion �eld is twice the original lattice

spacing. The Kogut-Susskind fermion formalism, also called the staggered fermions, provides a

way to remove some of the unwanted fermionic modes by doubling the e�ective lattice spacing.

In fact this formalism reduces the sixteen-fold degeneracy of the naive discretization to four

fermions, which are known as four tastes.

1.3.4 Staggered fermions

Consider the naive action for a Dirac �eld, Eq. (1.18),

S0
F =

∑
x

ψ̄(x)

{∑
µ

γµ∇µψ(x) +mψ(x)

}
.

By making a local change of variable

ψ(x) = Γx/a χ(x) , ψ̄(x) = χ̄(x) Γ†x/a , (1.29)
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with

Γx/a = γ
(x1/a)
1 γ

(x2/a)
2 γ

(x3/a)
3 γ

(x4/a)
4 , (1.30)

the naive fermion action, Eq. (1.18), can be written as

SKS =
∑
x

χ̄(x)

{∑
µ

ηµ(x) ∇µ χ(x) +mχ(x)

}
, (1.31)

where

ηµ(x) ≡ Γ†x/a γµ Γµ̂+x/a = (−1)(x1+···+xµ−1)/a . (1.32)

In Eq. (1.31), the phase ηµ(x), the only remnant of the original Dirac structure, leaves the

action spin-diagonalized. Therefore, the four Dirac components decouple from each other, and

the fermion �eld χ(x) can be restricted to a single component rather than four components.

This, in turn, reduces the doubling by a factor of four, from sixteen to four. The expression

in Eq. (1.32), with one-component fermion �eld χ(x), is the action of the staggered fermion

formulation, and χ(x) is called the staggered �eld.

Now, at each block of 24 hypercube, labeled by xblock, a new �eld qαi(xblock), where both α

and i run from 1 to 4, can be constructed from the one-component staggered fermion �elds χ(x)

living at the sites within the hypercube. It turns out that α can be interpreted as a Dirac index,

while i refers to the taste of the fermion. The taste index is a new quantum number labeling the

four remaining fermion species. The �eld qαi(xblock) lives on a blocked-lattice, where its e�ective

lattice spacing is twice the original lattice spacing; thereby the e�ective Brillouin zone is reduced

by a factor of two. Thus, as will be discussed later, the new �eld is free of doublers, and its four

tastes have desired continuum forms, unlike the �fteen doubler modes of the naive discretization.

1.3.4.1 Construction of Dirac �elds

Dividing the lattice into blocks of 24 hypercubes, each block (labeled by y) has 16 sites with

coordinate x = 2y + aA, where Aµ = 0, 1. It should be emphasized that the blocked-lattice

spacing is twice the original lattice spacing; therefore, when the label y refers to the blocks, its

units are understood to be twice that of the label x that refers to sites of the original lattice.

The one component-staggered fermion �elds χ(x) living at the sites within each block can be
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assembled into Dirac �elds q(y) as

qαi(y) =
1

8

∑
A

(ΓA)αi UA(y) χ(2y + aA) , (1.33)

q̄αi(y) =
1

8

∑
A

χ̄(2y + aA) U †A(y) (Γ∗A)αi , (1.34)

where α and i label the Dirac and taste indices, respectively, ΓA is de�ned in Eq. (1.30), and

UA(y) is a product of the gauge links over some �xed path from 2y to 2y + aA. Both α and i

run from 1 to 4 in spin and taste spaces, respectively. Having constructed the Dirac �elds in the

spin-taste basis, the quark action in Eq. (1.31) can be expressed in terms of q(y). In the free

case where Uµ(x) = 1, Eq. (1.31) reads [7]

SKS = 16
∑
y

q̄(y)

{
m(I ⊗ I) +

∑
µ

[(γµ ⊗ I)∇µ + a (γ5 ⊗ ξµξ5) ∆µ]

}
q(y) , (1.35)

where I is the identity matrix, and the ξ matrices correspond to the γ matrices in taste space,

and ∇µ and ∆µ are de�ned by

∇µq(y) =
1

2b

(
q(y + bµ̂)− q(y − bµ̂)

)
, (1.36)

∆µq(y) =
1

b2

(
q(y + bµ̂)− 2q(y) + q(y − bµ̂)

)
, (1.37)

where b = 2a is the blocked-lattice spacing. The factor of 16 in Eq. (1.35) arises from the fact

that there are 1/16 as many y points as x points. In the interacting case, Eq. (1.35) has another

dimension-�ve, O(a), term, involving the �eld-strength tensor Fµν , and also higher contributions
of O(a2) [7]. It is manifest that the theory in the continuum limit has four degenerate tastes,

with exact SU(4) symmetry in taste space for each �avor of quark.

In the free case, the propagator in momentum space is (see Appendix B for details)

S(p) =
a

16

∑
µ−i sin(1

2apµ) Γµs-t(ap) + am∑
µ sin2(1

2apµ) + (am)2
. (1.38)

where

Γµs-t(ap) ≡ (γµ ⊗ I) exp
[
i1

2apµ(γµγ5 ⊗ ξµξ5)
]
. (1.39)

It is noteworthy that Γµs-t(p) obeys the same anticommutator algebra as γµ ⊗ I. The spin-taste
quarks are free of doublers, because the e�ective Brillouin zone is reduced by a factor of two as

is manifest by comparing the denominator of the propagator to Eq. (1.21). However, the taste
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degree of freedom itself is an unwanted one and must be removed. The removal, at the quantum

loop level, can be accomplished using the so-called fourth-root procedure.

1.3.4.2 Symmetries of the staggered action

The staggered fermion action is invariant under several discrete symmetries such as the shift

symmetry of the lattice [8]. Here, our focus is on a very important continuous symmetry of the

staggered fermion action for massless quarks. In this limit, the action Eq. (1.31) is invariant

under a continuous even/odd U(1)e×U(1)o transformation

χ(x)→ exp{iαe}χ(x) , χ̄(x)→ χ̄(x) exp{−iαo} for x = even , (1.40)

χ(x)→ exp{iαo}χ(x) , χ̄(x)→ χ̄(x) exp{−iαe} for x = odd , (1.41)

where αe and αo are the symmetry parameters, and a site x is called even or odd if
∑

µ(xµ/a)

is even or odd, respectively. The physical meaning of this symmetry is that the staggered

fermionic degrees of freedom on lattice can be divided into two parts that are decoupled in the

massless quark limit. This is a remnant of the usual chiral symmetry for massless fermions in

the continuum.

The axial part of the U(1)e×U(1)o symmetry, αe = −αo ≡ αε, in the spin-taste basis is

q(y)→ exp {iαε (γ5 ⊗ ξ5)} q(y) , q̄(y)→ q̄(y) exp {iαε (γ5 ⊗ ξ5)} . (1.42)

This symmetry, called the U(1)ε symmetry, is not a singlet in taste space, thereby it is free from

the anomaly at the quantum level. This results in existence of a Goldstone boson on the lattice

in the massless quark limit, and guarantees that there is no additive mass renormalization for

staggered fermions.

1.3.5 Path integral and numerical calculations

The Euclidean path integral is the basic tool to quantize the �eld on a lattice; it relates a

quantum problem to a statistical-mechanical system. The lattice partition function for a system

of fermions and gauge �elds is

Z =

∫ ∏
x,µ

dUµ(x)
∏
x

[dψ̄xdψx]e−SG(U)−ψ̄M(U)ψ , (1.43)
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where SG(U) is the gauge action, while ψ̄M(U)ψ is the fermion action with a matrix notation for

the degrees of freedom of the fermion �eld. Here, dUµ(x) is the invariant SU(N) Haar measure

and [dψ̄xdψx] denotes the integration over the Grassmann �elds with all �avors and tastes.

Because of its quadratic form, the integration over the Grassmann �elds can be carried out

analytically, leading to

Z =

∫ ∏
x,µ

dUµ(x)det[M(U)] e−SG(U) . (1.44)

For staggered fermions, each fermion with a di�erent �avor and taste (in the continuum limit)

would get its own determinant factor

det[M(U)] =
∏
f,t

det[M(U)f,t]. (1.45)

The fourth-root trick is the suggestion to replace det[M(U)] by its fourth root to get rid of the

contributions from taste degree of freedom

Z =

∫ ∏
x,µ

dUµ(x)det
1
4 [M(U)] e−SG(U) . (1.46)

Having de�ned the partition function, one can calculate the expectation value of some

observable O as

〈O〉 =
1

Z

∫ ∏
x,µ

dUµ(x) O detδ[M(U)] e−SG(U) , (1.47)

where δ = 1/4 for rooted staggered fermions. Now, some numerical methods like Monte Carlo

can be used to compute expectation values of desired observables. The basic idea in the Monte

Carlo method is to generate a set of gauge �eld con�gurations {U (i)
µ (x)}, i = 1, . . . , N , with

probability distribution proportional to detδ[M(U)] e−SG(U). Expectation values 〈O〉 are then
computed as an average over the ensemble of gauge �eld con�gurations,

〈O〉 =
1

N

N∑
i=1

O(U (i)) , (1.48)

where O(U (i)) is the observable evaluated on the gauge �eld con�guration i.
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1.4 E�ective Field Theories

As described before, the quarks of the standard model are naturally divided into two classes

depending whether they are light or heavy comparing to ΛQCD. The light class contains u, d

and s quarks, whereas the heavy class contains c, b and t quarks. Physical quantities (such as a

decay constant) involving light quarks, with mass mq, can be expressed in powers of mq/ΛQCD

(with logarithmic corrections) within the framework of e�ective �eld theories. Similarly, physical

quantities involving heavy quarks, with massmQ, can be expressed in powers of ΛQCD/mQ (with

logarithmic corrections). In both limits, where mq → 0 and/or mQ → ∞, QCD exhibits new

symmetries, which can be used to work out the form of corresponding e�ective Lagrangians.

Chiral perturbation theory (ChPT), is constructed based on the approximate chiral symmetry

of the light quarks. It provides a systematic method to study the low energy regime of QCD. On

the other hand, to study systems involving heavy quarks, heavy quark e�ective theory (HQET)

is developed based on the approximate spin and �avor symmetries of the heavy quarks of the

theory. Both ChPT and HQET can be generalized to include the discretization e�ects appearing

in lattice QCD. This is accomplished through Symanzik's idea to construct a local (continuum-

like) e�ective �eld theory (EFT) for the lattice theory.

1.4.1 General discussion of EFTs

E�ective �eld theory provides a systematic formalism for the analysis of multi-scale problems [9].

The basic premise of e�ective theories is that dynamics at low energies (or large distances) does

not depend on the details of the dynamics at high energies (or short distances) [10]. The strategy

is to integrate out any feature of the physics at distance scales small compared to the scale of

interest [11]. This is particularly important in QCD, where quark masses have di�erent energy

scales and the αS(µ2) can run dramatically between these energy scales.

Consider a quantum �eld theory with a large scale M , which could be the mass of a heavy

quark or the mass of a meson. Now suppose we are interested in the physics at some lower scale

E << M . The e�ect of physics at high energy on the physics at the scale E, can be described

by a series of interactions with di�erent dimensions each of which suppressed by an appropriate

power of 1/M [11]. This can be done in a systematic way in three steps [9]:

1. Choose a cuto� Λ < M and divide the �elds of the theory into low-frequency and high-

frequency modes,

φ = φL + φH, (1.49)
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where φL contains the Fourier modes with frequency ω < Λ, while φH contains the remain-

ing modes. (φH might be a particle which is too heavy to be excited at energy E << M ,

or just the high-frequency �uctuations of a light particle. The former case can be referred

as complete decoupling, and the latter one as partial decoupling [12].) By construction,

low-energy physics is described in terms of the φL �elds.

2. Now integrate out the high-frequency part by doing the path integral over φH∫
DφLDφH eiS(φL,φH) =

∫
DφL eiSΛ(φL), (1.50)

where

eiSΛ(φL) =

∫
DφH eiS(φL,φH) (1.51)

is called the Wilsonian e�ective action. Note that, by construction, this action depends

on the choice of the cuto� Λ. SΛ is non-local on scales ∆x ∼ 1/Λ, because high-frequency

�uctuations have been removed from the theory

3. In the �nal step, one can expand SΛ in terms of local operators Oi,

SΛ =

∫
dDx

∑
i

giOi(x) ≡
∫
dDxLe�(x). (1.52)

The expansion is called operator product expansion (OPE) which produces the local in-

teractions in the e�ective theory. The sum runs over all local operators (allowed by the

symmetries of the problem) multiplied by coupling constants gi, which are also referred to

as Wilson coe�cients. The local operators are, in general, suppressed by powers of 1/M

depending on their super�cial dimension.

The e�ective Lagrangian is de�ned as Le�(x) =
∑

i giOi(x). The local operators Oi describe
the long distance physics (the physics at distance scales bigger than M−1) while the coupling

constants gi incorporate the �unknown physics� in the short distance (the physics at distance

scales less thanM−1). The process of matching the full theory to the e�ective theory determines

the Wilson coe�cients. The e�ective Lagrangian is written as an in�nite sum; however, dimen-

sional analysis shows that only a �nite number of these terms are important in the low energy

limit. Technically speaking, the low energy physics depends on the short distance theory mainly

through the relevant and marginal couplings, which are not suppressed by powers of M−1, and

possibly through some leading irrelevant couplings, which are suppressed by powers of M−1, if

one measures small enough e�ects [13].
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We construct an e�ective �eld theory to study the full theory in the low energy limit,

nevertheless it is insightful to consider it the other way around. A crucial insight is that,

presumably, no �eld theory we have ever encountered, and perhaps no �eld theory of any type,

is complete up to arbitrarily high energies [13]. At best it is an EFT valid up to some cuto�

�scale of ignorance,� which is often a physical scale, such as the mass of a new particle, which

has not yet been discovered [9].

One can separate EFTs into two types [14]:

• Those for which the underlying theory is known and the matching can be done pertur-

batively, such as the Fermi's e�ective theory (for low energy weak interactions) and the

heavy quark e�ective theory (for mesons with one heavy quark).

• Those for which it is not possible to match, either because the underlying physics is un-

known (e.g., the standard model), or because matching is non-perturbative (e.g., chiral

perturbation theory, for which the underlying theory is just QCD, but the matching coef-

�cients are not calculable, at least perturbatively).

1.4.2 Chiral perturbation theory

Chiral perturbation theory (ChPT) provides a systematic framework for investigating strong-

interaction processes at low energies [15]. This is an e�ective �eld theory describing the eight

lightest mesons in the nature and their interactions with themselves and with other hadrons.

These eight pseudoscalar mesons (π+, π−, π0, K+, K−, K0, K̄0 and η) are distinguished by

their relatively small masses compared to the other hadrons. It is well-known that these mesons

are the pseudo-Goldstone bosons that arise from the spontaneous breaking of an approximate

symmetry in QCD. Hereafter, for simplicity, we use �pions� to refer to these pseudoscalar mesons.

The �rst step to make an e�ective �eld theory for QCD at low-energies is to recognize

that, by virtue of the con�nement, the hadronic degrees of freedom appear to be the observable

degrees of freedom. Then, following the spirit of e�ective �eld theories, one can consider a

cuto� Λ (say Λ < mρ = 770 MeV) and consequently integrate out all hadronic degrees of

freedom that are too heavy to be excited at energy scales E << Λ . Since we do not have the

full theory in terms of the hadronic degrees of freedom to start with, the �rst step is just a

formal step. Having all heavy degrees of freedom integrated out formally, one can construct a

suitable phenomenological Lagrangian, by introducing a pion �eld which obeys the underlying

symmetries of the theorem. This phenomenological Lagrangian is constructed based on the chiral
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symmetry of QCD in massless quark limit. According to Ref. [16], such a general Lagrangian

has no speci�c dynamical content beyond some general principles such as analyticity, unitarity,

and chirality, so that when it is used to calculate pionic S-matrix elements, it yields the most

general matrix elements consistent with these general principles, provided that all terms of all

orders are included.

1.4.2.1 Chiral symmetry breaking

In the limit of massless quarks, the light sector of the QCD action has SU(3)L × SU(3)R ×
U(1)V symmetry. It is universally believed that in a world with massless quarks the group

SU(3)L × SU(3)R ×U(1)V is spontaneously broken to its subgroup SU(3)V ×U(1)V, for which

UL = UR = UV [17]. Therefore, according to the Goldstone theorem, there would have to be

eight Goldstone bosons, one for each of the broken operators. These bosons can be parametrized

by

Σ(x) = ei2Φ/f , Φ = φaT a , (1.53)

where T a are the eight generators of the SU(3) gauge group. Under a SU(3))L × SU(3)R chiral

transformation, we can require that Σ and Σ† transform linearly as

Σ→ ULΣU †R , Σ† → URΣ†U †L . (1.54)

But now the Goldstone bosons do not transform linearly, unless UL = UR = UV , under which

Σ→ UV ΣU †V = ei2UV ΦU†V /f , (1.55)

implying that Φ → UV ΦU †V . Now, by choosing di�erent values for UV , one can identify each

element of the Φ matrix with a real particle as

Φ =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 . (1.56)

We then proceed by building an e�ective Lagrangian with Σ as the building block in the massless

limit.
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1.4.2.2 Chiral Lagrangian

Now we can construct the e�ective Lagrangian to describe only the Goldstone bosons. The

Lagrangian must exhibit the same approximate chiral symmetry as QCD, which means that it

must be invariant under SU(3)L × SU(3)R in the limit of massless quarks. The e�ect of the

mass matrix M , which explicitly breaks the chiral symmetry, can be included systematically,

using the so-called spurion analysis, by adding new terms suppressed by powers of M . The

spurion analysis �nds the terms in the chiral Lagrangian that correspond to a given symmetry-

breaking term at the QCD level, by temporarily giving a constant parameter (e.g., M) chiral

transformation properties to make the term chirally invariant.

The e�ective Lagrangian can be organized in terms of increasing powers of momentum and

mass. With a power counting motivated from physical data, the leading order chiral Lagrangian

becomes

Lpion
LO =

f2

8
Tr(∂µΣ∂µΣ†) +

Bf2

4
Tr(MΣ +M †Σ†)

=
1

2
Tr(∂µΦ∂µΦ†) +

B

2
Tr(MΦ2) + · · · , (1.57)

where f and B are two low energy constants (LEC) related to the pion decay constant and quark

condensation in the chiral limit (i.e., the limit of massless quarks), respectively.

Having the chiral Lagrangian at leading order, the masses of the pseudo-Goldstone bosons

can be worked out at leading order

M2
π± = B(mu +md),

M2
K± = B(mu +ms),

M2
K0 = B(md +ms),

M2
π0 ≈ B(mu +md),

M2
η ≈ B(mu +md + 4ms)/3 . (1.58)

We then recover the Gell-Mann-Okubo relation

M2
η = (2MK+ + 2M2

K0 −M2
π)/3, (1.59)

which relates the mass of η to the masses of the �real� pion and kaons. The result agrees with

experimental data within a few percent, which supports the validity of the chiral Lagrangian in

describing the light mesons.
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The e�ective Lagrangian can be improved by including next-to-leading order (NLO) terms

and so on in a systematic way. Then, by working out the quantum loop e�ects one can improve

the chiral results for quantities such as the masses and the decay constants of pions [15].

1.4.3 Heavy quark e�ective theory

Consider a Qq̄ meson that contains a heavy quark and a light antiquark. Such a system is

called a heavy-light meson in which the typical momentum transfer between the heavy and

light component arising from nonperturbative QCD dynamics is of the order of ΛQCD [111]. An

important consequence of this fact is that the heavy quark is nearly on-shell and its momentum

may be decomposed as

pµQ = mQv
µ + kµ, (1.60)

where v is the 4-velocity of the meson containing the heavy quark (v2 = 1), mQv
µ de�nes the

momentum of an on-shell quark, and the residual momentum k ∼ ΛQCD. This is a double-scale

problem, with physics at scales mQ >> ΛQCD and k ∼ ΛQCD. By taking the limit of in�nite

heavy quark mass, in the framework of EFT, the problem reduces to a single-scale one, and also

new symmetries appear.

One can divide the Dirac spinor �eld Q(x) into two components as

Q(x) = e−imQv·x [Qv(x) +Qv(x)] , (1.61)

where

Qv(x) = eimQv·x
1 + v/

2
Q(x), Qv(x) = eimQv·x

1− v/
2

Q(x) . (1.62)

It is easy to see that, in the rest frame, Qv(x) and Qv(x) each correspond to two independent

components of the four-component Q(x). Now the projection relations

v/Qv(x) = Qv(x) , v/Qv(x) = −Qv(x) , (1.63)

can be used to show that

LQ = Q̄ (iD/−mQ)Q

= Q̄v iD/Qv + Q̄v (iD/− 2mQ)Qv + Q̄v iD/Qv + Q̄v iD/Qv
= Q̄v iv ·DQv + Q̄v (−iv ·D − 2mQ)Qv + Q̄v iD/Qv + Q̄v iD/Qv. (1.64)
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The �eld Qv describes a massless fermion, while Qv describes a heavy fermion with mass 2mQ,

and the last two terms couple these two modes. The phase factor in Eq. (1.61) implies the

�elds Qv(x) and Qv(x) are �uctuations relative to the mass shell of the heavy quark, so they

carry the residual momentum k for the system under study. One can conclude that, for a near

on-shell quark �eld Q(x), soft interactions cannot excite Qv(x); consequently one can exploit

the e�ective theory technology to integrate it out. This yields

LHQET = Q̄v iv ·DQv +O(1/mQ) . (1.65)

Note that the covariant derivative contains only the soft gluon �eld. Hard gluons have been

integrated out [9].

Considering the e�ective Lagrangian for nQ heavy quarks of the theory, with the same

value of the 4-velocity v, one can see that the leading term in the HQET Lagrangian exhibits

a new symmetry: U(2nQ) spin-�avor symmetry [9]. This symmetry contains the U(nQ) �avor

symmetry and the SU(2) spin symmetry as important subgroup.

1.4.3.1 Heavy-light mesons

The heavy quark symmetry implies a degenerate multiplet of states, such as B and B∗, which

have the same quark content (a light u or d quark and a heavy b̄ quark) but di�erent spins [111].

It is convenient to have a single object describing the entire multiplet of degenerate states.

Therefore one can combine both pseudoscalar �eld B(x) and the vector �eld B∗µ(x) into a single

�eld with desired transformation properties. The �eld that destroys a heavy-light meson can be

written as

Ha =
1 + v/

2

[
γµB∗aµ + iγ5Ba

]
, (1.66)

where the index a refers to the light quark �avor of the meson. The �eld Ha will be used as a

building block to construct an e�ective Lagrangian to describe heavy-light systems.

1.4.3.2 ChPT for heavy-light mesons

In part 1.4.2, we constructed an e�ective chiral Lagrangian for pseudo-scalar bosons, referred

to as pions. Chiral perturbation theory can also be expanded to include the low-energy regime

of interaction between pions and heavy-light systems. ChPT for heavy-light systems makes use

of spontaneously broken SU(3)L × SU(3)R chiral symmetry on the light quarks, and spin-�avor

symmetry of the heavy quarks [111]. This can be formulated in two steps: replace the full theory
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with HQET for an energy cuto� equal to the mass of the heavy quark, then decrease the cuto�

and develop a chiral perturbation theory for a cuto� equal to, say, the mass of ρ meson. Recall

that the energy of the heavy quark is measured relative to its on-shell mass in HQET, therefore

it cannot be integrated out in the second step.

The building blocks to construct and e�ective Lagrangian are Ha and Σ de�ned in Eq. (2.21)

and Eq. (1.53), respectively. The pions play the role of the gauge �eld whileHa describes a matter

�eld. A covariant description of the Lagrangian can be achieved by introducing

Vµ =
i

2

[
σ†∂µσ + σ∂µσ

†
]
, (1.67)

Aµ =
i

2

[
σ†∂µσ − σ∂µσ†

]
, (1.68)

where σ =
√

Σ. The leading order e�ective Lagrangian is [111]

LLO = −iTr
(
Havµ(∂µδab + iVµba)Hb

)
+ gπ Tr

(
HaHbγµγ5Aµba

)
, (1.69)

where Tr means the complete trace over �avor and Dirac indices and gπ is a LEC, which can be

�xed by using experimental data. One can proceed to construct a heavy-light current within the

framework of HQET. Then, physical quantities such as decay constants and form factors can be

worked out.

1.4.4 Symanzik e�ective theory

The LECs appearing in EFTs can be �xed by the data coming from experiments or numerical

calculations. EFTs are particularly useful when there are some lattice data calculated at un-

physical points, for instance, the simulations done for unphysical quark masses. These lattice

data points can be used to �x the LECs. Then it is straightforward to work out the prediction

of the EFTs at the physical points.

In the proceeding section we introduced lattice QCD as a way to solve QCD from �rst prin-

ciples. However, there is an outstanding di�erence between lattice QCD and continuum QCD.

Lattice QCD comes with a nonzero lattice spacing a, which in turn introduces an ultraviolet

cuto� π/a in momentum space. Any quantity calculated on the lattice needs to be extrapolated

to the continuum limit, which increases the uncertainty level. E�ective �eld theories can be used

to control the uncertainties associated with lattice calculations.

At scales below the cuto� π/a, one can construct a local (continuum-like) EFT for the lattice

theory. This idea is due to Symanzik [19] and referred to as the Symanzik e�ective theory (SET).
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The Symanzik expansion is an expansion in powers of a (or equivalently an expansion in inverse

powers of π/a)

LSET = L(4) + aL(5) + a2L(6) + · · · , (1.70)

where L(4) is the continuum QCD Lagrangian and L(n) contains all acceptable terms with

dimension n. The acceptable terms are those which are not banned by the lattice symmetries.

SET provides simple semi-quantitative estimates of lattice-spacing e�ects. More interestingly,

it provides strategies for eliminating them, both by parametrically reducing their size, and by

giving a framework for combining results from several lattice spacings [20].

1.4.5 Staggered ChPT

Having substituted a lattice action by its SET version, one can proceed to develop new e�ective

theories based on the symmetries present in the SET, which in turn come from the symmetries

in the lattice action. Here our focus is on the staggered implementation of quarks on the lattice,

where the corresponding Symanzik expansion does not have any dimension �ve operators that

respect all the symmetries of the lattice action [17, 21]. Therefore the nonzero lattice spacing

e�ects appear at O(a2). Recall that the staggered action, de�ned in Eq. (1.35), in the continuum

limit has four degenerate tastes, with exact SU(4) symmetry in taste space for each �avor of

quark. Therefore, the leading order term in SET, L(4) in Eq. (1.70), must respect the SU(4)

taste symmetry. But, the next-to-leading order terms in SET, which are at O(a2), break the

taste symmetry of staggered quarks as well as the approximate chiral symmetry of staggered

light quarks.

Now we want to argue how one can develop a generalized version of ChPT to describe the

staggered meson systems. In principle, this should be done order by order in SET. We do not

face any problem at leading order because L(4) is just the continuum QCD Lagrangian; therefore

the corresponding ChPT is the ChPT of the continuum theory, up to an exact SU(4) symmetry

in taste space. As it pointed out above, the terms appearing at O(a2) explicitly break the taste

symmetry of staggered quarks as well as the approximate chiral symmetry of staggered light

quarks. It was a remarkable observation that the terms at O(a2) can be taken into account

using the same technique that we used to import contributions of the nonzero quark masses

into ChPT, i.e., the spurion analysis. The resulting theory is, generally, called staggered chiral

perturbation theory (SχPT). This theory studies the low-energy dynamics of light staggered

mesons with di�erent �avors and tastes. Lee and Sharpe [22], �rst developed SχPT for the

one-�avor case, and then Aubin and Bernard [23, 24] generalized it to the multi-�avor case.
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When the fourth-root procedure is taken into account, the corresponding theory is called rooted

staggered chiral perturbation theory (rSχPT).

In the SET, the terms appearing at O(a2) are dimension six operators, which are described

by four-quark operators

a2Ollss′tt′ = c1a
2 ql(γs ⊗ ξt)ql ql′(γs′ ⊗ ξt′)ql′ , (1.71)

a2Olhss′tt′ = c2a
2 ql(γs ⊗ ξt)ql qh(γs′ ⊗ ξt′)qh , (1.72)

a2Ohhss′tt′ = c3a
2 qh(γs ⊗ ξt)qh qh′(γs′ ⊗ ξt′)qh′ , (1.73)

where l and h refer to light and heavy quarks, respectively; s, s′ label spins; and t, t′ label

tastes. The light quark labels l and l′ are summed over. In this subsection, our focus is on the

light mesons, so we assume that the heavy quarks will be integrated out at some point. The

staggered symmetries impose some constraints that restricts the possible operators (see Ref. [8]

for a pedagogical review).

As pointed out before, the staggered quarks have an exact SU(4) taste symmetry in the

continuum limit. For Nl light �avors of unrooted staggered fermions, in the combined chiral-

continuum limit, the theory is invariant under a SU(4Nl)L × SU(4Nl)R × U(1)V symmetry. It

is assumed that this symmetry is spontaneously broken to the subgroup SU(4Nl)V × U(1)V ,

similar to the QCD case. Consequently, there are (4Nl)
2 − 1 massless Goldstone bosons, which

can be parametrized by

Σ(x) = eiΦ/f , (1.74)

where the �eld Φ is a traceless 4Nl × 4Nl matrix. The �eld Φ can be parametrized as

Φ =


U π+ K+ · · ·
π− D K0 · · ·
K− K̄0 S · · ·
...

...
...

. . .

 , (1.75)

where each element of Φ has a 4× 4 submatrix structure in taste space as U =
∑16

Ξ=1 UΞTΞ, and

so forth. Here, TΞ are the Hermitian SU(4) taste generators given by

TΞ = {ξ5, iξµ5, iξµν , ξµ, ξI} , (1.76)

where the ξ matrices correspond to the γ matrices in taste space.
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In addition to the mass term of the fermions, the O(a2) terms in SET explicitly break the

chiral symmetry. These e�ects can be incorporated systematically in the theory by using the

spurion analysis. With current lattices, the O(a2) contributions to the pions masses might be

numerically as big as the contributions of the mass matrix of the light quarks. Therefore O(a2)

corrections to the chiral Lagrangian must be considered as leading order (LO). The complete

LO chiral Lagrangian, in Euclidean space-time, is [8, 23]

L =
f2

8
Tr(∂µΣ∂µΣ†)− 1

4
Bf2 Tr(MΣ +MΣ†) +

m2
0

24
(Tr(Φ))2 + a2V , (1.77)

where the taste-violating potential V is given by

− V = C1 Tr(ξ
(Nl)
5 Σξ

(Nl)
5 Σ†) +

C3

2
[Tr(ξ(Nl)

ν Σξ(Nl)
ν Σ) + h.c.]

+
C4

2
[Tr(ξ

(Nl)
ν5 Σξ

(Nl)
5ν Σ) + h.c.] +

C6

2
Tr(ξ(Nl)

µν Σξ(Nl)
νµ Σ†)

+
C2V

4
[Tr(ξ(Nl)

ν Σ) Tr(ξ(Nl)
ν Σ) + h.c.] +

C2A

4
[Tr(ξ

(Nl)
ν5 Σ) Tr(ξ

(Nl)
5ν Σ) + h.c.]

+
C5V

2
[Tr(ξ(Nl)

ν Σ) Tr(ξ(Nl)
ν Σ†)] +

C5A

2
[Tr(ξ

(Nl)
ν5 Σ) Tr(ξ

(Nl)
5ν Σ†)], (1.78)

with implicit sums over repeated indices. Here, the 4Nl × 4Nl matrices ξ
(Nl)
µ are de�ned by(

ξ(Nl)
ν

)
ij

= ξνδij , (1.79)

with i and j the SU(Nl) light quark �avor indices, and ξν a 4× 4 taste matrix, as in Eq. (1.76).

The matrices ξ
(n)
µν and ξ

(n)
ν5 are de�ned similarly. In Eq. (1.77), the m2

0 term suppresses the

contribution of Tr(Φ) when m0 → ∞. This is an alternative way to incorporate the chiral

anomaly into the theory instead of a traceless parametrization of the Φ �eld.

Having SχPT one can calculate the O(a2) e�ects on physical quantities such as pion masses

and decay constants. This theory provides a framework to combine the lattice results for various

lattice spacings and quark masses and �t them together and extract the desired quantities in

the continuum limit with tuned quark masses.

1.4.6 Staggered ChPT for heavy-light mesons

Similar to staggered ChPT for light mesons, one can proceed to develop a staggered version

of HQET and ChPT for heavy-light systems. Reference [25] works out a staggered version

of ChPT for heavy-light mesons with staggered light quark but non-staggered heavy quarks.

The main achievement of the �rst part of this dissertation is to develop SχPT for all-staggered
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heavy-light systems. This theory is presented in chapter 2. This e�ective chiral theory is used to

study the pattern of taste splitting in masses of the mesons that are calculated from the lattice

con�gurations generated by the MILC collaboration. The main objective of developing SχPT

is to obtain a chiral formula for the decay constants of the heavy-light mesons with staggered

quarks. The chiral formula, presented in chapter 2, provides a suitable �t form to combine and

analyze a large number of decay constants of heavy-light mesons computed from di�erent lattice

ensembles with various choices of input parameters. Chapter 3 presents a comprehensive chiral

�t to the lattice data for D mesons computed by the MILC collaboration.
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2
Chiral Perturbation Theory for All-Staggered Heavy-Light

Mesons

This chapter contains the materials published in a paper with the same title.1 This represents

work performed by me under the overall supervision of my advisor, C. Bernard.

2.1 Introduction

Heavy-light meson systems provide some of the best ways to test the standard model and look

for signs of new physics. In particular, the constraints on the sides of the unitarity triangle,

which come mainly from heavy-light decays and mixings, are limited largely by the size of the

theoretical errors in the values of the hadronic matrix elements of weak operators. Lattice QCD

provides a means of carrying out non-perturbative calculations of such quantities from �rst

principles and with controlled errors.

In setting up a lattice QCD calculation, a key choice is the form of the lattice action for

the quarks. Staggered fermions [2�4] are an e�cient approach to simulating light quarks. The

�highly improved staggered quark� (HISQ) action [32] makes it possible to treat charm quarks

with the same action as the light quarks. Thus �all-staggered� simulations of D and Ds mesons

are now possible [33, 34], and even Bs mesons have been treated in this way by pushing up the

heavy quark mass on ensembles with the �nest available lattice spacings [35].

There are several advantages to this all-staggered approach. Since heavy and light quarks

have the same action, there are partially conserved heavy-light axial and vector currents that

1C. Bernard and J. Komijani, �Chiral Perturbation Theory for All-Staggered Heavy-Light Mesons,�
Phys. Rev. D 88, 094017 (2013) [arXiv:1309.4533].
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need no renormalization. The tuning of the heavy quark mass is also simpli�ed compared to

other approaches (see, for example, Ref. [36]) because di�erence between �rest� and �kinetic�

masses of the heavy quark due to discretization e�ects may be neglected. Further, the statistical

errors of heavy-light pseudoscalars tend to be rather small, as they are for light-light staggered

pseudoscalars.

Lattice computations often involve an extrapolation in light quark masses to the physical up

and down masses, and always require a continuum extrapolation in lattice spacing. A version of

chiral perturbation theory (χPT) that includes the e�ects of the discretization errors can help

to control these extrapolations. Here, we develop chiral perturbation theory for all-staggered

heavy-light mesons. We call the theory heavy-meson, rooted, all-staggered chiral perturbation

theory (HMrASχPT), where �rooted� refers to the fourth root of the staggered determinant, as

reviewed below.

Staggered quarks have a four-fold degree of freedom, called taste, which is a remnant of

lattice doubling. In the continuum limit, there is an exact SU(4) symmetry acting on tastes;

this symmetry is broken at O(a2) in the lattice spacing a. The corresponding discretization

errors in the light-light sector split the masses of mesons with di�erent tastes, which may be

understood using staggered chiral perturbation theory (SχPT) [37, 38]. For typical values of a2,

the taste splittings of light pseudoscalar mesons can be comparable to the masses themselves.

In short-hand, we say a2 ∼ m2
π, where factors of ΛQCD to balance the dimensions are always

assumed in such relations. These taste splittings must therefore be included in the leading order

(LO) light-light Lagrangian.

For heavy-light mesons composed of staggered quarks, the situation is di�erent. The LO

Lagrangian in the continuum is of O(k), where k is the residual momentum of the heavy-light

meson. We assume k ∼ mπ. Since a
2 ∼ m2

π ∼ k2, taste violations are of higher order and will

be treated as next-to-leading order (NLO) corrections. The LO heavy-light Lagrangian is then

taste invariant. This power counting is consistent with HISQ simulations, where the splittings

in squared meson masses remain roughly constant as the valence quark mass increases from the

light quark regime to the charm regime [39]. Therefore the splittings for the masses themselves

are much smaller for heavy-light mesons than for light mesons. For example, the taste splitting

at a ≈ 0.12 fm between the root-mean-squared (RMS) Ds meson and the lightest Ds meson is

only about 11 MeV [39], while it is about 110 MeV for the pion.

Reference [25] works out a closely related chiral theory for heavy-light mesons with stag-

gered light quarks but non-staggered heavy quarks (for example, Fermilab [40] or NRQCD [41]

quarks). That chiral theory has been called heavy-meson, rooted staggered chiral perturbation
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theory (HMrSχPT). In HMrSχPT, heavy-light mesons have a single taste degree of freedom

associated with the light quark. As in the current case, the LO HMrSχPT Lagrangian in the

heavy-light sector is taste invariant.2 Since the LO Lagrangian determines the propagators and

vertices of the one-loop diagrams, those diagrams are very closely related in HMrSχPT and

HMrASχPT (the current case). Important di�erences arise at NLO, however. Such di�erences

a�ect, for example, the analytic terms that are added on to the one-loop chiral logarithms to

give the complete NLO expressions for quantities such as the decay constants. Similarly, mass

splittings for heavy-light mesons of di�erent tastes are governed by the analytic NLO terms.

Indeed, we prove below that the one-loop diagrams themselves do not give rise to any taste

violations in the heavy-light meson masses, despite the fact the light-light masses, which enter

those diagrams, do violate taste symmetry. This feature arises from the combination of exact

heavy-quark taste symmetry at LO and the all-orders discrete taste symmetry coming from shift

invariance.

Thus we need to extend the program developed in Ref. [25] to include staggered heavy quarks

with a taste degree of freedom. In this chapter we assume that the staggered action used (e.g.,

HISQ) is improved su�ciently that we can treat the heavy quark as �continuum-like,� with small

corrections from cuto� e�ects. We refer to this assumption in short-hand as taking amQ � 1,

where mQ is mass of the heavy quark, although one should keep in mind that corrections in

powers of amQ may in practice be reduced as much or more by the improved action than by the

size of amQ per se. Under this assumption, we can use the Symanzik E�ective Theory (SET)

[44] to describe the discretization e�ects on the heavy quarks, as well as on the light quarks. The

SET is the e�ective theory for physical momenta p small compared with the cuto� (ap� 1); it

encodes discretization e�ects in higher-dimensional operators added to continuum QCD.

When the heavy quark is non-staggered, as in HMrSχPT, the heavy-quark doubler states

are split from the heavy quark by an amount of order of the cuto�, and are therefore integrated

out of the SET. Thus the heavy quark �elds have no degree of freedom corresponding to taste,

and taste violations at O(a2) appear only in four-quark operators composed exclusively of light

quarks.

In the all-staggered case, on the other hand, important taste violations at O(a2) appear

in �mixed� four-quark operators consisting of the product of a heavy quark bilinear and a light

quark bilinear, as well as in the product of two light-quark bilinears. These operators break the

taste symmetries of both heavy and light quarks. (Products of two heavy-quark bilinears also

2There is in fact is no mass splitting of di�erent tastes of heavy-light mesons at any order in HMrSχPT. The
absence of splittings is guaranteed by shift symmetry [42, 43], which in the continuum limit is simply a discrete
subgroup of continuum SU(4) taste symmetry.
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appear in the SET, but their e�ect on the heavy-light meson Lagrangian is rather trivial since

there is at most one heavy quark in all initial and �nal states considered.)

In the SET, the lattice theory has been replaced by a continuum theory. The lattice spacing

a appears only as a parameter multiplying higher-dimensional operators. One can then use the

fact that mQ is large compared to ΛQCD, to organize heavy quark e�ects with Heavy Quark

E�ective Theory (HQET). The heavy quark �eld qh in both dimension-four and higher-dimension

operators is replaced by a HQET �eld Q, where Q satis�es

1 + v/

2
Q = Q , (2.1)

with vµ the heavy-quark four-velocity. The dimension-four terms are invariant under heavy-

quark spin symmetry, but the higher dimensional terms may violate the symmetry.

Finally, when residual momenta and light quark masses are small compared to the chiral

scale Λχ ∼ 1 GeV, the physics of light-light and heavy-light mesons may be described by a

chiral e�ective theory. The dimension-four operators give a standard-looking heavy-meson chiral

theory, but with additional taste degrees of freedom for both light and heavy quarks. The higher-

dimensional operators may be mapped to the chiral Lagrangian using a spurion analysis. They

generate LO terms in the light-light sector that violate light-quark taste symmetry, and NLO

terms in the heavy-light sector that violate heavy-quark taste and spin symmetry.

Since the four taste degrees of freedom of a staggered quark are unphysical, the fermion

determinant is replaced by its fourth root in simulations. This rooting procedure introduces

non-locality: At non-zero lattice spacing, the rooted fermion action is not equivalent to any local

action [45], which in turn leads to nonlocal violations of unitarity [45, 46]. In the continuum limit,

locality and unitarity are however expected to be restored, an expectation which is supported

theoretical arguments [43, 47�49], as well as other analytical and numerical evidence [8, 50�53].

In the chiral theory, rooting is taken into account by multiplying each sea quark loop by a

factor of 1/4 [23, 24]. This can be accomplished either by following the quark �ow [54] to locate

the loops, or � more systematically � by replicating the sea quarks nr, performing a standard

chiral calculation, and taking nr = 1/4 in the result[43, 49]. Here, we follow Ref. [25] and use

the quark �ow approach.

After the chiral theory is constructed, we �rst apply it to calculate the taste splittings of

heavy-light meson masses at next-to-leading chiral order. Some of the analytic NLO terms break

the taste-SU(4) symmetry of the masses down to SO(4) symmetry [37], while others break the
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symmetry still further, producing splitting within SO(4) multiplets. Our results can be used to

understand the measured lattice splittings [39].

We then calculate the leptonic decay constant of a heavy-light meson at one-loop. The chiral

form we obtain is very useful in the analysis of HISQ data for fD+ and fDs [55]. In general, we

work to LO in 1/mQ, but some higher order terms (heavy-light hyper�ne and �avor splittings)

are considered in the decay constant calculation. Following Ref. [56], we argue that the inclusion

of those terms (but no other 1/mQ terms) constitutes a systematic approximation in the power

counting introduced by Boyd and Grinstein [102].

As is clear from the above, many features of the analysis of Ref. [25] can be used here with

only small changes. However, in reexamining the NLO terms in the Lagrangian and current of

Ref. [25] for use here, we have discovered some minor mistakes: There are a few terms at NLO

that were omitted, and a few of the terms listed in the earlier chapter can be shown either to

be absent or to be redundant with terms already present. This occurs only for the complicated

terms that violate both (Euclidean) rotation symmetry and taste symmetry. The errors have no

consequences for applications of HMrSχPT in the literature.

The remainder of this chapter is organized as follows: In Sec. 2.2, the LO SχPT Lagrangian

is constructed for all-staggered heavy-light mesons, and those NLO terms that are the same as

in the continuum are brie�y discussed. The O(a2) terms involving heavy-light mesons are then

derived from a spurion analysis in Sec. 2.3, with a needed reduction of a three-index Lorentz

tensor into irreducible representations relegated to Appendix C. Section 2.4 focuses on taste

splittings of heavy-light mesons. Finally, in Sec. 2.5, the decay constant in heavy-light systems

is calculated to NLO. Our conclusions and some discussion of the results follow in Sec. 2.6.

2.2 The staggered chiral Lagrangian with heavy-light mesons

In this section, we �rst introduce our chiral power counting and give our notation for the various

contributions that appear at both LO and NLO. We then consider the LO Lagrangian for both

the light mesons and heavy-light mesons. The heavy-light meson �eld is generalized from that

in Ref. [25] so that it carries a heavy-quark taste index, in addition to light-quark taste and

�avor � or, equivalently, so that it carries meson taste and light-quark �avor indices. The NLO

terms that are invariant under taste symmetry are the same as in the continuum, and are brie�y

treated in Sec. 2.2.3.
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2.2.1 Power counting

We assume the power counting p2
π ∼ m2

π ∼ mq ∼ a2 for the light mesons (�pions�) as in Ref.

[25]. Here pπ is a typical pion momentum, and factors of ΛQCD are implicit. Two additional

scales enter with the inclusion of heavy-light mesons. The �rst is the residual momentum of the

heavy-light meson, k, which we take to be of the same order as pπ. The second scale is the heavy

quark mass mQ. Initially, we keep only the leading order in 1/mQ in the following calculations

and derive the decay constant of D at that order. We then follow Ref. [56] to include hyper�ne

splittings (e.g., m∗D −mD) and �avor splittings (e.g., mDs −mD) in the NLO decay constant

calculation. These splittings are ∼100 MeV, and so not much smaller than mπ, despite the fact

that they are formally of order 1/mQ. Including the splittings can therefore be important in

practical applications of our results, especially since HISQ simulations at physical pion mass are

now available [39]. Furthermore it is consistent to include the splittings at NLO in the power

counting of Refs. [56, 102],

The LO chiral Lagrangian is therefore O(k∼√mq) in the heavy-meson �elds and O(mq, a
2)

in the light-meson �elds. (As usual in HQET, terms of O(k0) in the heavy-meson �elds, i.e.,

heavy mass terms, are removed by construction.) Since each loop will bring in two powers of pπ

or equivalent scales, we consider terms both of order k2 and of order k3 in the heavy mesons to

be NLO, and similarly next-to-next-to-leading order (NNLO) would include heavy-meson terms

of order k4 and k5. For our purposes here, we need the complete LO Lagrangian (for both heavy

and light mesons), but only the heavy-meson part of the NLO Lagrangian. We therefore write

L = LLO + LNLO , (2.2)

LLO = Lpion
LO + L1 , (2.3)

LNLO = L2 + L3 (2.4)

where Lpion
LO is the standard LO light meson Lagrangian [38], and L1, L2, and L3 denote the

heavy-meson terms of order k1, k2 and k3 (or equivalent scales), respectively.

We will also need jµ,iΞ, the left-handed heavy-light current for light �avor i and combined

taste Ξ. It has the similar expansion

jµ,iΞ = jµ,iΞLO + jµ,iΞNLO , (2.5)

jµ,iΞNLO = jµ,iΞ1 + jµ,iΞ2 , (2.6)

where again the subscripts 1 and 2 denote orders in k.
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We can classify contributions to the NLO terms in Eqs. (2.4) and (2.6) by the source of

the extra powers of the scale and the nature of any symmetry breaking. The subscript k will

denote terms in which the powers come exclusively from additional derivatives as compared to

the LO terms, while the subscripts m and a2 will indicate insertions of mass or taste-violating

spurions, respectively (together with possible additional derivatives). The taste-violating terms

may be further classi�ed according to whether continuum Euclidean SO(4) rotation symmetry

is preserved or broken (�type A� or �type B,� respectively), and whether the heavy-quark taste

symmetry is preserved or broken (�type 1� or �type 2�, respectively). As �rst pointed out in

Ref. [37], type A terms also preserve a SO(4) taste symmetry of the light quarks, and that

feature remains true here. Our classi�cation then gives

L2 = L2,k + L2,m + LA1
2,a2 + LB1

2,a2 + LA2
2,a2 + LB2

2,a2 , (2.7)

L3 = L3,k + L3,m + LA1
3,a2 + LB1

3,a2 + LA2
3,a2 + LB2

3,a2 , (2.8)

jµ,iΞ1 = jµ,iΞ1,k , (2.9)

jµ,iΞ2 = jµ,iΞ2,k + jµ,iΞ2,m + jµ,iΞ
2,a2,A1

+ jµ,iΞ
2,a2,B1

+ jµ,iΞ
2,a2,A2

+ jµ,iΞ
2,a2,B2

, (2.10)

where jµ,iΞ1 comes solely from derivative terms, since mass and taste spurions bring in two powers

of the small scale.

After introducing our (mainly standard) notation, we give the LO terms Lpion
LO , L1, and

jµ,iΞLO in the next subsection. NLO terms that are the same as in the continuum, namely L2,k,

L3,k, L2,m, L3,m, j
µ,iΞ
1 , jµ,iΞ2,k , and jµ,iΞ2,m are then brie�y discussed in Sec. 2.2.3. Study of the

taste-violating terms, which require a detailed look at the SET, are postponed until Sec. 2.3.

Those terms that preserve heavy-quark taste symmetry, namely type A1 and B1 terms, are

trivial generalizations of the corresponding terms in [25]. Those that break heavy-quark taste

symmetry, namely type A2 and B2, are however completely new.

2.2.2 Leading-order theory

The LO chiral Lagrangian is divided into the light meson part Lpion
LO and the heavy meson part

L1, as in Eq. (2.3). The light meson part is standard [38]. However, following Ref. [25], we

write the complete Lagrangian in Minkowski space for ease of comparison with the continuum

heavy-light literature. If desired, a Wick rotation can be de�ned everywhere to transform the

theory into Euclidean space, corresponding to the Euclidean lattice theory. We have

Lpion
LO =

f2

8
Tr(∂µΣ∂µΣ†) +

1

4
µf2 Tr(MΣ +MΣ†)− 2m2

0

3
(UI +DI + SI + . . .)2 − a2VΣ, (2.11)
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where Σ = exp[iΦ/f ] is a 4n× 4n matrix for n staggered �avors, with Φ given by:

Φ =


U π+ K+ · · ·
π− D K0 · · ·
K− K̄0 S · · ·
...

...
...

. . .

 . (2.12)

Here U =
∑16

Ξ=1 UΞTΞ, etc., with the Hermitian taste generators TΞ given by

TΞ = {ξ5, iξµ5, iξµν , ξµ, ξI} . (2.13)

As in Ref. [25], we employ Euclidean gamma matrices for ξµ, with ξµν ≡ (1/2)[ξµ, ξν ] (µ < ν

in Eq. (2.13)), ξµ5 ≡ ξµξ5, and ξI ≡ I, where I is the 4 × 4 identity matrix. Below, we use

a summation convention for indices on the matrices ξµ that are repeated twice, but explicit

summation for indices that are repeated more than twice. The mass matrix is given by the

4n× 4n matrix

M =


muI 0 0 · · ·

0 mdI 0 · · ·
0 0 msI · · ·
...

...
...

. . .

 . (2.14)

The potential VΣ, which breaks the taste symmetry of light mesons, is de�ned in Refs. [25, 38]:

− VΣ = C1 Tr(ξ
(n)
5 Σξ

(n)
5 Σ†) +

C3

2
[Tr(ξ(n)

ν Σξ(n)
ν Σ) + h.c.]

+
C4

2
[Tr(ξ

(n)
ν5 Σξ

(n)
5ν Σ) + h.c.] +

C6

2
Tr(ξ(n)

µν Σξ(n)
νµ Σ†)

+
C2V

4
[Tr(ξ(n)

ν Σ) Tr(ξ(n)
ν Σ) + h.c.] +

C2A

4
[Tr(ξ

(n)
ν5 Σ) Tr(ξ

(n)
5ν Σ) + h.c.]

+
C5V

2
[Tr(ξ(n)

ν Σ) Tr(ξ(n)
ν Σ†)] +

C5A

2
[Tr(ξ

(n)
ν5 Σ) Tr(ξ

(n)
5ν Σ†)] . (2.15)

The explicit 4n× 4n matrices ξ
(n)
µ in Eq. (2.15) are de�ned by(

ξ(n)
ν

)
ij

= ξνδij , (2.16)

with i and j the SU(n) light quark �avor indices, and ξν a 4× 4 taste matrix, as in Eq. (2.13).

The matrices ξ
(n)
µν and ξ

(n)
ν5 are de�ned similarly.
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In terms involving heavy-lights, we also need σ ≡
√

Σ = exp[iΦ/2f ]. Both Σ and σ are

singlets under the heavy-quark symmetries, while under SU(4n)L×SU(4n)R they transform as

Σ→ LΣR† , Σ† → RΣ†L† , (2.17)

σ → LσU† = UσR† , σ† → Rσ†U† = Uσ†L† , (2.18)

where L ∈ SU(4n)L, R ∈ SU(4n)R, and U is a function of L and R and the pion �elds. In the

construction of invariant Lagrangian terms it is convenient to de�ne objects involving the σ �eld

that transform only with U and U†. The two possibilities with a single derivative are

Vµ =
i

2

[
σ†∂µσ + σ∂µσ

†
]
, (2.19)

Aµ =
i

2

[
σ†∂µσ − σ∂µσ†

]
. (2.20)

The �eld that destroys a heavy-light meson can be written as

Hαa =
1 + v/

2

[
γµB∗µαa + iγ5Bαa

]
, (2.21)

where v is the meson's velocity, a is the combined �avor-taste index of the light quark, and α

is the heavy-quark taste index. To avoid confusion with the covariant derivative
→
Dµ introduced

below, we will use B for now to denote a generic pseudoscalar heavy-light meson and B∗ to

denote the corresponding vector meson (with vµB∗µαa = 0), even though the focus of current

all-staggered simulations is primarily on the D meson system rather than B meson system. The

formalism developed in this chapter applies to both, although 1/mQ corrections are of course

larger for D's. The conjugate �eld that creates a heavy-light meson is

Haα ≡ γ0H
†
aαγ0 =

[
γµB†∗µaα + iγ5B

†
aα

] 1 + v/

2
. (2.22)

Under the SU(2) heavy-quark spin symmetry, the heavy-light �eld transforms as

H → SH ,

H → HS† , (2.23)
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with S ∈ SU(2) acting on Dirac index of the heavy-light �eld. Transformations under the chiral

SU(4n)L × SU(4n)R symmetry of the light quarks take the form

H → HU† ,

H → UH , (2.24)

with U ∈ SU(4n) acting on the combined �avor-taste index a in Eqs. (2.21) and (2.22). Heavy

quarks of course do not have a chiral symmetry, but they do have a vector SU(4) taste symmetry

(exact in the continuum limit), under which

H → V H ,

H → HV † , (2.25)

with V ∈ SU(4) acting on the heavy-quark taste index.

We introduce a (chirally) covariant derivative that acts on the heavy-light �eld or its conju-

gate as

(H
←
Dµ)αb = Hαc(

←
Dµ)cb ≡ ∂µHαb + iHαc(Vµ)cb ,

(
→
DµH)bα = (

→
Dµ)bcHcα ≡ ∂µHbα − i(Vµ)bcHcα , (2.26)

with implicit sums over repeated indices.

So far H is treated as a 4× 4n matrix in the taste and the �avor space of quarks. Instead

of attaching separate indices for the tastes of the light and heavy quarks of the meson, one can

use a single index for the combined meson taste. The �eld H is then treated as an n-component

vector in the �avor space of the light quark, while each element (Hi, i = 1, . . . , n) is a 4 × 4

matrix in the taste space of the meson, and written as a linear combination of the 16 taste

generators TΞ, Eq. (2.13). We use Latin indices in the middle of the alphabet (i, j, ...) as pure

�avor indices, and capital Greek letters such as Ξ to indicate meson tastes. For example, the ith

element of the �eld destroying a heavy-light meson in the light �avor space can be represented

by Hi =
∑16

Ξ=1
1
2TΞHiΞ and its conjugate by H i =

∑16
Ξ=1

1
2TΞH iΞ, where the factors of

1
2 are

inserted to ensure that the �elds HiΞ and H iΞ are conventionally normalized.

We can now write down L1. As discussed in Sec. 2.2.1, lattice corrections are higher order

in the heavy-light system, so at LO we just have the continuum-like Lagrangian [25, 111]

L1 = −iTr(HHv·←D) + gπ Tr(HHγµγ5Aµ) , (2.27)
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Tr means the complete trace over �avor, taste, and Dirac indices. The only di�erence of L1 from

the continuum LO Lagrangian is addition of the (implicit) taste degrees of freedom of light and

heavy quarks. The product HH can be treated either as a 4n × 4n matrix in the �avor-taste

space of the light quarks: (HH)ab ≡ HaαHαb (with an implicit sum over α), or equivalently

as a n × n matrix in the �avor space of the light quarks, where each element is itself a 4 × 4

matrix in the taste space of the meson: (HH)ij ≡ 1
4

∑16
Ξ=1

∑16
Ξ′=1H iΞHjΞ′TΞTΞ′ . Depending on

the situation, one of the notations may be more convenient; we must however be careful to be

consistent in the treatment of other objects in the same term in the Lagrangian.

For the calculation of the heavy-light decay constants in Sec. 2.5, the chiral representative

of the axial heavy-light current is needed. Alternatively, one can work with the left-handed

current, whose matrix element between a pseudoscalar meson and the vacuum is proportional to

that of the axial current. For the current, it is simplest to treat the heavy-light �eld as a light-

�avor vector whose elements are meson taste matrices. The left-handed current that destroys a

heavy-light meson of taste Ξ and light �avor i is jµ,iΞ, which at LO takes the form

jµ,iΞLO =
κ

2
trD,t

(1
2TΞγ

µ (1− γ5)Hσ†λ(i)
)

(2.28)

where κ is a low-energy constant, and λ(i) is a constant row vector that �xes the �avor of the

light quark: (λ(i))j = δij . This expression for the current is a trivial generalization of that in

Ref. [111] to include the taste degrees of freedom. It can be checked using the spurion analysis

introduced in Sec. 2.3.2 to �nd the current at next order. The decay constant fBiΞ is de�ned by

the matrix element 〈
0
∣∣∣jµ,i′Ξ′∣∣∣BiΞ(v)

〉
= ifBiΞmBiΞv

µδΞΞ′δii′ , (2.29)

where relativistic normalization of the state |BiΞ(v)〉 is assumed. At LO in the heavy-light chiral

theory, jµ,i
′Ξ′

LO = iκvµBi′Ξ′ , which gives fLO
BiΞ

= κ/
√
mBiΞ . Recall that the factor

√
mBiΞ arises

from the di�erences in normalizations between relativistic and non-relativistic states.

2.2.3 Next-to-leading-order terms in the continuum

In the continuum, the NLO terms are of two types: those formed by only adding derivatives

to LO terms (L2,k, L3,k, j
µ,iΞ
1 , and jµ,iΞ2,k ), and those that involve a mass spurion (L2,m, L3,m,

and jµ,iΞ2,m ). The former are not to our knowledge cataloged completely in the literature, and

in any case are irrelevant to the heavy meson mass and decay constant to the order we are

working: Additional derivatives acting on a heavy-light �eld vanish on shell (k = 0), while those

on the light �elds contribute only to tree-level diagrams with external pions. We therefore follow
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Ref. [25], and simply list some representative terms in L2,k, L3,k, j
µ,iΞ
1 , jµ,iΞ2,k . We have

L2,k =
iε1
Λχ

Tr
(

(v · →DHH −HHv · ←D) γµγ5Aµ
)

+
ε2
Λχ

Tr
(
HH(v · ←D )2

)
+ . . . (2.30)

L3,k =
ε3
Λ2
χ

Tr
(
HHγµγ5(v · →D )2Aµ

)
+
ε4
Λ2
χ

Tr
(
HH
→
D/γ5 v ·

→
Dv · A

)
+ . . . (2.31)

jµ,iΞ1,k =
iκ1

Λχ
trD,t

(1
2TΞγ

µ (1−γ5)Hv · ←Dσ†λ(i)
)

+
κ2

Λχ
trD,t

(1
2TΞγ

µ (1−γ5)H v · Aσ†λ(i)
)

+ . . . (2.32)

jµ,iΞ2,k =
κ3

Λ2
χ

trD,t
(1

2TΞγ
µ (1−γ5)H(v · ←D )2σ†λ(i)

)
+
iκ4

Λ2
χ

trD,t
(1

2TΞγ
µ (1−γ5)H v · →Dv · Aσ†λ(i)

)
+ . . . (2.33)

where the constants εi, κj are taken to be real and dimensionless, Λχ is the chiral scale, and

→
DνAµ ≡ ∂νAµ − i[Vν ,Aµ] . (2.34)

The only di�erence from Ref. [25] is a small change of notation because of the taste degree of

freedom of the heavy quark: Here the current has meson taste Ξ and light �avor �xed by λ(i);

whereas in Ref. [25] the current had only light-quark taste and �avor, both of which were �xed

by λ(i).

The terms induced by single insertions of the light quark mass spurions also follow directly

from Ref. [25]. They are:

L2,m = 2λ1 Tr
(
HHM+

)
+ 2λ′1 Tr

(
HH

)
Tr
(
M+

)
, (2.35)

L3,m = ik1 Tr
(
HHv·←DM+ − v·→DHHM+

)
+ik2 Tr

(
HHv·←D − v·→DHH

)
Tr(M+)

+ k3 Tr
(
HHγµγ5{Aµ,M+}

)
+ k4 Tr

(
HHγµγ5Aµ

)
Tr(M+)

+ k5 Tr
(
HHγµγ5

)
Tr
(
AµM+

)
+ k6 Tr

(
HHγµ[Aµ,M−]

)
, (2.36)

jµ,iΞ2,m = ρ1 trD,t

(
1
2TΞγ

µ(1− γ5)HM+σ†λ(i)
)

+ ρ2 trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)

Tr(M+)

+ρ3 trD,t

(
1
2TΞγ

µ(1− γ5)HM−σ†λ(i)
)

+ ρ4 trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)

Tr(M−),(2.37)

whereM± = 1
2

(
σMσ ± σ†Mσ†

)
are the light-quark mass spurions.
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2.3 Taste Symmetry Breaking

Taste violations �rst appear at O(a2). In the SET, they are described by four-quark (dimension

six) operators, which are generated by gluon exchange with total momenta ∼π/a between two

quark lines. The gluons can change the taste, spin, and color of the quark line, but not its �avor,

so the operators take the form of products of two quark bilinears, where each bilinear is made of

quark and antiquark �elds of a single �avor. In the current case, there are three generic classes

of four-quark operators: where both bilinears are of light quarks, where one bilinear is light and

the other heavy, and where both bilinears heavy. We write

a2Ollss′tt′ = c1a
2 ql(γs ⊗ ξt)ql ql′(γs′ ⊗ ξt′)ql′ , (2.38)

a2Olhss′tt′ = c2a
2 ql(γs ⊗ ξt)ql qh(γs′ ⊗ ξt′)qh , (2.39)

a2Ohhss′tt′ = c3a
2 qh(γs ⊗ ξt)qh qh′(γs′ ⊗ ξt′)qh′ . (2.40)

where l and h refer to light and heavy quarks, respectively; s, s′ label spins; and t, t′ label tastes.

The light quark labels l and l′ are summed over; only a single heavy quark �avor is considered.

Color indices, which may be contracted in di�erent ways, are omitted because they have no e�ect

on the chiral operators generated. The operators in Eqs. (2.38) through (2.40) are schematic;

they stand for the whole set of possible four-quark operators with the given �avor structure.

Similarly, each coe�cient ci represents a set of coe�cients of the operators.

The staggered symmetries impose the following constraints on the possible operators3

U(1)ε symmetry ⇒ {γ5 ⊗ ξ5, γs ⊗ ξt} = 0 , (2.41)

shift symmetry ⇒ ξt = ξt′ , (2.42)

rotational and parity symmetries ⇒ γt = γt′ . (2.43)

At this point the lattice spacing a has simply become a parameter in the continuum SET

theory. We can therefore use the fact that the heavy quark mass mQ is large compared to ΛQCD

to replace the �eld qh in Eqs. (2.39) and (2.40) with the HQET �eld Q, Eq. (2.1). Making in

addition the simpli�cations implied by Eqs. (2.42) and (2.43), we have

a2Ollst = c1a
2 ql(γs ⊗ ξt)ql ql′(γs ⊗ ξt)ql′ , (2.44)

a2Olhst = c2a
2 ql(γs ⊗ ξt)ql Q(γs ⊗ ξt)Q , (2.45)

a2Ohhst = c3a
2 Q(γs ⊗ ξt)Q Q(γs ⊗ ξt)Q . (2.46)

3See Ref. [8] for a pedagogical review; we follow it closely.
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The operators can be further separated into type A and type B operators [37], which are

distinguished by whether they break continuum Euclidean rotation symmetry. This breaking

occurs when there are indices that are common to both the spin and taste matrices, thereby

coupling spin and taste. Type-A operators are invariant under rotation symmetry, while type-B

operators break it. Both types of operators break SU(4) taste symmetry. Type-A operators are,

however, invariant under an SO(4) taste subgroup, as well as the SO(4) of space-time rotations,

whereas type-B operators are invariant only under combined 90◦ rotations of both spin and

taste. There are a total of twelve type-A operators that are named by the spin ⊗ taste of their

bilinears [37]:

[S ×A], [S × V ], [A× S], [V × S], [P ×A], [P × V ],

[A× P ], [V × P ], [T × V ], [T ×A], [V × T ], [A× T ] . (2.47)

Each operator will also have the superscript ll, lh, or hh to denote its �avor. Thus, for example

[T ×A]lh ≡ a2 ql(γµν ⊗ ξλ5)ql Q(γνµ ⊗ ξ5λ)Q , (2.48)

where γµν ≡ (1/2)[γµ, γν ], and we use Minkowski gamma matrices for convenience, corresponding

to the fact that we have chosen to write the chiral Lagrangian ultimately in Minkowski space.

Taste matrices remain Euclidean, as in Eq. (2.13). Summation over the twice-repeated indices

µ, ν, λ is implied.

There are four type-B operators:

[Tµ × Vµ], [Tµ ×Aµ], [Vµ × Tµ], [Aµ × Tµ], (2.49)

where µ is the common index that appears four times. For example, we have

[Aµ × Tµ]ll ≡ a2
∑
µ

ql(iγµγ5 ⊗ iξµν)ql ql′(iγ
µγ5 ⊗ iξµν)ql′ . (2.50)

The index ν, which appears twice, obeys the summation convention, while the sum over an index

like µ, which appears four times, is shown explicitly here and below.

We now consider the chiral operators that correspond to the SET/HQET operators, Eqs. (2.44)

and (2.46). The light-light operators, Eq. (2.44), are (trivially) invariant under the heavy-quark

taste symmetry, while breaking the light-quark taste symmetry, leading to the NLO terms in the

Lagrangian and current denoted by LA1
2,a2 , LB1

2,a2 , LA1
3,a2 , LB1

3,a2 , j
µ,iΞ
2,a2,A1

and jµ,iΞ
2,a2,B1

in Eqs. (2.7)

through (2.10). They are summarized in the following subsection. The light-heavy operators,
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Eq. (2.45), break both the light-quark and heavy-quark taste symmetries. These operators lead

to the terms denoted by LA2
2,a2 , LB2

2,a2 , LA2
3,a2 , LB2

3,a2 , j
µ,iΞ
2,a2,A2

and jµ,iΞ
2,a2,B2

in Eqs. (2.7) through

(2.10), and are discussed in Sec. 2.3.2. Although the heavy-heavy operators, Eq. (2.46), break

the heavy taste symmetry, they do not result in any new chiral operators in the heavy-light

chiral Lagrangian or current, for reasons we discuss at the end of Sec. 2.3.2.

2.3.1 Discretization errors at NLO: Light-taste breaking terms

The light-light operators in Eq. (2.44) are trivially invariant under the heavy-quark spin sym-

metry, in addition to the heavy-quark taste symmetry. Either symmetry alone is enough to

guarantee that all corresponding Lagrangian operators are composed of the product HH. This

means that operators determined in Ref. [25] from the light-light four-quark operators can be

taken over without change even though the heavy quarks considered there had no taste degree of

freedom. Similarly, the spin symmetry alone requires that the left-handed current is constructed

from the combination γµ(1−γ5)H, and the heavy-quark taste symmetry provides no fundamen-

tally new information. Thus the current can also be taken over from Ref. [25], although in this

case one needs the same minor notational change to accommodate the heavy-quark taste degree

of freedom that we have used above in Eqs. (2.32), (2.33) and (2.37). We have also found it

necessary to change a few symbols from those used in Ref. [25] in order to avoid con�ict with

notation in the present chapter. Moreover, we have discovered a few new terms that were missed

in that reference, and have dropped a few terms that are not independent or are absent for

other reasons. The changes have no e�ect on existing calculations in HMrSχPT: the heavy-light

leptonic decay constant [25] and the semileptonic form factors for heavy-light meson decays to

light [105] or heavy-light [59] mesons.

For type-A operators, the contributions to the chiral Lagrangian are

LA1
2,a2 = a2

8∑
k=1

{
KA1

1,k Tr
(
HHOA1,+

k

)
+KA1

2,k Tr
(
HH

)
Tr(OA1,+

k )

}
(2.51)

43



and

LA1
3,a2 = a2

8∑
k=1

{
icA1

1,k Tr
(
HHv·←DOA1,+

k − v·→DHH OA1,+
k

)
+icA1

2,k Tr
(
HHv·←D − v·→DHH

)
Tr(OA1,+

k )

+cA1
3,k Tr

(
HHγµγ5{Aµ,OA1,+

k }
)

+ cA1
4,k Tr

(
HHγµγ5Aµ

)
Tr(OA1,+

k )

+cA1
5,k Tr

(
HHγµγ5

)
Tr(AµOA1,+

k ) + cA1
6,k Tr

(
HHγµ[Aµ,OA1,−

k ]
)

+cA1
7,k

(
Tr
(
HHγµγ5P

A1
k AµP̃A1

k

)
+ p.c.

)
+cA1

8,k

(
Tr
(
HHγµγ5P

A1
k

)
Tr
(
AµP̃A1

k

)
+ p.c.

)}
+a2

∑
k=2,5,7,8

cA1
9,k

(
Tr
(
HHγµP

A1
k AµP̃A1

k

)
+ p.c.

)
+a2

∑
k=1,2,6,7

cA1
10,k

(
Tr
(
HHγµP

A1
k

)
Tr
(
AµP̃A1

k

)
+ p.c.

)
. (2.52)

where p.c. denotes the parity conjugate; for example, σp.c. = σ†. Taste violations are encoded

in the operators

OA1,±
1 = (σξ

(n)
5 Σ†ξ

(n)
5 σ ± p.c.)

OA1,±
2 =

[
(σξ(n)

ν σ) Tr(ξ(n)
ν Σ)± p.c.

]
OA1,±

3 = (σξ(n)
ν Σξ(n)

ν σ ± p.c.)

OA1,±
4 = (σξ

(n)
ν5 Σξ

(n)
5ν σ ± p.c.)

OA1,±
5 =

[
(σξ(n)

ν σ) Tr(ξ(n)
ν Σ†)± p.c.

]
OA1,±

6 = (σξ(n)
µν Σ†ξ(n)

νµ σ ± p.c.)

OA1,±
7 =

[
(σξ

(n)
ν5 σ) Tr(ξ

(n)
5ν Σ)± p.c.

]
OA1,±

8 =
[
(σξ

(n)
ν5 σ) Tr(ξ

(n)
5ν Σ†)± p.c.

]
, (2.53)

44



and

PA1
1 = σξ

(n)
5 σ† , P̃A1

1 ≡ (PA1
1 )p.c. = σ†ξ

(n)
5 σ

PA1
2 = σξ

(n)
5 σ† , P̃A1

2 ≡ PA1
2

PA1
3 = σξ

(n)
ν σ , P̃A1

3 ≡ PA1
3

PA1
4 = iσξ

(n)
ν5 σ , P̃A1

4 ≡ PA1
4

PA1
5 = σξ

(n)
ν σ , P̃A1

5 ≡ (PA1
5 )p.c. = σ†ξ(n)

ν σ†

PA1
6 = iσξ

(n)
λν σ

† , P̃A1
6 ≡ (PA1

6 )p.c. = −iσ†ξ(n)
νλ σ

PA1
7 = iσξ

(n)
λν σ

† , P̃A1
7 ≡ PA1

7

PA1
8 = iσξ

(n)
ν5 σ , P̃A1

8 ≡ (PA1
8 )p.c. = −iσ†ξ(n)

5ν σ
† . (2.54)

For the current, we have

jµ,iΞ
2,a2,A1

= a2
8∑

k=1

{
rA1

1,k trD,t

(
1
2TΞγ

µ(1− γ5)HOA1,+
k σ†λ(i)

)
+rA1

2,k trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)

Tr(OA1,+
k ) + rA1

3,k trD,t

(
1
2TΞγ

µ(1− γ5)HOA1,−
k σ†λ(i)

)
+rA1

4,k trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)

Tr(OA1,−
k )

}
. (2.55)

Similarly, for type-B operators, we have:

LB1
2,a2 = a2

∑
µ

3∑
k=1

{
KB1

1,kvµv
µ Tr(HHOB1,+

µ,k ) +KB1
2,kvµv

µ Tr(HH) Tr(OB1,+
µ,k )

+KB1
3,kvµ Tr(HHγµγ5OB1,−

µ,k ) +KB1
4,kvµ Tr(HHγµγ5) Tr(OB1,−

µ,k )

}
, (2.56)

where

OB1,±
µ,1 = (σξ

(n)
µλ Σ†ξ

(n)
λµ σ)± p.c. ,

OB1,±
µ,2 = (σξ(n)

µ σ) Tr(ξ(n)
µ Σ†)± p.c. ,

OB1,±
µ,3 = (σξ

(n)
µ5 σ) Tr(ξ

(n)
5µ Σ†)± p.c. . (2.57)

Note that the above operators explicitly depend on µ, and there is no summation over this index

in their de�nition. (We do sum over λ.) The sum over µ is shown explicitly in Eq. (2.56).

The terms proportional to KB1
3,k and KB1

4,k in Eq. (2.56), which have the form of a product of a
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parity-odd combination of the heavy-light mesons times a parity-odd combination of the light

mesons, were omitted in Ref. [25]. They are unlikely to be important in practical calculations

in either HMrSχPT and HMrASχPT since their �rst contribution is a NLO correction to the

B-B∗-π vertex.

There are many terms in LB1
3,a2 , so we separate it for convenience into two parts:

LB1
3,a2 = LB1,O

3,a2 + LB1,P
3,a2 . (2.58)

We then have

LB1,O
3,a2 = a2

∑
µ

3∑
k=1

{
icB1

1,k Tr
(
HHvµ

←
DµOB1,+

µ,k − vµ→DµHH OB1,+
µ,k

)
+icB1

2,k Tr
(
HHvµ

←
Dµ − vµ

→
DµHH

)
Tr(OB1,+

µ,k )

+cB1
3,k Tr

(
HHγµγ5{Aµ,OB1,+

µ,k }
)

+ cB1
4,k Tr

(
HHγµγ5Aµ

)
Tr(OB1,+

µ,k )

+cB1
5,k Tr

(
HHγµγ5

)
Tr(AµOB1,+

µ,k ) + cB1
6,k Tr

(
HHγµ[Aµ,OB1,−

µ,k ]
)

+icB1
7,k vµv

µ Tr
(
HHv·←DOB1,+

µ,k − v·→DHH OB1,+
µ,k

)
+icB1

8,k vµv
µ Tr

(
HHv·←D − v·→DHH

)
Tr(OB1,+

µ,k )

+cB1
9,k vµv

µ Tr
(
HHγνγ5{Aν ,OB1,+

µ,k }
)

+ cB1
10,k vµv

µ Tr
(
HHγνγ5Aν

)
Tr(OB1,+

µ,k )

+cB1
11,k vµv

µ Tr
(
HHγνγ5

)
Tr(AνOB1,+

µ,k ) + cB1
12,k vµv

µ Tr
(
HHγν [Aν ,OB1,−

µ,k ]
)

+cB1
13,k v

µ Tr
(
HHγµγ5{v·A,OB1,+

µ,k }
)

+ cB1
14,k v

µ Tr
(
HHγµγ5 v·A

)
Tr(OB1,+

µ,k )

+cB1
15,k v

µ Tr
(
HHγµγ5

)
Tr(v·AOB1,+

µ,k ) + cB1
19,kv

µ Tr
(
HHγµν{Aν ,OB1,−

µ,k }
)

+cB1
20,kv

µ Tr
(
HHγµν

)
Tr
(
AνOB1,−

µ,k

)}
, (2.59)
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and

LB1,P
3,a2 = a2

∑
µ

{
4∑

k=1

[
cB1

21,k

(
Tr
(
HHγµγ5P

B1
µ,kAµP̃B1

µ,k

)
+ p.c.

)
+cB1

22,k

(
Tr
(
HHγµγ5P

B1
µ,k

)
Tr
(
AµP̃B1

µ,k

)
+ p.c.

)
+cB1

23,kvµv
µ
(

Tr
(
HHγνγ5P

B1
µ,kAνP̃B1

µ,k

)
+ p.c.

)
+cB1

24,kvµv
µ
(

Tr
(
HHγνγ5P

B1
µ,k

)
Tr
(
AνP̃B1

µ,k

)
+ p.c.

)
+cB1

25,kv
µ
(

Tr
(
HHγµγ5P

B1
µ,kv·A P̃B1

µ,k

)
+ p.c.

)
+cB1

26,kv
µ
(

Tr
(
HHγµγ5P

B1
µ,k

)
Tr
(
v·A P̃B1

µ,k

)
+ p.c.

)]
+
∑

k=2,3,4

[
cB1

29,k

(
Tr
(
HHγµP

B1
µ,kAµP̃B1

µ,k

)
+ p.c.

)
+cB1

30,kvµv
µ
(

Tr
(
HHγνP

B1
µ,kAνP̃B1

µ,k

)
+ p.c.

)]
+
∑
k=1,4

[
cB1

31,k

(
Tr
(
HHγµP

B1
µ,k

)
Tr
(
AµP̃B1

µ,k

)
+ p.c.

)
+cB1

32,kvµv
µ
(

Tr
(
HHγνP

B1
µ,k

)
Tr
(
AνP̃B1

µ,k

)
+ p.c.

)]
+cB1

33,1v
µ
(

Tr
(
HHγµνP

B1
µ,1AνP̃B1

µ,1

)
+ p.c.

)
+
∑
k=2,3

[
cB1

34,kv
µ
(

Tr
(
HHγµνP

B1
µ,k

)
Tr
(
AνP̃B1

µ,k

)
+ p.c.

)]}
, (2.60)

where

PB1
µ,1 = iσξ

(n)
µλ σ

† , P̃B1
µ,1 ≡ (PB1

µ,1 )p.c. = −iσ†ξ(n)
λµ σ

PB1
µ,2 = σξ

(n)
µ σ , P̃B1

µ,2 ≡ (PB1
µ,2 )p.c. = σ†ξ(n)

µ σ†

PB1
µ,3 = iσξ

(n)
µ5 σ , P̃B1

µ,3 ≡ (PB1
µ,3 )p.c. = −iσ†ξ(n)

5µ σ
†

PB1
µ,4 = iσξ

(n)
µλ σ

† , P̃B1
µ,4 ≡ PB1

µ,4 . (2.61)

A comparison of Eq. (2.59) with Eq. (59) in Ref. [25] shows that we have dropped the terms

with coe�cients cB16,k, c
B
17,k, and c

B
18,k because one can write them as linear combinations of other

terms in the Lagrangian using Eqs. (2.78) and (2.82) below and the cyclic property of the trace.

For example, the term with coe�cient cB16,k is linearly dependent on the terms with coe�cients

cB9,k and c
B
13,k. Terms with coe�cients cB27,k and c

B
28,k in Eq. (60) of Ref. [25] have been dropped

in Eq. (2.60) for the same reason.
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For the type-B contributions to the current, we have:

jµ,iΞ
2,a2,B1

= a2
3∑

k=1

∑
ν

{
rB1

5,k trD,t

(
1
2TΞγ

µ(1− γ5)Hvνv
νOB1,+

ν,k σ†λ(i)
)

+rB1
6,k trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)
vνv

ν Tr(OB1,+
ν,k )

+rB1
7,k trD,t

(
1
2TΞγ

µ(1− γ5)Hvνv
νOB1,−

ν,k σ†λ(i)
)

+rB1
8,k trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)
vνv

ν Tr(OB1,−
ν,k )

+rB1
9,k trD,t

(
1
2TΞγ

µ(1− γ5)HγνvνOB1,+
ν,k σ†λ(i)

)
+rB1

10,k trD,t

(
1
2TΞγ

µ(1− γ5)Hγνσ†λ(i)
)
vν Tr(OB1,+

ν,k )

+rB1
11,k trD,t

(
1
2TΞγ

µ(1− γ5)HγνvνOB1,−
ν,k σ†λ(i)

)
+rB1

12,k trD,t

(
1
2TΞγ

µ(1− γ5)Hγνσ†λ(i)
)
vν Tr(OB1,−

ν,k )

}
. (2.62)

Here we have omitted terms in Ref. [25] with coe�cients r1,k through r4,k. These terms have the

(Lorentz and taste) index ν set to µ and not summed over. We believe such terms are inconsistent

with heavy-quark spin symmetry, which is not broken by light-light four-quark operators in the

SET. In the next subsection, we give a more detailed discussion about type-B contributions to

the current, which will further elucidate the reason for dropping these terms.

2.3.2 Discretization errors at NLO: Heavy-taste breaking terms

We now proceed to determine the chiral representatives of the light-heavy terms in the SET,

Eq. (2.45). The spin and taste matrices between Q and Q in this case mean that heavy-quark

spin and taste symmetries are broken. The corresponding chiral operators are completely new,

unrelated to those in Ref. [25], and we must determine them from scratch. That requires de�ning

spurions to make the operators �invariant,� and then constructing the possible chiral operators in

terms of those spurions. Initially, we do not allow additional derivatives (i.e., either the covariant

derivative,
→
Dµ or the axial current A), and �nd the chiral operators summarized by the terms

LA2
2,a2 , LB2

2,a2 , j
µ,iΞ
2,a2,A2

and jµ,iΞ
2,a2,B2

in Eqs. (2.7) and (2.10). We then consider terms with a single

additional derivative, which are summarized in LA2
3,a2 and LB2

3,a2 , Eq. (2.8).
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We take the type-A operator
[
V × P

]lh
as an example:

a2O[V×P ]lh ≡ a2 q(γµ ⊗ ξ5)q Q(γµ ⊗ ξ5)Q,

= a2[qL(γµ ⊗ ξ5)qL + qR(γµ ⊗ ξ5)qR] [Q(γµ ⊗ ξ5)Q],

= a2[qL(γµ ⊗A1)qL + qR(γµ ⊗A2)qR] [Q
(
B(µ)⊗ C

)
Q] , (2.63)

with qL = [(1 − γ5)/2] q and qR = [(1 + γ5)/2] q. Note that Eq. (2.63) is written in Minkowski

space for consistency with the conventions of this chapter. We have introduced four spurions,

A1, A2, B(µ), and C, which transform as:

A1 → LA1L
† , (2.64)

A2 → RA2R
† , (2.65)

B(µ) → S B(µ)S† , (2.66)

C → V CV † . (2.67)

Here A1 and A2 are light-quark spurions that transform according to the chiral �avor-taste

symmetry, while B(µ) and C transform to maintain the spin and taste symmetry, respectively,

of the heavy quark. We will use them as building blocks for the chiral theory, and eventually let

them take the values

A1 = aξ
(n)
5 ≡ aξ5 ⊗ Iflavor , (2.68)

A2 = aξ
(n)
5 ≡ aξ5 ⊗ Iflavor , (2.69)

B(µ) = γµ , (2.70)

C = aξ5 , (2.71)

where Iflavor is the identity in �avor space. We employ two separate heavy quark spurions so that

we can let B(µ) take its �nal value before A1, A2, and C do. This two-stage procedure is useful

in elucidating the implications of Lorentz (or, equivalently, Euclidean rotation) invariance. Since

Lorentz transformations include heavy-quark spin transformations, once B(µ) is introduced in

the last line of Eq. (2.63), the 4-quark operator no longer transforms as a Lorentz scalar �eld.

The chiral operators we construct from A1, A2, and B(µ)⊗C will thus be invariants under heavy

quark spin, heavy quark taste, and light quark chiral transformations, but not under Lorentz

transformations. However, once we replace B(µ) by γµ (and sum over µ), the 4-quark operator

is once again a Lorentz scalar, and so must be the resulting chiral operators.

In constructing chiral operators from these spurions, we �rst note that A1 and A2 may be
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combined with σ and σ† in order to form objects that transform with U under the light-quark

symmetries. This is convenient because H and H transform in that way, Eq. (2.24). We note

σ†A1σ → U (σ†A1σ) U† , (2.72)

σA2σ
† → U (σA2σ

†) U† . (2.73)

We can now easily make chiral operators that are invariant under heavy and light taste symmetry

and spin symmetry, and are bilinear in B(µ)⊗C and A1 or A2. (Terms with more spurions are

higher order.) We �nd the following operators:

Tr
[
H (B(µ)⊗ C

)
H Γ1σ

†A1σ
]
, Tr

[
H (B(µ)⊗ C

)
H Γ2σA2σ

†
]
,

Tr
[
H (B(µ)⊗ C

)
H Γ3

]
Tr
[
σ†A1σ

]
, Tr

[
H (B(µ)⊗ C

)
H Γ4

]
Tr
[
σA2σ

†
]
,

where Γ1, · · · ,Γ4 are (for the moment, arbitrary) combinations of γ matrices and components of

the heavy quark velocity v, which are the only additional factors allowed at this order. Replacing

B(µ) by γµ, we may then demand Lorentz (and parity) invariance. The resulting operators are

vµ Tr
(
HγµCHσ

†A1σ
)

+ vµ Tr
(
HγµCHσA2σ

†
)
, (2.74)

Tr
(
HγµCHγ

µσ†A1σ
)

+ Tr
(
HγµCHγ

µσA2σ
†
)
, (2.75)

vµ Tr
(
HγµCH

)
Tr
(
σ†A1σ

)
+ vµTr

(
HγµCH

)
Tr
(
σA2σ

†
)
, (2.76)

Tr
(
HγµCHγ

µ
)

Tr
(
σ†A1σ

)
+ Tr

(
HγµCHγ

µ
)

Tr
(
σA2σ

†
)
, (2.77)

Here, parity invariance requires that A1 and A2 enter symmetrically; there are no parity-odd

bilinears in H and H that could be multiplied by an antisymmetric combination of A1 and A2.

We have also omitted the direct product symbol ⊗ where the meaning is clear from context.

Since Tr
(
σ†A1σ

)
= 0 = Tr

(
σ†A2σ

)
once A1 and A2 take their �nal values, Eq. (2.76) and

Eq. (2.77) may be dropped. On the other hand, various simpli�cations of terms involving H and

H are possible here and below, due to the overall factors of (1+v/) in their de�nitions [Eqs. (2.21)

and (2.22)], the fact that v2 = 1, and the relation vµB∗µαa = 0 for the vector meson �eld B∗. We
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list some relations that are useful for simplifying terms:

v/B/∗ = −B/∗v/ ⇒ v/H = −Hv/, (2.78)

(1 + v/)v/ = (1 + v/), (2.79)

(1 + v/)γ5(1 + v/) = 0, (2.80)

(1 + v/)γµ(1 + v/) = (1 + v/)vµ(1 + v/), (2.81)

(1− v/)γµν(1 + v/) = (1− v/) (γµvν − γνvµ) (1 + v/), (2.82)

trD(HHγµ) = −vµtrD(HH), (2.83)

where trD is a trace over Dirac indices only, and Eq. (2.83) is actually a simple consequence of

Eqs. (2.78) and (2.81) and the cyclic property of the trace. With these relations, it is straight-

forward show that Eq. (2.74) and Eq. (2.75) are both proportional to

a2 Tr
(
Hξ5Hσ

†ξ
(n)
5 σ

)
+ a2 Tr

(
Hξ5Hσξ

(n)
5 σ†

)
, (2.84)

where we wave inserted �nal values of the spurions from Eqs. (2.68), (2.69) and (2.71). We then

follow the same procedure for other type-A operators. For clarity, we write the terms with a

single trace and terms with two traces separately. First, we list the single-trace terms:

[
S ×A

]
→ a2 Tr

(
Hξ5µHσ

†ξ
(n)
µ5 σ

†
)

+ a2 Tr
(
Hξ5µHσξ

(n)
µ5 σ

)
, (2.85)[

S × V
]
→ a2 Tr

(
HξµHσ

†ξ(n)
µ σ†

)
+ a2 Tr

(
HξµHσξ

(n)
µ σ

)
, (2.86)[

P ×A
]
→ 0 , (2.87)[

P × V
]
→ 0 , (2.88)[

T ×A
]
→ a2 Tr

(
Hγλνξ5µHγ

νλσ†ξ
(n)
µ5 σ

†
)

+ a2 Tr
(
Hγλνξ5µHγ

νλσξ
(n)
µ5 σ

)
, (2.89)[

T × V
]
→ a2 Tr

(
HγλνξµHγ

νλσ†ξ(n)
µ σ†

)
+ a2 Tr

(
HγλνξµHγ

νλσξ(n)
µ σ

)
, (2.90)[

V × S
]
→ a2 Tr

(
HH

)
, (2.91)[

V × P
]
→ a2 Tr

(
Hξ5Hσ

†ξ
(n)
5 σ

)
+ a2 Tr

(
Hξ5Hσξ

(n)
5 σ†

)
, (2.92)[

V × T
]
→ a2 Tr

(
HξνλHσ

†ξ
(n)
λν σ

)
+ a2 Tr

(
HξνλHσξ

(n)
λν σ

†
)
, (2.93)[

A× S
]
→ a2 Tr

(
Hγ5µHγ

µ5
)
, (2.94)[

A× P
]
→ a2 Tr

(
Hγ5µξ5Hγ

µ5σ†ξ
(n)
5 σ

)
+ a2 Tr

(
Hγ5µξ5Hγ

µ5σξ
(n)
5 σ†

)
, (2.95)[

A× T
]
→ a2 Tr

(
Hγ5µξνλHγ

µ5σ†ξ
(n)
λν σ

)
+ a2 Tr

(
Hγ5µξνλHγ

µ5σξ
(n)
λν σ

†
)
. (2.96)
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As before, all twice-repeated indices are summed. The double-trace terms are:

[
S ×A

]
→ a2 Tr

(
Hξ5µH

)
Tr
(
σ†ξ

(n)
µ5 σ

†
)

+ a2 Tr
(
Hξ5µH

)
Tr
(
σξ

(n)
µ5 σ

)
, (2.97)[

S × V
]
→ a2 Tr

(
HξµH

)
Tr
(
σ†ξ(n)

µ σ†
)

+ a2 Tr
(
HξµH

)
Tr
(
σξ(n)

µ σ
)
, (2.98)[

P ×A
]
→ 0 , (2.99)[

P × V
]
→ 0 , (2.100)[

T ×A
]
→ a2 Tr

(
Hγλνξ5µHγ

λν
)

Tr
(
σ†ξ

(n)
µ5 σ

†
)

+ a2 Tr
(
Hγλνξ5µHγ

λν
)

Tr
(
σξ

(n)
µ5 σ

)
,(2.101)[

T × V
]
→ a2 Tr

(
HγλνξµHγ

λν
)

Tr
(
σ†ξ(n)

µ σ†
)

+ a2 Tr
(
HγλνξµHγ

λν
)

Tr
(
σξ(n)

µ σ
)
,(2.102)[

V × S
]
→ 0 , (2.103)[

V × P
]
→ 0 , (2.104)[

V × T
]
→ 0 (2.105)[

A× S
]
→ 0 , (2.106)[

A× P
]
→ 0 , (2.107)[

A× T
]
→ 0 . (2.108)

In Eqs. (2.85) through (2.108), we have again used the fact that Lorentz-invariant, parity-odd

bilinears in H and H [such as trD(HHγ5), trD(HγµHγµ5), or trD(HγµνHγνµγ5)] vanish. The

reason for this is that, once the Dirac traces are performed, the only objects from which to form

invariants in the heavy-meson sector are B, B†, B∗µ, B
†∗
ν , and vλ, and it is not possible to make

a Lorentz-invariant bilinear in the meson �elds that is parity odd out of these ingredients. This

eliminates the possibility of antisymmetric combinations of the light quark spurions, multiplied

by parity-odd combinations of the heavy-meson �elds.

We now consider the type-B operators. The procedure here is a bit more complicated

because these operators violate Lorentz invariance in a particular way, and we must ensure that

the chiral operators do the same. Our approach is based on that introduced by Sharpe and Van

de Water [60] to �nd light-meson chiral representatives of type-B operators. We take
[
Tµ×Aµ

]
as an example:

a2O[Tµ×Aµ] ≡ a2
∑
µ

{
ql(γ

µν⊗ξµ5)qlqh(γνµ⊗ξ5µ)qh−ql(γµν5⊗ξµ5)qlqh(γ5νµ⊗ξ5µ)qh

}
. (2.109)

The second term in this expression removes the Lorentz-singlet component. However, it is unnec-

essary to keep both terms here because the second term can be written as a linear combination

of the �rst term and
[
T × A

]
, which has already have been taken into account. Further, it is

useful for the moment to remove the sums (explicit or implicit) over the indices µ, ν. Thus we

52



are led to consider the operator

a2O(µ, ν) ≡ a2q(γµν ⊗ ξµ5)q Q(γνµ ⊗ ξ5µ)Q,

= a2
[
qL(γµν ⊗ ξµ5)qR + qR(γµν ⊗ ξµ5)qL

][
Q(γνµ ⊗ ξ5µ)Q

]
,

=
[
qL
(
γµν ⊗A1(µ)

)
qR + qR

(
γµν ⊗A2(µ)

)
qL
][
Q
(
B(ν, µ)⊗ C(µ)

)
Q
]
,(2.110)

where µ and ν are �xed. With the spurions A1(µ), A2(µ), and B(ν, µ)⊗C(µ), we can construct

two single-trace O(a2) terms that are invariant under heavy and light taste symmetry and heavy-

quark spin symmetry:

Tr
[
H
(
B(ν, µ)⊗ C(µ)

)
HΓ1 σ

†A1(µ)σ†
]
,

Tr
[
H
(
B(ν, µ)⊗ C(µ)

)
HΓ2 σA2(µ)σ

]
, (2.111)

where Γ1 and Γ2 are as-yet undetermined combinations of γ matrices and components of v.

There are also two-trace versions of these operators, in which the heavy- and light-quark factors

are separately traced, but for simplicity we focus on the single-trace case here.

We now replace the spurion B(ν, µ) with its value γνµ. We also restore the sum over ν (but

not µ), considering chiral representatives of the operator a2O(µ) = a2
∑

ν O(µ, ν):

a2O(µ) =
[
qLγµνA1(µ)qR + qRγµνA2(µ)qL

][
QγνµC(µ)Q

]
(µ fixed) , (2.112)

with the ⊗ symbols and the sum on ν implicit. The operator O(µ) is the µ
µ component of a

two-index Lorentz tensor, and is therefore a linear combination of an element of a symmetric

traceless tensor and a Lorentz singlet (the trace). The singlet piece, in which the sum over

the Lorentz index µ is decoupled from the taste label µ of the spurions, is simply a repeat of

the corresponding type-A operator; only the symmetric tensor is new. Thus the desired chiral

operators are µ
µ components of two-index Lorentz tensors, where it is not necessary to insist on

tracelessness because the trace term again will repeat one of the type-A chiral operators. From

the possibilities in Eq. (2.111), two independent operators may now be constructed:

Tr
[
HγνµC(µ)Hγµν

(
σ†A1(µ)σ† + σA2(µ)σ

)]
,

Tr
[
HγνµC(µ)Hγµνγ5

(
σ†A1(µ)σ† − σA2(µ)σ

)]
, (2.113)

with µ still �xed. Using Eqs. (2.78) through (2.82), it is not hard to show that choices other

than γµν for the Γi factors following the H �eld either vanish identically (e.g., for the choice

γµvν) or are proportional to one of the terms listed (e.g., for the choice vµγν). The symmetric
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combination of A1 and A2 in the �rst term, as well as the antisymmetric combination in the

second, are required by parity.

Finally, we put in the �xed values of the spurions A1(µ), A2(µ), and C(µ), and restore the

sum on µ, giving the two operators

a2
∑
µ

{
Tr
[
Hγνµξ5µHγ

µν
(
σ†ξ

(n)
µ5 σ

† + σξ
(n)
µ5 σ

)]}
, (2.114)

a2
∑
µ

{
Tr
[
Hγνµξ5µHγ

µνγ5

(
σ†ξ

(n)
µ5 σ

† − σξ(n)
µ5 σ

)]}
. (2.115)

As mentioned earlier, terms like Eq. (2.115) (odd in the light spurions) are ruled out in the

type-A case by parity and Lorentz invariance. Here, however, Lorentz invariance is broken, and

trD
(
HγνµHγ

µνγ5

)
does not vanish since the sum on µ is not free, but coupled to the taste sum.

Further, one can check that the term in Eq. (2.115) is Hermitian and time-reversal invariant; for

details of how time-reversal symmetry acts on relevant quantities, see Ref. [25], Sec. III D.

We derive the other type-B terms similarly. For clarity, we write the single-trace terms and

the double-trace terms separately. The single-trace terms are:

[
Tµ ×Aµ

]
→ a2

∑
µ

{
Tr
[
Hγνµξ5µHγ

µν
(
σ†ξ

(n)
µ5 σ

† + σξ
(n)
µ5 σ

)]}
,

a2
∑
µ

{
Tr
[
Hγνµξ5µHγ

µνγ5

(
σ†ξ

(n)
µ5 σ

† − σξ(n)
µ5 σ

)]}
; (2.116)

[
Tµ × Vµ

]
→ a2

∑
µ

{
Tr
[
HγνµξµHγ

µν
(
σ†ξ(n)

µ σ† + σξ(n)
µ σ

)]}
,

a2
∑
µ

{
Tr
[
HγνµξµHγ

µνγ5

(
σ†ξ(n)

µ σ† − σξ(n)
µ σ

)]}
; (2.117)

[
Aµ × Tµ

]
→ a2

∑
µ

{
Tr
[
Hγ5µξνµHγ

µ5
(
σ†ξ(n)

µν σ + σξ(n)
µν σ

†
)]}

,

a2
∑
µ

{
Tr
[
Hγ5µξνµHγ

µ
(
σ†ξ(n)

µν σ − σξ(n)
µν σ

†
)]}

; (2.118)

[
Vµ × Tµ

]
→ a2

∑
µ

{
vµvµ Tr

[
HξνµH

(
σ†ξ(n)

µν σ + σξ(n)
µν σ

†
)]}

,

a2
∑
µ

{
vµ Tr

[
HξνµHγµ5

(
σ†ξ(n)

µν σ − σξ(n)
µν σ

†
)]}

. (2.119)
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The double-trace terms are:

[
Tµ ×Aµ

]
→ a2

∑
µ

Tr
(
Hγνµξ5µHγ

µν
){

Tr
(
σ†ξ

(n)
µ5 σ

†
)

+ Tr
(
σξ

(n)
µ5 σ

)}
,

a2
∑
µ

Tr
(
Hγνµξ5µHγ

µνγ5

){
Tr
(
σ†ξ

(n)
µ5 σ

†
)
− Tr

(
σξ

(n)
µ5 σ

)}
; (2.120)

[
Tµ × Vµ

]
→ a2

∑
µ

Tr
(
HγνµξµHγ

µν
){

Tr
(
σ†ξ(n)

µ σ†
)

+ Tr
(
σξ(n)

µ σ
)}

,

a2
∑
µ

Tr
(
HγνµξµHγ

µνγ5

){
Tr
(
σ†ξ(n)

µ σ†
)
− Tr

(
σξ(n)

µ σ
)}

; (2.121)[
Aµ × Tµ

]
→ 0 , (2.122)[

Vµ × Tµ
]
→ 0 . (2.123)

The Lagrangian terms LA2
2,a2 and LB2

2,a2 , Eq. (2.7), collect the (heavy-quark taste violating)

chiral operators that we have derived so far. To make the notation a bit more compact, we �rst

de�ne the operators:

P±5 =
1

2
(σξ

(n)
5 σ† ± p.c.),

P±µν =
1

2
(σξ(n)

µν σ
† ± p.c.),

P±µ =
1

2
(σξ(n)

µ σ ± p.c.),

P±µ5 =
1

2
(σξ

(n)
µ5 σ ± p.c.) . (2.124)

We then have

LA2
2,a2 = a2

{
KA2

1,0 Tr
(
HH

)
+KA2

1,1 Tr
(
Hξ5HP

+
5

)
+KA2

1,2 Tr
(
HξµHP

+
µ

)
+KA2

1,3 Tr
(
Hξ5µHP

+
µ5

)
+KA2

1,4 Tr
(
HξµνHP

+
νµ

)
+KA2

1,5 Tr
(
Hγ5µHγ

µ5
)

+KA2
1,6 Tr

(
Hγ5µξ5Hγ

µ5P+
5

)
+KA2

1,7 Tr
(
HγµνξλHγ

νµP+
λ

)
+KA2

1,8 Tr
(
Hγµνξ5λHγ

νµP+
λ5

)
+KA2

1,9 Tr
(
Hγ5µξνλHγ

µ5P+
λν

)
(2.125)

+KA2
2,1 Tr

(
HξµH

)
Tr
(
P+
µ

)
+KA2

2,2 Tr
(
Hξ5µH

)
Tr
(
P+
µ5

)
+KA2

2,3 Tr
(
HγµνξλHγ

νµ
)

Tr
(
P+
λ

)
+KA2

2,4 Tr
(
Hγµνξ5λHγ

νµ
)

Tr
(
P+
λ5

)}
,

where ten terms are single-trace and four are double-trace. For completeness we have kept the

trivial term a2KA2
1,0 Tr

(
HH

)
even though it does not break any symmetries and just gives equal

mass shifts to all tastes of pseudoscalar and vector heavy-light mesons. In fact, this term also
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would appear in LA1
2,a2 but was dropped from Ref. [25] due to its triviality. It is worth mentioning

that the terms breaking the spin symmetry by γµν in Eq. (2.125) can be replaced with simpler

terms using the following identity:

HγµνTΞHγ
νµ = Hγ5γµνTΞHγ5γ

νµ = −2Hγ5ρTΞHγ
ρ5, (2.126)

where the �rst equality follows from the fact that the γ5 factors just interchange the components

of γµν , and the second can be proved using Eqs. (2.79), (2.80) and (2.82).

For LB2
2,a2 we have

LB2
2,a2 = a2

∑
µ

{
KB2

1,1 Tr
(
HγνµξµHγ

µνP+
µ

)
+KB2

1,2 Tr
(
Hγνµξ5µHγ

µνP+
µ5

)
+KB2

1,3v
µvµ Tr

(
HξνµHP

+
µν

)
+KB2

1,4 Tr
(
Hγ5µξνµHγ

µ5P+
µν

)
+KB2

1,5 Tr
(
HγνµξµHγ

µνγ5P
−
µ

)
+KB2

1,6 Tr
(
Hγνµξ5µHγ

µνγ5P
−
µ5

)
+KB2

1,7v
µ Tr

(
HξνµHγµ5P

−
µν

)
+KB2

1,8v
µ Tr

(
Hγ5µξνµHP

−
µν

)
(2.127)

+KB2
2,1 Tr

(
HγνµξµHγ

µν
)

Tr
(
P+
µ

)
+KB2

2,2 Tr
(
Hγνµξ5µHγ

µν
)

Tr
(
P+
µ5

)
+KB2

2,3 Tr
(
HγνµξµHγ

µνγ5

)
Tr
(
P−µ
)

+KB2
2,4 Tr

(
Hγνµξ5µHγ

µνγ5

)
Tr
(
P−µ5

)}
.

where eight terms are single-trace and four are double-trace.

There are a large number of terms contributing to the remaining NLO parts of the La-

grangian, LA2
3,a2 and LB2

3,a2 . An extra derivative, either in the form of the covariant derivative

Dν or the axial current Aν , can be added to the terms in LA2
2,a2 and LB2

2,a2 in many ways when

one takes into account the ordering of terms and the various possibilities for contracting indices.

Faced with this explosion of terms, we content ourselves with listing some representative con-

tributions. For all practical applications at NLO that we can envision, this will be su�cient,

since in a lattice computation of some physical quantity one is only interested in knowing what

analytic terms are possible, and whether the coe�cients of these terms are linearly dependent

or independent, and not in knowing how to write those coe�cients as combinations of the low

energy constants in the chiral Lagrangian. This is the case for the heavy-light decay constant,

discussed in Sec. 2.5. For the NLO taste splittings of the masses of heavy-light mesons, treated

Sec. 2.4, the quantities LA2
3,a2 and LB2

3,a2 are in fact irrelevant, because they either have an extra

factor of the residual momentum k, which vanishes on shell at this order, or because they have

an extra pion �eld at tree level.
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Some representative contributions to LA2
3,a2 are:

LA2
3,a2 = a2

{[
icA2

1,0 Tr
(
HHv·←D − v·→DHH

)
+ · · ·

+ icA2
1,9 Tr

(
Hγ5µξνλHγ

µ5v·←DP+
λν − v·

→
DHγ5µξνλHγ

µ5P+
λν

)]
+

[
icA2

2,1 Tr
(
HξµHv·

←
D − v·→DHξµH

)
Tr
(
P+
µ

)
+ · · ·

+ icA2
2,4 Tr

(
Hγµνξ5λHγ

νµv·←D − v·→DHγµνξ5λHγ
νµ
)

Tr
(
P+
λ5

)]
+

[
cA2

3,0 Tr
(
HHγσγ5Aσ

)
+ · · ·+ cA2

3,9 Tr
(
Hγ5µξνλHγ

µ5γσγ5{Aσ, P+
λν}
)]

+

[
cA2

4,1 Tr
(
HξµHγσγ5Aσ

)
Tr
(
P+
µ

)
+ · · ·+ cA2

4,4 Tr
(
Hγµνξ5λHγ

νµγσγ5Aσ
)

Tr
(
P+
λ5

)]
+

[
cA2

5,1 Tr
(
Hξ5Hγσγ5

)
Tr
(
AσP+

5

)
+ · · ·+ cA2

5,9 Tr
(
Hγ5µξνλHγ

µ5γσγ5

)
Tr
(
AσP+

λν

)]
+

[
cA2

6,1 Tr
(
Hξ5Hγσγ5[Aσ, P−5 ]

)
+ · · ·+ cA2

6,9 Tr
(
Hγ5µξνλHγ

µ5γσγ5[Aσ, P−λν ]
)]

+ · · ·
}
. (2.128)

The expressions inside of each square bracket are constructed by adding a derivative-containing

factor in the same way to each of the single-trace or the double-trace terms of Eq. (2.125), so

the ellipses in the square brackets may easily be �lled in if desired. On the other hand, the

�nal ellipsis in Eq. (2.128) represents entirely new terms in which the operators breaking the

heavy-quark spin symmetry are contracted with Aµ or Dµ. An example is

Tr
(
Hγ5µξνλH{Aµ, P+

λν}
)
. (2.129)
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Similarly, for LB2
3,a2 we have:

LB2
3,a2 = a2

∑
µ

{[
icB2

1,1 Tr
(
HγνµξµHv·

←
DγµνP+

µ − v·
→
DHγνµξµHγ

µνP+
µ

)
+ · · ·

]
+

[
icB2

2,1 Tr
(
HγνµξµHv·

←
Dγµν − v·→DHγνµξµHγ

µν
)

Tr
(
P+
µ

)
+ · · ·

]
+

[
cB2

3,1 Tr
(
HγνµξµHγ

µνγσγ5{Aσ, P+
µ }
)

+ · · ·
]

+

[
cB2

4,1 Tr
(
HγνµξµHγ

µνγσγ5Aσ
)

Tr
(
P+
µ

)
+ · · ·

]
+

[
cB2

5,1 Tr
(
HγνµξµHγ

µνγσγ5

)
Tr
(
AσP+

5

)
+ · · ·

]
+

[
cA2

6,1 Tr
(
HγνµξµHγ

µνγσγ5[Aσ, P−5 ]
)

+ · · ·
]

+ · · ·
}
. (2.130)

The case of the type-A contributions to the current, jµ,iΞ
2,a2,A2

, is more straightforward, since

we need only insert the heavy-quark and light-quark spurions, without any additional deriva-

tives, and Lorentz invariance is not broken. Still, there are many terms, since parity places

no restrictions on the low energy constants in the left-handed current, but merely relates them

to those of the right-handed current. Further, many of the simplifying relations, Eqs. (2.78)

through (2.83), have no counterpart in the current, where there is only a single heavy-meson
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�eld. We therefore again only give some representative terms:

jµ,iΞ
2,a2,A2

= a2

{
rA2

0,0 trD,t

(
1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)

+ rA2
0,1 trD,t

(
1
2TΞγ

µ(1− γ5)γνHγ
νσ†λ(i)

)
+ rA2

1,1 trD,t

(
1
2TΞγ

µ(1− γ5)ξ5HP
+
5 σ
†λ(i)

)
+ rA2

1,2 trD,t

(
1
2TΞγ

µ(1− γ5)ξρHP
+
ρ σ
†λ(i)

)
+ rA2

1,3 trD,t

(
1
2TΞγ

µ(1− γ5)ξ5ρHP
+
ρ5σ
†λ(i)

)
+ rA2

1,4 trD,t

(
1
2TΞγ

µ(1− γ5)ξβρHP
+
ρβσ
†λ(i)

)
+ rA2

1,5 trD,t

(
1
2TΞγ

µ(1− γ5)γνξ5Hγ
νP+

5 σ
†λ(i)

)
+ rA2

1,6 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξρHγ
βvνP+

ρ σ
†λ(i)

)
+ rA2

1,7 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξ5ρHγ
βvνP+

ρ5σ
†λ(i)

)
+ rA2

1,8 trD,t

(
1
2TΞγ

µ(1− γ5)γνξβρHγ
νP+

ρβσ
†λ(i)

)
+ rA2

2,1 trD,t

(
1
2TΞγ

µ(1− γ5)ξρHσ
†λ(i)

)
Tr
(
P+
ρ

)
+ · · ·

+ rA2
3,1 trD,t

(
1
2TΞγ

µ(1− γ5)ξ5HP
−
5 σ
†λ(i)

)
+ · · ·

+ rA2
4,1 trD,t

(
1
2TΞγ

µ(1− γ5)ξρHσ
†λ(i)

)
Tr
(
P−ρ
)

+ · · ·
}
. (2.131)

Here we have divided the terms into �ve sub-classes: terms with no P± factors, single traces

with P+, double traces with P+, single traces with P−, and double traces with P−. The terms

with no factors of P± (coe�cients rA2
0,0 and r

A2
0,1) are rather trivial and break no taste symmetries,

although the second does break heavy-quark spin symmetry. The ellipses in Eq. (2.131) may

easily be �lled based on the terms of the sub-class of single traces with P+. In deriving Eq. (2.131)

we have used the fact that a factor of γ5 before or after the H �eld has no (nontrivial) e�ect, due

to the presence of the left projector, (1 − γ5). Thus, for example, terms generated by [A × S],

[A× P ], and [A× T ] are identical to those from [V × S], [V × P ], [V × T ], respectively.

As we will see more explicitly in the discussion of jµ,iΞ
2,a2,B2

that follows, the Lorentz structures

that follow H in Eq. (2.131) are not �xed by the spurions, but can be any combination of the

available four-vectors γα and vλ consistent with Lorentz invariance. For example, the factor

γβvν following H in the rA2
1,6 term, could also in principle be replaced by γβν . However, such a

term would vanish due to the identity γβνγµγνβ = 0.

Finally we turn to the type-B contributions to the current, jµ,iΞ
2,a2,B2

. The reasoning is very

similar in principle to that for the type-B Lagrangian, but the presence of an additional Lorentz

index in the current increases the complexity, so we describe some of the details. Up to this

point, we have not explicitly employed a formal spurion analysis for the current, but it now
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becomes necessary. At the SET/HQET level, the left-handed current is

jµ,iΞ = q̄
(
λ(i) 1

2T
Ξγµ(1− γ5)

)
Q = q̄

(
F (µ)⊗ E

)
Q , (2.132)

where we have introduced a taste spurion E and a spin spurion F (µ). They transform as

E → LEV †, [⇒ σ†E → Uσ†EV †] , (2.133)

F (µ) → F (µ)S† , (2.134)

and ultimately take the values

E = λ(i) 1
2T

Ξ , (2.135)

F (µ) = γµ(1− γ5) . (2.136)

For an example, we again take the [Tµ × Aµ] type-B operator, and introduce spurions for

it as in Eq. (2.112), except we replace the index µ there with ν (and ν with β) so as not to

con�ict with the index of the current. The terms we seek are trilinear in the spurions F (µ)⊗E,
B(β, ν) ⊗ C(ν), and either A1(ν) or A2(ν). Since parity does not constrain the terms in the

current, we use just A1(ν) in this example. Demanding heavy and light taste symmetry and

heavy-quark spin symmetry, a possible chiral operator has the form

trD,t

{(
F (µ)⊗ σ†E

)(
B(β, ν)⊗ C(ν)

)
HΓσ†A1(ν)σ†

}
, (2.137)

where µ, ν, and β are �xed, and Γ is some combination of components of γ matrices and of v,

to be determined.

After replacing the spin spurions F (µ) and B(β, ν) with their values, and reintroducing

the sum over β, the current becomes the µ component of a Lorentz vector, and the 4-quark

operator becomes the ν
ν component of a symmetric two-index tensor. As before, we may

take the latter to be traceless. At the SET level, call the three-index tensor coming from the

product of the two representations X. As worked out in Appendix C, the element Xµ ν
ν is

a linear combination of elements of three irreducible representations: a completely symmetric

traceless three-index tensor (S), a three-index tensor with mixed symmetry (A), and a vector

(W ). From Lorentz symmetry alone, the chiral operators for each of these three representations

could have independent LECs. Fixing the spin spurions in Eq. (2.137), however, tells us that
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the corresponding chiral operator is required by spin symmetry to have the form

X̃µ ν
ν = trD,t

{
σ†Eγµ(1− γ5)γβνC(ν)H Γνβσ†A1(ν)σ†

}
, (2.138)

with an implicit sum over β, but not over ν. Given a choice for Γνβ (for example, vνvβ), the

corresponding elements of the individual representations at the chiral level, S̃µ ν
ν , Ãµ ν

ν , and

W̃µ, which are formed by permuting indices and taking traces of X̃, will not in general have

the form of Eq. (2.138) unless the properties of H and the Dirac trace conspire to allow them

to be rewritten in that form. We have checked that, for the four possible choices for Γνβ (γνγβ ,

γνvβ , vνγβ , and vνvβ), the generic situation obtains.4 Thus the relative normalization of the

LECs of the individual representations are �xed to be the same as in Eq. (C.7), and X̃µ ν
ν is the

only possible chiral operator. Setting the remaining spurions to their �xed values, and restoring

the sum over ν, then gives the �nal chiral operators. For the choice Γνβ = γνγβ , we �nd the

operators

trD,t

{
1
2TΞγ

µ(1− γ5)γνβξ5νHγ
βνP±ν5σ

†λ(i)
}
, (2.139)

where P±ν5 arises from the sum and di�erence of Eq. (2.138) with the corresponding operator

after the replacement A1(ν)→ A2(ν).

Following this procedure for other heavy-light terms in the SET, we then have

jµ,iΞ
2,a2,B2

= a2
∑
ν

{
rB2

1,1 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξνHγ
βνP+

ν σ
†λ(i)

)
+ rB2

1,2 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξ5νHγ
βνP+

ν5σ
†λ(i)

)
+ rA2

1,3 trD,t

(
1
2TΞγ

µ(1− γ5)γνξνρHγ
νP+

ρνσ
†λ(i)

)
+ rA2

1,4 trD,t

(
1
2TΞγ

µ(1− γ5)γνξνρHv
νP+

ρνσ
†λ(i)

)
+ · · ·

+ rB2
2,1 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξνHγ
βνσ†λ(i)

)
Tr
(
P+
ν

)
+ · · ·

+ rB2
3,1 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξνHγ
βνP−ν σ

†λ(i)
)

+ · · ·

+ rB2
4,1 trD,t

(
1
2TΞγ

µ(1− γ5)γνβξνHγ
βνσ†λ(i)

)
Tr
(
P−ν
)

+ · · ·
}
, (2.140)

where again we have not written the complete set of contributions, but only some representative

terms.

4Note that the trivial choice Γνβ = δνβ vanishes after the trace on ν = β is subtracted, so only a type-A chiral
operator can be formed in that way.
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One can use a similar spurion analysis to check the type-B contributions to the current

coming from the light-light four-quark operators, Eq. (2.62). In that case, the only Dirac matrix

coming before the H �eld is the γµ(1 − γ5) spin spurion from the current, and the matrix

corresponding to Γνβ after H is simply the ν
ν component of a two-index symmetric, traceless

tensor. The choices vνv
ν and vνγ

ν for this matrix (γνγ
ν is clearly trivial) give the terms in

Eq. (2.62). The incorrect additional terms listed in Ref. [25] came from ignoring the consequences

of heavy-quark spin symmetry, and using Lorentz-symmetry considerations only.

This completes the discussion of the e�ects of light-heavy terms in the SET, Eq. (2.45).

There are still the heavy-heavy terms, Eq. (2.46) to consider. However, it is now easy to see that

the heavy-heavy terms do not produce any new nontrivial chiral operators in the Lagrangian

or current. These 4-quark operators contain two heavy-quark spurions, and no light-quark

spurions. Since the heavy-quark spurions transform on both sides with heavy-quark spin matrices

and heavy-quark taste matrices, they both must be placed between the H and H �elds in

the Lagrangian. One then just gets the product of the two spurions, which is proportional

to the identity. So the heavy-heavy 4-quark operators in the SET lead simply to trivial chiral

Lagrangian operators, which are already present as the �rst operators in Eqs. (2.125) and (2.128).

For the same reason, they lead to a trivial current operator, a2trD,t
(

1
2TΞγ

µ(1− γ5)Hσ†λ(i)
)
,

which does not break any symmetries and just adds a constant term proportional to a2 to any

LO matrix element.

2.4 Taste splittings of heavy-light meson masses

In this section, we calculate the mass splitting between heavy-light mesons of di�erent tastes

in terms of the low energy constants in the chiral Lagrangian. With reasonable assumptions

about which operators give dominant e�ects, we are able to explain the observed pattern of

taste splittings.

We �rst show that the one-loop diagrams give taste-invariant masses to the heavy-light

mesons, even though the diagrams contain pion propagators, which break taste symmetry. Taste-

independence of one-loop chiral logs follows from the exact SU(4) taste symmetry of the heavy

quark at LO in the chiral theory, as well as the shift symmetry of the staggered action [42]. The

latter can be represented at the SET and chiral levels as an exact, discrete taste symmetry that
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acts jointly on both heavy and light quarks [43]. This symmetry is

qi → (I ⊗ ξν)qi , q̄i → q̄i(I ⊗ ξν) , (2.141)

Q→ (I ⊗ ξν)Q , Q̄→ Q̄(I ⊗ ξν) , (2.142)

at the level of the Symanzik action, and

Σ → ξ(n)
ν Σξ(n)

ν ,

σ → ξ(n)
ν σξ(n)

ν ,

H → ξνHξ
(n)
ν ,

H → ξ(n)
ν Hξν , (2.143)

at the chiral level. Note that the symmetry is diagonal in �avor; the transformation acts only

on the taste indices and a�ects all light quark �avors, as well as the heavy quark, identically.

Using the SU(4) heavy-quark taste symmetry of the LO Lagrangian, one can undo the

action of the discrete taste symmetry on the heavy quark. Taking V = ξν in Eq. (2.25), we have

the following symmetry of the LO Lagrangian:

Σ → ξ(n)
ν Σξ(n)

ν ,

σ → ξ(n)
ν σξ(n)

ν ,

H → Hξ(n)
ν ,

H → ξ(n)
ν H , (2.144)

We call this symmetry light-quark discrete taste symmetry . In applying it, it is convenient

to think of H in the way described above Eq. (2.27), as a light �avor vector (index i) with

components that are 4× 4 taste matrices

Hαβ
i =

16∑
Ξ=1

1
2T

αβ
Ξ HiΞ . (2.145)

Here α and β are the heavy and light quark tastes, respectively.

We can now show that the heavy-light meson propagator is taste invariant if the SU(4)

heavy-quark taste symmetry is exact. This implies that the one-loop diagrams for the propagator

are taste invariant, since they use LO propagators and vertices. Consider the propagator

〈0|Hαβ
i (x)H

β′α′

j (y)|0〉 ≡ δijKαα′(β, β′, x, y, i) , (2.146)
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where we have used �avor conservation. Then the heavy taste symmetry implies

Kαα′ = (V KV †)αα
′

(2.147)

for any SU(4) taste transformation V . Thus K is proportional to the identity, which gives

〈0|Hαβ
i (x)H

β′α′

j (y)|0〉 ≡ δijδαα
′
Gβ
′β(x, y, i) = δijδ

αα′
16∑

Ξ=1

1
2T

β′β
Ξ gΞ(x, y, i) , (2.148)

where we have de�ned (equivalent) new functions Gβ
′β and gΞ. Light-quark discrete taste

symmetry, Eq. (2.144), implies

16∑
Ξ=1

TΞ gΞ(x, y, i) =
16∑

Ξ=1

ξνTΞξν gΞ(x, y, i) . (2.149)

Each TΞ has a unique signature of four signs determined by whether ξνTΞξν is +TΞ or −TΞ,

for ν = 1, · · · , 4. Clearly only TΞ = I has signature (+,+,+,+). One may then conclude from

Eq. (2.149) that gΞ = 0 for Ξ 6= I and

〈0|Hαβ
i (x)H

β′α′

j (y)|0〉 = 1
2δijδ

αα′ δββ
′
gI(x, y, i) . (2.150)

Multiplying with 1
2T

βα
Ξ and 1

2T
α′β′
Ξ′ and summing repeated indices gives the �nal form

〈0|HiΞ(x)HjΞ′(y)|0〉 = 1
2δijδΞΞ′ gI(x, y, i) . (2.151)

Thus the one-loop heavy-light meson propagator is taste invariant, so the masses (as well as the

wave function renormalization) at one-loop are invariant. This means that all taste-violations

in the heavy-light masses at NLO come from the NLO terms in the HMrASχPT Lagrangian,

treated at tree level, and may be analyzed straightforwardly.

From now on we refer to the heavy-light pseudoscalar meson as a D (not B) meson, because

the lattice data from MILC that we show later is for D mesons. To determine the taste splittings

in the meson masses, we need only consider the taste-violating NLO Lagrangian terms LA1
2,a2 ,

LB1
2,a2 , LA2

2,a2 and LB2
2,a2 . Taste-violating terms in L3 lead only to wave-function renormalization,

since the LO pole in the propagator is at residual momentum k = 0, and these terms either have

an addition factor of k or at least one pion �eld. Further, one easily sees that LA1
2,a2 and LB1

2,a2 ,

Eqs. (2.51) and (2.56), produce no taste splittings of D mesons because their taste-noninvariant

factors, OA1,+
k and OB1,+

µ,k [Eqs. (2.53) and (2.57)], either vanish or go to the identity matrix

when there are no pion �elds at tree level. Thus taste splittings of D meson masses at NLO
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(i.e., O(a2)) come only from the terms that break heavy-quark taste and spin symmetry, namely

LA2
2,a2 and LB2

2,a2 . From Eqs. (2.125) and (2.127), we can then easily �nd all the terms that

contribute to taste splittings of the D masses at O(a2):

δLmQ = a2

{
KA2

1,1 Tr
(
Hξ5Hξ5

)
+KA2

1,2 Tr
(
HξµHξµ

)
+KA2

1,3 Tr
(
Hξ5µHξµ5

)
+KA2

1,4 Tr
(
HξµνHξνµ

)
+KA2

1,6 Tr
(
Hγ5µξ5Hγ

µ5ξ5

)
+KA2

1,7 Tr
(
HγµνξλHγ

νµξλ
)

+KA2
1,8 Tr

(
Hγµνξ5λHγ

νµξλ5

)
+KA2

1,9 Tr
(
Hγ5µξνλHγ

µ5ξλν
)}

+ a2
∑
µ

{
KB2

1,1 Tr
(
HγνµξµHγ

µνξµ
)

+KB2
1,2 Tr

(
Hγνµξ5µHγ

µνξµ5

)
+KB2

1,3v
µvµ Tr

(
HξνµHξµν

)
+KB2

1,4 Tr
(
Hγ5µξνµHγ

µ5ξµν
)}

, (2.152)

where we have set the pion �elds σ and σ† to the identity. The sum of the mass contributions

from these terms has the form

δLmQ = −
∑

Ξ

D†ΞDΞ4mQ(TΞ) + · · · , (2.153)

where 4mQ(TΞ) is the mass shift of the D meson with taste Ξ, and · · · represents D∗ mass

terms, which we are not interested in here.
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Table 2.1: Taste splittings due to type-A operators

4mQ(.) ξ5 ξµ5 ξµν ξµ I

2a2(KA2
1,1 − 3KA2

1,6) +1 -1 +1 -1 +1

2a2(KA2
1,2 + 6KA2

1,7) -4 +2 0 -2 +4

2a2(KA2
1,3 + 6KA2

1,8) -4 -2 0 +2 +4

2a2(KA2
1,4 − 3KA2

1,9) +12 0 -4 0 +12

For a static D meson, where vi = 0, the corrections on the D masses from δLmQ are:

4mQ(ξ5) = 2a2
{

(KA2
1,1 − 3KA2

1,6)− 4(KA2
1,2 + 6KA2

1,7)− 4(KA2
1,3 + 6KA2

1,8)

+ 12(KA2
1,4 − 3KA2

1,9)− 6KB2
1,1 − 6KB2

1,2 + 3KB2
1,3 − 9KB2

1,4

}
(2.154)

4mQ(ξ05) = 2a2
{
− (KA2

1,1 − 3KA2
1,6) + 2(KA2

1,2 + 6KA2
1,7)− 2(KA2

1,3 + 6KA2
1,8)

+ 6KB2
1,1 − 6KB2

1,2 − 3KB2
1,3 − 3KB2

1,4

}
(2.155)

4mQ(ξi5) = 2a2
{
− (KA2

1,1 − 3KA2
1,6) + 2(KA2

1,2 + 6KA2
1,7)− 2(KA2

1,3 + 6KA2
1,8)

+ 2KB2
1,1 − 2KB2

1,2 +KB2
1,3 +KB2

1,4

}
(2.156)

4mQ(ξij) = 2a2
{

(KA2
1,1 − 3KA2

1,6)− 4(KA2
1,4 − 3KA2

1,9)− 2KB2
1,1 − 2KB2

1,2

−KB2
1,3 + 3KB2

1,4

}
(2.157)

4mQ(ξi0) = 2a2
{

(KA2
1,1 − 3KA2

1,6)− 4(KA2
1,4 − 3KA2

1,9) + 2KB2
1,1 + 2KB2

1,2

−KB2
1,3 + 3KB2

1,4

}
(2.158)

4mQ(ξi) = 2a2
{
− (KA2

1,1 − 3KA2
1,6)− 2(KA2

1,2 + 6KA2
1,7) + 2(KA2

1,3 + 6KA2
1,8)

− 2KB2
1,1 + 2KB2

1,2 +KB2
1,3 +KB2

1,4

}
(2.159)

4mQ(ξ0) = 2a2
{
− (KA2

1,1 − 3KA2
1,6)− 2(KA2

1,2 + 6KA2
1,7) + 2(KA2

1,3 + 6KA2
1,8)

− 6KB2
1,1 + 6KB2

1,2 − 3KB2
1,3 − 3KB2

1,4

}
(2.160)

4mQ(I) = 2a2
{

(KA2
1,1 − 3KA2

1,6) + 4(KA2
1,2 + 6KA2

1,7) + 4(KA2
1,3 + 6KA2

1,8)

+ 12(KA2
1,4 − 3KA2

1,9) + 6KB2
1,1 + 6KB2

1,2 + 3KB2
1,3 − 9KB2

1,4

}
(2.161)

The results are summarized in Tables 2.1 and 2.2, which help us see the patterns of taste

splittings.

The type-A terms split the heavy-light masses into the �ve SO(4) taste multiplets: P, A,
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Table 2.2: Taste splittings due to type-B operators

4mQ(.) ξ5 ξ05 ξi5 ξij ξi0 ξi ξ0 I

2a2KB2
1,1 -6 +6 +2 -2 +2 -2 -6 +6

2a2KB2
1,2 -6 -6 -2 -2 +2 +2 +6 +6

2a2KB2
1,3 +3 -3 +1 -1 -1 +1 -3 +3

2a2KB2
1,4 -9 -3 +1 +3 +3 +1 -3 -9

T, V and S (pseudoscalar, axial-vector, tensor, vector and singlet tastes). The type-B terms

split these multiplets and give di�erent masses to the time and spatial components, such as

ξ0 and ξi for the vector taste multiplet. The staggered lattice symmetries guarantee that the

eight multiplets shown in Table 2.2 cannot be be broken further; for example, the three tastes

ξi must remain degenerate. On the other hand, it is straightforward to check that any pattern

of splitting of the eight multiplets is possible, given arbitrary values of the parameters KA2
1,n and

KB2
1,m.

Further progress in understanding the actual pattern of splittings determined in simula-

tions is therefore only possible with some assumptions about which of the corresponding chiral

operators are likely to give dominant contributions to the masses. Experience with the pion

(light-light pseudoscalar) splittings is helpful in guiding these assumptions, so we �rst review

what happens in that case. The staggered pion masses at LO are

m2
ab,Ξ = µ(ma +mb) + a2∆Ξ , (2.162)

where ma and mb are light quark masses, µ is the low-energy constant from Eq. (2.11), and

a2∆Ξ is the splitting of taste Ξ. The pions have SO(4) taste symmetry; their masses form �ve

multiplets with tastes P, A, T, V and S. Simulations with the asqtad and HISQ actions give

approximately equal splittings of squared masses between the P, A, T, V and S tastes (and with

that ordering, from lowest to highest) [8, 39, 61]. These equal splittings imply that the dominant

chiral operator contributing to taste splittings of pion masses is the operator multiplied by C4

in −a2VΣ, Eq. (2.15), namely

a2
[
Tr(ξ

(n)
ν5 Σξ

(n)
5ν Σ) + h.c.

]
. (2.163)

This operator is generated by the four-quark operators [S×A]ll, [P×A]ll and [T×A]ll in the SET,

Eq. (2.44). Note that, for the pions, only type-A operators are relevant at LO, because type-B

operators have no chiral representatives to this order. The non-trivial space-time structure in
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the type-B case requires more at least two derivatives in the light-light chiral operators, making

their representatives NLO in the chiral expansion [37].

We now carry over this experience to the heavy-light case. We have assumed above that

the lattice is su�ciently �ne, or the charmed quark is su�ciently improved, that it may treated

as a �continuum-like,� and corrections of order (amQ)2 may be neglected. This means that the

contributions of the heavy quark to the SET are identical to those of a light quark. In particular,

the same four-quark operators that dominated for light quarks, namely [S × A], [P × A] and

[T × A], are expected to be the dominant type-A operators in the heavy-light case. Taste

splittings of heavy-light meson masses can come only from the �heavy-light� versions of these

operators. From Eqs. (2.85), (2.87) and (2.89), these operators give rise to chiral representatives

with coe�cients KA2
1,3 and KA2

1,8 in Eq. (2.152). From Table 2.1, we then deduce the same equal-

spacing pattern for heavy-light SO(4) representations that is familiar from the pions. For type-B

operators, one may guess that the [Tµ×Aµ] SET operator would be dominant, since it is the only

type-B operator that has the same spin and taste as one of the dominant type-A operators. From

Eq. (2.116), this four-quark operator gives rise to the chiral representative with coe�cient KB2
1,2

in Eq. (2.152). Referring to the second line of Table 2.2, we see that this operator produces equal

splitting within the A, T, and V SO(4) multiplets. Further, the multiplicity-weighted average

splitting between SO(4) multiplets for this type-B operator is the same as for the dominant

type-A operators (equal splitting with the order P, A, T, V, S), so this operator does not spoil

that overall SO(4) pattern, but only produces splittings within multiplets.

The patterns of splitting expected from the discussion in the previous paragraph are qual-

itatively present in the MILC data, shown in Fig. 2.1. Note in particular the �sc� case, which

gives heavy-light meson splittings with small enough errors that the pattern of SO(4) breaking

is clear. It is non-trivial that the time component of taste is higher than the space components

in two cases (ξ0 vs. ξi and ξi0 vs. ξij) but not in the third case (ξ05 vs. ξi5), just as in the second

line of Table 2.2. Further, the �gure shows roughly equal splittings within SO(4) multiplets, as

well as between (the center of gravity of) SO(4) multiplets. Although the chiral theory is not

applicable to the �cc� case, it is interesting to see that the structure that would correspond to

the dominant type-B operator gets particularly strong there, with near degeneracies of between

members of di�erent SO(4) multiplets, in particular ξ0 and I, or ξi0 and ξi.
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Figure 2.1: Meson mass splitting for the MILC HISQ ensemble at a ≈ 0.15 fm andml = 0.2ms

[39]. Squared mass splitting between pions of di�erent tastes and the Goldstone pion in units
of r1 are shown. The types of quarks in the mesons are shown on the abscissa: l, s, and c stand

for light (u,d), strange, and charm quarks, respectively.

2.5 Decay constants of the D meson at NLO

In this section, we calculate the decay constant of the D meson at one loop in HMrASχPT. We

can express the decay constant at this order as

fDxΞ

√
MDxΞ

= κ

(
1 +

1

16π2f2
δfDx + analytic terms

)
, (2.164)

where x labels the light valence �avor in the meson, Ξ labels the meson taste, κ is the LO

low-energy constant in the current, Eq. (2.28), and δfDx denotes the sum of the chiral logarithm

terms, coming from the one-loop diagrams. We will allow for the possibility of partial quenching,

so the valence quark mass mx may be di�erent from any of the sea-quark masses. The analytic

terms arise from tree-level contributions from the NLO Lagrangian and current and will include

taste symmetry violations, due to the taste-violating terms LA2
3,a2 , LB2

3,a2 , jµ,iΞ
2,a2,A2

and jµ,iΞ
2,a2,B2

.

By following the same approach as we used to show the one-loop contribution to the heavy-

light meson propagator is taste independent, it is straightforward to show that the one-loop term

δfDx is independent of taste of the meson. We simply replace the �eld Hαβ
i in Eq. (2.146) with
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the leading order current

jµ,i,αβLO =
∑

Ξ

1
2T

αβ
Ξ jµ,iΞLO =

κ

2

∑
Ξ

1
2T

αβ
Ξ trD,t

(1
2TΞγ

µ (1− γ5)Hσ†λ(i)
)
, (2.165)

where we have used Eq. (2.28) for jµ,iΞLO . Note that jµ,i,αβLO transforms under heavy-quark taste

symmetry and light-quark discrete taste symmetry exactly as Hαβ
i does. Identical manipulations

to those in Sec. 2.4 thus show that the two-point function of the current and the �eld is taste-

independent:

〈0|jµ,iΞLO (x)HjΞ′(y)|0〉 = 1
2δijδΞΞ′ hI(x, y, i) , (2.166)

where we have introduced a new function hI . Up to an additional term coming from the one-loop

wave function renormalization, δfDx is proportional to the one-loop contribution to the two-point

function in Eq. (2.166). Since we know from Sec. 2.4 that the wave function contribution is taste-

independent, we have proven the taste-independence of δfDx . Furthermore, it is now easy to see

that δfDx in our theory, HMrASχPT, is identical to the corresponding contribution in HMrSχPT

calculated in Ref. [25]. The only di�erence between the LO Lagrangians in the two theories is

the extra taste degree of freedom of the heavy quark in HMrASχPT. Since we have seen that

heavy-quark taste is conserved in the one-loop diagrams, the heavy taste degree of freedom just

�ows through the diagram and has no e�ect on the result. Note that virtual heavy quark loops

are forbidden in our theory since the residual energy is low; if they were allowed the heavy-quark

taste would lead to an extra counting factor in loops.

We thus take over the result from Ref. [25] for δfDx without change, except for trivial changes

in notation. The analytic terms, which come from the NLO Lagrangian, will be di�erent in the

two theories, however. The terms LA2
3,a2 , LB2

3,a2 , jµ,iΞ
2,a2,A2

and jµ,iΞ
2,a2,B2

give contributions that

depend on the taste of meson.

Following Ref. [25] for the one loop terms, we then get, for the 1+1+1 partially quenched

case with all masses unequal:

fDxΞ

√
MDxΞ

κ
= 1 +

1

16π2f2

1 + 3g2
π

2

{
− 1

16

∑
S,Ξ′

`(m2
xS,Ξ′)

− 1

3

∑
j∈M(3,x)

I

∂

∂m2
X,I

[
R

[3,3]
j (M(3,x)

I ;µ
(3)
I )`(m2

j )
]

−
(
a2δ′V

∑
j∈M(4,x)

V

∂

∂m2
X,V

[
R

[4,3]
j (M(4,x)

V ;µ
(3)
V )`(m2

j )
]

+ [V → A]

)}

+ cs(mu +md +ms) + cvmx + ca,Ξa
2 , (2.167)
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where x is the valence �avor, Ξ is the valence taste, S runs over the three sea quarks u, d, and s,

and Ξ′ runs over the 16 meson tastes. The chiral logarithm function ` and the residue functions

R are de�ned by

`(m2) ≡ m2 ln
m2

Λ2
χ

, (2.168)

R
[n,k]
j ({m};{µ}) ≡

∏k
i=1(µ2

i −m2
j )∏

r 6=j(m
2
r −m2

j )
, (2.169)

with the sets of masses in the residues given by

µ(3) = {m2
U ,m

2
D,m

2
S} , (2.170)

M(3,x) = {m2
X ,m

2
π0 ,m

2
η} , (2.171)

M(4,x) = {m2
X ,m

2
π0 ,m

2
η,m

2
η′} . (2.172)

Here taste labels (e.g., I or V for the masses) are implicit. In Eq. (2.167), ca,Ξ is the only

coe�cient that depends on the taste of the heavy meson. It can be written as a linear function

of constants appearing in LA2
3,a2 , LB2

3,a2 , j
µ,iΞ
2,a2,A2

and jµ,iΞ
2,a2,B2

. It is straightforward to check that

these terms are su�cient to break the taste symmetry down to the lattice symmetry. Thus the

coe�cients ca,Ξ are independent for the eight multiplets listed in Table 2.2.

Now we include the e�ects of hyper�ne and �avor splittings of the heavy-light mesons in

one-loop diagrams. We follow the argument of Ref. [56] and brie�y describe how one can adjust

Eq. (2.167) to include these splittings. In Eq. (2.167), the contributions proportional to g2
π

come from diagrams with internal D∗ propagators, and the contributions with no factor of g2
π

come from diagrams with light-meson (�pion�) tadpoles. Thus we must only adjust the former

contributions. The splittings in diagrams with internal D∗ propagators depend on whether

the pion line is connected, which results in the term with the sum over S in Eq. (2.167), or

disconnected, which results in the terms with the factors of the residue function R in Eq. (2.167).

(See Fig. 5 in Ref. [25] for the structure of the quark �ow in these diagrams.) In the disconnected

case, the valence x quark in the external DxΞ �ows into the pion propagator and then returns the

way it came (a �hairpin� diagram) and enters the D∗ propagator. Thus the internal D∗ always

has the same �avor as the external DxΞ, so there is no �avor splitting between the two, only a

hyper�ne splitting. In the connected case, the D∗ in the loop has the �avor of the virtual sea

quark loop (which we labeled by S in Eq. (2.167)), so there is �avor splitting with the external

DxΞ, in addition to the hyper�ne splitting.

We let ∆∗ be the lowest-order hyper�ne splitting, and δSx be the �avor splitting between
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a heavy-light meson with light quark of �avor S and one of �avor x. At lowest order, δSx is

proportional to the quark-mass di�erence, which can be written in terms of the parameter λ1 in

Eq. (2.35):

δSx ∼= 2λ1(mS −mx) ∼= λ1

µ
(m2

SS,ξ5 −m2
xx,ξ5), (2.173)

where the �nal expression expresses the result in terms of pion masses.

Since the mass of the external D is removed in HQET, the mass shell is at k = 0. When

there is no splitting, the internal D∗ has its pole at the same place, which makes the integrals

simple and gives rise to the chiral log function `(m2). In the presence of a splitting ∆ between

the internal D∗ and the external D, the integrals involve the more complicated function

J(m,∆) = (m2 − 2∆2) log(m2/Λ2) + 2∆2 − 4∆2F (m/∆). (2.174)

Here the function F is [62, 63]

F (1/x) =

−
√

1−x2

x

[
π
2 − tan−1 x√

1−x2

]
, if |x| ≤ 1,

√
x2−1
x ln(x+

√
x2 − 1), if |x| ≥ 1 .

(2.175)

We may now generalize Eq. (2.167) to include splittings. We simply replace

`(m2)→ J(m,∆) (2.176)

in the terms proportional to g2
π, taking care to include the �avor splittings (∆ = ∆∗ + δSx) for

terms from connected-pion diagrams, and to omit the �avor splittings (∆ = ∆∗) for terms from
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disconnected-pion diagrams. The result for the leptonic decay constant is then

fDxΞ

√
MDxΞ

κ
= 1 +

1

16π2f2

1

2

{
− 1

16

∑
S,Ξ′

`(m2
Sx,Ξ′)

− 1

3

∑
j∈M(3,x)

I

∂

∂m2
X,I

[
R

[3,3]
j (M(3,x)

I ;µ
(3)
I )`(m2

j )
]

−
(
a2δ′V

∑
j∈M(4,x)

V

∂

∂m2
X,V

[
R

[4,3]
j (M(4,x)

V ;µ
(3)
V )`(m2

j )
]

+ [V → A]

)

− 3g2
π

1

16

∑
S,Ξ′

J(mSx,Ξ′ ,∆
∗ + δSx)

− g2
π

∑
j∈M(3,x)

I

∂

∂m2
X,I

[
R

[3,3]
j (M(3,x)

I ;µ
(3)
I )J(mj ,∆

∗)
]

− 3g2
π

(
a2δ′V

∑
j∈M(4,x)

V

∂

∂m2
X,V

[
R

[4,3]
j (M(4,x)

V ;µ
(3)
V )J(mj ,∆

∗)
]

+ [V → A]

)}

+ cs(mu +md +ms) + cvmx + ca,Ξa
2 . (2.177)

We can also include the �nite-volume e�ects for a spatial volume L3 into Eq. (2.177). Following

Ref. [56], we replace

`(m2) → `(m2) +m2δ1(mL), (2.178)

J(m,∆) → J(m,∆) + δJ(m,∆, L), (2.179)

where

δJ(m,∆, L) =
m2

3
δ1(mL)− 16π2

[
2∆

3
JFV (m,∆, L) +

∆2 −m2

3
KFV (m,∆, L)

]
, (2.180)

with

KFV (m,∆, L) ≡ ∂

∂∆
JFV (m,∆, L), (2.181)

and with δ1(mL) and JFV (m,∆, L) de�ned in Refs. [105, 106].

Reference [56] also discusses the extent to which including the splittings as in Eq. (2.177),

and not other possible 1/mQ e�ects, is a systematic improvement on Eq. (2.167). In that

discussion the power counting introduced by Boyd and Grinstein [102] is applied, which assumes

∆2, ∆m, m2

mQ
� ∆ ∼ m , (2.182)
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where ∆ is a generic splitting (∆∗ or δSx or a linear combination of the two), m is a generic

light pseudoscalar meson mass, and mQ is the heavy quark mass. In the lattice simulations of

Ref. [56], the lowest pion masses were about half the physical kaon mass, and the power counting

of Ref. [102] was only marginally applicable to the data. However, for simulations on the HISQ

ensembles generated by the MILC Collaboration [39, 61], the lowest pion masses are physical,

and the assumptions of the Boyd-Grinstein power counting are well satis�ed. Furthermore,

including the splittings with such data is not optional: for D mesons the hyper�ne splitting

∆∗ = 142.1 MeV, and the �avor splitting δsd = 98.9 MeV, clearly non-negligible compared to

the physical pion mass.

Since we have included hyper�ne and �avor splittings, which are empirically large even

though they are formally of order 1/mQ, it is important to consider whether splittings coming

from taste violations should also be included in the heavy-light propagators at one loop. As

discussed in the introduction, taste splittings in squared meson masses are roughly constant as

the masses increase from pions to D mesons, which means that taste splittings in the heavy-light

masses themselves are quite small, ∼ 11 MeV at a ≈ 0.12 fm for the HISQ action. The taste

splittings are indeed higher order compared to the physical hyper�ne and �avor splittings. We

note that the taste-violating Lagrangian terms in Eqs. (2.125) and (2.127) also lead to O(a2)

contributions to hyper�ne splittings. Those e�ects have not been measured in lattice simulations,

but we think it is reasonable to assume they are comparable in size to the taste splittings since

in most cases the same operators produce both e�ects.

There is also the question of whether other 1/mQ continuum e�ects should be included

along with the hyper�ne and �avor splittings. As discussed in Ref. [56], such terms only change

the overall normalization of the result for the quantity δfDx in Eq. (2.164) by relatively small

amount, of order ΛQCD/mQ. Since in any case the value of f in Eq. (2.164) may be considered

uncertain by as much as 20% (the di�erence between fπ and fK), these additional 1/mQ terms

have no practical implications for our results.

2.6 Conclusions

We have generalized the chiral Lagrangian for heavy-light mesons to the case where both heavy

and light quarks have the staggered action. A fundamental assumption of our work is that lattice

spacings is su�ciently small, or the heavy-quark action is su�ciently improved, that we may

treat amQ as a small parameter, wheremQ is the heavy quark mass. This is the same assumption

required in order to describe heavy quarks with the HISQ staggered action in simulations.
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The heavy-light part of the LO staggered chiral Lagrangian we obtain is identical to that

in the continuum, except for extra taste degrees of freedom of the light and heavy quarks. In

contrast with the light-light part of the chiral Lagrangian, which includes taste splittings at LO,

the heavy-light part of the LO chiral Lagrangian is taste-invariant, with three key symmetries:

heavy quark spin symmetry, chiral symmetry of the light quarks (including taste and �avor

symmetries), and SU(4) taste symmetry of the heavy quarks. Complications arise at NLO,

where these symmetries of the heavy-light Lagrangian may be broken by lattice artifacts, as

well as by light-quark mass terms. Those NLO contributions that arise from terms in the

Symanzik e�ective theory composed exclusively of light quarks may be taken over directly from

Ref. [25]. In doing so, we have corrected some minor errors in that reference, which do not a�ect

any existing calculations within that framework. Terms in the Symanzik e�ective theory with

heavy staggered quarks are new. We have derived their consequences for the NLO heavy-light

Lagrangian, as well as the left-handed current, in some detail. In some cases, though, we have

not attempted to �nd the complete set of possible terms, and have contented ourselves with

simply listing su�cient numbers of terms relevant to foreseeable practical applications.

We have then applied our Lagrangian to calculate, through NLO, the taste splitting of

heavy-light mesons and the heavy-light leptonic decay constant. In both these cases, we are able

to prove that the one-loop diagrams are taste invariant, despite the fact that they contain pion

propagators that break taste symmetry. This means that taste violations in these quantities at

NLO come exclusively from analytic terms, which arise from the NLO Lagrangian and current.

Using our results for the mass splittings, and making assumptions about the dominant operators

based on experience with light-light quantities, we �nd that we can qualitatively understand the

pattern of splittings seen in heavy-light HISQ data.

For the decay constant, the NLO taste violations produce a single analytic term that depends

on taste of the meson, the term ca,Ξa
2 in Eqs. (2.167) and (2.177). The one-loop diagrams give

rise to the same chiral logarithms derived in Ref. [25], because in both cases they are taste

invariant. Following Ref. [56], we include the modi�cations of these chiral logarithms due to

heavy-light hyper�ne and �avor splittings, which are comparable in size to the physical pion

mass, and therefore important for describing modern simulations in which the light quark masses

are physical or close to physical. The resulting chiral form is being used to �t HISQ data for

decay constants of the D system [55]. Although such �ts may be bypassed for data at physical

quark masses [34], the chiral �ts allow one to include data at unphysical quark masses, and

thereby one can hope to obtain smaller statistical errors and better control over continuum

extrapolation errors. The work in progress indicates that these hopes are realized in practice.
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3
Charmed Pseudoscalar Meson Decay Constants

The MILC Collaboration has been generating a large library of gauge con�guration ensembles with

four dynamical quark �avors�up, down, strange, and charm�using highly improved staggered

quark (HISQ) action. These ensembles have both physical and unphysical values of the light

sea-quark masses with four values of the lattice spacing ranging from 0.06 to 0.15 fm. The

decay constants of D and Ds mesons are among many other quantities computed from these

ensembles. Using the chiral formula derived in the previous chapter, Eq. (2.177), we combine

the data computed from di�erent ensembles. By �tting the chiral result to the lattice data, the

unknown LECs appearing in the decay constant formula are determined. Then, a combined

chiral extrapolation/interpolation and continuum extrapolations is performed, and consequently

the physical values of the D+ and Ds meson decay constants are obtained. This work is an

important part of the paper1 published by the MILC and Fermilab lattice collaborations on the

decay constants of pseudoscalar mesons. This chapter contains the complete paper, but my main

contributions are subsection 3.4.2, which discusses chiral perturbation theory analysis of fD and

fDs, and section 3.5, which discusses the �nal results.

3.1 Introduction and motivation

The leptonic decays of pseudoscalar mesons enable precise determinations of Cabibbo-Kobayashi-

Maskawa (CKM) quark-mixing matrix elements within the Standard Model. In particular,

experimental rates for the decays D+ → µ+ν, Ds → µ+ν and Ds → τ+ν, when combined

1 A. Bazavov, C. Bernard, C.M. Bouchard, C. DeTar, D. Du, A.X. El-Khadra, J. Foley, E.D. Freeland,
E. Gámiz, Steven Gottlieb, U.M. Heller, J. Kim, J. Komijani, A.S. Kronfeld, J. Laiho, L. Levkova, P.B. Mackenzie,
E.T. Neil, J.N. Simone, R.L. Sugar, D. Toussaint, R.S. Van de Water, R. Zhou, �Charmed and light pseudoscalar
meson decay constants from four-�avor lattice QCD with physical light quarks,� Phys. Rev. D 90, 074509 (2014)
[arXiv:1407.3772].
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with lattice calculations of the charm-meson decay constants fD+ and fDs , allow one to obtain

|Vcd| and |Vcs|. Indeed, this approach results in the most precise current determination of |Vcd|.
Similarly, the light-meson decay-constant ratio fK+/fπ+ can be used to extract |Vus|/|Vud| from
the experimental ratio of kaon and pion leptonic decay widths [65, 66]. Here we calculate the

charm decay constants for the �rst time using physical values for the light sea-quark mass. We

obtain fD+ and fDs to about 0.5% precision and their ratio fDs/fD+ to about 0.3% precision; we

also update our earlier calculation of fK+/fπ+ [67] to almost 0.2% precision. This is the most

precise lattice calculation of the charm decay constants to date, and improves upon previous

results by a factor of two to four. We also compute the quark-mass ratios mc/ms and ms/ml,

which are fundamental parameters of the Standard Model.

We use the lattice ensembles generated by the MILC Collaboration with four �avors (nf =

2 + 1 + 1) of dynamical quarks using the highly improved staggered quark (HISQ) action, and a

one-loop tadpole improved Symanzik improved gauge action [68�71]. The generation algorithm

uses the fourth-root procedure to remove the unwanted taste degrees of freedom [72�84]. Our

data set includes ensembles with four values of the lattice spacing ranging from approximately

0.15 fm to 0.06 fm, enabling good control over the continuum extrapolation. The data set

includes both ensembles with the light (up-down), strange, and charm sea-masses close to their

physical values (�physical-mass ensembles�) and ensembles where either the light sea-mass is

heavier than in nature, or the strange sea-mass is lighter than in nature, or both.

The physical-mass ensembles enable us to perform �rst a straightforward analysis that does

not require chiral �ts. This analysis, which we refer to as the �physical-mass analysis� below,

gives our results for fK+/fπ+ , as well as ratios of physical quark masses. The quark-mass

ratios are then used as input to a more sophisticated analysis of the charm decay constants that

includes the ensembles with unphysical sea-quark masses. In this second analysis, referred to as

the �chiral analysis,� we analyze our complete data set within the framework of staggered chiral

perturbation theory (SχPT) for all-staggered heavy-light mesons [23, 24, 85, 86]. The inclusion

of the unphysical-mass ensembles gives us tighter control on discretization e�ects because SχPT

connects the quark-mass and lattice-spacing dependence of the data, reducing the statistical

errors on the decay constants signi�cantly, and allowing us to make more re�ned adjustments

for mistuning of masses. We therefore take our �nal central values for fD+ , fDs , and fDs/fD+

from the chiral analysis. The physical-mass analysis provides a cross check of the chiral analysis

and is used in our �nal estimate of systematic uncertainties.

An earlier result for fK+/fπ+ was presented in Ref. [67]. Here we update this analysis with

slightly more statistics and improved estimates for the systematic errors. Preliminary results for

the charm decay constants and quark masses were presented in Ref. [87].
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This chapter is organized as follows. Section 3.2 gives details about the lattice ensembles

used in our calculation and the method for extracting the decay constants from two-point cor-

relation functions. As discussed in Sec. 3.3, the �rst stage in our analysis is to �t the two-point

correlators to determine the meson masses and decay amplitudes for each pair of valence-quark

masses. Section 3.4 presents the main body of our analysis, which proceeds in two stages. In the

�rst stage, described in Sec. 3.4.1, we use the physical-mass ensembles to compute quark-mass

ratios and fK+/fπ+ , as well as some additional intermediate quantities required for the later

chiral analysis of the D-meson decay constants. In the �rst part of the physical-mass analy-

sis, Sec. 3.4.1.1, we �t the valence-quark mass dependence of the masses and amplitudes, and

evaluate the decay amplitudes at the resulting tuned valence masses. Next, in Sec. 3.4.1.2, we

adjust the quark-mass ratios and decay amplitudes to account for the slight sea-quark mass

mistuning and extrapolate these results to the continuum. In the last part of the physical-mass

analysis, Sec. 3.4.1.3, we consider systematic errors from �nite-volume and electromagnetic ef-

fects. In the second analysis stage described in Sec. 3.4.2, we use heavy-light staggered chiral

perturbation theory to combine the unphysical light- and strange-quark mass ensembles with

the nearly-physical quark mass ensembles to obtain the charm-meson decay constants. We �rst

present the chiral perturbation theory for all-staggered heavy-light mesons in Sec. 3.4.2.1. We

then discuss the required mass-independent scale setting in Sec. 3.4.2.2, where we take care to

correct for e�ects on the scale and quark-mass estimates of mistunings of the sea-quark masses.

We present the chiral-continuum �ts in Sec. 3.4.2.3, and discuss the systematic errors from the

continuum extrapolation, as well as from other sources, in Sec. 3.4.2.4. We present our �nal

results for the decay constants and quark-mass ratios with error budgets in Sec. 2.6, in which

we also compare our results to other unquenched lattice calculations. Finally, we discuss the

impact of our results on CKM phenomenology in Sec. 3.6. Appendix ?? gives details about the

inclusion of nonleading heavy-quark e�ects in our chiral formulas.

3.2 Lattice simulation parameters and methods

Table 3.1 summarizes the lattice ensembles used in this calculation. Discussion of the parameters

relevant to the lattice generation, such as integration step sizes and acceptance rates, choice of

the RHMC or RHMD algorithm, and autocorrelations of various quantities can be found in

Ref. [71]. In particular, we �nd that the e�ects of using the RHMD algorithm rather than the

RHMC algorithm in some of our ensembles are negligible. The dependence of error estimates for

the decay constants in this work on the jackknife block size is consistent with the more general

results on autocorrelations in Ref. [71]. Reference [71] also shows the molecular dynamics time
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Table 3.1: Ensembles used in this calculation. The �rst column is the gauge coupling β =
10/g2, and the next three columns are the sea-quark masses in lattice units. The primes on
the masses indicate that they are the values used in the runs, and in general di�er from the
physical values either by choice, or because of tuning errors. The lattice spacings in this table are
obtained separately on each ensemble using fπ+ as the length standard, following the procedure
described in Sec. 3.4.1.1. (In Sec. 3.4.2 we use a mass-independent lattice spacing, described
there.) The lattice spacings here di�er slightly from those in Ref. [71] since we use fπ+ as the
length scale, while those in Ref. [71] were determined using Fp4s (discussed at the beginning of
Sec. 3.4.1). Values of the strange quark mass chosen to be unphysical are marked with a dagger

(†); while the asterisk (*) marks an ensemble that we expect to extend in the future.

β am′l am′s am′c (L/a)3 × (T/a) Nlats a (fm) L (fm) MπL Mπ (MeV)

5.80 0.013 0.065 0.838 163 × 48 1020 0.14985(38) 2.38 3.8 314
5.80 0.0064 0.064 0.828 243 × 48 1000 0.15303(19) 3.67 4.0 214
5.80 0.00235 0.0647 0.831 323 × 48 1000 0.15089(17) 4.83 3.2 130
6.00 0.0102 0.0509 0.635 243 × 64 1040 0.12520(22) 3.00 4.5 299
6.00 0.0102 0.03054† 0.635 243 × 64 1020 0.12104(26) 2.90 4.5 307
6.00 0.00507 0.0507 0.628 243 × 64 1020 0.12085(28) 2.89 3.2 221
6.00 0.00507 0.0507 0.628 323 × 64 1000 0.12307(16) 3.93 4.3 216
6.00 0.00507 0.0507 0.628 403 × 64 1028 0.12388(10) 4.95 5.4 214
6.00 0.01275 0.01275† 0.640 243 × 64 1020 0.11848(26) 2.84 5.0 349
6.00 0.00507 0.0304† 0.628 323 × 64 1020 0.12014(16) 3.84 4.3 219
6.00 0.00507 0.022815† 0.628 323 × 64 1020 0.11853(16) 3.79 4.2 221
6.00 0.00507 0.012675† 0.628 323 × 64 1020 0.11562(14) 3.70 4.2 226
6.00 0.00507 0.00507† 0.628 323 × 64 1020 0.11311(19) 3.62 4.2 230
6.00 0.0088725 0.022815† 0.628 323 × 64 1020 0.12083(17) 3.87 5.6 286
6.00 0.00184 0.0507 0.628 483 × 64 999 0.12121(10) 5.82 3.9 133
6.30 0.0074 0.037 0.440 323 × 96 1011 0.09242(21) 2.95 4.5 301
6.30 0.00363 0.0363 0.430 483 × 96 1000 0.09030(13) 4.33 4.7 215
6.30 0.0012 0.0363 0.432 643 × 96 1031 0.08779(08) 5.62 3.7 130
6.72 0.0048 0.024 0.286 483 × 144 1016 0.06132(22) 2.94 4.5 304
6.72 0.0024 0.024 0.286 643 × 144 1166 0.05937(10) 3.79 4.3 224
6.72 0.0008 0.022 0.260 963 × 192 583* 0.05676(06) 5.44 3.7 135

evolution of the topological charge for many of these ensembles and histograms of the topological

charge. We have since also veri�ed that on the a ≈ 0.06 fm physical quark mass ensemble the

autocorrelation time for the topological charge is much shorter than the topological charge

autocorrelation time on the a ≈ 0.06 fm m′l = m′s/5 ensemble shown in Fig. 2 of Ref. [71]. The

dependence on the light-quark mass can be understood by thinking of the decorrelation process

as a random walk in the topological charge.

Our extraction of the pseudoscalar decay constants with staggered quarks follows that used

for asqtad quarks [66, 88] and for fK+ with the HISQ action [67, 89]. The decay constant fPS

is given by the matrix element of ψ̄γ5ψ between the vacuum and the pseudoscalar meson. For

staggered fermions, using the pion taste corresponding to the axial symmetry broken only by
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quark masses, this becomes the operator

OP (x, t) = χ̄a(x, t)(−1)x+y+z+tχa(x, t) , (3.1)

where a is a color index. The desired matrix element can be obtained from the amplitude of a

correlator using this operator at the source and sink,

PPP (t) =
1

Vs

∑
y

〈OP (y, 0)OP (0, t)〉 = CPP e
−Mt + excited state contributions , (3.2)

where Vs is the spatial volume, M is the pseudoscalar meson mass and the sum over y isolates

the zero spatial momentum states. Then the decay constant is given by [90, 91]

fPS = (mA +mB)

√
Vs
4

√
CPP
M3

, (3.3)

where mA and mB are valence quark masses and M is the pseudoscalar meson mass.

In our computations, we use a �random-wall� source for the quark propagators, where a ran-

domly oriented unit vector in color space is placed on each spatial site at the source time. Then

quark and antiquark propagators originating on di�erent lattice sites are zero when averaged

over the sources. We use three such source vectors for each source time slice.

We also compute pion correlators using a �Coulomb-wall� source, where the gauge �eld is

�xed to the lattice Coulomb gauge, and then a uniform color vector source is used at each

spatial site. In practice these vectors are the �red�, �green,� and �blue� color axes. The Coulomb-

wall source correlators are somewhat less contaminated by excited states than the random wall

source correlators, so by simultaneously �tting the correlators with common masses we are able

to determine the masses better, and hence get a better determined amplitude for the random-wall

source correlator.

Four source time slices are used on each lattice, with the exception of the 0.06 fm physical

quark-mass ensemble where, because these lattices are longer in the Euclidean time direction,

six source time slices are used. The location of the source time slices on successive lattices is

advanced by an amount close to one half of the spacing between sources, but incommensurate

with the lattice time size, so that the source location cycles among all possible values.

In each lattice ensemble, two-point correlators are computed for a range of valence-quark

masses. The complete set of valence-quark masses is given in Table 3.2. The lightest valence mass

used is one-tenth the strange quark mass for the coarser ensembles with heavier sea-quark masses,

1/20 the strange quark mass for the a ≈ 0.06 fm ensembles with heavier than physical sea-quark
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Table 3.2: Valence-quark masses used in this project. Correlators with random wall and
Coulomb-wall sources are computed for each possible pair of valence-quark masses. Light valence
masses mv are given in units of the (ensemble value of the) sea strange quark mass m′s. Note
that for the four ensembles with near-physical sea-quark mass, the lightest valence mass is the
same as the light sea mass. The two heavy valence masses are in units of the charm sea-quark
mass m′c. For the ensembles with unphysical strange quark mass (included in �All� at β = 6.0),
the valence masses are given in units of the approximate physical strange quark mass, 0.0507.

β sea quark masses light valence masses charm valence masses
am′l am′s am′c mv/m

′
s mv/m

′
c

5.80 0.013 0.065 0.838 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
5.80 0.0064 0.064 0.828 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
5.80 0.00235 0.0647 0.831 0.036,0.07,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.00 0.0102 All 0.635 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 0.00507 All 0.628 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.00 0.00184 0.0507 0.628 0.036,0.073,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.30 0.0074 0.037 0.440 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.30 0.00363 0.0363 0.430 0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.30 0.0012 0.0363 0.432 0.033,0.066,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

6.72 0.0048 0.024 0.286 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.72 0.0024 0.024 0.286 0.05,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0
6.72 0.0008 0.022 0.260 0.036,0.068,0.1,0.15,0.2,0.3,0.4,0.6,0.8,1.0 0.9,1.0

mass, and the physical light-quark mass for the ensembles with physical sea-quark mass. The

valence masses chosen then cover the range from this lightest mass up to the estimated strange-

quark mass. We then choose additional masses at the estimated charm-quark mass (the same

as the charm-quark mass in the sea), as well as nine-tenths of that value, so that we can make

adjustments for mistuning of the charm-quark mass. For these last two quarks, the coe�cient

of the three-link term in the fermion action (the �Naik term�) is adjusted to improve the quark's

dispersion relation [92]. Speci�cally, the expansion resulting from combining Eqs. (24) and (26)

of Ref. [92] is used; the improvement has been checked in HISQ simulations [70, 92].

3.3 Two-point correlator �ts

To �nd the pseudoscalar masses and decay amplitudes, the random-wall and Coulomb-wall

correlators are �tted to common masses but independent amplitudes. With staggered quarks

the Goldstone-taste pseudoscalar correlators with unequal quark masses contain contributions

from opposite-parity states, which show up as exponentials multiplied by an alternating sign,

(−1)t. For valence-quark masses up to and including the strange quark mass these contributions

are small, and good �ts can be obtained while neglecting them. In fact, in our previous analyses

with the asqtad quark action, these states were not included in the two-point �ts. However,
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with these data sets, slightly better �ts are obtained when an opposite-parity state is included

in the light-light �ts, and so we include such a state in the unequal quark mass correlators.

The light-charm correlators (where �light� here includes masses up to the physical strange

quark mass ms) are more di�cult to �t than the light-light correlators for several reasons. First,

because the di�erence in the valence-quark mass is large, the amplitude of the opposite-parity

states is not small. Second, the mass splitting between the ground state and the lowest excited

single particle state is smaller. For the light-light correlators, the approximate chiral symmetry

makes the ground state mass smaller than typical hadronic scales, which has the side e�ect of

making the mass gap to the excited single particle states large, and these excited states can be

suppressed by simply taking a large enough minimum distance. For the charm-light correlators

we include an excited state in the �t function. (In principle, multiparticle states also appear

in these correlators. For example, the lowest excited state in the pion correlator would be a

three-pion state. Empirically these states do not enter with large amplitudes, and the important

excited states correspond more closely to single particle states.)

To make the �ts converge reliably, it is necessary to loosely constrain the masses of the

opposite-parity and excited states by Gaussian priors. The central value of the gap between the

ground state and opposite parity states is taken to be 400 MeV, motivated by the 450 MeV gap

between the D mass and the 0+ light-charm mass, and the 350 MeV gap between the Ds mass

and a poorly established 0+ strange-charm meson [93]. The central value for the gap between

the ground state and excited state masses is taken to be 700 MeV, motivated by the 660 MeV

gap between the ηc and the corresponding 2S state. In most cases the widths of the priors for

the opposite-parity and excited state gaps are taken to be 200 MeV and 140 MeV respectively,

although in some cases these need to be adjusted to get all of the jackknife �ts to converge.

Another factor that makes the light-charm correlators more di�cult to �t is the faster growth

of the statistical error. The time dependence of the variance of a correlator is expected to depend

on time as e−E2t, where E2 is the energy of the lowest lying state created by OO†, where O is

the source operator for the correlator itself, with the proviso that quark and antiquark lines all

go from source to sink, rather than coming back to the source [94]. For the pion correlator, the

state created by OO† is just the two pion state, leading to the expectation that the fractional

statistical error on the pion correlator is roughly independent of distance. However, for the light-

charm correlator, the quarks and antiquarks created by OO† can pair up to form an ηc and a

pion. Then, the reduction of the pion's mass from chiral symmetry makes this state much lighter

than 2MD, so the fractional error of the propagator grows rapidly with distance. This makes it

essential to use smaller minimum distances in the �t range for the light-charm correlators, which
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of course makes the problem of excited states discussed in the previous paragraph even more

serious.

Table 3.3 shows our expectations for the states controlling the growth of statistical errors

for the various pseudoscalar correlators. Figure 3.1 shows the fractional errors for the random-

wall correlators for the 0.09 fm physical quark-mass ensemble, with comparison to the slopes

expected from Table 3.3. With the exception of the charm-charm correlator, the behavior of the

statistical error agrees with our theoretical expectations.

Figures 3.2 and 3.3 show the masses in the 2+1 state �ts for the light-charm correlators in

the a ≈ 0.09 fm physical quark-mass ensemble as a function of the minimum distance included

in the �t, where the light-quark mass is the physical (mu +md)/2 (Fig. 3.2) and ms (Fig. 3.3).

Fit ranges are chosen from graphs like this for all the ensembles, and analogous graphs for the

light-light and charm-charm correlators. We show this ensemble because it, together with the

a ≈ 0.06 fm physical mass ensemble, is the most important to the �nal results. In these graphs

the error bars on the right show the central values and widths of the priors used for the opposite-

parity and excited masses. At short distances, these masses are more accurately determined by

the data, while at larger Dmin the input prior controls the mass. The linear sizes of the symbols

in these �gures are proportional to the p value of the �t, with the size of the symbols in the legend

corresponding to 50%. In the two-point correlator �ts used to choose the �t types and ranges, as

in Figs. 3.2 and 3.3, autocorrelations among the lattices are minimized by �rst blocking the data

in blocks of four lattices, or 10 to 24 molecular dynamics time units. However, statistical errors

on results in later sections are obtained from the jackknife procedures described in Secs. 3.4.1

and 3.4.2. In these analyses the two-point �ts are repeated in each jackknife resampling. From

these and similar graphs for other ensembles and di�erent numbers of excited states, keeping

the minimum distance in physical units reasonably constant, the minimum distances and �t

forms in Table 3.4 are chosen. The need for using a smaller minimum distance and including

an excited state in the heavy-light �ts is consistent with our expectations from Table 3.3 and

Fig. 3.1. Because the statistical errors increase with distance from the source, the �ts are much

less sensitive to the choice of maximum distance. In most cases the maximum distance is taken

to be one less than the midpoint of the lattice. However, in the a ≈ 0.09 and 0.06 fm ensembles,

the light-charm and charm-charm �ts used a smaller maximum distance because having fewer

points in the �t gave a better conditioned covariance matrix. These maximum distances are also

included in Table 3.4.
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Table 3.3: States expected to control the statistical errors on the correlators, for the pseu-
doscalars with physical valence-quark masses. The second column shows the state expected
to control the growth of the statistical error on the correlator, the third column the mass gap
between half the mass of the error state and the particle mass, and the fourth column the length
scale for the growth of the fractional statistical error. Here s̄s is the unphysical �avor nonsinglet

state, with mass 680 MeV.

State Error Energy
gap (MeV)

Growth
length (fm)

π 2π 0 ∞
K π + s̄s 90 2.26
ηc 2ηc 0 ∞
Ds ηc + s̄s 140 1.42
D ηc + π 310 0.64

Table 3.4: Fit forms and minimum distance included for the two-point correlator �ts. Here
the �t form is the number of negative parity (i.e., pseudoscalar) states �plus� the number of
positive parity states. When the valence quarks have equal masses, the opposite-parity states
are not included. In this work the charm-charm �ts are needed only for computing the mass of

the ηc meson, used as a check on the quality of our charm physics.

light-light light-charm charm-charm

form Dmin Dmax form Dmin Dmax form Dmin Dmax

a ≈ 0.15 fm 1+1 16 23 2+1 8 23 2+0 9 23
a ≈ 0.12 fm 1+1 20 31 2+1 10 31 2+0 12 23
a ≈ 0.09 fm 1+1 30 47 2+1 15 37 2+0 18 35
a ≈ 0.06 fm 1+1 40 71 2+1 20 51 2+0 21 50
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Figure 3.1: Fractional errors for pseudoscalar correlators as a function of distance from the
0.09 fm physical quark-mass ensemble. The line segments show the slope expected from the
states in Table 3.3, which give a good approximation to the observed growth of the errors with

the exception of the charm-charm correlator.
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Figure 3.2: Fits for the light-charm pseudoscalar correlator (mass M) in the ensemble with
a ≈ 0.09 fm and physical sea-quark masses. We plot the ground state, alternating state (opposite
parity) and excited state masses as a function of minimum distance included in the �t. The
size of the symbols is proportional to the p value of the �t, with the size of the symbols in
the legend corresponding to 0.5. The two bursts on the right show the priors and their errors
for the alternating and excited masses. The vertical arrows at Dmin = 15 indicate the �t that
is chosen. Further discussion is in the text. Here the masses and distance are in units of the

lattice spacing.
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Figure 3.3: Fits for the strange-charm correlator in the ensemble with a ≈ 0.09 fm and
physical sea-quark masses. The format and symbols are the same as in Fig. 3.2.
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3.4 Determination of decay constants and quark-mass ratios

This section describes the details of the analyses that produce our results for light-light and

heavy-light decay constants and the ratios of quark masses. We perform two versions of the

analysis. The �rst, the �physical-mass analysis� described in Sec. 3.4.1, is a straightforward

procedure that essentially uses only the physical-quark mass ensembles. On these ensembles, a

chiral extrapolation is not needed: only interpolations are required in order to �nd the physical

quark-mass point. The physical-mass analysis produces our results for quark-mass ratios and

fK+/fπ+ , as well as some additional intermediate quantities required for the chiral analysis of

the D meson decay constants, which follows. The second analysis of charm decay constants,

described in Sec. 3.4.2, uses chiral perturbation theory to perform a combined �t to all of

our physical-mass and unphysical-mass data, and to thereby signi�cantly reduce the statistical

uncertainties of the results. We take the more precise values of fD+ , fDs , and their ratio from

the chiral analysis as our �nal results, and use those from the simpler physical-mass analysis

only as a consistency check, and to aid in the estimation of systematic errors.

In the physical-mass analysis of Sec. 3.4.1, we �rst determine the lattice spacing and quark

masses separately for each ensemble, using, in essence, the �ve experimental values of fπ+ ,

Mπ0 , MK0 , MK+ and MDs , as explained in Sec. 3.4.1.1. In order to adjust for mistuning of

the sea-quark masses, we perform a parallel scale-setting and quark-mass determination on the

unphysical-mass ensembles; there, however, an extrapolation in the valence-quark mass is gen-

erally required. We extrapolate the quark-mass ratios to the continuum, after small sea-quark

mistuning adjustments, in Sec. 3.4.1.2. We follow the same procedure on the physical-mass

ensembles to also obtain values for decay constants. In particular, we update our result for

fK+/fπ+ from Ref. [67]. Although the results for charm decay constants from the physical-mass

analysis are not taken as our �nal values, they are used as additional inputs in the estimation

of systematic errors from the continuum extrapolation. Finally, the physical-mass analysis al-

lows us to make straightforward estimates of systematic errors coming from �nite-volume and

electromagnetic (EM) e�ects on the decay constants and quark-mass ratios, as described in

Sec. 3.4.1.3.

The values of the physical quark-mass ratios mc/ms, ms/ml, and (to a lesser extent, in

order to take into account isospin-violating e�ects) mu/md obtained in Sec. 3.4.1 are used in the

subsequent chiral analysis in Sec. 3.4.2. Further, in the physical-mass analysis, we determine the

useful quantity Fp4s [71], which is the light-light pseudoscalar decay constant F evaluated at a

�ducial point with both valence masses equal to mp4s ≡ 0.4ms and physical sea-quark masses.

The meson mass at the same �ducial point, Mp4s, as well as the ratio Rp4s ≡ Fp4s/Mp4s, are
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similarly determined. The unphysical decay constant Fp4s provides an extremely precise and

convenient quantity to set the relative scale in the chiral analysis (see Sec. 3.4.2.2), while we use

Rp4s to tune the strange sea-quark mass.

The chiral analysis of the decay constants of charm mesons is described in detail in Sec. 3.4.2.

With chiral perturbation theory, one can take advantage of all our data by including both the

physical-mass and unphysical-mass ensembles in a uni�ed procedure. In particular, the statistical

error in ΦD+ is slightly more than a factor of two smaller with the chiral analysis than in the

physical-mass analysis of Sec. 3.4.1. In addition, the use of the relevant form of staggered chiral

perturbation theory for this case, heavy-meson, rooted, all-staggered chiral perturbation theory

(HMrASχPT) [86], allows us to relate the quark-mass and lattice-spacing dependence of the

data, and thereby use the unphysical-mass ensembles to tighten the control of the continuum

extrapolation. Our �nal central values for the charm decay constants given in the conclusions

are taken from the chiral analysis. We increase some of the systematic uncertainties, however,

to take into account di�erences with the results of the physical-mass analysis.

3.4.1 Simple analysis from physical quark-mass ensembles

Here we determine the quark-mass ratios and decay constants employing primarily the physical

quark-mass ensembles. First, in Sec. 3.4.1.1, we determine the lattice spacing, quark masses, and

decay constants separately for each ensemble. Next, in Sec. 3.4.1.2, we adjust the quark masses

and decay constants for slight sea-quark mass mistuning, and extrapolate to the continuum.

Finally, we estimate the systematic uncertainties in the quark-mass ratios and decay constants

in Sec. 3.4.1.3. We present results and error budgets for these quantities obtained from the

physical mass analysis in Table 3.6.

3.4.1.1 Valence-quark mass interpolation

In this stage of the analysis we determine tuned quark masses and the lattice spacing (using

fπ+ to �x the scale) for each ensemble, and then �nd the decay constants by interpolation or

extrapolation in valence-quark mass to these corrected quark masses. There are a number of

possible choices for the procedure used, and we include the di�erences among a few sets of

choices in our systematic error estimate. It is important to remember that there is inherent

ambiguity in de�ning a lattice spacing for ensembles with unphysical sea-quark masses, but all

sensible choices should have the same limit at zero lattice spacing and physical sea-quark masses.

For example, in the ensemble-by-ensemble �tting procedure described in this section, we take
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the value of fπ+ on each ensemble to be 130.41 MeV, independent of sea-quark masses, while

for the chiral perturbation theory analysis we take the lattice spacing to be independent of the

sea-quark masses.

Figure 3.4 illustrates some of the features of our procedure, and referring to it may help

clarify the following description. Since the decay amplitude F depends on valence-quark mass,

and we wish to use fπ+ = 130.41 MeV to set the lattice scale, we must determine the lattice

spacing and tuned light-quark mass simultaneously. To do so, we �nd the light valence-quark

mass where the mass and amplitude of the pseudoscalar meson with degenerate valence quarks

have the physical ratio of M2
π/f

2
π+ . (Actually we adjust this ratio for �nite size e�ects, using

the pion mass and decay constant in a 5.5 fm box. This correction is discussed in Sec. 3.4.1.3.)

This light-quark mass is the average of the up and down quark masses, ml = (mu+md)/2. Here

we use the mass of the π0, since it is less a�ected by electromagnetic corrections than the π+.

Since the π+ contains one up and one down quark, the error in fπ+ from using degenerate light

valence quarks is negligible. This tuning is illustrated in the upper left panel of Fig. 3.4, which

shows this ratio as a function of light valence mass for the 0.09 fm physical quark-mass ensemble,

one of the two ensembles that are most important in our analysis. The octagons in this panel

are the ratio at the valence-quark masses where we calculated correlators, with error bars that

are too small to be visible. The horizontal red line is the desired value of this ratio, and the

green vertical line shows the light-quark mass where the ratio has its desired value. With the

tuned light-quark mass determined, we use the decay amplitude at this mass, fπ+ , to �x the

lattice spacing. In performing the interpolation or extrapolation of M2
π/f

2
π we use points with

degenerate light valence-quark mass mv and employ a continuum, partially quenched, SU(2)

χPT form [23, 95],

M2
π

f2
π

=
B2mv

f2

{
1 +

1

16π2f2

[
B(4mv − 2m′l) log(2Bmv/Λ

2
χ)

+4B(mv +m′l) log(B(mv +m′l)/Λ
2
χ)
]

+ Cmv

}
fπ = f

{
1− 2B(mv +m′l)

16π2f2
log(B(mv +m′l)/Λ

2
χ) + Cmv +Dm2

v

}
, (3.4)

where m′l is the light sea-quark mass and Λχ is the chiral scale. In applying Eq. (3.4), we �x

the low energy constants B and f in the coe�cients of the logarithms to values determined

from lowest order χPT using the smallest valence-quark mass. We then �x the coe�cients of

mv and m2
v in M2

π/f
2
π using the smallest two valence-quark masses available, and we �x the
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Figure 3.4: Illustration of the �fπ� tuning for the a ≈ 0.09 fm physical quark mass ensemble.
F is the decay constant of a generic pseudoscalar meson. The procedure illustrated is described

in the text.
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analytic coe�cients in fπ using the three smallest valence-quark masses. In the physical quark-

mass ensembles, such as the one shown in Fig. 3.4, this is only a small correction to the quark

mass. On the other hand, in most of the ensembles with m′l/m
′
s = 0.1 or 0.2, the lightest

valence-quark mass is 0.05m′s or 0.1m′s, and a signi�cant extrapolation is made. However, these

unphysical-mass ensembles are used only in the analysis of this section to correct the results of the

physical-mass ensembles for small mistunings of the sea masses in the physical-mass ensembles.

We then �x the tuned strange quark mass to the mass that gives the correct 2M2
K −M2

π .

This is illustrated in the upper right panel of Fig. 3.4. In all of our ensembles, we use valence

�strange� quark masses at the expected strange quark mass and at 0.8 times this mass. The two

data points shown in the �gure have these strange masses and the lightest available light-quark

valence mass. A linear interpolation or extrapolation is performed through these two points.

Again, the horizontal red line shows the desired value of this mass di�erence, and the vertical

green line the resulting value of ms. In this stage of the tuning the kaon mass is corrected for

�nite volume e�ects, electromagnetic e�ects and isospin breaking e�ects, where again we defer

the details to the discussion of systematic errors in Sec. 3.4.1.3.

Next we determine the up-down quark mass di�erence, and hence the up and down quark

masses. We use the di�erence in K0 and K+ masses,

md −mu =
M2
K0
adj

−M2
K+
adj

∂M2
K

∂ml

. (3.5)

Here the kaon masses are adjusted for �nite volume and electromagnetic e�ects, and again we

defer the details to Sec. 3.4.1.3. We note that the electromagnetic corrections are a small e�ect

on the strange quark mass tuning, but are absolutely crucial in the determination of md −mu.

To estimate the derivative ∂M2
K/∂ml, we use the masses of kaons containing a valence quark

near the strange quark mass and a second valence quark that is one of the two lightest valence

quarks we have.

Then the tuned charm quark mass is determined from the experimental value of MDs . We

use MDs rather than MD because it has much smaller statistical errors. In all of our ensembles

we have correlators with valence-quark masses at the expected charm quark mass and at 0.9

times this mass. Using linear interpolations in ms of the Ds meson mass at these two �charm�

masses to the strange quark mass found earlier, and a linear interpolation in mc between these,

we �nd a tuned charm quark mass.

Now that we have found the lattice spacing and tuned quark masses, we can �nd decay

constants and masses of other mesons by interpolating or extrapolating to these quark masses.
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Table 3.5: Tuned lattice spacings (using fπ+ to set the scale) and quark masses for the
physical quark-mass ensembles. The quark mass entries show the light, strange and charm
quark masses in units of the lattice spacing. The column labeled am′ gives the run values of

the sea quark masses.

aapprox(fm) atuned(fm) am′ amtuned

0.15 0.15089(17) 0.00235/0.0647/0.831 0.002426(8)/0.06730(16)/0.8447(15)
0.12 0.12121(10) 0.00184/0.0507/0.628 0.001907(5)/0.05252(10)/0.6382(8)
0.09 0.08779(8) 0.0012/0.0363/0.432 0.001326(4)/0.03636(9)/0.4313(6)
0.06 0.05676(6) 0.0008/0.0220/0.260 0.000799(3)/0.02186(6)/0.2579(4)

The bottom panel of Fig. 3.4 illustrates this process. The lower set of points in this graph are the

decay constants at each light valence mass, interpolated using the two �strange� valence masses

to the tuned strange quark mass. Then fK+ is found by extrapolating these points to the tuned

mu, illustrated by the red octagon at the lower left. Similarly, the upper set of data points is

the decay constant at each light-quark mass, linearly interpolated or extrapolated using the two

�charm� valence masses to the tuned mc. This graph is then interpolated or extrapolated to the

tuned md to �nd fD+ , shown in the red octagon at the upper left, or to the tuned ms to �nd

fDs , shown by the red octagon at the upper right.

As checks on our procedure, we also similarly interpolate or extrapolate in the meson masses

to �nd MD0 , MD+ and Mηc .

3.4.1.2 Sea-quark mass adjustment and continuum extrapolation

In this stage we combine the results from the individual ensembles and �t to a function of the

lattice spacing to �nd the continuum limit. We use the ensembles with unphysical sea-quark

masses to make small adjustments for the fact that the sea-quark masses in the physical quark-

mass ensembles were �xed after short tuning runs, and inevitably turned out to be slightly

mistuned when the full runs are done. The amount of mistuning is shown in Table 3.5, which

gives the sea-quark masses and the tuned quark masses for the physical quark-mass ensembles.

Fitting to the lattice spacing dependence is straightforward, because the results from each

ensemble are statistically independent. We have performed continuum extrapolations for the

ratios of quark masses, mu/md, ms/ml, and mc/ms, which come automatically from the �tting

for each ensemble described in Sec. 3.4.1.1. Figures 3.5, 3.6, and 3.7 show the results for each

ensemble, together with �ts to the lattice spacing dependence. In these plots the abscissa is

a2αS , where αS is an e�ective coupling constant determined from taste violations in the pion

masses. The relative value of αS at a given coupling β, compared to its value at a �xed, �ducial
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coupling β0, is given by

αS(β)

αS(β0)
=

√
(a2∆̄)β a2(β0)

(a2∆̄)β0 a
2(β)

, (3.6)

where (a2∆̄)β is the mean squared taste splitting at coupling β, and a(β) is the lattice spacing

given below in Table 3.8. Equation (3.6) assumes that a2∆̄ is proportional to α2
Sa

2, its leading

behavior. We use β0 = 5.8 in these plots, and scale αS to agree with the coupling αV at β0 = 5.8,

which in turn may be determined from the plaquette [96] as explained after Eq. (9) of Ref. [71].

In these �gures the �t used to determine the central value is shown in black. This is a

quadratic polynomial �t through the four physical quark-mass points. In this �t, small adjust-

ments have been made to compensate for sea-quark mass mistuning. To make these adjustments,

the derivative of each quantity with respect to sea-quark mass is found from a �t including both

the physical quark-mass ensembles and the 0.1m′s ensembles, and this derivative is used to adjust

each point in the �t. The resulting adjustments are too small to be visible in Figs. 3.5, 3.6, and

3.7. Other �ts shown in these �gures are used in estimating the systematic error resulting from

our choice of �tting forms. The blue lines in each �gure show the �t including the 0.1m′s points,

where the �t is quadratic in a2 and linear in m′l/m
′
s. Here the solid line is the �t evaluated at

the physical sea-quark mass, and the dashed line is the �t evaluated at m′l = 0.1m′s. The red

lines are extrapolations using only the �ner lattice spacings: the curved solid line is a quadratic

through the 0.06, 0.09 and 0.12 fm ensembles, and the dashed straight line is a line through

the �nest two points. The diamonds at αSa
2 = 0 indicate the continuum extrapolations of the

various �ts. It is clear from the curvature in Figs. 3.5, 3.6, and 3.7 that a quadratic term is

needed. However, it makes only a negligible di�erence whether this quadratic term is taken to be

(αSa
2)2, as is done here for convenience, or simply (a2)2. Other continuum extrapolations not

shown here use αV a
2, where αV is the strong coupling constant computed from the plaquette,

or simply a2 as the abscissa.

The four extrapolations in Figs. 3.5, 3.6, and 3.7, together with quadratic �ts to the physical

mass points using αV a
2 or a2 as the abscissa, make a set of six continuum extrapolations for

these and other quantities. The six versions are used to estimate the systematic errors of the

quark mass ratios and light-meson decay constants, and to inform the systematic error analysis

of Sec. 3.4.2.4.

In Fig. 3.5 and, to a lesser extent in Figs. 3.6 and 3.7, the points at small lattice spacing

with unphysical light sea quark masses deviate strongly from the physical sea quark mass points.

This is mostly a partial quenching e�ect that shows up for valence quark masses small compared

to the light sea quark mass. In particular, the squared pseudoscalar meson mass is increased by

a partially quenched chiral log, which means that a smaller tuned light valence quark mass is
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Figure 3.5: The tuned ratio of strange quark mass to light-quark mass, ms/ml, on each
ensemble, for the physical quark-mass ensembles (red octagons), form′l/m

′
s = 0.1 (blue squares)

and for m′l/m
′
s = 0.2 (green bursts). The �ts shown in this and subsequent �gures are described

in the text. The diamonds at the left indicate the continuum extrapolations of the various �ts.
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Figure 3.6: The tuned ratio of charm quark mass to strange quark mass, mc/ms, on each
ensemble. The notation and choice of �ts is the same as in Fig. 3.5.
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Figure 3.7: The ratio of up quark mass to down quark mass, mu/md, on each ensemble. The
notation and choice of �ts is the same as in Fig. 3.5.
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needed to give the desired M2/F 2. This has the direct e�ect of increasing ms/ml, with smaller

e�ects on all other quantities. This is mostly seen at the smallest lattice spacing because at larger

lattice spacings taste violations smear out the chiral logs. Note that this partial quenching e�ect

has negligible e�ect on our results for ms/ml and mc/ms, which depend almost exclusively on

the data from the physical-mass ensembles.

We perform similar continuum extrapolations for the ratios of decay constants Fp4s/fπ+ ,

fK+/fπ+ , fD+/fπ+ , fDs/fπ+ , and fDs/fD+ , and for Mp4s and Rp4s = Fp4s/Mp4s. Figure 3.8

shows the individual ensemble values and the same set of continuum extrapolations for the

ratio fK+/fπ+ . As an example of a quantity involving a charm quark, Fig. 3.9 shows values and

continuum extrapolations for the ratio fDs/fπ+ . The extrapolated value for fK+/fπ+ is our result

for this quantity. Figure 3.10 shows the continuum extrapolations for Fp4s and Rp4s ≡ Fp4s/Mp4s.

The resulting continuum values for Fp4s and Rp4s are used in the later analysis in Sec. 3.4.2.

The values for the charm-meson decay constants provide consistency checks on the analysis in

Sec. 3.4.2, and the spread in continuum values among the di�erent extrapolations is included

in our estimates of the systematic uncertainty from the continuum extrapolation. Finally, as

a check, we extrapolate the mass of the ηc meson. These continuum extrapolations and their

statistical errors are shown in Table 3.6.

Statistical errors on these quark mass ratios and decay constants are estimated with a

jackknife method, where for each ensemble we perform the entire �tting procedure eliminating

one con�guration at a time. Autocorrelations are handled by estimating the �nal error from

the variance of the jackknife resamples, after �rst blocking the jackknife results in blocks of 20

(eliminated) lattices, which corresponds to 50 molecular dynamics time units for the a ≈ 0.15

fm physical quark mass ensemble, 100 molecular dynamics time units for the other a ≈ 0.15 fm

and the 0.12 fm ensembles and 120 time units for the a ≈ 0.09 and 0.06 fm ensembles.

3.4.1.3 Finite volume and electromagnetic uncertainties

Our treatment of �nite volume e�ects on the pion and kaon masses and decay constants is the

same as described in Ref. [67], and we refer the reader to the discussion there. To summarize very

brie�y, we adjust these masses and decay constants to their values in a 5.5 fm box, the size of our

physical quark mass lattices, and use these adjusted values in the tuning procedure described

above. After the tuning and continuum extrapolation, at which point we have determined fK+

in a 5.5 fm box, the adjustment is removed to get our result for fK+ in in�nite volume. As

an estimate of the remaining �nite size uncertainty we use the di�erence between results using

staggered chiral perturbation theory and continuum chiral perturbation theory (NNLO for Mπ
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Figure 3.8: The ratio fK+/fπ+ on each ensemble, The notation and choice of �ts is the same
as in Fig. 3.5.
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Figure 3.9: The ratio fDs/fπ+ on each ensemble. The notation and choice of �ts is the same
as in Fig. 3.5.
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Figure 3.10: Fp4s and the ratio Fp4s/Mp4s on each ensemble. Here fπ = 130.41 MeV was
used to set the scale to express Fp4s in MeV. The notation and choice of �ts is the same as in

Fig. 3.5.

and fπ+ , NLO for MK and fK+) [67]. This di�erence, along with other systematic e�ects, is

tabulated in Table 3.6. Finite size e�ects on the charm-meson masses and decay constants are,

as expected, quite small. Figure 3.11 shows the charm-meson masses and decay constants on

the three ensembles di�ering only in spatial size, showing no detectable �nite size e�ects.

Our treatment of EM e�ects also follows Ref. [67], which in turn follows Ref. [66]. The

current analysis uses updated inputs for the electromagnetic e�ects, so we repeat some of the

discussion. Because our sea quarks are isospin symmetric, we adjust the experimental inputs to

what they would be in a world without electromagnetism or sea-quark isospin violation before

matching the simulation data to experiment to �nd the strange quark mass ms and the average

light-quark mass m̂ = (mu+md)/2. Speci�cally, we do not adjust the neutral pion mass because

the leading-order isospin correction to M2
π0 is ∝ (mu − md)

2/Λ2
χ in χPT and therefore small,
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Figure 3.11: Spatial size e�ects on MD, MDs
, fD and fDs

, as determined by comparison of
ensembles with L/a = 24, 32, and 40 at β = 6.0 (a ≈ 0.12 fm). To show the magnitude of the

e�ects, green error bars show an arbitrary value ±1 MeV, and magenta error bars ±1%.
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Table 3.6: Values for various physical quantities evaluated at zero lattice spacing, as well
as statistical and systematic errors, obtained from the simple physical-mass ensemble analysis.
Here ΦD+ ≡ fD+

√
MD+ etc. We also include the p value of the central �t of this analysis.

For the systematic errors, we tabulate the amount by which the central values change. Finite
size errors are the di�erence between results using staggered chiral perturbation theory and
continuum chiral perturbation theory (NNLO for Mπ and fπ+ , NLO for MK and fK+) [67].
�EM1� is the e�ect of varying ε by 0.021, or one standard deviation. �EM2� is the e�ect of
subtracting 450 MeV2 from M2

K . �EM3� is the e�ect of lowering the Ds meson mass by 1 MeV.
�Cont. extrap.� is the full amount of variation among the alternative continuum extrapolation
�ts. �Priors� is the e�ect of using narrower priors for the mass gaps in the 0.09 and 0.06 fm
physical quark mass correlator �ts. More details on these systematic e�ects are in the text.

Quantity Central Stat. p val. Finite EM1 EM2 EM3 Cont. Priorsvalue size extrap.

Mηc (MeV) 2982.33 0.35 0.18 0.29 0.11 0.35 −1.81 +1.41
−0.88 0.01

fK+/fπ+ 1.1956 0.0010 0.025 −0.0010 −0.0003 −0.0004 0.0000 +0.0023
−0.0014 0.0002

Fp4s (MeV) 153.90 0.09 0.10 −0.15 −0.02 −0.05 0.00 +0.14
−0.23 0.00

Mp4s (MeV) 433.24 0.17 0.11 −0.02 −0.12 −0.41 0.00 +0.01
−0.33 −0.01

Rp4s 0.35527 0.00024 0.035 −0.00030 0.00007 0.00023 0.00000 +0.00052
−0.00015 0.00001

mu/md 0.4482 0.0048 0.025 0.0001 −0.0156 0.0000 0.0000 +0.0021
−0.0115 0.0000

ms/ml 27.352 0.051 0.72 −0.039 −0.015 −0.053 0.000 +0.080
−0.020 −0.001

mc/ms 11.747 0.019 0.010 −0.006 0.009 0.025 −0.010 +0.052
−0.032 0.001

fDs/fD+ 1.1736 0.0036 0.97 0.0003 −0.0003 −0.0003 0.0000 +0.0004
−0.0015 −0.0002

fD+/fπ+ 1.6232 0.0057 0.59 −0.0016 0.0003 0.0000 −0.0001 +0.0097
−0.0034 0.0006

fDs/fπ+ 1.9035 0.0017 0.010 −0.0015 −0.0001 −0.0004 −0.0001 +0.0089
−0.0050 −0.0001

ΦD+ (MeV3/2) 9161.5 33.7 0.61 −9.3 1.6 0.6 −3.1 +16.1
−44.9 3.0

ΦDs (MeV3/2) 11012.9 9.7 0.007 −8.9 −0.7 −2.6 −3.4 +51.6
−28.8 −0.1

and the electromagnetic corrections vanish in the chiral limit for neutral mesons and are thus

also small. For the kaon, we consider the isospin-averaged mass M2
K̂

= (M2
K+ + M2

K0)QCD/2,

where the subscript �QCD" indicates that the leading EM e�ects in the masses are removed from

the experimental masses [93]. To remove these e�ects we use results from our ongoing lattice

QED+QCD simulations with asqtad sea quarks [97, 98] for the parameter ε that characterizes

violations of Dashen's theorem:

(M2
K± −M2

K0)γ = (1 + ε)(M2
π± −M2

π0)γ , (3.7)

where the superscript γ denotes the EM contribution to the splittings. In Refs. [97, 98], we found

ε = 0.65(7)(14)(10), but this result did not yet adjust for �nite volume e�ects on the photon

�eld. A recent preliminary result [99] including �nite volume e�ects is ε = 0.84(21), and we use

that here.

We estimate the uncertainty due to EM e�ects by varying the values of the EM-subtracted

meson masses used in the quark-mass tuning; this a�ects mu the most. We vary the parameter
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ε by its error. We also consider possible EM e�ects on the neutral kaon mass itself, which are

less well understood than the EM e�ects on the K+�K0 splitting that are described by ε. In

Ref. [98], the EM contribution to the squared K0 mass was estimated to be about 900 MeV2.

However, this estimate did not take into account the e�ects of EM quark mass renormalization,

which should be subtracted from the result. A rough calculation of the renormalization e�ect

(using one-loop perturbation theory) suggests it is of order of half the size of the contribution.

We thus include as a systematic error the e�ect of shifting the squared K0 mass by 450 MeV2.

We do not consider direct EM e�ects on the weak matrix elements fπ+ , fK+ , fD+ and fDs , which

are by de�nition pure QCD quantities [93]. Such direct EM e�ects, however, are relevant in the

extraction of CKM elements by comparison with experimental rates, as described in Sec. 3.6.

The shifts in various quantities resulting from these electromagnetic uncertainties are also

tabulated in Table 3.6. The two e�ects labeled �EM1� and �EM2� are combined in quadrature to

give our quoted EM systematic errors for ms/ml and fK+/fπ+ . The �EM3� column in Table 3.6

shows the e�ect of lowering the input Ds meson mass by 1 MeV, an order-of-magnitude estimate

for the electromagnetic e�ect on this mass, which a�ects the tuning of the charm-quark mass.

This e�ect has not been directly determined in QCD+QED simulations. Assuming that the EM

e�ect onMD+ is approximately the same as onMDs , since the two mesons have the same charge,

the EM3 error on the decay constants of these mesons is negligible: To very good approximation,

the changes in ΦD+ and ΦDs due to the change in the estimate of the charm-quark mass, are

canceled by the changes in the factors of M
1/2
D+ or M

1/2
Ds

in these quantities. The fact that the

decay constants themselves are only mildly dependent on the heavy-quark mass (for example,

the di�erence between fDs and fBs is only about 10% [100]) indicates that such cancellations

must take place. The EM3 error does lead to a signi�cant uncertainty on mc/ms, and we include

it in our systematic error estimate for that quantity.

3.4.2 Chiral perturbation theory analysis of fD and fDs including unphysical

quark-mass ensembles

In this section, we present the combined chiral extrapolation/interpolation and continuum ex-

trapolations used to obtain the physical values of the D+ and Ds meson decay constants. We

�rst discuss chiral perturbation theory for all-staggered heavy-light mesons in Sec. 3.4.2.1, giving

the formulas used for the chiral �ts and describing our method for incorporating discretization

e�ects into the extrapolation. An explanation of our method for setting the lattice scale follows

in Sec. 3.4.2.2. Chiral perturbation theory assumes a mass-independent scale-setting procedure.

In practice, we use Fp4s to set the scale and Fp4s/Mp4s to tune the strange sea-quark mass.
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We take these values from the physical quark-mass analysis in Sec. 3.4.1. This means that the

absolute scale comes ultimately from fπ+ , which is used to set the scale in Sec. 3.4.1.

The chiral �ts themselves are presented in Sec. 3.4.2.3, while systematic errors in the chiral

analysis are described in Sec. 3.4.2.4. Chiral/continuum extrapolation errors are found by con-

sidering a large number (18) of alternative chiral �ts, as well as six versions of the continuum

extrapolation of the inputs, resulting in 108 possibilities. We also estimate �nite volume and EM

errors within the chiral analysis by propagating the errors in the corresponding inputs through

the chiral �ts. Equations (3.28)�(3.30) show our results for the charm decay constants from the

self-contained chiral analysis with complete systematic error budgets.

3.4.2.1 Chiral perturbation theory for fD+ and fDs

The quark-mass and lattice-spacing dependence of the decay constant has been derived at one

loop in heavy-meson, rooted, all-staggered chiral perturbation theory (HMrASχPT) in Ref. [86].

At �xed heavy-quark mass mQ, one may argue following Ref. [101] that inclusion of hyper�ne

splittings (e.g., M∗D −MD) and �avor splittings (e.g., MDs −MD), but no other 1/mQ e�ects,

constitutes a systematic approximation at NLO in HMrASχPT. The argument is based on the

power counting introduced by Boyd and Grinstein [102]. With v denoting the light valence

quark, Y the vv̄ valence meson, and ΦDv ≡ fDv

√
MDv , Ref. [86] obtains for the pseudoscalar-

taste heavy-light meson:

ΦDv = Φ0

{
1 +

1

16π2f2

1

2

(
− 1

16

∑
S,Ξ

`(M2
Sv,Ξ)− 1

3

∑
j∈M(3,v)

I

∂

∂M2
Y,I

[
R

[3,3]
j (M(3,v)

I ;µ
(3)
I )`(M2

j )
]

−
(
a2δ′V

∑
j∈M(4,v)

V

∂

∂M2
Y,V

[
R

[4,3]
j (M(4,v)

V ;µ
(3)
V )`(M2

j )
]

+ [V → A]
)

− 3g2
π

1

16

∑
S,Ξ

J(MSv,Ξ,∆
∗ + δSv)− g2

π

∑
j∈M(3,v)

I

∂

∂M2
Y,I

[
R

[3,3]
j (M(3,v)

I ;µ
(3)
I )J(Mj ,∆

∗)
]

− 3g2
π

(
a2δ′V

∑
j∈M(4,v)

V

∂

∂M2
Y,V

[
R

[4,3]
j (M(4,v)

V ;µ
(3)
V )J(Mj ,∆

∗)
]

+ [V → A]
))

+ Ls(xu + xd + xs) + Lvxv + La
x∆̄

2

}
, (3.8)

where Φ0, Ls, Lv, and La are low-energy constants (LECs); the indices S and Ξ run over sea-

quark �avors and meson tastes, respectively; ∆∗ is the lowest-order hyper�ne splitting; δSv is

the �avor splitting between a heavy-light meson with light quark of �avor S and one of �avor v;
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and gπ is the D-D∗-π coupling. In in�nite volume, the chiral logarithm functions ` and J are

de�ned by [23, 101]

`(m2) = m2 ln
m2

Λ2
χ

[in�nite volume], (3.9)

J(M,∆) = (M2 − 2∆2) log(M2/Λ2) + 2∆2 − 4∆2F (M/∆) [in�nite volume],(3.10)

with [103]

F (1/x) ≡

−
√

1−x2

x

[
π
2 − tan−1 x√

1−x2

]
, if |x| ≤ 1,

√
x2−1
x ln(x+

√
x2 − 1), if |x| ≥ 1.

(3.11)

The residue functions R
[n,k]
j are given by

R
[n,k]
j ({m};{µ}) ≡

∏k
i=1(µ2

i −m2
j )∏n

r 6=j(m
2
r −m2

j )
. (3.12)

The sets of masses in the residues are

µ(3) = {m2
U ,m

2
D,m

2
S} , (3.13)

M(3,v) = {m2
Y ,m

2
π0 ,m

2
η} , (3.14)

M(4,v) = {m2
Y ,m

2
π0 ,m

2
η,m

2
η′} . (3.15)

Here taste labels (e.g., I or V for the masses) are implicit. We de�ne dimensionless quark masses

and a measure of the taste splitting by

xu,d,s,v ≡
4B

16π2f2
π

mu,d,s,v , and x∆̄ ≡
2

16π2f2
π

a2∆̄ , (3.16)

where B is the LEC that gives the Goldstone pion mass M2
π = B(mu + md), and a

2∆̄ is the

mean-squared pion taste splitting. The xi are natural variables of HMrASχPT; the LECs Ls, Lv,

and La are therefore expected to be O(1). All ensembles in the current analysis have degenerate

light sea quarks: xu = xd ≡ xl. The taste splittings have been determined to ∼1�10% precision

[71] and are used as input to Eq. (3.8), as are the taste-breaking hairpin parameters δ′A and δ′V ,

whose ranges are taken from chiral �ts to light pseudoscalar mesons [104].

To include the �nite-volume e�ects for a spatial volume L3 in Eq. (3.8), we replace [101]

`(m2) → `(m2) +m2δ1(mL) [�nite volume], (3.17)

J(m,∆) → J(m,∆) + δJ(m,∆, L) [�nite volume], (3.18)
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where

δJ(m,∆, L) =
m2

3
δ1(mL)− 16π2

[
2∆

3
JFV (m,∆, L) +

∆2 −m2

3
KFV (m,∆, L)

]
, (3.19)

with

KFV (m,∆, L) ≡ ∂

∂∆
JFV (m,∆, L), (3.20)

and with δ1(mL) and JFV (m,∆, L) de�ned in Refs. [105, 106].

Because we have data with ∼ 1% to less than 0.1% statistical errors and 314 to 366 data

points (depending on whether a ≈ 0.15 fm is included), NLO HMrASχPT is not adequate to

describe fully the quark-mass dependence, in particular for masses nearms. We therefore include

all NNLO and NNNLO mass-dependent analytic terms. There are four independent functions of

xv, xl and xs at NNLO and seven at NNNLO, for a total of eleven additional �t parameters. It

is not necessary to keep all the seven terms appearing at NNNLO to get a good �t, nevertheless

we include all of them to make it a systematic approximation at the level of analytic terms.

While Eq. (3.8) is a systematic NLO approximation for the decay constant at �xed mQ, we

have data on each ensemble with two di�erent values of the valence charm mass: m′c and 0.9m′c,

where m′c is the value of the charm sea mass of the ensembles, and is itself not precisely equal

to the physical charm mass mc because of tuning errors, which are in some cases as large as this

di�erence (i.e., 10% ofm′c). Since such changes in the value of the charm mass lead to corrections

to decay constants that are comparable in size to those from the pion masses at NLO, Eq. (3.8)

needs to be modi�ed in order to �t the data. We therefore allow the LEC Φ0 to depend on

mQ as suggested by HQET. For acceptable �ts to the highly correlated data at valence charm

masses m′c and 0.9m′c, we need to introduce both 1/mQ and 1/m2
Q terms. (For more details see

Appendix D.) Furthermore, Φ0 has generic lattice-spacing dependence that must be included to

obtain good �ts. With HISQ quarks, the leading generic discretization errors are O(αSa
2). But

because the high degree of improvement in the HISQ action drastically reduces the coe�cient

of these leading errors, formally higher O(a4) errors are also apparent, as can be seen from the

curvature in Figs. 3.5 � 3.10. In Eq. (3.8), we thus replace

Φ0 → Φ0

(
1 + k1

ΛHQET

mQ
+ k2

Λ2
HQET

m2
Q

)(
1 + c1αS(aΛ)2 + c2(aΛ)4

)
, (3.21)

where the ki are new physical LECs, ci are additional �t parameters, ΛHQET is a physical scale

for HQET e�ects, and Λ is the scale of discretization e�ects.
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In cases where the valence and sea values of the charm quark mass di�er, mQ in Eq. (3.21)

is taken equal to the valence mass. This is based on the expectation from decoupling [107] that

e�ects due to variations in the charm sea mass on low-energy physical quantities are small. Note

that HQET tells us that heavy-light decay constants come from the physics of the light-quark

at scale ΛQCD, despite the presence of the heavy valence quark. Thus we do not introduce extra

terms corresponding to the charm sea mass here. As discussed in Sec. 3.4.2.4, however, such

terms are included in alternative �ts used to estimate systematic errors.

Generic dependence on a is also allowed for the physical LECs Ls, Lv, k1 and k2. However,

because these parameters �rst appear at NLO in the chiral or HQET expansions, it is su�cient

to include at most the leading a-dependence, for example:

Lv → Lv + Lvδ αS(aΛ)2 (3.22)

Thus we add 4 �t parameters related to generic discretization e�ects: Lvδ, Lsδ, k1δ, and k2δ.

There are also 3 parameters related to taste-violation e�ects: La, δ
′
A and δ′V . These parameters

are taken proportional to the measured average taste splitting a2∆̄, which depends on a ap-

proximately as α2
Sa

2 [71]. In addition, we �nd that mQ-dependent discretization errors must be

considered if data at the coarsest lattice spacing (a ≈ 0.15 fm) is included in the �ts. This is not

surprising because amphys
c ≈ 0.84 at this lattice spacing, which by the power counting estimates

of Ref. [68] suggests ∼5% discretization errors (although this may be reduced by dimensionless

factors). We therefore add c3αS(amQ)2 + c4(amQ)4 to the analytic terms in Eq. (3.8), where

mQ is taken to denote the valence charm mass. If the a ≈ 0.15 fm data are omitted, good �ts

may be obtained with c3 and c4 set to zero. As discussed below, one can also add similar terms

for the charm sea mass.

For the LEC gπ, a reasonable range is gπ = 0.53(8), which comes from recent lattice cal-

culations [108, 109]. When this central value and range are included as Bayesian priors, �ts to

our full data set tend to pull gπ low, several sigma below 0.53. Hence, we simply �x gπ = 0.45,

1-sigma below its nominal value, in our central �t. This problem is ameliorated for alternative

�ts, used to estimate the systematic errors, that drop the data at a ≈ 0.15 fm or that use

the experimental value of fK+ , rather than that of fπ+ , for f in Eq. (3.8). Other alternatives

considered in the systematic error estimates are to allow gπ to be a free parameter, or to keep

it �xed at its nominal value. We give more details about �ts with varying treatments of gπ in

Sec. 3.4.2.4.
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3.4.2.2 Setting the relative lattice scale

Relative scale setting in the combined chiral analysis is done using Fp4s. The value of Fp4s in

physical units, which is only needed at the end of this analysis, has been obtained by comparison

with fπ+ in Sec. 3.4.1, as are the other needed inputs: Rp4s ≡ Fp4s/Mp4s and the quark-mass

ratios mc/ms, ms/ml and mu/md. All those quantities are listed in Table 3.6, and Fig. 3.10

shows the data and continuum extrapolations used to determine Fp4s and Rp4s.

We use Fp4s in the chiral analysis, rather than fπ+ itself, for several reasons. First of all,

Fp4s gives highly-precise relative lattice spacings between ensembles. Precision scale setting is

required in order to get good chiral �ts to our large partially-quenched data set (366 points) with

large correlations of the points within each ensemble. Second, Fp4s can be accurately adjusted

for mistunings in the sea-quark masses using unphysical-mass ensembles for which the physical

valence-quark mass values needed to �nd fπ+ can only be reached by extrapolation. Finally, and

perhaps most importantly, there are no logarithms of light pseudoscalar masses (∼mπ) in the

SχPT expression for the decay constant [23] evaluated at the relevant quark masses for Fp4s. The

lightest meson that enters is a valence-sea meson for quark masses 0.4ms andml, which has mass

∼325 MeV (for the Goldstone taste). This means that Fp4s should be well approximated by its

Taylor series in a2, and we do not need to modify Eq. (3.8) to take into account chiral logarithms

that enter through the scale-setting procedure. We have checked this assumption by performing

a more complicated three-step analysis: (1) The degenerate light-light decay-constant data for

all ensembles are �t to the NLO SχPT form of Ref. [23]. (2) From the �t, we determine Fp4s

as a function of a2. (3) The data for ΦDv/F
3/2
p4s are �t to Eq. (3.8) divided by the 3/2 power

of Fp4s(a
2). The results of this procedure di�er from the results reported in Table 3.9 below by

less than half of the statistical errors, and the systematic errors are essentially the same in both

approaches.

We use a mass-independent scale-setting scheme. We �rst determine aFp4s and amp4s on

the physical-mass ensembles; then, by de�nition, all ensembles at the same β as a given physical-

mass ensemble have a lattice spacing a and value of amp4s equal to those of the physical-mass

ensemble. Since we do not know the correct strange-quark mass until after the lattice spacing

is �xed, aFp4s and amp4s must be determined self-consistently. We �nd amp4s and aFp4s on a

given physical-mass ensemble by adjusting amv until aF/(aM) has the expected physical ratio

Rp4s.

To determine aFp4s and amp4s accurately, data must be adjusted for mistunings in the sea-

quark masses. The sea-quark masses of the physical-mass ensembles are tuned relatively well
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(especially at 0.09 and 0.06 fm), and adjustments are small. Nevertheless, the adjustments may

change the �nal results of fD+ and fDs by more than the size of the statistical errors.

To make these adjustments, we �rst �nd an approximate value of amp4s on each physical-

mass ensemble by passing a parabola through (M/F )2 as a function of mv, for the three values

of mv closest to mp4s. The sea-quark masses are kept �xed (initially, to their values in the

run) in this process. We use (M/F )2 here rather than F/M , since we expect M2 to be ap-

proximately linear in mv, and F
2 to be approximately constant. The value of amv where the

ratio takes its expected value 1/R2
p4s is the tentative value of amp4s, and the corresponding

value of aF is the tentative value of aFp4s. The procedure also gives tentative values of the

physical sea-quark masses in lattice units: ams
∼= 2.5 amp4s, aml

∼= 2.5 amp4s/(ms/ml), and

amc
∼= 2.5 amp4s(mc/ms). We then adjust the data for aF and aM to the values they would

have at the tentative new sea-quark masses, and iterate the whole process until it converges.

The adjustment of the data requires a determination of the following derivatives

∂F 2

∂m′l
,
∂F 2

∂m′s
,
∂F 2

∂m′c
,
∂M2

∂m′l
,
∂M2

∂m′s
,
∂M2

∂m′c
,

∂2M2

∂m′l∂mv
,

∂2M2

∂m′s∂mv
,
∂2M2

∂m′c∂mv
, (3.23)

where the derivatives should be evaluated at mv = mp4s, and with m′l, m
′
s and m

′
c at their phys-

ical values. All quantities here are in �p4s units�, which are (semi-) physical units in which aF

and aM have been divided by (the tentative value of) aFp4s, and quark masses in lattice units

have been divided by (the tentative value of) amp4s (and therefore do not require renormaliza-

tion). The mixed partial derivatives with mv are needed because we must adjust the data at

di�erent values of mv in order to iterate the process. BecauseM2 is approximately linear in mv,

the e�ect of the mixed partials in Eq. (3.23) is non-negligible, while mixed partials of F 2 may be

neglected. Since the e�ects of mistunings are already not much larger than our statistical errors,

we expect that we may neglect discretization errors and any mistuning e�ects in the derivatives

themselves. This means that we may use, at all lattice spacings, the values determined for the

derivatives in Eq. (3.23) at any one lattice spacing. This expectation is con�rmed by alterna-

tive determinations of the derivatives, which give results in agreement with the method we now

describe.

Many of the derivatives may be calculated using the twelve ensembles that we have at

a ≈ 0.12 fm. Figure 3.12 shows the light and strange sea masses of these ensembles. Most of the

ensembles have the same charm sea masses, which allows us to determine the derivatives with

respect to m′l and m
′
s accurately. We �rst convert the lattice data to p4s units using (tentative

values of) amp4s and aFp4s. Ensembles in which the light sea mass is tuned close to 0.1m′s, shown

inside the dashed blue ellipse in Fig. 3.12, are then used to determine ∂F 2/∂m′s, ∂M
2/∂m′s and
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Figure 3.12: Values of m′s and m
′
l of the ensembles at β = 6.0. At one value of m′s and m

′
l,

indicated by the black cross, we have three ensembles with di�erent volumes; the intermediate
volume ensemble, which is equal in volume to all the other ensembles shown here, is used in
our calculation of the derivatives. Five ensembles inside the blue ellipse are used to calculate
∂F 2/∂m′s, ∂M

2/∂m′s, and ∂2M2/∂m′s∂mv. These �ve ensembles have the same charm sea
masses. Three ensembles inside the red ellipse are used to calculate ∂F 2/∂m′l, ∂M

2/∂m′l,
and ∂2M2/∂m′l∂mv. One of these ensembles has a slightly di�erent charm sea mass, which is

adjusted before calculating the derivatives.
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Figure 3.13: Data from the a ≈ 0.12 fm, m′l/ms ≈ 0.1 ensembles, which are shown inside
the blue ellipse in Fig. 3.12. Fp4s and Mp4s are the light-light pseudoscalar decay constant and
mass for mv = mp4s; quantities are expressed in p4s units, as described in the text. The needed

derivatives are given by the slope of the tangent line at m′s/mp4s=2.5

∂2M2/∂m′s∂mv. The three derivatives with respect to m′s are found by �tting a quadratic

function to the corresponding quantities of these ensembles, as shown in Fig. 3.13.

To calculate ∂F 2/∂m′l, ∂M
2/∂m′l and ∂2M2/∂m′l∂mv, we use the three ensembles with

strange sea mass close to its physical value, the ensembles inside the red ellipse in Fig. 3.12. We

�t straight lines to the corresponding data, as shown in Fig. 3.14. Note that there are small

di�erences in the charm and strange sea masses of these ensembles, but they are taken into

account by a small adjustment using the derivatives with respect to m′s and m
′
c.
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Figure 3.14: Data from three ensembles with strange sea masses tuned close to ms, the
ensembles inside the red ellipse in Fig. 3.12.

Table 3.7: The values of derivatives needed for adjusting the data for mistunings. All the
derivatives are in p4s units, and are evaluated at the valence mass mv = mp4s and at physical
values of sea massesml, ms, andmc. Derivatives are found using 0.12 fm and 0.06 fm ensembles,

as described in the text.

∂F 2

∂m′l
0.1255(32) ∂M2

∂m′l
0.266(15) ∂2M2

∂m′l∂mv
0.182(55)

∂F 2

∂m′s
0.0318(17) ∂M2

∂m′s
0.0810(85) ∂2M2

∂m′s∂mv
0.060(30)

∂F 2

∂m′c
0.00554(85) ∂M2

∂m′c
0.0209(41) ∂2M2

∂m′c∂mv
0.023(13)

The derivatives with respect to m′c cannot be calculated directly, because we do not have

a group of ensembles with di�erent charm sea masses but equal light and strange sea masses.

So we have to determine the charm-mass derivatives indirectly, by investigating ensembles with

di�erent charm sea masses after adjusting for their di�erences in strange and light sea masses.

This procedure can be carried out using the three ensembles available at ≈ 0.06 fm. Since m′s

and m′c vary by about 10% on these three ensembles, the lever arm is large enough to calculate

the derivatives with respect to m′c. We �rst use the derivatives with respect to m′s obtained

at ≈ 0.12 fm to adjust the data at ≈ 0.06 fm for mistuning of the strange sea masses, so only

m′l and m′c dependence remains. Then we calculate the m′c derivatives by passing a function

linear in both m′l and m
′
c through the three data points for each quantity. The m′c derivatives

thus found feed back into the small adjustments needed at a≈0.12 fm in order to calculate m′l

derivatives, as discussed in the preceding paragraph. Our estimates of all the needed derivatives

are tabulated in Table 3.7.

It is noteworthy that we can analytically determine the �rst order derivatives with respect to

m′c by integrating out the charm quark for processes that occur at energies well below its mass.
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By decoupling [107], the e�ect of a heavy (enough) sea quark on low-energy quantities occurs

only through the change it produces in the e�ective value of ΛQCD in the low-energy (three-

�avor) theory [110]. (For a pedagogical discussion see Sec. 1.5 of Ref. [111].) Thus, assuming

m′c is heavy enough, we may calculate the m′c derivatives of any quantity that is proportional to

ΛQCD, where the proportionality constant is some pure number, independent of the light quark

masses. Examples of such quantities are the LEC B in Eq. (3.16) and the light-light decay

constant in the chiral limit, f . At leading order in weak-coupling perturbation theory, one then

obtains (see Eq.(1.114) in Ref. [111]),

∂B

∂m′c
=

2

27

B

m′c
,

∂f

∂m′c
=

2

27

f

m′c
. (3.24)

At the nonzero values of mv, m
′
l, and m′s at which we need to evaluate the derivatives in

Eq. (3.23), there are corrections to these expressions. However, chiral perturbation theory sug-

gests that such corrections are relatively small. At the relevant light masses, we therefore expect

∂F 2

∂m′c
= 2F

∂F

∂m′c
≈ 4

27

F 2

m′c
= 0.00504 [p4s units], (3.25)

∂M2

∂m′c
≈ 2mp4s

∂B

∂m′c
≈ 2

27

M2

m′c
= 0.01998 [p4s units], (3.26)

which agree with our numerical results within 10%; see Table 3.7. Indeed, the fact that the

agreement is this close is probably due to chance, especially for the derivative of the decay

constant: Our argument has neglected the di�erence between f and Fp4s, but that di�erence is

∼40%.

Having the required derivatives, we now iteratively adjust for mistunings. We �rst compute

amp4s and aFp4s, then adjust the data, and repeat the entire process two more times. The values

of amp4s and aFp4s have then converged to well within their statistical errors. The results for

the lattice spacing a and ams are listed in Table 3.8. The error estimates of these quantities

will be discussed below. Our investigation shows that the errors in the derivatives change a and

ams by less than their statistical errors, so those errors are not included in the analysis.

Comparing Table 3.8 with Table 3.5, which uses fπ+ to set the scale, we see signi�cant

di�erences at the coarser lattice spacings, but not at the �nest spacing. This is as expected for

two di�erent schemes, which should only agree exactly in the continuum limit.
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Table 3.8: Lattice spacing a and ams, as a function β, in the p4s mass-independent scale-
setting scheme.

β = 5.8 a = 0.15305(17)stat(
+46
−23)a2 extrap(29)FV(4)EM fm

ams = 0.06863(16)stat(
+43
−24)a2 extrap(26)FV(7)EM [lattice units]

β = 6.0 a = 0.12232(14)stat(
+36
−19)a2 extrap(23)FV(3)EM fm

ams = 0.05304(13)stat(
+33
−18)a2 extrap(20)FV(6)EM [lattice units]

β = 6.3 a = 0.08791(10)stat(
+26
−13)a2 extrap(17)FV(2)EM fm

ams = 0.03631(9)stat(
+23
−13)a2 extrap(14)FV(4)EM [lattice units]

β = 6.72 a = 0.05672(7)stat(
+17
−9 )a2 extrap(11)FV(1)EM fm

ams = 0.02182(5)stat(
+14
−8 )a2 extrap(8)FV(2)EM [lattice units]

3.4.2.3 Chiral-continuum �ts to D system

So far, we have introduced eight �t parameters related to discretization e�ects (c1, c2, c3, c4, Lvδ,

Lsδ, k1δ, and k2δ) and three parameters related to taste-violation e�ects (La, δ
′
A, and δ

′
V). The

latter parameters appear at NLO in SχPT and must be kept since our expansion is supposed to

be completely systematic through NLO. This is not the case for the former parameters; several

of them (c2, c3, c4, Lvδ, Lsδ, and k2δ) are formally NNLO and may be dropped. We indeed get

acceptable �ts when some of these parameters are dropped, especially if the a ≈ 0.15 fm data

are omitted. In order to see the e�ects of these parameters, we present the results of two �ts,

with di�erent sets of parameters, to data at the three �ner lattice spacings, and we study the

extrapolation of the chiral �t back to the coarsest lattice spacing (a ≈ 0.15 fm, β = 5.8).

Figure 3.15 shows a �t to partially quenched data at the three �ner lattice spacings. (The

a ≈ 0.15 fm data are omitted.) Among the introduced �t parameters related to discretization

e�ects, only c1 in Eq. (3.21) and k1δ in Eq. (3.22) are taken as free parameters in this �t, and the

others are set to zero. This �t gives p = 0.033, and as illustrated in Fig. 3.15, the extrapolation

of the �t to the coarsest lattice spacing does not follow the corresponding data points. We note

that this �t and all other chiral �ts in this chapter include additional data (not shown) from

ensembles at a ≈ 0.12 fm (β = 6.0) either withm′s lighter than physical, or with volumes 243×64

and 403 × 64, which were generated to check �nite volume e�ects. (See Table 3.1.) Moreover, it

is important to realize that the biggest source of variation in the data in the four plots shown

in Fig. 3.15 is not discretization errors, but mistunings of the strange and, most importantly,

charm-quark masses.

Adding c3αS(amQ)2 + c4(amQ)4 to the analytic terms in Eq. (3.8), as well as including c2 in

Eq. (3.21), we get a new �t to the partially quenched data at the three �ner lattice spacings. By

including these three extra parameters, an excellent �t is achieved, as shown in Fig. 3.16, and
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Figure 3.15: Simultaneous chiral �t to ΦD as a function of mv, the valence-quark mass (in
units of mp4s), at the three �ner lattice spacings. The a ≈0.15 fm (β = 5.8) data is not included
in the �t, although the data and the extrapolation of the chiral �t to it are shown at the left
in the top row. At the right of the top row we show the a ≈ 0.12 fm (β = 6.0) data, and in
the bottom row are a ≈ 0.09 fm (β = 6.3, left) and a ≈ 0.06 fm (β = 6.72, right). The colors
denote di�erent light sea-quark masses, as indicated. For each color there are two lines, one for
heavy valence-quark mass ≈ m′c (higher line), and one for ≈ 0.9m′c. In this �t, gπ is �xed to

0.53. The �t has χ2/dof = 339/293, giving p = 0.033.

extrapolation of the �t to the coarsest lattice spacing gives lines that pass relatively well through

the corresponding data points. This comparison makes clear that higher-order discretization

errors are important for the HISQ data, in which the leading-order discretization e�ects are

suppressed.

We have a total of 18 acceptable (p > 0.1) versions of the continuum/chiral �ts. Five of

the �ts drop the a ≈ 0.15 fm ensembles; the rest keep those ensembles. The chiral coupling f is

generally set to fπ+ , except for two �ts with the coupling constant set to fK+ . The LEC gπ is

usually �xed to either its nominal value or to 1σ below its nominal value, however it is allowed

to be a free parameter in four of the �ts. The LEC B in Eq. (3.16) is generally determined for
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Figure 3.16: Simultaneous chiral �t to ΦD as a function of mv at the three �ner lattice
spacings. Similar to the �t in Fig. 3.15, but with three extra �t parameters: c2, c3, and c4.

This �t has χ2/dof = 239/290, giving p = 0.986.

each lattice spacing separately by �tting all data for the squared meson mass M2 vs. the sum

of the valence masses to a straight line. (At a ≈ 0.12 fm only the ensembles with strange sea

masses close to its physical mass are included in the �t.) However, in two versions of the chiral

�ts, B is determined from just the data on the physical-mass ensembles at each lattice spacing.

Another di�erence among the �ts is how we determine the strong coupling αS in discretiza-

tion terms such as those with coe�cients c1 and c3. Since the coe�cients are free parameters,

all that we actually need in the �ts is the relative value of αS at a given coupling β compared to

its value at a �xed, �ducial coupling β0. In most of the �ts, we have used measured light-light

pseudoscalar taste splittings to �x this relative value, as in Eq. (3.6). An alternative, which is

used in two of our �ts, is to use for αS the coupling αV , determined from the plaquette [96].

The scale for αV is taken to be q∗ = 2.0/a. Note that the NLO perturbative corrections to

αV have not been calculated for the HISQ action, so we use the result for the asqtad action.
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Since the nf dependence of the NLO result is small, we expect the di�erence to have negligible

e�ects on the results of the �t. This expectation can be tested by, for example, �ipping the sign

of the nf term in the asqtad result, which is likely a much bigger change than would actually

come from changing from asqtad to HISQ. When we do this, we �nd that the results change by

amounts comparable to or smaller than the statistical errors, and signi�cantly smaller than the

total systematic errors. Similar, but usually smaller, changes result from replacing q∗ = 2.0/a

with q∗ = 1.5/a, which is another reasonable choice, as discussed in Ref. [71].

We have introduced eight �t parameters related to discretization e�ects (c1, c2, c3, c4,

Lvδ, Lsδ, k1δ, and k2δ), but it is not necessary to keep all of them to get an acceptable �t.

Dropping some of these parameters, we have di�erent continuum/chiral �ts with the number

of parameters ranging from 23 to 28. We may also choose to constrain, with priors, the LECs

in higher-order (NNLO and NNNLO) analytic terms to be O(1) in natural units (as explained

following Eq. (3.16)). (Through NLO, where we have the complete chiral expression, including

logarithms, we always leave the LECs Φ0, Ls, Lv, and La completely unconstrained, while gπ,

δ′A, and δ′V are constrained by independent analyses as discussed above.) We may similarly

constrain the coe�cients of discretization terms to be O(1) when the terms are written in terms

of a reasonable QCD scale (which we take, conservatively, to be 600 MeV). Among the 18 �ts we

consider, some have higher-order chiral terms and discretization terms completely unconstrained,

and others constrain either the chiral terms, or the discretization terms, or both.

In Eq. (3.21), mQ denotes the valence charm mass. To take into account the physical e�ects

of the charm sea masses we can introduce a parameter k′1 to Eq. (3.21):

Φ0 → Φ0

(
1 + k1

ΛHQET

mQ
+ k2

Λ2
HQET

m2
Q

+ k′1
ΛHQET

m′c

)(
1 + c1αS(aΛ)2 + c2(aΛ)4

)
, (3.27)

where m′c is the mass of the charm mass in the sea. One of our 18 �ts adds the parameter

k′1. Further, discretization errors coming from the charm sea masses can be included by adding

c′3αS(am′c)
2+c′4(am′c)

4 to the analytic terms in Eq. (3.8), and one of the �ts makes that addition.

It is interesting to note that it is possible to obtain another acceptable �t in which c2 in Eq. (3.21)

is restricted by priors to be much smaller than its value in the central �t, but the c′3 and c
′
4 terms

are added. This shows that our lattice data cannot distinguish in detail between various sources

of higher-order discretization e�ects. However, the results in the continuum limit are rather

insensitive to these di�erences.

Since all 18 �ts considered have acceptable p values and give correction terms reasonably

consistent with expectations from chiral perturbation theory and power counting, whether or
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not such terms are constrained, we have no strong reason to choose one �t or groups of �ts as

preferred in comparison to the rest. We therefore choose our �central �t� simply by requiring that

it be a �t to all ensembles and that it give results for ΦD+ and ΦDs that are as close as possible

to the center of the histograms for these quantities from all the �ts and from all systematic

variations in the inputs (i.e., from the �continuum extrapolation� column in Table 3.6). This

central �t has 27 free parameters, with gπ �xed to 1-sigma below its nominal value, and with the

k′1, c
′
3, and c

′
4 terms discussed in the previous paragraph dropped, but all discretization terms

aside from c′3 and c′4 kept. In the central �t, c2 in Eq. (3.21) is equal to 1.3 with Λ = 600 MeV;

while the HQET parameters are k1 = −1.0 and k2 = 0.5, with ΛHQET = 600 MeV.

Figure 3.17 shows our central �t to partially quenched data at all four lattice spacings.

Extrapolating the parameters to the continuum, adjusting the strange sea-quark mass and charm

valence- and sea-quark masses to their physical values, and setting the light sea-quark mass equal

to the light valence mass (up to the small di�erence between md and ml = (mu +md)/2) gives

the orange band. Putting in the physical light-quark mass then gives the black burst, which is

the result for ΦD+ . Note that the e�ect of isospin violation in the valence quarks is included in

our result. The e�ect of isospin violation in the sea has not been included, but we may easily

estimate its size by putting in our values for mu and md (instead of the average sea mass ml) in

Eq. (3.8) and in the NNLO and NNNLO analytic terms. This results in a change of only 0.01%

in fD+ , and a still smaller change in fDs .

The width of the band shows the statistical error coming from the �t, which is only part of

the total statistical error, since it does not include the statistical errors in the inputs of the quark

masses and the lattice scale. To determine the total statistical error of each output quantity,

we divide the full data set into 100 jackknife resamples. The complete calculation, including the

determination of the inputs, is performed on each resample, and the error is computed as usual

from the variations over the resamples. (For convenience, we kept the covariance matrix �xed

to that from the full data set, rather than recomputing it for each resample.) Each jackknife

resample drops approximately ten consecutive stored con�gurations (50 to 60 trajectories) from

each ensemble with ≈ 1000 con�gurations. This procedure controls for autocorrelations, since

all our measures of the autocorrelations of these quantities indicate that they are negligible

after four or eight consecutive con�gurations. For the physical-mass 0.06 fm ensemble with

583 con�gurations, we are forced to drop only about six consecutive stored con�gurations at a

time. Our expectation is that the e�ect of any remaining autocorrelations, while perhaps not

completely negligible, is small compared to other sources of error. The total statistical errors

computed from the jackknife procedure are only about 10% larger than the statistical error

from the chiral/continuum �t, indicating that the inputs are statistically quite well determined.
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Figure 3.17: Simultaneous chiral �t to ΦD as a function of mv, the valence-quark mass (in
units of mp4s), at all four lattice spacings: a ≈ 0.15 fm and 0.12 fm (top row), and 0.09 fm
and 0.06 fm (bottom row). This �t has χ2/dof = 347/339, giving p = 0.36. In the �t lines for
each ensemble, the light valence-quark mass varies, with all sea-quark masses held �xed. The
orange band, labeled as �unitary/continuum,� is identical in each panel. It gives the result after
extrapolating to the continuum, setting the light valence-quark and sea-quark masses equal (up
to the small di�erence between md and ml = (mu + md)/2), and adjusting the strange and
charm masses to their physical values. The width of the band shows the statistical error coming
from the �t. The black bursts indicate the value of ΦD+ at the physical light-quark mass point.

The same procedure is performed to �nd the total statistical error of a and ams at each lattice

spacing.

Figure 3.18 illustrates how data for ΦD+ and ΦDs depend on lattice spacing after adjustment

to physical values of the quark masses (blue circles). There is a 2�3% variation between these

points and the continuum value (green square at a2 = 0). Note that there is clear curvature

in the plot, evidence of signi�cant a4 terms in addition to the formally leading αSa
2 terms.

Both the small absolute size of the errors, and the competition between formally leading and

subleading terms, are typical of highly improved actions such as the HISQ action. The red

stars show the contribution from the chiral logarithms (with known taste splittings) to the a2
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Figure 3.18: Lattice spacing dependence of ΦD+ and ΦDs
. The blue circles show the lattice

data, after adjustment for mistunings of valence- and sea-quark masses. The red stars show
the modi�cation of each continuum value by the a2 dependence of the chiral logarithms, while
the green squares show the corresponding modi�cation by the a2 dependence induced by the �t
parameters. Red stars and green squares overlap at a2 = 0 (only the green square is visible).
Neglecting small cross terms, the deviation of the blue circles from the continuum value are

given by the algebraic sum of the deviations of the red stars and the green squares.

dependence of the chiral �t function. The green squares show the corresponding contribution

from the analytic �t parameters. The two e�ects are of comparable magnitudes but the relative

sign changes with lattice spacing; both are needed to describe the a2 dependence of the data.

3.4.2.4 Continuum extrapolation and systematic uncertainties

To determine the systematic error associated with the continuum extrapolation (and chiral in-

terpolation) of the charm decay constants in the chiral perturbation theory analysis, we rerun

the analysis with alternative continuum/chiral �ts, and with alternative inputs that come from

di�erent continuum extrapolations of the physical-mass analysis, listed in the �continuum ex-

trapolation� column in Table 3.6.
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Figure 3.19: Histograms of ΦD+ and ΦDs
values obtained from various versions of the continu-

um/chiral extrapolation and various inputs of quark masses and scale values from the physical-

mass analysis. Our central �t gives ΦD+ = 9191 MeV3/2 and ΦDs
= 11046 MeV3/2; those

values are marked with vertical black lines. At the top of each histogram, we show the range
taken as the systematic error of the self-contained chiral analysis of the current section.

As mentioned above, we have a total of 18 acceptable versions of the continuum/chiral

�ts. We also have the six versions of the continuum extrapolations used in the physical-mass

analysis that leads to the inputs of quark masses and the lattice scale. This gives a total of 108

versions of the analysis. Histograms of the 108 results for ΦD+ and ΦDs are shown in Fig. 3.19.

Conservatively, we take the maximum di�erence seen in these results with our central values as

the �self-contained� estimate of the continuum extrapolation errors within this chiral analysis.

The central �t is chosen to give results that are close to the centers of the histograms, which

results in more symmetrical error bars than in the preliminary analysis reported in Ref. [87].

Note that the �acceptable� �ts entering the histograms all have p > 0.1. If the cuto� is instead

taken to be p > 0.05, the additional �ts allowed would not change the error estimates. However

a cuto� of 0.01 or lower would give some additional outliers that would increase the width of

the histograms.

As mentioned in Sec. 3.4.2.1, the chiral �ts tend to pull gπ to low values. We can now look at

this e�ect quantitatively. The central �t, which has gπ �xed to 0.45, 1σ below its nominal value

of 0.53, has p = 0.36 and gives ΦD+ = 9191(14) MeV3/2, where the statistical error comes only

from the �t and not from the errors in the inputs. Allowing gπ to be a free parameter, with prior

range 0.53(8), we �nd gπ = 0.26(5), about 3σ below its nominal value, and p = 0.71. However,

ΦD+ then is 9184(15)MeV3/2, a change of only half the statistical error, and much less than the

systematic error from the range over the results of all chiral/continuum �ts. Alternatively, �xing
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gπ to its nominal value gives ΦD+ = 9195(13)MeV3/2, p = 0.16. We can also consider the e�ect

in �ts that drop the data with a ≈ 0.15 fm and consequently use fewer lattice-spacing-dependent

parameters. When gπ is a free parameter with prior range 0.53(8), we �nd gπ = 0.37(6), 2σ below

the nominal value, and ΦD+ = 9189(12)MeV3/2, p = 0.37. The corresponding �ts with gπ �xed

to its nominal value or one sigma below that value give ΦD+ = 9196(13) MeV3/2, p = 0.18 and

ΦD+ = 9192(12) MeV3/2, p = 0.30, respectively. Thus, the systematic error on ΦD+ associated

with the value of gπ is small compared to our other errors. The systematic error from gπ on ΦDs

is a factor of two smaller still.

The fact that a wide range of gπ values give good �ts indicates that our data has little to say

about the physical value of that parameter. Indeed, even �ts with gπ set equal to zero have very

good p values, and do not change ΦD+ by more than one statistical σ. Such a �t that includes

all data gives ΦD+ = 9180(13) MeV3/2, p = 0.83, and one that drops the data with a ≈ 0.15 fm

gives ΦD+ = 9181(13) MeV3/2, p = 0.52.

In practice, the NLO �nite volume corrections are included in our �t function, Eq. (3.8),

when it is applied to the data, and the volume is sent to in�nity when the continuum results are

extracted. We may conservatively estimate the residual �nite volume error in the heavy-light

data either by turning o� all �nite volume corrections and repeating the �t, or by using the

current �t to �nd the size of the NLO �nite volume correction on our most-important, 0.06 fm

physical-mass ensemble. Yet another way to make the estimate is by direct comparison of our

results on the 323 × 64, β = 6.0, m′l/m
′
s = 0.1 ensemble (which is similar in physical size to our

other m′l/m
′
s = 0.1 ensembles) and the 403 × 64, β = 6.0, m′l/m

′
s = 0.1 ensemble. All three

methods indicate that there are negligible direct �nite volume e�ects in the heavy-light lattice

data. Nevertheless, there are non-negligible �nite volume e�ects in our �nal answers, which

appear due to the scale setting in the light-quark sector through, ultimately, fπ+ . (The value

of Fp4s in physical units that we use comes by comparison with fπ+ .) We then propagate the

errors in the inputs through our analysis. Electromagnetic errors in the light quark masses are

similarly propagated through our analysis.

Results for ΦD+ , ΦDs and their ratio at various values of the mass ratio of light to strange

sea quarks are shown in Table 3.9; only the top subsection of the table gives physical results.

Note that the valence masses do not vary in the three di�erent subsections of the table, so

changes in results show only the e�ects of the light sea mass. The EM error associated with the

masses of the heavy-light mesons, which we call �EM3,� is not included in any of the quoted

EM errors in the table. As explained in Sec. 3.4.1.3, that is because the error cancels to good

approximation when one extracts the decay constants fD+ , fDs from ΦD+ , ΦDs . One should use
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Table 3.9: Results for Φ from the chiral analysis, for three choices of the light sea mass m′l.
ΦD is the value of Φ when the light valence mass mv = ml ≡ (mu+md)/2. Valence masses here
are always taken to be the physical valuesmd, ms orml, independent of the value ofm

′
l, and the

strange sea mass is always physical (m′s = ms). In the EM errors on these quantities, we have
not included the �EM3� error coming from the EM e�ects on the masses of the corresponding
heavy-light mesons. Such errors largely cancel when we compute fD+ and fDs from ΦD+ and
ΦDs using the experimental meson masses. For ΦD and fD, the situation is more complicated
� see text. The negative central value of ΦD+ − ΦD for m′l/ms = 0.2 is an e�ect of partial

quenching, but note that the systematic errors are large in this case.

m′l = ml ΦD+ = 9191± 16stat
+38
−36|a2 extrap ± 13FV ± 1EM MeV3/2

ΦDs = 11046± 12stat
+42
−38|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.2018± 0.0010stat
+0.0024
−0.0032|a2 extrap ± 0.0004FV ± 0.0005EM

ΦD = 9168± 16stat
+39
−40|a2 extrap ± 13FV ± 1EM MeV3/2

ΦD+ − ΦD = 23.6± 0.3stat
+4.7
−1.6|a2 extrap ± 0.1FV ± 1.0EM MeV3/2

m′l/ms = 0.1 ΦD+ = 9412± 16stat
+46
−86|a2 extrap ± 13FV ± 1EM MeV3/2

ΦDs = 11128± 13stat
+36
−42|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.1824± 0.0010stat
+0.0078
−0.0036|a2 extrap ± 0.0004FV ± 0.0003EM

ΦD = 9402± 16stat
+48
−95|a2 extrap ± 13FV ± 1EM MeV3/2

ΦD+ − ΦD = 10.4± 0.3stat
+9.4
−2.4|a2 extrap ± 0.1FV ± 0.5EM MeV3/2

m′l/ms = 0.2 ΦD+ = 9709± 19stat
+53
−140|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11250± 15stat
+44
−47|a2 extrap ± 12FV ± 4EM MeV3/2

ΦDs/ΦD+ = 1.1588± 0.0011stat
+0.0140
−0.0038|a2 extrap ± 0.0003FV ± 0.0002EM

ΦD = 9714± 19stat
+56
−154|a2 extrap ± 13FV ± 2EM MeV3/2

ΦD+ − ΦD = −5.3± 0.3stat
+15.0
−3.3 |a2 extrap ± 0.1FV ± 0.0EM MeV3/2

the experimental masses MD+ = 1869.62 MeV, MDs = 1968.50 MeV [93] in this extraction; the

experimental errors in these masses are negligible at the current level of precision.

To quantify the e�ect of isospin violations, we also report ΦD and ΦD+ − ΦD, where ΦD is

the value of Φ in the isospin limit, when the light valence mass is equal to ml = (mu + md)/2

instead of md. In this case, the EM errors in the heavy-light meson masses do a�ect the errors

in the corresponding decay constant di�erence because of the di�erence between the EM e�ect

in the charged MD+ and in the neutral MD0 , which are averaged to obtain MD. We estimate

this error when we quote fD+ − fD below.

In Table 3.10, we report additional results for the case when the light valence mass is kept

equal to the light sea mass and m′l/ms = 0.1 or 0.2. These unphysical results may be useful

for normalizing other calculations, such as those of B-system decay constants, as described in

Sec. 2.6.

At each β value, we have reported, in Table 3.8, the values for the lattice spacing a and the

strange mass in lattice units ams, which come from our scale-setting procedure using Mp4s/Fp4s

and aFp4s. For the estimates of the extrapolation errors in these quantities, we have used the
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Table 3.10: Results for Φ for two choices of light sea masses. Here the valence mass for ΦD
is taken equal to the light sea mass: mv = m′l. The quantities denoted by �phys" are those

tabulated in Table 3.9 for the case m′l = ml.

m′l/ms = 0.1 ΦD = 9477± 15stat
+39
−66|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11128± 13stat
+36
−42|a2 extrap ± 12FV ± 4EM MeV3/2

ΦD/Φ
“phys”
D = 1.0338± 0.0005stat

+0.0009
−0.0031|a2 extrap ± 0.0000FV ± 0.0001EM

ΦD/Φ
“phys”
D+ = 1.0311± 0.0004stat

+0.0010
−0.0036|a2 extrap ± 0.0000FV ± 0.0002EM

ΦDs/Φ
“phys”
Ds

= 1.0075± 0.0003stat
+0.0005
−0.0006|a2 extrap ± 0.0000FV ± 0.0000EM

m′l/ms = 0.2 ΦD = 9870± 17stat
+39
−71|a2 extrap ± 13FV ± 2EM MeV3/2

ΦDs = 11250± 15stat
+44
−47|a2 extrap ± 12FV ± 4EM MeV3/2

ΦD/Φ
“phys”
D = 1.0766± 0.0011stat

+0.0017
−0.0038|a2 extrap ± 0.0001FV ± 0.0002EM

ΦD/Φ
“phys”
D+ = 1.0738± 0.0011stat

+0.0017
−0.0043|a2 extrap ± 0.0001FV ± 0.0002EM

ΦDs/Φ
“phys”
Ds

= 1.0185± 0.0007stat
+0.0014
−0.0010|a2 extrap ± 0.0000FV ± 0.0000EM

six versions of the continuum extrapolation for the inputs, which are the quark-mass ratios,

Mp4s/Fp4s, and Fp4s in physical units. Finite volume and electromagnetic errors come simply

from propagating the errors in fπ+ and the light quark masses through the analysis.

The self-contained chiral analysis of the current section gives:

fD+ = 212.6± 0.4stat
+0.9
−0.8|a2 extrap ± 0.3FV ± 0.0EM ± 0.3fπ PDG MeV , (3.28)

fDs = 249.0± 0.3stat
+1.0
−0.9|a2 extrap ± 0.2FV ± 0.1EM ± 0.4fπ PDG MeV , (3.29)

fDs/fD+ = 1.1712(10)stat(
+24
−31)a2 extrap(3)FV(5)EM , (3.30)

fD+ − fD = 0.47(1)stat(
+11
− 4)a2 extrap(0)FV(4)EM MeV , (3.31)

where fD is the decay constant in the isospin limit, mu = md = ml. In �nding fD+ − fD from

ΦD+−ΦD in Table 3.9, we use the experimental value forMD+ and our result,MD+−MD0 = 2.6

MeV, obtained from the pure-QCD analysis in Sec. 3.4.1. Comparison with the experimental

mass di�erence MD+ −MD0 = 4.8 MeV indicates that the EM e�ect on this di�erence is ∼2.2

MeV. We take half of this di�erence, namely 1.1 MeV, as our estimate of the �EM3� e�ect on the

heavy-light masses, and propagate this error to fD+ − fD, adding it in quadrature with other

EM errors to get the error quoted in Eq. (3.31).

3.5 Results and conclusions

Our main results are for the charm decay constants and their ratio. We take the more precise

determinations from the self-contained chiral perturbation theory analysis using the full set of

sea-quark ensembles, Eqs. (3.28)�(3.30), for our best estimate of the central values and statistical
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Figure 3.20: The same as Fig. 3.19, but the histograms of ΦD+ and ΦDs
from the chiral

analysis have been overlaid with results from various continuum extrapolations in the physical-
mass analysis, shown as vertical red lines. We take the full ranges shown at the top of each plot
as the �nal estimates of the systematic errors coming from the continuum extrapolation.

errors. We then use the results of the simpler physical-mass analysis to help estimate the

systematic uncertainties. For the continuum extrapolation error, we consider the di�erences in

the central values of fD+ , fDs , and fDs/fD+ , obtained with various continuum-extrapolation

Ansätze in the physical-mass analysis, and take those di�erences as the uncertainty whenever

they are larger than the error from the chiral analysis. Figure 3.20 shows the histograms from

Fig. 3.19 overlaid with the results from the various continuum extrapolations considered in

Sec. 3.4.1 (vertical red lines), as well as our �nal estimates for the systematic errors of the

continuum extrapolation. The analysis on the physical-mass ensembles also gives alternative,

and comparably-sized, estimates for the �nite-volume and EM errors to those in Eqs. (3.28)�

(3.30) (see Table 3.6), and we take the larger value as the uncertainty in each case. This

procedure yields our �nal results for fD+ , fDs and fDs/fD+ :

fD+ = 212.6± 0.4stat
+0.9
−1.1|a2 extrap ± 0.3FV ± 0.1EM ± 0.3fπ PDG MeV , (3.32)

fDs = 249.0± 0.3stat
+1.0
−1.4|a2 extrap ± 0.2FV ± 0.1EM ± 0.4fπ PDG MeV , (3.33)

fDs/fD+ = 1.1712(10)stat(
+28
−31)a2 extrap(3)FV(6)EM . (3.34)

For the e�ects of isospin violation we �nd

fD+ − fD = 0.47(1)stat(
+25
− 4)a2 extrap(0)FV(4)EM MeV, (3.35)
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where the continuum-extrapolation error has been increased relative to that in Eq. (3.31) to take

into account the di�erence from the result of the physical-mass analysis.

We also update our determination of the decay-constant ratio fK+/fπ+ in Ref. [67] from

the physical-mass analysis using additional con�gurations on the 0.06 fm physical quark mass

ensemble, and include results for quark-mass ratios coming from the tuning procedure and

continuum extrapolation described in Sec. 3.4.1:

fK+/fπ+ = 1.1956(10)stat
+23
−14|a2 extrap(10)FV(5)EM , (3.36)

ms/ml = 27.352(51)stat
+80
−20|a2 extrap(39)FV(55)EM , (3.37)

mc/ms = 11.747(19)stat
+52
−32|a2 extrap(6)FV(28)EM . (3.38)

Although our analysis also determines mu/md, we do not quote a �nal result, because the

errors in this ratio are dominated by electromagnetic e�ects. If we take the results from our

preliminary study of EM e�ects on pion and kaon masses reported in Ref. [99] at face value,

we obtain a central value for mu/md = 0.4482(48)stat
+21
−115|a2 extrap(1)FV, where we include

the uncertainties from all sources other than EM. Once the full analysis of mu/md from our

QCD+QED simulations is complete, we expect the EM error to lie between 0.0150 and 0.0230.

Even the more conservative estimate for the EM error onmu/md, however, would not impact the

uncertainties on our �nal results in Eqs. (3.32) through (3.38) signi�cantly; the electromagnetic

error is subdominant for most of these quantities, and one of several comparably sized errors in

the case of ms/ml. With the charm-quark mass tuned to match the Ds mass, our analysis gives

a mass for the ηc of 2982.33(0.35)(+2.34
−2.07) MeV. While this mass is in good agreement with the

experimental value, it should be remembered that our calculation does not include the e�ects

of disconnected contractions or decay channels to the ηc mass. Finally, we note that we are

computing the values of the decay constants as they are conventionally de�ned, in a pure-QCD

world. Comparison to experiment thus requires a matching of the decay rates between QCD and

QCD+QED. The errors in such a matching are not included in our error budgets for the decay

constants, but are accounted for in our determinations of CKM matrix elements in Sec. 3.6.

Figures 3.21, 3.22, 3.23 and 3.24 compare our results for ms/ml, mc/ms, fK+/fπ+ and

the charm decay constants with other unquenched calculations. Our results agree with most

determinations at the 1�2σ level. In particular, our value for fDs agrees with the second-most-

precise determination from HPQCD obtained using HISQ valence quarks on the (2+1)-�avor

MILC Asqtad ensembles [112]. We disagree slightly with HPQCD's determination of the ratio

fDs/fD+ [113], but only by 1.2σ. Our result for fDs is more precise than previous determinations

primarily for two reasons. First, the statistical errors in our data points for the decay amplitudes
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Figure 3.21: Unquenched lattice results for ms/ml [88, 114�119] and mc/ms [114, 120�122].
Results are grouped by the number of �avors from top to bottom: nf = 2 (green diamonds),
nf = 2+1 (blue circles), and nf = 2+1+1 (purple squares). Within each grouping, the results
are in chronological order. Our new results are denoted by magenta crosses and displayed at

the bottom of each plot.

are two or more times smaller than those obtained by, for example, HPQCD [112]. Second,

our use of ensembles with the physical light-quark mass eliminates the signi�cant (although

not dominant) uncertainty from the chiral extrapolation. For fD+ and fDs/fD+ , we also have

signi�cantly smaller continuum-extrapolation errors due to the use of the HISQ sea-quark action

and lattice spacings down to a ≈ 0.06 fm.

The dominant source of uncertainty in our results is from the continuum extrapolation, and

will be reduced once we include a still �ner ensemble in our analysis with a ≈ 0.045 fm and

ml/ms = 0.2, generation of which is in progress. In fact, we already have some preliminary

data on this ensemble, albeit with small statistics, and have tried including these data in the

current chiral �ts. The �ts have acceptable p values and give results that are less than one

statistical sigma away from those in Eqs. (3.32) through (3.36). Once we have ensembles with

lattice spacings as �ne as a ≈ 0.03 fm, we expect to be able to use the same methods employed

here to compute bottom decay constants. In the meantime, however, our results for D-meson

decay constants using HISQ charm quarks can be combined with calculations of the ratios

ΦBs/ΦDs using Fermilab heavy quarks to improve the determinations of decay constants in

the B system, where the use of the HISQ action is more di�cult. The ratios of continuum-

extrapolated decay constants at various unphysical values of the light-quark mass may also be

useful for this approach. The analysis of B- and D-meson decay constants with Fermilab heavy

quarks on the 2+1 �avor asqtad ensembles is presently being �nalized [140].
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Figure 3.22: Unquenched lattice results for fK/fπ [88, 115�119, 123�131]. The previous
results are reviewed in [100]. Results are grouped by the number of �avors from top to bottom:
nf = 2 (green diamonds), nf = 2+1 (blue circles), and nf = 2+1+1 (purple squares). Within
each grouping, the results are in chronological order. Our new result is denoted by a magenta
cross and displayed at the bottom. In this plot we do not distinguish between results done
in the isospin symmetric limit (degenerate up and down quarks) and results including isospin
violation. The di�erence is small [100] and does not a�ect the qualitative picture. (Our result

does include the up-down quark mass di�erence, and so is for fK+/fπ+ .)

3.6 Impact on CKM phenomenology

We now use our decay constant results to obtain values for CKM matrix elements within the

Standard Model, and to test the unitarity of the �rst and second rows of the CKM matrix.

The decay-constant ratio fK+/fπ+ can be combined with experimental measurements of

the corresponding leptonic decay widths to obtain a precise value for the ratio |Vus|/|Vud| [65].
Combining our updated result for fK+/fπ+ from Eq. (3.36) with recent experimental results for

the leptonic branching fractions [93] and an estimate of the hadronic structure-dependent EM

correction [141], we obtain

|Vus|/|Vud| = 0.23081(52)LQCD(29)BR(K`2)(21)EM . (3.39)

Taking |Vud| from nuclear β decay [142], we also obtain

|Vus| = 0.22487(51)LQCD(29)BR(K`2)(20)EM(5)Vud . (3.40)

This result for |Vus| is more precise than our recent determination from a calculation of the
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Figure 3.23: Unquenched lattice results for fD and fDs [89, 112, 113, 124, 131�137]. We do
not include Ref. [138] because of the small volume used, and Ref. [139] because of the lack of
a continuum extrapolation. Results are grouped by the number of �avors from top to bottom:
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the di�erence in Eq. 3.35.
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Figure 3.24: Unquenched lattice results for fDs
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kaon semileptonic form factor on the physical-mass HISQ ensembles [143], and larger by 1.8σ.

Figure 3.25 shows the unitarity test of the �rst row of the CKM matrix using our result for

fK+/fπ+ . We �nd good agreement with CKM unitarity, and obtain a value for the sum of

squares of elements of the �rst row of the CKM matrix consistent with the Standard-Model

prediction zero at the level of 10−3:

1− |Vud|2 − |Vus|2 − |Vub|2 = 0.00026(51) . (3.41)

Thus our result places stringent constraints on new-physics scenarios that would lead to devi-

ations from �rst-row CKM unitarity. Finally, we note that, now that the uncertainty in |Vus|2

is approximately the same as that in |Vud|2, it is especially important to scrutinize the current

uncertainty estimate for |Vud|.

The D+- and Ds-meson decay constants can be combined with experimental measurements

of the corresponding leptonic decay widths to obtain |Vcd| and |Vcs|. The values fD+ |Vcd| =

46.06(1.11) MeV and fDs |Vcs| = 250.66(4.48) MeV in the PDG [144] are obtained from aver-

aging the experimentally-measured decay rates into electron and muon �nal states including

an estimate of structure-dependent Bremsstrahlung e�ects that lowers the D+ → µ+νµ rate

by ∼ 1% [145, 146]. The PDG determinations of fD+ |Vcd| and fDs |Vcs| do not, however, take

into account other electroweak corrections (c.f. Refs. [65] and [147] and references therein).

Such contributions are estimated for pion and kaon leptonic decay constants to be ∼ 1�2%, and

the uncertainties in these corrections, in particular from the contributions that depend on the

hadronic structure, lead to ∼ 0.1% uncertainties in |Vus|/|Vud| and |Vus| obtained from leptonic

decays. Now that the uncertainties in the charm decay constants are at the half-a-percent level,

it is timely to consider including electroweak corrections when extracting |Vcd| and |Vcs| from
leptonic D decays, and we attempt to provide a rough estimate of their possible size here. We

consider all of the contributions that have been estimated for pion and kaon leptonic decays.

Not all of the necessary calculations have been performed for the charm system, however, so,

where necessary, we use results for the pion and kaon system as a guide and take a generous

uncertainty.

The universal long-distance EM contribution to leptonic decays of point-like charged par-

ticles was calculated by Kinoshita [148]. Evaluating this contribution for leptonic D decays

into muons (because the experimental averages are dominated by measurements in the muon

channel), the long-distance correction lowers both the D+ and Ds decay rates by about 2.5%.

The universal short-distance contribution to leptonic decays of charged pseudoscalar mesons,

which accounts for electroweak corrections not included in the de�nition of GF , was computed

by Sirlin [149]. ChoosingMD for the factorization scale that enters ln(MZ/µ), the �Sirlin factor"
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Figure 3.25: Unitarity tests of the Cabibbo-Kobayashi-Maskawa matrix. Left: squared
magnitudes of elements of the �rst row of the CKM matrix. The magenta diagonal band shows
(|Vus|/|Vud|)2 obtained using fK+/fπ+ from this work, the vertical orange band shows |Vud|2
from nuclear β decay [142], and the horizontal yellow band shows |Vus|2 obtained using our
recent calculation of the kaon semileptonic form factor at q2 = 0 [143]. The diagonal black line
is the unitary prediction, and lies well within the region of overlap of the magenta and orange
bands. Right: squared magnitudes of elements of the second row of the CKM matrix. The
green vertical and blue horizontal bands show |Vcd|2 and |Vcs|2 obtained using fD+ and fDs

from this work. The black diagonal line does not intersect with the region of overlap of the two
colored bands, indicating a slight tension with CKM unitarity.

increases the D+ and Ds leptonic decay rates by about 1.8%. Thus the net e�ect of these two

known corrections is a slight decrease in the D+ and Ds rates by less than a percent. Finally,

we consider EM e�ects that depend on the mesons' hadronic structure. The expressions for the

structure-dependent contributions to charged pion and kaon decay rates have been computed

at O(e2p2) and O(e2p4) in chiral perturbation theory [150, 151]. The dominant O(e2p2) con-

tribution takes the form c
(P )
1 α/π, and the coe�cients have been estimated numerically in the

large-Nc approximation to be c
(π)
1 = −2.4(5) and c

(K)
1 = −1.9(5) [152]. These calculations do

not apply to the charm system, however, because the D(s)-meson masses are much heavier than

the pion and kaon masses, and well outside the range of validity of the light-meson chiral expan-

sion. We therefore consider the possibility that the analogous coe�cients for the D system are

2�5 times larger than for the pion and kaon system. With this assumption, we �nd a range of
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the possible size for the hadronic correction to the D+- and Ds-meson leptonic decay rates from

1.1�2.8%. Corrections of this size would not be negligible compared to the known short-distance

and long-distance contributions; thus it is important to obtain a more reliable estimate of the

contributions to charged D decays due to hadronic structure in the future.

For the determinations of |Vcd| and |Vcs| given here, we �rst adjust the experimental decay

rates quoted in the PDG by the known long-distance and short-distance electroweak corrections.

We then add an estimate of the uncertainty due to the unknown hadronic structure-dependent

EM corrections, taking the lower estimate of 0.6%. With these assumptions, and using our

results for fD+ and fDs from Eqs. (3.32) and (3.33), we obtain

|Vcd| = 0.217(1)LQCD(5)expt(1)EM , (3.42)

|Vcs| = 1.010(5)LQCD(18)expt(6)EM , (3.43)

where �EM" denotes the error due to unknown structure-dependent EM corrections. In both

cases, the uncertainty is dominated by the experimental error in the branching fractions. Thus

the signi�cant improvement in fD+ and fDs does not, at present, lead to direct improvement in

|Vcd| and |Vcs|. Experimental measurements of the D+ decay rates have improved recently [144],

however, such that the error on |Vcd| from leptonic D+ decays is now approximately half that of

|Vcd| obtained from either neutrinos [93] or semileptonic D → π`ν decay [153].

Our result for |Vcd| agrees with the determination from neutrinos. Our |Vcd| is 1.0σ lower

than the determination from semileptonic D decay in Ref. [153], while our |Vcs| is 1.1σ higher

than that of Ref. [154]. Figure 3.25 shows the unitarity test of the second row of the CKM

matrix using our results for fD+ and fDs . We obtain a value for the sum of squares of elements

of the second row of the CKM matrix of

1− |Vcd|2 − |Vcs|2 − |Vcb|2 = −0.07(4) , (3.44)

showing some tension with CKM unitarity. This test will continue to become more stringent

as experimental measurements of the D+ and Ds decay rates become more precise. At present,

even if our rough estimate of the uncertainty due to structure-dependent EM corrections in

Eqs. (3.42) and (3.43) is too small by a factor of two, the errors on |Vcd| and |Vcs| would not

change signi�cantly. It will be important, however, to obtain a more reliable estimate of the

contributions to charged D decays due to hadronic structure in the future.
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PART II

Nonlinear Eigenvalue Problems

• Chapter 4� Technical Introduction to Part II

• Chapter 5� Nonlinear Eigenvalue Problems: A Toy Model

• Chapter 6� Nonlinear Eigenvalue Problems: Painlevé Transcendents

This part includes three chapters. In Chapter 4 ordinary di�erential equations are reviewed brie�y,

the asymptotic behavior of eigenfunctions of the Schrödinger equation is discussed, and it is explained how

to generalize the concept of eigenvalue problems to nonlinear di�erential equations. In Chapter 5 equation

y′(x) = cos[πxy(x)] is investigated and its eigenvalue solutions are presented. Finally, in Chapter 6 the

�rst and second Painlevé equations are studied.





4
Technical Introduction to Part II

4.1 Overview of nonlinear eigenvalue problems

In the theory of ordinary di�erential equations, the concept of eigenvalue and eigenfunction

is conventionally developed only for linear di�erential equations. The objective of the second

part of this dissertation is to generalize this concept so that it may be applicable for nonlinear

di�erential equations as well. The starting point is to recognize that a normalizable (square-

integrable) eigenvalue solution of a linear di�erential equation on an in�nite domain can be

associated to the lack of growing terms, especially the lack of exponentially growing terms, in

the asymptotic behavior of the solutions at in�nity. This can be considered as a milestone

to de�ne eigenvalue problems for nonlinear di�erential equations. The main idea is to study

special solutions of a nonlinear di�erential equation that are associated with instabilities. These

solutions are good candidates to be investigated since they may arise as a result of missing

exponentially growing terms as the solutions approach some limit curves.

The concept of a nonlinear eigenvalue problem is introduced by investigating some nonlinear

di�erential equations. The simple-looking di�erential equation y′(x) = cos(πxy) is investigated

�rst. A discrete set of initial conditions y(0) = an, leading to unstable separatrix behavior, are

identi�ed as the eigenvalues of the problem. This problem is discussed in derail in chapter 5.

Here we only emphasize on a key feature of the eigenvalue solutions of this equation. These so-

lutions have only an exponentially vanishing term in their asymptotic behavior as they approach

their corresponding limit curves.

As solutions of special classes of nonlinear di�erential equations, the six Painlevé transcen-

dents provide a rich realm to be investigated with the concept of eigenvalue problems. Their

corresponding equations are presented in subsection 4.3.1, and the separatrix solution of the �rst
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Painleveé equation is discussed in subsection 4.3.2. Similar to equation y′(x) = cos(πxy), the

�rst Painleveé equation has a discrete set of critical initial conditions that give rise to unstable

separatrix solutions, which appear again due to the lack of exponentially growing terms. These

discrete initial conditions can be thought of as eigenvalues and the separatrices that stem from

these initial conditions can be viewed as the corresponding eigenfunctions. A similar pattern is

seen in the second Painlevé transcendents. The detailed study of the �rst and second Painlevé

transcendents is presented in chapter 6.

It must be emphasized that the investigated di�erential equations possesses some limit

curves, where the obtained eigenfunctions approach them exponentially fast in the absence of

growing exponential terms. An in�nitesimal change in the eigenvalues turn the growing terms

on, subsequently the solutions abruptly move away from the limit curves. This is the same

behavior of the eigenfunctions of the Schrödinger equation, where the limit curve is the real axis

y = 0. As a matter of fact, in addition to the missing exponentially growing terms, these special

solutions exhibit many common features with eigenfunctions of the Schrödinger equation, either

the conventional one with a Hermitian Hamiltonian or with a PT -symmetric Hamiltonian.

4.2 Eigenvalue problems in linear di�erential equations

This part deals with eigenvalue problems in the context of the Schrödinger equation with van-

ishing boundary conditions at x = ±∞. To tackle this problem, one may wish to develop a

local analysis of the Schrödinger equation about x =∞. But, this point is typically an irregular

singular point of the equation, where one may need to study the problem in the context of

asymptotic analysis. Asymptotic analysis provides an important tool to classify the solutions of

the Schrödinger equation when x → ∞. This leads to the concept of dominant (exponentially

growing) and subdominant (exponentially vanishing) solutions. From a physical point of view,

which is encoded in the boundary conditions, any acceptable solutions (eigenfunctions) must

vanish at x = ±∞. The dominant terms cannot appear in the eigenfunctions either at +∞ or

at −∞. This is a condition that holds only for a discrete set of eigenvalues. Otherwise, the

dominant terms appear at least in one side of the problem.

4.2.1 Linear di�erential equations

An nth-order homogeneous linear di�erential equation has the form

y(n)(x) + pn−1(x)y(n−1)(x) + · · ·+ p1(x)y(1)(x) + p0(x)y(x) = 0, (4.1)
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where y(k)(x) = dky/dxk. In an initial-value problem, y and its �rst n−1 derivatives are speci�ed

at one point x = x0, while in a boundary-value problem a total of n quantities are speci�ed at

two or more points. An eigenvalue problem is a boundary-value problem that has nontrivial

solutions only when a parameter E that enters the problem has special values called eigenvalues.

When E is an eigenvalue of a homogeneous linear boundary-value problem, the solution to the

boundary-value problem is not unique [155]. Consider the eigenvalue problem on an in�nite

domain

y′′ + (E − 1

4
x2)y = 0 (−∞ < x <∞), (4.2)

y(±∞) = 0 .

This problem has the trivial solution y(x) ≡ 0 for any value of E, but for special E = n + 1
2 ,

n = 0, 1, 2, · · · , there are nontrivial solutions

y(x) = c Hen(x) e−x
2/4 , (4.3)

where c is an arbitrary constant and Hen(x) is the Hermite polynomial of degree n.

Equation 4.1 can be generalized from the real axis to the complex plane if the coe�cient

functions pi(x) make sense in the complex plane. To understand the structure of an analytic

function in the complex place, it is essential to study its singularities [156]. Any singularity in

y(x) in the complex plane is controlled by the singularities of the coe�cient functions of the

di�erential equation. To develop a local analysis in a neighborhood of x = x0, it su�ces to

examine the pi(x) in the neighborhood. This can be done systematically by classifying the point

x0 based on the singularities of the coe�cient functions.

4.2.2 Classi�cation of singularities of linear di�erential equations

Consider a point x0 in the complex plane, where x0 6= ∞. One can classify this point as an

ordinary point, a regular singular point, or an irregular singular point of Eq. (4.1). The local

behavior of a solution of Eq. (4.1) based on this classi�cation is summarized as [155]

• Ordinary point: The point x0 (x0 6= ∞) is called an ordinary point of Eq. (4.1) if the

coe�cient functions p0(x), · · · , pn−1(x) are all analytic in a neighborhood of x0 in the

complex plane. One can show that, in the neighborhood of the ordinary point x0, all n

linearly independent solutions of Eq. (4.1) are analytic, and each of them can be expanded
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in a Taylor series about x0 as

y(x) =
∞∑
n=0

an(x− x0)n. (4.4)

• Regular singular point: The point x0 (x0 6= ∞) is called a regular singular point of

Eq. (4.1) if not all of the coe�cient functions p0(x), · · · , pn−1(x) are analytic but if all of

(x − x0)np0(x), · · · , (x − x0)pn−1(x) are analytic in a neighborhood of x0. A solution of

Eq. (4.1) may be analytic at a regular singular point. If it is not analytic, its singularity

must be either a pole or an algebraic or logarithmic branch point. In general, a solution

has the form

y(x) =

n−1∑
i=0

[ln(x− x0)]i(x− x0)γiAi(x) , (4.5)

where all the functions Ai(x) are analytic at x0.

• Irregular singular point: The point x0 (x0 6= ∞) is called an irregular singular point

of Eq. (4.1) if is neither an ordinary point nor a regular singular point. There is no

comprehensive theory of irregular singular points, but we can say that at an irregular

singular point at least one solution is not of the form of Eq. (4.5). Typically, at an irregular

singular point, all solutions exhibit an essential singularity. To analyze the local behavior

of solutions near irregular singular points, one can make use of a di�erent mathematical

tool: the asymptotic power series. Although very powerful, the asymptotic power series

miss a very important property. They are not convergent.

To classify the point x0 =∞, one can analytically map the point at in�nity into the origin

using the inversion transformation x = 1/t, and then classify the point t = 0 in the new system.

The point x0 =∞ is called an ordinary, a regular singular, or an irregular singular point if the

point at t = 0 is corresponding classi�ed [155].

4.2.3 Asymptotic power series

Eq. (4.1) usually does not have a formal power series about an irregular singular point x0, but

a simple preliminary transformation involving exponential functions of the dependent variable

x leads to a di�erential equation that does admit formal power series solutions [156], which is

referred to as asymptotic power series. The asymptotic power series are typically divergent.
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The power series
∑∞

n=0 an(x− x0)n is said to be asymptotic to the function y(x) as x→ x0

(denoted by y(x) ∼∑∞n=0 an(x− x0)n as x→ x0) if

y(x)−
N∑
n=0

an(x− x0)n � (x− x0)N as x→ x0 , (4.6)

for every N [155]. This de�nition does not imply that the asymptotic series is convergent. If

the irregular singular point is at x0 =∞, the corresponding de�nition is y(x) ∼∑∞n=0 anx
−n as

x→∞ if

y(x)−
N∑
n=0

anx
−n � x−N as x→∞ , (4.7)

for every N .

There are many subtle properties regarding the validity and uniqueness of an asymptotic

power series. Here we list some of them:

• Asymptotic power series are valid in some sector as x → x0 in the complex plane. If an

asymptotic power series is divergent, it can only be valid in a sector whose opening angle

is less than 360◦ [155]. In general, one can expect to obtain a set of asymptotic relations

for a function y(x), each of which is valid in a wedge-shaped region about the irregular

singular point.

• A function y(x) can have at most one asymptotic series representation
∑∞

n=0 an(x− x0)n

in a given sector S [156].

• An asymptotic series is asymptotic to a whole class of functions that di�er from each other

by subdominant functions to the asymptotic power series. A subdominant function g(x),

has the asymptotic expansion g(x) ∼∑∞n=0 0(x− x0)n as x→ x0.
1

4.2.4 Stokes phenomenon and Stokes multipliers

In this part, the form of Eq. (4.1) is restricted to the Schrödinger equation, with ~ = 1

− y′′(x) +Q(x)y(x) = 0, Q(x) = V (x)− E, (4.8)

1 A simple example for a subdominant function about the origin is exp(−1/x2). All derivatives of this function
vanish as x → 0, therefore, using integration by parts, one can show that exp(−1/x2) =

∑N
n=0 0xn + RN (x),

where N ∈ N and RN (x) is the remainder term. This equality would lead to a valid Taylor series if one could
show that the remainder term approaches to zero as N tends to in�nity for a disc |x| < R with some nonzero
radius R. There is not such a nonzero radius of convergence, thereby the above equality does not yield a Taylor
expansion. But, it leads to the asymptotic expansion exp(−1/x2) ∼

∑∞
n=0 0xn as x→ 0.
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with the assumption that V (x) = x2m+a1x
2m−1+· · ·+a2m, wherem ∈ N. There is no boundary

condition imposed yet. With the polynomial potential, the point x =∞ is an irregular singular

point of the equation. We want to investigate the asymptotic behavior of a solution y(x) of the

Schrödinger as x → ∞. There are two independent solutions of Eq. (4.8) with the following

asymptotic behavior

y±(x) ∼ c±
exp

(
±
∫ x
x0

√
Q(t)dt

)
[Q(x)]1/4

as x→∞ . (4.9)

These are the leading order terms in the asymptotic expansion of the solutions about the irregular

singular point at in�nity.

The exponent term in Eq. (4.9) can be expanded as

±
∫ x

x0

√
Q(t)dt = ± x

m+1

m+ 1
+ · · · . (4.10)

The principal part of the exponent term, 1
m+1x

m+1, determines whether a solution is subdom-

inant (exponentially vanishing) or dominant (exponentially growing) as x → ∞. When we

consider this problem in the complex plane, the subdominant and the dominant solutions may

change their roles in di�erent regions, the so-called Stokes wedges. The exchange of the identi-

ties is called the Stokes phenomenon [155]. Neglecting the corrections to the right hand side of

Eq. (4.10), the Stokes wedges Sk could be de�ned as

Sk =
{
z :

∣∣arg z − kπ

m+ 1

∣∣ < π/2

m+ 1

}
, k ∈ Z2m+2 , (4.11)

and the Stokes lines are the lines in the complex plane with arg z = (k+1/2)π
m+1 , k ∈ Z2m+2 .

2

It is important to emphasize that a subdominant solution in a Stokes wedge Sk, denoted

by yk(z;E), is not subdominant in the neighbor Stokes wedge Sk+1. This can be immediately

checked by investigating the principal part of the exponent of the leading order term in the

asymptotic expansion. The sign of the real part of 1
m+1x

m+1 changes as the corresponding Stokes

line is crossed, consequently yk(z;E) is not subdominant in Sk+1. Note that this argument is

only based on the leading-order behavior of the asymptotic expansion. But, a complete argument

must consider the fact that an asymptotic expansion has a region of validity in the complex plane.

For the case of subdominant solutions, a complete argument shows that the above conclusion is

correct; i.e., yk(z;E) is not subdominant in the neighboring Stokes wedge Sk+1. But, for the case

of dominant solutions, a complete argument would suggest that a solution which is dominant in

Sk might be dominant in Sk+1 as well.

2 For a concrete de�nition of the Stokes wedges and the Stokes lines, one can discuss [155, 156]. In Ref. [156],
the Stokes lines are de�ned as certain curves beyond which a given asymptotic expansion becomes invalid.
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For each Stokes wedge Sk, there exists a one-parameter family of subdominant solutions as

A yk(z;E), where A is an arbitrary parameter and yk(z;E) is a subdominant solution normalized

with one way or another. One can show that two consecutive solutions yk(z;E) and yk+1(z;E)

(which are subdominant in Sk and Sk+1, respectively) are linearly independent, and then one can

infer that {yk, yk+1} constitutes a basis for the space of solutions of Eq. (4.8) [157]. Therefore,

every solution of Eq. (4.8) can be expressed as a linear combination of them, in particular

yk−1(z, E) = Ck(E) yk(z, E) + C̃k(E) yk+1(z, E) . (4.12)

The multipliers Ck(E) and C̃k(E) are called the Stokes multipliers of yk−1 with respect to yk

and yk+1. The Stokes multipliers are just functions of the parameter E. It would be interesting

to investigate their dependence on the parameter E and study how they change as E varies.

Here we list two important properties of the Stokes multipliers of the problem [157]:

• The stokes multipliers are entire functions of E.

• C̃k(E) never vanishes so it can be reduced to 1 by a suitable renormalization of the basis.

Therefore, by renormalizing the basis, Eq. (4.12) can be written as

yk−1(z, E) = Ck(E) yk(z, E) + yk+1(z, E) . (4.13)

Now, the fact that Ck(E) is an entire function of E can be exploited to acquire an insightful

knowledge from Eq. (4.13).

The functions yk(z;E) and yk+1(z;E) are subdominant in their own Stokes wedges Sk and

Sk+1, respectively. But, they might not be subdominant in the Stokes wedge Sk−1 . As a

matter of fact, yk(z;E) cannot be subdominant in Sk−1 at all, as explained before. Equation

4.13 assures that the expression Ck(E)yk(z, E) + yk+1(z, E) is free of any exponentially growing

part in Sk−1 because the function yk−1(z;E) in the right side of the equation is a subdominant

solution in Sk−1. Therefore, the function yk+1(z;E) posses a dominant part in Sk−1 so that it

compensates the dominant part of Ck(E)yk(z;E) for a nonvanishing Stokes multiplier. One can

then infer that the function yk+1(z;E) does not have any exponentially growing term in Sk−1

when Ck(E) = 0. Now we arrive at an important point relating the asymptotic analysis of the

Schrödinger equation in the complex plane as z → ∞ to the vanishing boundary condition on

the real axis.
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4.2.5 Zeros of the Stokes multipliers as eigenvalues

As pointed out before, the Stokes multipliers are entire functions of E. Therefore, they have

discrete sets of zeros. This leads us to a remarkable conclusion that there exists a function

yk+1(z;E) vanishing exponentially in both Sk−1 and Sk+1 for a discrete set of values of E, which

happen to be the zeros of Ck(E). This is especially important if one wishes to impose the

boundary condition y(x;E) → 0 as x → ±∞. If the boundaries of the problem at x → ±∞
are located in Sk−1 and Sk+1, this set of solutions and the corresponding values of E can be

identi�ed with the eigenfunctions and eigenvalues of the Schrödinger equation.

As an example we study the parabolic cylinder equation in the complex plane y′′+ (ν+ 1
2 −

z2)y = 0. This problem has four Stokes wedges de�ned in Eq. (4.11) for m = 1. The parabolic

cylinder function Dν(x) vanishes as x→ +∞, so it can be identi�ed with y0(z, ν + 1
2), which is

the subdominant solution in S0. Hence, the leading asymptotic behavior of Dν(z) is

Dν(z) ∼ zνe−z2/4 , z →∞; | arg z| < π/4 . (4.14)

This asymptotic behavior is valid even in a wider wedge with | arg z| < 3π/4. But, in general,

it breaks down at the Stokes lines | arg z| = 3π/4, unless the corresponding Stokes multiplier

vanishes, which happens when ν assumes special values. For the parabolic cylinder equation,

Eq. (4.12) reads3

Dν(z) =

√
2π

Γ(−ν)
ei(ν+1)π/2D−ν−1(−iz) + eiνπDν(−z) . (4.15)

It is immediately evident that the Stokes multiplier vanishes when ν ∈ N, which are the eigen-

values of the problem.

In short, this part draws a connection between eigenvalues of the Schrödinger equation and

the Stokes multipliers associated with it. The zeros of the Stokes multipliers are nothing but the

eigenvalues of the Schrödinger equation with vanishing boundary values at two Stokes wedges

that are not adjacent.4 These eigenvalues are discrete because they are zeros of a nonconstant

3 Note that Dν(z), D−ν(z), and D−ν−1(−iz) obey the parabolic cylinder equation y′′ + (ν + 1
2
− z2)y = 0,

and each of which is subdominant in a di�erent Stokes wedges. See [155] for more discussion.
4 The main point in the above discussion (and the example of the parabolic cylinder equation) is to show how

a local analysis about in�nity in the complex plane can be related to an eigenvalue problem de�ned on a line, i.e.,
the real axis from physical point of view. We do not wish to consider the general case when there are many Stokes
wedges in the complex plane so that x→ ±∞ cannot be located in Sk−1 and Sk+1. In this case, one may be able
to expand the program to �nd a set of solutions which vanish at the Stokes wedges corresponding to x = ±∞.
Besides, in this discussion, a speci�c class of potentials is considered, and the reality of the eigenvalues is not
discussed. For further discussion, especially about the Schrödinger equation with PT -symmetric Hamiltonians,
one can discuss [157�160].
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entire function [158]. The eigenvalue solutions are inherently unstable in the sense that an

in�nitesimal change in the parameter E in Eq. (4.8) from an eigenvalue leads to an exponentially

growing term at least in one direction as x approaches in�nity on the real axis.

4.2.6 WKB approximation

WKB theory provides a global approximation to the solution of a linear di�erential equation

whose highest derivative is multiplied by a small parameter [155]. In the case of the Schrödinger

equation this small parameter is ~2. Following Ref. [161], we introduce and use a large number

η = 1/~ instead of ~. Then the Schrödinger equation reads

(
− d2

dx2
+ η2Q(x)

)
ψ(x; η) = 0, Q(x) = V (x)− E . (4.16)

We �rst investigate the problem without imposing any boundary conditions at in�nity.

The starting point in the WKB approximation is to assume that a solution of Eq. (4.16)

can be written in the form eR(x;η). Then, S(x; η) ≡ 1
η
dR
dx satis�es

−
(
η2S2 + η

dS

dx

)
+ η2Q = 0 . (4.17)

Now, we assume that S(x; η) can be expanded in powers of η−1 as

S(x; η) = So(x; η) + Se(x; η) , (4.18)

Se(x; η) = S0(x) + S2(x)η−2 + S4(x)η−4 + · · · , (4.19)

So(x; η) = S1(x)η−1 + S3(x)η−3 + S3(x)η−5 + · · · . (4.20)

Consequently,

η2
(
Se + So

)2
+ η

d

dx

(
Se + So

)
= η2Q . (4.21)

Separating the odd and even powers of η−1, for the odd powers we �nd

2η2SeSo + η
d

dx
Se = 0

⇒ So = −
d
dxSe

2ηSe
= − 1

2η

d

dx
logSe , (4.22)
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and for the even powers, we obtain

η2S2
e + η2S2

o + η
d

dx
So = η2Q

⇒
√
Se

d2

dx2

( 1√
Se

)
= η2(Q− S2

e ) . (4.23)

Noticing that −Se also obeys Eq. (4.23), the two independent solutions of the second order

di�erential equation in Eq. (4.16) can be constructed by following formal expressions

ψ±(x; η) = c±
1√

Se(x; η)
exp
(
±η
∫ x

x0

Se(t; η)dt
)
. (4.24)

Substituting Eq. (4.19) in Eq. (4.23), we obtain

Se(x; η) =
√
Q(x) +O(η−2) . (4.25)

Therefore, the solutions have the following leading order behavior

ψ±(x; η) ∼ c±
exp
(
±η
∫ x
x0

√
Q(t)dt

)
[Q(x)]1/4

as η →∞ , (4.26)

where Q(x) 6= 0. Here are some remarks about this relation:

• Equation 4.26 is an asymptotic relation because the WKB expansion is a divergent expan-

sion.

• Comparing Eq. (4.9) with Eq. (4.26), one can recognize that they have similar forms.

The former equation is an asymptotic relation as x → ∞ (i.e., Q(x) → ∞ for a poly-

nomial potential), while the latter one is an asymptotic relation as η → ∞. The former

one is developed for a local analysis about x = ∞, but the latter one provides a global

approximation, unless Q(x)→ 0.

• Eq. (4.26) is not valid in the vicinity of turning points, where Q(x) = 0. In a neighborhood

of a simple turning point x0, i.e., a �rst-order zero of Q(x), one can analyze the problem

by replacing Q(x) with (x−x0) times a constant; the Schrödinger equation reduces to the

Airy equation.

• The turning points occur when V (x) = E. From physical point of view, the simple turning

points are the borders of classically allowed regions (V (x) < E, i.e., Q(x) < 0) and

classically forbidden regions (V (x) > E i.e., Q(x) > 0)). In the classically allowed region,
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the WKB analysis provides the leading order asymptotic behavior

ψ(x; η) ∼ C
sin
(
η
∫ x
x0

√
−Q(t)dt+ φ

)
[−Q(x)]1/4

as η →∞ , (4.27)

while in the classically forbidden regions the leading order behavior is described by growing

and/or decaying exponential terms as η →∞.

• In order to relate the solutions in classically allowed and forbidden regions, one should

match them at the corresponding turning point via the Airy functions.

Now, we impose the boundary value condition that ψ(x; η) → 0 as x → ±∞. Let us consider

the case that the potential V (x) rises monotonically as x→ ±∞, and there are only two simple

real turning points x = A and x = B with A < B. One can divide the real axis into �ve regions:

two classically forbidden regions, one classically allowed region, and two regions in vicinity of

the turning points. At each region, ψ(x; η) has a form suggested by WKB theory, or the Airy

equation. The process of matching these solutions leads to an approximate constraint that must

be satis�ed by Q(x):

η

∫ B

A

√
E − V (t)dt ∼ (n+ 1

2)π as η →∞ , (4.28)

where n ∈ N [155]. This puts a restriction on the parameter E, otherwise the vanishing boundary

values cannot be satis�ed. As pointed out earlier, in the discussion of zeros of Stokes multipliers,

the eigenvalue solutions are inherently unstable in the sense that an in�nitesimal change in the

parameter E in from an eigenvalue leads to an exponentially growing term at least in one

direction as x approaches to in�nity on the real axis.

4.3 Eigenvalue problems in nonlinear di�erential equations

4.3.1 Spontaneous singularities

A solution of a linear di�erential equation can only be singular at singular points of the problem,

which depend only on the coe�cient functions of the di�erential equation. Hence, its singularities

occur only at �xed points independent of the initial and boundary conditions. These singularities

are called �xed singularities. In contrast, solutions of nonlinear equations, in addition to having

�xed singularities, may also exhibit new kinds of singularities which move around in the complex

plane as the initial or boundary conditions vary [155]. These singularities are called spontaneous

or movable singularities.
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As an example, one can consider the Riccati equation y′ = y2 + x with the initial condition

y(0) = a. In a neighborhood of x = b, this equation may have a solution as

y(x) =
1

x− b +
∞∑
n=0

an(x− b)n. (4.29)

This is a singular solution at x = b, which moves as the initial condition varies. For this problem

the only movable singularities are simple poles.

Similar to the solutions of y′ = y2 + x, the six Painlevé transcendents have movable sin-

gularities that are only ordinary poles (and not critical points, i.e., branch points or essential

singularities). The Painlevé transcendents are the solutions of the following six nonlinear second-

order di�erential equations

P-I : y′′ = 6y2 + x , (4.30)

P-II : y′′ = 2y3 + xy + α , (4.31)

P-III : xyy′′ = x
(
y′
)2
− yy′ + δx+ βy + αy3 + γxy4 , (4.32)

P-IV : yy′′ =
1

2

(
y′
)2

+ β + 2(x2 − α)y2 + 4xy3 +
3

2
y4 , (4.33)

P-V : y′′ =
( 1

2y
+

1

y − 1

)(
y′
)2
− 1

x
y′

+
(y − 1)2

x2

(
αy +

β

y

)
+ γ

y

x
+ δ

y(y + 1)

y − 1
, (4.34)

P-VI : y′′ =
1

2

(1

y
+

1

y − 1
+

1

y − x
)(
y′
)2
−
(1

x
+

1

x− 1
+

1

y − x
)
y′

+
y(y − 1)(y − x)

x2(x− 1)2

(
α+ β

x

y2
+ γ

x− 1

(y − 1)2
+ δ

x(x− 1)

(y − x)2

)
. (4.35)

Here α, β, γ and δ are complex numbers. These six di�erential equations do not have solutions

in terms of known functions or transcendents.

4.3.2 Separatrix structure

There are many nonlinear di�erential equations having separatrix structure. One example is the

di�erential equation for the �rst Painlevé transcendent y′′ = 6y2 + x. Considering only the real

solutions of this equation on the real axis, one can study the asymptotic behavior of the solutions

as x approaches to in�nity, especially as x → −∞. It is clear that when x becomes large and

negative, there can be a dominant asymptotic balance between the positive term [y(x)]2 and the
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negative term x, which implies that y(x) can have two possible leading asymptotic behaviors:

y(x) ∼ ±
√
−x/6 (x→ −∞), (4.36)

which is valid because the second derivative of
√
−x/6 is small compared with x as x→ −∞.

This problem is interesting because the asymptotic behavior y(x) ∼ −
√
−x/6 is stable but

the asymptotic behavior y(x) ∼
√
−x/6 is unstable. To verify this, we calculate the corrections

to these two asymptotic behaviors. When x is large and negative, the solution to Eq. (4.30)

oscillates about and decays slowly towards the curve −
√
−x/6:

y(x) ∼ −
√
−x

6
+
−1

48x2
+ · · ·+ c

1

(−x)1/8
cos
[

8
5

4

√
3
2(−x)5/4 + d

]
(x→ −∞), (4.37)

where c and d are two arbitrary constants. The di�erential equation (4.30) is second order and,

as expected, this asymptotic behavior contains two arbitrary constants. On the other hand, the

correction to the +
√
−x/6 behavior has an exponential form

y(x) ∼
√
−x

6
+
−1

48x2
+ · · ·+ c±

1

(−x)1/8
exp

[
±8

5
4

√
3
2(−x)5/4

]
(x→ −∞). (4.38)

Thus, if c+ 6= 0, nearby solutions veer away from the curve
√
−x/6 as x → −∞. The special

solutions that decay exponentially towards
√
−x/6 form a one-parameter class because c+ = 0.

Therefore, there is a one-parameter class of initial conditions corresponding to c+ = 0. One can

�x the initial condition y(0), then there is a discrete set of critical initial slope y′(0) such that

their corresponding solutions approach to
√
−x/6 as x→ −∞.

The di�erential equation for the second Painlevé transcendent has similar behavior. Putting

the constant α to zero for simplicity, one can write this equation as y′′ = 2y3 + xy = (2y2 + x)y.

An elementary asymptotic analysis shows that as t→ −∞, there are three possible asymptotic

behaviors for solutions y(x). First, y(x) can oscillate stably about the negative axis. Second,

y(x) can approach the curves ±
√
−t/2; however, both of these asymptotic behaviors are unstable

similar to the case of the �rst Painlevé transcendent. The equation y′′ = 2y3 +xy is particularly

interesting because as t → +∞, the behavior y → 0 becomes unstable. Thus, it is possible

to have new kinds of eigenfunctions for positive x as well. A procedure described for the �rst

Painlevé can be used to de�ne the eigenfunctions of the the second Painlevé, which exponentially

decay to their corresponding limit curves.

The separatrix behavior is not unique for the Painlevé transcendents. As pointed out before,

the �rst-order di�erential equation y′(x) = cos(πxy) possesses such a behavior. This equation is
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a �rst-order nonlinear di�erential equation. The detailed analysis of this equation is presented

in chapter 5. Then, in 6, the �rst and second Painlevé transcendents are discussed.
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5
Nonlinear Eigenvalue Problems: A Toy Model

This chapter contains the materials published in a paper.1 This represents work performed by

me under the overall supervision of my advisor, C. M. Bender.

5.1 Introduction

This chapter presents a detailed asymptotic analysis of the nonlinear initial-value problem

y′(x) = cos[πxy(x)], y(0) = a. (5.1)

This remarkable and deceptively simple looking di�erential equation was given as an exercise in

the text by Bender and Orszag [155]. Since then, it and closely related di�erential equations have

arisen in a number of physical contexts involving the complex extension of quantum-mechanical

probability [162, 163] and the structure of gravitational inspirals [164]. The properties of so-

lutions to this equation are strongly analogous to those of the time-independent Schrödinger

eigenvalue problem.

The (linear) Schrödinger eigenvalue problem has the form

− ψ′′(x) + V (x)ψ(x) = Eψ(x), ψ(±∞) = 0, (5.2)

where E is the eigenvalue. For simplicity, we assume that the potential V (x) has one local

minimum and rises monotonically to∞ as x→ ±∞. This eigenvalue problem is not analytically

1C.M. Bender, A. Fring, J. Komijani, �Nonlinear Eigenvalue Problems,� J. Phys. A: Math. and Theor. 47,
235204 (2014) [arXiv:1401.6161].
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solvable except for special potentials, such as the harmonic oscillator potential V (x) = x2.

However, it is possible to �nd the large-n asymptotic behavior of the nth eigenvalue En by using

semiclassical (WKB) analysis. To leading order the large-n behavior of the eigenvalues of the

two-turning-point problem may be obtained from the Bohr-Sommerfeld condition∫ x2

x1

dx
√
En − V (x) ∼ (n+ 1/2)π (n→∞), (5.3)

where the turning points x1 and x2 are real roots of the equation V (x) = En. This WKB

condition determines the eigenvalues implicitly for large n. As an example, for the anharmonic

potential V (x) = x4 the large-n asymptotic behavior of the eigenvalues is [165]

En ∼ Bn4/3 (n→∞), (5.4)

where the constant B is given by B = 3Γ(3/4)
√
π/Γ(1/4).

The quantum eigenfunctions ψ(x) exhibit several characteristic features. In the classically

allowed region between the turning points (x1 < x < x2), the eigenfunctions are oscillatory and

the eigenfunction corresponding to En has n nodes. In the classically-forbidden regions x > x2

and x < x1 the eigenfunctions decay exponentially and monotonically to zero as |x| → ∞. Thus,

at the turning points the behavior of the eigenfunctions changes abruptly from rapid oscillation

to smooth exponential decay.

The solutions y(x) to the nonlinear di�erential equation (5.1) have many features in common

with the solutions ψ(x) to the Schrödinger equation (5.2). For any choice of y(0) = a the initial

slope y′(0) is 1. As x increases from 0, y(x) oscillates as shown in Fig. 5.1. This regime of

oscillation is analogous to a classically allowed region in quantum mechanics. Note that the

number of maxima of the function y(x) in the oscillatory region increases as y(0) increases.

With increasing x the oscillations abruptly cease and the function y(x) then decays smoothly

and monotonically to 0 as x→∞. This behavior resembles that of ψ(x) in a classically forbidden

region.

Figure 5.1 reveals that in the decaying regime the curves merge into quantized bundles. This

large-x asymptotic behavior of y(x) can be explained by using elementary asymptotic analysis.

If we seek an asymptotic behavior of the form y(x) ∼ c/x (x → ∞) and substitute this ansatz

into (5.1), we �nd that c = m + 1/2 (m = 0, 1, 2, 3, . . .). This is just the leading term in the

asymptotic expansion of y(x) for large x. The full series has the form

y(x) ∼ m+ 1/2

x
+
∞∑
k=1

ck
x2k+1

(x→∞). (5.5)
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Figure 5.1: Numerical solutions y(x) to (5.1) for 0 ≤ x ≤ 24 with initial conditions y(0) = 0.2k
for k = 1, 2, 3, . . . , 50. The solutions initially oscillate but abruptly become smoothly and
monotonically decaying. In the decaying regime the solutions merge into discrete quantized

bundles.

The �rst few coe�cients are

c1 =
(−1)m

π
(m+ 1/2),

c2 =
3

π2
(m+ 1/2),

c3 = (−1)m
[

(m+ 1/2)3

6π
+

15(m+ 1/2)

π3

]
,

c4 =
8(m+ 1/2)3

3π2
+

105(m+ 1/2)

π4
,

c5 = (−1)m
[

3(m+ 1/2)5

40π
+

36(m+ 1/2)3

π3
+

945(m+ 1/2)

π5

]
,

c6 =
38(m+ 1/2)5

15π2
+

498(m+ 1/2)3

π4
+

10395(m+ 1/2)

π6
. (5.6)

5.1.1 Hyperasymptotic analysis

A close look at Fig. 5.1 shows a surprising result: Half of the predicted large-x asymptotic

behaviors in (5.5) appear to be missing. The bundles of curves shown in Fig. 5.1 correspond

only to even values of m. To explain what has happened to the odd-m bundles, we perform a

hyperasymptotic analysis (asymptotics beyond all orders) [166]. Let y1(x) and y2(x) represent
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two di�erent curves in the mth bundle. Even though they are di�erent curves they have exactly

the same asymptotic approximation as given in (5.5). Then Y (x) ≡ y1(x) − y2(x) satis�es the

di�erential equation

Y ′(x) = cos[πxy1(x)]− cos[πxy2(x)]

= −2 sin
[

1
2πxy1(x) + 1

2πxy2(x)
]

sin
[

1
2πxy1(x)− 1

2πxy2(x)
]

∼ −2 sin
[
π
(
m+ 1

2

)]
sin
[

1
2πxY (x)

]
(x→∞)

∼ −(−1)mπxY (x) (x→∞). (5.7)

We conclude that

Y (x) ∼ K exp
[

1
2(−1)m+1πx2

]
(x→∞), (5.8)

where K is an arbitrary constant. Thus, while two di�erent curves in the same bundle have the

same asymptotic expansion for large x, they di�er by an exponentially small amount. This result

explains why no arbitrary constant appears in the asymptotic expansion (5.5); the arbitrary

constant appears in the beyond-all-orders hyperasymptotic (exponentially small) correction to

this asymptotic series.

More importantly, this argument demonstrates that two curves can only be in the same

bundle if m is even. If m is odd, the two curves move away from one another as x increases.

Thus, while there is a bundle of in�nitely many curves when m is even, we see that there is a

unique and discrete curve, called a separatrix, when m is odd. The nth separatrix, whose large-x

asymptotic behavior is (2n− 1/2)/x (n = 1, 2, 3, . . .), is unstable for increasing x; that is, as x

increases, nearby curves y(x) veer away from it and become part of the bundles above or below

the separatrix. This explains why there are no curves shown in Fig. 5.1 when m is odd. Ten

separatrix curves are shown in Fig. 5.2.

While the separatrix curves are unstable for increasing x, they are stable for decreasing x

and thus it is numerically easy to trace these curves backward from large values of x down to

x = 0. We treat the discrete point an (n = 1, 2, 3, . . .) at which the nth separatrix crosses

the y axis as an eigenvalue. The curves y(x), whose initial values y(0) = a lie in the range

an−1 < y(0) < an, have n maxima. Our objective in this chapter is to determine analytically

the large-n asymptotic behavior of the eigenvalues. We will establish that

an ∼ A
√
n (n→∞), (5.9)

where A = 25/6. The constant A is a nonlinear analog of the WKB constant B in (5.4).
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Figure 5.2: Numerical solutions to (5.1) showing ten separatrix curves, which cross the y axis
at a−3 = −3.231360, a−2 = −2.698369, a−1 = −2.032651, a0 = −1.016702, a1 = 1.602573,

a2 = 2.388358, a3 = 2.976682, a4 = 3.467542, a5 = 3.897484, and a6 = 4.284674.

Hyperasymptotics also plays a crucial role in quantum theory. Because the Schrödinger

eigenvalue problem (5.2) is second order, the asymptotic behavior of ψ(x) as x → ∞ contains

two arbitrary constants. However, there is only one constant C in the WKB asymptotic approx-

imation

ψ(x) ∼ C[V (x)− E]−1/4 exp

[∫ x

ds
√
V (s)− E

]
(x→∞). (5.10)

There is a second constant D, of course, but this constant multiplies the subdominant (expo-

nentially decaying) solution, and thus this constant does not appear to any order in the WKB

expansion. The constant D remains invisible except at an eigenvalue because only at an eigen-

value does the coe�cient C of the exponentially growing solution (5.10) vanish to all orders

in the large-x asymptotic expansion, leaving the physically acceptable exponentially decaying

solution

ψ(x) ∼ D[V (x)− E]−1/4 exp

[
−
∫ x

ds
√
V (s)− E

]
(x→∞). (5.11)
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5.1.2 Organization of this chapter

The principal thrust of the analysis in this chapter is an asymptotic study of the separatrices,

which for large x are approximated by the formula in (5.5) with m odd. Thus, we let m = 2n−1

and we scale both the independent and dependent variables in (5.1):

x =
√

2n− 1/2 t, y(x) =
√

2n− 1/2 z(t), (5.12)

and let

λ = (2n− 1/2)π. (5.13)

The resulting equation for z(t) is

z′(t) = cos[λtz(t)]. (5.14)

With these changes of variable, the nth separatrix [which behaves like (2n− 1/2)/x as x→∞]

now behaves like 1/t as t → ∞. Also, for large λ the turning point (the point at which the

oscillations cease and monotone decreasing behavior begins) is located at t = 1.

In Sec. 5.2 we begin by examining the di�erential equation (5.1) numerically. We then show

numerically that for large λ the solution z(t) to the scaled equation (5.14) that satis�es the initial

condition z(0) = 21/3 is oscillatory until t = 1, at which point it decays smoothly like z(t) ∼ 1/t

as t→∞. We also show that the amplitude of the oscillations is of order 1/λ for large λ. Hence,

in the limit λ → ∞ the function z(t) converges to a smooth and nonoscillatory function Z(t)

that passes through 21/3 at t = 0 and through 1 at t = 1. Thus, the nth eigenvalue is asymptotic

to A
√
n as n → ∞, where A = 25/6. In Sec. 5.3 we perform an asymptotic calculation of Z(t)

correct to order 1/λ and use this result to obtain the number A in (5.9). In Sec. 5.4 we suggest

that the techniques presented in this chapter may apply to many other nonlinear di�erential

equations. As evidence, we present numerical results regarding the �rst Painlevé transcendent.

We also conjecture that the number A in (5.9) may be related to the power-series constant P ,

which describes the asymptotic behavior of the zeros of partial sums of Taylor series of analytic

functions.

5.2 Numerical study of (5.1) and (5.14)

We begin our analysis of (5.1) by constructing the Taylor series expansion

y(x) =

∞∑
n=0

bnx
n (5.15)
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of the solution y(x). To �nd the Taylor coe�cients bn we substitute this expansion into the

di�erential equation and collect powers of x. The �rst few Taylor coe�cients are

b0 = y(0) = a,

b1 = 1,

b2 = 0,

b3 = −1
6π

2a2,

b4 = −1
4π

2a,

b5 = 1
120π

4a4 − 1
10π

2,

b6 = 1
18π

4a3,

b7 = − 1
5040π

6a6 + 2
21π

4a2,

b8 = − 1
180π

6a5 + 31
480π

4a,

b9 = 1
362880π

8a8 − 161
6480π

6a4 + 17
1080π

4. (5.16)

We then observe that we can reorganize and regroup the terms in the Taylor series. For

example, the �rst terms in b1, b3, b5, b7, b9, and so on, give rise to the function

1

πa
sin s

and the �rst terms in b4, b6, b8, b10, and so on, give rise to

1

8π2a3

[
2s sin(2s) + cos(2s)− 2s2 − 1

]
,

where s = πax. This partial summation of the Taylor series, a procedure used in multiple-

scale perturbation theory to eliminate secular behavior [167], shows that the solution y(x) is

approximately a falling parabola with an oscillatory contribution whose amplitude is of order

1/a. This is what we observe in Fig. 5.1. The partial summation suggests that a and y are

both of order
√
n and motivates the changes of variable (5.12) and (5.13), which give the scaled

di�erential equation (5.14).

As λ in (5.14) tends to ∞, the oscillations disappear. (This is demonstrated in Sec. 5.3.)

The resulting curve Z(t), which begins at Z(0) = 21/3 and passes through Z(1) = 1, is shown as

a dashed line (red in the electronic version) in Fig. 5.3 (upper panel). Also shown are the �rst

four eigencurve (separatrix) solutions to (5.14) (blue, cyan, magenta, and green in the electronic

version), which have one, two, three, and four maxima. Note that these eigensolutions rapidly

approach the limiting dashed curve as the number of oscillations increases. The lower panel in
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Fig. 5.3 indicates the di�erence between the dashed curve and the solid curves plotted in the

upper panel.
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Figure 5.3: Upper panel: Numerical plots of the �rst four separatrix solutions z(t) (eigenso-
lutions) to (5.14) (blue, cyan, magenta, and green in the electronic version). These solutions
have one, two, three, and four maxima. As λ increases, these curves approach the solution to
(5.14) for λ =∞ (dashed curve) (red in the electronic version). [The λ =∞ curve is called Z(t)
and satis�es the di�erential equation (5.31).] Lower panel: A plot of the di�erences between

the solid curves and the dashed curve.

For large values of λ the convergence to the limiting curve Z(t) is dramatic. In Fig. 5.4 we

plot Z(t) in the upper panel and the di�erence between Z(t) and the n = 500, 000 separatrix

curve (eigencurve) in the lower panel. Note that the di�erence is of order 1/n (10−6). On the

basis of these numerical calculations we used Richardson extrapolation [168] to calculate the

coe�cient A to an accuracy of one part in 1010 and we conjectured reliably that A = 25/6.

The convergence of z(t) (which is rapidly oscillatory when 0 ≤ t ≤ 1) to Z(t) (which is

smooth and nonoscillatory) as λ → ∞ strongly resembles the convergence of a Fourier series.

Consider, for example, the convergence of the Fourier sine series to the function f(x) = 1 on the

interval 0 < x < π. The 2N + 1 partial sum of the Fourier sine series is

S2N+1(x) =
4

π

N∑
n=0

sin[(2n+ 1)x]

2n+ 1
. (5.17)
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Figure 5.4: Upper panel: Numerical solution z(t) to (5.14) corresponding to n = 500, 000. No
oscillation is visible because the amplitude of oscillation is of order 1/λ when λ is large. Lower
panel: Di�erence between the n = 500, 000 eigencurve z(t) and the λ = ∞ curve Z(t). Note

that the di�erence is highly oscillatory and is of order 10−6.

As can be inferred from Fig. 5.5, which displays the partial sums for N = 5, 20, 80, as N

increases, S2N+1(x) approaches 1 (except for values of x near x = 0 and x = π) in a highly

oscillatory fashion that strongly resembles the approach of z(t) to Z(t) in Fig. 5.4.

5.3 Asymptotic solution of the scaled equation (5.14)

The objective of the asymptotic analysis in this section is to solve (5.14) for large λ and to verify

the result in (5.9); namely, that A = 25/6. We begin by converting the di�erential equation in

(5.14) to the integral equation

[z(t)]2 − [z(0)]2 + t2/2 + η(t) = O(1/λ) (λ→∞), (5.18)

where

η(t) =

∫ t

0
ds s cos[2λsz(s)]. (5.19)
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Figure 5.5: Convergence of the N = 5, 20, and 80 partial sums in (5.17) of the Fourier sine
series for f(x) = 1. The partial sums of the Fourier series converge to 1 as N → ∞ in much
the same way that z(t) converges to Z(t) as λ→∞. Like the behaviors in Figs. 5.3 and 5.4, as
N increases, the frequency of oscillation increases and the amplitude of oscillation approaches

zero.

To obtain (5.18) we multiply (5.14) by z(t) + tz′(t) and integrate from 0 to t. We then replace

the quantity [z′(t)]2 by cos2[λtz(t)] and use the double-angle formula for the cosine function to

get η(t) in (5.19).

The problem is now to calculate η(t). To do so, we observe that η(t) is just one of an in�nite

set of moments An,k(t), which are de�ned as follows:

An,k(t) ≡
∫ t

0
ds cos[nλsz(s)]

sk+1

[z(s)]k
. (5.20)

Note that η(t) = A2,0(t).

For large λ these moments satisfy the linear di�erence equation

An,k(t) = −1
2An−1,k+1(t)− 1

2An+1,k+1(t) (n ≥ 2). (5.21)

160



To obtain this equation we multiply the integrand of the integral in (5.20) by

z(s) + sz′(s)

z(s)
− sz′(s)

z(s)
. (5.22)

(Note that this quantity is merely an elaborate way of writing 1.) We then evaluate the �rst

part of the resulting integral by parts and verify that it is negligible as λ → ∞ if t ≤ 1. In the

second part of the integral we replace z′(t) by cos[λtz(t)] and use the trigonometric identity

cos(na) cos(a) = 1
2 cos[(n+ 1)a] + 1

2 cos[(n− 1)a].

By using repeated integration by parts, we verify that η(t) in (5.19) can be expanded as the

series

η(t) =

∞∑
p=0

α1,2p+1A1,2p+1(t), (5.23)

where the coe�cients αn,k are determined by a one-dimensional random-walk process in which

random walkers move left or right with equal probability but become static when they reach

n = 1. The initial condition for the random walk is that αn,0 = 0 if n 6= 2 and α2,0 = 1. The

coe�cients αn,k obey the di�erence equations

2α1,k + α2,k−1 = 0, (5.24)

2α2,k + α3,k−1 = 0, (5.25)

2αn,k + αn−1,k−1 + αn+1,k−1 = 0 (n ≥ 3). (5.26)

(Note that αn,k = 0 if one of the subscripts is odd and the other is even.) The di�erence

equations (5.25) and (5.26) can be solved in closed form, and we obtain the following exact

result for n ≥ 2:

αn,k =
(−1)n(n− 1)k!

2k(k/2 + n/2)!(k/2− n/2 + 1)!
, (5.27)

which holds if n and k are both even or both odd. Finally, we use equation (5.24) to obtain

α1,2p+1 = −1
2α2,2p = − (2p)!

22p+1p!(p+ 1)!
= − Γ(p+ 1/2)

2
√
π (p+ 1)!

, (5.28)

where the duplication formula for the Gamma function was used to obtain the last equality.
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Thus, the series in (5.23) for η(t) reduces to the series of integrals

η(t) = − 1

2
√
π

∞∑
p=0

Γ(p+ 1/2)

(p+ 1)!

∫ t

0
ds z′(s)

s2p+2

[z(s)]2p+1
,

which is valid for t ≤ 1. This series can be summed in closed form:

η(t) =

∫ t

0
ds z(s)z′(s)

√
1− s2/[z(s)]2 −

∫ t

0
ds z(s)z′(s). (5.29)

There is no explicit reference to λ in this expression, so we pass to the limit as λ → ∞. In

this limit the function z(t), which is rapidly oscillatory (see Fig. 5.4), approaches the function

Z(t), which is smooth and not oscillatory. We therefore obtain from (5.18) an integral equation

satis�ed Z(t):

[Z(t)]2 − [Z(0)]2 + 1
2 t

2 −
∫ t

0
dsZ(s)Z ′(s) +

∫ t

0
dsZ(s)Z ′(s)

√
1− s2/[Z(s)]2 = 0. (5.30)

We di�erentiate (5.30) to obtain an elementary di�erential equation satis�ed by Z(t):

Z(t)Z ′(t) + t+ Z ′(t)
√

[Z(t)]2 − t2 = 0. (5.31)

This di�erential equation is easy to solve because it is homogeneous; that is, the equation

can be rearranged so that Z(t) is always accompanied by a factor of 1/t. Such an equation can

be solved by substituting Z(t) = tG(t) to reduce (5.31) to a separable di�erential equation for

G(t). The general solution for G(t) is

K

t3
=
(
1 + 3[G(t)]2

) (
G(t) +

√
[G(t)]2 − 1

) √[G(t)]2 − 1− 2G(t)√
[G(t)]2 − 1 + 2G(t)

, (5.32)

whereK is an arbitrary constant. The condition thatG(1) = 1, which is obtained by substituting

(5.12) into (5.5) and (5.6) and taking the limit n → ∞, then determines that K = −4, and we

obtain the exact result that Z(0) = 21/3. We thus conclude that A = 25/6. This establishes the

principal result of this chapter.
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5.4 Discussion and description of future work

5.4.1 First Painlevé transcendent

We believe that the asymptotic approach developed in this chapter may be applicable to many

nonlinear di�erential equations having separatrix structure. One example is the di�erential

equation for the �rst Painlevé transcendent

y′′(x) = [y(x)]2 + x. (5.33)

How do solutions to this equation behave as x→ −∞? It is clear that when x becomes large and

negative, there can be a dominant asymptotic balance between the positive term [y(x)]2 and the

negative term x, which implies that y(x) can have two possible leading asymptotic behaviors:

y(x) ∼ ±
√
−x (x→ −∞), (5.34)

which is valid because the second derivative of
√−x is small compared with x as x→ −∞.

This problem is interesting because the asymptotic behavior y(x) ∼ −√−x is stable but

the asymptotic behavior y(x) ∼ √−x is unstable. To verify this, we calculate the corrections to

these two asymptotic behaviors. When x is large and negative, the solution to (5.33) oscillates

about and decays slowly towards the curve −√−x [155]:

y(x) ∼ −
√
−x+ c(−x)−1/8 cos

[
4
5

√
2(−x)5/4 + d

]
(x→ −∞), (5.35)

where c and d are two arbitrary constants. The di�erential equation (5.33) is second order and,

as expected, this asymptotic behavior contains two arbitrary constants.

On the other hand, the correction to the +
√−x behavior has an exponential form

y(x) ∼
√
−x+ c±(−x)−1/8 exp

[
±4

5

√
2(−x)5/4

]
(x→ −∞). (5.36)

Thus, if c+ 6= 0, nearby solutions veer away from the curve
√−x as x → −∞. The special

solutions that decay exponentially towards
√−x form a one-parameter and not a two-parameter

class because c+ = 0. The vanishing of c+ gives an eigenvalue condition on the choice of initial

slope y′(0). For each value of y(0) there is a set of eigencurves (separatrices). These curves

correspond to a discrete set of initial slopes y′(0) [169].
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We have performed a numerical study of the solutions to (5.33) that satisfy the initial

conditions y(0) = 1 and y′(0) = a. There is a discrete set of eigencurves whose initial positive

slopes are a1 = 0.231955, a2 = 3.980669, a3 = 6.257998, a4 = 8.075911, a5 = 9.654843, a6 =

11.078201, a7 = 12.389217, a8 = 13.613878, a9 = 14.769304, a10 = 15.867511, a11 = 16.917331,

a12 = 17.925488. (There is also an in�nite discrete set of negative eigenvalues.) The �rst two of

these curves are shown in the left panel and the next two are shown in the right panel of Fig. 5.6.

Note that the separatrix curves do not just exhibit n maxima as do the dashed curves in Fig. 5.2.

Rather, these curves pass through increasingly many double poles. The curve corresponding to

a1 approaches +
√−x from above and the curve corresponding to a2 approaches +

√−x from

below. The curves corresponding to a3 and a4 also approach +
√−x from above and below, but

these curves �rst pass through one double pole. Similarly, the curves corresponding to a5 and a6

pass through two double poles, and the curves corresponding to a2n−1 and a2n pass through n

double poles. The key feature of these separatrix curves is that after passing through n double

poles, they approach the curve +
√−x exponentially fast as x → −∞. If y′(0) lies in between

two eigenvalues, the curve either oscillates about and approaches the stable asymptotic curve

−√−x as in the left panel of Fig. 5.7 or else it lies above the unstable asymptotic curve +
√−x

and passes through an in�nite number of double poles as in the right panel of Fig. 5.7.

We have used Richardson extrapolation [168] to �nd the behavior of the numbers an for

large n, and we obtain a result very similar in structure to that in (5.9). Speci�cally, we �nd

that

an ∼ Cn3/5 (n→∞), (5.37)

where C = 4.28373. The constant C appears to be universal in that it is seems to be the same

for all values of y(0). We are currently trying to apply our analytical asymptotic methods to

this problem to �nd an analytic calculation for the number C.

5.4.2 Conjectural connection with the power-series constant

There is a possible link between this work and the power-series constant P in the theory of

complex variables; P is de�ned as follows. Let F be the class of functions f(z) that are analytic

in the unit circle |z| < 1 but singular on the unit circle. If f ∈ F , the radius of convergence of
the Taylor series f(z) =

∑∞
k=0 akz

k is 1. The nth partial sum

Sn(z) =
n∑
k=0

akz
k (5.38)
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Figure 5.6: Eigencurve solutions to the �rst Painlevé transcendent. The eigencurves pass
through y(0) = 1 and the slopes of the curves at x = 0 are the eigenvalues an. As x →
−∞, the eigencurves approach +

√−x exponentially rapidly. Left panel: �rst two eigencurves
corresponding to the eigenvalues a1 = 0.231955 and a2 = 3.980669. The a1 curve approaches
+
√−x from above and the a2 curve approaches +

√−x from below. Right panel: The next two
eigencurves for the Painlevé transcendent corresponding to the eigenvalues a3 = 6.257998 and
a4 = 8.075911. Note that the second pair of eigenvalues passes through one double pole before

approaching the curve +
√−x.

of the Taylor series is a polynomial in z. We de�ne the real number ρn(f) as the modulus of the

zero of Sn(z) that is most distant from the origin. Next, we de�ne the in�mum limit ρ(f) of the

sequence of numbers ρn(f):

ρ(f) ≡ lim inf
n→∞

ρn(f) = lim
n→∞

[
inf
k>n

ρk(f)

]
. (5.39)

Finally, we de�ne the power series constant P as the supremum of ρ(f) over all functions f in

F :
P ≡ sup

f∈F
ρ(f). (5.40)
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Figure 5.7: Non-eigenvalue solutions to the �rst Painlevé transcendent. If y(0) = 1 but y′(0)
is not one of the eigenvalues an, the curve either oscillates about and approaches the stable
asymptotic curve −√−x as in the left panel or else it lies above the unstable asymptotic curve

+
√−x and passes through an in�nite number of double poles as in the right panel.

The quest to determine P was initiated by Hayman [170]. The precise value of P is still not

known, but lower and upper bounds on P have been established. The power series constant was

known to lie in the interval 1 ≤ P ≤ 2 until Clunie and Erdös [171] improved these bounds to
√

2 ≤ P ≤ 2, and Buckholtz [172] sharpened these bounds to 1.7 ≤ P ≤ 121/4. These bounds

were further optimized by Frank (as explained in Ref. [172]) to

1.7818 ≤ P ≤ 1.82. (5.41)

The bounds (5.41) appear to be the best known to date.
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To illustrate, we compute ρ(f) for some speci�c functions. For the class of functions

fτ (z) =
∞∑
k=0

exp[iπτ(k2 + k)] zk (5.42)

the sequence ρn(f) has a limit as n→∞. For example, it is easy to show that for τ = 1/4,

f1/4(z) =
(
1 + iz − iz2 − z3

)
/
(
1 + z4

)
. (5.43)

For this function we get ρ20

(
f1/4

)
≈ 1.69999, ρ21

(
f1/4

)
≈ 1.70000, ρ22

(
f1/4

)
≈ 1.70001,

ρ23

(
f1/4

)
≈ 1.70002, ρ24

(
f1/4

)
≈ 1.70002, ρ25

(
f1/4

)
≈ 1.70002. This sequence converges to

the zero of largest modulus, z = −
(
1 + i +

√
2i− 4

)
/2, of the function f1/4(z). This limit is

close to the value of P . The function

f3/8(z) =
(

1 + e3iπ/4z + eiπ/4z2 + iz3 − iz4 − eiπ/4z5 − e3iπ/4z6 − z7
)
/
(
1 + z8

)
(5.44)

gives a ρ(f) that is even closer to P : ρ
(
f3/8

)
≈ 1.7804. In general, to determine ρ(f) accurately

we terminate the Taylor series at su�ciently large n and evaluate ρn(f). In Fig. 5.8 we display

our numerical results for ρ50(fτ ) obtained from the partial sum S50(z). The maximum values

are ρ50(f0.3780) = ρ50(f0.8780) ≈ 1.7818, which agree with the best known lower bound for P to

the precision of the computation.

Figure 5.8: Plot of ρ50(fτ ) as a function of τ . At the optimal value of the parameter τ the
maximum of the curve is close to 1.7818.

It is not always true that the sequence ρn(f) has a limit. The in�mum limit in (5.39) is

used because it always produces a de�nite limit, even if the ordinary limit is ambiguous. For
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example, the function f(z) = (1−z/10)/(1−z4) gives the partial sequence . . ., ρ40(f) ≈ 1.00362,

ρ41(f) = 10, ρ42(f) =∞, ρ43(f) =∞, ρ44(f) ≈ 1.00328, ρ45(f) = 10, ρ46(f) =∞, ρ47(f) =∞,

ρ48(f) ≈ 1.00307, ρ49(f) = 10, . . .. (We adopt the convention in Ref. [172] that ρn(f) = ∞
when the partial sum Sn(z) is a polynomial of degree less than n.) There is no de�nite limit for

this sequence ρn(f), but the in�mum limit gives ρ(f) = 1, which is well below the value of P .

It is astonishing that A in (5.9) agrees with the best known lower bound for the power-

series constant P in (5.41). There is a plausible connection between the P and the asymptotic

behavior of eigenvalues: On one hand, P is associated with the zero of largest modulus of a

polynomial, namely, the nth partial sum of a Taylor series. On the other hand, a conventional

linear eigenvalue problem of the form Hψ = Eψ may be solved by introducing a basis and

replacing the operator H by an n×n matrix Hn. We then determine the eigenvalues numerically

by calculating the zeros of the secular polynomial Det(Hn − IE). Finding the asymptotic

behavior of the high-energy eigenvalues corresponds to �nding the largest zero of the secular

polynomial as n, the degree of the polynomial, tends to in�nity. We do not know whether

our constant 25/6 agrees exactly with the lower bound on P and we leave this observation as

coincidence. We hope to elaborate on the precise relation in a future chapter [173].

5.4.3 Final comments

In this chapter we have focused on separatrix behavior, which is a consequence of instabilities

of nonlinear di�erential equations. We have interpreted separatrices as being eigenfunctions

(eigencurves). The corresponding eigenvalues are the initial conditions that specify the sepa-

ratrix curves. For the di�erential equation y′(x) = cos[πxy(x)], we have shown that the nth

eigenvalue grows like 21/3
√

2n for large n. We have also done a numerical study of eigenvalues

and separatrices associated with the �rst Painlevé transcendent. To the currently known preci-

sion, the number 25/6 appears in another asymptotic context, namely, as the lower bound 1.7818

on the power series constant P . We conjecture that the number 25/6 may even be the exact

value of P .

We have studied here the asymptotic behavior of large eigenvalues. For linear eigenvalue

problems this limit is accessible by using WKB theory but for the nonlinear eigenvalue problem

studied here the large-eigenvalue limit is accessible because the problem becomes linear in this

limit; indeed, the large-eigenvalue separatrix curve was found by reducing the problem to a

linear random walk problem that can be solved exactly. The strategy of transforming a nonlinear

problem to an equivalent linear problem is reminiscent of the Hopf-Cole substitution that reduces

the nonlinear Burgers equation to the linear di�usion equation, the inverse-scattering analysis
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that reduces the nonlinear Korteweg-de Vries equation to a linear integral equation, of the

Bäcklund transformation that linearizes some integrable nonlinear wave equations. We believe

that the techniques introduced here to determine the asymptotic behavior of large eigenvalues

may apply to other nonlinear di�erential equations having instabilities and separatrix behavior.
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6
Nonlinear Eigenvalue Problems: Painlevé Transcendents

This chapter contains the materials of a submitted paper.1 This represents work performed by

me under the overall supervision of my advisor, C. M. Bender.

6.1 Introduction

The famous Painlevé transcendents are six nonlinear second-order di�erential equations whose

key features are that their movable (spontaneous) singularities are poles (and not, for example,

branch points or essential singularities). There is a vast literature on these remarkable di�erential

equations [161, 174�180]. These equations have arisen many times in mathematical physics;

for a small sample, see Refs. [181�188]. This chapter considers the �rst and second Painlevé

transcendents, referred to here as P-I and P-II. The initial-value problem (IVP) for the P-I

di�erential equation is

y′′(t) = 6[y(t)]2 + t, y(0) = c, y′(0) = b (6.1)

and the IVP for P-II (we have set an arbitrary additive constant to 0) is

y′′(t) = 2[y(t)]3 + ty(t), y(0) = c, y′(0) = b. (6.2)

Many asymptotic studies of the Painlevé transcendents have been published, but in this

chapter we present a simple numerical and asymptotic analysis that to our knowledge has not

appeared in the literature. This analysis concerns the initial conditions that give rise to special

1C. M. Bender and J. Komijani, �Painlevé Transcendents and PT-Symmetric Hamiltonians,� arXiv:1502.04089
[math-ph].
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unstable separatrix solutions of P-I and P-II. Our asymptotic analysis veri�es the numerical

results given in this chapter for P-I and P-II as well as some preliminary numerical calculations

that were presented in an earlier chapter on nonlinear di�erential-equation eigenvalue problems

[189].

The main idea, originally introduced in Ref. [189], is that a nonlinear di�erential equation

may have a discrete set of critical initial conditions that give rise to unstable separatrix solutions.

These discrete initial conditions can be thought of as eigenvalues and the separatrices that stem

from these initial conditions can be viewed as the corresponding eigenfunctions. The objective

in Ref. [189] was to �nd the large-n (semiclassical) asymptotic behavior of the nth eigenvalue.

The general analytical approach that was proposed was to simplify the nonlinear di�erential

problem to a linear problem that could be used to determine the leading asymptotic behavior

of the eigenvalues as n→∞.

A toy model was used in Ref. [189] to explain the concept of a nonlinear eigenvalue problem.

This model makes use of the elementary �rst-order di�erential equation problem

y′(t) = cos[πt y(t)], y(0) = a. (6.3)

It was shown that the solutions to this initial-value problem pass through n maxima before

vanishing like 1/t as t → ∞. As the initial condition a = y(0) increases past special critical

values an, the number of maxima jumps from n to n+1. At these critical values the solution y(t)

to (6.3) is an unstable separatrix curve in the following sense: At values of y(0) in�nitesimally

below an the solution merges with a bundle of stable solutions all having n maxima and when

y(0) is in�nitesimally above an the solution merges with a bundle of stable solutions all having

n + 1 maxima. The challenge is to determine the asymptotic behavior of the critical values an

for large n. (This generic problem is the analog of a semiclassical high-energy approximation

in quantum mechanics.) To solve this problem it was shown that for large n, the nonlinear

di�erential equation problem (6.3) reduces to a linear one-dimensional random-walk problem.

The random-walk problem was solved exactly, and it was shown analytically that

an ∼ 25/6√n (n→∞). (6.4)

Kerr subsequently found an alternative solution to this asymptotics problem and veri�ed (6.4)

[190].

The nonlinear eigenvalue problem described above is similar in many respects to the linear

eigenvalue problem for the time-independent Schrödinger equation. For a potential V (x) that
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rises as x→ ±∞, the eigenfunctions ψ(x) of the Schrödinger eigenvalue problem

− ψ′′(x) + V (x)ψ(x) = Eψ(x), ψ(±∞) = 0, (6.5)

are unstable with respect to small changes in the eigenvalue E; that is, if E is increased or

decreased slightly, ψ(x) abruptly ceases to obey the boundary conditions [and thus is not nor-

malizable (square integrable)]. Furthermore, like the eigenfunctions (separatrix curves) of (6.3),

the eigenfunction ψn(x) corresponding to the nth eigenvalue has n oscillations in the classically

allowed region before decreasing monotonically to 0 in the classically forbidden region.

This chapter considers four eigenvalue problems. First, for P-I we �nd the large-n behavior

of the positive eigenvalues bn for the initial condition y(0) = 0, y′(0) = bn and also the large-n

behavior of the negative eigenvalues cn for the initial condition y(0) = cn, y
′(0) = 0. We show

that

bn ∼ BIn
3/5 and cn ∼ CIn

2/5.

Second, for P-II we show that for large n the asymptotic behaviors of bn and cn are given by

bn ∼ BIIn
2/3 and cn ∼ CIIn

1/3.

We determine the constants BI, CI, BII, and CII both numerically and analytically.

This chapter is organized as follows. In Sec. 6.2 we obtain the constants BI and CI by using

numerical techniques and in Sec. 6.3 we do so analytically by reducing the large-eigenvalue prob-

lem to the linear time-independent Schrödinger equation for the cubic PT -symmetric Hamilto-

nianH = 1
2p

2+ix3. Next, we study the eigenvalue problem for the second Painlevé transcendent.

In Sec. 6.4 we present a numerical determination of the large-n behavior of the eigenvalues and

in Sec. 6.5 we verify the numerical results in Sec. 6.4 by using asymptotic analysis to reduce the

nonlinear large-eigenvalue problem for P-II to the linear Schrödinger equation for the quartic

PT -symmetric Hamiltonian H = 1
2p

2− 1
2x

4. In Sec. 6.6 we make some brief concluding remarks.

6.2 Numerical analysis of the �rst Painlevé transcendent

In Ref. [189] there is a brief numerical study of the initial-value problem for the �rst Painlevé tran-

scendent (6.1). It is easy to see that there are two possible asymptotic behaviors as t→ −∞; the

solutions to the P-I equation can approach either +
√
−t/6 or −

√
−t/6. An elementary asymp-

totic analysis shows that if the solution y(t) approaches −
√
−t/6, the solution oscillates stably

about this curve with slowly decreasing amplitude [155]. However, while the curve +
√
−t/6
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is a possible asymptotic behavior, this behavior is unstable and nearby solutions tend to veer

away from it. We de�ne the eigenfunction solutions to the �rst Painlevé transcendent as those

solutions that do approach +
√
−t/6 as t→ −∞. These separatrix solutions resemble the eigen-

functions of conventional quantum mechanics in that they exhibit n oscillations before settling

down to this asymptotic behavior. However, because the P-I equation is nonlinear, these oscil-

lations are violent; the nth eigenfunction passes through [n/2] double poles where it blows up

before it smoothly approaches the curve +
√
−t/6. (The symbol [n/2] means greatest integer in

n/2.)

One can specify two di�erent kinds of eigenvalue problems for P-I, each of which is fun-

damentally related to the instability of the asymptotic behavior +
√
−t/6. One can (i) �x the

initial value y(0) and look for (discrete) values of the initial slopes y′(0) = b that give rise to

solutions approaching +
√
−t/6, or else (ii) one can �x the initial slope y′(0) and look for the

(discrete) initial values of y(0) = c that give rise to solutions approaching +
√
−t/6.

6.2.1 Initial-slope eigenvalues for Painlevé I

Let us examine the numerical solutions to the initial-value problem for the P-I equation (6.1)

for t < 0. To �nd these solutions we use Runge-Kutta to integrate down the negative-real axis.

When we approach a double pole and the solution becomes large and positive, we estimate the

location of the pole and integrate along a semicircle in the complex-t plane around the pole. We

then continue integrating down the negative-real axis. We choose the �xed initial value y(0) = 0

and allow the initial slope y′(0) = b to have increasingly positive values. (We only present results

for positive initial slope; the behavior for negative initial slope is analogous and describing it

would be repetitive.) Our numerical analysis shows that the particular choice of y(0) is not

crucial; for any �xed y(0) the large-n asymptotic behavior of the initial-slope eigenvalues bn is

the same.

We �nd that above the critical value b1 = 1.851854034 (the �rst eigenvalue) there is a

continuous interval of b for which y(t) �rst has a minimum and then has an in�nite sequence

of double poles (see Fig. 6.1, left panel). However, if b increases past the next critical value

b2 = 3.004031103 (the second eigenvalue), the character of the solutions changes abruptly and

y(t) oscillates stably about −
√
−t/6 (Fig. 6.1, right panel). When b exceeds the critical value

b3 = 3.905175320 (the third eigenvalue), the solutions again exhibit an in�nite sequence of poles

(Fig. 6.2, left panel). When b increases past the fourth critical value b4 = 4.683412410 (fourth

eigenvalue), the solutions once again oscillate stably about −
√
−t/6 (Fig. 6.2, right panel). Our

numerical analysis indicates that there is an in�nite sequence of critical points (eigenvalues) at
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which the P-I solutions alternate between in�nite sequences of double poles and stable oscillation

about −
√
−t/6.
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Figure 6.1: Typical behavior of solutions to the �rst Painlevé transcendent y(t) for the initial
conditions y(0) = 0 and b = y′(0). In the left panel b = 2.504031103, which lies between the
eigenvalues b1 = 1.851854034 and b2 = 3.004031103. In the right panel b = 3.504031103, which
lies between the eigenvalues b2 = 3.004031103 and b3 = 3.905175320. The dashed curves are
y = ±

√
−t/6. In the left panel the solution y(t) has an in�nite sequence of double poles and in

the right panel the solution oscillates stably about −
√
t/6.

The solutions that arise when y′(0) is at an eigenvalue have a completely di�erent (and

unstable) character from those in Figs. 6.1 and 6.2. These special solutions pass through a �nite

number of double poles (analogous to the oscillatory behavior of quantum-mechanical bound-

state eigenfunctions in the classically allowed region of a potential well) and then undergo a

turning-point-like transition in which the poles cease and y(t) exponentially approaches the

limiting curve +
√
−t/6. The solutions arising from the �rst and second critical points b1 and b2
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Figure 6.2: Solutions to the P-I equation (6.1) for y(0) = 0 and b = y′(0). Left panel:
b = 4.583412410, which lies between the eigenvalues b3 = 3.905175320 and b4 = 4.6834124103.
Right panel: b = 4.783412410, which lies between the eigenvalues b4 = 4.683412410 and b5 =

5.383086722.

are shown in Fig. 6.3, those arising from the third and fourth critical points b3 and b4 are shown

in Fig. 6.4, and those arising from the tenth and eleventh critical points b10 and b11 are shown

in Fig. 6.5. The critical points are analogous to eigenvalues because they give rise to unstable

separatrix solutions; if y′(0) changes by an in�nitesimal amount above or below a critical value,

the character of the solutions changes abruptly and the solutions exhibit the two possible generic

behaviors shown in Figs. 6.1 and 6.2.

In Ref. [189] a numerical asymptotic study of the critical values bn for n� 1 was performed

by using Richardson extrapolation [191]. [In Ref. [189] the initial value was chosen to be y(0) = 1

rather than y(0) = 0 as in the current chapter. However, as emphasized above, if y(0) is held

176



−8 −7 −6 −5 −4 −3 −2 −1 0
−4

−3

−2

−1

0

1

2

3

4

t

y

−10 −8 −6 −4 −2 0
−4

−3

−2

−1

0

1

2

3

4

t

y

Figure 6.3: First two separatrix solutions (eigenfunctions) of Painlevé I with initial condition
y(0) = 0. Left panel: y′(0) = b1 = 1.851854034; right panel: y′(0) = b2 = 3.004031103. The

dashed curves are y = ±
√
−t/6.

�xed, we �nd that the large-n asymptotic behavior of the initial slope bn is insensitive to the

choice of y(0).] It was found in Ref. [189] that for large n, the nth critical value had the

asymptotic behavior

y′n(0) = bn ∼ BIn
3/5 (n→∞). (6.6)

In Ref. [189] the constant BI was determined numerically to an accuracy of about four or �ve

decimal places. However, we have now performed a more accurate numerical determination of

the constant BI by applying �fth-order Richardson extrapolation to the �rst eleven eigenvalues,
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Figure 6.4: Third and fourth eigenfunctions of Painlevé I with initial condition y(0) = 0. Left
panel: y′(0) = b3 = 3.905175320; right panel: y′(0) = b4 = 4.683412410.

and we have found the value of BI accurate to one part in nine decimal places:

BI = 2.09214674. (6.7)

On the basis of our numerical analysis, we can say with con�dence that the underlined digit lies

in the range from 3 to 5, so our determination of BI is accurate to one part in 2× 108.

6.2.2 Initial-value eigenvalues for Painlevé I

If we hold the initial slope �xed at y′(0) = 0 and allow the initial value y(0) = c to become

increasingly negative, we �nd that there is a sequence of negative eigenvalues cn for which
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Figure 6.5: Tenth and eleventh eigenfunctions of Painlevé I with initial condition y(0) = 0.
Left panel: y′(0) = b10 = 8.244932302; right panel: y′(0) = b11 = 8.738330156. Note that as
n increases, the eigenfunctions pass through more and more double poles before exhibiting a
turning-point-like transition and approaching the limiting curve +

√
−t/6 exponentially rapidly.

This behavior is analogous to that of the eigenfunctions of a time-independent Schrödinger
equation for a particle in a potential well; the higher-energy eigenfunctions exhibit more and
more oscillations in the classically allowed region before entering the classically forbidden region,

where they decay exponentially.

the solutions behave like the eigenfunction separatrix solutions in Figs. 6.3�6.5. The �rst four

eigenfunctions are plotted in Figs. 6.6 and 6.7.

Applying fourth-order Richardson extrapolation to the �rst 15 eigenvalues, we �nd that for

large n the sequence of initial-value eigenvalues cn is asymptotic to CIn
2/5, where the numerical

value of the constant CI is

CI = −1.0304844. (6.8)
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Figure 6.6: First two separatrix solutions (eigenfunctions) of Painlevé I with �xed initial slope
y′(0) = 0. Left panel: y(0) = c1 = −0.7401954236; right panel: y(0) = c2 = −1.206703845.

The dashed curves are y = ±
√
−t/6.

We are con�dent that the �nal digit is accurate to an error of ±1 and thus CI is determined to

an accuracy of one part in 107.

6.3 Asymptotic calculation of BI and CI

In this section we present an analytic calculation of BI and CI in (6.7) and (6.8). To begin, we

multiply the P-I di�erential equation in (6.1) by y′(t) and integrate from t = 0 to t = x. We get

H ≡ 1
2 [y′(x)]2 − 2[y(x)]3 = 1

2 [y′(0)]2 − 2[y(0)]3 + I(x), (6.9)
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Figure 6.7: Third and fourth eigenfunctions of Painlevé I with initial slope y′(0) = 0. Left
panel: y(0) = c3 = −1.484375587; right panel: y(0) = c4 = −1.69951765.

where I(x) =
∫ x

0 dt ty
′(t). Note that the path of integration is the same as that used to calculate

y(t) numerically in Sec. 6.2; it follows the negative-real axis until is gets near a pole, at which

point it makes a semicircular detour in the complex-t plane to avoid the pole.

If we evaluate I(x) for large |x| in the classically allowed region (just before the poles

abruptly cease at the turning point), we �nd that as n → ∞, I(x) �uctuates and becomes

small compared with H. This is not surprising because I(x) receives many positive and negative

contributions from the poles. [In fact, by calculating I(x) as x→ −∞, we can see a clear signal

of an eigenvalue; as y′(0) = b passes an eigenvalue, I(x) goes from having positive to negative

(or negative to positive) �uctuations but at an eigenvalue I(x) is smooth and not �uctuating.]

Thus, for large n we treat the �uctuating quantity I(x) as small, and if we do so we can interpret
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H as a time-independent quantum-mechanical Hamiltonian. [The isomonodromic properties of

H when I(x) is not neglected were studied in Ref. [161].]

We conclude that the large-n (semiclassical) behavior of the eigenvalues [that is, the initial

conditions in (6.1)] can be determined by solving the linear quantum-mechanical eigenvalue

problem Ĥψ = Eψ, where Ĥ = 1
2 p̂

2 − 2x̂3. To �nd these eigenvalues we rotate Ĥ into the

complex plane [192] and obtain the well-studied PT -symmetric Hamiltonian [193]

Ĥ = 1
2 p̂

2 + 2ix̂3. (6.10)

The large eigenvalues of this Hamiltonian can be found by using the complex WKB tech-

niques discussed in detail in Ref. [193]. For the general class of PT -symmetric Hamiltonians

Ĥ = 1
2 p̂

2 + gx̂2 (ix̂)ε (ε ≥ 0), the WKB approximation to the nth eigenvalue (n� 1) is given by

En ∼
1

2
(2g)2/(4+ε)

 Γ
(

3
2 + 1

ε+2

)√
π n

sin
(

π
ε+2

)
Γ
(

1 + 1
ε+2

)
(2ε+4)/(ε+4)

. (6.11)

Thus, for H in (6.10) we take g = 2 and ε = 1 and obtain the asymptotic behavior

En ∼ 2
[√

3πΓ
(

11
6

)
n/Γ

(
1
3

)]6/5
(n→∞). (6.12)

Since Ĥ in (6.10) is time independent, we can evaluate H in (6.9) for �xed y(0) and large

y′(0) = bn and obtain the result that

bn ∼
√

2En = BIn
3/5 (n→∞), (6.13)

which veri�es (6.6). We then read o� the analytic value of the constant BI:

BI = 2
[√

3πΓ
(

11
6

)
/Γ
(

1
3

)]3/5
, (6.14)

which agrees with the numerical result in (6.7). Also, if we take the initial slope y′(0) to vanish

and take the initial condition y(0) = cn to be large, we obtain an analytic expression for CI,

CI = −
[√

3πΓ
(

11
6

)
/Γ
(

1
3

)]2/5
, (6.15)

which agrees with the numerical result in (6.8).
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6.4 Numerical analysis of the second Painlevé transcendent

To understand the behavior of solutions to the initial-value problem in (6.2) for Painlevé II, we

follow the procedure used in Sec. 6.2 to study P-I. An elementary asymptotic analysis shows

that as t → −∞, there are three possible asymptotic behaviors for solutions y(t). First, y(t)

can oscillate stably about the negative axis. Second, y(t) can approach the curves ±
√
−t/2;

however, both of these asymptotic behaviors are unstable.

If we numerically integrate (6.2), we observe that when t becomes large and negative, a

typical solution to the P-II initial-value problem either oscillates about the negative axis or

passes through an in�nite sequence of simple poles. However, it is also possible to �nd special

eigenfunction solutions that pass through only a �nite number of poles and then approach either

the positive or the negative branches of the square-root curves. These eigenfunctions obey the

boundary conditions y(0) = 0 and y′(0) = ±b. [Note that P-II is symmetric under y → −y, so
there are two sets of eigenfunctions, one for each sign of y′(0).] We study these eigenfunctions

numerically in Subsec. 6.4.1. The P-II equation is particularly interesting because as t → +∞,

the behavior y → 0 becomes unstable. Thus, it is possible to have new kinds of eigenfunctions

for positive t as well. We seek eigenfunctions that satisfy y′(0) = 0 and y(0) = c and examine

the positive-c eigenfunctions numerically in Subsec. 6.4.2.

6.4.1 Initial-slope eigenvalues for Painlevé II

Similar to what we found in Sec. 6.2, if we choose y(0) = 0, there are critical values y′(0) = bn

at which the solutions y(t) change their character. In Figs. 6.8 and 6.9 we plot the solutions to

the P-II equation for the initial condition y(0) = 0 and y′(0) = b for b1 < b < b2, b2 < b < b3,

b3 < b < b4, and b4 < b < b5. Note that in these �gures the character of the solution alternates

between having an in�nite sequence of simple poles and oscillating stably about y(t) = 0.

However, when y′(0) = b is at a critical value (eigenvalue) bn, the solution y(t) passes through

a �nite number [n/2] of simple poles and then approaches either +
√
−t/2 or −

√
−t/2. These

eigenfunctions (separatrices) are plotted in Figs. 6.10, 6.11, and 6.12 for n = (1, 2), (3, 4), and

(20, 21).

Note that the eigenfunctions in Figs. 6.10, 6.11, and 6.12 alternate between approaching

the upper-unstable branch +
√
−t/2 or the lower-unstable branch −

√
−t/2, and thus there are

actually two sequences of eigenvalues, one for even n and one for odd n. Using Richardson

extrapolation, we �nd that the sequences of eigenvalues b2n and b2n+1 have the same asymptotic
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Figure 6.8: Typical behavior of solutions to the second Painlevé transcendent for the initial
conditions y(0) = 0 and b = y′(0). In the left panel b = 1.028605106, which lies between the
eigenvalues b1 = 0.5950825526 and b2 = 1.528605106. In the right panel b = 2.028605106,
which lies between the eigenvalues b2 = 1.528605106 and b3 = 2.155132869. In the left panel
the solution y(t) has an in�nite sequence of simple poles and in the right panel the solution

oscillates stably about −
√
t/6. The dashed curves are the functions ±

√
−t/2.

behavior

b2n ∼ b2n+1 ∼ BIIn
2/3 (n→∞). (6.16)

Our numerical calculations give

BII = 1.8624128. (6.17)

The numerical data for P-II are slightly more noisy than those for P-I, and fourth-order Richard-

son extrapolation only gives the underlined eighth digit as 8± 2.
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Figure 6.9: Solutions to the P-II equation (6.2) for y(0) = 0 and b = y′(0). Left panel:
b = 2.600745985, which lies between the eigenvalues b3 = 2.155132869 and b4 = 2.700745985.
Right panel: b = 2.800745985, which lies between the eigenvalues b4 = 2.700745985 and b5 =

3.195127590.

6.4.2 Initial-value eigenvalues for Painlevé II

Next, we plot the positive-t solutions to P-II for vanishing initial slope and positive initial

condition for t ≥ 0. As t → ∞, the nth eigenfunction passes through n simple poles before

it approaches zero monotonically. In Figs. 6.13, 6.14, and 6.15 we plot the six eigenfunctions

corresponding to n = (1, 2), (3, 4), and (13, 14). (Because of the symmetry of P-II, for every

positive eigenvalue there is a corresponding negative eigenvalue. We do not plot the negative-

eigenvalue solutions.)
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Figure 6.10: First two separatrix solutions (eigenfunctions) of Painlevé II with initial condition
y(0) = 0. Left panel: y′(0) = b1 = 0.5950825526; right panel: y′(0) = b2 = 1.528605106. The

dashed curves are ±
√
−t/2.

Using fourth-order Richardson we determine that for large n, cn ∼ CIIn
1/3, where

CII = 1.21581165. (6.18)

The last digit 5 has an uncertainty of ±1.
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Figure 6.11: Third and fourth eigenfunctions of Painlevé II with initial condition y(0) = 0.
Left panel: y′(0) = b3 = 2.155132869; right panel: y′(0) = b4 = 2.700745985.

6.5 Asymptotic calculation of BII and CII

To obtain analytic expressions for BII in (6.17) and CII in (6.18), we follow the same procedure

as in Sec. 6.3 for P-I. We multiply the P-II di�erential equation in (6.2) by y′(t) and integrate

from t = 0 to t = x, where x is in the turning-point region which the simple poles stop. The

result is

H ≡ 1
2 [y′(x)]2 − 1

2 [y(x)]4 = 1
2 [y′(0)]2 − 1

2 [y(0)]4 + I(x), (6.19)

where I(x) =
∫ x

0 dt ty(t)y′(t). The path of integration is the same as that used to calculate

P-II numerically in Sec. 6.4; it follows the negative-real axis until it gets near a simple pole, at

which point it makes a semicircular detour in the complex-t plane to avoid the pole. Again, as
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Figure 6.12: The twentieth and twenty-�rst eigenfunctions of Painlevé II with initial condition
y(0) = 0. Left panel: y′(0) = b20 = 8.499476190; right panel: y′(0) = b21 = 8.787666814.

in Sec. 6.3, we argue that along this path the integrand of I(x) is oscillatory and because of

cancellations we may neglect I(x) when n is large.

We treat H as the PT -symmetric quantum-mechanical Hamiltonian

Ĥ = 1
2 p̂

2 − 1
2 x̂

4 (6.20)

and we use (6.11) with g = 1/2 and ε = 2 to obtain the formula

En ∼ 1
2

[
3n
√

2πΓ
(

3
4

)
/Γ
(

1
4

)]4/3
(6.21)
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Figure 6.13: First two separatrix solutions (eigenfunctions) of Painlevé II with �xed initial
slope y′(0) = 0. Left panel: y(0) = c1 = 1.222873339; right panel: y(0) = c2 = 1.533883935.

for the large eigenvalues of Ĥ. Finally, we calculate the eigenvalues bn by using

√
2En ∼

[
3n
√

2πΓ
(

3
4

)
/Γ
(

1
4

)]2/3
(n→∞). (6.22)

This result allows us to identify the value of BII in (6.17) as

BII =
[
3
√

2πΓ
(

3
4

)
/Γ
(

1
4

)]2/3
. (6.23)

This result agrees with the numerical determination in (6.17).

To calculate CII we observe from Figs. 6.13-6.15 that the initial value y(0) is positive.

However, if we neglext I(x) and assume a vanishing initial slope, we see that the right side of
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Figure 6.14: Third and fourth eigenfunctions of Painlevé II with initial slope y′(0) = 0. Left
panel: y(0) = c3 = 1.754537281; right panel: y(0) = c4 = 1.93061783.

(6.19) negative. Thus, as we did for the cubic Hamiltonian 1
2 p̂

2 − 2x̂3, we perform a complex

rotation of the coupling constant to convert the quartic Hamiltonian to the form

Ĥ = 1
2 p̂

2 + 1
2 x̂

4. (6.24)

This is the conventional Hermitian quartic-anharmonic-oscillator Hamiltonian, and does not

belong to the class of PT -symmetric Hamiltonians Ĥ = 1
2 p̂

2 + gx̂2(ix̂)ε. A WKB calculation

gives the large-eigenvalue approximation

En ∼
[
3n
√
πΓ
(

3
4

)
/Γ
(

1
4

)]4/3
(n→∞). (6.25)
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Figure 6.15: Thirteenth and fourteenth separatrix solutions (eigenfunctions) of Painlevé II
with �xed initial slope y′(0) = 0. Left panel: y(0) = c1 = 2.858869051; right panel: y(0) = c2 =

2.9303576515.

Thus, we read o� the value of CII :

CII =
[
3
√
πΓ
(

3
4

)
/Γ
(

1
4

)]1/3
, (6.26)

which agrees exactly with the numerical result in (6.18).
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6.6 Brief concluding remarks

In this chapter we have shown that the �rst two Painlevé equations, P-I and P-II, exhibit

instabilities that are associated with separatrix solutions. The initial conditions that give rise to

these separatrix solutions are eigenvalues. We have calculated the semiclassical (large-eigenvalue)

behavior of the eigenvalues in two ways, �rst by using numerical techniques and then by using

asymptotic methods to reduce the initial-value problems for the nonlinear P-I and P-II equations

to linear eigenvalue problems associated with the time-independent Schrödinger equation. The

agreement between these two approaches is exact.

The obvious continuation of this work is to examine the next four Painlevé equations, P-

III � P-VI, to see if there are instabilities, separatrices, and eigenvalues for these equations

as well. However, the techniques we have applied here may also be useful for other nonlinear

di�erential equations such as the Thomas-Fermi equation y′′(x) = [y(x)]3/2/
√
x, which is posed

as a boundary-value problem satisfying the boundary conditions y(0) = 1 and y(∞) = 0. The

solution to this problem is unstable with respect to small changes in the initial data; if the initial

slope y′(0) is varied by a small amount, the solution develops a spontaneous singularity at some

positive value a. A leading-order local analysis suggests that this singularity is a fourth-order

pole of the form 400(x−a)−4. However, this singularity is not a pole. Indeed, a higher-order local

analysis indicates that there is a logarithmic-branch-point singularity at x = a as well and thus

the solutions to the Thomas-Fermi equation live on multisheeted Riemann surfaces. It would

be interesting to see if our work on nonlinear eigenvalue problems extends beyond meromorphic

functions.
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A
The QCD Action in Euclidean Space-Time

Under the Wick rotation x0 → −ix4 and ∂0 → i∂4. Then the QCD Lagrangian and action in

Minkowski and Euclidean space-time are related by

LM = −LE , SM = iSE . (A.1)

The fermionic part of the QCD action in Minkowski space-time is

Sfermion =

Nf∑
f=1

3∑
c=1

∫
d4x ψ̄f,c(D/−mf )ψf,c , D/ = iγµ(∂µ − igSAµ) , (A.2)

and its gauge part is

Sgauge = −
∫
d4x

1

2
TrFµνFµν , Fµν = ∂µAν − ∂νAµ − igS [Aµ, Aν ] . (A.3)

The γµ matrices satisfy the following anticommutation relation

{γµ, γν} = 2gµν . (A.4)

In Euclidea space-time, it is convenient to use the Hermitean choice γE
4 = γ0 and γE

j = −iγj

with the following anticommutation relation [6]

{γE
µ , γ

E
ν } = 2δµν . (A.5)
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Then the fermionic part of the QCD action in Euclidean space-time is given by

SEucl.
fermion =

Nf∑
f=1

3∑
c=1

∫
d4x ψ̄f,c(D/+mf )ψf,c , D/ = γE

µ (∂µ − igSAµ) , (A.6)

and its gauge part is

SEucl.
gauge = +

∫
d4x

1

2
TrFµνFµν , FEucl.

µν = ∂µAν − ∂νAµ − igS [Aµ, Aν ] . (A.7)

Note that the form of (∂µ−igSAµ) does not change when making the transition to the Euclidean

space-time, since both ∂0 and A0 follow the same rule: ∂0 → i∂4 and A0 → iA4 [6]. In Lattice

QCD the Euclidean space-time is understood, so we drop any labels reminding us of this.
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B
Two-point Correlation Functions in Staggered Fermions

The one component-staggered fermion �elds χ(x), with x in the dimensionless lattice units, can

be assembled into Dirac �elds ψ(y), living on 24 hypercubes of the original lattice, labeled by

y, with corners x = 2y +A, where Aµ = 0, 1. We say y is in blocked-lattice units since it refers

to the whole 24 hypercube. The one component-staggered fermion �elds χ(x) living at the sites

within each block can be assembled into Dirac �elds q(y) as

ψ(y)αi =
1

8

∑
A

(ΓA)αi UA(y) χ(2y +A) ,

ψ̄(y)αi =
1

8

∑
A

χ̄(2y +A) U †A(y) (Γ∗A)αi , (B.1)

where α and i label the Dirac and taste indices, respectively, ΓA is de�ned in Eq. (1.30), and

UA(y) is a product of the gauge links over some �xed path from 2y to 2y + A. The bilinear

fermions operators, with spin structure γs = Γs and taste structure ξt = Γ∗t are de�ned by

Ost = ψ̄(y)(γs ⊗ ξt)ψ(y) =
1

16

∑
A,B

χ̄(2y+A) U †A(y) UB(y) χ(2y+B)
1

4
Tr
(

Γ†AΓsΓBΓ†t

)
. (B.2)

The bilinear fermion operator becomes local by choosing Γt = Γs due to the fact that the trace

over the product of matrices forces A and B to be identical. This allows us to de�ne a 4-vector

local current as

Jµ,local = ψ̄(y)(γµ ⊗ ξµ)ψ(y) =
1

16

∑
A

χ̄(2y +A) αµ(A) χ(2y +A), (B.3)

where

αµ(A) = (−1)A1+···+A4+Aµ . (B.4)
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Choosing Γt = I, we have a 4-vector taste-singlet current (point-split current) as

Jµ,I = ψ̄(y)(γµ ⊗ I)ψ(y) =
1

16

∑
A,B

χ̄(2y +A) U †A(y) ηµ(A) UB(y) χ(2y +B)
(
δA+µ̂,B + δA−µ̂,B

)
,

(B.5)

where

ηµ(A) = (−1)A1+···+Aµ−1 , η1(A) = 1 . (B.6)

B.1 Two-point Correlation Functions

The two-point correlation function of χ and χ̄ at in�nite spatial volume and time can be written

as

C
[2]
AA′(y; y′) ≡ 〈χ(2y +A)χ̄(2y′ +A′)〉 =

∫ +π

−π

d4p

(2π)4
K−1
AA′(p) e

ip.(y−y′) . (B.7)

Here, both y and p are in blocked-lattice units. For the free case we have [6]

K−1
AA′(p) =

−i∑µ ΓµAA′(p) sin(
pµ
2 ) +MδAA′∑

µ sin2(
pµ
2 ) +M2

, (B.8)

where M is the fermion mass in lattice units, and

ΓµAA′(p) = eip.(A−A
′)/2(δA+µ̂,A′ + δA−µ̂,A′

)
ηµ(A) , (B.9)

where ηµ(A), de�ned in Eq. (B.6), is the remnant phase of the original Dirac structure. Note

that in Eq. (B.7) the momentum p is the momentum associated with the hypercube-blocks,

labeled by y, rather the original lattice cites with component x = 2y +A .

Projecting the free propagator to the spatial momentum p, we obtain

∑
y

e−ip.y C
[2]
AA′(y, y4; y′) = e−ip.y

′
K−1
AA′(p; y4 − y′4) , (B.10)

where

K−1
AA′(p; y4 − y′4) =

∫ +π

−π

dp4

2π
K−1
AA′(p, p4) eip4.(y4−y′4)

=
e−E(p)|y4−y′4|

s
√

1 + s2

(
−i
∑
µ

ΓµAA′(p̂) sin(
p̂µ
2

) +MδAA′
)
, (B.11)
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where s =
√
M2 + sin2 p

2 , E(p) = 2 sinh−1(s) , and p̂ denotes the momentum of an on-shell

particle as p̂ = (p, p̂4), where p̂4 = iE(p) sgn(y4 − y′4). Note that p̂4 = iE(p) sgn(A4 − A′4) if

y4 = y′4, and the dependence on p̂4 vanishes when y4 = y′4 as well as A4 = A′4.) Similarly one

can show that ∑
y′
C

[2]
AA′(y;y′, y′4) eip

′.y′ = K−1
AA′(p

′; y4 − y′4) eip
′.y . (B.12)

Now we can construct the two-point correlation function of the spin-taste (hypercube)

fermions ψ and ψ̄ as

G
[2]
αi,α′i′(y; y′) ≡ 〈ψαi(y)ψ̄α′i′(y

′)〉 =
1

64

∑
A,A′

(ΓA)αi UA(y) C
[2]
AA′(y; y′) U †A′(y

′) (Γ∗A′)α′i′ . (B.13)

For the free case we have

G
[2]
αi,α′i′(y; y′) =

1

64

∑
A,A′

(ΓA)αi C
[2]
AA′(y; y′) (Γ∗A′)α′i′ (B.14)

=

∫ +π

−π

d4p

(2π)4
Sαi,α′i′(p) e

ip.(y−y′) . (B.15)

To calculate S(p) we use the identity

1

4

∑
A

(ΓA)αi(Γ
∗
A)βj = δαβδij , (B.16)

and also the following relations

∑
A

cos
(p.(A−A′)

2

)(
δA+µ̂,A′ + δA−µ̂,A′

)
ηµ(A) ΓA = cos

(p.µ̂
2

)
γµ ΓA′ , (B.17)

∑
A

sin
(p.(A−A′)

2

)(
δA+µ̂,A′ + δA−µ̂,A′

)
ηµ(A) ΓA = sin

(p.µ̂
2

)
γ5 ΓA′ ξ

∗
5ξ
∗
µ , (B.18)

where ξµ = γ∗µ and ξ5 = γ∗5 = γ5. It should be emphasized that we use ξ matrices on the right

hand side of the ΓA′ because the column index of ΓA′ is a taste index rather than a Dirac index.

To derive the above equalities, it is enough to consider that for a given A′ there is only one

surviving value of A. Putting all the components together we obtain

Sαi,α′i′(p) =
1

16

−i∑µ sin(
pµ
2 )
[
cos(

pµ
2 )(γµ)αα′δii′ + i sin(

pµ
2 )(γ5)αα′ (ξ∗5ξ

∗
µ)i′i

]
+Mδαα′δii′∑

µ sin2 pµ
2 +M2

,

(B.19)
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which can be written as

S(p) =
1

16

∑
µ

[−i
2 sin(pµ) (γµ ⊗ I) + sin2(

pµ
2 ) (γ5 ⊗ ξµξ5)

]
+M(I ⊗ I)∑

µ sin2 pµ
2 +M2

. (B.20)

Note that we are using the Euclidean set of γ-matrices, which are Hermitian. This relation can

be expressed as

S(p) =
1

16

∑
µ−i sin(1

2pµ) Γµs-t(p) +M∑
µ sin2(1

2pµ) +M2
, (B.21)

where

Γµs-t(p) ≡ (γµ ⊗ I) exp
[
i1

2pµ(γµγ5 ⊗ ξµξ5)
]
. (B.22)

Projecting the free propagator to the spatial momentum p, we obtain

∑
y

e−ip.y G
[2]
αi,α′i′(y, y4; y′) = e−ip.y

′
Sαi,α′i′(p; y4 − y′4) , (B.23)

where

S(p; y4 − y′4) =

∫ +π

−π

dp4

2π
S(p, p4) eip4.(y4−y′4)

=
1

16

e−E(p)|y4−y′4|

s
√

1 + s2

×
(∑

µ

[−i
2

sin(p̂µ) (γµ ⊗ I) + sin2(
p̂µ
2

) (γ5 ⊗ ξµξ5)
]

+M(I ⊗ I)
)
,(B.24)

where s =
√
M2 + sin2 p

2 , E(p) = 2 sinh−1(s) , p̂ = (p, p̂4) and p̂4 = iE(p) sgn(y4 − y′4).

Eq. (B.24) is valid only if y4 6= y′4, otherwise it reads

S(p; 0) =

∫ +π

−π

dp4

2π
S(p, p4)

=
1

16
(1− s√

1 + s2
)(γ5 ⊗ ξ4ξ5) +

1

16

1

s
√

1 + s2

×
(∑

j

[−i
2

sin(p̂j) (γj ⊗ I) + sin2(
p̂j
2

) (γ5 ⊗ ξjξ5)
]

+M(I ⊗ I)
)
. (B.25)

(Note that (1− s/
√

1 + s2)(γ5 ⊗ ξ4ξ5) does not vanish in the naive continuum limit as s → 0.)

Similarly, one can show

∑
y′
G

[2]
αi,α′i′(y;y′, y′4) eip

′.y′ = Sαi,α′i′(p
′; y4 − y′4) eip

′.y . (B.26)
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C
Reduction to Irreducible Tensors

In Sec. 2.3.2, we need to reduce a 3-index tensor to irreducible Lorentz representations in order

to �nd the type-B2 chiral form for the current. The reduction is done explicitly here. For present

convenience we work in Euclidean space and use Euclidean rotational symmetry (plus parity)

instead of Lorentz symmetry, so we do not have to worry about upper and lower indices.

Consider a tensor Xαβρ, which may be taken to be traceless on the second two indices

Xαλλ = 0, where sum over λ is implied.1 The tracelessness may be assumed because the trace

term will simply reproduce type-A contributions, as in the discussion of LB2
2,a2 . In addition, we

may just consider the reduction of the part of X that is symmetric on the second two indices,

Y αβρ ≡ 1

2

(
Xαβρ +Xαρβ

)
(C.1)

since we will ultimately be interested in writing only the element Xµνν in terms of irreducible

tensors, and the antisymmetric part will not contribute.

The tensor Y transforms as the product of a vector (on the �rst index) and a traceless

symmetric tensor (on the second and third indices). To see what representations appear, we

use the fact that SO(4) = SU(2) × SU(2) to denote irreducible tensors by their spin under

the two SU(2) factors. A vector is the (1
2 ,

1
2) representation, while a traceless, symmetric two-

index tensor is the (1, 1) representation. The product thus contains (3
2 ,

3
2), (3

2 ,
1
2) ⊕ (1

2 ,
3
2), and

(1
2 ,

1
2), where parity interchanges the two SU(2) factors, making a single representation out of

the second component. The highest representation must be symmetric, and (3
2 ,

3
2) corresponds

to a completely symmetric, three index tensor Sαβρ, which is traceless on any pair of indices:

Sαλλ = Sλαλ = Sλλα = 0. The (3
2 ,

1
2) ⊕ (1

2 ,
3
2) is a traceless three index tensor Aαβρ of mixed

1In what follows λ will be used as a summation index, and sum over it is always implied when it appears
twice. However, all other indices are not summed over, even when they appear more than once.
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symmetry, antisymmetric on the �rst two indices (say). The (1
2 ,

1
2) is a vector W ρ, formed from

only the nonvanishing trace of Y :

W ρ = Y λλρ = Y λρλ . (C.2)

Constructing Sαβρ and Aαβρ, we have

Sαβρ =
1

3

(
Y αβρ + Y βρα + Y ραβ

)
− 1

9

(
δβρ Y λλα + δαρ Y λλβ + δαβ Y λλρ

)
, (C.3)

Aαβρ =
1

2

(
Y αβρ − Y βαρ

)
− 1

6

(
δαρ Y λλβ − δβρ Y λλα

)
. (C.4)

From the SU(2)×SU(2) quantum numbers, S and A should each be 16-dimensional. Checking

this for S is straightforward; for A, the following identity is helpful:

Aαβρ +Aβρα +Aραβ = 0 . (C.5)

Solving Eqs. (C.2) through (C.4) for Y αβρ gives the reduction

Y αβρ = Sαβρ +
2

3

(
Aαβρ −Aραβ

)
+

1

9

(
2 δαρ W β + 2 δαβ W ρ − δβρ Wα

)
. (C.6)

The particular case of interest is the reduction of Xµνν . From Eqs. (C.1) and (C.6), we have

Xµνν = Sµνν +
4

3
Aµνν +

1

9
(4 δµν W ν −Wµ) . (C.7)
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D
Expansion of Φ0 in terms of 1/mQ

Equation (3.8) contains the e�ects of hyper�ne splittings (e.g., M∗D −MD) and �avor splittings

(e.g., MDs −MD), but no other 1/mQ e�ects. Boyd and Grinstein [102] �nd some other contri-

butions at the same order as hyper�ne and �avor splittings. However, one can show that most

of these terms only produce 1/mQ corrections to the LECs relevant to the pseudoscalar-meson

decay constants. (Some of the terms violate heavy-quark spin symmetry, and therefore give

di�erent contributions to the pseudoscalar and vector-meson decay constants at this order, but

we are not concerned with vector-meson decay constants here.) Following Eq. (20) of Ref. [102],

at the order of O(1/mQ,m
0
q) where mq is a light quark mass, the 1/mQ terms can be included

by replacing Φ0 by Φ0(1+const/mQ). This dependence can be simply absorbed in Φ0 for a �xed

value of mQ. However, in our analysis the charm mass varies by about 10%, which leads to a

correction comparable to that produced by terms of O(mq) ∼ O(m2
π). Therefore, replacing Φ0

by Φ0(1 + const/mQ) in Eq. (3.8) should be considered a NLO correction. At this order the rate

for D∗ → Dπ is governed by gπ(1+const/mQ) instead of gπ, which is already taken into account

by incorporating the range gπ = 0.53(8) in the �ts. We do not allow any further dependence of

gπ on mQ in our analysis, because this dependence is formally NNLO.

On each ensemble, we have data with two di�erent values of the valence charm mass: m′c and

0.9m′c, where m
′
c is the charm sea mass of the ensemble. In Fig. D.1, the ratio of ΦD at m′c to ΦD

at 0.9m′c is shown in terms of mv for our four lattice spacings. The fact that ΦD(m′c)/ΦD(0.9m′c)

does not vary much as a function of the light valence-quark mass is evidence that the 1/mQ e�ects

can be absorbed in the overall factor in front of the full one-loop result as discussed above. On

the other hand, ΦD computed at m′c and at 0.9m′c are highly correlated so that their ratio is

known precisely. Since our �ts take the correlations into account, the p values will be low unless

the chiral form is able to reproduce the ratio to high accuracy. Therefore, the expansion of the
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Figure D.1: The ratio ΦD(m′c)/ΦD(0.9m′c) (where m
′
c is the charm sea mass of the ensembles)

as a function of mv, the light valence-quark mass. The upper left panel shows data at a ≈ 0.15
fm. The upper right panel shows the data at a ≈ 0.12 fm from the ensembles with ms tuned
close to its physical value. In the second row, we show a ≈ 0.09 fm (left) and a ≈ 0.06 fm

(right) data.

overall factor, Φ0, in terms of 1/mQ needs to be taken beyond the �rst order; for acceptable

�ts we need to introduce a 1/m2
Q term as well as the 1/mQ term, as indicated in Eq. (3.21).

Furthermore, good �ts require the LEC k1 in Eq. (3.21) to have generic dependence on a; such

dependence for k2 is also strongly preferred by the �ts.

Note �nally that Fig. D.1 shows a roughly 4% di�erence between ΦD at m′c and at 0.9m′c.

As claimed in the discussion above Eq. (3.21), this is comparable to the chiral NLO e�ects of

a nonzero pion mass, which may be estimated from the �ts shown in Fig. 3.17. Indeed, those

�ts imply that the di�erence between the physical value of ΦD+ and its value in the (two-�avor)

chiral limit is roughly 3%.
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