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ABSTRACT OF THE DISSERTATION 

The Role of Apolipoprotein E Concentration and Isoform 

 in Amyloid-β Metabolism In Vivo 

by 

Joseph Michael Castellano 

Doctor of Philosophy in Neurosciences 

Washington University in St. Louis, 2011 

David M. Holtzman, M.D., Chair 

 

 Alzheimer’s disease is a progressive, neurodegenerative disease characterized by 

several pathological lesions, one of which is the accumulation of the amyloid-β (Aβ) 

peptide into extracellular amyloid plaques.  Several autosomal dominant mutations have 

been shown to cause familial forms of early-onset Alzheimer’s disease, but factors that 

modulate the risk and onset for the more common sporadic, late-onset Alzheimer’s 

disease are less understood.  The strongest identified genetic risk factor for sporadic, late-

onset Alzheimer’s disease is the APOE 4 allele, the presence of which dramatically 

increases risk and hastens the onset of the disease relative to non-carriers of the allele.  

Evidence that APOE 4-carriers exhibit accelerated onset of amyloid accumulation has 

led to the hypothesis that APOE genotype differentially modulates AD risk and onset via 

regulation of Aβ metabolism.  Thus, we sought to characterize the extent to which 

modulating the concentration and isoform of apoE regulates brain Aβ metabolism.  To 

this end, we created transgenic mice overexpressing the low-density lipoprotein receptor 

(LDLR), a major receptor for apoE in the central nervous system, which led to a 

significant reduction of brain apoE concentration.  After crossing these mice to a mouse 
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model of β-amyloidosis, the resulting mice exhibited a marked reduction in Aβ 

deposition.  To examine the mechanism by which Aβ deposition is reduced with 

increased LDLR expression, we performed in vivo microdialysis in young mice, finding 

that early decreases in the steady state concentration of Aβ in the brain interstitial fluid 

(ISF) could be explained by enhanced Aβ clearance.  To further investigate the 

mechanism by which LDLR regulates Aβ metabolism prior to amyloid plaque deposition, 

we utilized a brain Aβ efflux method to show that LDLR overexpression increased Aβ 

clearance from the brain.  To complement this approach, we developed a novel method to 

directly assess the plasma appearance rate of brain-derived Aβ, which revealed that 

LDLR overexpression increased brain to blood efflux of Aβ.  We next examined the role 

of specific apoE isoforms in modulating amyloid accumulation in humans and in a mouse 

model of β-amyloidosis in which human apoE isoforms were expressed.  We found that 

cerebral Aβ deposition varied in both humans and in mice in a manner that corresponded 

to APOE genotype.  Using in vivo microdialysis, we found in both young and old mice 

that the concentration and clearance of Aβ from the ISF differed according to the isoform 

of apoE expressed.  In vivo stable isotopic labeling kinetics experiments in young mice 

revealed that fractional synthesis rates of Aβ did not vary according to human apoE 

isoform.  Moreover, we infused recombinant apoE particles during in vivo microdialysis 

to demonstrate that intrinsic differences in apoE isoforms contribute to differences in the 

steady state concentration of ISF Aβ.  Together, these results suggest a mechanism by 

which APOE alleles modulate AD risk through differential regulation of brain Aβ 

clearance.  Furthermore, our results suggest that apoE receptors and other molecules 

involved in Aβ clearance may represent useful therapeutic targets for AD prevention.      
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Alzheimer's disease 

 Alzheimer’s disease (AD), the most common cause of dementia, is a progressive, 

neurodegenerative disease that currently affects over 26 million individuals worldwide.  

The disease affects a striking proportion of the elderly population—over 12% of 

individuals over the age of 65 and nearly half of individuals over the age of 85.  

Moreover, total healthcare costs for AD treatment and caregiving in the U.S. are expected 

to exceed $183 billion in 2011 (Thies and Bleiler, 2011).  Although great strides have 

been made in the last several decades, there are currently no treatments capable of halting 

AD progression or restoring loss of cognitive function.  Faced with an aging population 

and the associated increase in prevalence and healthcare costs, a molecular understanding 

of the roles of various risk factors in AD pathogenesis will be important to guide 

therapeutic strategies for this devastating disease. 

 In terms of clinical presentation, AD dementia is initially characterized by an 

early impairment in short-term memory as well as decline in attention, executive 

function, and problem-solving abilities.  Difficulty understanding spatial relationships, 

confusion with time and location, language dysfunction, and personality change are 

characteristic clinical features as the disease progresses.  Toward the end of the typically 

7 to 10-year course of dementia that terminates in death, memory and cognitive 

dysfunction becomes severe and the ability to independently perform daily activities and 

personal care is lost.  

 Over a century ago, at a conference in Tübingen, Germany, Alois Alzheimer 

presented a clinicopathological description of a 51 year-old female dementia patient 
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named Auguste Deter.  Using the Bielschowsky silver impregnation method to examine 

neuropathological changes in her cerebral cortex at autopsy, Alzheimer reported the 

presence of extracellular "foci" and changes of the "neurofibrils," later known as two of 

the disease's hallmark pathological features, amyloid plaques and neurofibrillary tangles, 

respectively (Alzheimer et al., 1995).  Nearly 80 years later, cerebrovascular and 

parenchymal amyloid plaques were isolated from AD/Down's Syndrome brain and 

discovered to contain aggregated species of a "β protein," now known as the amyloid-β 

(Aβ) peptide (Glenner and Wong, 1984; Masters et al., 1985). 

Cerebral β-amyloidosis and the amyloid-β peptide 

 The principal component of extracellular amyloid plaques is the amyloid-β (Aβ) 

peptide, a proteolytic derivative of the amyloid precursor protein (APP) that varies in 

length from 38-43 amino acids.  Expressed in many cells throughout different organ 

systems, APP is highly expressed in the central nervous system by neurons as a type I 

transmembrane protein.  Aβ, a peptide of unknown physiological function, is naturally 

secreted (Haass et al., 1992; Seubert et al., 1992; Shoji et al., 1992) following the 

sequential proteolysis of APP by both β- (Vassar et al., 1999) and -secretases (De 

Strooper et al., 1998).  During this amyloidogenic processing of APP, -secretase 

performs a unique intramembranous cleavage at varying C-terminal residues in the Aβ 

sequence, generating Aβ peptides of varying length and potential for aggregation.  

Although Aβ40 is the most abundant of the Aβ species, Aβ42 is considered to be central 

to AD pathogenesis as it is more hydrophobic and, thus, more capable of initiating Aβ 

aggregation in the brain.  Based on various lines of evidence from genetic, biochemical, 
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and animal model studies, it has been hypothesized that the accumulation of Aβ initiates 

a pathogenic cascade that ultimately culminates in synaptic dysfunction, neuronal loss, 

and loss of cognitive function (Hardy and Selkoe, 2002).  Indeed, deposition of Aβ in 

amyloid plaques has been shown to be associated with various toxic effects in the brain, 

including neuritic dystrophy, synaptic and network dysfunction, and neuroinflammation 

(Bolmont et al., 2008; Busche et al., 2008; D'Amore et al., 2003; Knowles et al., 1999; 

Kuchibhotla et al., 2008; Lombardo et al., 2003; Meyer-Luehmann et al., 2008).  The 

aggregation of soluble Aβ into higher-order soluble species has also been an area of 

active research in the past decade.  However, there remains a great deal of controversy in 

separating the toxic role of soluble oligomers from that of other forms of aggregated Aβ 

that are present in and around plaques that may act as a reservoir of oligomers while 

independently exerting toxic effects (Selkoe, 2011).  Plaques are either diffuse or fibrillar 

in nature, consisting of non-fibrillar or fibrillar (β-sheet-rich) conformations of 

aggregated Aβ, respectively.  Fibrillar amyloid plaques can be visualized histologically 

using congophilic dyes such as Congo Red or Thioflavin-S or with compounds such as 

Pittsburgh Compound B in vivo.  Microscopically, fibrillar plaques are associated with 

dystrophic neurites, gliosis, and an active neuroinflammatory process (neuritic plaques) 

(Lucin and Wyss-Coray, 2009).  Interestingly, the brain exhibits region-specific 

vulnerability to amyloid plaque deposition, with the most prominent deposition occurring 

in a network of brain regions in humans known as the "default-mode network," a network 

characterized by elevated metabolic activity during self-referential mental activity 

(Buckner et al., 2005; Raichle et al., 2001; Vlassenko et al., 2010).  This network 

includes the hippocampal formation as well as lateral and medial prefrontal, retrosplenial, 
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posterior cingulate, and medial prefrontal areas, all of which are more susceptible to 

amyloid plaque deposition than other brain regions, perhaps as a result of elevated 

neuronal activity and the associated increase in Aβ secretion (Bero et al., 2011).  

 Several groups have characterized molecular and neuroimaging biomarkers of key 

neuropathological hallmarks of AD (Fagan et al., 2006; Fagan et al., 2007; Jack et al., 

2008; Rowe et al., 2007; Shaw et al., 2009).  For example, reduced concentrations of 

Aβ42 in isolated cerebrospinal fluid (CSF) from living subjects reflect the presence of 

cerebral Aβ deposition.  It is widely hypothesized that this finding reflects a process by 

which Aβ42 is sequestered into amyloid plaques, changing the equilibrium between brain 

and CSF pools of Aβ (Clark et al., 2003; Fagan et al., 2009; Hong et al., 2011; 

Sunderland et al., 2003).  Using positron emission tomography (PET) in combination 

with amyloid-binding compounds such as the [
11

C]-benzothiazole radiotracer, Pittsburgh 

Compound B (PIB), brain amyloid in living subjects can be visualized and compared 

with other biomarkers of the disease and related to the clinical disease course 

(Ikonomovic et al., 2008; Klunk et al., 2004; Leinonen et al., 2008).  A large body of 

evidence has supported the concept that biomarkers such as PIB uptake and CSF Aβ42 

concentration are reliable surrogate markers of amyloid plaque pathology in living 

subjects (Fagan et al., 2006; Fagan et al., 2007; Jack et al., 2008; Rowe et al., 2007; Shaw 

et al., 2009), the combination of which will likely be critical for preclinical intervention 

strategies as well as accurate diagnosis (Perrin et al., 2009).  
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The role of genetics in familial and sporadic AD  

A relatively small percentage of AD cases is inherited in an autosomal dominant manner; 

these cases are referred to as familial AD (FAD) and typically have early onset (30-60 

years of age). Although mutations in APP, PSEN1 (presenilin 1), and PSEN2 (presenilin 

2) account for a small percentage of all AD cases, these mutations have, nonetheless, 

provided enormous mechanistic insight into AD pathogenesis in addition to serving as the 

basis for animal models of β-amyloidosis.  Missense mutations in the coding sequence of 

APP were the first identified as being causative for FAD and/or cerebral amyloid 

angiopathy (CAA) (Goate et al., 1991; Haass et al., 1994; Levy et al., 1990; Mullan et al., 

1992; Suzuki et al., 1994; Van Broeckhoven et al., 1990).  These mutations preferentially 

increase the ratio of Aβ42 to Aβ40 or the overall production of Aβ species, depending on 

the position of the mutation.  Mutations in PSEN1 cause FAD, likely as a result of 

shifting the ratio of Aβ42/Aβ40 in favor of greater Aβ42 production (De Strooper, 2007; 

Holtzman et al., 2011).  The vast majority of AD cases (>99%), however, are sporadic 

with late-onset (age >60) and cannot be attributed uniformly to one genetic determinant. 

 In addition to risk factors such as aging, family history (Fratiglioni et al., 1993; 

Mayeux et al., 1991), and traumatic brain injury (Mayeux et al., 1993; Plassman et al., 

2000), several genes have been found to be associated with risk for AD.  Large-scale 

genome-wide association studies (GWAS) have revealed associations between AD risk 

and various genes encoding proteins responsible for lipid metabolism and/or immune 

system function, and membrane trafficking.  For example, by comparing a large set of 

samples from cognitively normal elderly controls and AD cases, GWAS have revealed 

AD risk associations with CLU (clusterin), APOE (apolipoprotein E), PICALM  
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(phosphatidylinositol-binding clathrin assembly protein), CR1 (complement receptor 1), 

BIN1 (bridging integrator protein 1), CD33 (sialic acid-binding immunoglobulin-like 

lectin), MS4A4A (membrane spanning 4A gene cluster), CD2AP (CD2-associated 

protein), EPHA1 (Ephrin receptor A1), and ABCA7 (ATP-binding cassette transporter) 

(Bertram et al., 2008; Harold et al., 2009; Hollingworth et al., 2011; Lambert et al., 2009; 

Naj et al., 2011; Seshadri et al., 2010).  While the identification of these novel 

associations should motivate new mechanistic investigations in AD research, APOE 

remains, to a large extent, the strongest identified genetic risk factor, an association for 

which the underlying mechanism remains unclear.  

APOE and the link to AD 

  Of the several susceptibility genes implicated in influencing AD risk, APOE ε4 

is the strongest identified gene confirmed to confer increased risk for sporadic, late-onset 

AD (age > 60) (Corder et al., 1993).  The APOE ε3 allele is the most frequent in all 

populations, with a frequency ranging from 50 to 90%, whereas APOE ε4 and APOE ε2 

allele frequency ranges from 5-35% and 1-5%, respectively (Mahley and Rall, 2000).  

Risk for AD is associated with APOE isoform (ε4 > ε3> ε2), with the APOE ε4 allele 

present in ~50% of patients who develop late-onset AD (Corder et al., 1993; Saunders, 

2000; Saunders et al., 1993).  Having one or two copies of the APOE ε4 allele increases 

sporadic AD risk approximately 3- to 12-fold, respectively.  Moreover, one or two copies 

of APOE ε4 results in earlier age of onset by approximately one to two decades relative to 

non-carriers in late-onset AD (Corder et al., 1993).  APOE ε2 individuals have reduced 

risk for developing late-onset AD as well as in early-onset AD caused by APP mutations 
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and a PS1 mutation (Corder et al., 1993; Pastor et al., 2003; Saunders, 2000; Saunders et 

al., 1993; West et al., 1994).  Epidemiological studies from various populations have 

confirmed the increased frequency of the APOE ε4 allele in sporadic AD patients 

compared to non-carriers, though the frequency varies in different ethnicities (Roses, 

1996).  However, it is important to note that APOE ε4 is neither necessary nor sufficient 

for the development of AD so that apoE polymorphism cannot be utilized alone for the 

diagnosis of AD (Meyer et al., 1998; Tiraboschi et al., 2004).  This suggests that apoE-

independent and dependent mechanisms likely interact with other genetic and non-

genetic components to modulate AD pathogenesis.  It will be critical to identify 

additional unknown risk or protective components and how they interact with apoE to 

accelerate or delay the onset of the disease. 

There is controversy as to whether APOE polymorphism associates with the rate 

of progression of cognitive decline in AD after its onset (Corder et al., 1995; Saunders, 

2000).  In particular, there is discrepancy regarding the role of APOE ε4 in the rate of 

cognitive and functional decline after the onset of cognitive decline in AD.  Several 

reports suggest patients homozygous for APOE ε4 experience a more rapid rate of 

cognitive and functional decline (Saunders, 2000), suggesting that the factors that 

determine the onset of disease may also have a major role in the rate of progression and 

clinical outcome.  However, others have reported that disease onset and rate of 

progression as factors are different in the context of APOE ε4 (Craft et al., 1998; Hoyt et 

al., 2005; Saunders, 2000).  An MRI study from a large, cognitively normal population 

suggested that APOE ε4 carriers have decreased entorhinal cortex volume in children and 

adolescents, suggesting a potential developmental effect (Shaw et al., 2007).  In 
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longitudinal MRI studies of subjects already diagnosed with AD, the rate of volume 

decrease of entorhinal cortex and hippocampus is greater in those who are APOE ε4 

positive (Bookheimer and Burggren, 2009).  A recent large study of cognitively normal 

individuals younger than 60 found that age-related memory decline was greater in APOE 

ε4 carriers vs. non-carriers (Caselli et al., 2009), suggesting that the consequences of AD 

pathology may manifest in the brain as early as the sixth decade of life.  The role of apoE 

isoforms in the predisposition to AD is well established; however, additional studies are 

needed to understand how apoE4 accelerates onset and possibly, the rate of progression 

of the disease.  

ApoE biology and function in the CNS  

Human apolipoprotein E (apoE) is an exchangeable lipoprotein of 299 amino 

acids expressed in multiple organs with the highest expression in liver followed by the 

brain (Mahley and Rall, 2000).  ApoE exists mainly as a component of lipoprotein 

particles along with other apolipoproteins and proteins in plasma and CSF (Mahley and 

Rall, 2000).  In humans, there are three polymorphic forms of apoE that vary at two 

amino acid positions: apoE2 (Cys-112, Cys-158), apoE3 (Cys-112, Arg-158), and apoE4 

(Arg-112, Arg-158) (Zannis et al., 1982).  These critical amino acid substitutions alter the 

charge and structural properties of the protein, ultimately influencing the functional 

properties of apoE isoforms (Mahley and Rall, 2000).  

ApoE is one of the key lipoproteins of lipoprotein particles that regulate the 

metabolism of lipids by directing their transport, delivery, and distribution from one 

tissue or cell type to another through apoE receptors and proteins associated with lipid 
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transfer and lipolysis (Mahley, 1988; Mahley and Rall, 2000).  ApoE isoform-specific 

associations with lipoprotein particles in the plasma and uptake of apoE lipoprotein 

complexes through LDL receptors have significant effects on lipid metabolism, having 

important implications in diseases like Type III Hyperlipoproteinemia (HLP) (Ruiz et al., 

2005), atherosclerosis, and diseases of the CNS.  ApoE2 is defective in low density 

lipoprotein receptor (LDLR) binding, delaying the clearance of remnant lipoproteins (β-

very low density lipoproteins (VLDL) and increasing cholesterol and triglycerides in 

plasma.  APOE ε2 homozygous individuals have defective lipid clearance and, along with 

other genetic and environmental factors, possession of APOE ε2 contributes to the 

development of Type III HLP (Mahley et al., 1999).  ApoE4 preferentially associates 

with VLDL in plasma and may have a differential effect on VLDL and remnant lipid 

clearance and LDL receptor expression (Gregg et al., 1986).  Most APOE ε4 homozygous 

individuals have increased plasma LDL cholesterol levels, which serves as a risk factor 

for atherosclerosis (Gregg et al., 1986; Mahley and Rall, 2000).  

Structural studies, including X-ray crystallography and site-directed mutagenesis 

studies, have suggested a model in which arginine-61 extends out from the four-helix 

bundle of apoE4, forming a putative salt bridge with glutamic acid-255 (Hatters et al., 

2006).  In apoE2 and apoE3, however, arginine-61 has been predicted to not interact with 

glutamic acid-255 (Hatters et al., 2006).  The spatial proximity of the two domains of 

apoE were probed using fluorescence resonance energy transfer (FRET) and electron 

paramagnetic resonance spectroscopy (EPR), revealing that the two domains are closer in 

both lipid-free and lipid-bound apoE4 than in apoE3, supporting the concept of "domain 

interaction" (Hatters et al., 2005).  Based on this concept, it has been suggested that the 
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putative salt bridge between the two domains in apoE4 results in an altered conformation 

that changes the lipid binding preference from plasma HDL to VLDL.  Although FRET 

and EPR experiments have suggested a domain interaction solely for apoE4 (Hatters et 

al., 2005), NMR studies with monomeric apoE3 have suggested that domain-domain 

interaction may also exist in lipid-free or partially lipidated apoE3 (Chen et al., 2011; 

Garai et al.; Zhang et al., 2008; Zhang et al., 2007).  Structural studies with reconstituted 

phospholipids containing apoE3 and apoE4 have yielded conflicting results in terms of 

the isoform-specific differences in how apoE is arranged in the lipid milieu (Hatters et al., 

2006; Schneeweis et al., 2005).  However, the dynamic nature of apoE-lipid interactions 

may generate multiple protein conformational states, making it challenging to interpret 

how these states may influence physiological function.  New approaches are needed to 

assess apoE structure, the role of domain interaction, and its functional consequences in 

diseases both of the periphery and the CNS.  

  In the brain, apoE is mostly produced by astrocytes, followed by microglia and, 

under certain conditions, by neurons (Kim et al., 2009a).  In the CSF, apoE is associated 

predominantly with cholesterol and phospholipid-rich, high-density lipoprotein (HDL)-

like complexes.  Unlike plasma, CSF exclusively contains HDL-like lipoproteins and no 

LDL or VLDL.  ApoE’s association with HDL-like particles in the CSF occurs without 

any known isoform specificity (Bandaru et al., 2009; LaDu et al., 1998; Pitas et al., 

1987).  ApoE4 is likely less stable than apoE2 or apoE3 in vitro as it loses its structure in 

lower concentrations of chaotropic agents and at lower temperatures, suggesting an 

altered conformational organization. This observation is consistent with reports of lower 
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apoE4 protein levels in the brains of APOE4 knockin mice despite no differences in 

transcription across isoforms (Bales et al., 2009; Fryer et al., 2005a; Riddell et al., 2008).   

Aβ-dependent roles of apoE in AD: human studies 

In vitro and in vivo animal experiments suggest that the accumulation of Aβ in 

the brain is the initial driving force for AD pathogenesis (Hardy and Selkoe, 2002).  

While the mechanism by which apoE isoforms affect AD risk is not entirely understood, 

there is strong evidence that apoE differentially modulates Aβ metabolism (Verghese et 

al., 2011).  Extracellular amyloid plaques represent a major pathological hallmark of the 

disease.  ApoE is present in Aβ plaques in postmortem tissue from AD patients 

(Strittmatter and Roses, 1996).  Several studies have observed an increase in senile and 

neuritic plaques in APOE ε4 homozygous AD patients compared to APOE ε4/ε3 or APOE 

ε3 homozygous AD patients (Hyman et al., 1995), although others found no significant 

effect on plaque density or number (Hyman et al., 1995; Kim et al., 2009a).  In a large 

cohort study in Caucasian, autopsy-confirmed AD patients, it was observed that the 

presence of both APOE ε4 alleles is a crucial factor for increasing neuritic plaque 

accumulation in all neocortical areas of brain.  APOE ε2 individuals with AD had 

reduced plaque accumulation, though the sample size was very small (Tiraboschi et al., 

2004).  Perhaps most relevant in understanding how APOE status influences AD risk is 

how it influences AD pathology in relation to the time course of disease onset.  

Converging evidence suggests that the initial pathological feature of AD is Aβ deposition 

in the brain, which is estimated to begin 10-15 years prior to the onset of any clinical 

signs and symptoms of cognitive decline (Perrin et al., 2009).  A variety of events appear 
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downstream of Aβ deposition in the AD pathological process, including neurofibrillary 

tangle formation, neuroinflammation, and neuronal/synaptic loss.  If APOE genotype is 

linked to AD risk by influencing the probability of onset of Aβ accumulation, one would 

predict that cognitively normal individuals at any given age would exhibit brain amyloid 

plaque burden in the following order: ε4 > ε3> ε2.  In fact, in both CSF biomarker and 

amyloid neuroimaging studies, apoE isoform-specific brain Aβ pathology (ε4 > ε3> ε2) 

has been reported in cognitively normal individuals aged 45-90 (Morris et al., 2010; 

Reiman et al., 2009; Sunderland et al., 2004).  These data suggest that APOE modulates 

AD risk by affecting the likelihood that Aβ begins to deposit such that the timing of Aβ 

accumulation is shifted earlier or later in the preclinical phase depending on APOE status 

(Verghese et al., 2011).  Given the clear effect of APOE ε4 in modulating AD risk and 

Aβ pathology, a major hypothesis for which there is emerging evidence is that apoE4 

increases Aβ aggregation and/or impairs Aβ clearance relative to other apoE isoforms. 

Aβ-dependent roles of apoE in AD: in vitro & animal studies 

Once the link between apoE isoform and AD risk had been described, several 

groups focused on characterizing the putative interaction between apoE and Aβ and the 

extent to which this interaction influenced the aggregation of Aβ in vitro.  These studies 

revealed apoE isoform-specific differences in Aβ binding, with most studies reporting 

that lipidated apoE2 and apoE3 bind Aβ more strongly than lipidated apoE4 (Aleshkov et 

al., 1997; LaDu et al., 1994; Yang et al., 1997).  Consistent with the increased amyloid 

plaque load reported in APOE ε4 individuals, several groups have reported that apoE4 is 

more efficient in increasing Aβ fibrillization in vitro relative to apoE3 or apoE2 (Castano 
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et al., 1995; Ma et al., 1994; Wisniewski et al., 1994); however, others have reported that 

human apoE isoforms may inhibit the process of Aβ aggregation (Beffert and Poirier, 

1998; Evans et al., 1995; Wood et al., 1996).  However, due to differences in the 

preparations of apoE and Aβ used in these studies, a consensus as to the precise 

biochemical nature of the physical interaction between apoE and Aβ, and the extent to 

which it influences aggregation, has yet to be reached.  To investigate human apoE’s role 

in Aβ aggregation and clearance and how these interactions modulate the disease process, 

work has focused on generating and analyzing mouse models of β-amyloidosis that 

express human apoE isoforms using a variety of genetic approaches.   

Following the demonstration that murine apoE greatly facilitates amyloid 

formation in neuritic plaques and CAA (Bales et al., 1997; Holtzman et al., 2000b), 

several groups created lines of mice expressing human apoE transgenes in order to 

understand the role of human apoE in Aβ accumulation in vivo.  One series of studies 

demonstrated that GFAP-driven expression of human apoE isoforms in PDAPP mice on 

an apoE null background results in an apoE isoform-dependent pattern of Aβ deposition 

and amyloid burden in the hippocampus (E4 > E3) (Fagan et al., 2002; Holtzman et al., 

2000a).  Consistent with these findings, lentiviral-mediated delivery of apoE4 in the 

brains of PDAPP mice on an apoE null background increased insoluble levels of 

parenchymal Aβ42 (Dodart et al., 2005).  To further examine the effect of human apoE 

on Aβ accumulation, mice were engineered to express human apoE isoforms under the 

control of mouse regulatory elements (APOE knockin mice) and then crossbred with 

Tg2576 or PDAPP mice.  In Tg2576 mice, apoE4 increased Aβ deposition and CAA 

relative to apoE3 (Fryer et al., 2005b); in PDAPP mice, human apoE resulted in a clear 
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isoform-dependent pattern of Aβ accumulation, i.e., E4> E3> E2 (Bales et al., 2009).  

One hypothesis to explain the higher amyloid plaque load in individuals expressing 

APOE ε4 is that apoE4 impairs the clearance of Aβ from a pool where it is likely to 

aggregate in the brain, leading to aberrant accumulation.  It was recently demonstrated in 

mice that complexes of lipidated apoE4 and Aβ were transported across the blood-brain 

barrier more slowly than apoE3-Aβ or apoE2-Aβ complexes (Deane et al., 2008).  

However, in the context of endogenous production of apoE and Aβ within the mouse 

brain, the possibility that human apoE clears Aβ in an apoE isoform-dependent manner 

remains critically untested.  Although several in vitro studies have attempted to clarify 

the role of human apoE isoforms in modulating Aβ uptake (Jiang et al., 2008), additional 

in vivo studies are needed to probe the question in the context of all possible clearance 

routes.  Additionally, the possible role of human apoE in directly modulating Aβ 

aggregation remains a challenging, yet critical untested question in vivo.  

 A number of human studies have sought to test whether apoE protein 

concentration may be associated with AD (Kim et al., 2009a).  Given apoE’s role in 

facilitating amyloid formation, the concentration of human apoE may represent an 

important aspect of AD pathogenesis.  Due perhaps to inherent limitations in postmortem 

analysis and sample heterogeneity, studies assessing differences in apoE concentration in 

the brain parenchyma from patients have been conflicting (Beffert et al., 1999; Bray et 

al., 2004; Growdon et al., 1999; Harr et al., 1996).  A recent study demonstrated that the 

concentration of apoE in the brain parenchyma of APOE 4 carriers was not statistically 

different from non-carriers of the APOE 4 allele (Sullivan et al., 2009).  There is relative 

consensus, however, among studies analyzing apoE levels in mice expressing human 
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apoE isoforms.  Most groups report that while the transcription of apoE does not vary 

across isoforms (Bales et al., 2009), apoE protein concentration among isoforms differs 

significantly, i.e., E2 >> E3 > E4 (Bales et al., 2009; Fryer et al., 2005b; Riddell et al., 

2008); a recent study, however, did not observe isoform-dependent differences in apoE 

concentration (Korwek et al., 2009).  Intrinsic differences in the structure of apoE 

isoforms may alter the stability of apoE isoforms, thus influencing apoE concentration, as 

suggested for apoE4 in a recent in vitro study (Riddell et al., 2008).  Additional studies 

are needed to understand whether isoform-dependent differences in apoE concentration 

account for the effect of APOE on Aβ accumulation; alternatively, concentration-

independent differences among the isoforms may also account for the effect of APOE on 

Aβ accumulation.   

ApoE receptors and the interaction with Aβ metabolism 

 Based on the interaction between apoE and Aβ, the role of apoE receptors in 

modulating Aβ metabolism has been an area of active research in the past decade.  Brown 

and Goldstein, in work that earned them the Nobel Prize in Medicine, showed that the 

low-density lipoprotein receptor (LDLR) endocytoses lipoprotein particles containing 

apoB or apoE, in a process known as receptor-mediated endocytosis (Brown and 

Goldstein, 1986).  The LDL receptor family consists of a class of receptors of varied 

function that includes LDLR, LDLR-related protein 1 (LRP1), LRP1B, megalin, very 

low-density lipoprotein receptor (VLDLR), apoE receptor 2 (apoER2), sorting protein-

related receptor (sorLA), among others (Bu, 2009).  An early study assessed whether 

members of the LDLR family regulate apoE and Aβ metabolism in the CNS, finding that 
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mice lacking an LDLR-stabilizing protein known as receptor-associated protein (RAP) 

had lower levels of LDLR and LRP1 in the brain in addition to increased Aβ 

accumulation (Van Uden et al., 2002).  LRP1 has been shown to interact with APP to 

modulate its trafficking and subsequent processing to Aβ (Cam et al., 2005; Kinoshita et 

al., 2001; Trommsdorff et al., 1998; Ulery et al., 2000).  Although soluble Aβ levels were 

increased when an LRP1 minireceptor was overexpressed in the PDAPP mouse model of 

β-amyloidosis, no differences in amyloid plaque load were observed between PDAPP 

mice and PDAPP mice overexpressing LRP1 (Zerbinatti et al., 2004).  Furthermore, 

several subsequent studies suggested a role for LRP1 in cellular-mediated Aβ42 

clearance (Fuentealba et al., 2010; Zerbinatti et al., 2006) as well as blood-brain barrier-

mediated clearance of radiolabeled Aβ (Bell et al., 2007; Deane et al., 2004).  Both 

ApoER2 and VLDLR have been demonstrated to regulate neuronal migration during 

brain development via reelin signaling (Herz and Chen, 2006); recently, apoE4 was 

demonstrated in vitro to interfere with the ability of apoER2 to modulate synaptic activity 

via reelin signaling (Chen et al., 2010).  A role for VLDLR has recently been suggested 

in mediating blood-brain barrier-mediated apoE/Aβ complex clearance in an apoE 

isoform-dependent manner (Deane et al., 2008). 

 Although many roles for LRP1 in APP/Aβ metabolism have been characterized, 

the potential roles of LDLR in Aβ metabolism have not been thoroughly investigated.  

Utilizing mice expressing human apoE isoforms but in the context of LDLR deletion, 

Fryer and colleagues revealed that LDLR is a major receptor for apoE in the CNS (Fryer 

et al., 2005a).  In contrast to apoE3 and apoE4, which were elevated by 2- to 3-fold with 

LDLR deletion, apoE2 was unchanged in the absence of LDLR.  This result is consistent 
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with the poor reported affinity of apoE2 for LDLR (1-2%) compared to the other 

isoforms of apoE (Knouff et al., 2004; Weisgraber, 1994; Yamamoto et al., 2008).  

Furthermore, when LDLR is deleted in PDAPP mice, murine apoE levels were 

significantly increased, while there was a trend towards an increase in Aβ deposition at 

10 months of age compared to PDAPP mice expressing LDLR (Fryer et al., 2005a).  

Using the Tg2576 mouse model of β-amyloidosis, a subsequent study revealed that 

LDLR deletion increased Aβ deposition (Cao et al., 2006).  Based on these studies, 

further investigation is needed to assess the role of LDLR in Aβ clearance and 

accumulation in vivo.  Another important area to be explored is the extent to which 

different components of Aβ clearance pathways may be involved in the regulation of Aβ 

metabolism, for example, the blood-brain barrier, which could have important 

implications for targeting apoE receptors therapeutically.  
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Chapter 2.  

Overexpression of low-density lipoprotein receptor in the brain markedly inhibits 

amyloid deposition and increases extracellular Aβ clearance 
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ABSTRACT 

Apolipoprotein E (APOE) is the strongest genetic risk factor for Alzheimer’s disease 

(AD). Previous studies suggest that the effect of apoE on amyloid-β (Aβ) accumulation 

plays a major role in AD pathogenesis. Therefore, understanding proteins that control 

apoE metabolism may provide new targets for regulating Aβ levels. LDLR, a member of 

the LDL receptor family, binds to apoE, yet its potential role in AD pathogenesis remains 

unclear. We hypothesized that LDLR overexpression in the brain would decrease apoE 

levels, enhance Aβ clearance and decrease Aβ deposition. To test our hypothesis, we 

created several transgenic mice that overexpress LDLR in the brain and found that apoE 

levels in these mice decreased by 50–90%. Furthermore, LDLR overexpression 

dramatically reduced Aβ aggregation and enhanced Aβ clearance from the brain 

extracellular space. Plaque-associated neuroinflammatory responses were attenuated in 

LDLR transgenic mice. These findings suggest that increasing LDLR levels may 

represent a novel AD treatment strategy. 
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INITRODUCTION 

Accumulation of the amyloid β peptide (Aβ) in the brain is hypothesized to trigger 

pathogenic cascades that eventually lead to Alzheimer’s disease (AD) (Hardy, 2006). 

Therefore, strategies modulating production, clearance, and aggregation of Aβ are 

actively being pursued as disease modifying therapies in AD (Golde, 2006). Aβ peptides 

are generated by the sequential proteolytic processing of amyloid β precursor protein 

(APP) by the β- and -secretase (Cole and Vassar, 2007; Sisodia and St George-Hyslop, 

2002; Steiner and Haass, 2000). Extensive genetic research on familial AD (FAD) led to 

the identification of mutations in the APP, presenilin 1 (PSEN1) and presenilin 2 

(PSEN2) genes and provided strong support for the critical role of Aβ accumulation in 

AD pathogenesis (Hardy, 2006). Many research groups have utilized this genetic 

information to develop transgenic mouse models that recapitulate key pathological 

phenotypes of AD. These transgenic mice models have been useful in understanding the 

etiology of AD and for testing potential therapeutic approaches for preventing Aβ-

dependent pathologies. Although mutations in FAD-liked genes are known to cause rare 

forms of FAD, the ε4 allele of apolipoprotein E (APOE) is the only firmly established 

genetic risk factor for more common forms of AD (Bertram et al., 2007b). ApoE 

functions as a ligand in the receptor-mediated endocytosis of lipoprotein particles (Kim et 

al., 2009a). After apoE binds to low density lipoprotein (LDL) receptor family members, 

the ligand-receptor complex is taken up by clathrin-mediated endocytosis and dissociated 

in endosomes. Upon dissociation, the apoE receptor recycles back to the cell surface, 

whereas the apoE-containing lipoprotein particle is targeted to the lysosome wherein 

cholesterol becomes available for cellular needs. Although it is not completely clear how 
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apoE influences the various pathogenic processes implicated in AD, several lines of 

evidence suggest that the effects of apoE on Aβ aggregation and clearance play a major 

role in AD pathogenesis (Kim et al., 2009a). Previous studies demonstrated that the 

absence of apoE leads to a dramatic decrease in the levels of fibrillar Aβ deposits in APP 

transgenic mouse models (Bales et al., 1999; Bales et al., 1997; Holtzman et al., 2000a; 

Holtzman et al., 2000b). Furthermore, recent studies strongly suggest that apoE regulates 

both extracellular and intracellular Aβ clearance in the brain (Bell et al., 2007; Deane et 

al., 2008; DeMattos et al., 2004; Jiang et al., 2008). Therefore, modulating the function of 

proteins that control apoE metabolism in the brain will likely alter the extent of amyloid 

deposition and ultimately affect the disease process. In support of this possibility, it was 

recently demonstrated that ATP-binding cassette transporter A1 (ABCA1)-mediated 

lipidation of apoE modulates amyloid plaque formation (Hirsch-Reinshagen et al., 2005; 

Koldamova et al., 2005; Wahrle et al., 2005; Wahrle et al., 2008). Consequently, further 

insight into how apoE levels can be regulated in the brain may lead to novel therapeutic 

avenues for the prevention and treatment of AD. 

 ApoE binds to a group of structurally related proteins known as the low density 

lipoprotein receptor (LDLR) family. This family includes LDLR, lipoprotein receptor-

related protein 1 (LRP1), lipoprotein receptor with 11 binding repeats (LR11), 

apolipoprotein receptor 2 (ApoER2), very low density lipoprotein receptor (VLDLR) and 

others (Herz and Bock, 2002). They share several common structural characteristics, such 

as complement-type ligand binding repeats, β-propeller domain, and epidermal growth 

factor type repeats. The prototype of this family member is LDLR, which has been 

extensively studied in the peripheral tissues for its role in mediating the removal of 
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cholesterol and cholesteryl ester from the circulation (Brown and Goldstein, 1986). 

Genetic defects in LDLR lead to an impaired lipoprotein clearance from the bloodstream 

and massive accumulation of cholesterol in the circulation, resulting in familial 

hypercholesterolemia. Due to its critical role in the metabolism of apoB-containing LDL 

particles, LDLR has been the focus of much attention in better understating the 

pathogenesis of atherosclerosis and coronary heart disease (Soutar and Naoumova, 2007). 

However, the physiological and pathological function of LDLR in the nervous system 

remains unclear. In contrast, the roles of other LDL receptor family members in brain 

development and synaptic plasticity are better understood (Herz, 2009). Furthermore, the 

modulatory effects of other LDL receptors on Aβ clearance and APP trafficking have 

been thoroughly examined in cellular and animal model systems (Cam and Bu, 2006). 

However, the potential role of LDLR in AD pathogenesis has not been studied 

extensively. To address this issue, we created several transgenic mouse lines that 

overexpress LDLR in the brain and bred two transgenic lines with the 

APPswe/PSEN1ΔE9 (APP/PS1) transgenic mouse model (Jankowsky et al., 2004). The 

effects of LDLR overexpression on Aβ accumulation and its clearance from the brain 

interstitial fluid (ISF) were investigated. 
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RESULTS 

Generation and Characterization of LDLR Transgenic Mice 

 In order to achieve widespread expression of the LDLR transgene in the brain, we 

created a construct using the mouse prion promoter (Borchelt et al., 1996). Six transgenic 

founders with LDLR transgene were generated and maintained on a B6/CBA 

background. One transgenic line transmitted the LDLR transgene only in males and did 

not have any detectable transgene expression in the brain. The five remaining transgenic 

lines were screened for LDLR overexpression by western blotting (Figure 1A). As 

expected, multiple bands of LDLR proteins were detected due to extensive 

posttranslational modifications (Filipovic, 1989). Two to eleven fold increases in LDLR 

protein levels, relative to non-transgenic (NTG) mice, were detected in the various 

founder lines (Figure 1A). The high-expressing B line and low-expressing E line were 

selected for further experiments. To characterize the regional expression pattern of the 

LDLR transgene, brain sections were immunostained using an anti-hemagglutinin (HA) 

antibody for the detection of the HA tag placed in the amino-terminal region of the 

LDLR sequence. As expected, the immunostaining pattern with anti-HA antibody 

overlapped very well with that of anti-LDLR antibody staining (Figure S1). Transgene 

expression, analyzed by anti-HA antibody, was detected in cortex, hippocampus, and 

cerebellum (Figure 1B–1D). Double immunofluorescence staining with anti-NeuN, a 

neuron-specific marker, and anti-HA antibody demonstrated that most neurons expressed 

LDLR from the transgene (Figure 1E). To further examine which cell types express the 

transgene, primary neurons or astrocytes were cultured from LDLR transgenic line B 

mice. LDLR expression was analyzed with anti-LDLR antibody or anti-HA antibody 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F1/
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(Figure 1F–1G). Higher levels of LDLR protein were detected in both neurons and 

astrocytes. This expression pattern is consistent with a previous study characterizing the 

prion promoter expression vector (Borchelt et al., 1996). 

 To analyze the functional effect of LDLR overexpression in the brain, the levels 

of apoE protein in the brain was analyzed by apoE enzyme-linked immunosorbent assay 

(ELISA). Since LDLR is one of the major apoE endocytic receptors in the brain (Fryer et 

al., 2005a), we expected that LDLR overexpression would lead to a reduction in apoE 

protein levels through enhanced receptor-mediated endocytosis. There was a significant 

decrease in apoE protein levels in all five lines, ranging from 50 to 90%, compared to 

NTG littermates (Figure 2A). Interestingly, only two-fold overexpression in LDLR 

transgenic line E mice was sufficient to decrease apoE levels by ~50% in the brain. 

Overexpression of LDLR by more than five-fold, relative to NTG mice, led to 80–90% 

reduction in apoE levels. We also analyzed apoE mRNA levels by quantitative RT-PCR. 

There were no significant differences in apoE mRNA levels between LDLR transgenic 

lines B (> 10-fold overexpression) and E (2-fold overexpression) and their NTG 

littermates (Figure S2). This suggests that the higher levels of LDLR in the transgenic 

mice facilitate apoE endocytosis from the extracellular space, leading to a decrease in the 

amount of extracellular apoE.  The higher levels of LDLR in the transgenic mice may 

facilitate apoE endocytosis from the extracellular space, leading to a decrease in the 

amount of extracellular apoE. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
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LDLR Overexpression Decreases ApoE Levels Even in the Presence of APPswe and 

PSEN1ΔE9 Overexpression 

 A recent study demonstrated that the APP intracellular domain may increase apoE 

protein levels by suppressing the transcription of LRP1, another major apoE receptor in 

the brain (Liu et al., 2007). Furthermore, altered γ-secretase activity by a PSEN1ΔE9 

mutation has been shown to increase apoE protein levels by interfering with the 

endocytosis of LDLR (Tamboli et al., 2008). Therefore, we evaluated the possibility that 

overexpression of APP and PSEN1ΔE9 in APP/PS1 transgenic mice used in our study 

might attenuate the effect of LDLR overexpression on apoE levels. To determine whether 

LDLR overexpression still has a functional effect on apoE protein in the presence of the 

APP and PSEN1E9 transgenes, soluble apoE levels were analyzed from APP/PS1/LDLR 

and APP/PS1 transgenic mice at 2.5 months of age. ApoE levels in cortical and 

hippocampal tissues from LDLR line B transgenic mice were significantly decreased by 

~90%, compared with NTG mice (Figure 2B). In the low-expressing line E transgenic 

mice, there was a 55–60% reduction of apoE protein levels in both cortex and 

hippocampus (Figure 2C). The effect size of LDLR overexpression on apoE protein 

levels was not different in the absence (Figure 2A) or presence (Figure 2B and 2C) of 

APP and PSEN1ΔE9 overexpression. Taken together, these results strongly suggest that 

overexpression of APP and PSEN1ΔE9 does not interfere with the function of LDLR in 

our transgenic mice. In addition to the strong effect of the LDLR transgene on apoE 

levels, there was also a sex difference in apoE protein levels. In the absence of LDLR 

transgene overexpression, male APP/PS1 mice had 10–20% less apoE protein in the 

cortex and hippocampus compared with female littermates (p=0.05 and p=0.06 for B line 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
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Ctx and Hip, respectively, p=0.02 and p=0.0008 for E line Ctx and Hip, respectively) 

(Figure 2B and 2C). The difference in apoE protein levels between female and male mice 

was unlikely due to differences in endogenous LDLR protein levels, since LDLR levels 

were not significantly different between female and male APP/PS1 mice (Figure S3C). 

Previous studies suggest that there may be functional redundancy among LDL receptor 

family members (Mahley and Ji, 1999; Wouters et al., 2005). Apolipoprotein J (ApoJ) 

and ApoE are the two most abundant apolipoproteins in the brain. ApoJ, also known as 

clusterin, has been shown to facilitate fibrillar amyloid plaque formation (DeMattos et al., 

2002b). To determine whether LDLR overexpression had a selective effect on apoE, we 

assessed apoJ protein levels by western blot analysis. No significant difference in the 

levels of apoJ was found between LDLR transgenic and NTG mice (Figure S3B). This 

finding suggests that even more than 10-fold overexpression of LDLR does not affect the 

metabolism of a similar apolipoprotein. 

Strong LDLR Overexpression Leads to Marked Decreases in Amyloid Deposition 

Previous studies demonstrated that the lack of apoE led to a dramatic decrease of amyloid 

deposition in APP transgenic mouse models (Bales et al., 1997; Holtzman et al., 2000b). 

Given the critical role of apoE in Aβ deposition, we hypothesized that the reduction of 

extracellular apoE levels by LDLR overexpression may lead to a decrease in Aβ 

accumulation. To determine whether LDLR overexpression affects Aβ accumulation and 

deposition, the high-expressing LDLR transgenic line B mice were bred with APP/PS1 

transgenic mice. The extent of Aβ deposition was analyzed by histochemical and 

biochemical methods. Brain sections from 7 month old APP/PS1 mice (Figure 3A and 

3C) and APP/PS1/LDLR mice (Figure 3B and 3D) were immunostained with 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F3/
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biotinylated-3D6 antibody (anti-Aβ 1–5).  In our preliminary studies with APP/PS1 

transgenic mice, there was a significant difference in amyloid plaque load between 

female and male mice. Therefore, we planned to analyze the extent of Aβ accumulation 

by sex in this study. In the absence of LDLR overexpression, male APP/PS1 mice had a 

50–60% decrease in amyloid plaque load, compared with female APP/PS1 littermates 

(p=0.0087 and p=0.0022 for Ctx and Hip, respectively) (Figure 3E). Quantitative 

analyses of anti-Aβ immunostaining demonstrated that amyloid plaque loads in the cortex 

and hippocampus were markedly decreased in APP/PS1/LDLR transgenic mice 

compared with APP/PS1 mice (Figure 3E). The inhibitory effects of LDLR 

overexpression on Aβ accumulation were observed in both female and male mice. To 

further characterize the nature of the deposited plaques, brain sections were subsequently 

stained with X-34 dye that detects fibrillar amyloid deposits. In line with the results from 

Aβ immunostaining (Figure 3E), there were strong sex differences in fibrillar amyloid 

deposition. Female APP/PS1 mice deposited significantly more fibrillar plaques than did 

male APP/PS1 littermates (p=0.0234 and p=0.0087 for Ctx and Hip, respectively) (Figure 

3F). Importantly, APP/PS1/LDLR transgenic mice exhibited a dramatic 40–70% decrease 

in the X-34 positive fibrillar plaque load in the cortex and hippocampus, compared with 

sex-matched APP/PS1 mice (Figure 3F). Consistent with the histochemical analyses, 

biochemical analyses of Aβ levels demonstrated a 50–75% reduction in insoluble Aβ40 

levels (Figure 4A) and a 45–70% reduction in insoluble Aβ42 levels in the cortex and 

hippocampus of APP/PS1/LDLR transgenic mice (Figure 4B). Taken together, our results 

from high-expressing LDLR transgenic line B mice demonstrate that 10-fold LDLR 

overexpression markedly decreases Aβ accumulation and amyloid deposition. 
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Two-fold Overexpression of LDLR is Sufficient to Inhibit Amyloid Formation 

To determine whether lower levels of LDLR overexpression would also have a protective 

effect against Aβ accumulation and deposition, LDLR transgenic line E mice that 

overexpress LDLR by approximately 2-fold were bred to APP/PS1 transgenic mice. 

Levels of Aβ accumulation were analyzed by anti-Aβ immunohistochemistry and X-34 

staining (Figures 5A and 5B). Amyloid plaque loads in the cortex and hippocampus were 

markedly lower in female APP/PS1/LDLR transgenic mice, compared with female 

APP/PS1 mice (Figure 5C). In addition, female APP/PS1/LDLR mice had a 50–55% 

decrease in fibrillar plaque load in the cortex and hippocampus (Figure 5D). In line with 

the histochemical findings, biochemical measurement of Aβ levels demonstrated a 30–

55% reduction in total (soluble plus insoluble) Aβ40 levels and an approximately 35% 

reduction in total Aβ42 levels in the cortex and hippocampus of APP/PS1/LDLR 

transgenic mice (Table S1). In contrast to the effects in females, there was no significant 

difference between plaque load or Aβ levels in male APP/PS1 versus APP/PS1/LDLR 

transgenic mice from line E. Collectively, these findings strongly suggest that even a 

small increase of LDLR protein levels can be effective in preventing Aβ accumulation in 

female mice (Figure 5C and 5D). 

Attenuation of Neuroinflammatory Responses in APP/PS1/LDLR Transgenic Mice 

Abnormal activation of microglia and astrocytes is observed in the brains of AD patients 

and transgenic mouse models of amyloidosis (Wyss-Coray, 2006). Previous studies 

suggest that fibrillar amyloid plaques may trigger neuroinflammatory cascades (Meyer-

Luehmann et al., 2008). To quantitatively examine the extent of gliosis, we established a 
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semi-automated imaging processing method and assessed the activation of microglia by 

using CD11b (Figure 6A and 6B) and CD45 (Figure 6D and 6E) as markers. There was 

an ~70% decrease in the CD11b-positive activated microglial load in APP/PS1/LDLR 

line B transgenic mice, compared with APP/PS1 littermates (Figure 6C). Similarly, 

analysis of CD45-positive microglia indicated an ~80% reduction in area covered by 

activated microglia in LDLR transgenic mice (Figure 6F). In addition, brain sections 

were stained with anti-glial fibrillary acidic protein (GFAP) antibody to quantify the 

extent of astrogliosis (Figure 6G and 6H). Clusters of activated astrocytes were often 

associated with amyloid plaques (Figure S4A). APP/PS1/LDLR transgenic mice had 

~45% less GFAP load in cortex, compared with APP/PS1 littermates (Figure 6I). The 

extent of microgliosis and astrogliosis were correlated very well with the amount of 

compact fibrillar plaques detected with the X-34 dye (Figure S4B–S4D). These findings 

demonstrate that the reduction of fibrillar plaque formation by LDLR overexpression is 

closely associated with the decreased activation of microglia and astrocytes. 

LDLR Overexpression Decreases Steady-state ISF eAβ Levels in Young Mice and 

Increases the Elimination of eAβ from the ISF 

We reasoned that the marked reduction in Aβ deposition in mice overexpressing LDLR 

may be the result of altered soluble Aβ metabolism early in life in the extracellular space 

of the brain where it is prone to aggregate (Meyer-Luehmann et al., 2003). To assess this 

possibility, we performed in vivo microdialysis in APP/PS1/LDLR line B transgenic 

mice and APP/PS1 littermates prior to the onset of amyloid deposition to compare levels 

of soluble Aβ in the hippocampal ISF. Soluble ISF Aβ exchangeable across a 38kDa 

dialysis membrane (eAβ) has previously been shown to be tightly correlated with the 
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levels of total soluble Aβ present in extracellular pools of the brain (Cirrito et al., 2003). 

Theoretically, the actual in vivo steady state concentration of an analyte being dialyzed 

exists at the point at which there is no flow of the perfusion buffer (Menacherry et al., 

1992). To obtain this value, we varied the flow rate of the perfusion buffer from 

0.3μL/min to 1.6μL/min during microdialysis in the hippocampus of young 

APP/PS1/LDLR and APP/PS1 mice (Figure 7A1). After extrapolating back to the point 

of zero flow for each mouse, we found that the mean steady state concentration of ISF 

eAβ1-x was significantly lower in APP/PS1/LDLR mice compared to mice expressing 

normal levels of LDLR (Figure 7A2). This difference was not due to differential recovery 

of eAβ by the probe between groups at any of the flow rates tested (Figure S5). Since the 

extent of Aβ deposition observed in Figure 3 was found to depend on the sex of the mice 

analyzed, we stratified microdialysis experiments in the same way. We found that both 

male and female APP/PS1 mice overexpressing LDLR had lower steady state ISF eAβ1-

x levels compared to their sex-matched APP/PS1 counterparts (Figure 7A3). Though we 

did not observe a similar change in Aβ levels as assessed by conventional biochemical 

means (Table S2), it is likely that the Aβ sampled during in vivo microdialysis more 

closely reflects the extracellular pool than total Aβ measured from tissue homogenates. 

 Given that LDLR overexpression did not appear to alter APP processing (Figure 

S3B), and based on our previous finding that apoE decreased the elimination rate of 

soluble Aβ from the ISF (DeMattos et al., 2004), we hypothesized that the lower steady 

state concentration of eAβ in APP/PS1/LDLR mice is likely the result of increased 

elimination from the brain ISF (Deane et al., 2008; DeMattos et al., 2004). To test this 

hypothesis, we injected young APP/PS1 and APP/PS1/LDLR mice intraperitoneally with 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/figure/F7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/?tool=pubmed#SD1


33 
 

a potent γ-secretase inhibitor in order to halt Aβ production, thus allowing sensitive 

measurement of the elimination rate of eAβ from the ISF, as previously described 

(Figures 7B1 and 7B2) (Cirrito et al., 2003; DeMattos et al., 2004). The half-life of 

elimination from the ISF for eAβ1-x was decreased by about two-fold in APP/PS1/LDLR 

mice compared to that measured in APP/PS1 mice (Figure 7B3). The increase of eAβ 

elimination in LDLR transgenic mice was observed in both males and females (Figure 

7B4). Taken together, these results demonstrate that increasing expression of LDLR 

promotes the elimination of soluble Aβ from the ISF, leading to lower levels of the 

peptide in the hippocampal extracellular space. It is likely that the enhanced Aβ 

elimination from the ISF early in the life of the mice underlies the resulting strong 

decrease in Aβ accumulation and its consequences such as inflammation that progress 

with age. 
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DISCUSSION 

 In the current study, we hypothesized that overexpression of LDLR in the brain 

would decrease brain apoE protein levels, subsequently decreasing amyloid deposition. 

To test this hypothesis, we created several transgenic mouse lines that overexpress LDLR 

in the brain and then bred them with APP/PS1 transgenic mice. Brain apoE levels in 

LDLR transgenic mice were decreased by 50–90% in a dose-dependent manner. Most 

importantly, LDLR overexpression led to dramatic reductions in Aβ aggregation and 

neuroinflammatory responses. In addition, increasing expression of LDLR facilitated the 

elimination of soluble Aβ from the ISF, leading to lower levels of Aβ in the hippocampal 

extracellular space. This result strongly suggests that LDLR enhances brain Aβ clearance, 

serving as an important pathway that modulates Aβ metabolism. Overall, the results 

suggest that LDLR may be an attractive therapeutic target for AD. 

 Although numerous putative susceptibility genes for AD have been reported so 

far, the strongest genetic risk factor is APOE genotype; the ε4 allele is an AD risk factor 

and the ε2 allele appears to be protective (Bertram et al., 2007b). Given the considerable 

genetic evidence and the immunoreactivity of apoE in amyloid plaques, the effect of 

apoE isoforms on Aβ aggregation has been investigated extensively in vitro (Kim et al., 

2009a). Later, in vivo studies demonstrated that the lack of apoE led to a dramatic 

reduction of fibrillar Aβ deposition in APP transgenic mouse models (Bales et al., 1999; 

Bales et al., 1997; Holtzman et al., 2000a; Holtzman et al., 2000b). Furthermore, apoE 

has been shown to regulate Aβ clearance in the brain (Bell et al., 2007; Deane et al., 

2008; DeMattos et al., 2004; Jiang et al., 2008). These and other findings strongly 

suggest that the effects of apoE on Aβ aggregation and clearance play a major role in AD 
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pathogenesis (Kim et al., 2009a). Consequently, modulating the function or levels of 

proteins that affect apoE metabolism in the brain seems to be a logical therapeutic 

strategy to alter Aβ-dependent pathogenic processes in AD. Results presented in the 

current study corroborate the feasibility and efficacy of apoE targeting therapeutics. 

 ApoE in the periphery is known to bind to several LDL receptor family members. 

Since the lipid composition and lipidation state of apoE-containing lipoprotein particles 

are different between brain and peripheral tissues, it would be important to know which 

LDL receptor members can regulate apoE protein levels in the brain (Kim et al., 2009a). 

Knockout mouse studies have provided direct evidence for LDLR and LRP1 as major 

apoE receptors in the brain (Elder et al., 2007; Fryer et al., 2005a; Liu et al., 2007). Fryer 

et al. also demonstrated that LDLR differentially regulates the levels of human apoE 

isoforms in the brain through its binding specificity. Zerbinatti et al. generated a LRP1 

mini-receptor transgenic mouse model with 3.7-fold increased LRP1 levels in the brain 

(Zerbinatti et al., 2004). Although an ~25% reduction in brain apoE levels was observed 

in LRP1 transgenic mice, there was an increase in soluble and insoluble Aβ in old mice 

(Zerbinatti et al., 2006; Zerbinatti et al., 2004). The reason for the LRP1 mini-receptor 

overexpression causing an increase in Aβ levels is not entirely clear but is likely due to 

the effects of LRP1 on APP and not due to its effects on apoE. For example, unlike 

LDLR, LRP1 is an APP binding protein that influences APP endocytic trafficking and 

cellular distribution such that processing to Aβ and its extracellular release is enhanced 

(Pietrzik et al., 2002; Ulery et al., 2000). This effect of LRP1 on APP and Aβ may 

supersede the effects of the LRP1 minireceptor on decreasing apoE levels by 25% and its 

effects on Aβ in the brain. In the current study, only 2-fold overexpression of LDLR 
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protein was sufficient to decrease brain apoE levels and Aβ accumulation by more than 

50%. Taken together, these data clearly demonstrate both LDLR and LRP1 regulate apoE 

protein levels in the brain. However, it is unclear whether other LDL receptor family 

members, such as LR11, ApoER2, and VLDLR, also efficiently mediate the endocytosis 

of apoE in the brain. Given the known apoE isoform-specific interactions with LDLR 

(Kim et al., 2009a), it would be interesting to determine whether the effect of LDLR 

overexpression differs in APP transgenic mouse models with humanized apoE isoforms. 

In addition, it will be important to determine the effects of LDLR overexpression on 

cognitive abnormalities observed in APP/PS1 mice. 

 Although the effects of LRP1 on Aβ clearance and APP processing have been 

extensively studied (Cam and Bu, 2006), the potential role of LDLR on AD pathogenesis 

has been unclear. Several studies reported that a few single-nucleotide polymorphisms 

(SNPs) in LDLR gene are associated with the risk of developing AD in case-control 

studies (Cheng et al., 2005; Gopalraj et al., 2005; Retz et al., 2001). However, others 

could not replicate the earlier studies and a meta-analysis of the previously reported case-

control data failed to detect any significant summary odds ratios (Bertram et al., 2007a; 

Rodriguez et al., 2006). More recent findings suggest that other SNPs may be associated 

with a risk of AD in a sex-specific manner. SNP rs688 and haplotype GTT were 

significantly associated with an increased risk of AD in males and females, respectively 

(Lamsa et al., 2008; Zou et al., 2008). Unlike other studies, both studies also 

demonstrated functional effects of SNPs on LDLR splicing and Aβ42 levels. 

 In order to investigate the effect of LDLR deficiency on cholesterol and Aβ in the 

brain, several groups have analyzed LDLR knockout mice. Although LDLR deficiency 
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significantly increased murine brain apoE levels by ~50%, it did not alter brain 

cholesterol levels (Elder et al., 2007; Fryer et al., 2005a; Quan et al., 2003; Taha et al., 

2009). Previously, we demonstrated that there was no significant change in brain Aβ 

levels both before and after the onset of amyloid deposition in PDAPP transgenic mice on 

a LDLR-deficient background (Fryer et al., 2005a). However, there was a trend for an 

increase in Aβ accumulation in PDAPP/LDLR knockout mice. Recently, Buxbaum and 

colleagues also reported that LDLR deficiency did not affect endogenous murine Aβ 

levels in the brain (Elder et al., 2007). In contrast, lack of LDLR was associated with 

increased amyloid deposition in Tg2576 mice (Cao et al., 2006). 

 Prior to our current study, it was unknown whether increased levels of LDLR in 

the brain would affect Aβ accumulation in vivo, and if so, via what mechanism. Given 

the role of apoE in Aβ clearance and aggregation, we hypothesized that the reduction of 

apoE levels by LDLR overexpression would promote the elimination of soluble Aβ from 

the brain ISF, i.e., via transcytosis across the blood-brain barrier into the plasma or by 

local cellular uptake and degradation within the brain. We predicted that increased 

elimination of soluble Aβ through either of these elimination routes would result in 

decreased Aβ accumulation. Our in vivo microdialysis results suggest that the mechanism 

by which LDLR overexpression alters Aβ metabolism is to enhance the extracellular 

clearance of Aβ peptide. It is possible that receptor-mediated clearance of Aβ-ApoE 

complex or Aβ alone from the brain ISF might be enhanced by LDLR overexpression. 

Interestingly, other LDL receptor family members, such as LRP1, LR11, and ApoER2, 

are known to directly or indirectly bind to APP and affect its amyloidogenic processing 

(Kim et al., 2009a). Since levels of carboxyl-terminal fragments of APP, generated by 
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APP processing, were not different between genotypes, it is unlikely that LDLR 

overexpression alters APP processing. Though it is likely that the reduction of apoE 

protein levels by LDLR overexpression enhanced Aβ clearance (DeMattos et al., 2004), 

we cannot exclude the possibility that LDLR may directly affect Aβ clearance 

independent of apoE. 

 Transgenic mouse models of amyloidosis have been invaluable for investigating 

AD pathogenic mechanisms and evaluating the efficacy of novel therapeutic targets. 

Interestingly, female APP/PS1 transgenic mice used in the current study had a more than 

2-fold increase in plaque load and insoluble Aβ accumulation, compared with male 

littermates (Figure 3 and and 4). Our finding is consistent with a recent study that used 

APP/PS1 mice on a different genetic background (Halford and Russell, 2009). A similar 

sex-specific amyloid deposition phenotype has been previously reported with other APP 

transgenic mouse models (Callahan et al., 2001; Wang et al., 2003). The APP/PS1 

transgenic mouse used in our study is one of the most commonly used Aβ amyloidosis 

models. Effects of genetic and pharmacological manipulations on Aβ accumulation and 

Aβ-related pathological changes have been tested using this model. However, most 

previous studies did not analyze the extent of Aβ accumulation by sex. It is possible that 

sex differences were not obviously recognized in other studies due to the limited sample 

size for each sex. Given the dramatic effect of sex on Aβ aggregation, the sex of 

APP/PS1 transgenic mice should be carefully considered for the proper interpretation of 

results. Since the prevalence of AD is higher in women even after adjusting for age and 

education levels (Andersen et al., 1999), it is intriguing that several mouse models of 

amyloidosis have similar sex-dependent phenotypes. Several studies suggest that female 
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hormones may, in part, contribute to sex differences in AD (Carroll et al., 2007; Yue et 

al., 2005). Given the inconsistent findings among studies, the exact mechanism 

underlying sex differences in AD pathogenesis requires further investigation. It is 

possible that the elevated apoE levels in the females APP/PS1 mice is related to why 

females develop more amyloid deposition (Figure 2). Interestingly, while the clearance of 

soluble Aβ in APP/PS1 males trended towards being faster than that for APP/PS1 

females (Figure 7B4), we cannot rule out that an Aβ clearance-independent mechanism 

may account for the sex differences in plaque load and insoluble Aβ accumulation in 

older mice. Understanding the factors that regulate sex-dependent phenotypes may 

provide additional insight into new therapeutic targets. 

 Notably, an increase of LDLR protein levels by only ~2-fold was sufficient to 

decrease Aβ accumulation by ~50% in APP/PS1 female transgenic mice. Our findings 

suggest that even a small increase in LDLR levels or function in the brain may be 

exploited as a novel approach for developing AD therapeutics. Due to the critical role of 

LDLR in the metabolism of apoB-containing LDL particles in the circulation, strategies 

increasing the function and amount of LDLR protein in the liver have been extensively 

pursued as promising therapies for atherosclerosis and premature coronary heart disease 

(Soutar and Naoumova, 2007). Overexpression of LDLR in the liver facilitated LDL 

elimination by receptor-mediated endocytosis and prevented diet-induced 

hypercholesterolemia (Hofmann et al., 1988; Yokode et al., 1990). However, the 

modulation of LDLR function in the brain as a treatment modality for AD has not been 

previously investigated. Our study clearly demonstrates the beneficial effects of LDLR 

overexpression in the brain on pathogenic Aβ aggregation and subsequent 
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neuroinflammatory responses. Although other LDL receptor family members bind to 

multiple ligands (i.e. LRP1 having more than 20 ligands), there are only two known 

ligands, apoB and apoE, for LDLR. Since apoB is not expressed in the brain, modulating 

LDLR function in the brain is likely to target apoE specifically. A couple of recently 

identified genes are known to regulate LDLR protein levels by affecting the trafficking 

and degradation of LDLR in peripheral tissues (Soutar and Naoumova, 2007). Since these 

proteins are also expressed in the brain, their potential roles in the clearance and 

accumulation of Aβ warrant further investigations. In addition, several compounds have 

been identified to increase hepatic LDLR protein levels by modulating synthesis or 

degradation of LDLR and LDLR-regulating proteins. Given our results from transgenic 

mice overexpressing LDLR in the brain, the therapeutic potential of these lead 

compounds merit additional testing in animal models of Aβ amyloidosis. 
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EXPERIMENTAL PROCEDURES 

Generation of LDLR Transgenic Mice 

Murine LDLR was cloned from RNA isolated from mouse brain using the RNeasy kit 

(QIAGEN). Random primer RT-PCR was performed using the First Strand cDNA 

Synthesis Kit (Roche Applied Sciences). The sequence and orientation of the insert was 

verified by complete sequencing. LDLR cDNA was excised from pcDNA3.1 using XhoI 

and inserted into the cloning site of the mouse prion promoter vector (Borchelt et al., 

1996), a gift from David Borchelt (University of Florida). The Mouse Genetics Core 

Laboratory at Washington University produced the transgenic mice on a B6/CBA 

background. Among 6 transgenic founders, 2 lines of LDLR transgenic mice were 

crossed with APPswe/PSEN1ΔE9 (APP/PS1) transgenic mice (line 85, Stock number 

004462, The Jackson Laboratory). APP/PS1 transgenic mice overexpress a chimeric 

mouse/human APP695 swedish gene and human PSEN1 with an exon 9 deletion 

(Jankowsky et al., 2004). All comparisons between APP/PS1 transgenic mice with or 

without an LDLR transgene were littermates on the same genetic background. 

Primary Astrocyte Cultures 

Cortical primary murine astrocytes were obtained from P2 mouse pups. Cortices were 

dissected from the brain and placed in Hanks balanced salt solution then treated with 

trypsin/EDTA. Following trypsin digestion, the tissue was resuspended and triturated in 

growth media containing DMEM/F12, 20% fetal bovine serum (FBS), 10 ng/ml 

epidermal growth factor, 100 units/ml penicillin/streptomycin, and 1 mM sodium 

pyruvate. The cell suspension was then passed through a 100 μm nylon filter and plated 
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into T75 flasks coated with poly-D-lysine. Once the cells reached confluency, they were 

shaken at 100 rpm for three hours and the media was aspirated to remove the less 

adherent microglial cells. The cells were then passaged into 6 well plates for experiments. 

Primary Neuron Cultures 

Cortical primary murine neurons were obtained from E16 embryos. Cortices were 

dissected from the brain, cut into small pieces, and placed into HBSS. The tissue was 

then treated with trypsin/EDTA for 15 min at 37°C. FBS was then added to the tissue, 

and it was washed with HBSS (without calcium and magnesium). Following the wash 

steps, the tissue was resuspended in HBSS (-calcium/magnesium) and 500 U/mL of 

DNase I. The tissue was then triturated and the cells were resuspended in neurobasal 

medium with 10% FBS. Cells were then counted and plated into 6 well plates. 3 hrs 

following the plating, the seeding medium was replaced with neurobasal medium 

containing B27 supplement. To remove contaminating glial cells, a mixture of 

antimitotics (5-fluoro-2′-deoxyuridine, uridine, and cytosine β-D-arabinofuranoside) was 

added to the cultures on DIV5. The media was then changed to neurobasal media with 

B27 on DIV7. 

Quantitative Analyses of Amyloid Deposition 

Brain hemispheres were placed in 30% sucrose before freezing and cutting on a freezing 

sliding microtome. Serial coronal sections of the brain at 50 mm intervals were collected 

from the rostral anterior commisure to caudal hippocampus as landmarks. Sections were 

stained with biotinylated 3D6 (anti-Aβ1–5) antibody or X-34 dye. Stained brain sections 

were scanned with a NanoZoomer slide scanner (Hamamatsu Photonics). For quantitative 
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analyses of 3D6-biotin staining, scanned images were exported with NDP viewer 

software (Hamamatsu Photonics) and converted to 8-bit grayscale using ACDSee Pro 2 

software (ACD Systems). Converted images were thresholded to highlight plaques and 

then analyzed by ―Analyze Particles‖ function in the ImageJ software (National Institutes 

of Health) (Kim et al., 2007). Identified objects after thresholding were individually 

inspected to confirm the object as a plaque or not. X-34 stained sections were quantified 

following unbiased stereological principles (Cavalieri-point counting method) (Holtzman 

et al., 2000b). Three brain sections per mouse, each separated by 300 μm, were used for 

quantification. These sections correspond roughly to sections at Bregma −1.7, −2.0, and 

−2.3 mm in the mouse brain atlas. The average of 3 sections was used to represent a 

plaque load for each mouse. For analysis of Aβ plaque in the cortex, the cortex 

immediately dorsal to the hippocampus was assessed. All analyses were performed in a 

blinded manner. 

Sandwich ELISA for Aβ and ApoE 

Cortical and hippocampal tissues were sequentially homogenized with PBS and 5M 

guanidine buffer in the presence of 1x protease inhibitor mixture (Roche). The levels of 

Aβ and ApoE were measured by sandwich ELISA. For Aβ ELISA, HJ2 (anti-Aβ35–40) 

and HJ7.4 (anti-Aβ37–42) were used as capture antibodies and HJ5.1-biotin (anti-Aβ13–

28) as the detection antibody. WUE4 (Krul et al., 1988) and anti-ApoE antibody 

(Calbiochem) were used for apoE ELISA. Pooled C57BL/6J plasma was used as a 

standard for murine apoE quantification(Fryer et al., 2005a). For in vivo microdialysis 

experiments, human Aβ1-x from collected fractions was measured using m266 antibody 

(anti-Aβ13–28) to capture and 3D6-biotinylated antibody (anti-Aβ1–5) to detect. 
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Quantitative Analyses of Neuroinflammatory Response 

Brain sections cut with a freezing sliding microtome were immunostained with anti-

CD11b antibody (BD Pharmingen), anti-CD45 antibody (Serotec), and anti-GFAP 

antibody (Chemicon). The percent area covered by CD11b and CD45 staining was 

analyzed in the hippocampus by using NDP viewer, ACDSee Pro 2, and NIH Image J 

softwares, as described above. For GFAP quantification, cortical regions were assessed. 

The overall area covered by GFAP staining signals was measured with NDP viewer. 

Three brain sections per mouse, each separated by 300 μm, were used for quantification. 

The average of 3 sections was used to estimate the area covered by immunoreactivity 

with each antibody. All analyses were performed in a blinded manner. 

Western Blot 

Cortical tissues, primary neurons, and astrocytes cultures were sonicated in 

radioimmunoprecipitation assay (RIPA) buffer (1% NP-40, 1% sodium deoxycholate, 

0.1% SDS, 25mM Tris-HCl, 150mM NaCl) or 1% Triton X-100 in the presence of 1x 

protease inhibitor mixture (Roche). Cortical tissue homogenates were centrifuged at 

18,000 rcf for 30 min. Primary cells were spun down at 14,000 rcf for 15 min. Protein 

concentration in supernatants was determined using the BCA protein assay kit (Pierce). 

Equal amounts of protein for each sample were run on 3–8% Tris-Acetate or 4–12% Bis-

Tris XT gels (Bio-Rad) and transferred to PVDF membranes. Blots were probed for 

LDLR (Novus, Abcam, and a gift from Dr. Guojun Bu at Washington University), CT22 

(Zymed), HA (Covance) and ApoJ (Covance). Normalized band intensity was quantified 

using NIH ImageJ software (Kim et al., 2007). 
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In Vivo Microdialysis 

In vivo microdialysis in 2.5 month old APP/PS1 and APP/PS1/LDLR (B-line) littermates 

was performed essentially as described (Cirrito et al., 2003; DeMattos et al., 2004). 

Briefly, microdialysis using the zero flow extrapolated method was performed with an 

automated syringe pump (Univentor 864) connected to a laptop using Univentor 300 

software. Zero flow data for each mouse were fit with an exponential decay regression as 

described (Menacherry et al., 1992). For clearance experiments, a stable baseline of ISF 

eAβ levels was obtained using a constant flow rate of 1.0μl/min before intraperitoneally 

injecting each mouse with 10 mg/kg of the gamma secretase inhibitor LY411,575 

(prepared by dissolving in PBS and propylene glycol). The elimination of eAβ from the 

ISF followed first -order kinetics; therefore, for each mouse, the elimination half-life for 

eAβ was calculated using the slope of the linear regression that included all fractions until 

levels stopped decreasing. 

Statistical Analyses 

To determine the statistical significance (*p<0.05, **p<0.01, ***p<0.001), two-tailed 

Student’s t-test was used, only if the data sets passed the equal variance test (Levene 

Median test) and normality test (Kolmogorov-Smirnov test) (SigmaStat 3.0.). When the 

data set did not meet the assumptions of a parametric test, Mann-Whitney Rank Sum Test 

was performed. The correlation between gliosis and X-34 plaque load was analyzed with 

Pearson product moment correlation test (SigmaStat 3.0.). Variability of the 

measurements was reported as SEM. 
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

Quantitative Real-time PCR (qPCR) 

Frozen cortical tissues were placed in RNAlater-ICE frozen tissue transition solution 

(Ambion) and stored at -20
o
C. mRNA was extracted using the Dynabeads mRNA 

DIRECT kit (Invitrogen) and reverse transcribed with High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems). qPCR was performed with TaqMan Universal 

PCR Master Mix and 7500 Fast Real-Time PCR system. The forward primer targeting 

exon 2 was 5’-CAATTGCGAAGATGAAGGCTC-3’, and the reverse primer targeting 

exon 3 was 5’-TAATCCCAGAAGCGGTTCAG-3’. For 5’ nucleases hydrolysis probe 

method, probe ATCAGCTCGAGTGGCAAAGCAAC was labeled with a 5’ FAM 

fluorophore and 3’ lowa Black non-fluorescent quencher (Integrated DNA Technologies). 

TaqMan mouse GAPDH endogenous control (Applied Biosystems) was used as a 

normalization reference. Relative mRNA levels were calculated by comparative Ct 

method using the Applied Biosystems 7500 software. 
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Figure 1. Expression of LDLR Transgene in Neurons and Astrocytes. (A) Levels of 

LDLR protein in the cortex of 5 different LDLR transgenic lines were assessed by 

western blotting. RIPA-soluble cortex lysates from LDLR transgenic mice and non-
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transgenic (NTG) mice were probed with anti-LDLR antibody (Novus). (B–D) Regional 

expression patterns of LDLR in B line mice were characterized by immunostaining with 

anti-HA antibody to detect HA-tagged LDLR protein. LDLR was expressed in the cortex 

(B), dentate gyrus of hippocampus (C), and Purkinje cell dendrites of cerebellum (D). 

(E–G) Cellular expression profile of the LDLR transgene was examined by using anti-

HA or anti-LDLR antibody. (E) Cortical sections were stained by double-

immunofluorescence labeling for HA (red) and the neuronal marker NeuN (green). (F) 

Cell lysates from primary neurons or astrocytes isolated from LDLR B line transgenic 

(TG) and NTG mice were analyzed by probing with either anti-LDLR (Novus) or anti-

LDLR (Dr. Bu) antibody, respectively. (G) Expression of HA-tagged LDLR transgene in 

primary neurons and astrocytes was confirmed by western blotting with anti-HA 

antibody. Scale bar: 30μm. See also Figure S1. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Figure 2. Reduction of Brain ApoE Protein Levels by LDLR Overexpression. (A) 

Cortex from 5 LDLR transgenic lines and NTG mice were homogenized with PBS at 3 

months of age. Levels of apoE protein in PBS-extracted fraction were analyzed by apoE 

ELISA. (n=4 per group). (B) Hemizygous LDLR B line mice were bred with APP/PS1 
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transgenic mice. Levels of PBS-soluble apoE in the cortex (Ctx) and hippocampus (Hip) 

were measured from APP/PS1 mice without the LDLR transgene (NTG) and from 

APP/PS1/LDLR (TG) mice. To prevent any confounding effect from amyloid plaque 

formation and sex difference, mice were analyzed by sex at 2.5 months of age. (n=5–10 

per group). (C) The progeny of hemizygous LDLR E line bred with APP/PS1 mice were 

similarly analyzed for apoE protein levels in the Ctx and Hip. There was a 55–60% 

reduction of apoE levels in LDLR TG mice, compared with NTG mice. (n=6–8 per 

group). Values are mean ± SEM. See also Figure S2 and S3. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Figure 3. Inhibition of Plaque Formation by Strong LDLR Overexpression. Brain 

sections from APP/PS1 mice without LDLR transgene (NTG) (A and C) and 

APP/PS1/LDLR B line transgenic mice (TG) (B and D) were immunostained for Aβ 
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using the 3D6 antibody. Scale bar: 300μm. (E) The extent of plaque deposition detected 

by 3D6 antibody was quantified from cortex (Ctx) and hippocampus (Hip) of APP/PS1 

and APP/PS1/LDLR transgenic mice. Female and male mice were analyzed separately at 

7 months of age. (n=6–12 per group). (F) Brain sections from APP/PS1 and 

APP/PS1/LDLR TG mice were stained with X-34 dye that recognizes compact fibrillar 

plaques. X-34 positive fibrillar plaque loads in the Ctx and Hip were analyzed by 

applying an unbiased stereological method. (n=6–12 per group). 
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Figure 4. Decrease of Aβ Accumulation in APP/PS1/LDLR Transgenic Mice. 

Cortical (Ctx) and hippocampal (Hip) tissues from 7 month-old APP/PS1 (NTG) and 

APP/PS1/LDLR B line transgenic mice (TG) were sequentially homogenized by using 

PBS and guanidine buffer. PBS-insoluble Aβ40 (A) and Aβ42 (B) levels were measured 

from Ctx and Hip by using a sandwich Aβ ELISA. (n=6–12 per group). Values are mean 

± SEM. See also Table S1. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Figure 5. Two-fold Overexpression of LDLR Prevents Amyloid Formation. 

Hippocampal sections from 7 month-old female APP/PS1 (NTG) (A) and 

APP/PS1/LDLR E line transgenic mice (TG) (B) were stained with fibrillar plaque-

specific X-34 dye. Scale bar: 100μm. (C) The extent of plaque deposition detected by 

3D6 antibody was quantified from cortex (Ctx) and hippocampus (Hip) of APP/PS1 and 

APP/PS1/LDLR E line transgenic mice. There was no statistically significant difference 
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between genotypes in male mice. (D) X-34 positive fibrillar plaque load was analyzed 

from Ctx and Hip of APP/PS1 and APP/PS1/LDLR transgenic mice. (n=8–13 per group). 

See also Table S1. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Figure 6. Attenuation of Neuroinflammatory Responses in APP/PS1/LDLR Mice. 

Hippocampal sections from male APP/PS1 (NTG) and APP/PS1/LDLR B line transgenic 

mice (TG) were immunostained with an antibody against the microglial marker CD11b 

(A–B) and CD45 (D–E). Scale bar: 150μm. The percent area covered by CD11b staining 

(C) and CD45 staining (F) was quantified from APP/PS1 and APP/PS1/LDLR B line. 

(n=8–10 per group). Cortical sections from female APP/PS1 (G) and APP/PS1/LDLR B 

line transgenic mice (H) were immunostained with anti-GFAP antibody, a marker of 

astrogliosis. Scale bar: 180μm. (I) The percent area covered by GFAP staining was 

quantified. (n=6–8 per group). Scale bar for higher magnification inserts: 40μm. All mice 

were 7 months old. See also Figure S4. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Figure 7. Steady State ISF eAβ Levels and Elimination Half-life Are Altered in 

APP/PS1 Mice Overexpressing LDLR. (A1) An exponential decay regression was used 

to fit the concentrations of eAβ1-x obtained at each flow rate for individual mice in both 
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groups. The equations of the individual regressions were used to calculate the value at 

X=0 for each mouse in both groups. (A2) The mean in vivo steady state concentrations 

for ISF eAβ1-x (in pg/mL) calculated from the method in A1 were 2426 ± 260.5 and 1432 

± 124.8 for APP/PS1 (NTG) and APP/PS1/LDLR (TG) mice, respectively (n=12 per 

group; P=0.0036, student’s t test with Welch’s correction). (A3) The mean in vivo steady 

state concentrations for ISF eAβ1-x (in pg/mL) were significantly lower in 

APP/PS1/LDLR (TG) mice than in APP/PS1 (NTG) mice when comparing within the 

same sex (n=6 per group; P=0.049 and 0.040 for male and female comparisons, 

respectively) (B1) After a six-hour baseline of ISF eAβ1-x was achieved, levels of the 

peptide rapidly decreased for both groups studied within several hours of a 10 mg/kg i.p. 

injection of the gamma secretase inhibitor LY411,575. (B2) The plot of the common 

logarithm of percent baseline ISF eAβ1-x concentrations versus time was linear in both 

groups studied, suggesting net first-order kinetics. Data shown represent timepoints at 

which Aβ levels had not yet plateaued. The slope from the individual linear regressions 

from log(% eAβ) vs. time for each mouse was used to calculate the mean half-life (t1/2) of 

elimination for eAβ from the ISF in (B3). (B3) The mean eAβt1/2 (in hours) was 1.25 ± 

0.0989 (n=13) and 0.671 ± 0.0833 (n=12) in NTG and TG mice, respectively. (B4) In 

NTG and TG male mice, the eAβt1/2 (in hours) was 1.13 ± 0.147 (n=7) and 0.625 ± 0.126 

(n=6), respectively. In NTG and TG female mice, the eAβt1/2 (in hours) was 1.39 ± 0.112 

(n=6) and 0.717 ± 0.117 (n=6), respectively. Differences were significant for 

comparisons between males as well as those made for females of each genotype (P=0.028 

and 0.0018, respectively). See also Figure S5 and Table S2. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787195/#SD1
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Supplementary Figure 1, related to Figure 1. Overlapping Staining Signal from HA 

Antibody and LDLR Antibody. Cortical sections from LDLR B line mice were stained 

by double-immunofluorescence labeling for HA (A) and LDLR (Abcam) (B). (C) Since 

the HA epitope tag was inserted in the amino-terminal region of LDLR, HA staining 

pattern overlapped well with the LDLR staining pattern. Scale bar: 30µm. 
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Supplementary Figure 2, related to Figure 2. No alteration of apoE mRNA levels in 

cortex of LDLR transgenic mice. ApoE mRNA was extracted from cortical tissues of 3 

month-old LDLR transgenic line B and E as well as their NTG littermates. The levels of 

apoE mRNA were measured by quantitative RT-PCR. There were no significant 

differences in apoE mRNA levels between LDLR transgenic mice and their NTG 

littermates. n=3-6 per group. Values are expressed as mean ± SEM. 
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Supplementary Figure 3, related to Figure 2. No alteration of APP processing and 

apoJ levels by LDLR overexpression. (A) Cortical tissues from 2.5 month old mice 

were lysed in RIPA buffer. Equal amounts of total protein from each mouse were loaded 

and then western blots were probed for LDLR (Abcam), APP carboxyl-terminal 
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fragments (CTFs), and ApoJ.  The ~75 kDa band represents the disulfide-linked alpha 

and beta subunit of apoJ while the ~35 and 40 kDa bands represent the alpha and beta 

subunit, respectively. LDLR bands were used to confirm the genotype of mice. (B) 

Quantitative analyses of western blots were performed using the gel analysis function in 

NIH ImageJ software. There was no statistical difference for all comparisons. (C) 

Quantitative analyses of LDLR protein levels by western blots between 2.5 month old 

female and male APP/PS1 mice. LDLR protein levels were not significantly different 

between female and male mice. n=4 per group. Values are expressed as mean ± SEM. 
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Supplementary Figure 4, related to Figure 6. Tight correlation between gliosis and 

fibrillar plaque load. (A) Cortical sections from APP/PS1 mice were immunostained 

with anti-GFAP antibody. Reactive astrocytes were increased around amyloid plaques. 

Scale bar: 50µm. (B) Correlation analysis between CD11b-positive microglial load and 

X-34 positive fibrillar plaque load. Pearson product moment correlation coefficient r = 

0.901. (C) Correlation analysis between CD45-positive microglial load and X-34 positive 

fibrillar plaque load. (D) Correlation analysis between GFAP-positive astrocyte load and 

X-34 positive fibrillar plaque load. 
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Supplementary Figure 5, related to Figure 7. Percent eAβ1-x recovered by 

microdialysis probe is equivalent in dialysates collected from APP/PS1/LDLR and 

APP/PS1 mice. In vivo percent recoveries at each flow rate were determined using the 

zero flow extrapolated method, revealing no significant difference in eAβ recovery by the 

microdialysis probe between the groups studied (P>0.05; repeated measures ANOVA 

with Huynh and Feldt adjustment). 
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Supplementary Table 1, related to Figure 4 and Figure 5. Total Aβ40 and Aβ42 

levels in the cortex and hippocampus at 7 months of age. Levels of total (soluble plus 

insoluble) Aβ in the cortex and hippocampus were measured by using Aβ ELISA. 

Comparisons were made between APP/PS1 mice (labeled as NTG) and APP/PS1/LDLR 

transgenic mice (labeled as TG) using 2-tailed Student’s t-test. Female (F) and male (M) 

mice were analyzed separately at 7 months of age. Units are in ng/mg of tissue. (*P<0.05, 

**P<0.01, ***P<0.001). 
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Supplementary Table 2, related to Figure 7. Total Aβ40 and Aβ42 levels in the 

cortex and hippocampus at 2.5 months of age. Levels of total (soluble plus insoluble) 

Aβ in the cortex and hippocampus were measured by using Aβ ELISA. Female (F) and 

male (M) mice were analyzed separately at 2.5 months of age. With the exception of 

Aβ42 in the cortex of LDLR E line female progeny (*P<0.05), there was no statistically 

significant difference between NTG and TG mice for any of the measures. Units are in 

ng/mg of tissue. 
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Chapter 3.  

Overexpression of the low-density lipoprotein receptor  

enhances brain to blood Aβ clearance in a mouse model of β-amyloidosis 
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PREFACE 

The following work will be submitted as a full research article to a peer-reviewed journal 

in December 2011.  Joseph Castellano performed and designed experiments and analyzed 

data throughout this work, with experimental assistance from Rashid Deane at the 

University of Rochester (brain efflux index experiments), Andrew J. Gottesdiener (plaque 

load quantification), and Floy R. Stewart (histology).  Ronald B. DeMattos at Eli Lilly & 

Co. contributed valuable reagents.         
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ABSTRACT 

Possession of the Apolipoprotein E (APOE)- 4 allele is the strongest genetic risk factor 

for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β 

(Aβ) accumulation.  We recently demonstrated that the low-density lipoprotein receptor 

(LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque 

deposition by modulating Aβ clearance.  In the current study, we sought to understand the 

mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from 

the brain interstitial fluid (ISF).  We hypothesized that increasing LDLR levels enhances 

blood-brain barrier-mediated Aβ clearance, thus leading to reduced Aβ accumulation.  

Using the brain Aβ efflux method, we found that blood-brain barrier-mediated clearance 

of exogenously administered Aβ is, in fact, enhanced with LDLR overexpression.  We 

next developed a method to directly assess the elimination of centrally-derived, 

endogenous Aβ into the plasma of mice using an anti-Aβ antibody that prevents 

degradation of plasma Aβ, allowing its rate of appearance from the brain to be measured.  

Using this plasma Aβ sequestration technique, we found that LDLR overexpression 

enhances brain to blood Aβ appearance rate.  Together, our results suggest a novel 

mechanism by which LDLR regulates blood-brain barrier-mediated Aβ clearance, which 

may serve as a useful therapeutic avenue to target Aβ clearance from the brain.  
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INTRODUCTION 

Alzheimer's disease (AD) is a progressive, neurodegenerative disease with an estimated 

prevalence of 26 million cases worldwide.  Accumulation of soluble Aβ into toxic 

oligomers and amyloid plaques is widely hypothesized to initiate a pathogenic cascade 

leading to synaptic dysfunction, neuronal death, and ultimately, loss of cognitive function 

(Haass and Selkoe, 2007; Hardy and Selkoe, 2002; Selkoe, 2011).  Extracellular amyloid 

plaques have been associated with neuritic dystrophy (D'Amore et al., 2003; Garcia-

Alloza et al., 2006; Knowles et al., 1999; Lombardo et al., 2003; Meyer-Luehmann et al., 

2008), as well as astrocytic/neuronal hyperactivity and synaptic dysfunction (Busche et 

al., 2008; Kuchibhotla et al., 2008; Kuchibhotla et al., 2009).  In addition to the 

neurotoxic accumulation of amyloid-β (Aβ) in the brain parenchyma, dementia in AD has 

been associated with cerebrovascular dysfunction and the accumulation of Aβ in blood 

vessel walls (Iadecola, 2004; Zlokovic, 2008).   

 Genetic and biochemical studies have demonstrated that most rare, early-onset 

forms of familial AD are caused by autosomal dominant mutations that result in aberrant 

amyloid precursor protein (APP) processing, leading to an overproduction of Aβ or 

increase in the ratio of Aβ42 to Aβ40.  However, much less is known about factors that 

initiate or regulate risk and onset of Aβ accumulation in sporadic, late-onset cases of AD 

that account for the majority of AD cases.  Emerging evidence suggests that Aβ may 

accumulate in sporadic, late-onset AD as a result of its faulty clearance from the brain 

(Mawuenyega et al., 2010b).  The strongest identified genetic risk factor for sporadic, 

late-onset AD is the APOE 4 allele, which increases AD risk and decreases onset by 10-

15 years in a dose-dependent fashion (Corder et al., 1994; Corder et al., 1993; Saunders 
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et al., 1993; Verghese et al., 2011).  APOE status is hypothesized to modulate AD risk 

and age of onset by regulating the onset of amyloid deposition (Castellano et al., 2011; 

Morris et al., 2010; Reiman et al., 2009; Schmechel et al., 1993; Sunderland et al., 2004; 

Tiraboschi et al., 2004).  A recent study in which complexes of human apoE and Aβ were 

injected into wildtype mouse brain demonstrated that apoE4 impedes the clearance of Aβ 

compared to complexes of Aβ and apoE2 or apoE3 (Deane et al., 2008).  Using a mouse 

model that develops human apoE isoform-dependent β-amyloidosis (Bales et al., 2009), 

we recently provided direct in vivo evidence that human apoE isoforms differentially 

regulate soluble Aβ clearance from the brain interstitial fluid (ISF) (Castellano et al., 

2011).  The mechanism by which human apoE isoforms differentially clear Aβ remains 

unclear. 

 Aβ is eliminated from the brain ISF through various routes, including cellular 

uptake and degradation, ISF bulk flow, and blood-brain barrier (BBB)-mediated 

transport.  ApoE has been shown to impede the clearance of Aβ across the BBB, and 

various members of the low-density lipoprotein receptor (LDLR) family have been 

implicated in mediating apoE-independent or apoE-dependent Aβ clearance across the 

BBB (Bell et al., 2007; Deane et al., 2008; Deane et al., 2004).  Although LRP1 has been 

well characterized for its role in BBB-mediated Aβ clearance (Bell et al., 2007; Deane et 

al., 2008; Deane et al., 2004), whether LDLR mediates Aβ clearance across the BBB is 

unclear.  Recent studies have identified LDLR as a major CNS apoE receptor that 

regulates amyloid deposition in various mouse models of β-amyloidosis (Cao et al., 2006; 

Fryer et al., 2005a; Katsouri and Georgopoulos, 2011; Kim et al., 2009b).  Although we 

demonstrated that LDLR overexpression decreases amyloid deposition by altering the 
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steady state concentration of Aβ in the ISF (Kim et al., 2009b), the mechanism by which 

LDLR regulates ISF Aβ clearance remains to be defined.  To this end, we used the brain 

efflux index (BEI) method to demonstrate a novel role for LDLR in BBB-mediated Aβ 

clearance.  To directly assess the rate of appearance of Aβ in the blood from the brain, we 

created mice that express Aβ solely within the CNS with and without LDLR 

overexpression.  We next sequestered endogenously produced, brain-derived Aβ with an 

anti-Aβ antibody in the blood of these mice, finding that LDLR overexpression increases 

the rate that Aβ enters the blood from the brain.    
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RESULTS 

To further understand the role of LDLR in Aβ metabolism, we created mice in which 

LDLR is overexpressed in the CNS, which we have previously characterized (Kim et al., 

2009b).  In young wildtype (NTG) or LDLR-TG (TG) mice, we utilized the brain efflux 

index (BEI) method (Bell et al., 2007; Deane et al., 2008; Deane et al., 2004; Shibata et 

al., 2000) to test the hypothesis that LDLR regulates steady state levels of Aβ by 

enhancing its clearance from the brain.  [
125

I]-radiolabeled, monomeric Aβ40 was co-

injected at an equimolar concentration of 12 nM with [
14

C]-inulin into the brain 

interstitial fluid (ISF) to compare the clearance kinetics from the brain over various 

timepoints (15-150 minutes).  Unlabeled and radiolabeled Aβ have been shown to exhibit 

nearly identical clearance kinetics (Bell et al., 2007).  [
14

C]-inulin serves as a reference 

marker of ISF bulk flow as it does not actively clear across the BBB.  Total clearance of 

Aβ from the brain ISF was significantly faster from the brains of TG mice compared to 

NTG mice (Figure 1A).  Analysis of major components of brain to blood efflux (BBB 

and ISF bulk flow) revealed that LDLR overexpression increased the BBB-mediated 

component of Aβ clearance compared to NTG mice, as indicated by the greater slope in 

TG vs. NG mice (Figure 1B).  Notably, the contribution of ISF bulk flow to total Aβ 

clearance was minimal (Figure 1B), consistent with previous studies (Deane et al., 2008; 

Deane et al., 2004; Shibata et al., 2000).  Given the purported role of apoE in BBB 

integrity (Fullerton et al., 2001; Hafezi-Moghadam et al., 2007; Methia et al., 2001), it is 

possible that LDLR overexpression may alter BBB permeability.  We monitored the 

elimination of [
14

C]-inulin over the entire timecourse for both groups, which revealed that 
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[
14

C]-inulin was cleared in a slow, passive manner to a similar extent in both groups 

(Supplementary Figure 1A), strongly suggesting an intact BBB in TG mice.   

 Based on the passive elimination kinetics of inulin from the brain ISF and the 

total clearance of [
125

I]-Aβ40, we employed our kinetic model (see Methods) to calculate 

the relative contribution of ISF bulk flow and BBB transport to Aβ clearance in NTG and 

TG mice (Figure 1C).  A significantly greater proportion of total Aβ clearance was 

attributed to BBB transport in TG mice compared to NTG mice (66.9% compared to 

36.3%; Figure 1C).  Conversely, less Aβ was retained within the brains of TG mice 

compared to NTG mice (27.8% compared to 58.6%, respectively).  Consistent with our 

earlier results, the proportion of Aβ clearance attributed to ISF bulk flow did not differ 

between NTG and TG mice (5.1% compared to 5.3%, respectively).  The fractional rate 

constants (k, min
-1

) calculated from Equations 2-4 (see Methods) and utilized to 

determine the rates of Aβ clearance mediated by the BBB, ISF bulk flow, and brain 

retention, are provided in Table 1.  To determine whether cellular degradation within the 

remaining fraction of Aβ within the brain differed between NTG and TG mice, we 

performed trichloroacetic acid (TCA) precipitation of brains at early and late timepoints 

within the timecourse.  Of the remaining fraction of brain [
125

I]-Aβ in each group, the 

extent of cellular degradation was assessed by performing TCA precipitation of brains at 

30 and 120 minutes following injection.  We found that the proportion of TCA-

precipitable (intact) Aβ did not differ significantly between NTG and TG mice, though a 

trend was noted towards greater degradation in the brains of TG mice at both timepoints 

(Supplementary Figure 1B).  Together, our results suggest that LDLR enhances BBB-

mediated clearance of Aβ. 
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 The rapid degradation of Aβ in the periphery (t1/2 = 2-3 min) precludes a direct 

and sensitive measurement of the rate of Aβ appearance from the brain (Barten et al., 

2005; Ghiso et al., 2004).  To begin to directly assess the rate of brain to blood Aβ 

appearance, we first crossbred LDLR-TG mice with the PDAPP (APPV717F) mouse 

model of β-amyloidosis.  PDAPP mice have been previously reported to produce APP/Aβ 

solely within the CNS (DeMattos et al., 2001; Games et al., 1995; Johnson-Wood et al., 

1997), allowing the brain to blood fate of Aβ to be followed in vivo.  To characterize the 

effect of LDLR overexpression on Aβ accumulation in PDAPP mice, we aged PDAPP 

mice expressing normal levels of LDLR (NTG) and PDAPP mice overexpressing LDLR 

(TG) to 10 months of age.  We immunostained brain sections from mice of each group 

using an anti-Aβ antibody (3D6).  In both the hippocampus, TG mice exhibited a marked 

decrease in Aβ deposition compared to NTG mice (Figure 2A).  Quantification of the 

extent of each region occupied by Aβ deposition revealed that LDLR overexpression 

decreased Aβ burden by 2.7-fold and 4.8-fold in hippocampus and cortex, respectively 

(Figure 2B).  We next used the congophilic dye, X-34, to compare amyloid plaque load in 

10 month-old NTG and TG mice (Figure 2C), which revealed a significant decrease in 

amyloid plaque load in hippocampus and cortex as a result of LDLR overexpression in 

PDAPP mice (Figure 2D).  Based on the role of LDLR in receptor-mediated endocytosis 

of apoE from the extracellular space, we next assessed whether LDLR overexpression 

influences apoE concentration in young PDAPP mice, prior to the onset of Aβ deposition.  

We found that LDLR overexpression decreased apoE concentration in hippocampal 

homogenates by 2.9-fold compared mice expressing normal levels of LDLR (Figure 3A), 

which was similar to the 2.5-fold decrease in apoE observed in cortical homogenates 
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(Figure 3B).  These results are consistent with previous findings that LDLR is a major 

receptor for apoE in the CNS (Fryer et al., 2005a; Kim et al., 2009b), further validating 

PDAPP mice overexpressing LDLR as a useful model to understand the role of LDLR in 

altering brain to blood clearance of Aβ. 

 To directly compare peripheral appearance rates of Aβ entering from the brain in 

NTG and TG mice, we sought to develop a method by which centrally-derived, 

endogenously secreted Aβ could be sequestered over time in the periphery, thus 

protecting it from rapid degradation.  Based on earlier work characterizing the ability of 

anti-Aβ antibodies to rapidly sequester Aβ in the periphery and prolong its half-life 

(DeMattos et al., 2001; DeMattos et al., 2002a; Seubert et al., 2008), we identified a high-

affinity anti-Aβ antibody specific for the central domain of Aβ (HJ5.1).  Following 

intravenous injection of biotinylated HJ5.1 in PDAPP mice, we performed serial retro-

orbital bleeds over the course of several hours to quantify the concentration of antibody 

in plasma following injection.  Consistent with the long half-life of antibodies in the 

peripheral circulation, including anti-Aβ antibodies (DeMattos et al., 2001), the 

concentration of HJ5.1 in plasma of PDAPP mice was stable over the entire timecourse 

and was in significant molar excess of circulating Aβ (Figure 4A).  To address the 

possibility that intravenously administered antibody enters the CNS, potentially altering 

Aβ metabolism in the brain, we harvested mice at the end of the timecourse following 

HJ5.1 injection and quantified the amount of antibody in the brain.  In both hippocampal 

and cortical homogenates, we found a small fraction of the injected antibody (2.65 x 10
-3

 

% to 1.75 x 10
-2

 %) had entered the brain (Supplementary Table 1).  To further assess 

whether this small fraction could alter brain Aβ metabolism and to test the possibility that 
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antibody in the periphery may alter the equilibrium of Aβ efflux from brain to blood over 

this acute timecourse (DeMattos et al., 2001), we performed hippocampal in vivo 

microdialysis in PDAPP mice intravenously injected with HJ5.1.  Compared to baseline 

levels of Aβ in the brain ISF, we did not observe any changes in the metabolism of ISF 

Aβ over the 5-hour period following intravenous antibody administration (Figure 4B-C).  

While it is possible that anti-Aβ antibodies may alter soluble Aβ concentration in the 

brain in a chronic setting, HJ5.1 does not alter soluble Aβ concentration in the brain over 

the acute timecourse in the current paradigm.  

 To compare the rate of Aβ appearance from brain to blood in PDAPP mice 

expressing wildtype levels of LDLR or overexpressing LDLR, we collected blood 

samples serially at various timepoints from mice of both groups following intravenous 

administration of HJ5.1.  The concentration of CNS-derived human Aβ in plasma 

samples was determined using quantitative mass spectrometry.  As shown in a 

representative experiment (Figure 5A), the kinetics of Aβ appearance were reliably linear 

for the duration of the timecourse, reflecting the rapid sequestration of Aβ entering the 

periphery from the brain.  The appearance rate of human Aβ was significantly faster in 

TG mice compared to NTG mice  (92 ± 4.8 pg mL
-1

min
-1

 vs. 69 ± 6.9 pg mL
-1

min
-1

; 

Figure 5B), strongly suggesting a role for LDLR in mediating brain to blood Aβ 

clearance.  Notably, these results directly demonstrate in vivo that LDLR regulates the 

rate at which Aβ enters the blood from the brain. 
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DISCUSSION 

 The accumulation of soluble Aβ into high-order species and amyloid plaques 

throughout life is hypothesized to be a critical initiating event in AD pathogenesis (Hardy 

and Selkoe, 2002; Selkoe, 2011).  Recent data have emerged suggesting that Aβ 

accumulates in the vast majority of AD cases, which are sporadic with late-onset, as a 

result of impaired Aβ clearance and not increased synthesis (Mawuenyega et al., 2010b).  

Moreover, we recently provided in vivo evidence that human apoE isoforms differentially 

regulate soluble Aβ clearance from the brain ISF (Castellano et al., 2011), with the 

slowest Aβ clearance observed in mice expressing APOE 4, the strongest identified 

genetic risk factor for AD (Verghese et al., 2011).  Based on previous evidence that 

receptors for apoE modulate Aβ metabolism (Bu, 2009), we sought to elaborate the 

previously unappreciated role of LDLR in Aβ metabolism.  Recent work has identified 

that LDLR is a major apoE receptor in the CNS (Fryer et al., 2005a).  Modulating the 

expression of LDLR has profound consequences on the accumulation of Aβ (Cao et al., 

2006; Katsouri and Georgopoulos, 2011; Kim et al., 2009b), likely through its effects on 

the metabolism of soluble Aβ in the ISF (Kim et al., 2009b).  In the current study, we 

investigated the mechanism by which LDLR overexpression enhances the clearance of 

soluble Aβ from the brain ISF.  Using the brain efflux index (BEI) method (Deane et al., 

2008; Shibata et al., 2000), we show that LDLR mediates clearance of exogenously 

administered Aβ across the blood-brain barrier but not does not significantly alter its 

clearance by ISF bulk flow.  We then created mice that overexpress LDLR in the context 

of CNS expression of human Aβ using the PDAPP mouse model of β-amyloidosis.  We 

found that LDLR overexpression in young PDAPP mice markedly decreases apoE levels 
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and decreases Aβ deposition in aged PDAPP mice.  We next developed a method to 

sequester human Aβ entering the peripheral circulation from the brain using a high 

affinity anti-Aβ antibody, allowing us to directly assess the effect of LDLR on the rate of 

Aβ appearance from brain to blood.  Using this method, we found that LDLR 

overexpression significantly increases the appearance rate of endogenously produced Aβ 

from the brain to blood.  Together, our results suggest a novel mechanism whereby 

LDLR regulates brain Aβ accumulation via BBB-mediated Aβ clearance from the ISF. 

 Previous work has identified that several members of the LDLR family of 

receptors, including LRP1, LRP1B, SorLA, and apoER2, influence the trafficking and 

processing of the amyloid precursor protein (APP) (Andersen et al., 2005; Bu, 2009; Cam 

et al., 2004; Cam et al., 2005; Fuentealba et al., 2007).  For example, LRP1 has been 

shown to interact with APP, regulating its internalization, trafficking, and its subsequent 

processing to Aβ (Cam et al., 2005; Kinoshita et al., 2001; Trommsdorff et al., 1998; 

Ulery et al., 2000).  Although we did not observe any changes in APP expression or 

processing in the brains of mice overexpressing LDLR (Kim et al., 2009b), our work 

strongly suggests that LDLR influences Aβ metabolism by affecting its clearance from 

the brain into blood, a mechanism previously suggested for LRP1 and VLDLR (Bell et 

al., 2007; Deane et al., 2008; Deane et al., 2004; Yamada et al., 2008).  ApoE strongly 

promotes amyloid plaque deposition (Bales et al., 1997; DeMattos et al., 2004) and has 

been shown to impede the clearance of Aβ from the brain ISF (Bell et al., 2007; Deane et 

al., 2008; DeMattos et al., 2004).  Thus, it is likely that the reduction of apoE levels with 

LDLR overexpression facilitates greater ISF Aβ clearance across the BBB.  Given recent 

data that the effect of LDLR on Aβ deposition is, in part, independent of apoE expression 
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(Katsouri and Georgopoulos, 2011), it is possible that LDLR directly facilitates clearance 

of Aβ across the BBB, as has been suggested for LRP1 (Deane et al., 2004).  Moreover, 

while our data revealed only subtle trends towards greater Aβ degradation as a result of 

LDLR overexpression, we cannot rule out a role for LDLR in mediating Aβ degradation 

within particular cell types, the magnitude of which may have been too subtle to detect in 

whole brain homogenates.  Our present results demonstrate a novel role for LDLR in 

BBB-mediated Aβ clearance, warranting further investigation into the contribution of this 

clearance pathway to apoE isoform-dependent Aβ clearance.  This regulation may be 

especially relevant given that the affinity of apoE for LDLR is related to apoE isoform 

(Knouff et al., 2004; Weisgraber, 1994; Yamamoto et al., 2008). 

 The rapid degradation of Aβ once it enters the blood from the brain precludes 

direct and reliable measurement of its influx rate (Barten et al., 2005; Ghiso et al., 2004), 

presenting an obstacle to understanding mechanisms of BBB-mediated Aβ clearance.  We 

reasoned that an anti-Aβ antibody would effectively sequester CNS-derived Aβ within 

the blood, allowing its appearance rate to be directly measured.  We previously 

hypothesized that anti-Aβ antibody treatment in the periphery leads to a rapid rise in 

plasma Aβ by altering the efflux of Aβ from the brain (DeMattos et al., 2001; DeMattos 

et al., 2002a).  In contrast, our present results demonstrate that peripheral administration 

of the HJ5.1 (anti-Aβ13-28) antibody does not alter the metabolism of Aβ within the brain 

in the acute phase (5 hours) during which we analyzed Aβ influx into the circulation.  A 

recent study suggested that the anti-Aβ antibody, m266, alters Aβ metabolism in the CNS 

by entering the CNS and sequestering Aβ (Yamada et al., 2009).  However, in our study, 

the small fraction of antibody that entered the brain did not alter Aβ levels in the ISF, 
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perhaps a reflection of its lower affinity for Aβ as compared to the m266 antibody.  

Furthermore, our plasma sequestration results were in agreement with results obtained 

using the BEI method (Figure 1), further validating the BEI method as a useful technique 

to assess the contribution of different clearance components in overall Aβ clearance from 

the brain.  Provided a suitable antibody is available that does not alter brain Aβ 

metabolism, the plasma sequestration technique we report herein may be useful to screen 

drugs targeting Aβ clearance from the brain to the blood, while representing a useful tool 

for probing the biology of brain apoE receptors and their role in Aβ metabolism. 

 Our findings that LDLR mediates BBB-mediated Aβ clearance provide rationale 

for targeting apoE receptors in the brain, and specifically in brain endothelial cells, as an 

additional means to reducing Aβ accumulation.  Given that LDLR has very few identified 

ligands compared to other apoE receptors (Bu, 2009), strategies aimed at modulating 

LDLR expression will likely be relatively specific to Aβ/apoE metabolism, representing 

novel therapeutic avenues for AD prevention and treatment.  
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METHODS 

Aβ preparation and radioiodination. Aβ40 peptide was synthesized by the Keck 

Foundation Biotechnology Resource Laboratory (Yale University, New Haven, CT).  

Solid-phase Fmoc (9-fluorenylmethoxycarbonyl) polypeptide synthesis was used to 

synthesize the Aβ peptide, followed by purification (reverse-phase HPLC) and structural 

characterization.  Peptides were stored as lyophilized powder at -80°C prior to use.  

Using the lactoperoxidase method (Thorell and Johansson, 1971), Aβ40 was iodinated 

with [
125

I] and resolved by HPLC prior to assessing purity by MALDI-TOF mass 

spectrometry, as previously described (Deane et al., 2008; LaRue et al., 2004).  We 

utilized reduced monoiodinated Aβ with specific activity of ~60 Ci/ g (confirmed by 

MALDI-TOF mass spectrometry).   

Mice 

The ―B‖ line of mice expressing the LDLR transgene (Kim et al., 2009b) were crossbred 

with wildtype mice and maintained on a mixed background comprised of B6/C3/CBA.  

Mice overexpressing the LDLR transgene (TG) and their NTG littermates were aged to 

4-5 months for BEI experiments.  Homozygous PDAPP (APPV717F) mice on a mixed 

background comprised of DBA/2J, C57BL/6J, and Swiss Webster were crossbred with 

heterozygous mice expressing the LDLR transgene (TG).  Heterozygous PDAPP mice 

expressing normal levels of LDLR or expressing the LDLR transgene were aged to 3-4 

months (biochemistry, in vivo microdialysis, plasma sequestration experiments) or 10 

months (immunohistochemistry).  Comparisons between groups were made using sex-

matched littermates on the same genetic background.  Animal procedures were performed 
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according to protocols accepted by the Animal Studies Committee at Washington 

University School of Medicine. 

Quantitative measurement of apoE, HJ5.1, and ISF Aβ 

ApoE measurements were made by sensitive sandwich ELISA (mouse monoclonal 

antibody, HJ6.2, for capture and biotinylated mouse monoclonal antibody, HJ6.3, for 

detection), using pooled mouse plasma (C57/B6J) for apoE standard (Fryer et al., 2005a).  

Concentration of biotinylated mouse monoclonal antibody, HJ5.1, recovered from plasma 

or brain tissue was assayed by ELISA.  Samples were added to plates bound with a 

saturating amount of Aβ40 (50 ng/mL) that had been captured by coated 3D6 antibody; 

biotinylated HJ5.1 was used to standardize concentration.  Measurements of ISF [Aβ1-X] 

from fractions collected during in vivo microdialysis were made by sandwich ELISA 

using synthetic Aβ40 as the standard (American Peptide).  Briefly, plates were coated 

with m266 antibody (anti-Aβ13-28), and bound Aβ was detected using biotinylated 3D6 

antibody (anti-Aβ1-5).   

Brain Tissue processing and quantification of Aβ/amyloid burden 

Following transcardial perfusion with heparinized phosphate-buffered saline (PBS), 

brains were removed and fixed in 4% paraformaldehyde overnight, followed by 

immersion in 30% sucrose.  Brains were sectioned on a freezing-sliding microtome at a 

thickness of 50 m.  Coronal sections were collected from the rostral anterior 

commissure through the caudal extent of the hippocampus before staining with 

biotinylated 3D6 antibody (anti-Aβ1-5) or X-34 dye.  The NanoZoomer slide scanner 

system (Hamamatsu Photonics) was used to scan slides in batch mode, which allowed for 
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the capture of images in brightfield (Aβ immunostaining) or fluorescent mode (X-34 

staining).  NDP viewer software was utilized to export acquired images from slides prior 

to quantitative analysis (Image J software, National Institutes of Health [NIH]).  Three 

sections for each mouse, each separated by 300 m (corresponding to bregma -1.7 mm, -

2.0 mm, -2.3 mm in mouse brain atlas), were used for determination of the percentage of 

area occupied by immunoreactive Aβ or amyloid burden (X-34-positive signal) in a 

blinded fashion.  Slides were uniformly thresholded to minimize false-positive signal, as 

previously described (Castellano et al., 2011; Kim et al., 2009b). 

Biochemistry 

After transcardial perfusion with heparinized PBS, brains were extracted, microdissected, 

and immediately frozen at -80°C.  For apoE ELISAs, hippocampal or cortical tissue was 

manually dounce-homogenized with 75 strokes in radioimmunoprecipitation assay 

(RIPA) buffer [50 mM tris-HCl (pH 7.4), 150 mM NaCl, 0.25% deoxycholic acid, 1% 

NP-40, 1 mM EDTA] containing a cocktail of protease inhibitors (Roche) or PBS 

containing cocktail of protease inhibitors (Roche) for HJ5.1B ELISAs.  Total protein 

concentration in brain homogenates was determined with a BCA protein assay kit 

(Pierce). 

Brain efflux index (BEI) method 

Experiments were performed as described previously (Deane et al., 2008; Deane et al., 

2004; Shibata et al., 2000).  Stainless steel guide cannulae were stereotaxically implanted 

into caudate-putamen of mice that had been anesthetized with ketamine (100 mg/kg) and 

xylazine (10 mg/kg).  Coordinates for implantation were as follows: bregma – 1.9 mm, 
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0.9 mm lateral from midline, 2.9 mm below dura.  Following recovery from surgery to 

allow time for BBB repair for large molecules and before substantial chronic, reactive 

processes had occurred (Bell et al., 2007; Cirrito et al., 2003; Deane et al., 2005; Deane et 

al., 2004), mice were co-injected with a solution (0.5 L) containing [
14

C]-inulin and 

[
125

I]-Aβ40 in artificial cerebrospinal fluid into brain ISF at 0.1 L/min.  Mice were 

sacrificed at various timepoints after injection (from 15 min to 150 min), and brains were 

immediately isolated and prepared for radioactivity analysis and TCA precipitation to 

analyze the molecular forms of tracer compounds, exactly as previously described (Deane 

et al., 2008; Shibata et al., 2000). 

BEI calculations and analysis 

Calculations were performed as previously described (Bell et al., 2007; Deane et al., 

2008; Deane et al., 2004; Shibata et al., 2000).  In brief, the percentage of [
125

I]-Aβ40 or 

[
14

C]-inulin remaining in the brain at each timepoint following microinfusion was 

calculated as follows: 

% recovery in brain = 100 x (Nb/Ni) (Equation 1), 

where Nb is the radioactivity of intact ligand remaining in the brain upon conclusion of 

the experiment, and Ni is the initial amount of radioactive ligand injected into the brain 

(in counts per minute [c.p.m.] for TCA-precipitable [
125

I]-Aβ40 and disintegrations per 

minute [d.p.m.] for [
14

C]-inulin).  The rate of ISF bulk flow was determined as follows 

using the rate of clearance of inulin, an inert and polar reference molecule that neither 

transports across the BBB nor is retained in the brain:    

Nb,inulin/Ni,inulin =  (Equation 2), 
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where kinulin indicates the rate of inulin clearance and t denotes time.  Based on our model 

(Bell et al., 2007; Deane et al., 2008; Shibata et al., 2000), Aβ can be eliminated by BBB 

transport or elimination via ISF bulk flow into the CSF and cervical lymphatics.  Our 

model incorporates retention within the brain, i.e., binding of Aβ to receptors or 

chaperone molecules, which may result in degradation or retention within brain.  

Assuming a multiple timepoint efflux series with departure from linearity at later 

timepoints, the percentage of [
125

I]-Aβ40 remaining in the brain is expressed as follows: 

Nb,Aβ/Ni,Aβ = (a1 + a2)  (Equation 3), 

where a1 = k2/(k1 + k2) and a2 = k1/(k1 + k2), and k1 and k2 denote fractional rate constants 

for total brain efflux and retention within brain, respectively.  The fractional rate constant 

for Aβ clearance mediated by the BBB, k3, was calculated as the difference between 

fractional rate constants for total efflux and ISF bulk flow: 

k3 = k1 - kinulin (Equation 4) 

MLAB mathematical modeling (Civilized Software, Inc.) was used to fit the 

compartmental model to elimination data with inverse square weightage.  Fractional rate 

constants were obtained by nonlinear regression curve fitting (GraphPad Prism 5.0). 

In vivo microdialysis 

In vivo microdialysis in freely behaving mice was performed essentially as described to 

assess the effect of intravenous HJ5.1 administration on steady state levels of ISF Aβ in 

young heterozygous PDAPP mice (Castellano et al., 2011; Cirrito et al., 2003; Kim et al., 

2009a).  Briefly, stereotaxic surgery was performed to implant guide cannulae in the 
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caudal extent of hippocampus (bregma -3.1 mm, -2.5 mm lateral from midline, 1.2 mm 

below dura, 12° off vertical).  Using a syringe pump (Stoelting), 0.15% bovine serum 

albumin (RPI) in artificial cerebrospinal fluid was perfused continuously at a flow rate of 

1.0 L min
-1

 through an implanted 38 kDa MWCO microdialysis probe (BR-2; 

Bioanalytical Systems, Inc.) to dialyze ISF analytes collected every 60 minutes with a 

refrigerated fraction collector. 

Plasma Sequestration and serial retro-orbital bleeds 

Plasma sequestration experiments were performed by administering 250 g HJ5.1 

(generated in-house) by intrajugular injection under brief isoflurane exposure.  To sample 

blood at various timepoints (20, 45, 75, 120, and 240 min) following intrajugular 

injection, serial retro-orbital bleeds (~110 L/sample) were performed using heparinized 

capillary tubes (Chase Scientific Glass, Rockwood, TN) under brief isoflurane exposure.  

For each mouse, plasma was collected 14-16 hours prior to injection (―pre-bleed‖) to 

serve as a baseline sample.  Plasma was isolated by spinning blood collected in EDTA-

coated microcentrifuge tubes at 7575 x g at 4°C for 9 min; plasma samples were frozen at 

-80°C until measurement by mass spectrometry.  For experiments in Figure 5, plasma 

samples were pooled by timepoint in pairs (n = 12-14 mice/group) for mass spectrometry 

detection (n = 6-7/group).  Rates were calculated from slopes of individual linear 

regressions over the entire timecourse (n = 6-7 per group).  Human Aβ was 

immunoprecipitated using 6E10 and quantified against a standard curve during SISAQ 

quantitative mass spectrometry (Stable Isotope Spike Absolute Quantitation [SISAQ™], 

C2N Diagnostics, Saint Louis, MO).  Briefly, samples were spiked with [
15

N]-labeled Aβ 

40 peptide Aβ in the sample was immunoprecipitated using an N-terminal human-
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specific Aβ antibody (6E10).  Immunoprecipitated Aβ was trypsin-digested and tryptic 

peptides were analyzed by mass spectrometry.  The ratio of unlabeled to labeled Aβ17-28 

peptide was normalized against a SISAQ standard curve, allowing quantification of Aβ in 

the original plasma samples. 

Statistics 

Unless indicated otherwise within figure legends, differences between groups were 

assessed using two-tailed student’s t test.  For nonparametric distributions, Mann-

Whitney U test was performed.  Levels of significance were indicated as follows: 

*P<0.05, **P<0.01, ***P<0.001.  Measurements are reported as mean ± SEM.  Analyses 

were performed using GraphPad Prism 5.0 software. 
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Figure 1. LDLR enhances clearance of radiolabeled Aβ from the brain. (A) 

Percentage remaining for 12 nM [
125

I]-Aβ40 microinjected in ISF of caudate-putamen in 

NTG (closed square) and TG (open circle) mice sacrificed at various timepoints.  

Percentage recovery was calculated from Equation 1 (Methods).  (B) Time-dependent 

clearance of [
125

I]-Aβ40 by passive ISF bulk flow (closed diamond) and across the BBB 

(NTG; closed square and TG, open circle) calculated from data in Figure 1A and 
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Equation 4 (Methods).   (C) Using fractional rate constants calculated in Table 1, relative 

contributions of clearance of [
125

I]-Aβ40 by the BBB, ISF bulk flow, as well as retention 

within brain were calculated for NTG (black bars) and TG (white bars) mice.  Each 

component is indicated with "+" below figure.  Complete timecourse includes 32-41 mice 

(n=4-6 mice/timepoint for each group).  Values in (A) and (C) are represented as mean ± 

SEM.  When two-way ANOVA was significant (with genotype and component as 

factors), differences among clearance components were assessed using Tukey’s post hoc 

test for multiple comparisons.  ***P<0.001, % BBB for NTG vs. TG. †††P<0.001, brain 

retention for NTG vs. TG.  N.S., no significant difference between ISF bulk flow 

components between NTG and TG. 
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TG 

k (min
-1

) 

NTG 

k (min
-1

) 

Total Efflux (k1) 0.03326 ± 0.00428 0.01885 ± 0.00202 

BBB Transport (k3) 0.03081 ± 0.00472 0.01652 ± 0.00245 

ISF Bulk Flow (kinulin) 0.00244 ± 0.00045 0.00232 ± 0.00043 

Brain Retention (k2) 0.01278 ± 0.00085 0.02664 ± 0.00605 

 

Table 1. Fractional rate constants (k, min
-1

)for [
125

I]-Aβ40 and [
14

C]-Inulin in TG 

and NTG mice.  Values are mean ± SEM from N=32-41 mice/group.    
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Figure 2. LDLR overexpression in PDAPP mice markedly decreases brain 

Aβ/amyloid deposition.  (A) Representative coronal brain sections from 10-month-old, 

sex-matched PDAPP
+/-

 mice expressing normal levels of LDLR (NTG) and PDAPP
+/-

 

mice overexpressing LDLR (TG).  Aβ immunostaining was performed using anti-Aβ 

antibody (biotinylated-3D6).  Scale bars, 300 m.  (B) Quantification of the area of the 

hippocampus or cortex occupied by Aβ immunostaining (n = 9 mice/group).  (C) 

Representative amyloid burden in coronal brain sections from 10-month-old, sex-

matched PDAPP
+/-

 mice expressing normal levels of LDLR (NTG) and PDAPP
+/-

 mice 

overexpressing LDLR (TG).  Amyloid was visualized using the congophilic fluorescent 

dye, X-34.  Scale bars, 300 m.  (D) Quantification of the area of hippocampus or cortex 

occupied by X-34 staining (n = 9-10 mice/group).  In (B) and (D), groups were compared 

using Mann-Whitney U test.  *P<0.05, **P<0.01, ***P<0.001.  Values represent means 

± SEM. 
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Figure 3. LDLR overexpression in PDAPP mice markedly decreases brain apoE 

levels. (A) ApoE protein levels measured by sensitive sandwich ELISA in hippocampal 

homogenates from young mice (3-4 months) to prevent any confounding effect from 

amyloid plaque deposition (n = 9 mice/group).  (B) ApoE protein levels measured by 

sensitive sandwich ELISA in cortical homogenates from young mice (3-4 months) to 

prevent confounding effects from amyloid plaque deposition (n = 9 mice/group).  

Differences between groups were assessed using two-tailed student's t test (with Welch's 

correction for (A)).  ***P<0.001.  Values represent means ± SEM. 
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Figure 4. Intravenous HJ5.1 administration  results in stable antibody steady state 

levels in plasma without altering brain ISF Aβ metabolism. (A) Concentration of 

biotinylated HJ5.1 in plasma samples collected from serial retro-orbital bleeds following 

intrajugular injection of biotinylated HJ5.1. (n = 4 PDAPP
+/-

 mice; 3-4 months old). (B) 

Effect of intrajugular injection of 250 g HJ5.1 on soluble, exchangeable ISF Aβ1-x levels 

following a baseline period of sampling during in vivo microdialysis. (n = 5 PDAPP
+/-

 

mice; 3-4 months old). (C) Mean effect of HJ5.1 treatment on ISF Aβ1-x compared to 

mean baseline period preceding treatment.  Difference between groups was assessed by 
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paired student's t test, revealing no statistical difference between groups (p>0.05).  Values 

represent mean ± SEM.     
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Figure 5. Plasma sequestration of brain Aβ reveals faster brain to blood appearance 

rate in PDAPP mice overexpressing LDLR. (A) Sample plasma sequestration 

experiment illustrating kinetics of brain-derived Aβ appearance in plasma collected by 

serial retro-orbital bleeds following HJ5.1 treatment.  Appearance rates were calculated 

from the slopes of individual linear regressions, e.g., for (A), 82.1 pg mL
-1

 min
-1

. (B) 

Mean rate of Aβ appearance in PDAPP
+/-

 mice expressing normal levels of LDLR (NTG) 

or PDAPP
+/-

 mice overexpressing LDLR (TG). (n = 6-7/group; 3.5-4.5 months old).  

Difference between groups was analyzed using a two-tailed student's t test. *P<0.05.  

Values in (B) represent mean ± SEM. 
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Supplementary Figure 1. LDLR overexpression does not appear to alter ISF bulk 

flow or the degradation of remaining [
125

I]-Aβ40. (A) Percentage remaining of co-

injected [
14

C]-inulin over timecourse in experiments from Figure 1A in NTG and TG 

mice.  Timecourse includes 32-41 mice (n = 4-6 mice/timepoint for each group; 4-5 

months of age).  (B) Percentage of remaining [
125

I]-Aβ40 that is precipitable by TCA 

(intact), representing intact peptide (n = 3-4 mice/timepoint for each group; 4-5 months of 

age).  2-way ANOVA, with time and genotype as factors, revealed no significant 

differences among groups.  Values represent mean ± SEM.  
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 Hippocampus Cortex 

[HJ5.1B] ng/mg tissue 0.248 ± 0.0144 0.280 ± 0.0116 

% of HJ5.1 injected 2.65 x 10
-3

 ± 4.36 x 10
-4

 1.75 x 10
-2

 ± 6.70 x 10
-4

 

 

Supplementary Table 1. Intravenously administered biotinylated HJ5.1 enters the 

CNS at low levels.  Concentration of biotinylated HJ5.1 in hippocampal or cortical 

homogenates from PDAPP
+/-

 mice sacrificed 120 min following injection, as determined 

by sensitive sandwich ELISA. (n = 4; 3-4 months old).  Values represent means ± SEM.  
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Chapter 4.  

Human apoE isoforms differentially regulate  

brain amyloid-β peptide clearance 

  



100 
 

PREFACE 

This work appeared in Science Translational Medicine on June 29, 2011.  The 

experiments in this chapter were designed and performed by Joseph Castellano with 

technical assistance from Floy Stewart (histology) and Hong Jiang (CSF collection).  

Joseph Castellano and Jungsu Kim performed in vivo stable isotopic labeling kinetics 

experiments with mass spectrometry assistance from Kwasi Mawuenyega (laboratory of 

Randall Bateman) and Bruce Patterson.  Anne Fagan and John Morris provided human 

data from the Washington University ADRC for analysis by Joseph Castellano.  Alison 

Goate, Carlos Cruchaga, and Kelly Bales (Pfizer) provided human CSF apoE data.  

Ronald DeMattos (Eli Lilly & Co.) and Steven Paul (Cornell University) provided 

valuable reagents. 
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ABSTRACT 

The apolipoprotein E (APOE) 4 allele is the strongest genetic risk factor for late-onset, 

sporadic Alzheimer's disease (AD). The APOE 4 allele dramatically increases AD risk 

and decreases age of onset, likely through its strong effect on the accumulation of 

amyloid-β (Aβ) peptide.  In contrast, the APOE 2 allele appears to decrease AD risk.  

Most rare, early-onset forms of familial AD are caused by autosomal dominant mutations 

that often lead to overproduction of Aβ42 peptide.  However, the mechanism by which 

APOE alleles differentially modulate Aβ accumulation in sporadic, late-onset AD is less 

clear.  In a cohort of cognitively normal individuals, we report that reliable molecular and 

neuroimaging biomarkers of cerebral Aβ deposition vary in an apoE isoform-dependent 

manner.  We hypothesized that human apoE isoforms differentially affect Aβ clearance 

or synthesis in vivo, resulting in an apoE isoform-dependent pattern of Aβ accumulation 

later in life.  Performing in vivo microdialysis in a mouse model of β-amyloidosis 

expressing human apoE isoforms (PDAPP/TRE), we find that the concentration and 

clearance of soluble Aβ in the brain interstitial fluid depends on the isoform of apoE 

expressed.  This pattern parallels the extent of Aβ deposition observed in aged 

PDAPP/TRE mice.  Importantly, apoE isoform-dependent differences in soluble Aβ 

metabolism are observed not only in aged PDAPP/TRE mice but also in young 

PDAPP/TRE mice, well before the onset of Aβ deposition in amyloid plaques.  

Additionally, amyloidogenic processing of amyloid precursor protein and Aβ synthesis, 

as assessed by in vivo stable isotopic labeling kinetics, do not vary according to apoE 

isoform in young PDAPP/TRE mice.  Our results suggest that APOE alleles contribute to 
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AD risk by differentially regulating clearance of Aβ from the brain, suggesting that Aβ 

clearance pathways may be useful therapeutic targets for AD prevention. 
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INTRODUCTION 

Alzheimer’s disease (AD) is the leading cause of dementia in the elderly, with an 

estimated prevalence of 26 million cases worldwide.  Because the number of cases and 

associated costs are projected to increase dramatically, effective strategies aimed at 

prevention and preclinical intervention will likely depend on our understanding of how 

major risk factors contribute to the disease process.  The prevailing hypothesis of AD 

pathogenesis posits that accumulation of brain amyloid-β (Aβ) peptide initiates a 

pathogenic cascade that culminates in neurodegeneration and dementia (Hardy and 

Selkoe, 2002).  The Aβ peptide is generated through sequential proteolytic processing of 

the amyloid precursor protein (APP) by β- and -secretases.  Strong biochemical and 

genetic evidence has demonstrated that most rare, early-onset forms of familial AD are 

caused by autosomal dominant mutations that result in abnormal processing of APP, 

leading to overproduction of Aβ or an increase in the ratio of Aβ42 to Aβ40.  Much less 

is known about the factors that initiate or modulate the onset of brain Aβ accumulation in 

the more common (>99%) sporadic, late-onset form of AD.  The best established genetic 

risk factor for sporadic, late-onset AD is the apolipoprotein E (APOE) 4 allele, the 

presence of which dramatically increases risk for developing AD and decreases age of 

onset by 10 to 15 years; in contrast, the APOE 2 allele confers protection against 

developing AD (Corder et al., 1994; Corder et al., 1993; Saunders et al., 1993; Verghese 

et al., 2011).  APOE status has been found to modulate the onset of extracellular amyloid 

plaque deposition, one of the key pathognomonic features of the disease (Morris et al., 

2010; Reiman et al., 2009).  Strong evidence demonstrating accelerated onset of amyloid 

deposition in APOE 4-carriers has led to the hypothesis that APOE genotype 
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differentially modulates AD risk and onset through effects on Aβ metabolism (Morris et 

al., 2010; Reiman et al., 2009; Schmechel et al., 1993; Tiraboschi et al., 2004).  

Consistent with this hypothesis, we and others have reported human apoE isoform-

dependent differences in amyloid plaque deposition in APP-transgenic mice (E4 > E3 > 

E2) (Bales et al., 2009; Dodart et al., 2005; Fagan et al., 2002; Fryer et al., 2005b; 

Holtzman et al., 2000a).  Although it has been hypothesized that apoE isoforms 

differentially modulate Aβ accumulation through effects on Aβ clearance, direct in vivo 

evidence demonstrating apoE isoform-dependent differences in brain Aβ clearance or 

synthesis has been lacking.  Here, we provide in vivo evidence that apoE isoforms 

differentially modulate brain Aβ burden in a manner that corresponds to early apoE 

isoform-dependent differences in Aβ clearance.  Specifically, we used in vivo 

microdialysis to measure the concentration of soluble Aβ and its clearance from the brain 

interstitial fluid (ISF) of young and aged PDAPP/TRE mice.  This mouse model of β-

amyloidosis overexpresses human APP carrying an autosomal dominant familial AD-

linked mutation (V717F) and also expresses each of the human apoE isoforms under the 

control of the mouse apoE regulatory elements.  We found that the soluble Aβ 

concentration in ISF and its clearance depends on the human apoE isoform expressed in a 

manner that parallels the pattern of Aβ deposition in old PDAPP/TRE mice.  Finally, 

using an in vivo stable isotopic labeling kinetics technique, we found no differences in 

fractional synthesis rates (FSRs) of Aβ among PDAPP/TRE mice, consistent with 

biochemical evidence suggesting no apoE isoform-dependent changes in amyloidogenic 

processing of APP.  Together, our results provide direct in vivo evidence for a 
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mechanism whereby apoE isoform-dependent differences in Aβ clearance modulate the 

onset of Aβ accumulation in transgenic mice and in humans. 
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RESULTS 

Biomarkers of cerebral Aβ deposition differ according to APOE genotype in humans 

Several groups have now validated molecular and neuroimaging biomarkers of the 

neuropathological hallmarks of AD (Fagan et al., 2006; Fagan et al., 2007; Jack et al., 

2008; Rowe et al., 2007; Shaw et al., 2009).  In particular, low concentrations of Aβ42 in 

the cerebrospinal fluid (CSF) reflect the presence of cerebral Aβ deposition, likely as a 

result of Aβ42 being sequestered into amyloid plaques, changing the equilibrium between 

the brain and CSF pools of Aβ (Clark et al., 2003; Fagan et al., 2009; Sunderland et al., 

2003).  Additionally, the [
11

C]-benzothiazole radiotracer, Pittsburgh Compound B (PIB), 

as well as other tracers, can bind to fibrillar Aβ plaques, allowing for visualization of 

brain amyloid in individuals during positron emission tomography (PET) (Ikonomovic et 

al., 2008; Klunk et al., 2004; Leinonen et al., 2008).  A preponderance of evidence 

supports the interpretation that PIB uptake and CSF Aβ42 are reliable surrogate markers 

of amyloid plaque pathology in living subjects (Fagan et al., 2006; Fagan et al., 2007; 

Jack et al., 2008; Rowe et al., 2007; Shaw et al., 2009).  A recent study revealed that CSF 

and neuroimaging biomarkers of amyloid pathology are more prevalent in cognitively 

normal APOE 4-carriers relative to individuals who have no APOE 4 alleles (that is, 

have the APOE 3 and/or APOE 2 alleles) (Morris et al., 2010).  Additionally, the APOE 

4 allele increases brain amyloid burden assessed by PIB-PET imaging in a gene dose-

dependent manner (Reiman et al., 2009).  To study the impact of APOE 2, 3, and 4 

alleles on the development of cerebral Aβ deposition in the absence of AD dementia, we 

analyzed a cohort of cognitively normal individuals younger than age 70, an age after 
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which the presence of AD dementia may confound the analyses.  From this cohort, we 

analyzed the concentration of Aβ42 in the CSF from APOE 4/ 4, APOE / 4, and 

APOE 3/ 3 individuals; because APOE 2 homozygous individuals are exceptionally 

rare, CSF Aβ42 was analyzed in 2/ 3 individuals.  Although various demographic 

features of our cohort, such as age, sex, and education level, did not differ by APOE 

genotype, the mean concentration of CSF Aβ42 was significantly lower in APOE 4/ 4 

individuals compared to individuals of all other APOE genotypes in the cohort (Table 1).  

Given that a CSF Aβ42 concentration lower than 500 pg/mL has been utilized as a 

reliable threshold for the presence of cerebral Aβ deposition in humans (Fagan et al., 

2009; Fagan et al., 2007; Morris et al., 2010; Tapiola et al., 2009), we determined the 

proportion of individuals in each genotype with CSF Aβ42 lower than 500 pg/mL.  We 

found that there was a significantly greater proportion of APOE 4/ 4 individuals with 

CSF Aβ42 lower than 500 pg/mL compared to APOE 3 4 3 3 and 2 3 individuals 

(Fig. 1A).  We next identified individuals in the cohort who had received PIB-PET scans 

within 2 years of lumbar puncture for CSF analysis.  On the basis of previous studies 

(Mintun et al., 2006; Morris et al., 2010), individuals with mean cortical binding potential 

(MCBP) for PIB >0.18 were considered PIB-positive (PIB+).  We found that the 

proportion of PIB+ individuals also follows a strong APOE allele-dependent pattern (Fig. 

1B).  These results demonstrate a clear APOE allele-dependent difference in the relative 

frequency at which individuals exhibit molecular and neuroimaging correlates of amyloid 

pathology. 
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Aβ and amyloid deposition in old PDAPP mice is human apoE isoform-dependent 

To further investigate the role of apoE isoforms in differentially modulating Aβ 

metabolism, we used PDAPP mice in which human apoE isoforms are expressed under 

control of the mouse regulatory elements (PDAPP/TRE) (Bales et al., 2009).  After 

allowing each cohort of mice to age to 20-21 months, we immunostained brain sections 

using an anti-Aβ antibody (3D6) and quantified the extent of Aβ deposition covering the 

hippocampus.  Consistent with a previous report (Bales et al., 2009), we observed marked 

differences in Aβ deposition depending on the isoform of apoE expressed (Fig. 2A-C).  

Quantification revealed that hippocampal Aβ burden in 20- to 21-month-old PDAPP/E4 

mice was approximately 2-fold and 4.6-fold higher than in PDAPP/E3 and PDAPP/E2 

mice, respectively (Fig. 2D).  ApoE is strongly associated with the amount of fibrillar 

amyloid that deposits into plaques (Bales et al., 1997).  Thus, we next characterized 

amyloid plaque load in the context of human apoE by staining adjacent brain sections 

from these mice with X-34, a congophilic dye that binds to amyloid.  Consistent with the 

Aβ immunostaining pattern observed, we found that hippocampal amyloid plaque load 

varied according to apoE isoform (Fig. 2E-H).  Together, these results provide clear 

evidence that apolipoprotein E4 (apoE4) increases Aβ deposition relative to apoE3 and 

apoE2 in a manner that closely recapitulates the human biomarker findings reported in 

Figure 1.   
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Soluble Aβ concentration and clearance in brain ISF of old mice is human apoE 

isoform-dependent 

To investigate the mechanism by which Aβ accumulation in the brain varies according to 

apoE isoform in PDAPP/TRE mice, we used in vivo microdialysis to dynamically assess 

ISF Aβ metabolism in the contralateral hippocampus of PDAPP/TRE mice before 

harvesting for pathological analysis.  The concentration of soluble Aβ in the ISF 

throughout life has been shown to be closely associated with the amount of Aβ that 

ultimately deposits in the extracellular space of the brain (Cirrito et al., 2003; Kim et al., 

2009b; Yan et al., 2009).  Because soluble ISF Aβ has been shown to closely reflect 

extracellular pools of Aβ (Cirrito et al., 2003; Kim et al., 2009b; Yan et al., 2009), we 

hypothesized that the concentration of soluble Aβ in the ISF would closely follow the 

pattern of Aβ deposition analyzed from the same mice in Figure 2.  Hippocampal ISF was 

sampled in PDAPP/TRE mice for a stable baseline period during which mice were able to 

freely behave for the duration of the experiment.  We found that the steady state 

concentration of ISF Aβ1-x (Aβ species containing the N terminus through the central 

domain of Aβ) varied according to apoE isoform (Fig. 3A).  Specifically, the brains of 

PDAPP/E4 mice had significantly more Aβ in the ISF pool, approximately 2- and 3.8-

fold more than PDAPP/E3 and PDAPP/E2 mice, respectively.  To understand whether 

the apoE isoform-dependent differences in soluble Aβ concentration may be the result of 

altered Aβ clearance from the ISF, we performed clearance microdialysis experiments by 

analyzing the elimination kinetics of Aβ after halting Aβ production with a potent -

secretase inhibitor (Cirrito et al., 2003) (Fig. 3B).  We found that the half-life (t1/2) of ISF 

Aβ in the hippocampus of PDAPP/E4 mice was 1.1 hours, compared to 0.71 and 0.56 
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hours, measured from PDAPP/E3 and PDAPP/E2 mice, respectively (Fig. 3C).  These 

results demonstrate that the clearance of endogenous Aβ from brain ISF is impaired in 

old PDAPP/E4 mice relative to PDAPP/E3 and PDAPP/E2 mice.   

ApoE isoform-dependent differences in Aβ concentration and clearance exist before 

Aβ deposition 

Because changes in apoE and Aβ metabolism in the brain ISF early in life can markedly 

alter Aβ deposition later in life (DeMattos et al., 2004; Kim et al., 2009b), we next asked 

whether the Aβ deposition pattern observed in old PDAPP/TRE mice may be a result of 

early apoE isoform-dependent differences in ISF Aβ metabolism.  To test this hypothesis, 

we performed in vivo microdialysis in young PDAPP/TRE mice using a sensitive zero 

flow extrapolation method.  Theoretically, the maximum in vivo steady state 

concentration of an analyte being dialyzed exists at the point at which there is no flow of 

the perfusion buffer (Kim et al., 2009b; Menacherry et al., 1992).  To obtain this value in 

the hippocampal ISF of PDAPP/TRE mice, we used several flow rates during 

microdialysis to extrapolate to the point of zero flow for each mouse (Fig. 4A).  As 

shown in Figure 4B, the mean in vivo steady state concentration of soluble ISF Aβ was 

highest in PDAPP/E4 mice compared to PDAPP/E3 and PDAPP/E2 mice.  The 

concentration of soluble ISF Aβ at each flow rate also varied strongly according to apoE 

isoform (Fig. S1A).  To address the possibility that microdialysis probe function may 

differ in the context of different human apoE isoforms, we determined the percent 

recovery at each flow rate, which revealed no significant differences among PDAPP/TRE 

mice (Fig. S1B).  Since the metabolite urea has been utilized as an independent measure 

of probe function and recovery in both human and animal brain microdialysis studies 
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(Brody et al., 2008; Hillered et al., 2005; Ronne-Engstrom et al., 2001; Schwetye et al., 

2010), we measured the concentration of urea in the brain ISF of PDAPP/TRE mice.  The 

concentration of urea did not differ among groups, suggesting that probe function was 

equivalent across experiments in PDAPP/TRE mice (Fig. S1C).  Neither the levels of 

phosphate-buffered saline (PBS)-soluble Aβ40 nor the levels of murine APP in 

hippocampal lysates from young apoE knock-in mice expressing murine APP differed 

according to apoE isoform, suggesting that regulation of Aβ concentration by human 

apoE may depend on the human Aβ sequence, which differs from murine Aβ by three 

amino acids (Fig S2A-B).  We next asked whether the concentration of the more 

aggregation-prone Aβ42 species varies according to human apoE isoform in young mice 

in the ISF pool, the site of Aβ deposition in old PDAPP/TRE mice.  We found that the 

concentration of soluble Aβ42 was highest in young PDAPP/E4 mice compared to 

PDAPP/E3 or PDAPP/E2 mice (Fig. 4C).  We also measured levels of PBS-soluble and 

PBS-insoluble Aβ40 and Aβ42 after sequential extraction of hippocampi from young 

PDAPP/TRE mice (Table S1).  Although the overall pattern was similar to what we 

observed in the ISF, the effects were of lesser magnitude or nonsignificant trends were 

evident, perhaps suggesting the extracted pools we measured do not completely reflect 

the ISF pool of Aβ (Kang et al., 2009; Kim et al., 2009b). 

 To test the hypothesis that human apoE isoforms differentially regulate the 

concentration of soluble Aβ in the ISF of young PDAPP/TRE mice through effects on Aβ 

clearance, we performed clearance microdialysis experiments in young PDAPP/TRE 

mice.  As shown in Figure 4D, Aβ t1/2 measured in the hippocampal ISF of PDAPP/E4 

mice is significantly longer compared to PDAPP/E3 and PDAPP/E2 mice, respectively.  
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We next assessed Aβ clearance in PS1 E9/APPswe/TRE mice, a mouse model of β-

amyloidosis based on autosomal dominant AD-linked mutations in PSEN1 and APP that 

also expresses one of the human apoE isoforms.  We also observed a similar pattern of 

apoE isoform-dependent Aβ clearance in these mice (Fig. S3), suggesting that the 

clearance impairment in the context of apoE4 is not an artifact of the PDAPP transgene.  

Together, these results strongly suggest that the reduced clearance of Aβ from the brain 

ISF of PDAPP/E4 mice contributes to the increased concentration of Aβ in the ISF, likely 

resulting in earlier Aβ/amyloid plaque deposition.  Several studies have indicated that 

apoE concentration varies by human apoE isoform (Kim et al., 2009a), raising the 

possibility that altered apoE concentration may be an endophenotype among APOE 

genotypes that regulates APOE allele-dependent Aβ metabolism.  We analyzed 

individuals in our cohort whose CSF had been analyzed by multi-analyte profiling, as 

previously described (Craig-Schapiro et al., 2011), which revealed that the presence of 

one 2 allele of APOE was associated with significantly increased concentrations of apoE 

relative to other APOE genotypes (Fig. S4A).  The concentration of apoE in the CSF was 

also significantly lower in APOE 4-carriers (individuals with one or two copies of 

APOE 4) compared to APOE 3/ 3 individuals, but the concentration of apoE did not 

differ between those who were APOE 3/ 3 and those who were APOE 4/ 4.  Whereas 

apoE levels from brain homogenates were higher in PDAPP/E2 mice compared to 

PDAPP/E3 or PDAPP/E4 mice, levels did not differ between PDAPP/E3 and PDAPP/E4 

mice (Fig. S4B).  Together, these results suggest that whereas higher apoE concentration 

in the context of apoE2 may underlie more rapid Aβ clearance relative to apoE4, apoE 

concentration is unlikely to underlie Aβ clearance differences observed in the context of 
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apoE3 versus apoE4.  Moreover, because the extent of apoE lipidation may also play a 

role in modulating Aβ accumulation (Wahrle et al., 2008), we assessed the size of 

lipidated apoE particles from the CSF of young and old PDAPP/TRE mice by native 

polyacrylamide gel electrophoresis (PAGE)/Western blot analysis.  Regardless of apoE 

isoform or age, apoE particles were between 12.2nm and slightly larger than 17nm in size 

(Fig. S4C).   

Amyloidogenic processing of APP does not vary according to human apoE isoform 

In the amyloidogenic pathway of APP processing, β-secretase (BACE1) cleaves APP N-

terminally at the Aβ domain, leading to the generation of sAPPβ and C99, the latter of 

which ultimately gives rise to the Aβ peptide.  In the context of different human apoE 

isoforms, amyloidogenic processing of APP may vary according to apoE isoform, 

contributing to the differences in the concentration of ISF Aβ observed in Figure 4B.  To 

begin to address this possibility, we compared levels of the amyloidogenic metabolite 

C99 in hippocampal homogenates from young PDAPP/TRE mice.  As shown in a 

representative western blot probed with 82E1 antibody (anti-Aβ1-16), which recognizes 

C99, relative levels of C99 did not differ among PDAPP/TRE mice (Fig. 5A).  

Quantification revealed that C99 levels did not vary significantly according to human 

apoE isoform (Fig. 5B).  Additionally, full-length APP levels did not appear to vary 

significantly among groups (Fig. S5A-B).  To further assess whether amyloidogenic 

processing differs according to apoE isoform, we measured β-secretase activity in 

hippocampal homogenates from young PDAPP/TRE mice.  β-secretase activity was 

measured by monitoring the fluorescence increase that results from cleavage of a peptide 

based on the β-cleavage site of APP.  On the basis of the quantification shown in Figure 
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5C, there were no significant differences in reaction velocity among PDAPP/TRE mice, 

suggesting that apoE isoform-dependent differences in β-secretase activity are unlikely to 

account for differences in soluble ISF Aβ concentration in young PDAPP/TRE mice.  

Overall, our results in PDAPP/TRE mice are consistent with a previous in vitro study 

showing no effect of apoE isoforms on APP processing (Biere et al., 1995).  

 Rates of Aβ synthesis do not differ according to human apoE isoform  

To sensitively assess the rates of Aβ synthesis in the context of human apoE isoforms in 

PDAPP/TRE mice, we adapted an in vivo stable isotopic labeling kinetics technique 

previously described in humans (Bateman et al., 2006).  Briefly, young PDAPP/TRE 

mice were intraperitoneally injected with the stable isotope-labeled amino acid [
13

C6]-

leucine, which crosses the blood-brain barrier and incorporates into newly synthesized 

APP/Aβ during normal protein synthesis in the central nervous system.  We next 

sacrificed mice at 20 and 40 minutes after the injection and immunoprecipitated total Aβ 

from brain lysates using HJ5.2, an anti-Aβ13-28 antibody.  After trypsin digestion of 

immunoprecipitated Aβ, samples were submitted to liquid-chromatography mass 

spectrometry (LC-MS), allowing quantification of the relative abundance of labeled to 

unlabeled Aβ by analyzing mass shifts of predicted MS/MS ions in the spectra (Fig. 6A).  

To accurately quantify and calibrate the mass spectrometry signals from mouse brain 

samples, we used cell-secreted Aβ to generate a standard curve based on a known 

quantity of Aβ labeled with [
13

C6]-leucine (Fig. 6B).  We next calculated fractional 

synthesis rates (FSR) of Aβ based on the rate of increase in the amount of labeled to 

unlabeled Aβ between 20 and 40 minutes after injection, normalized to the average 

enrichment of plasma leucine.  We found no significant differences in Aβ FSRs among 
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young PDAPP/TRE mice (Fig. 6C), strongly suggesting that apoE isoforms do not 

differentially modulate Aβ synthesis in vivo.  
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DISCUSSION 

Despite significant advances in our understanding of the pathological events 

leading to AD, the causes of Aβ accumulation are only reasonably well understood for a 

small subset of individuals with AD who have autosomal dominant mutations, resulting 

in early-onset, familial  AD.  Most AD cases are sporadic, and in these individuals, the 

factors leading to Aβ accumulation are not well understood.  Because effective AD 

treatments will likely depend on intervening during the preclinical (presymptomatic) 

phase of AD (Holtzman, 2008; Perrin et al., 2009), understanding how environmental and 

genetic risk factors modulate pathological hallmarks of the disease will be critical.  The 

strongest genetic risk factor for late-onset, sporadic AD is the APOE 4 allele, which 

markedly increases risk and reduces the age of onset (Roses, 1996), likely by accelerating 

the onset of brain Aβ accumulation (Morris et al., 2010; Reiman et al., 2009; Schmechel 

et al., 1993; Tiraboschi et al., 2004).  Indeed, we showed in a cohort of cognitively 

normal individuals less than 70 years of age that biomarkers of brain amyloid 

accumulation were present at a relative frequency that corresponded to APOE genotype, 

that is, 4 >  3 >  2.  Consistent with this observation, we found that old PDAPP/TRE 

mice developed Aβ/amyloid deposition in an apoE isoform-dependent pattern, that is, 

E4> E3> E2, a finding that extends previous reports of apoE isoform-dependent Aβ 

deposition in various mouse models (Bales et al., 2009; Fagan et al., 2002; Fryer et al., 

2005b; Holtzman et al., 2000a).  Because the concentration of Aβ in the extracellular 

space of the brain reflects a balance between its synthesis and clearance rates, we 

hypothesized that APOE genotype differentially modulates Aβ accumulation through 

effects on Aβ clearance and/or synthesis.  To test this hypothesis, we used novel in vivo 
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methodologies to measure endogenous brain Aβ clearance and synthesis in PDAPP mice 

expressing human apoE isoforms under control of the endogenous mouse APOE 

promoter.  Using in vivo microdialysis, we found that the concentration of ISF Aβ in the 

hippocampus of young and old PDAPP/E4 mice was greater than in PDAPP/E3 or 

PDAPP/E2 mice, likely as a result of reduced Aβ clearance in PDAPP/E4 mice.  ApoE 

isoform-dependent Aβ clearance was also observed in PDAPP/TRE mice before the onset 

of Aβ accumulation.  To investigate the impact of apoE isoforms on Aβ synthesis, we 

developed a sensitive method to measure the FSR of brain Aβ in vivo, adapted from the 

stable isotopic labeling kinetics technique recently utilized by our group in humans 

(Bateman et al., 2006).  Using this technique, we found that the fractional rates of brain 

Aβ synthesis from young PDAPP/TRE mice did not differ according to the human apoE 

isoform expressed, consistent with our biochemical results showing that amyloidogenic 

processing of APP did not vary by human apoE isoform.  Our results strongly suggest 

that APOE genotype differentially modulates the onset of Aβ accumulation via 

differential regulation of Aβ clearance, although the cellular and molecular mechanisms 

underlying this regulation remain unclear. 

Once the link between APOE genotype and AD risk had been described, several 

groups focused on characterizing the putative apoE/Aβ interaction and the extent to 

which this interaction influenced the aggregation of Aβ in vitro.  While our results 

suggest that apoE isoforms differentially regulate Aβ accumulation via effects on Aβ 

clearance, we cannot exclude the possibility that apoE isoforms also modulate Aβ 

accumulation by directly facilitating Aβ fibrillization.  For example, lipid-free apoE4 was 

found to facilitate Aβ fibrillization in vitro to a greater degree compared to apoE3 [(Ma et 
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al., 1994; Wisniewski et al., 1994); see (Kim et al., 2009a) for a review].  Perhaps due to 

differences in experimental conditions, others have reported that apoE isoforms inhibit 

the process of Aβ aggregation (Beffert and Poirier, 1998; Kim et al., 2009a; Wood et al., 

1996), making it difficult to interpret whether they differentially modulate Aβ 

accumulation in vivo.  Several in vitro studies have demonstrated that lipidated apoE2 

and apoE3 bind Aβ with greater affinity compared to apoE4 (Aleshkov et al., 1997; Kim 

et al., 2009a; LaDu et al., 1994; Tokuda et al., 2000; Yang et al., 1997).  This observation 

has prompted some to hypothesize that the stronger interaction between Aβ and apoE2 or 

apoE3 relative to apoE4 may result in greater Aβ clearance, consistent with the clearance 

pattern we observed in vivo in the current study.  Indeed, several studies have 

demonstrated that Aβ transport from brain into blood is altered when complexed to 

human apoE (Bell et al., 2007; Deane et al., 2008).  A recent study wherein apoE/Aβ 

complexes were microinjected into wildtype mouse brain revealed that Aβ bound to 

apoE4 is cleared more slowly than when Aβ is complexed to apoE3 or apoE2 (Deane et 

al., 2008).  One study found that antagonizing the apoE/Aβ interaction with a small 

peptide decreased Aβ pathology in the mouse brain, further suggesting that the apoE/Aβ 

interaction may be relevant to Aβ clearance in vivo (Sadowski et al., 2006).  Additional 

studies are needed to characterize the extent of the apoE/Aβ interaction under more 

physiological conditions and whether differential apoE/Aβ interactions may underlie our 

current in vivo results.  Aside from Aβ egress from brain to blood, in vitro studies have 

suggested that cellular uptake and degradation of Aβ may also represent clearance 

mechanisms that are regulated by human apoE (Beffert et al., 1998; Jiang et al., 2008; 

Yang et al., 1999).  One recent in vitro study found that human apoE isoforms differed in 
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their ability to facilitate neprilysin-mediated degradation of Aβ42 within microglia, with 

apoE4 being the least effective in facilitating Aβ degradation compared to apoE2 or 

apoE3 (Jiang et al., 2008).   

Although there are some conflicting studies (Korwek et al., 2009), several groups 

have reported that the concentration of apoE in the brains of human apoE knock-in mice 

varies in an apoE isoform-dependent manner, that is, E2 > E3 > E4 (Bales et al., 2009; 

Fryer et al., 2005a; Riddell et al., 2008).  Together with our present results, the isoform-

dependent pattern of apoE concentration in humans and in mice raises the possibility that 

apoE concentration alone may play a role in the pattern of Aβ clearance and subsequent 

Aβ accumulation, though apoE concentration differences are unlikely to completely 

account for Aβ metabolism differences in the setting of apoE3 versus apoE4 (Bales et al., 

2009).  The impact of structural differences among apoE isoforms (Hatters et al., 2009), 

especially differences in relative affinities for various apoE receptors, may also contribute 

to differences in Aβ clearance.  Future studies delineating the precise contribution of both 

apoE concentration and isoform may directly bear on therapeutic strategies aimed at 

targeting apoE.  Using a mouse model of human apoE-dependent β-amyloidosis, our 

present results may be directly relevant to human studies.  For example, using in vivo 

stable isotopic labeling kinetics, our group recently reported that CSF Aβ clearance and 

not synthesis is impaired in a small cohort of late-onset AD patients, though the effect of 

APOE genotype was not assessed (Mawuenyega et al., 2010a).  Coupled with this recent 

finding, our present results motivate further investigation as to whether Aβ clearance in 

humans is modulated by APOE genotype.  These findings further motivate the 

development of therapies that increase brain Aβ clearance.  
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MATERIALS AND METHODS 

CSF Aβ42, apoE, and PIB-PET assessment in humans 

Participants were cognitively normal volunteers (between 43 and 70 years of age at time 

of participation) for a longitudinal memory and aging study at the Washington University 

Alzheimer's Disease Research Center.  Cognitive status was assessed by clinical 

evaluation based on whether intra-individual decline existed in performance of typical 

activity (as a result of loss of cognitive function).  ―Cognitively normal‖ corresponds to a 

"0" on the Clinical Dementia Rating (CDR) scale.  TaqMan assays (Applied Biosystems, 

Foster City, US) for both rs429358 (ABI#C_3084793_20) and rs7412 

(ABI#C_904973_10) were used for APOE genotyping.  The allelic discrimination 

analysis module of ABI Sequence Detection Software was used for allele calling.  

Positive controls for the six possible APOE genotypes were included on the genotyping 

plate.  Individuals with confirmed causative mutations were excluded.  CSF Aβ42 was 

measured using the Innotest Aβ42 ELISA kit (Innogenetics, Ghent, Belgium) according 

to previous procedures (Morris et al., 2010).  CSF apoE concentration in individuals from 

our cohort for whom CSF had been analyzed by the company Rules Based Medicine was 

quantified using multi-analyte profiling (Craig-Schapiro et al., 2011).  PIB-PET 

assessment, performed within 2 years of lumbar puncture to collect CSF, was performed 

as reported previously (Mintun et al., 2006).  All procedures were approved by 

Washington University's Human Protection Office and written informed consent was 

obtained from all participants prior to study entry. 

Animals 
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Homozygous PDAPP (APPV717F) mice lacking apoE on a mixed background comprised 

of DBA/2J, C57BL/6J, and Swiss Webster were crossed with mice expressing APOE 2, 

3, and 4 under control of mouse regulatory elements on a C57BL/6J background (gift 

from P. Sullivan at Duke University) (Bales et al., 2009).  Resulting mice were 

intercrossed to generate homozygous PDAPP/TRE mice, which were then maintained via 

a vertical breeding strategy.  Male and female PDAPP/TRE mice were used throughout 

experiments.  For experiments involving TRE mice with murine APP, 2.5 month-old, 

male littermates on a C57BL/6J background from each APOE genotype were purchased 

from Taconic.  All animal procedures were performed according to protocols accepted by 

the Animal Studies Committee at Washington University School of Medicine. 

Tissue preparation and quantification of Aβ/amyloid burden 

In vivo microdialysis was performed in the left hemisphere of 20- to 21-month-old mice, 

after which mice were immediately perfused transcardially, fixing brains in 4% 

paraformaldehyde overnight.  After placing brains in 30% sucrose, the contralateral 

(noncannulated) hemisphere was sectioned on a freezing-sliding microtome.  Serial 50 

m coronal sections were taken from the rostral anterior commissure through the caudal 

extent of the hippocampus, staining sections with biotinylated 3D6 antibody (anti-Aβ1-5) 

for Aβ immunostaining quantification and X-34 dye for amyloid load quantification.  

Slides were scanned in batch mode using the NanoZoomer slide scanner system 

(Hamamatsu Photonics), capturing images in brightfield mode (Aβ immunostaining) or 

fluorescent mode (X-34).  NDP viewer software was used to export images from slides 

before quantitative analysis using Image J software [National Institutes of Health (NIH)].  

Using three sections per mouse separated each by 300 m (corresponding to bregma -1.7, 
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-2.0, and -2.3 mm in mouse brain atlas), we determined the percentage of area occupied 

by immunoreactive Aβ or amyloid (X-34-positive signal) in a blinded fashion, 

thresholding each slide to minimize false-positive signal, as described (Kim et al., 

2009b). 

In vivo microdialysis 

In vivo microdialysis in 20- to 21-month-old and 3- to 4-month-old PDAPP/TRE mice 

was performed essentially as described to assess steady state concentrations of various 

analytes in the hippocampal ISF with a 38 kDa cut-off dialysis probe (Bioanalytical 

Systems, Inc.) (Cirrito et al., 2003; DeMattos et al., 2004).  ISF exchangeable Aβ1-X 

(eAβ1-X) was collected using a flow rate of 1.0 l/min, whereas ISF eAβx-42 and urea were 

collected using a flow rate of 0.3 l /min.  For clearance experiments, a stable baseline of 

ISF eAβ1-X concentration was obtained with a constant flow rate of 1.0 l/min before 

intraperitoneally injecting each mouse with 10 mg/kg of a selective -secretase inhibitor 

(LY411,575), which was prepared by dissolving in dimethyl sulfoxide 

(DMSO)/PBS/propylene glycol.  The elimination of eAβ1-X from the ISF followed first-

order kinetics; therefore, for each mouse, t1/2 for eA  was calculated using the slope, k’, 

of the linear regression that included all fractions until the concentration of eAβ stopped 

decreasing (t1/2 = 0.693/k, where k = 2.303k’).  Microdialysis using the zero flow 

extrapolated method was performed by varying the flow rates from 0.3 l/min to 1.6 

l/min, as described (Kim et al., 2009b).  Zero flow data for each mouse were fit with an 

exponential decay regression with GraphPad Prism 5.0 software (Menacherry et al., 

1992).     
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Quantitative measurements of ISF eAβ 

Quantitative measurements of Aβ collected from in vivo microdialysis fractions were 

performed using sensitive sandwich ELISAs.  For human Aβ1-x quantification, ELISA 

plates were coated with m266 antibody (anti-Aβ13-28), and biotinylated 3D6 antibody 

(anti-Aβ1-5) was used for detection.  For Aβx-42 ELISAs, HJ7.4 (anti-Aβ35-42) antibody 

was used to capture, followed by biotinylated HJ5.1 antibody to detect (anti-Aβ13-28).   

Biochemical analyses of hippocampal homogenates from young PDAPP/TRE mice 

After transcardial perfusion with heparinized PBS, brain tissue was microdissected and 

immediately frozen at -80°C.  Hippocampal tissue was manually dounce-homogenized 

with 75 strokes in radioimmunoprecipitation assay (RIPA) buffer [50 mM tris-HCl (pH 

7.4), 150 mM NaCl, 0.25% deoxycholic acid, 1% NP-40, 1 mM EDTA] containing a 

cocktail of protease inhibitors (Roche).  Total protein concentration in hippocampal 

homogenates was determined with a BCA protein assay kit (Pierce).  Equivalent amounts 

of protein (50 g) were loaded on 4-12% bis-tris gels (Invitrogen) for SDS-PAGE before 

transferring protein to 0.2- m nitrocellulose membranes.  Immediately after transfer, 

blots were boiled for 10 min before blocking and incubation with 82E1 antibody (anti-

Aβ1-16; IBL) to detect C99.  Loading was normalized by stripping blots and re-probing 

with -tubulin antibody (Sigma).  Normalized band intensities were quantified using 

Image J software (NIH).  

β-secretase activity in hippocampal lysates was assessed using a commercially available 

kit (#P2985; Invitrogen) that relies on fluorescence resonance energy transfer (FRET) 

that results from β-secretase cleavage of a fluorescent peptide based on the APP sequence 
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(Rhodamine-EVNLDAEFK-Quencher).  Briefly, 5 g of protein per sample was mixed 

with sample buffer and β-secretase substrate, monitoring fluorescence signal every 

minute for 120 minutes with a Synergy2 BioTek (BioTek Instruments, Inc.) plate reader 

(Ex545nm/Em585nm).  Because the kinetics of the reaction for all samples were reliably 

linear in the 20- to 60-min interval, reaction velocity [relative fluorescence units (RFUs) 

per minute] was calculated and reported over this interval for all samples.  Specificity of 

β-secretase activity was validated using a commercially available β-secretase inhibitor. 

In vivo stable isotopic labeling kinetics 

FSRs of Aβ were measured in hippocampal lysates from young PDAPP/TRE mice with a 

method adapted from the in vivo stable isotopic labeling kinetics technique we have 

previously described in humans (Bateman et al., 2006) (detailed Materials and Methods 

available in the Supplementary Material).  Briefly, after mice were injected 

intraperitoneally with [
13

C6]-leucine (200 mg/kg), brain tissue harvesting and plasma 

collection was performed 20 and 40 min after injection.  Whole hippocampus was lysed 

with 1% Triton X-100 lysis buffer containing protease inhibitors, and Aβ in the extracts 

was immunoprecipitated with HJ5.2 antibody (anti-Aβ13-28).  After trypsin digestion of 

immunoprecipitated Aβ, LC-MS was performed to measure the relative abundance of 

labeled to unlabeled tryptic Aβ peptide, which was calibrated with a standard curve of Aβ 

secreted from H4 APP695 NL neuroglioma cells.  FSR curves were then generated 

based on the amount of labeled to unlabeled Aβ present 20 and 40 min after [
13

C6]-

leucine injection, normalized to the amount of free leucine in the plasma, which was 

measured by gas chromatography (GC)-MS.     
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Statistical analysis 

Unless indicated otherwise, differences among group means were assessed using a one-

way analysis of variance (ANOVA) followed by Tukey’s post hoc test for multiple 

comparisons when the ANOVA was significant.  Levels of significance were indicated as 

follows: *P<0.05, **P<0.01, ***P<0.001.  Analyses were performed using GraphPad 

Prism 5.0 software; human data were analyzed using SAS 9.2 software. 
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SUPPLEMENTARY METHODS AND MATERIALS 

In vivo stable isotopic labeling kinetics 

Mice were intraperitoneally injected with 200 mg/kg of stable isotope 
13

[C6]-labeled 

leucine (Cambridge Isotope Laboratories, Inc., Andover MA).  20 or 40 minutes 

following injection, mice were transcardially perfused and tissue was immediately 

harvested and frozen at -80°C.  Whole hippocampus from each mouse was lysed using 

1% Triton X-100 lysis buffer, pH 7.6 (150mM NaCl, 50mM Tris-HCl, 1% Triton X-100 

with complete protease inhibitor cocktail [Roche, Indianapolis, IN]).  Aβ was 

immunoprecipitated from lysates using HJ5.2 antibody (anti-Aβ13-28) that had been 

conjugated to Protein G-Sepharose 4 fast flow beads (GE Healthcare, Pittsburgh, PA).  

To prevent antibody elution from the beads, antibodies were crosslinked with freshly 

prepared 20 mM dimethyl pimelinidate (Sigma, St. Louis, MO).  After three washes each 

of PBS and triethylammonium bicarbonate (Sigma, St. Louis, MO), Aβ was eluted twice 

with 100% formic acid.  Formic acid was then dried, resuspending Aβ with 20% 

acetonitrile in 25mM triethylammonium bicarbonate prior to trypsin digestion (Promega, 

Madison, WI); samples were stored at 4°C prior to analysis.   

 Samples were then subjected to quantitative mass spectrometry to measure Aβ 

peptide containing 
13

[C6]-leucine and 
12

[C6]-leucine using a TSQ Vantage Triple Stage 

Quadrupole mass spectrometer, controlled by Xcalibur software (ThermoFisher 

Scientific, San Jose, CA) and equipped with a PST-MS nanospray source (Phoenix S&T, 

Chester, PA).  Sample injection and liquid chromatography gradients were performed 

using a NanoLC-2D-Ultra (Eksigent Technologies, Dublin, CA).  Prior to analysis, the 

TSQ Vantage was tuned to select the Aβ tryptic peptide LVFFAEDVGSNK (m/z = 
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663.340) and optimal conditions were set for a capillary temperature of 350°C, with a 

spray voltage of 1200 V.  Peak widths for Q1 and Q3 were set at 2.0 Da, with a collision 

pressure in Q2 of 2.0 mTorr and a collision energy of 26 V.  For the Aβ tryptic peptide 

LVFFAEDVGSNK (m/z = 663.340) and its 
13

[C6]-leucine labeled form (m/z = 666.350), 

the MRM transition ions monitored were 819.384, 966.452 and 1113.521.  These MRM 

transition ions were the three most intense ions and were validated using H4 

APP695 NL cell-secreted Aβ standards.  Standards were prepared by incubating H4 

APP695 NL neuroglioma cells with known amounts of labeled and unlabeled leucine, 

followed by collection of media containing newly synthesized Aβ.  5- L aliquots of 

samples containing Aβ immunoprecipitated from mouse hippocampal lysates were 

injected into a Zorbax SB300-C18 3 m particle-size nano-column (Agilent 

Technologies, Santa Clara, CA), packed in-house (0.15 x 150 mm).  Peptide mixtures 

were separated at a flow rate of 500 nL/min using a gradient mixture of solvents A and B.  

Solvent A was 0.1% formic acid in water; solvent B was 0.1% formic acid in acetonitrile.  

The separation gradient program used for the nano-column was as follows: 15% to 65% 

B in 10 min, 65% to 95% B in 5 min, followed by a gradient back to 15% B in 5 min.  

The column was re-equilibrated for another 5 min to prepare for injection of the next 

sample.   

 Gas chromatography/mass spectrometry (GC/MS) was performed to measure free 

leucine tracer-to-tracee ratio (TTR) in plasma collected from PDAPP/TRE mice prior to 

harvesting brain tissue, as previously described (Patterson et al., 1993).  Plasma proteins 

were precipitated with ice-cold acetone, followed by extraction of lipids with hexane 

solvent.  The resulting aqueous fraction was then dried under vacuum (Savant 
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Instruments, Farmingdale, NY).  Free leucine TTR was measured by GC/MS by 

monitoring ions at m/z ratios of 200 and 203, corresponding to unlabeled and labeled 

leucine, respectively.  Relative fractional synthesis rates of A  were calculated from the 

slope of the Aβ TTR over average leucine enrichment at the 20 min timepoint. 

Quantitative measurements of ISF Urea concentration  

ISF urea collected in microdialysis fractions was quantified using a commercially 

available colorimetric assay (Quanti-Chrom Urea Assay Kit, BioAssay Systems, 

Hayward, CA), as previously described (Brody et al., 2008; Schwetye et al., 2010).   

Western blot analysis of young PDAPP/TRE and TRE hippocampal homogenates 

Hippocampal tissue from young PDAPP/TRE or TRE mice was manually dounce-

homogenized with 75 strokes in radioimmunoprecipitation assay (RIPA) buffer (50mM 

Tris-HCl; pH 7.4, 150mM NaCl, 0.25% deoxycholic acid, 1% NP-40, 1mM EDTA) 

containing a cocktail of protease inhibitors (Roche, Indianapolis, IN).  For assessment of 

APP levels in PDAPP/TRE mice, equivalent amounts of protein (7.5 g) were loaded on 

4-12% Bis-Tris gels (Invitrogen, Carlsbad, CA) for SDS-PAGE before transferring 

protein to 0.2 m nitrocellulose membranes.  Full-length APP (FL-APP) was probed 

using 6E10 antibody (Covance, Princeton, NJ).  For measurement of murine APP in TRE 

mice, equivalent amounts of protein (25 g) were loaded on 4-12% Bis-Tris gels 

(Invitrogen, Carlsbad, CA) for SDS-PAGE before transferring protein to 0.2 m 

nitrocellulose membranes.  Immediately following transfer, blots were boiled for 10 

minutes prior to blocking and incubation with CT20 antibody (anti-APP C-terminal 20 

amino acids; Calbiochem) to detect murine APP.  Loading for 6E10 or CT20 westerns 
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was normalized by stripping blots and re-probing with -tubulin antibody (Sigma, St. 

Louis, MO).  Normalized band intensities were quantified using Image J software (NIH). 

Sandwich ELISA for Aβ and apoE from CSF and sequentially extracted 

hippocampal tissue  

Frozen hippocampi from young PDAPP/TRE mice were sequentially homogenized with 

PBS and 5M Guan-Tris buffer (pH 8.0) containing a cocktail of protease inhibitors 

(Roche), following by centrifugation at 4°C at 14,000rpm for 30 min.  Levels of PBS-

soluble (soluble) and Guan-soluble (insoluble) Aβ40 and Aβ42 were measured using 

sandwich ELISAs; HJ2 (anti-Aβ35-40) or HJ7.4 (anti-Aβ37-42) were used as capture 

antibodies, followed by detection with biotinylated HJ5.1 (anti-Aβ13-28).  ApoE levels in 

Triton X-100-soluble hippocampal extracts or CSF were quantified using an apoE 

sandwich ELISA (HJ6.2 for capture and HJ6.1B for detection) with recombinant human 

apoE as a standard.  

Native-polyacrylamide gel electrophoresis/western blot analysis of apoE 

Fresh CSF was isolated from the cisterna magna of young and old PDAPP/TRE mice 

before quantification using apoE sandwich ELISA.  Equal amount of apoE (3 ng), 

determined by ELISA, was loaded in each lane of 4-20% Tris-glycine gel for Native-

PAGE (100V at 4°C for 14 hours) before transfer to 0.2 m nitrocellulose membranes.  

Blots were probed with anti-apoE antibody (Calbiochem), and migration pattern of 

lipoproteins in the CSF was assessed using protein mixture of estimated hydrodynamic 

radii as a standard (GE/Amersham).   
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Table 1. Demographic characteristics and biomarker information for cognitively 

normal individuals according to APOE genotype. Values represent means ± SD. When 

one-way ANOVA was significant, pair-wise comparisons of APOE genotypes were made 

with Tukey’s post hoc test; only significant differences were indicated (‡P < 0.05; **P < 

0.01; ***P < 0.001). ‡ denotes significant difference compared to APOE 3/ 4. ** or *** 

denotes significant difference compared to APOE 4/ 4. MMSE, Mini Mental State 

Examination from 0 to 30; LP, lumbar puncture. 

  

  APOE genotype 

 
2/  3 3/ 3 3/   4/ 4 

n 32  151  81  19  

Female (%) 62.50 64.24 67.90 63.16 

Caucasian (%) 87.50 92.05 90.12 84.21 

Age at LP, yrs, (SD) 
59.28  
(7.13) 

60.72 
(7.17) 

60.51 
(7.80) 

57.58 
(8.85) 

MMSE 
29.28  
(0.96) 

29.37 
(0.94) 

29.38 
(0.96) 

29.32  
(1.16) 

Education, yrs, (SD) 
15.69 
(2.76)  

15.92 
(2.62) 

15.83 
(2.31) 

16.53 
(3.42) 

Aβ42, pg/mL, (SD) 
755.65‡,*** 

(212.85) 
695.58*** 
(243.87) 

619.58** 
(193.79) 

437.39 
(183.53) 

Tau, pg/mL, (SD) 
253.33 

(114.68) 
248.72 

(126.48) 
267.54  

(131.89) 
244.13 
(90.58) 

pTau, pg/mL, (SD) 
50.72 

(17.76) 
48.18 

(19.71) 
55.86 

(28.83) 
51.45 

(13.62) 



131 
 

 

 

 

 

Figure 1. Biomarkers of amyloid differ according to APOE genotype in cognitively 

normal individuals. (A) Percentage of individuals (n=283) with [CSF Aβ42] < 500 

pg/mL according to the following APOE genotypes: 2/ 3, / 3, 3/ 4, and 4/ 4.  

Number in parentheses indicates number of individuals for each group. (B) Percentage of 

PIB+ individuals (n=153) according to APOE genotype: 2/ 3, / 3, 3/ 4, and 4/ 4.  

Individuals with mean cortical binding potential for Pittsburgh compound B (MCBP) > 

0.18 were considered PIB+.  Number in parentheses indicates number of individuals for 

each group.  χ
2
 analyses for proportions in (A) (χ

2
(3)=22.1785, P=5.99 x 10

-5
) and (B) 

(χ
2
(3)=14.4735, P=2.33 x 10

-3
) were performed; follow-up χ

2
 tests for pairwise 

comparisons of proportions were performed using Benjamini and Hochberg’s linear step-

up adjustment to control for type I error.  *P<0.05, **P<0.01, ***P<0.001.     
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Figure 2. Aβ/amyloid deposition varies according to apoE isoform in old 

PDAPP/TRE mice. (A-C) Representative coronal brain sections from 20- to 21-month-

old, sex-matched PDAPP/E2 (A), PDAPP/E3 (B), and PDAPP/E4 (C) mice.  Aβ 

immunostaining was performed using anti-Aβ antibody (biotinylated-3D6).  Scale bars, 

50 m.  (D) Quantification of the area of the hippocampus occupied by Aβ 
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immunostaining (n=7 mice/group). *P<0.05, **P<0.01.  (E-G) Representative coronal 

brain sections from 20- to 21-month-old PDAPP/E2 (E), PDAPP/E3 (F), and PDAPP/E4 

(G) mice.  Amyloid was detected using the congophilic fluorescent dye, X-34.  Scale 

bars, 50 m.  (H) Quantification of the area of hippocampus occupied by X-34 staining 

(n=7 mice/group).  When one-way ANOVA was significant, differences among groups 

were assessed using Tukey’s post hoc test for multiple comparisons *P<0.05, 

***P<0.001.  Values represent means ± SEM. 
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Figure 3. Soluble Aβ concentration and clearance in the brain ISF of old mice is 

human apoE isoform-dependent.  (A) Mean steady state concentrations of eAβ1-X 

(exchangeable Aβ) from sampling hippocampal ISF in old, sex-matched PDAPP/E2, 

PDAPP/E3, and PDAPP/E4 mice, measured by enzyme-linked immunosorbent assay 

(ELISA) (n=6 to 7 mice per group; 20 to 21 months old).  (B) Schematic diagram of a 

typical clearance experiment in which a stable baseline period is obtained, followed by 

intraperitoneal (i.p.) injection of LY411,575 (10 mg/kg) to halt Aβ production.  Aβ 

concentrations during the elimination phase are transformed with the common logarithm.  
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Log-transformed values are fit with a linear regression, allowing calculation of slope, k’.  

eAβ t1/2 = 0.693/k, where k = 2.303k’.  (C) eAβ t1/2 from clearance experiments 

performed with the mice in (A) after stable baseline measurement of eAβ1-x.  When one-

way ANOVA was significant, differences among groups were assessed using Tukey’s 

post hoc test for multiple comparisons (*P<0.05).  Values represent means ± SEM. 
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Figure 4. ApoE isoform-dependent differences in soluble Aβ concentration and 

clearance exist prior to the onset of Aβ deposition. (A) An exponential decay 

regression was used to fit the concentrations of eAβ1-x measured by ELISA at each flow 

rate for individual mice from groups of young, sex-matched PDAPP/TRE mice (n=6 

mice per group; 3 to 4 months old).  The equations from the individual regressions were 

used to calculate [eAβ1-x] at x=0 for each mouse, representing the in vivo concentration 

of eAβ1-x recoverable by microdialysis.  (B) Mean in vivo concentrations of eAβ1-x 

(pg/mL) calculated from the method in (A).  (C) Mean concentrations of Aβx-42 (pg/mL) 

collected from the hippocampal ISF of young, sex-matched PDAPP/TRE mice using a 

flow rate of 0.3 l/min (n=8 mice per group; 3-4 months old).  (D) eAβ t1/2 from 

clearance experiments in young, sex-matched PDAPP/TRE mice after stable baseline 

measurement of eAβ1-x (n=10 to 11 mice per group; 3 to 4 months old).  When one-way 

ANOVA was significant, differences among groups were assessed using Tukey’s post 
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hoc test for multiple comparisons *P<0.05, **P<0.01, ***P<0.001.  Values represent 

means ± SEM. 
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Figure 5. Amyloidogenic processing of APP does not vary according to human apoE 

isoform.  (A) Representative Western blot of the proximal amyloidogenic metabolite, 

C99, from hippocampal homogenates (extracted with RIPA buffer) from young, sex-

matched PDAPP/TRE mice.  C99 was detected using 82E1 antibody.  All bands were 

normalized to -tubulin band intensity (n=9 mice per group; 3 to 4 months old).  (B) 

Quantification of C99 levels after normalizing each band's intensity to -tubulin band 

intensity.  (C) Quantification of β-secretase activity in hippocampal homogenates from 

young PDAPP/TRE mice using a sensitive FRET assay.  Homogenates were incubated 

with fluorescent APP substrate, resulting in β-cleavage that could be followed by 

fluorescence increase (emission, 585 nm).  The interval over which kinetics were linear 
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was used for quantification of reaction velocity [relative fluorescence units (RFU)/min] 

for each sample.  One-way ANOVA revealed no significant differences among groups.  

Values represent means ± SEM.   
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Figure 6. Rates of Aβ synthesis do not differ according to human apoE isoform in 

PDAPP/TRE mice. (A) A  detection in hippocampal lysates from young PDAPP/TRE 

mice by TSQ Vantage triple quadrupole mass spectrometry.  Left, representative total ion 

count multiple reaction monitoring (MRM) peak of the unlabeled A  tryptic peptide, 

LVFFAEDVGSNK, (m/z = 663.340).  Right, MRM peak for [
13

C6]-leucine labeled A  

(m/z = 666.350).  (B) Standard curve generated with known quantity of [
13

C6]-leucine 

labeled and unlabeled A .  A  secreted from H4-APP695 NL neuroglioma cells 

incubated with labeled/unlabeled leucine was immunoprecipitated with HJ5.2 antibody 

(anti-A 13-28), followed by trypsin digestion.  A 17-28 fragments were analyzed on a TSQ 
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Vantage mass spectrometer.  The expected percentage of labeled A  versus measured 

percentage was fit by linear regression.  Variance is reported with 95% confidence 

interval.  (C) Relative FSRs of Aβ from hippocampi of PDAPP/TRE mice 

intraperitoneally injected with [
13

C6]-leucine (200mg/kg) (n=5 to 6 mice per group; 4 to 5 

months old).  Relative FSRs of Aβ were calculated from the ratio of [
13

C6]-leucine 

labeled to unlabeled A .  [
13

C6]/[
12

C6]-A  ratio was normalized to the ratio of labeled to 

unlabeled free leucine in plasma (determined by GC-MS).  Mass spectrometry data were 

normalized with the media standard curve in (B).  One-way ANCOVA (analysis of 

covariance) revealed no significant differences among groups.  Values represent means ± 

SEM. 
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Figure S1. eAβ1-x concentration measured with equivalent microdialysis probe 

function differs according to apoE isoform. (A) Mean concentrations of eAβ1-x at each 

flow rate for zero flow extrapolation experiments performed in Fig. 4A.  2-way repeated-

measures ANOVA was performed using genotype and flow rate as factors followed by 

pairwise comparisons of genotypes by flow rate using Tukey's post-hoc test (**P<0.01, 

***P<0.001) (B) In vivo percent recovery by the microdialysis probe at each flow rate 

for each experiment in (A) was determined using the zero flow extrapolated method as 
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previously described (Cirrito et al., 2003; Kim et al., 2009b; Menacherry et al., 1992), 

revealing no significant difference in eAβ1-x recovery by the probe among groups as 

assessed by 2-way repeated measures ANOVA with Huynh and Feldt adjustment.  (C) 

Mean concentrations of urea (mg/dL) collected from the hippocampal ISF of young, sex-

matched PDAPP/TRE mice using a flow rate of 0.3 l/min (n=8 mice/group; 3-4 months 

old).  Values represent mean ± SEM. 
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Figure S2. PBS-soluble Aβ40 levels and APP levels do not vary according to apoE 

isoform in the context of murine APP/Aβ. (A) Mean PBS-soluble Aβx-40 levels 

quantified by sandwich ELISA after homogenization of hippocampi from young, male 

TRE mice (n=5/group). 1-way ANOVA revealed no significant differences among 

groups. (B) Representative western blot probed with CT20 antibody (anti-APP) to detect 

murine APP from hippocampal homogenates from mice in (A). (C) Quantification of 

APP protein levels after normalization to -tubulin band intensity (n=5/group).  1-way 

ANOVA revealed no significant differences among groups. Values represent mean ± 

SEM. 
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Figure S3. Soluble Aβ clearance from the ISF is apoE isoform-dependent in young 

PSAPP/TRE mice. Clearance microdialysis experiments were performed in young 

PS1 E9/APPswe/human apoE knockin mice (PSAPP/TRE) on a BL6/SJL/C3 

background (n=5-7 mice/group; 3 months old).  After stable baseline measurement of 

eAβ1-x, mice were injected with 10 mg/kg LY411,575 and eAβt1/2 (hrs.) was calculated as 

in experiments in Fig. 3-4.  1-way ANOVA followed by Tukey’s post-hoc test for 

multiple comparisons was performed (*P<0.05,**P<0.01).  Values represent mean ± 

SEM.   
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Figure S4. ApoE concentration is higher in the context of apoE2 in both humans 

and in PDAPP/TRE mice. (A) ApoE protein levels in the CSF of cognitively normal 

individuals were quantified using multi-analyte profiling.  Number in parentheses 

indicates number of individuals in each group.  Since 1-way ANOVA was significant, 

differences among groups were assessed using Tukey’s post-hoc test for multiple 

comparisons (*P<0.05, **P<0.01, ***P<0.001).  (B) ApoE protein levels measured by 

human apoE-specific sandwich ELISA after 1% Triton X-100 extraction of hippocampi 

dissected from young PDAPP/TRE mice (3.5 month-old; n=16-18 mice/group).  1-way 
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ANOVA followed by Tukey’s post-hoc test for multiple comparisons was performed 

(*P<0.05, **P<0.01, ***P<0.001). (C) Representative Native-PAGE/western blot 

probed with anti-apoE antibody (Calbiochem) after loading 3 ng apoE/lane from CSF of 

young (4 months) and old (17 months) PDAPP/TRE mice (n=4/genotype for each age).  

12.2 nm and 17 nm sizes correspond to estimated hydrodynamic radii from protein 

marker. 
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Figure S5. Full-length total APP levels do not differ according to apoE isoform.  (A) 

Representative western blot of RIPA-soluble total (mature and immature) full-length APP 

from hippocampal homogenates from young, sex-matched PDAPP/TRE mice.  APP was 

detected using 6E10 antibody.  All bands were normalized to -tubulin band intensity 

(n=9 mice/group; 3-4 months old).  (B) Quantification of total APP levels after 

normalizing each band's intensity to -tubulin band intensity.  All samples were 

represented relative to the PDAPP/E2 group mean.  1-way ANOVA revealed no 

significant differences among groups.  Values represent mean ± SEM. 
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Table S1. Serial extraction of Aβ40 and Aβ42 from hippocampi of young 

PDAPP/TRE mice.  All values represent mean (pg/mg tissue) ± SEM.  PBS-soluble 

(soluble) and Guan-soluble (insoluble) Aβ40 or Aβ42 was quantified using sandwich 

ELISAs following serial tissue extraction of hippocampi from young, sex-matched 

PDAPP/TRE mice with PBS, followed by 5M Guan-Tris buffer (n=8-9/group).  When 1-

way ANOVA was significant, pairwise comparisons of APOE genotypes were made 

using Tukey’s post-hoc test; only significant differences were indicated 

(*P<0.05,**P<0.01).  (* or **) denotes significant difference compared to PDAPP/E4 at 

the indicated levels of significance. 

 

 

 

 

  

  APOE genotype 

 
PDAPP/E2 PDAPP/E3 PDAPP/E4  

Soluble Aβ40  10.83* ± 0.36 10.34** ± 0.70 12.55 ± 0.21 

Soluble Aβ42  2.83 ± 0.19 2.66* ± 0.14 3.29 ± 0.18 

Insoluble Aβ40  87.52 ± 3.09 79.55 ± 3.66 84.02 ±  3.29 

Insoluble Aβ42  43.39 ± 1.74 41.09* ± 2.79 53.07 ± 3.89 
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Chapter 5. 

Conclusion and Future Directions 
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Summary 

 A multitude of autosomal dominant mutations in APP, PSEN1, and PSEN2 have 

been identified that cause early-onset, familial AD (FAD).  While identification of the 

link between these mutations and early-onset, FAD has been fundamental to our current 

understanding of AD pathogenesis, the cause(s) of sporadic, late-onset AD remains 

unclear.  Characterizing the role of genetic or environmental risk factors in modulating 

AD pathogenesis will likely be useful in understanding initiating events in sporadic, late-

onset AD.  Despite a variety of susceptibility genes being linked to AD, including CLU, 

CR1, PICALM, CD33, BIN1, MS4A4A, CD2AP, EPHA1, and ABCA7 (Holtzman et al., 

2011), the 4 allele of APOE is the strongest identified genetic risk factor for AD.  The 

underlying mechanism for this association remains unclear.  Thus, the overall aim of this 

dissertation was to characterize the role of apoE in regulating the metabolism of the Aβ 

peptide, the accumulation of which is central to AD pathogenesis.         

 To begin to assess the effect of apoE on Aβ metabolism in vivo, we manipulated 

levels of a major apoE receptor in the brain in order to modulate the concentration of 

apoE (Chapter 2).  Specifically, we created several lines of mice overexpressing the low-

density lipoprotein receptor (LDLR) and crossbred these mice with the PS1 E9/APPswe 

(PSAPP) mouse model of β-amyloidosis.  In addition to reducing brain apoE levels, 

LDLR overexpression markedly reduced hippocampal and cortical Aβ and amyloid 

burden, with concomitant decreases in plaque-associated neuroinflammatory response.  

To investigate the mechanism by which LDLR overexpression decreases Aβ deposition, 

we aged both groups of mice to 3 months of age to assess Aβ metabolism prior to the 

onset of Aβ deposition.  Compared to mice expressing normal levels of LDLR, 
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overexpression of LDLR reduced the steady state concentration of Aβ in the brain 

interstitial fluid (ISF), as assessed by in vivo microdialysis.  Consistent with reduced 

steady state concentration of Aβ in the ISF, we found that the half-life of Aβ in the ISF of 

PSAPP mice overexpressing LDLR was significantly shorter than that measured in the 

ISF of PSAPP mice.  Together, our results suggest that modulation of apoE levels by 

LDLR overexpression strongly regulates the steady state concentration of Aβ in the ISF 

via effects on its clearance.  

 Aβ can be eliminated from the brain ISF through various proposed routes, 

including bulk ISF flow, cellular uptake and degradation, and blood-brain barrier (BBB)-

mediated transport.  To further characterize the mechanism by which LDLR enhances 

ISF Aβ clearance, we utilized several in vivo methodologies to assess how LDLR 

mediates Aβ clearance from the brain ISF (Chapter 3).  We first employed the brain 

efflux index (BEI) method to show that LDLR overexpression increased the elimination 

of radiolabeled Aβ40 that was microinjected into the brain parenchyma.  Next, we 

demonstrated that the elimination of a reference bulk flow marker was not altered by 

LDLR overexpression, suggesting the presence of an intact BBB in these mice.  

Moreover, we separated the overall efflux of radiolabeled Aβ40 for both groups into 

components of BBB and ISF bulk flow clearance, revealing that LDLR overexpression 

predominantly enhanced BBB-mediated Aβ clearance.  We next developed a method to 

sensitively and directly assess the rate of Aβ appearance in the blood from the brain to 

confirm our findings obtained with the BEI method in the setting of endogenous Aβ 

production.  To measure the rate of Aβ appearance in the periphery, we sequestered CNS-

derived human Aβ as it entered the blood by intravenous administration of an anti-Aβ 
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antibody (HJ5.1), sampling the blood by serial retro-orbital bleeds.  Following validation 

of the effect of LDLR overexpression on apoE levels and Aβ accumulation in the PDAPP 

mouse model, we used in vivo microdialysis to demonstrate that peripheral 

administration of HJ5.1 was not sufficient to alter Aβ metabolism within the brain 

acutely over a period of several hours.  Finally, we used this plasma sequestration method 

to demonstrate that LDLR overexpression significantly increased the rate of human Aβ 

appearance from brain into blood.  These results suggest a mechanism by which LDLR 

overexpression reduces Aβ accumulation by enhancing Aβ clearance from brain into 

blood. 

 We next investigated the role of APOE genotype in modulating Aβ accumulation 

in cognitively normal humans and in PDAPP mice in which human apoE isoforms were 

expressed (Chapter 4).  In both humans and in mice, we found that cerebral Aβ 

deposition varied in a manner that corresponded to APOE genotype.  We next utilized in 

vivo microdialysis in both young and amyloid plaque-laden mice, which revealed that the 

concentration and clearance of Aβ from the ISF differed according to the apoE isoform 

expressed.  In other words, apoE4 impaired ISF Aβ clearance relative to apoE2 or apoE3, 

consistent with the greater Aβ accumulation observed in the context of apoE4.  To 

examine whether human apoE isoforms regulate the synthesis of Aβ, we utilized an in 

vivo stable isotopic labeling kinetics method in young mice, which demonstrated that 

fractional synthesis rates of Aβ did not vary significantly according to human apoE 

isoform.  Given the apoE isoform-dependent differences in brain apoE concentration we 

observed, we infused recombinant apoE particles (rApoE2 and rApoE4) during in vivo 

microdialysis to demonstrate that intrinsic differences in apoE isoforms contribute to 
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differences in the steady state concentration of ISF Aβ (Appendix A).  Overall, our 

results suggest a mechanism by which APOE alleles influence Aβ accumulation through 

differential regulation of Aβ clearance from the brain ISF.  Furthermore, our results 

motivate therapeutic strategies that target apoE receptors, apoE expression, or other 

mediators involved in Aβ clearance for AD prevention and treatment.    

LDLR and the role of apoE in regulating Aβ clearance 

 Following the initial reports that APOE genotype was strongly related to AD risk 

and age of onset (Verghese et al., 2011), several studies suggested the presence of an 

apoE/Aβ interaction (Kim et al., 2009a).  Given that apoE is secreted into the brain 

extracellular space, evidence of an interaction led to the hypothesis that apoE regulates 

the accumulation of Aβ in the brain extracellular space.  In an attempt to understand how 

apoE regulates the concentration of Aβ in the brain ISF, we reduced the concentration of 

brain apoE by overexpressing LDLR, leading to enhanced BBB-mediated Aβ clearance.  

One potential mechanism to account for this effect is that LDLR is overexpressed at the 

BBB, leading to enhanced clearance of Aβ/apoE complexes.  Alternatively, the markedly 

reduced concentration of apoE as a result of LDLR overexpression in neurons and 

astrocytes may allow unbound ISF Aβ to more efficiently clear directly across the BBB 

using other apoE receptors (Deane et al., 2004).  Aside from the effect of reducing apoE 

concentration and its implication for putative apoE/Aβ interactions in the ISF, it is also 

possible that LDLR directly mediates Aβ clearance at the BBB, as suggested for LRP1 

(Deane et al., 2004), another LDLR family member.  Indeed, a recent study provided 

evidence for an apoE-independent role for LDLR in regulating Aβ accumulation in the 
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hippocampus, but not the cortex of 5X-FAD mice (Katsouri and Georgopoulos, 2011).  

Early during the course of this dissertation, we attempted to create mice that 

overexpressed LDLR while lacking apoE expression to test the possibility that some 

component of the enhanced Aβ clearance was independent of changes in apoE 

concentration.  For reasons that remain unclear, these mice were not viable.  Emerging 

data from our laboratory, however, suggest an apoE-independent role for LDLR in uptake 

of Aβ into astrocytes (Jacob Basak et al., under review).  Specifically, overexpression of 

LDLR enhances Aβ uptake and degradation within astrocytes in a manner that does not 

appear to require apoE.  Surface plasmon resonance and immunoprecipitation studies 

suggested the presence of an LDLR/Aβ interaction, raising the possibility that LDLR 

may directly mediate Aβ clearance in vivo.  Given that the mice we created to assess this 

possibility were not viable, one future direction for this work will be to virally 

overexpress LDLR in adult APP-Tg mice expressing or lacking apoE.  In vivo 

microdialysis could then be performed in infected mice of both groups to evaluate 

whether LDLR enhances ISF Aβ clearance in the absence of apoE.        

Regulation of Aβ metabolism by LDLR in the context of human apoE 

 In Chapter 4, we found that human apoE isoforms differentially regulate the 

clearance of Aβ from the ISF; however, the detailed molecular mechanism for this 

isoform-dependent clearance remains unclear.  Given that LDLR regulates the clearance 

of Aβ (Chapters 2 and 3), it will be important to assess the extent to which LDLR 

regulates Aβ clearance from the ISF in the context of human apoE expression.  

Interestingly, the affinity of human apoE for LDLR varies according to isoform, with 

apoE2 binding to LDLR with a 1-2% affinity compared to apoE3 or apoE4 (Knouff et al., 
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2004; Weisgraber, 1994; Yamamoto et al., 2008).  To investigate the impact of LDLR on 

Aβ metabolism in the context of human apoE isoforms, we first attempted to produce 

ApoE2 and ApoE4 knockin mice that overexpress LDLR.  While LDLR-Tg/ApoE2 mice 

were viable, we did not obtain any litters of ApoE4 knockin mice that overexpressed 

LDLR.  To circumvent this issue, we created adeno-associated viruses (AAV2/8) 

expressing human LDLR or GFP (as negative control) under the control of the 

phosphoglycerate kinase (PGK) promoter (see Appendix B).  These viruses will be 

stereotaxically injected into the hippocampi of adult PDAPP/E2 and PDAPP/E4 mice 

(10-11 months old) to assess the effect of LDLR overexpression on Aβ deposition 

following a 6-month infection period.  Given that LDLR does not regulate the 

concentration of apoE2, we hypothesize that LDLR overexpression will reduce Aβ 

deposition only in the context of apoE4.  Alternatively, reduced Aβ deposition in the 

context of apoE2 would suggest an in vivo role for LDLR in directly facilitating Aβ 

clearance independent of an apoE/LDLR interaction.  Serious consideration of 

therapeutic strategies that target LDLR will likely require further elaboration of the role 

of LDLR in Aβ metabolism in the context of human apoE.      

Delineating the roles of apoE concentration and isoform 

 The isoform-dependent pattern of apoE concentration reported by several groups 

in humans and in mice raises the possibility that the concentration of apoE alone may be 

regulate the differential pattern of Aβ clearance we demonstrated in Chapter 4.  The 

mechanism by which apoE concentration varies by isoform (E2 > E3 > E4) remains 

unknown, though a recent in vitro study suggested that the degradation of apoE4 is 
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greater than that of the other isoforms (Riddell et al., 2008).  Perhaps as a result of 

methodological differences or differences in the pool of apoE extracted, not all studies 

have reported an isoform-dependent pattern of brain apoE concentration (Korwek et al., 

2009; Sullivan et al., 2004).  One important future direction will be to attempt to resolve 

this controversy by measuring apoE in the brain ISF of behaving human apoE knockin 

mice.  Our current in vivo microdialysis method utilizes molecular weight cut-off 

membranes of 38 kDa (Cirrito et al., 2003) or 100 kDa (Yamada et al., 2011), which are 

unable to dialyze large particles containing apoE (>250 kDa).  Recent advancements have 

been made in microdialysis probe membrane technology (Takeda et al., 2011), allowing 

for measurement of high molecular weight molecules, i.e., up to 1 MDa in size.  In 

preliminary experiments, we recently measured murine apoE in the brain ISF, though 

work is ongoing to characterize the size and concentration of the dialyzed apoE with this 

method.  To clarify the role of human apoE concentration in regulating Aβ metabolism, 

apoE microdialysis in APP-Tg/human apoE knockin mice would permit the simultaneous 

measurement of Aβ and apoE in the ISF, allowing sensitive intra-animal correlations 

between apoE and Aβ concentrations to be made.  Assuming that apoE concentration 

does, in fact, differ according to isoform, we reasoned that infusion of apoE particles into 

the brain ISF of PDAPP/TRE mice would effectively normalize apoE concentration, 

allowing us to examine the effect of intrinsic isoform differences on Aβ metabolism.  We 

demonstrated that acute treatment with recombinant ApoE2 and ApoE4 particles in 

PDAPP/E2 and PDAPP/E4 mice (Appendix A) increased the concentration of ISF Aβ in 

a manner that depended on isoform, i.e., E4 > E2.  Emerging data from our laboratory 

demonstrate that genetic reduction of apoE expression, regardless of isoform, is sufficient 
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to reduce Aβ deposition in APP/PS1-Tg mice (Kim et al., in press).  A complementary 

approach would be to compare the clearance and steady state concentration of ISF Aβ in 

the brains of APP-Tg mice expressing one or two copies of apoE2 or apoE4.  Together, 

these studies will advance our understanding of whether apoE4 represents a toxic gain of 

function or loss of function with respect to AD pathogenesis. 
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Concluding Remarks 

 The accumulation of Aβ is widely considered to be a critical event in AD 

pathogenesis, though the cause(s) for this accumulation is unclear in sporadic, late-onset 

AD.  In this dissertation, we employed novel in vivo methodologies to examine the roles 

of apoE concentration and isoform in mouse models of β-amyloidosis.  We found that 

decreasing brain apoE concentration by LDLR overexpression increases Aβ clearance 

from the ISF, specifically by increasing blood-brain barrier-mediated transport of Aβ.  

We utilized a mouse model of β-amyloidosis expressing human apoE isoforms to 

demonstrate that Aβ/amyloid deposition differs according to isoform in a manner that 

parallels the association between APOE genotype and AD risk and age of onset.  In 

young mice prior to the onset of Aβ deposition, we showed that human apoE isoforms 

differentially regulate Aβ clearance from the ISF.  We performed stable isotopic labeling 

kinetics to demonstrate that human apoE isoforms do not regulate the concentration of 

ISF Aβ through regulation of Aβ synthesis.  Taken together, our results provide a 

potential mechanism to account for the strong association between APOE genotype and 

AD risk and age of onset.  Additionally, these findings expand our understanding of the 

role of apoE concentration and isoform in AD pathogenesis, while motivating the 

development of therapeutic strategies targeting Aβ clearance pathways.    
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Appendix A. 

Preparation and infusion of recombinant human apoE particles 

during in vivo microdialysis 
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RESULTS AND INTERPRETATION 

Convincing evidence exists for accelerated onset of amyloid deposition in APOE 4-

carriers, leading to the hypothesis that APOE genotype differentially regulates AD risk 

and onset via effects on Aβ accumulation (Verghese et al., 2011).  Using PDAPP/human 

apoE targeted replacement (PDAPP/TRE) mice that exhibit apoE isoform-dependent 

levels of Aβ burden (E4 > E3 > E2), we have found that human apoE isoforms 

differentially modulate endogenous Aβ clearance, but not synthesis, in a manner that 

corresponds to the apoE isoform-dependent pattern of Aβ accumulation in older mice.  

Although there are a few conflicting studies (Korwek et al., 2009; Sullivan et al., 2004), 

several groups have identified that apoE concentration in the brains of human apoE 

knock-in mice varies according to genotype, that is, E2 >> E3 > E4 (Bales et al., 2009; 

Fryer et al., 2005a; Ramaswamy et al., 2005; Riddell et al., 2008), consistent with our 

results in humans and in PDAPP/TRE mice (Castellano et al., 2011).  Thus, the isoform-

dependent pattern of apoE concentration in humans and in mice raises the possibility that 

apoE concentration alone may play a role in the pattern of Aβ clearance and subsequent 

Aβ accumulation, though these differences are unlikely to completely account for 

differences in Aβ metabolism in the setting of apoE3 versus apoE4 (Bales et al., 2009); 

see Figure A1.  The contribution of apoE concentration versus isoform in regulating Aβ 

metabolism has not been delineated.  To this end, we sought to prepare recombinant apoE 

particles of each isoform in order to normalize the concentration of apoE after infusion 

into the brain ISF of mice.  After preparation of liposomes containing phospholipids (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine [PoPC]) and cholesterol, we used 

sodium cholate to create mixed micelles, which was then exchanged for each apoE 
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isoform to form discoidal complexes of recombinant apoE (rApoE) particles.  The 

dialyzed rApoE particles appeared to be of typical size, as assessed by Native PAGE; 

moreover, concentrating the particles for the purpose of in vivo microdialysis infusion 

did not alter the size range of the particles (Figure A2).  To confirm the functionality of 

the rApoE particles prior to in vivo experimentation, we performed a cholesterol efflux 

assay by adding rApoE particles to neuroblastoma cells that had been incubated with 

tritiated cholesterol for 24 hours.  We observed rapid, time-dependent efflux of [
3
H]-

cholesterol into the media following addition of rApoE particles that was not observed 

using lipid complexes that did not contain apoE (Figure A3).  To acutely assess the effect 

of apoE2 and apoE4, rApoE2 or rApoE4 particles were directly infused around the 

implanted 38 kDa microdialysis probe during simultaneous sampling of the brain 

interstitial fluid (ISF) of freely behaving PDAPP/E2 or PDAPP/E4 mice.  Compared to a 

baseline period of steady state ISF Aβ obtained in PDAPP/E2 mice, treatment with 

rApoE2 particles appeared to increase steady state levels of ISF Aβ by approximately 

15%, although this effect did reach statistical significance (Figure A4).  In contrast, 

infusion of the same amount of rApoE4 particles in PDAPP/E4 mice increased ISF Aβ 

levels by 31% from baseline levels.  Although an equimolar amount of apoE2 and apoE4 

was infused in PDAPP/E2 and PDAPP/E4 mice, respectively, the possibility remains that 

total brain apoE concentration was not effectively normalized between the groups of mice 

we treated.  Thus, we next sought to infuse rApoE2 and rApoE4 particles in PDAPP mice 

lacking apoE to assess the effect of specific apoE isoforms in a more controlled fashion.  

We first crossbred homozygous PDAPP mice with mice that lacked apoE, ultimately 

generating PDAPP
+/+

/ApoE knockout (PDAPP/E KO) mice.  Following direct infusions 



163 
 

of rApoE2, rApoE4, and vehicle (ACSF) in young PDAPP/E KO mice, we halted Aβ 

production with a potent -secretase inhibitor (LY411,575) to assess the effect of rApoE 

particles on Aβ clearance.  Though we did not see any statistically significant differences 

among groups, we noted trends consistent with the effect observed in Figure A4, that is, 

rApoE4 particles decreased Aβ clearance to a slightly greater extent than rApoE2 

particles (Figure A5).  Notably, we observed significant mortality or poor outcome 

following guide cannulation or microdialysis probe implantation in these mice, including 

membrane blockage due to intraparencyhmal bleeding, rapidly decreasing baseline, 

increased intracranial pressure, seizure, and death.  As a result, nearly 50% of mice 

utilized could not be included in our analysis.  Given the purported roles of apoE in 

recovery following injury as well as maintenance of the blood-brain barrier (Chen et al., 

1997; Fullerton et al., 2001; Hafezi-Moghadam et al., 2007; Methia et al., 2001; Pola et 

al., 2003), it is highly likely that the BBB in our PDAPP/E KO mice was disrupted, 

potentially leading to leakage of infused rApoE particles.  Our results in Figure A4 

suggest that rApoE2 and rApoE4 particle infusion in PDAPP/E2 and PDAPP/E4 mice 

increases Aβ levels in a manner that is specific to isoform, likely by decreasing Aβ 

clearance.  Overall, however, given the potential concerns raised by the mouse model we 

utilized (PDAPP/ E KO), the effect of rApoE particles on Aβ metabolism remains 

inconclusive based on these experiments.   
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Figure A1. ApoE levels are significantly higher in the CSF of PDAPP/E2 mice. CSF 

was isolated from the cisternae magnae of young PDAPP/TRE mice and measured by 

human apoE ELISA (HJ6.2/HJ6.3). (n = 5-6 mice/group; 4 months old).  Since one-way 

ANOVA was significant, pair-wise comparisons were made using Tukey's post hoc test 

(***P<0.001). 
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Figure A2. rApoE particles are of typical size and are not affected by concentration. 

(Left) Following dialysis to remove cholate, 8 g of each sample was loaded on a 4-20% 

Tris-Glycine gel for Native PAGE to assess size of particles. (Right) rApoE particles that 

were concentrated for in vivo microdialysis experiments were also analyzed by Native 

PAGE, which suggested no change in size distribution as a result of concentration. 
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Figure A3. rApoE particles containing human apoE functionally efflux cholesterol. 

[
3
H]-cholesterol-labeled H4-APP695∆NL cells were incubated with 20 µg apoE particles 

at different timepoints to assess cholesterol efflux relative to liposomes, expressed as the 

percentage of radiolabeled cholesterol released into the media ([
3
H]-Cholesterol in 

media/([
3
H]-Cholesterol in media + [

3
H]-Cholesterol in cells)). Cholesterol efflux assays 

were performed with the assistance of Philip Verghese. 
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Figure A4. Increase in ISF Aβ after rApoE particle treatment depends on isoform. 

After a baseline period,1 g of freshly prepared rApoE2 or rApoE4 particles was infused 

directly at the site of microdialysis in PDAPP/E2 or PDAPP/E4 mice, respectively.  

Following infusion at a flow rate of 0.07 l/min, ISF [eAβ1-X] was monitored for an 

additional 6 hours.  Values were represented as a percentage of baseline for each group.  

[Aβ1-x] was measured using sandwich ELISA (266/3D6).  Significance of percent 

increase from baseline to treatment periods was assessed for each group using paired t 

tests (n = 4-7 mice/group; 3-4.5 months old; **P<0.01). 
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Figure A5. rApoE particle treatment appears to decrease Aβ clearance.  Following a 

baseline period, 1 g of freshly prepared rApoE2 or rApoE4 particles was infused 

directly at the site of microdialysis in young PDAPP/E KO mice.  Following infusion at a 

flow rate of 0.07 l/min, ISF [eAβ1-X] was monitored for an additional 6 hours, 

immediately followed by -secretase inhibition (i.p., 10 mg/kg LY411,575).  [Aβ1-x] was 

measured using sandwich ELISA (266/3D6).  One-way ANOVA revealed no significant 

differences among groups.  (n = 8 mice/group; 3-5 months old). 
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Appendix B.  

Creation of AAV constructs for 

 human LDLR overexpression  
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Figure B1. Creation of AAV constructs for human LDLR overexpression. Vector 

maps depicting sequence features for AAV-PGK-hLDLR-HA (top) and AAV-PGK-GFP 
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(bottom) constructs generated with the assistance of Qingli Xiao (Jin-Moo Lee 

laboratory).  Constructs were packaged into AAV-2/8 viruses by the Hope Center Viral 

Vectors Core at Washington University.  Viruses will be stereotaxically injected 

bilaterally into hippocampi of 10-11 month-old PDAPP/E2 and PDAPP/E4 mice, 

followed by a 6-month infection period after which the effect of hLDLR overexpression 

on Aβ deposition will be analyzed by immunohistochemistry.    
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