
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

McKelvey School of Engineering Theses &
Dissertations McKelvey School of Engineering

Winter 12-15-2019

Kernel Methods for Graph-structured Data Analysis Kernel Methods for Graph-structured Data Analysis

Zhen Zhang
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Zhang, Zhen, "Kernel Methods for Graph-structured Data Analysis" (2019). McKelvey School of
Engineering Theses & Dissertations. 505.
https://openscholarship.wustl.edu/eng_etds/505

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in McKelvey School of Engineering Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=openscholarship.wustl.edu%2Feng_etds%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/505?utm_source=openscholarship.wustl.edu%2Feng_etds%2F505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical & Systems Engineering

Dissertation Examination Committee:
Arye Nehorai, Chair

Ulugbek Kamilov
Neal Patwari
Lingfei Wu

Xuan Zhang

Kernel Methods for Graph-structured Data Analysis

by

Zhen Zhang

A dissertation presented to
The Graduate School

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

December 2019
Saint Louis, Missouri

c© 2019, Zhen Zhang

Contents

List of Figures . v

List of Tables . vii

Acknowledgments . viii

Abstract . xi

1 Introduction . 1
1.1 Contributions of This Work . 5
1.2 Organization of This Dissertation . 6
1.3 Notations . 7

2 Background . 8
2.1 Attributed Graphs . 8
2.2 Kernels and Reproducing Kernel Hilbert Spaces 9

2.2.1 Basic Properties . 11
2.2.2 Kernels on Euclidean Spaces . 12
2.2.3 Random Fourier Features . 13
2.2.4 Kernel-based Machine Learning Methods 14

3 RetGK: Graph Kernels Based on Return Probabilities of Random Walks 15
3.1 Introduction . 15

3.1.1 Challenges . 15
3.1.2 Related Works . 16

3.2 Prerequisites . 17
3.2.1 Random Walk on Graphs . 17
3.2.2 Tensor Algebra . 19

3.3 Return Probabilities of Random Walks . 19
3.3.1 Properties of RPF . 20
3.3.2 Computation of RPF . 24

3.4 Hilbert Space Embeddings of Graphs . 27
3.4.1 Graph Kernels (I) . 29

3.5 Approximated Hilbert Space Embedding of Graphs 30
3.5.1 Graph Kernels (II) . 33

ii

3.6 Experiments . 34
3.6.1 Datasets . 34
3.6.2 Experimental Setup . 35
3.6.3 Experimental Results . 36
3.6.4 Sensitivity Analysis . 37

3.7 Chapter Summary . 38

4 SAGE: Scalable Attributed Graph Embeddings 40
4.1 Introduction . 40
4.2 Graph Dissimilarity Measure . 41

4.2.1 Constructing the Ground Distance d 42
4.3 Scalable Attributed Graph Embeddings . 43

4.3.1 Node-attributed Graph Embeddings 43
4.3.2 Edge-attributed Graph Embeddings 45
4.3.3 Two Types of Graph Embedding Fusion 47
4.3.4 Summary of the SAGE Algorithm . 47

4.4 Experiments . 48
4.4.1 Empirical Impact of the Number of Graphs on Running Time 49
4.4.2 Ablation Study of SAGE . 49

4.5 Chapter Summary . 51

5 KerGM: Kernelized Graph Matching . 52
5.1 Introduction . 52

5.1.1 Quadratic Assignment Problems for Graph Matching 52
5.1.2 Related Works . 54

5.2 H-operations for Arrays in Hilbert Spaces 55
5.3 Kernelized Graph Matching . 58

5.3.1 Convex and Concave Relaxations . 60
5.3.2 Path-following Strategy . 61

5.4 Gradient Computations . 61
5.4.1 Gradients in Compact Matrix Multiplication Forms 62

5.5 Approximate Kernelized Graph Matching . 64
5.5.1 Approximated Lawler’s Formulation 65

5.6 Entropy-regularized Frank-Wolfe Optimization Algorithm 67
5.6.1 Description of the EnFW Algorithm 69
5.6.2 Convergence Analysis . 70

5.7 Experiments . 71
5.7.1 Synthetic Datasets . 72
5.7.2 Image Datasets . 76
5.7.3 Protein-protein Interaction Network Dataset 78

5.8 Chapter Summary . 81

iii

6 Conclusions and Future Work . 82
6.1 Summary and Conclusions . 82
6.2 Future Directions . 84

Bibliography . 86

Appendix A Proof of the Informativeness of RPF 95

Appendix B The Description of Datasets for Graph Kernels 100
B.1 Non-attributed (Unlabeled) Graphs . 100
B.2 Graphs with Discrete Attributes . 102
B.3 Graphs with Continuous Attributes . 103
B.4 Graphs with Discrete and Continuous Attributes 103

Appendix C Gradient Computation for KerGM 105
C.1 Proving Proposition 5.2 . 105
C.2 Proving Proposition 5.3 . 108

Appendix D Proof of the Convergence Rate of EnFW 112
D.1 Proving Theorem 5.1 . 114
D.2 Proving Theorem 5.2 . 116

Appendix E Implementation Details of EnFW 118

Vita . 119

iv

List of Figures

2.1 Left: A graph G. Middle: The corresponding adjacency matrix A. Right:
The corresponding incidence matrix C. 9

3.1 Left: a graph G of four nodes. Right: 4-dimensional return probability feature
vector set, RPF4

G. 20
3.2 (a) Toy Graph G; (b) The s-step return probability of the nodes C1, C2 and

C3 in the toy graph, s = 1, 2, ..., 200. The nested figure is a close-up view of
the rectangular region. 23

3.3 Toy graph G and its adjacent matrix; (b) Toy graph G ′ and its adjacent matrix;
(c) 3-D eigenvector and RPF embeddings of nodes in G and G ′, respectively.
We can see that our RPF correctly reflects the structural roles. That is, the
nodes V3, V4, V5 in graph G and the nodes V ′1 , V

′
3 , V

′
5 in graph G ′ have the same

structural role. And the nodes V1, V2 in graph G and the nodes V ′2 , V
′
4 in graph

G ′ have the same structural role. 25
3.4 Summary of the two-step embeddings. 28
3.5 Parameter sensitivity study for RetGKII on six benchmark datasets 39

4.1 Left: A graph G. Right: The adjoint graph G∗ converted from G. For
example, in G, the edges e1, e2, and e3 share a common node V1. So in G∗,
the nodes e1, e2, and e3 are connected. 45

4.2 Varying number of graphs(N) . 50

5.1 Visualization of the operation Ψ�X. 56
5.2 (a) A toy Graph G1, and its Head-incidence matrix G1 and Tail-incidence

matrix H1; (b) A toy Graph G2, and its Head-incidence matrix G2 and Tail-
incidence matrix H2. 63

5.3 Hungarian vs Sinkhorn. 67
5.4 Matching results on synthetic graph dataset. 74
5.5 Matching results on synthetic graph dataset. 75
5.6 (a) Parameter sensitivity study of the regularizer λ. (b) Parameter sensitivity

study of the dimension, D, of the random Fourier feature. 76
5.7 Comparison of graph matching on the CMU house dataset. 77
5.8 (a) A matching example for a pair of motorbike images generated by KerGMI,

where green and red lines respectively indicate correct and incorrect matches.
(b) Comparison of graph matching on the Pascal dataset. 79

v

5.9 Results on PPI networks. 80

vi

List of Tables

3.1 Classification results (in %) for non-attributed (unlabeled) graph datasets . . 37
3.2 Classification results (in %) for graph datasets with discrete attributes . . . 37
3.3 Classification results (in %) for graph datasets with continuous attributes . . 38
3.4 Classification results (in %) for graph datasets with both discrete and contin-

uous attributes . 38

4.1 Ablation study of SAGE for classification accuracy (in %) on graphs with
node and edge information . 50

B.1 Statistics of the benchmark graph datasets 101

vii

Acknowledgments

First and foremost, I would like to express my deep and sincere gratitude to my research

advisor, Dr. Arye Nehorai. Since I joined his lab in August 2015, he has been continuously

providing professional guidance and support for my Ph.D. research. I would like to thank him

for his valuable suggestions and inspirations. I would like to thank him for always encouraging

me to take mathematical courses and to learn new statistical tools, which greatly helped me

in conducting in-depth research. I am also very grateful for being given enough freedom

to explore various interesting machine learning topics, which I really enjoyed and made me

decide to continue to work on in the future.

I wish to thank my dissertation defense committee members, Dr. Neal Patwari, Dr. Ulugbek

Kamilov, Dr. Xuan Zhang, and Dr. Lingfei Wu, for their insightful comments on improving

my dissertation. I wish to thank Dr. Lingfei Wu for also being my collaborator of my

research project. I could always find inspirations and exciting ideas during the discussions

with him.

I would like to thank my labmates, Alex, Jichuan, Mengxue, Mianzhi, Prateek, Yijian,

Zhenqi, Yiqi, Hesam, and Eric for their help and support. I always feel fortunate to collabo-

rate and work with them. We had many exciting times when we exchange ideas in the front

of the white board, which I will never forget.

viii

I am also deeply thankful to my parents for their endless love. They always encouraged me

and gave me confidence and support whenever I encountered obstacles during my pursuit

for my dream.

Zhen Zhang

Washington University in Saint Louis

December 2019

ix

Dedicated to my parents

x

ABSTRACT OF THE DISSERTATION

Kernel Methods for Graph-structured Data Analysis

by

Zhen Zhang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2019

Professor Arye Nehorai, Chair

Structured data modeled as graphs arise in many application domains, such as computer

vision, bioinformatics, and sociology. In this dissertation, we focus on three important

topics in graph-structured data analysis: graph comparison, graph embeddings, and graph

matching, for all of which we propose effective algorithms by making use of kernel functions

and the corresponding reproducing kernel Hilbert spaces.

For the first topic, we develop effective graph kernels, named as “RetGK,” for quantita-

tively measuring the similarities between graphs. Graph kernels, which are positive definite

functions on graphs, are powerful similarity measures, in the sense that they make various

kernel-based learning algorithms, for example, clustering, classification, and regression, ap-

plicable to structured data. Our graph kernels are obtained by two-step embeddings. In

the first step, we represent the graph nodes with numerical vectors in Euclidean spaces. To

do this, we revisit the concept of random walks and introduce a new node structural role

descriptor, the return probability feature. In the second step, we represent the whole graph

xi

with an element in reproducing kernel Hilbert spaces. After that, we can naturally obtain our

graph kernels. The advantages of our proposed kernels are that they can effectively exploit

various node attributes, while being scalable to large graphs. We conduct extensive graph

classification experiments to evaluate our graph kernels. The experimental results show that

our graph kernels significantly outperform state-of-the-art approaches in both accuracy and

computational efficiency.

For the second topic, we develop scalable attributed graph embeddings, named as “SAGE.”

Graph embeddings are Euclidean vector representations, which encode the attributed and

the topological information. With graph embeddings, we can apply all the machine learning

algorithms, such as neural networks, regression/classification trees, and generalized linear

regression models, to graph-structured data. We also want to highlight that SAGE con-

siders both the edge attributes and node attributes, while RetGK only considers the node

attributes. “SAGE” is a extended work of “RetGK,” in the sense that it is still based on the

return probabilities of random walks and is derived from graph kernels. But “SAGE” uses a

totally different strategy, i.e., the “distance to kernel and embeddings” algorithm, to further

represent graphs. To involve the edge attributes, we introduce the adjoint graph, which can

help convert edge attributes to node attributes. We conduct classification experiments on

graphs with both node and edge attributes. “SAGE” achieves the better performances than

all previous methods.

For the third topic, we develop a new algorithm, named as “KerGM,” for graph matching.

Typically, graph matching problems can be formulated as two kinds of quadratic assign-

ment problems (QAPs): Koopmans-Beckmann’s QAP or Lawler’s QAP. In our work, we

xii

provide a unifying view for these two problems by introducing new rules for array opera-

tions in Hilbert spaces. Consequently, Lawler’s QAP can be considered as the Koopmans-

Beckmann’s alignment between two arrays in reproducing kernel Hilbert spaces, making it

possible to efficiently solve the problem without computing a huge affinity matrix. Fur-

thermore, we develop the entropy-regularized Frank-Wolfe algorithm for optimizing QAPs,

which has the same convergence rate as the original Frank-Wolfe algorithm while dramati-

cally reducing the computational burden for each outer iteration. Furthermore, we conduct

extensive experiments to evaluate our approach, and show that our algorithm has superior

performance in both matching accuracy and scalability.

xiii

Chapter 1

Introduction

Graph is a popular data structure and is employed extensively in many domains, such as

bioinformatics, computer vision, and sociology. Graph is a powerful tool for capturing the

interaction (i.e., edges) between individuals (nodes). For example, in bioinformatics, a pro-

tein molecule can be modeled as a graph, where graph nodes represent amino acids and

graph edges characterize the biological interaction between nodes. In computer vision, an

image can also be represented as a graph, where graph nodes are the detected feature points

(usually called “landmarks”) and graph edges are generated based on the distances between

landmarks. In sociology, social networks are popular in describing interconnections among

people, groups, and organizations, where graph nodes represent people and graph edges rep-

resent the collaborations or the friendships between them. On the other hand, many other

fundamental data structures, for example, strings and trees, are considered as special graph

instances. Sometimes, time series, vectors, and matrices [1, 2] can also be treated as graphs

by properly defining the nodes and edges. Therefore, graphs are universal data structures.

The connectivity structure plays a central role in a graph, which can help, among many

other applications, to design drugs, to analyze human behaviors through their social net-

works, and to align images taken from different views. Notably, graphs are usually coupled

1

with node and edge attributes, which are called “attributed graphs” in literature. For ex-

ample, a chemical compound may have both discrete and continuous node attributes, which

respectively describe the type and position of atoms. In the graph representations of images

[3], the edge attribute can be the distance between landmarks or the angle between the edge

and the horizontal line. Almost all graph-related tasks are trying to extract or analyze the

structure and attributes information.

Graph comparison is a fundamental problem. A quantitative similarity or distance measure

between graphs is the building block for many graph-related applications. Such a measure

can discriminate neurological disorders of brain networks [4], can identify structurally close

molecules that have similar functions, for drug design [5], and can track the changes in

dynamic climate networks [6]. Unfortunately, graph comparison is very challenging because

graphs lacks the properties of vector spaces. As we know, it is straightforward to obtain the

distance between Euclidean vectors by taking the difference of corresponding components,

e.g., dist(~x, ~y) =
√∑n

i=1(~xi − ~yi)2. However, finding the corresponding nodes between

graphs is a (even more) difficult problem, known as “graph matching.” One class of methods

for graph comparison are based on feature extraction of networks. The quantitative measure

is then computed by comparing feature vectors. These features include degree distribution,

entropy, clustering coefficient [7], and the histogram of length of paths [8]. However, the

structural information provided by these features are often limited or incomplete. The node

and edge attributes are also not considered in these features. In recent years, graph kernels

are getting more attention [9]. Roughly speaking, graph kernels are similarity measures on

graphs. More specifically, a graph kernel is a positive semi-definite function defined on the

space of graphs, XG. This function can be expressed as the inner product between vectors in

a Hilbert space, H. That is, for any graph kernel K : XG×XG → R, there exist an (implicit)

2

feature map, ψ : XG → H, such that

K(G1,G2) = 〈ψ(G1), ψ(G2)〉H,∀G1,G2 ∈ XG. (1.1)

Graph kernels can usually well capture both the topological and attribute information. An-

other advantage is that graph kernels allow all the kernel-based machine learning algorithms,

e.g., Gaussian process regression [10], kernel support vector machine [11], and kernel principal

component analysis [12], to work directly on graph-structured data. In this dissertation, we

develop effective graph kernels, which show superior performance in real-data experiments.

Graph embedding is another popular topic in machine learning [13]. In literature, the graph

embedding can be roughly divided into two groups: (1) Euclidean vector represents of nodes,

e.g., the works in [14, 15], which are also known as “node embeddings,” (2) Euclidean vector

representations of the whole graph, e.g., the works in [16, 17]. The node embedding can be

applied to node classification [18], clustering [19], and link prediction [20]. The whole graph

embedding can be applied to the tasks defined on the dataset of multiple graphs. In this

dissertation, when we say “graph embeddings,” we refer to the second group. In our work,

we develop a scalable attributed graph embedding algorithm, which can encode all types of

attribute information and the connectivity information of graphs into an Euclidean vector.

Graph matching, which aims at finding the correspondence between nodes of two given

graphs, is another longstanding problem in graph theory. It plays an important role in

many applications, ranging from optical character recognition [21] in computer vision, do-

main adaptation [22] in machine learning, and evolutionary conserved pathways investigation

across species [23] in biology. Graph matching problems can be divided into two categories:

exact graph matching and inexact graph matching [24]. Exact graph matching requires the

3

correspondence between nodes to be “edge-preserving” in the sense that if two nodes are

linked by an edge in the first graph, their corresponding nodes must be linked by an edge in

the second graph. This problem is known as “graph isomorphism.” [25] However, the strict

requirement of exact graph matching highly limits its applications in practice. For example,

protein-protein interaction networks are unlikely to be isomorphic. But it is still of great

importance to match proteins across species. Therefore, inexact graph matching is more

popular. Instead of searching for the exact ways of matching nodes, inexact graph matching

searches for the best ways, which provides much flexibility in formulating and solving real-

world graph matching problems. We note that inexact graph matching is closely related to

graph comparison. As mentioned above, graph comparison can be conducted by first finding

the node correspondences and then taking the summation of the “differences” 1 of each pair

of nodes and each pair of edges. Typically, inexact graph matching problems can be formu-

lated as two kinds of quadratic assignment problems (QAPs): Koopmans-Beckmann’s QAP

[26] or Lawler’s QAP [27]. Koopmans-Beckmann’s QAP is the structural alignment between

two adjacency matrices, which, as a result, can be written as the standard Frobenius inner

product between two permutated matrices of the size n× n, where n denotes the number of

nodes. However, Koopmans-Beckmann’s QAP cannot incorporate complex edge attribute

information, which is usually very important in characterizing the relation between nodes.

Lawler’s QAP can tackle this issue, because it attempts to maximize the overall similarity

that well encodes all the attribute information. However, the key concern of the Lawler’s

QAP is that it needs to estimate the n2×n2 pairwise affinity matrix, limiting its application

to very small graphs.

1The differences may be obtained by comparing the corresponding node and edge attributes.

4

1.1 Contributions of This Work

In this dissertation, we develop novel algorithms for solving the graph comparison, graph

embedding, and inexact graph matching problem, which are named “RetGK,” “SAGE,” and

“KerGM,” respectively. For each algorithm, we conduct comprehensive experiments on both

the synthetic and real datasets to demonstrate its effectiveness. We summarize the main

contributions as follows.

Graph kernels based on return probabilities of random walks (RetGK)[28] We

propose efficient graph kernels. To do this, we revisit the concept of random walks, introduc-

ing a new node structural role descriptor, the return probability feature (RPF). We rigorously

show that the RPF is isomorphism-invariant and encodes very rich connectivity information.

Moreover, RPF allows us to consider node-attributed and non-attributed graphs in a unified

framework. With the RPF, we can embed (non-)attributed graphs into a Hilbert space.

After that, we naturally obtain our return probability-based graph kernels. Making use of

the approximate feature maps technique, we represent each graph with a multi-dimensional

tensor and design a family of computationally efficient graphs kernels.

Scalable attributed graph embeddings (SAGE) [17] We propose scalable attributed

graph embeddings for graphs with any type of node attributes and edge attributes. SAGE is

able to encode both the topological connectivity and attributes information of graphs. We

introduce a novel strategy of converting edge-attributed graphs to node-attributed graphs,

opening a door to involving edge attributes information for many other graph embeddings

that are derived based on the node attributes. We mathematically and empirically show that

our proposed graph embedding SAGE exhibits linear complexity in the number of graphs.

5

Kernelized graph matching (KerGM) [29] We focus on solving the Lawler’s QAP. To

do this, we derive an equivalent formulation of Lawler’s QAP, based on a very mild as-

sumption that edge affinities are characterized by kernels. After introducing new rules for

array operations in Hilbert spaces, named as H−operations, we rewrite Lawler’s QAP as

the Koopmanns-Beckmann’s alignment between two arrays in a reproducing kernel Hilbert

space (RKHS), which allows us to solve the Lawler’s QAP without computing the huge affin-

ity matrix. Taking advantage of the H−operations, we develop a path-following strategy

for mitigating the local maxima issue of QAPs. In addition to the kernelized graph match-

ing formulation, we propose a numerical optimization algorithm, the entropy-regularized

Frank-Wolfe (EnFW) algorithm, for solving large-scale QAPs. The EnFW has the same

convergence rate as the original Frank-Wolfe algorithm, with far less computational burden

in each iteration. Extensive experimental results show that our KerGM, together with the

EnFW algorithm, achieves superior performance in both matching accuracy and scalability.

1.2 Organization of This Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we present the attributed

graphs and give a brief introduction to the concept of kernels and the corresponding repro-

ducing kernel Hilbert spaces. In Chapter 3, we introduce the return probability feature and

investigate its properties. We show how to represent node-attributed graphs with Hilbert

vectors and multi-dimensional tensors, for both of which we develop the corresponding graph

kernels. In Chapter 4, we present a novel algorithm for embedding attributed graphs with

Euclidean vectors. This algorithm can handle both the node and the edge attributes of

graphs. In Chapter 5, we consider the matchig problem between attributed graphs. We

6

derive the effective kernelized graph matching algorithm, and develop computationally effi-

cient optimization method to solve quadratic assignment problems. Finally, in Chapter 6,

we summarize the dissertation and propose potential future directions.

1.3 Notations

We use a capital italic bold letter, e.g., X, to represent a matrix and a lowercase italic bold

letter with an arrow, e.g., ~v, to represent a Euclidean vector. For a given matrix X, XT

denotes its transpose. For two matrices X and Y , 〈X,Y 〉F, XY , X ◦Y , and X⊗Y denote

the Frobenius inner product, the usual matrix multiplication, the Hadamard product, and

the tensor product, respectively.

We use a calligraphic symbol, e.g., H, to represent a Hilbert space and a lowercase Greek

symbol, e.g., ψ, to represent a Hilbert vector. For two given Hilbert vectors ψ and ϕ, 〈ψ, ϕ〉H

denotes the Hilbert inner product between them.

7

Chapter 2

Background

2.1 Attributed Graphs

We consider the attributed graph G = {V , E ,AN ,AE} of n nodes and m edges, where V =

{v1, v2, ..., vn} is the set of nodes, E is the set of edges, and AN and AE are respectively the

node attributes and edge attributes set. The connectivity information can be characterized

by the adjacency matrix2 A ∈ {0, 1}n×n, or the incidence matrix, C ∈ {0, 1}n×m. The

adjacency matrix A is defined as

A(i, j) =


1, if (vi, vj) ∈ E

0, otherwise

, (2.1)

The incidence matrix C describes the node-edge correspondence, i.e.,

C(vi, e) = C(vj, e) =


1, if e = (vi, vj) ∈ E

0, otherwise

. (2.2)

2Note that A is a binary matrix, even for weighted graphs. The weights are treated as edge attributes.

8

Figure 2.1: Left: A graph G. Middle: The corresponding adjacency matrix A. Right: The
corresponding incidence matrix C.

The degree matrix, D, is a diagonal matrix, which is defined such that D(i, i) =
∑

(vi,vj)∈E 1.

Moreover, it can be easily checked that

A = CCT −D. (2.3)

In Fig. 2.1, we show a graph and its adjacency matrix and incidence matrix. The blue and

green colors of nodes represent two different node attributes, i.e., AN = {“blue”, “green”}.

The yellow and grey colors of edges represent two different edge attributes, i.e., AE =

{“yellow”, “grey”}.

2.2 Kernels and Reproducing Kernel Hilbert Spaces

Definition 2.1. Let X be a nonempty set, and let H be a Hilbert space of R−valued function

defined on X . A function k : X × X is called a reproducing kernel of H, and H is a

reproducing kernel Hilbert space, if k satisfies:

1. ∀x ∈ X , k(·, x) ∈ H,

9

2. ∀x ∈ X , f ∈ H, 〈f, k(·, x)〉H = f(x).

If we define the feature map ψ : X → H as ψ(x) = k(·, x), then we have 〈ψ(x), ψ(y)〉H =

k(x, y), ∀x, y ∈ X .

Note that the 2nd property introduced above is called “reproducing property,” which is a

special property of RKHS. Note also that in practice, we have access to only the kernel

function k. The feature map ψ is usually implicit and (potentially) infinite-dimensional.

Proposition 2.1. The kernel k defined above satisfies the positive semi-definite property,

i.e., ∀n ∈ N, ∀x1, x2, ..., xn ∈ X , and ∀c1, c2, ..., cn ∈ R,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0. (2.4)

Proof.
n∑
i=1

n∑
j=1

cicjk(xi, xj) =
n∑
i=1

n∑
j=1

cicj〈ψ(x1), ψ(xj)〉H

= ‖
n∑
i=1

ciψ(xi)‖2H ≥ 0

(2.5)

The following Moore–Aronszajn theorem [30] introduces RKHS from a converse direction.

Theorem 2.1. (Moore–Aronszajn) Suppose k is a symmetric, positive definite function on a

set X . Then there is a unique Hilbert space H of functions on X for which k is a reproducing

kernel.

10

2.2.1 Basic Properties

Property 2.1. (sum of kernels) Let k1 and k2 be reproducing kernels on X , then ∀α1, α2 ≥ 0,

k = α1k1 + α2k2 is also a kernel on X .

Proof. Based on the Moore–Aronszajn theorem, it is sufficient to show k is positive semi-

definite. ∀x1, x2, ..., xn ∈ X , and ∀c1, c2, ..., cn ∈ R, we have

n∑
i=1

n∑
j=1

cicjk(xi, xj) =
n∑
i=1

n∑
j=1

cicj
[
α1k1(xi, xj) + α2k2(xi, xj)

]
= α1

n∑
i=1

n∑
j=1

cicjk1(xi, xj) + α2

n∑
i=1

n∑
j=1

cicjk2(xi, xj)

≥ 0,

(2.6)

where the last inequality holds because k1 and k2 are positive semi-definite.

Property 2.2. (tensor product of kernels) Let kx and ky be reproducing kernels on X and

Y, respectively. Then k = kx ⊗ ky is a reproducing kernel on X × Y. Note that kx ⊗ ky is

defined such that kx⊗ ky
(
(x1, y1), (x2, y2)

)
= kx(x1, x2)ky(y1, y2), ∀(x1, y1), (x2, y2) ∈ X ×Y.

Before we prove the above property, we first introduce a lemma.

Lemma 2.1. If both A and B are n×n positive semi-definite matrices, then their Hadamard

product (see [31]), A ◦B, is also positive semi-definite.

Proof. Let B =
∑n

k=1 λk~uk~u
T
k be the eigen-decomposition of B. Then A◦B can be written

as

A ◦B =
n∑
k=1

λkA ◦ (~uk~u
T
k) =

n∑
k=1

λkdiag(~uk)Adiag(~uk). (2.7)

11

For any vector ~c ∈ Rn, we have

~cT (A ◦B)~c =
n∑
k=1

λk~c
T
[
diag(~uk)Adiag(~uk)

]
~c =

n∑
k=1

λk
[
diag(~uk)~c

]T
A
[
diag(~uk)~c

]
≥ 0.

(2.8)

In the following, we prove Property 2.2.

Proof. Still based on the Moore–Aronszajn theorem, it is sufficient to show k = k1 ⊗ k2 is

positive semi-definite.

∀(x1, y1), (x2, y2), ..., (xn, yn) ∈ X × Y , and ∀c1, c2, ..., cn ∈ R, we have

n∑
i=1

n∑
j=1

cicjk
(
(xi, yi), (xj, yj)

)
=

n∑
i=1

n∑
j=1

cicjkx(x1, x2)ky(y1, y2) = ~cT (Kx ◦Ky)~c ≥ 0, (2.9)

where ~c = [c1, c2, ..., cn]T ∈ Rn, KX ∈ Rn is the kernel matrix of the values of kx on

x1, x2, ..., xn, and Ky ∈ Rn is the kernel matrix of the values of ky on y1, y2, ..., yn. Note that

the last inequality holds because of Lemma 2.1.

2.2.2 Kernels on Euclidean Spaces

Euclidean spaces are the most common spaces in machine learning. In this part, we introduce

some kernels on Euclidean spaces, i.e., X = Rn, which both of our two works are based on.

1. polynomial kernels: k(~x, ~y) = (〈~x, ~y〉+ c)m, where c ≥ 0, m ∈ N.

2. exponential kernel: k(~x, ~y) = exp(〈~x, ~y〉).
12

3. Gaussian kernel: k(~x, ~y) = exp(−γ‖~x− ~y‖2), where γ ≥ 0.

4. Laplacian kernel: k(~x, ~y) = exp(−γ‖~x− ~y‖), where γ ≥ 0.

We refer to [32, 33] for the validity of the above kernel functions.

2.2.3 Random Fourier Features

In this part, we introduce the algorithm of generating the random Fourier features [34],

which is popular for accelerating the computation of kernel values. The basic idea is to find

a randomized feature map ψ̂ : Rn → RD, so that the Euclidean inner product between the

transformed points will approximate their kernel evaluations, i.e.,

〈ψ̂(~x), ψ̂(~y)〉 ≈ k(~x, ~y),∀~x, ~y ∈ Rn. (2.10)

It was shown that if the kernel function is shift-invariant, i.e., k(~x, ~y) = k(~x− ~y), then ψ̂ is

the random Fourier feature map [35, 34]. The procedure is detailed in Algorithm 1.

Note that if k is the Gaussian kernel, i.e., k(~x, ~y) = exp(−γ‖~x − ~y‖2), then its Fourier

transform p is a Gaussian distribution, i.e., p(ω) = N(~0, γ2I).

Algorithm 1 Random Fourier Features

1: Input: a shift-invariant kernel k.
2: Output: a randomized feature map ψ̂ : Rn → RD, so that 〈ψ̂(~x), ψ̂(~y)〉 ≈ k(~x− ~y).
3: Procedure:
4: step 1: Compute the Fourier transform p of the kernel, i.e., p(ω) = 1

2π

∫
e−jω

T δk(δ).dδ
5: step 2: Draw D i.i.d. samples ω1, ω2, ..., ωD ∈ Rn from p, and D i.i.d. samples
b1, b2, ..., bD ∈ R from the uniform distribution on [0, 2π].

6: step 3: ψ̂(~x) =
√

2
D

[
cos(ωT1 ~x+ b1), ..., cos(ωTD~x+ bD)

]T .

13

2.2.4 Kernel-based Machine Learning Methods

In this part, we briefly introduce two supervised kernel-based machine learning methods [36]:

kernel ridge regression and kernel support vector machine. We note that for both methods,

we need to have access to only the pairwise kernel values and don’t need to care about the

data representation forms.

Let (xtr1 , y
tr
1), (xtr2 , y

tr
2), ..., (xtrn , y

tr
n) be the training samples, where xtri and ytri are the sample

and corresponding label, respectively. Let xte1 , x
te
2 , ..., x

te
m be the testing samples. For conve-

nience, we write ~ytr = [ytr1 , y
tr
2 , ..., y

tr
n]T . The goal is to predict their labels. Let Krr ∈ Rn×n

be the kernel matrix of training samples, i.e., [Krr]ij = k(xtri , x
tr
j), and let Kre ∈ Rn×m be

the cross kernel matrix of training and testing samples, i.e., [Kre]ij = k(xtri , x
te
j).

For the kernel ridge regression, predicted labels ~̂yte = [ŷte1 , ŷ
te
2 , ..., ŷ

te
m]T is

~̂yte = Kre(Krr + γI)−1~ytr. (2.11)

For the kernel support vector machine, after training a classifier based on (Krr, ~y
tr), we can

make prediction of the testing samples by

~̂yte = Kre(~α ◦ ~ytr) + ~b, (2.12)

where ◦ denotes the Hadamard product, ~α is the Lagrangian multiplier and ~b is the bias.

14

Chapter 3

RetGK: Graph Kernels Based on

Return Probabilities of Random

Walks

3.1 Introduction

In this chapter, we develop our return probability-based graph kernels. We first describe the

general challenges and related works of graph kernels.

3.1.1 Challenges

1. When designing graph kernels, one might come across the graph isomorphism prob-

lem, a well-known NP problem. The kernels should satisfy the isomorphism-invariant

property, while being informative on the topological structure difference.

15

2. Graphs are usually coupled with multiple types of node attributes, e.g., discrete3 or

continuous attributes. For example, a chemical compound may have both discrete and

continuous attributes, which respectively describe the type and position of atoms. A

crucial problem is how to integrate the graph structure and node attribute information

in graph kernels.

3. In some applications, e.g., social networks, graphs tend to be very large, with thousands

or even millions of nodes, which requires strongly scalable graph kernels.

3.1.2 Related Works

There are various graph kernels, many of which explore the R-convolutional framework [37].

The key idea is decomposing a whole graph into small substructures and building graph

kernels based on the similarities among these components. Such kernels differ from each

other in the way they decompose graphs. For example, graphlet kernels [38] are based on

small subgraphs up to a fixed size. Weisfeiler-Lehman graph kernels [39] and tree-based

kernels [40] are developed with subtree patterns. Shortest path kernels [41] are derived

by comparing the paths between graphs. Still other graph kernels, such as [9] and [42],

are developed by counting the number of common random walks on direct product graphs.

Recently, subgraph matching kernels [43] and graph invariant kernels [44] were proposed for

handling continuous attributes. However, all the above R-convolution based graph kernels

suffer from a drawback. As pointed out in [45], increasing the size of substructures will largely

decrease the probability that two graphs contain similar substructures, which usually results

in the “diagonal dominance issue” [46]. Our return probability based kernels are significantly

3In the literature, the discrete node attributes are usually called “labels”.

16

different from the above ones. We measure the similarity between two graphs by directly

comparing their node structural role distributions, avoiding substructures decomposition.

More recently, new methods have been proposed for comparing graphs, which is done by

quantifying the dissimilarity between the distributions of pairwise distances between nodes.

[8] uses the shortest path distance, and [47] uses the diffusion distance. However, these

methods can be applied only to non-attributed (unlabeled) graphs, which largely limits their

applications in the real world.

Organization. In Section 3.2, we introduce the random walk on graphs and basic concept

about tensor algebra. In Section 3.3, we discuss the favorable properties of and computa-

tional methods for return probability features. In Section 3.4, we present the Hilbert space

embedding of graphs, and develop the corresponding graph kernels. In Section 3.5, we show

the tensor representation of graphs, and derive computational efficient graph kernels. In

Section 3.6, we report the experimental results on 21 benchmark datasets.

3.2 Prerequisites

3.2.1 Random Walk on Graphs

Let G be a undirected and connected graph with the node set V and the edge set E . Let AG

and DG be the adjacency matrix and degree matrix of G, respectively (see Chapter 2.1 for

the definition).

An S-step walk starting from node v0 is a sequence of nodes {v0, v1, v2, ..., vS}, with (vs, vs+1) ∈

E , 0 ≤ s ≤ S − 1. A random walk on G is a Markov chain (X0, X1, X2, ...), whose transition

17

probabilities are

Pr(Xi+1 = vi+1|Xi = vi, ..., X0 = v0) = Pr(Xi+1 = vi+1|Xi = vi) =
1

DG(i, i)
, (3.1)

which induces the transition probability matrix PG = D−1G AG. More generally, P s
G =

PG×PG× ...×PG is the s-step transition matrix, where P s
G(i, j) is the transition probability

in s steps from node vi to vj. The followings are the properties of random walks on graphs.

Proposition 3.1. A random walk on a connected graph is a irreducible Markov chain, i.e.,

∀vi, vj ∈ V, there exist t > 0, such that P t
G(i, j) > 0.

Proof. Because G is connected, for any two nodes vi and vj, there exist at least one path,

path(vi → vj), starting from vi and ending at vj. Let t0 be the length of path(vi → vj), then

we immediately have P t0
G (i, j) > 0.

Proposition 3.2. Let n be the number of nodes of G and let VolG =
∑n

i=1DG(i, j) be the

volume of G. We define an n-dimensional vector ~π such that its ith component ~πi satisfies

~πi = DG(i,i)
VolG

, then ~π is the unique stationary distribution, i.e., lims→+∞P
s
G(i, j) = ~πj.

Proof. It is sufficient to show that ~π is the solution to the “Time-reversibility” set of equa-

tions [48],

~πTi PG(i, j) = ~πTj PG(j, i). (3.2)

The above equality is proved as follows.

~πTi PG(i, j) =
DG(i, i)

VolG
× 1

DG(i, i)
=
DG(j, j)

VolG
× 1

DG(j, j)
= ~πTj PG(j, i). (3.3)

18

3.2.2 Tensor Algebra

A tensor [49] is a multidimensional array, which has multiple indices.4 We use RI1×I2×...×IN

to denote the set of tensors of order N with dimension (I1, I2, ..., IN). If U ∈ RI1×I2×...×IN ,

then Ui1i2,...,iN ∈ R, where 1 ≤ i1 ≤ I1, ..., 1 ≤ iN ≤ IN .

The inner product between tensors U, V ∈ RI1×I2×...×IN is defined such that

〈U, V 〉T = vec(U)Tvec(V) =

I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

Ui1i2,...,iNVi1i2,...,iN . (3.4)

A rank-one tensor W ∈ RI1×I2×...×IN is the tensor (outer) product of N vectors, ~w(1), ..., ~w(N).

That is , W = ~w(1) ⊗ ~w(2) ⊗ ...⊗ ~w(N), Wi1i2,...,iN = ~w
(1)
i1
~w
(2)
i2
... ~w

(N)
iN

.

3.3 Return Probabilities of Random Walks

Given a graph G, as we can see from (3.1), the transition probability matrix, PG, encodes

all the connectivity information, which leads to a natural intuition: We can compare two

graphs by quantifying the difference between their transition probability matrices. However,

big technical difficulties exist, since the sizes of two matrices are not necessarily the same,

and their rows or columns do not correspond in most cases.

To tackle the above issues, we make use of the S-step return probabilities of random walks

on G. To do this, we assign each node vi ∈ V an S-dimensional feature called “return

4A vector ~u ∈ RD is a first-order tensor, and a matrix A ∈ RD1×D2 is a second-order tensor.

19

Figure 3.1: Left: a graph G of four nodes. Right: 4-dimensional return probability feature
vector set, RPF4

G.

probability feature” (“RPF” for short), which describes the “structural role” of vi, i.e.,

~pi = [P 1
G(i, i),P 2

G(i, i), ...,P S
G (i, i)]T , (3.5)

where P s
G(i, i), s = 1, 2, ..., S, is the return probability of a s-step random walk starting from

vi. Now each graph is represented by a set of feature vectors in RS:

RPFSG = {~p1, ~p2, ..., ~pn}. (3.6)

In Fig. 3.1, we use a toy example to visualize the set of return probability feature vectors of

a graph G.

3.3.1 Properties of RPF

The RPF has three nice properties: isomorphism-invariance, multi-resolution, and informa-

tiveness.

20

Isomorphism-invariance The isomorphism-invariance property of return probability fea-

tures is summarized in the following proposition.

Proposition 3.3. Let G and H be two isomorphic graphs of n nodes, and let τ : {1, 2, ..., n} →

{1, 2, ..., n} be the corresponding isomorphism. Then,

∀vi ∈ VG, s = 1, 2, ...,∞, P s
G(i, i) = P s

H(τ(i), τ(i)). (3.7)

Proof. Let Π be the permutation matrix induced by τ , i.e., Π(i, j) = δj=τ(i), then, ΠTΠ =

ΠΠT = In. Since G and H are isomorphic, we have AH(τ(i), τ(j)) = AG(i, j), and

DH(τ(i), τ(i)) = DG(i, i), which is equivalent with AH = ΠTAGΠ and DH = ΠTDGΠ.

Then PH = D−1H AH = (ΠTDGΠ)−1(ΠTAGΠ) = ΠTPGΠ. So P s
H = (ΠTPGΠ)s =

ΠTP s
GΠ, which implies P s

G(i, i) = P s
H(τ(i), τ(i)).

Clearly, isomorphic graphs have the same set of RPF, i.e., RPFSG = RPFSH , ∀S = 1, 2, ...,∞.

Such a property can be used to check graph isomorphism, i.e., if ∃S, s.t. RPFSG 6= RPFSH ,

then G and H are not isomorphic. Moreover, Proposition 3.3 allows us to directly compare

the structural role of any two nodes in different graphs, without considering the matching

problems.

Multi-resolution RPF characterizes the “structural role” of nodes with multi-resolutions.

Roughly speaking, P s
G(i, i) reflects the interaction between node vi and the subgraph in-

volving vi. With an increase in s, the subgraph becomes larger. We use a toy example to

illustrate our idea. Fig. 3.2(a) presents an unweighted graph G, and C1, C2, and C3 are

three center nodes in G, which play different structural roles. In Fig. 3.2(b), we plot their

s-step return probabilities, s = 1, 2, ..., 200. C1, C2, and C3 have the same degree, as do their

21

neighbors. Thus their first two return probabilities are the same. Since C1 and C2 share

the similar neighbourhoods at larger scales, their return probability values are close until

the eighth step. Because C3 plays a very different structural role from C1 and C2, its return

probabilities values deviate from those of C1 and C2 in early steps.

In addition, as shown in Fig. 3.2(b), when the random walk step s approaches infinity, the

return probability P s
G(i, i) will not change much and will converge to a certain value, which

is known as the stationary probability as we discussed in Proposition 3.2. Therefore, if s is

already sufficiently large, we gain very little new information from the RPF by increasing s.

Informativeness The RPF provides very rich information on the graph structure, in the

sense that if two graphs has the same RPF sets, they share very similar spectral properties.

Theorem 3.1. Let G and H be two connected graphs of the same size n and volume Vol, and

let PG and PH be the corresponding transition probability matrices. Let {(λk, ~ψk)}nk=1 and

{(µk, ~ϕk)}nk=1 be eigenpairs of PG and PH , respectively. Let τ : {1, 2, ..., n} → {1, 2, ..., n}

be a permutation map. If P s
G(i, i) = P s

H(τ(i), τ(i)),∀vi ∈ VG,∀s = 1, 2, ..., n, i.e., RPFnG =

RPFnH , then,

1. RPFSG = RPFSH , ∀S = n+ 1, n+ 2, ...,∞;

2. {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn};

3. If the eigenvalues sorted by their magnitudes satisfy: |λ1| > |λ2| > ... > |λm| > 0,

|λm+1| = ... = |λn| = 0, then we have that | ~ψk(i)| = | ~ϕk(τ(i))|, ∀vi ∈ VG, ∀k =

1, 2, ...,m.

Proof. See Appendix A.

22

(a)

(b)

Figure 3.2: (a) Toy Graph G; (b) The s-step return probability of the nodes C1, C2 and C3

in the toy graph, s = 1, 2, ..., 200. The nested figure is a close-up view of the rectangular
region.

23

The first conclusion states that the graph structure information contained in RPFnG and

RPFSG, S ≥ n are the same, coinciding with our previous discussions on RPF with large

random walk steps. The second and third conclusions bridge the RPF with spectral repre-

sentations of graphs [50], which contains almost all graph structure information.

Relation to eigenvector embeddings (EE) One popular way of embedding graph nodes

in a Euclidean space uses the eigenvectors of Laplacian or adjacent matrices as the coordi-

nates. In [51], a class of graph kernels are developed based on the eigenvector embeddings.

From Theorem 3.1, we see that both RPF and EE encode the spectral information of graphs.

However, our RPF has several advantages over EE. (i) The eigenvector embeddings reflect

the closeness among nodes in the same graph, which makes it difficult to compare node across

graphs. (ii) The EE representations, which are computed up to a change in sign (or more

generally, orthonormal transformation in the eigenspace), may not be invariant under graph

isomorphisms. A counterexample is shown in Fig. 3.3. G and G ′ are two isomorphic graphs,

we visualize their first three-dimensional embeddings with RPF and EE 5. It can be seen

that RPFs are invariant while eigenvectors are not. (iii) The eigenvector embeddings are

unstable. The perturbation theory says that two eigenvectors may switch if their eigenvalues

are close.

3.3.2 Computation of RPF

Given a graph G, the brute-force computation of RPFSG requires (S − 1) × n × n matrix

multiplication of PG. Therefore, the time complexity is (S − 1)n3, which is quite high when

S is large.

5Note that since the signs of these eigenvectors are not fixed, we use the absolute value as in [51]

24

(a) (b)

(c)

Figure 3.3: Toy graph G and its adjacent matrix; (b) Toy graph G ′ and its adjacent matrix;
(c) 3-D eigenvector and RPF embeddings of nodes in G and G ′, respectively. We can see
that our RPF correctly reflects the structural roles. That is, the nodes V3, V4, V5 in graph G
and the nodes V ′1 , V

′
3 , V

′
5 in graph G ′ have the same structural role. And the nodes V1, V2 in

graph G and the nodes V ′2 , V
′
4 in graph G ′ have the same structural role.

25

Since only the diagonal terms of transition matrices are needed, we have efficient techniques.

Write

PG = D−1G AG = D
− 1

2
G (D

− 1
2

G AGD
− 1

2
G)D

1
2
G = D

− 1
2

G BGD
1
2
G, (3.8)

whereBG = D
− 1

2
G AGD

− 1
2

G is a symmetric matrix. Then P s
G = D

− 1
2

G Bs
GD

1
2
G. Let {(λk, ~uk)}nk=1

be the eigenpairs of BG, i.e., BG =
∑n

k=1 λk~uk~u
T
k . Then the return probabilities are

P s
G(i, i) = Bs

G(i, i) =
n∑
k=1

λsk
[
~uk(i)

]2
,∀vi ∈ VG, ∀s = 1, 2, ..., S. (3.9)

Let U = [~u1, ~u2, ..., ~un], let V = U ◦ U , where ◦ denotes Hadamard product, and let

~Λs = [λs1, λ
s
2, ..., λ

s
n]T . Then we can obtain all nodes’ s-step return probabilities in the

vector V ~Λs. The eigen-decomposition of BG requires time O(n3). Computing V or V ~Λs,

∀s = 1, 2, ..., S, takes time O(n2). So the total time complexity of the above computational

method is O
(
n3 + (S + 1)n2

)
.

Monte Carlo simulation method If the graph node number, n, is large, i.e., n > 105, the

eigendecomposition of an n× n matrix is relatively time-consuming. To make RPF scalable

to large graphs, we use the Monte Carlo method to simulate random walks. Given a graph

G, for each node vi ∈ VG, we can simulate a random walk of length S based on the transition

probability matrix PG. We repeat the above procedure M times, obtaining M sequences of

random walks. For each step s = 1, 2, ..., S, we use the relative frequency of returning to the

starting point as the estimation of the corresponding s-step return probability. The random

walk simulation is parallelizable and can be implemented efficiently, characteristics of which

both contribute to the scalability of RPF.

26

3.4 Hilbert Space Embeddings of Graphs

In this section, we introduce the Hilbert space embeddings of graphs, based on the RPF. With

such Hilbert space embeddings, we can naturally obtain the corresponding graph kernels.

As discussed in Section 3, the structural role of each node vi can be characterized by an

S−dimensional return probability vector ~pi (see (3.5)), and thus a nonattributed graph can

be represented by the set RPFSG = {~pi}ni=1. Since the isomorphism-invariance property allows

direct comparison of nodes’ structural roles across different graphs, we can view the RPF as

a special type of attribute, namely, “the structural role attribute” (whose domain is denoted

as A0), associated with nodes. Clearly, A0 = RS.

The nodes of attributed graphs usually have other types of attributes, which are obtained

by physical measurements. Let A1,A2, ...,AL be their attribute domains. When combined

with RPF, an attributed graph can be represented by the set

{(~pi, a1i , ..., aLi)}ni=1 ⊆ A0 ×A1 × ...×AL (= ×Ll=0Al). (3.10)

Such a representation allows us to consider both attributed and nonattributed graphs in a

unified framework, since if L = 0, the above set just degenerates to the nonattributed case.

The set representation forms an empirical distribution

µ =
1

n

n∑
i=1

δ(~pi,a1i ,...,aLi) on A = ×Ll=0Al, (3.11)

which can be embedded into a reproducing kernel Hilbert space (RKHS) by kernel mean

embedding [52].

27

Figure 3.4: Summary of the two-step embeddings.

Let kl, l = 0, 1, ..., L be a kernel on Al. Let Hl and φl be the corresponding RKHS and

implicit feature map, respectively. Then we can define a kernel on A through the tensor

product of kernels [53], k = ⊗Ll=0kl, i.e.,

k
[
(~p, a1, a2, ..., aL), (~q, b1, b2, ..., bL)

]
= k0(~p, ~q)

L∏
l=1

kl(a
l, bl). (3.12)

Its associated RKHS, H, is the tensor product space generated by Hl, i.e., H = ⊗Ll=0Hl. Let

φ : A → H be the implicit feature map. Then given a graph G, we can embed it into H in

the following procedure,

G→ µG → mG, and mG =

∫
A
φdµG =

1

n

n∑
i=1

φ(pi, a
1
i , ..., a

L
i). (3.13)

Before proceeding to the computational graph kernels, we summarize our two-step graph

embeddings. In the first step, we present the graph with a set of vectors, based on return

probability features. In the second step, we further embed the set in a RKHS, based on the

kernel mean embedding. Therefore, any graph (with node attributes) can be represented by

a vector in a Hilbert space. The above procedures is sketched in Fig. 3.4.

28

3.4.1 Graph Kernels (I)

An important benefit of Hilbert space embedding of graphs is that it is straightforward to

generalize the positive definite kernels defined on Euclidean spaces to the set of graphs.

Given two graphs G and H, let {4G
i }

nG
i=1 and {4H

i }
nH
j=1 be the respective set representa-

tions
(
4G
i = (~pi, a

1
i , a

2
i , ..., a

L
i) and likewise 4H

j

)
. Let KGG, KHH , and KGH be the ker-

nel matrices, induced by the embedding kernel k. That is, they are defined such that

(KGG)ij = k(4G
i ,4G

j), (KHH)ij = k(4H
i ,4H

j), and (KGH)ij = k(4G
i ,4H

j).

Proposition 3.4. Let XG be the set of graphs with attribute domains A1,A2, ...,AL. Let G

and H be two graphs in XG. Let mG and mH be the corresponding graph embeddings. Then

the following functions are positive definite graph kernels defined on XG ×XG.

K1(G,H) = (c+ 〈mG,mH〉H)d = (c+
1

nGnH
~1TnGKGH

~1nH)d, c ≥ 0, d ∈ N, (3.14a)

K2(G,H) = exp(−γ‖mG −mH‖pH) = exp
[
− γMMDp(µG, µH)

]
, γ > 0, 0 < p ≤ 2, (3.14b)

where

MMD(µG, µH) = (
1

n2
G

~1TnGKGG
~1nG +

1

n2
H

~1TnHKHH
~1nH −

2

nGnH
~1TnGKGH

~1nH)
1
2

is the maximum mean discrepancy (MMD) [52].

Proof. (a). We first consider two kernels Kα(G,H) = 〈mG,mH〉H and Kβ(G,K) = c. It can

be easily observed that Kα and Kβ are positive definite graph kernels. Since the sum and

multiplication of positive definite kernels are still positive definite, we conclude that (3.14a)

are positive definite.

29

(b). The positive definiteness of (3.14b) is obtained from Corollary 3 in [33].

Kernel selection In real applications, such as bioinformatics, graphs may have discrete

labels and (multi-dimensional) real-valued attributes. Hence, three attributes domains are

involved in the computation of our graph kernels: the structural role attribute domain A0,

the discrete attribute domain Ad, and the continuous attribute domain Ac. For Ad, we can

use the Delta kernel kd(a, b) = I{a=b}. For A0 and Ac, which are just the Euclidean spaces,

we can use the Gaussian RBF kernel, the Laplacian RBF kernel, or the polynomial kernel.

3.5 Approximated Hilbert Space Embedding of Graphs

Based on the above discussions, we see that obtaining a graph kernel value between each

pair of graphs requires calculating the inner product or the L2 distance between two Hilbert

embeddings (see (3.14a) and (3.14b)), both of which scale quadratically to the node numbers.

Such time complexity precludes application to large graph datasets. To tackle the above

issues, we employ the approximate explicit feature maps.

For a kernel kl on the attribute domain Al, l = 0, 1, ..., L, we find an explicit map φ̂ : Al →

RDl , so that

∀a, b ∈ Al, 〈φ̂(a), φ̂(b)〉 = k̂l(a, b), and k̂l(a, b)→ kl(a, b) as Dl →∞. (3.15)

The explicit feature maps will be directly used to compute the approximate graph embed-

dings, by virtue of tensor algebra (see Section 3.2.2). The following theorem says that the

30

approximate explicit graph embeddings can be written as the linear combination of rank-one

tensors.

Theorem 3.2. Let G and H be any two graphs in XG. Let {(~pi, a1i , a2i , ..., aLi)}nGi=1 and

{(~qj, b1j , b2j , ..., bLj)}nHj=1 be the respective set representations of G and H. Then their approx-

imate explicit graph embeddings, m̂G and m̂H , are tensors in RD0×D1×...×DL, and can be

written as

m̂G =
1

nG

nG∑
i=1

φ̂0(~pi)⊗ φ̂1(a
1
i)⊗ ...⊗ φ̂L(aLi), m̂H =

1

nH

nH∑
j=1

φ̂0(~qj)⊗ φ̂1(b
1
j)⊗ ...⊗ φ̂L(bLj).

(3.16)

That is, as D0, D1, ..., DL →∞, we have 〈m̂G, m̂H〉T → 〈mG,mH〉H.

Before proceeding to the main proof, we first introduce a lemma about the inner product of

multi-dimensional tensors.

Lemma 3.1. Let U = ~u(0)⊗ ~u(1)⊗ ...⊗ ~u(L) and V = ~v(0)⊗ ~v(1)⊗ ...⊗ ~v(L) be two rank-one

tensors in RD0×D1×...×DL. Then we have 〈U, V 〉T = 〈~u(0), ~v(0)〉〈~u(1), ~v(1)〉...〈~u(L), ~v(L)〉.

Proof.

〈U, V 〉T

=

D0∑
i0=1

D1∑
i1=1

...

DL∑
iL=1

Ui1i2,...,iLVi1i2,...,iL

=

D0∑
i0=1

D1∑
i1=1

...

DL∑
iL=1

~u
(0)
i0
~u
(1)
i1
...~u

(L)
iL
~v
(0)
i0
~v
(1)
i1
...~v

(L)
iL

=(

D0∑
i0=1

~u
(0)
i0
~v
(0)
i0

)(

D1∑
i1=1

~u
(1)
i1
~v
(1)
i1

)...(

DL∑
iL=1

~u
(L)
iL
~v
(L)
iL

)

=〈~u(0), ~v(0)〉〈~u(1), ~v(1)〉...〈~u(L), ~v(L)〉.

(3.17)

31

Now we prove theorem 3.2.

Proof. We first calculate 〈m̂G, m̂H〉T .

〈m̂G, m̂H〉T

=
〈 1

nG

nG∑
i=1

φ̂0(~pi)⊗ φ̂1(a
1
i)⊗ ...⊗ φ̂L(aLi),

1

nH

nH∑
j=1

φ̂0(~qj)⊗ φ̂1(b
1
j)⊗ ...⊗ φ̂L(bLj)

〉
T

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈
φ̂0(~pi)⊗ φ̂1(a

1
i)⊗ ...⊗ φ̂L(aLi), φ̂0(~qj)⊗ φ̂1(b

1
j)⊗ ...⊗ φ̂L(bLj)

〉
T

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈φ̂0(~pi), φ̂0(~qj)〉〈φ̂1(a
1
i), φ̂1(b

1
j)〉...〈φ̂1(a

L
i), φ̂1(b

L
j)〉

=
1

nGnH

nG∑
i=1

nH∑
j=1

k̂0(~pi, ~qj)k̂1(a
1
i , b

1
j)...k̂L(aLi , b

L
j),

(3.18)

where the 3rd equality holds because of lemma 3.1.

We next calculate 〈mG,mH〉H.

〈mG,mH〉H

=〈 1

nG

nG∑
i=1

φ(pi, a
1
i , ..., a

L
i),

1

nH

nH∑
j=1

φ(qj, b
1
j , ..., b

L
j)〉H

=
1

nGnH

nG∑
i=1

nH∑
j=1

〈φ(pi, a
1
i , ..., a

L
i), φ(qj, b

1
j , ..., b

L
j)〉H

=
1

nGnH

nG∑
i=1

nH∑
j=1

k
[
(pi, a

1
i , ..., a

L
i), (qj, b

1
j , ..., b

L
j)
]

=
1

nGnH

nG∑
i=1

nH∑
j=1

k0(~pi, ~qj)k1(a
1
i , b

1
j)...kL(aLi , b

L
j),

(3.19)

32

where the last equality holds because of the definition of the embedding kernel k = ⊗Ll=0kl.

Since as D0, D1, ..., DL →∞, k̂0(~pi, ~qj)→ k0(~pi, ~qj), k̂1(a
1
i , b

1
j)→ k1(a

1
i , b

1
j), ..., k̂L(aLi , b

L
j)→

kL(aLi , b
L
j), we conclude that 〈m̂G, m̂H〉T → 〈mG,mH〉H.

3.5.1 Graph Kernels (II)

With approximate tensor embeddings (3.16), we obtain new graph kernels.

Proposition 3.5. The following functions are positive definite graph kernels defined on

XG ×XG.

K̂1(G,H) = (c+ 〈m̂G, m̂H〉T)d =
[
c+ vec(m̂G)

Tvec(m̂H)
]d
, c ≥ 0, d ∈ N, (3.20a)

K̂2(G,H) = exp(−γ‖m̂G − m̂H‖pT) = exp(−γ‖vec(m̂G)− vec(m̂H)‖p2), γ > 0, 0 < p ≤ 2..

(3.20b)

Moreover, as D0, D1, ..., DL → ∞, we have K̂1(G,H) → K1(G,H) and K̂2(G,H) →

K2(G,H).

Proof. The positive definiteness of K̂1 and K̂2 can be proved in the same way with Propo-

sition 3.4. The convergence property can be obtained by Theorem 3.2.

The vectorization of m̂G (or m̂H) can be easily implemented by the Kronecker product, i.e.,

vec(m̂G) = 1
nG

∑nG
i=1 Kronecker

(
φ̂0(~pi), φ̂1(a

1
i), ..., φ̂L(aLi)

)
. To obtain above graph kernels,

we need only to compute the Euclidean inner product or distance between vectors. More

notably, the size of the tensor representation does not depends on node numbers, making it

scalable to large graphs.

33

Approximate explicit feature map selection. For the Delta kernel on the discrete at-

tribute domain, we directly use the one-hot vector. For shift-invariant kernels, i.e., k(~x, ~y) =

k(~x− ~y), on Euclidean spaces, e.g., A0 and Ac, we make use of random Fourier feature map

(see 2.2.3).

3.6 Experiments

In this section, we conduct extensive experiments to demonstrate the effectiveness of our

graph kernels. We run all the experiments on a laptop with an Intel i7-7820HQ, 2.90GHz

CPU and 64GB RAM. We implement our algorithms in Matlab, except for the Monte Carlo

based computation of RPF (see Section 3.3.2), which is implemented in C++.

3.6.1 Datasets

We conduct graph classification on four types of benchmark datasets [54]. (i) Non-attributed

(unlabeled) graphs datasets: COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY,

REDDIT-MULTI(5K), and REDDIT-MULTI(12K) [55] are generated from social networks.

(ii) Graphs with discrete attributes (labels): DD [56] are proteins. MUTAG [57], NCI1 [39],

PTC-FM, PTC-FR, PTC-MM, and PTC-MR [58] are chemical compounds. (iii) Graphs

with continuous attributes: FRANK is a chemical molecule dataset [59]. SYNTHETIC and

Synthie are synthetic datasets based on random graphs, which were first introduced in [60]

and [61], respectively. (iv) Graphs with both discrete and continuous attributes: ENZYMES

and PROTEINS [62] are graph representations of proteins. BZR, COX2, and DHFR [63]

34

are chemical compounds. Detailed descriptions of these 21 datasets are provided in the

Appendix B.

3.6.2 Experimental Setup

We demonstrate both the graph kernels (I) and (II) introduced in Section 3.4.1 and Section

3.5.1, which are denoted by RetGKI and RetGKII, respectively. The Monte Carlo compu-

tation of return probability features, denoted by RetGKII(MC), is also considered. In our

experiments, we repeat 200 Monte Carlo trials, i.e., M = 200, for obtaining RPF. For han-

dling the isolated nodes, whose degrees are zero, we artificially add a self-loop for each node

in graphs.

Parameters In all experiments, we set the random walk step S = 50. For RetGKI, we

use the Laplacian RBF kernel for both the structural role domain A0, and the continuous

attribute domain Ac, i.e., k0(~p, ~q) = exp(−γ0‖~p− ~q‖2) and kc(~a,~b) = exp(−γc‖~a−~b‖2). We

set γ0 to be the inverse of the median of all pairwise distances, and set γc to be the inverse

of the square root of the attributes’ dimension, except for the FRANK dataset, whose γc

is set to be the recommended value
√

0.0073 in the paper [44] and [61]. For RetGKII, on

the first three types of graphs, we set the dimensions of random Fourier feature maps on A0

and Ac both to be 200, i.e., D0 = Dc = 200, except for the FRANK dataset, whose Dc is

set to be 500 because its attributes lie in a much higher dimensional space. On the graphs

with both discrete and continuous attributes, for the sake of computational efficiency, we

set D0 = Dc = 100. For both RetGKI and RetGKII, we make use of the graph kernels with

exponential forms, exp(−γ‖ · ‖p), (see (3.14b) and (3.20b)). We select p from {1, 2}, and set

γ = 1
distp

, where dist is the median of all the pairwise graph embedding distances.

35

We compare our graph kernels with many state-of-the-art graph classification algorithms:

1. the shortest path kernel (SP) [41],

2. the Weisfeiler-Lehman subtree kernel (WL) [39],

3. the graphlet count kernel (GK)[38],

4. deep graph kernels (DGK) [55],

5. PATCHY-SAN convolutional neural network (PSCN) [64],

6. deep graph convolutional neural network (DGCNN) [65],

7. graph invariant kernels (GIK) [44],

8. hashing Weisfeiler-Lehman graph kernels (HGK(WL)) [61],

9. subgraph matching kernels (CSM) [43].

For all kinds of graph kernels, we employ SVM [66] as the final classifier. The tradeoff

parameter C is selected from {10−3, 10−2, 10−1, 1, 10, 102, 103}. We perform 10-fold cross-

validations, using 9 folds for training and 1 for testing, and repeat the experiments 10 times.

We report average classification accuracies and standard errors.

3.6.3 Experimental Results

The classification results6 on four types of datasets are shown in Tables 3.1, 3.2, 3.3, and

3.4. The best results are highlighted in bold. We also report the total time of comput-

ing the graph kernels of all the datasets in each table. It can be seen that graph kernels

6The accuracies of WL, SP and GK are obtained from our own experiments. For others competing
algorithms, we directly quote the values from their papers.

36

RetGKI and RetGKII both achieve superior or comparable performance on all the benchmark

datasets. Especially on the datasets COLLAB, REDDIT-BINARY, REDDIT-MULTI(12K),

Synthie, BZR, COX2, our approaches significantly outperform other state-of-the-art algo-

rithms. The classification accuracies of our approaches on these datasets are at least six

percentage points higher than those of the best baseline algorithms. Moreover, we see that

RetGKII and RetGKII(MC) are faster than baseline methods. Their running times remain

perfectly practical. On the large social network datasets (see Table 3.1), RetGKII(MC) is

almost one order of magnitude faster than the Weisfeiler-Lehman subtree kernel, which is

well known for its computational efficiency.

Table 3.1: Classification results (in %) for non-attributed (unlabeled) graph datasets

Datasets WL GK DGK PSCN RetGKI RetGKII RetGKII(MC)
COLLAB 74.8(0.2) 72.8(0.3) 73.1(0.3) 72.6(2.2) 81.0(0.3) 80.6(0.3) 73.6(0.3)

IMDB-BINARY 70.8(0.5) 65.9(1.0) 67.0(0.6) 71.0(2.3) 71.9(1.0) 72.3(0.6) 71.0(0.6)
IMDB-MULTI 49.8(0.5) 43.9(0.4) 44.6(0.5) 45.2(2.8) 47.7(0.3) 48.7(0.6) 46.7(0.6)

REDDIT-BINARY 68.2(0.2) 77.3(0.2) 78.0(0.4) 86.3(1.6) 92.6(0.3) 91.6(0.2) 90.8(0.2)
REDDIT-MULTI(5K) 51.2(0.3) 41.0(0.2) 41.3(0.2) 49.1(0.7) 56.1(0.5) 55.3(0.3) 54.2(0.3)
REDDIT-MULTI(12K) 32.6(0.3) 31.8(0.1) 32.2(0.1) 41.3(0.4) 48.7(0.2) 47.1(0.3) 45.9(0.2)

Total time 2h3m – – – 48h14m 17m14s 6m9s

Table 3.2: Classification results (in %) for graph datasets with discrete attributes

Datasets SP WL GK CSM DGCNN PSCN RetGKI RetGKII

ENZYMES 38.6(1.5) 53.4(0.9) – 60.4(1.6) – – 60.4(0.8) 59.1(1.1)
PROTEINS 73.3(0.9) 71.2(0.8) 71.7(0.6) – 75.5(0.9) 75.0(2.5) 75.8(0.6) 75.2(0.3)
MUTAG 85.2(2.3) 84.4(1.5) 81.6(2.1) 85.4(1.2) 85.8(1.7) 89.0(4.4) 90.3(1.1) 90.1(1.0)

DD >24h 78.6(0.4) 78.5(0.3) – 79.4(0.9) 76.2(2.6) 81.6(0.3) 81.0(0.5)
NCI1 74.8(0.4) 85.4(0.3) 62.3(0.3) – 74.4(0.5) 76.3(1.7) 84.5(0.2) 83.5(0.2)

PTC-FM 60.5(1.7) 55.2(2.3) – 63.8(1.0) – – 62.3(1.0) 63.9(1.3)
PTC-FR 61.6(1.0) 63.9(1.4) – 65.5(1.4) – – 66.7(1.4) 67.8(1.1)
PTC-MM 62.9(1.4) 60.6(1.1) – 63.3(1.7) – – 65.6(1.1) 67.9(1.4)
PTC-MR 57.8(2.1) 55.4(1.5) 57.3(1.1) 58.1(1.6) 58.6(2.5) 62.3(5.7) 62.5(1.6) 62.1(1.5)
Total time >24h 2m27s – – – – 38m4s 49.9s

3.6.4 Sensitivity Analysis

Here, we conduct a parameter sensitivity analysis of RetGKII on the datasets REDDIT-

BINARY, NCI1, SYNTHETIC, Synthie, ENZYMES, and PROTEINS. We test the stability

37

Table 3.3: Classification results (in %) for graph datasets with continuous attributes

Datasets HGK(WL) RetGKI RetGKII

ENZYMES 63.9(1.1) 70.0(0.9) 70.7(0.9)
PROTEINS 74.9(0.6) 76.2(0.5) 75.9(0.4)

FRANK 73.2(0.3) 76.4(0.3) 76.7(0.4)
SYNTHETIC 97.6(0.4) 97.9(0.3) 98.9(0.4)

Synthie 80.3(1.4) 97.1(0.3) 96.2(0.3)
Total time – 45m30s 40.8s

Table 3.4: Classification results (in %) for graph datasets with both discrete and continuous
attributes

Datasets GIK CSM RetGKI RetGKII

ENZYMES 71.7(0.8) 69.8(0.7) 72.2(0.8) 70.6(0.7)
PROTEINS 76.1(0.3) – 78.0(0.3) 77.3(0.5)

BZR – 79.4(1.2) 86.4(1.2) 87.1(0.7)
COX2 – 74.4(1.7) 80.1(0.9) 81.4(0.6)
DHFR – 79.9(1.1) 81.5(0.9) 82.5(0.8)

Total time – – 4m17s 2m51s

of RetGKII by varying the values of the random walk steps S, the dimension D0 of the

approximate explicit feature map on A0, and the dimension Dc of the feature map on Ac.

We plot the average classification accuracy of ten repetitions of 10-fold cross-validations with

respect to S, D0, and Dc in Fig. 3.5. It can be concluded that RetGKII performs consistently

across a wide range of parameter values.

3.7 Chapter Summary

In this chapter, we introduced the return probability feature for characterizing and compar-

ing the structural role of nodes across graphs. Based on the RPF, we embedded graphs in an

RKHS and derived the corresponding graph kernels RetGKI. Then, making use of approxi-

mate explicit feature maps, we represented each graph with a multi-dimensional tensor, and

38

10 20 30 40 50 60 70 80 90 100

S

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

10 50 100 200 500 1000 2000

D
0

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

REDDIT-BINARY NCI1 SYNTHETIC Synthie ENZYMES PROTEINS

10 50 100 200 500 1000 2000

D
c

60

65

70

75

80

85

90

95

100

c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y
 (

%
)

Figure 3.5: Parameter sensitivity study for RetGKII on six benchmark datasets

then obtained the computationally efficient graph kernels RetGKII. We applied RetGKI and

RetGKII to classify graphs, and achieved promising results on many benchmark datasets.

Given the prevalence of structured data, we believe that our work can be potentially useful

in many applications.

39

Chapter 4

SAGE: Scalable Attributed Graph

Embeddings

4.1 Introduction

In the last chapter, we developed RetGK, an effective graph kernel for quantitatively mea-

suring the similarity between any two graphs. However, graph kernels can only feed the

kernel-based learning algorithms, which requires to compute all the pairwise kernel values.

The computational complexity scales quadratically to the number of samples, limiting its

applications to the dataset of small size. There are many other types of machine learn-

ing methods, such as, logistic regression, classification/regression tree, and neural networks,

which does not have the above issue. Therefore, we want to represent graphs with Euclidean

vectors so that we can apply these methods to the graph-structured data. The other con-

cern is that RetGK considers only node attributes while ignoring edge attributes which are

usually very important for characterizing the interaction between objects (nodes).

40

In this chapter, we develop scalable attributed graph embeddings (SAGE) [17] for graphs

with both node and edge attributes. We still use the return probability features (see (3.5))

for representing node. However, instead of using kernel mean embedding (see section 3.4),

we employ the recently developed “D2KE” (which is short for “from distance to kernel and

embeddings”) framework [67] to represent graphs with Euclidean vectors. We introduce a

novel strategy of converting edge-attributed graphs to node-attributed graphs, by the virtue

of the adjoint graph. Therefore, edge attributes information can be involved in the exactly

same way as node attributes information.

4.2 Graph Dissimilarity Measure

We recall a node-attributed graph G of n nodes can be represented by a set (see 3.10)

S(G) = {(~pi, ~a(d)
i , ~a

(c)
i)}ni=1 ⊆ RS ×Ad ×Ac, (4.1)

where ~pi, ~a
(d)
i , ~a

(c)
i are return probability features, discrete node attributes, and continuous

node attributes7, respectively, and ~a
(d)
i is an one-hot vector. The problem of measuring the

difference between node-attributed graphs is converted to that of measuring the difference

between two corresponding representation sets.

In this chapter, we use the energy distance [68]. Let S1 = {x1, x2, ..., xn1} ⊆ RS ×Ad ×Ac

and S2 = {y1, y2, ..., yn2} ⊆ RS ×Ad×Ac be two sample sets. Let d be a metric (here called

the “ground distance”) on RS × Ad × Ac. The energy distance, DE, between S1 and S2 is

7Note that without of loss of generality, we assume that G has both discrete node attributes domain, Ac,
and continuous node attributes domain, Ad.

41

defined as

D2
E = 2A−B − C, (4.2)

where the above terms A = 1
n1n2

∑n1

i=1

∑n2

j=1 d(xi, yj), B = 1
n2
1

∑n1

i=1

∑n1

j=1 d(xi, xj), and C =

1
n2
2

∑n2

i=1

∑n2

j=1 d(yi, yj), respectively.

4.2.1 Constructing the Ground Distance d

Now we construct the ground distance d such that it can well encode the difference of both

the structure and node attributes information.

A straightforward way to integrate them is simply concatenating ~pi, ~a
(d)
i , and ~a

(c)
i to make

a long vector ~xi, i = 1, 2, ..., n. The ground distances between node representations are just

the Euclidean distances between these long vectors. However, this method does not consider

the heterogeneity of these multi-modal vectors.

Instead, we provide a novel ground distance by leveraging the power of tensors. That is, we

represent each node vi as a rank-one tensor, i.e., xi = ~pi⊗~a(d)
i ⊗~a

(c)
i . Applying the fact that

〈~u1⊗ ~v1⊗ ~w1, ~u2⊗ ~v2⊗ ~w2〉T = 〈~u1, ~u2〉 · 〈~v1, ~v2〉 · 〈 ~w1, ~w2〉, we can obtain d by computing

the distance between two rank-one tensors x and y i.e.,

d2(x, y) = ‖x− y‖2T = 〈x, x〉T + 〈y, y〉T − 2〈x, y〉T . (4.3)

42

4.3 Scalable Attributed Graph Embeddings

We aim to construct graph embeddings from the energy distance. Let XG be the space of all

graphs. We define the function k on XG ×XG,

k(Gx, Gy) =

∫
XG
p(Gω)ζGω(Gx)ζGω(Gy)dGω, (4.4)

where ζGω(G) = exp(−γDE(Gx, Gy)) and Gω is a random graph, and p(Gω) is a probability

distribution over all random graphs in XG. As shown in [67], we have

k(Gx, Gy)→ exp(−γDE(Gx, Gy)) as γ →∞, (4.5)

which implies that k is a similarity measurement. Moreover, it can be checked that k is

positive definite. Consequently, k is a graph kernel.

4.3.1 Node-attributed Graph Embeddings

The exact computation of k is intractable, since the integral over XG has no analytic solutions.

Inspired by randomized kernel approximation introduced in [34], we approximate the graph

kernel k by using a finite number of random graphs. Let Gωi , i = 1, 2, ..., R be random

graphs sampled from a probability distribution p on XG. Then, as R→∞, we have

k̃(Gx, Gy) =
1

R

R∑
i=1

ζGωi (Gx)ζGωi (Gy)→ k(Gx, Gy),

43

which explicitly yields the Euclidean space embedding, ~ZN(G), for node-attributed graph

G, i.e.,

~ZN(G) =
1√
R

[
ζGω1 (G), ζGω2 (G), ..., ζGωR (G)

]T ∈ RR, (4.6)

and obviously, we have 〈 ~ZN(Gx), ~Z
N(Gy)〉 = k̃(Gx, Gy).

Sampling random attributed graphs Here we provide a simple but effective approach

for sampling random attributed graphs, which is similar with the data-dependent random

features sampling strategy proposed in [69]. The “data-dependent” strategy means that we

sample graphs from the training dataset {Gi}Ntr
i=1. However, unlike the existing methods

that select a representative set of a whole graph, we propose to sample parts of graphs as

random graphs. This sampling method will generate random graphs with various topological

connectivities and can help to identify hidden global structures. We also note that in order

to compute ζGω(G), it is sufficient to directly use the node embeddings set sampled from the

node embedding space. Algorithm 2 gives our random graph sampling procedure.

Algorithm 2 Random Attributed Graphs Generation

Input: The node embedding sets {S(Gi)}Ntrain
i=1 of the training graph dataset, maximal

size of the random graph Dmax.
Output: The node embeddings S(Gω) of a random graph Gω.

1: Uniformly draw a number k in {1, 2, ..., Ntrain}.
2: Uniformly draw a number Dk in {1, 2, ..., Dmax}.
3: Randomly draw Dk nodes, i.e., {vi1 , vi2 , ..., viDk} in the graph Gk.

4: Return node embeddings S(Gω) = {(~pim , ~a
(d)
im
, ~a

(c)
im

)}Dkm=1, where {(~pi, ~a(d)
i , ~a

(c)
i)}nki=1 =

S(Gk) is the node embedding set of the graph Gk of nk nodes.

44

Figure 4.1: Left: A graph G. Right: The adjoint graph G∗ converted from G. For example,
in G, the edges e1, e2, and e3 share a common node V1. So in G∗, the nodes e1, e2, and e3
are connected.

4.3.2 Edge-attributed Graph Embeddings

So far we consider only the structure and node attributes information, while losing the edge

attributes. Because our method is built on the “node embedding of graphs”, the edge at-

tributes cannot be coupled with the node representations. To overcome this drawback, we

employ the adjoint graph [70] (also called the “line graph” or the “edge graph”), which

translates the property of the original graph from edges to nodes. Consequently, we can con-

sider the problem of embedding edge-attributed graphs as that of embedding node-attributed

graphs.

Converting edge attributes to node attributes Given a graph G, we can construct

its adjoint graph G∗ such that i) the nodes in G∗ represent the edges in G; ii) two nodes

in G∗ are adjacent if the corresponding edges in G have the same ending nodes. A toy

graph is shown in Fig. 4.1. We can see that the edges in G are transformed to the nodes in

45

G∗. Simultaneously, the edge attributes are converted into the node attributes. Therefore,

the node embeddings of G∗ are equivalent to the edge embeddings of G. The following

theorem demonstrate that in almost every case, the adjoint graph preserves all the structure

information of the original graph.

Theorem 4.1. [70] Two graphs are isomorphic if and only if their adjoint graphs are iso-

morphic, with the exception of the triangle graph K3 and the claw K1,3.

In addition, it is very convenient to obtain the adjacent matrix of G∗, which can be computed

by

AG∗ = CT
GCG − 2I, (4.7)

where CG is the incidence matrix of G (see (2.2)).

Edge-attributed graph embeddings Now we can operate the return probability feature

extraction on G∗. Let qj and ~bj respectively be the edge structural representation and edge

attributes of edge ei in G, we can then characterize the graph with the set (similar with

(4.1))

S(G∗) = {(~qj,~bj)}mj=1 ⊆ RS ×AE. (4.8)

With S(G∗) (4.8), we can get the edge-attributed graph representation,

~ZE(G) = ~ZN(G∗) ∈ RR, (4.9)

based on the method in Section 4.3.1.

46

4.3.3 Two Types of Graph Embedding Fusion

In some cases, the graph has both node and edge attributes. Following the graph embedding

procedure in Section 3.1 and Section 3.2, we will have both the node-attributed embedding

~ZN(G) and the edge-attributed embedding ~ZE(G). There are many fusion strategies. In

our paper, we fuse ~ZN(G) and ~ZE(G) in the following way.

To obtain the final embedding vector, ~Z(G), of G, we first compute the Hadamard product

and the absolute difference of ~ZN(G) and ~ZE(G), and then concatenate them with ~ZN(G)

together, i.e.,

~Z(G) =
[
~ZT
0 (G), ~ZT

1 (G), ~ZT
2 (G)

]T ∈ R3R, (4.10)

where ~Z0(G) = ~ZN(G), ~Z1(G) = ~ZN(G)◦ ~ZE(G), and ~Z2(G) = | ~ZN(G)− ~ZE(G)|. Note the

above fusion strategy has widely been used in natural language processing, and has achieved

promising peformance [71].

4.3.4 Summary of the SAGE Algorithm

In algorithm 3, we summarize the procedure of obtaining the vector embedding of graph

G = {V , E ,AN ,AE}, which has both node attributes and edge attributes. These attributes

can be discrete or continuous.

47

Algorithm 3 Scalable Attributed Graph Embeddings

Input: The attributed graph sets {Gi}Ni=1, the dimension of RPF S, the number of
random graphs R.
Output: The graph embeddings { ~Z(Gi)}Ni=1.

1: Compute the node embeddings {S(Gi)}Ni=1 (see (4.1)) and the edge embeddings
{S(G∗i)}Ni=1 (see (4.8)).

2: Generate random graph representations {S(Gωi)}Ri=1 and {S(G∗ωi)}
R
i=1 using Algorithm

2.
3: Compute ~ZN(Gi) (see (4.6)) and ~ZE(Gi) (see (4.9)), i = 1, 2, ..., N .

4: Compute ~Z(Gi) (see (4.10)), i = 1, 2, ..., N .

4.4 Experiments

We carry out experiments to evaluate the effectiveness and efficiency of SAGE, with the goal

of answering the following two questions:

• Q1: How does SAGE scale with respect to the number of graphs, N?

• Q2: How much improvement does SAGE achieve by considering the node and edge

attributes?

Datasets We consider graphs with both node and edge attributes information [54]. BZR MD,

COX2 MD, DHFR MD, ER MD, and AIDS.

Setup In our experiments, we directly employ a linear SVM implemented in LIBLIN-

EAR [72] since SAGE is a graph-level embedding. The cost parameter C is selected from

{10−3, 10−2, 10−1, 1, 101, 102, 103}. We set the node embedding size S = 50 and select R in

the range of [4,min(2k ≤ N, 2048)], where N the size of the graph dataset. The ranges

of hyperparameters γ and Dmax are {10−3, 10−2, 10−1, 1, 101} and [3:3:30], respectively. All

parameters of the SVM and hyperparameters of our method were optimized only on the

training dataset. For all these datasets, we perform 10-fold cross-validation to evaluate the

48

performance of SAGE, using 9 folds for training and 1 for testing. To eliminate the random

effects, we repeat the experiments ten times (thus 100 runs per dataset) and report averaged

prediction accuracies and standard deviations.

4.4.1 Empirical Impact of the Number of Graphs on Running

Time

We investigate the scalability of SAGE on synthetic graphs when varying the number of

graphs in the range of N = [8, 32768] and the size of graph in the range of n = [16, 1024],

respectively. Figure 4.2 shows the computational time for computing node embeddings,

generating SAGE graph embeddings, and the total computation of graph classification, ac-

cordingly. As shown in Fig. 4.2, these results yields encouraging answers to our motivating

question Q1: SAGE shows the linear scalability in terms of the number of graphs. This is a

highly desired property of our SAGE embeddings, since most graph kernels have quadratic

complexity in the number of graphs, rendering them hard to scale well.

4.4.2 Ablation Study of SAGE

To pursue the answer for question Q2, we perform ablation study of SAGE on graph datasets

that have both node attributes and edge attributes. Table 4.1 shows the classification accura-

cies of three variants of SAGE: i) SAGE-plain without considering any attribute information,

ii) SAGE-node considering only node attributes, and iii) SAGE-node-edge considering both

node and edge information. The classification results of RetGK are presented as the baselines.

We can observe that SAGE-node-edge consistently performs better than both SAGE-node

49

101 102 103 104 105
10-2

100

102

104

106

108

T
im

e
(S

ec
on

ds
)

Runtime VS number of graphs N

SAGE(NodeEmb)

SAGE(GraphEmb)

SAGE(Overall)

Linear

Quatratic

Figure 4.2: Varying number of graphs(N)

and SAGE-plain with significant improvement. Interestingly, even if we consider only the

node attributes, the overall performance of SAGE is still better than that of RetGK.

Table 4.1: Ablation study of SAGE for classification accuracy (in %) on graphs with node
and edge information

Datasets RetGKI SAGE-plain SAGE-node SAGE-node-edge

BZR MD 63.4(1.5) 62.0(1.2) 69.3(0.7) 70.7(0.7)
COX2 MD 63.3(2.2) 50.3(0.9) 63.3(1.0) 67.0(0.9)
DHFR MD 66.2(1.6) 67.2(0.6) 69.2(0.7) 70.5(0.8)

ER MD 72.8(1.4) 66.6(0.8) 73.6(0.7) 75.7(0.9)
Cuneiform 38.4(1.9) 7.7(0.4) 37.3(0.9) 45.8(1.1)

AIDS 99.4(0.1) 99.4(0.3) 99.5(0.3) 99.5(0.3)

50

4.5 Chapter Summary

In this work, we developed a scalable algorithm for representing attributed graphs, which

may have node and edge attributes. We still follow the two-step embedding framework, i.e.,

the graph node-level embeddings and the graph-level embeddings. Leveraging the adjoint

graphs, we translated the properties of graphs from edges to nodes, which provides a unifying

view for embedding node-attributed and edge-attributed graphs. In the graph classification

task, our graph embeddings achieve superior performance in both accuracy and scalability.

51

Chapter 5

KerGM: Kernelized Graph Matching

5.1 Introduction

In this chapter, we develop our kernelized graph matching agorithm. We start with the

introduction to two quadratic assignment problems (QAPs) for graph matching. After that,

we introduce the related work.

5.1.1 Quadratic Assignment Problems for Graph Matching

Let G = {A,V ,P , E ,Q} be an undirected, attributed graph of n nodes and m edges, where

A ∈ Rn×n is the adjacency matrix, V = {vi}ni=1 and P = [~p1, ~p2, ..., ~pn] ∈ RdN×n are the

respective node set and node attributes matrix, and E = {eij|vi and vj are connected} and

Q = [~qij|eij ∈ E] ∈ RdE×m are the respective edge set and edge attributes matrix. Given

two graphs G1 = {A1,V1,P1, E1,Q1} and G2 = {A2,V2,P2, E2,Q2} of n nodes8, the graph

matching (GM) problem aims to find a correspondence between nodes in V1 and V2 which

is optimal in some sense.

8We assume G1 and G2 have the same number of nodes. If not, we add dummy nodes.

52

For Koopmans-Beckmann’s QAP [26], the optimality refers to the Frobenius inner prod-

uct maximization between two adjacency matrices after permutation, i.e.,

max 〈A1X,XA2〉F s.t. X ∈ P = {X ∈ {0, 1}n×n|X~1 = ~1,XT~1 = ~1}, (5.1)

where 〈A,B〉F = tr(ATB) is the Frobenius inner product. The issue with (5.1) is that it

ignores the complex edge attributes, which are usually of particular importance in charac-

terizing graphs.

For Lawler’s QAP [27], the optimality refers to the similarity maximization between the

node attribute sets and between the edge attribute sets, i.e.,

max
∑

v1i ∈V1,v2a∈V2

kN(~p1i , ~p
2
a)Xia +

∑
e1ij∈E1,e2ab∈E2

kE(~q1ij, ~q
2
ab)XiaXjb s.t. X ∈ P , (5.2)

where kN and kE are the node and edge similarity measurements, respectively. Furthermore,

(5.2) can be rewritten in compact form:

max 〈KN ,X〉F + vec(X)TKvec(X) s.t. X ∈ P , (5.3)

where KN ∈ Rn×n is the node affinity matrix, K is an n2 × n2 matrix, defined such that

Kia,jb =


kE(~q1ij, ~q

2
ab), if i 6= j, a 6= b, e1ij ∈ E1, and e2ab ∈ E2,

0, otherwise

. (5.4)

It is well known that Koopmans-Beckmann’s QAP is a special case of Lawler’s QAP if we set

K = A2⊗A1 and KN = 0n×n. The issue of (5.3) is that the size of K scales quadruply with

respect to n, which precludes its applications to large graphs. In our work, we will show

53

that Lawler’s QAP can be written in the Koopmans-Beckmann’s form, which can avoid

computing K.

5.1.2 Related Works

In the past forty years, a myriad of graph matching algorithms have been proposed [24], most

of which focused on solving QAPs. Previous work [73, 74, 75] approximated the quadratic

term with a linear one, which consequently can be solved by standard linear programming

solvers. In [76], several convex relaxation methods are proposed and compared. It is known

that convex relaxations can achieve global convergence, but usually perform poorly because

the final projection step separates the solution from the original QAP. Concave relaxations

[77, 78] can avoid this problem since their outputs are just permutation matrices. However,

concave programming [79] is NP-hard, which limits its applications. In [80], a seminal

work termed the “path-following algorithm” was proposed, which leverages both the above

relaxations via iteratively solving a series of optimization problems that gradually changed

from convex to concave. In [81, 82, 83, 84], the path following strategy was further extended

and improved. However, all the above algorithms, when applied to Lawler’s QAP, need to

compute the n2 × n2 affinity matrix. To tackle the challenge, in [3], the authors elegantly

factorized the affinity matrix into the Kronecker product of smaller matrices. However, it

still cannot be well applied to large dense graphs, since it scales cubically with the number

of edges. Beyond solving the QAP, there are interesting works on doing graph matching

from other perspectives, such as probabilistic matching[85], hypergraph matching [86], and

multigraph matching [87]. We refer to [88] for a survey of recent advances.

54

Organization: In Section 2, we present the proposed rules for array operations in Hilbert

space. Section 3, Section 4 and Section 5 form the core of our work, where we develop the

kernelized graph matching and the corresponding approximation. In Section 6, we develop

the entropy-regularized Frank-Wolfe optimizaton algorithm and prove its convergence rate.

In Section 7, we report the experimental results.

5.2 H-operations for Arrays in Hilbert Spaces

Let H be any Hilbert space, coupled with the inner product 〈·, ·〉H taking values in R.

Let Hn×n be the set of all n × n arrays in H, and let Ψ, Ξ ∈ Hn×n, i.e., Ψij, Ξij ∈ H,

∀i, j = 1, 2, ..., n. Analogous to matrix operations in Euclidean spaces, we make the following

addition, transpose, and multiplication rules (H-operations), i.e.,∀X ∈ Rn×n, and we have

1. Ψ + Ξ, ΨT ∈ Hn×n, where [Ψ + Ξ]ij , Ψij + Ξij ∈ H and [ΨT]ij , Ψji ∈ H.

2. Ψ ∗Ξ ∈ Rn×n, where [Ψ ∗Ξ]ij ,
∑n

k=1〈Ψik,Ξkj〉H ∈ R.

3. Ψ �X, X �Ψ ∈ Hn×n, where [Ψ �X]ij ,
∑n

k=1 ΨikXkj =
∑n

k=1XkjΨik ∈ H and

[X �Ψ]ij ,
∑n

k=1XikΨkj ∈ H.

Note that if H = R, all the above degenerate to the common operations for matrices in

Euclidean spaces. In Fig. 5.1, we visualize the operation Ψ�X, where we let H = Rd, let

Ψ be a 3 × 3 array in Rd, and let X be a 3 × 3 permutation matrix. It is easy to see that

Ψ�X is just Ψ after column-permutation.

As presented in the following corollary, the multiplication � satisfy the combination law.

Corollary 5.1. ∀X,Y ∈ Rn×n, Ψ�X�Y = Ψ�(XY), and Y �(X�Ψ) = (Y X)�Ψ.

55

Figure 5.1: Visualization of the operation Ψ�X.

Proof. (1).∀i, j = 1, 2, ..., n, the (i, j) element of Ψ�X � Y is

[Ψ�X � Y]ij =
n∑
k=1

[ΨX]ikYkj =
n∑
k=1

Ykj

n∑
α=1

ΨiαXαk

=
n∑

α=1

Ψiα

(n∑
k=1

XαkYkj
)

=
n∑

α=1

Ψiα[XY]αj = [Ψ� (XY)]ij. (5.5)

Therefore, Ψ�X � Y = Ψ� (XY).

(2). ∀i, j = 1, 2, ..., n, the (i, j) element of Y � (X �Ψ) is

[Y � (X �Ψ)]ij =
n∑
k=1

Yik[XΨ]kj =
n∑
k=1

Yik

n∑
α=1

XkαΨαj (5.6)

=
n∑

α=1

(n∑
k=1

YikXkα

)
Ψαj =

n∑
α=1

[Y X]iαΨαj = [(Y X)�Ψ]ij. (5.7)

Therefore, Y � (X �Ψ) = (Y X)�Ψ.

Based on the H-operations, we can construct the Frobenius inner product on Hn×n.

Proposition 5.1. Define the function 〈·, ·〉FH : Hn×n × Hn×n → R such that 〈Ψ,Ξ〉FH ,

tr(ΨT ∗Ξ) =
∑n

i,j=1〈Ψij,Ξij〉H, ∀Ψ, Ξ ∈ Hn×n. Then 〈·, ·〉FH is an inner product on Hn×n.

56

Proof. It is sufficient to show that the function 〈·, ·〉FH satisfies the following properties.

1. [Conjugate symmetry]:

〈Ψ,Ξ〉FH =
n∑

i,j=1

〈Ψij,Ξij〉H =
n∑

i,j=1

〈Ξij,Ψij〉H = 〈Ξ,Ψ〉FH , (5.8)

2. [Linearity in the first argument]:

〈aΨ,Ξ〉FH =
n∑

i,j=1

〈aΨij,Ξij〉H =
n∑

i,j=1

a〈Ψij,Ξij〉H = a〈Ψ,Ξ〉FH (5.9)

〈Ψ(1) + Ψ(2),Ξ〉FH =
n∑

i,j=1

〈Ψ(1)
ij + Ψ

(2)
ij ,Ξij〉H =

n∑
i,j=1

〈Ψ(1)
ij ,Ξij〉H +

n∑
i,j=1

〈Ψ(2)
ij ,Ξij〉H. (5.10)

= 〈Ψ(1),Ξ〉FH + 〈Ψ(2),Ξ〉FH (5.11)

3. [Positive-definiteness]:

〈Ψ,Ψ〉FH =
n∑

i,j=1

〈Ψij,Ψij〉H ≥ 0. (5.12)

〈Ψ,Ψ〉FH = 0 ⇐⇒ ∀i, j = 1, 2, ..., n,Ψij = 0 ⇐⇒ Ψ = O. (5.13)

As an immediate result, the function ‖ · ‖FH : Hn×n → R, defined such that ‖Ψ‖FH =√
〈Ψ,Ψ〉FH , is the Frobenius norm on Hn×n. Next, we introduce two properties of 〈·, ·〉FH ,

which play important roles for developing the convex-concave relaxation of the Lawler’s

graph matching problem.

Corollary 5.2. 〈Ψ�X,Ξ〉FH = 〈Ψ,Ξ�XT 〉FH and 〈X �Ψ,Ξ〉FH = 〈Ψ,XT �Ξ〉FH.

57

Proof. (1).

〈Ψ�X,Ξ〉FH =
n∑
i=1

n∑
j=1

〈[Ψ�X]ij,Ξij〉H =
n∑
i=1

n∑
j=1

〈
n∑
k=1

ΨikXkj,Ξij〉H

=
n∑
i=1

n∑
j=1

n∑
k=1

〈Ψik,XkjΞij〉H =
n∑
i=1

n∑
k=1

〈Ψik,
n∑
j=1

XkjΞij〉H

=
n∑
i=1

n∑
k=1

〈Ψik, [Ξ�XT]ik〉H = 〈Ψ,Ξ�XT 〉FH . (5.14)

(2).

〈X �Ψ,Ξ〉FH =
n∑
i=1

n∑
j=1

〈[X �Ψ]ij,Ξij〉H =
n∑
i=1

n∑
j=1

〈
n∑
k=1

XikΨkj,Ξij〉H

=
n∑
i=1

n∑
j=1

n∑
k=1

〈Ψkj,XikΞij〉H =
n∑
j=1

n∑
k=1

〈Ψkj,
n∑
i=1

XikΞij〉H

=
n∑
j=1

n∑
k=1

〈Ψkj, [X
T �Ξ]kj〉H = 〈Ψ,XT �Ξ〉FH . (5.15)

5.3 Kernelized Graph Matching

Before deriving kernelized graph matching, we first present an assumption.

Assumption 5.1. We assume that the edge affinity function kE : RdE × RdE → R is a

kernel. That is, there exist both an RKHS, H, and an (implicit) feature map, ψ : RdE → H,

such that kE(~q1, ~q2) = 〈ψ(~q1), ψ(~q2)〉H, ∀~q1, ~q2 ∈ RdE .

58

Note that Assumption 5.1 is rather mild, since kernel functions are powerful and popular in

quantifying the similarity between attributes [28], [43].

For any graph G = {A,V ,P , E ,Q}, we can construct an array, Ψ ∈ Hn×n:

Ψij =


ψ(~qij) ∈ H, if (vi, vj) ∈ E

0H ∈ H, otherwise

,where 0H is the zero vector in H. (5.16)

where 0H is the zero vector in H, satisfying 〈0H, ϕ〉H, ∀ϕ ∈ Hn×n. Given two graphs G1 and

G2, let Ψ(1) and Ψ(2) be the corresponding Hilbert arrays of G1 and G2, respectively. Then

the edge similarity term in Lawler’s QAP (see (5.2)) can be written as

∑
e1ij∈E1,e2ab∈E2

kE(~q1ij, ~q
2
ab)XiaXjb

=
∑

e1ij∈E1,e2ab∈E2

〈ψ(~q1ij), ψ(~q2ab))〉HXiaXjb

=
n∑

i,j=1

n∑
a,b=1

〈Ψ(1)
ij ,Ψ

(2)
ab 〉HXiaXjb

=
n∑

i,b=1

〈
n∑
j=1

Ψ
(1)
ij Xjb,

n∑
a=1

XiaΨ
(2)
ab 〉HK

=〈Ψ(1) �X,X �Ψ(2)〉FH ,

(5.17)

which shares a similar form with (5.1), and can be considered as the Koopmans-Beckmann’s

alignment between the Hilbert arrays Ψ(1) and Ψ(2). The last term in (5.17) is just the

Frobenius inner product between two Hilbert arrays after permutation. Adding the node

59

affinity term, we write Laweler’s QAP as9:

min Jgm(X) = −〈KN ,X〉F − 〈Ψ(1) �X,X �Ψ(2)〉FH s.t. X ∈ P . (5.18)

5.3.1 Convex and Concave Relaxations

The form (5.18) inspires an intuitive way to develop convex and concave relaxations. To do

this, we first introduce an auxiliary function

Jaux(X) =
1

2
〈Ψ(1) �X,Ψ(1) �X〉FH +

1

2
〈X �Ψ(2),X �Ψ(2)〉FH .

Applying Corollary 5.1 and 5.2, for any X ∈ P , which satisfies XXT = XTX = I, we have

Jaux(X) =
1

2
〈Ψ(1),Ψ(1) � (XXT)〉FH +

1

2
〈Ψ(2), (XTX)�Ψ(2)〉FH

=
1

2
‖Ψ(1)‖2FH +

1

2
‖Ψ(2)‖2FH ,

(5.19)

which is always a constant. Introducing Jaux(X) to (5.18), we obtain convex and concave

relaxations:

Jvex(X) = Jgm(X) + Jaux(X) = −〈KN ,X〉F +
1

2
‖Ψ(1) �X −X �Ψ(2)‖2FH , (5.20)

Jcav(X) = Jgm(X)− Jaux(X) = −〈KN ,X〉F −
1

2
‖Ψ(1) �X +X �Ψ(2)‖2FH . (5.21)

The convexity of Jvex(X) is easy to conclude, because the composite function of the squared

norm, ‖ · ‖2FH , and the linear transformation, Ψ(1) �X −X � Ψ(2), is convex. We have

similarity interpretation for the concavity of Jcav(X).

9For convenience in developing the path-following strategy, we write it in the minimization form.

60

It is interesting to see that the term 1
2
‖Ψ(1)�X−X�Ψ(2)‖FH in (5.20) is just the distance

between Hilbert arrays. If we set the map ψ(x) = x, then the convex relaxation of (5.1) is

recovered (see [89]).

5.3.2 Path-following Strategy

Leveraging these two relaxations [80], we minimize Jgm by successively optimizing a series

of sub-problems parameterized by α ∈ [0, 1]:

min Jα(X) = (1− α)Jvex(X) + αJcav(X) s.t. X ∈ D = {X ∈ Rn×n
+ |X1 = 1,XT1 = 1},

(5.22)

where D is the double stochastic relaxation of the permutation matrix set, P . We start at

α = 0 and find the unique minimum. Then we gradually increase α until α = 1. That is,

we optimize Jα+4α with the local minimizer of Jα as the initial point. Finally, we output

the local minimizer of Jα=1. We refer to [80], [3], and [83] for detailed descriptions and

improvements.

5.4 Gradient Computations

If we use the first-order optimization methods, we need only the gradients.

Proposition 5.2. The gradient of Jα(X) is

OJα(X) = (1− 2α)
[
(Ψ(1) ∗Ψ(1))X +X(Ψ(2) ∗Ψ(2))

]
− 2(Ψ(1) �X) ∗Ψ(2) −KN , (5.23)

61

where

∀i, j = 1, 2, ..., n, [Ψ(1) ∗Ψ(1)]ij =
∑

e1ik,e
1
kj∈E1

kE(~q1ik, ~q
1
kj), (5.24)

∀a, b = 1, 2, ..., n, [Ψ(2) ∗Ψ(2)]ab =
∑

e2ac,e
2
cb∈E2

kE(~q2ac, ~q
2
cb), (5.25)

and ∀i, a = 1, 2, ..., n, [(Ψ(1) �X) ∗Ψ(2)]ia =
∑

e1ik∈E1,e2ca∈E2

Xkck
E(~q1ik, ~q

2
ca). (5.26)

Proof. See Appendix C.

The expressions in Proposition 5.2 show how to compute the gradient in a componentwise

way. The gradient can also be expressed in a compact matrix multiplication form.

5.4.1 Gradients in Compact Matrix Multiplication Forms

In this section, we rewrite the terms of (5.23) in compact matrix multiplication forms,

providing a convenient way to compute gradients. We first give some necessary definitions.

1. Given a graph G = {A,V ,P , E ,Q} of n nodes and m edges. We define the Head-

incidence matrix G ∈ {0, 1}n×m and the Tail-incidence matrix H ∈ {0, 1}n×m. For any

edge eij ∈ E , we arbitrarily assign a direction on eij, e.g., vi → vj or vj → vi. Suppose

that the artifically assigned direction of eij is vj → vi, then the items G(vj, eij) = 1

and H(vi, eij) = 1. A toy example is shown in Fig. 5.2.

2. Given two graphs G1 = {A1,V1,P1, E1,Q1} of n1 nodes and m1 edges, and G2 =

{A2,V2,P2, E2,Q2} of n2 nodes and m2 edges, let KE
11 ∈ Rm1×m1 , KE

22 ∈ Rm2×m2 , and

KE
12 ∈ Rm1×m2 be three kernel matrices induced by the kernel kE (the edge affinity

62

(a)

(b)

Figure 5.2: (a) A toy Graph G1, and its Head-incidence matrix G1 and Tail-incidence matrix
H1; (b) A toy Graph G2, and its Head-incidence matrix G2 and Tail-incidence matrix H2.

63

function). They are defined such that

[KE
11](e

1
i1j1
, e1i2j2) = kE(~q1i1j1 , ~q

1
i2j2

), if e1i1j1 , e
1
i2j2
∈ E1, (5.27)

[KE
22](e

2
a1b1

, e2a2b2) = kE(~q2a1b1 , ~q
2
a2b2

), if e2a1b1 , e
2
a2b2
∈ E2, (5.28)

[KE
12](e

1
ij, e

2
ab) = kE(~q1ij, ~q

2
ab), if e1ij ∈ E1, e2ab ∈ E2, (5.29)

Proposition 5.3. Let G1 and H1, and G2 and H2 be the Head-incidence matrix and the

Tail-incidence matrix of graph G1 and G2 (see Fig. 5.2), respectively. Then the terms in

(5.23) can be written as

Ψ(1) ∗Ψ(1) = H1(G
T
1G2 ◦KE

11)H
T
2 +H1(G

T
1H2 ◦KE

11)G
T
2

+G1(H
T
1 G2 ◦KE

11)H
T
2 +G1(H

T
1 H2 ◦KE

11)G
T
2 , (5.30)

Ψ(2) ∗Ψ(2) = H1(G
T
1G2 ◦KE

22)H
T
2 +H1(G

T
1H2 ◦KE

22)G
T
2

+G1(H
T
1 G2 ◦KE

22)H
T
2 +G1(H

T
1 H2 ◦KE

22)G
T
2 , (5.31)

and (Ψ(1) �X) ∗Ψ(2) = H1(G
T
1XG2 ◦KE

12)H
T
2 +H1(G

T
1XH2 ◦KE

12)G
T
2

+G1(H
T
1 XG2 ◦KE

12)H
T
2 +G1(H

T
1 XH2 ◦KE

12)G
T
2 . (5.32)

Proof. See Appendix C.

5.5 Approximate Kernelized Graph Matching

Based on the above discussion, we significantly reduce the space cost of Lawler’s QAP by

avoiding computing the affinity matrix K ∈ Rn2×n2
. However, the time cost of computing

gradient with (5.23) is O(n4), which can be further reduced by employing the approximate

explicit feature maps (see Chapter 2.2.3).

64

For the kernel kE : RdE × RdE → R, we may find an explicit feature map ψ̂ : RdE → RD,

such that

∀ ~q1, ~q2 ∈ RdE , 〈ψ̂(~q1), ψ̂(~q2)〉 = k̂E(~q1, ~q2) ≈ kE(~q1, ~q2). (5.33)

For example, if kE(~q1, ~q2) = exp(−γ‖~q1 − ~q2‖22), then ψ̂ is the Fourier random feature map

[34]:

ψ̂(~q) =

√
2

D

[
cos(ωT1 ~q + b1), ..., cos(ωTD~q + bD)

]T
, where ωi ∼ N(~0, γ2I) and bi ∼ U [0, 1].

(5.34)

Note that in practice, the performance of ψ̂ is good enough for relatively small values of

D [28]. By the virtue of explicit feature maps, we obtain a new graph representation Ψ̂ ∈

(RD)n×n:

Ψ̂ij =


ψ̂(~qij) ∈ RD, if (vi, vj) ∈ E

~0 ∈ RD, otherwise

,where ~0 is the zero vector in RD. (5.35)

Its space cost is O(Dn2), where D � n.

5.5.1 Approximated Lawler’s Formulation

The Lawler’s formulation (5.18) can be approximated by

min Ĵgm(X) = −〈KN ,X〉F − 〈Ψ̂(1) �X,X � Ψ̂(2)〉FH s.t. X ∈ P . (5.36)

65

The convex and concave relaxations become

Ĵvex(X) = −〈KN ,X〉F +
1

2
‖Ψ̂(1) �X −X � Ψ̂(2)‖2FH , (5.37)

Ĵcav(X) = −〈KN ,X〉F −
1

2
‖Ψ̂(1) �X +X � Ψ̂(2)‖2FH . (5.38)

The path-following optimization problem become

min Ĵα(X) = (1− α)Ĵvex(X) + αĴcav(X) s.t. X ∈ D = {X ∈ Rn×n
+ |X1 = 1,XT1 = 1},

(5.39)

The first-order gradient of (5.39) become

OĴα(X) = (1− 2α)
[
(Ψ̂(1) ∗ Ψ̂(1))X +X(Ψ̂(2) ∗ Ψ̂(2))

]
− 2(Ψ̂(1) �X) ∗ Ψ̂(2) −KN , (5.40)

Now computing the gradient-related terms Ψ̂(1) ∗ Ψ̂(1), Ψ̂(2) ∗ Ψ̂(2), and (Ψ̂(1) �X) ∗ Ψ̂(2)

in (5.23) becomes rather simple. We first slice Ψ̂(1) (and likewise Ψ̂(2)) into D matrices

Ψ̂(1)(:, :, i) ∈ Rn×n, i = 1, 2, ..., D. Then it can be easily shown that

Ψ̂(1) ∗ Ψ̂(1) =
D∑
i=1

Ψ̂(1)(:, :, i)Ψ̂(1)(:, :, i), (5.41)

Ψ̂(2) ∗ Ψ̂(2) =
D∑
i=1

Ψ̂(2)(:, :, i)Ψ̂(2)(:, :, i), (5.42)

and (Ψ̂(1) �X) ∗ Ψ̂(2) =
D∑
i=1

Ψ̂(1)(:, :, i)XΨ̂(2)(:, :, i), (5.43)

whose the first and second term respectively involves D and 2D matrix multiplications of

the size n × n. Hence, the time complexity is reduced to O(Dn3). Moreover, gradient

computations with (5.41) are highly parallizable, which also contributes to scalability.

66

500 1000 1500 2000 2500 3000 3500 4000

n

10
-1

10
0

10
1

10
2

10
3

ti
m

e
 (

s
)

Hungarian

Sinkhorn

=0.001

Figure 5.3: Hungarian vs Sinkhorn.

5.6 Entropy-regularized Frank-Wolfe Optimization Al-

gorithm

In this part, we develop the Entropy-regularized Frank-Wolfe algorithm for optimizing (ap-

proximate) kernelized Lawler’s problem (5.22) (or (5.39)). The only difference between the

procedures of minimizing Jα(X) and Ĵα(X) comes from their first-order gradients (see (5.23)

and (5.40)). Therefore, without of loss of generality, we consider only optimizing Jα(X).

The state-of-the-art method for optimizing problem (5.22) is the Frank-Wolfe algorithm

[77, 90, 91, 92], whose every iteration involves linear programming to obtain optimal direction

Y ∗, i.e.,

Y ∗ = argminY ∈D 〈OJα(X),Y 〉F, (5.44)

which is usually solved by the Hungarian algorithm [93]. Optimizing Jα may need to call

the Hungarian algorithm many times, which is quite time-consuming for large graphs. In

67

this work, instead of minimizing Jα(X) in (5.22), we consider the following problem,

min
X

Fα(X) = Jα(X) + λH(X) s.t. X ∈ Dn, (5.45)

where Dn = {X ∈ Rn×n
+ |X1 = 1

n
1,XT1 = 1

n
1}, H(X) =

∑n
i,j=1Xij logXij is the negative

entropy, and the node affinity matrix KN in Jα(X) (see (5.18) and (5.22)) is normalized as

KN → 1
n
KN to balance the node and edge affinity terms. The observation is that if λ is

set to be small enough, the solution of (5.45), after being multiplied by n, will approximate

that of the original QAP (5.22) as much as possible. We design the entropy-regularized

Frank-Wolfe algorithm (“EnFW” for short) for optimizing (5.45), in each outer iteration of

which we solve the following nonlinear problem.

min 〈OJα(X),Y 〉F + λH(Y) s.t. Y ∈ Dn. (5.46)

Note that (5.46) can be extremely efficiently solved by the Sinkhorn-Knopp algorithm [94].

Theoretically, the Sinkhorn-Knopp algorithm converges at the linear rate, i.e.,

0 < lim sup
‖Yk+1 − Y ∗‖
‖Yk − Y ∗‖

< 1. (5.47)

An empirical comparison between the runtimes of these two algorithms is shown in Fig. 5.3,

where we can see that the Sinkhorn-Knopp algorithm for solving (5.46) is much faster than

the Hungarian algorithm for solving (5.44).

68

5.6.1 Description of the EnFW Algorithm

We first give necessary definitions. Write the quadratic function

Jα(X + s(Y −X))

=Jα(X) + s〈OJα(X),Y −X〉F +
1

2
vec(Y −X)T∇2Jα(X)vec(Y −X)s2.

(5.48)

Then, we define the coefficient of the quadratic term as

Q(X,Y) ,
1

2
vec(Y −X)T∇2Jα(X)vec(Y −X) =

1

2
〈OJα(Y −X),Y −X〉F, (5.49)

where the second equality holds because Jα is a quadratic function. Next, similar to the

original FW algorithm, we define the gap function g(X) as

g(X) , 〈OJα(X),X〉F + λH(X)− min
Y ∈Dn

〈OJα(X),Y 〉F + λH(Y). (5.50)

Note that it is straightforward to conclude that g(X) is nonnegative.

Proposition 5.4. If X∗ is an optimal solution of (5.45), then g(X∗) = 0.

Therefore, the gap function characterize the necessary condition for optimal solutions. Note

that for any X ∈ Dn, if g(X) = 0, then we say “X is a first-order stationary point”. Now

with the definitions of Q(X,Y) and g(X), we detail the EnFW procedure in Algorithm 4.

After obtaining the optimal solution path X∗α, α = 0 : 4α : 1, we discretize nX∗1 by

the Hungarian [93] or the greedy discretization algorithm [95] to get the binary matching

matrix. We next highlight the differences between the EnFW algorithm and the original FW

algorithm: (i) We find the optimal direction by solving a nonlinear convex problem (5.46)

69

Algorithm 4 The EnFW optimization algorithm for minimizing Fα (5.45)

1: Initialize X0 ∈ Dn not converge
2: Compute the gradient ∇Jα(Xt) based on (5.23) or (5.41),
3: Obtain the optimal direction Yt by solving (5.46), i.e.,

Yt = argminY ∈Dn 〈OJα(Xt),Y 〉F + λH(Y),
4: Compute Gt = g(Xt) and Qt = Q(Xt,Yt),
5: Determine the stepsize st: If Qt ≤ 0; st = 1, else st = min {Gt/(2Qt), 1},
6: Update Xt+1 = Xt + st(Yt −Xt).
7: end
8: Output the solution X∗α.

with the efficient Sinkhorn-Knopp algorithm, instead of solving the linear problem (5.44).

(ii) We give an explicit formula for computing the stepsize s, instead of making a linear

search on [0, 1] for optimizing Fα(X + s(Y −X)) or estimating the Lipschitz constant of

∇Fα [96].

5.6.2 Convergence Analysis

In this part, we present the convergence properties of the proposed EnFW algorithm, in-

cluding the sequentially decreasing property of the objective function and the convergence

rates.

Theorem 5.1. The generated objective function value sequence, {Fα(Xt)}t=0, will decreas-

ingly converge. The generated points sequence, {Xt}t=0 ⊆ Dn ⊆ Rn×n, will weakly converge

to the first-order stationary point, at the rate O(1√
t+1

), i.e,

min
1≤t≤T

g(Xt) ≤
2 max{40,

√
L40/n}√

T + 1
, (5.51)

where 40 = Fα(X0)−minX∈Dn Fα(X), and L is the largest absolute eigenvalue of ∇2Jα(X).

70

Proof. See Appendix D.1.

If Jα(X) is convex, which happens when α is small (see (5.22)), then we have a tighter bound

O(1
T+1

).

Theorem 5.2. If Jα(X) is convex, we have

Fα(XT)− Fα(X∗) ≤ 4L

n(T + 1)
. (5.52)

Proof. See Appendix D.2.

Note that in both cases, convex and non-convex, our EnFW achieves the same (up to a

constant coefficient) convergence rate with the original FW algorithm (see [97] and [96]).

Thanks to the efficiency of the Sinkhorn-Knopp algorithm, we need much less time to finish

each iteration. Therefore, our optimization algorithm is more computationally efficient than

the original FW algorithm.

5.7 Experiments

In this section, we conduct extensive experiments to demonstrate the matching performance

and scalability of our kernelized graph matching framework. We implement all the algorithms

using Matlab on an Intel i7-7820HQ, 2.90 GHz CPU with 64 GB RAM.

Notations: We use KerGMI (see Section 5.3) to denote our algorithm when we use exact

edge affinity kernels, and use KerGMII (see Section 5.5) to denote it when we use approximate

explicit feature maps.

71

Baseline methods: We compare our algorithm with many state-of-the-art graph (network)

matching algorithms.

1. Integer projected fixed point method (IPFP) [90],

2. Spectral matching with affine constraints (SMAC) [98],

3. Probabilistic graph matching (PM) [85],

4. Re-weighted random walk matching (RRWM) [95],

5. Factorized graph matching (FGM) [3],

6. Branch path following for graph matching (BPFG) [83],

7. Graduated assignment graph matching (GAGM) [74],

8. Global network alignment using multiscale spectral signatures (GHOST) [99],

9. Triangle alignment (TAME) [100],

10. Maximizing accuracy in global network alignment (MAGNA) [101].

Note that GHOST, TAME, and MAGNA are popular protein-protein interaction (PPI)

networks aligners.

Settings: For all the baseline methods, we used the parameters recommended in the public

code. For our method, if not specified, we set the regularization parameter (see (5.45))

λ = 0.005 and the path following parameters α = 0 : 0.1 : 1. We use the Hungarian

algorithm for final discretization. We refer to Appendix E for other implementation details.

5.7.1 Synthetic Datasets

We evaluate algorithms on the synthetic Erdos–Rényi [102] random graphs, following the

experimental protocol in [74, 3, 95]. For each trial, we generate two graphs: the reference

72

graph G1 and the perturbed graph G2, each of which has nin inlier nodes and nout outlier

nodes. Each edge in G1 is randomly generated with probability ρ ∈ [0, 1]. The edges e1ij ∈ E1

are associated with the edge attributes q1ij ∼ U [0, 1]. The corresponding edge e2p(i)p(j) ∈ E2 has

the attribute q2p(i)p(j) = q1ij+ε, where p is a permutation map for inlier nodes, and ε ∼ N(0, σ2)

is the Gaussian noise. For the baseline methods, the edge affinity value between q1ij and q2ij

is computed as kE(q1ij, q
2
ij) = exp(−(q1ij− q2ij)2/0.15). Note that for our method KerGMII, we

use the random Fourier features (5.34) to approximate the Gaussian kernel, and represent

each graph by an (nin + nout) × (nin + nout) array in RD. We set the parameter γ = 5 and

the dimension D = 20.

Comparing matching accuracy We perform the comparison under three parameter set-

tings, in all of which we set nin = 50. Note that different from the standard protocol where

nin = 20 [3], we use relatively large graphs to highlight the advantage of our KerGMII.

• We change the number of outlier nodes, nout, from 0 to 50 while fixing the noise, σ = 0,

and the edge density, ρ = 1.

• We change σ from 0 to 0.2 while fixing nout = 0 and ρ = 1.

• We change ρ from 0.3 to 1 while fixing nout = 5 and σ = 0.1.

For all cases in these settings, we repeat the experiments 100 times. In Fig. 5.4, we compare

KerGMI with state-of-the-arts. We report the averaged accuracies, the averaged objective

function values, and their corresponding standard errors. In Fig. 5.5, we compare KerGMII

with state-of-the-arts. Clearly, both of our KerGMI and KerGMII outperform all the baseline

methods with statistical significance.

Comparing scalability To fairly compare the scalability of different algorithms, we consider

the exact matching between fully connected graphs, i.e., nout = 0, σ = 0, and ρ = 1. We

73

0 10 20 30 40 50

outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

0 0.04 0.08 0.12 0.16 0.2

noise

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

density

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

0 10 20 30 40 50

outliers

2000

4000

6000

8000

O
b

je
c
ti

v
e

0 0.04 0.08 0.12 0.16 0.2

noise

1000

2000

3000

O
b

je
c
ti

v
e

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

density

0

1000

2000

3000

O
b

je
c
ti

v
e

Figure 5.4: Matching results on synthetic graph dataset.

74

0 10 20 30 40 50

outliers

0

0.2

0.4

0.6

0.8

1
A

c
c

u
ra

c
y

0 0.04 0.08 0.12 0.16 0.2

noise

0

0.2

0.4

0.6

0.8

1

A
c

c
u

ra
c

y
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

density

0

0.2

0.4

0.6

0.8

1

A
c

c
u

ra
c

y

50 100 200 500 1000 2000

nodes

10
-1

10
0

10
1

10
2

10
3

10
4

ti
m

e
 (

s
)

Figure 5.5: Matching results on synthetic graph dataset.

change the number of nodes, n (= nin), from 50 to 2000, and report the CPU time of each

algorithm in Fig. 5.5. We can see that all the baseline methods can handle only graphs with

fewer than 200 nodes because of the expensive space cost of matrix K (see (5.3)). However,

KerGMII can finish Lawler’s graph matching problem with 2000 nodes in reasonable time.

Analyzing parameter sensitivity To analyze the parameter sensitivity of KerGMII, we

vary the regularization parameter, λ, and the dimension, D, of Fourier random features. We

conduct large subgraph matching experiments by setting nin = 500, nout = 0 : 100 : 500,

ρ = 1, and σ = 0. We repeat the experiments 50 times and report the average accuracies and

standard errors. In Fig. 5.6, we show the results under different λ and different D. We can

see that (i) smaller λ leads to better performance, which can be easily understood because

the entropy regularizer will perturb the original optimal solution, and (ii) the dimension D

75

0 100 200 300 400 500

outliers

0

0.2

0.4

0.6

0.8

1
A

c
c

u
ra

c
y

=0.005

=0.006

=0.007

=0.008

=0.009

=0.01

=0.012

=0.016

=0.02

=0.03

=0.04

=0.05

D=20

(a)

0 100 200 300 400 500

outliers

0

0.2

0.4

0.6

0.8

1

A
c

c
u

ra
c

y

D=10

D=20

D=50

=0.005

(b)

Figure 5.6: (a) Parameter sensitivity study of the regularizer λ. (b) Parameter sensitivity
study of the dimension, D, of the random Fourier feature.

does not much affect on KerGMII, which implies that in practice, we can use relatively small

D for reducing the time and space complexity.

5.7.2 Image Datasets

The CMU House Sequence dataset has 111 frames of a house, each of which has 30

labeled landmarks. We follow the experimental protocol in [3, 83]. We match all the image

pairs, spaced by 0:10:90 frames. We consider two node settings: (n1, n2) = (30, 30) and

(n1, n2) = (20, 30). We build graphs by using Delaunay triangulation [103] to connect

landmarks. The edge attributes are the pairwise distances between nodes. For all methods,

we compute the edge affinity as kE(q1ij, q
2
ab) = exp(−(q1ij − q2ab)2/2500). In Fig. 5.7, we report

the average matching accuracy and objective function (5.3) value ratio for every gap. It

can be seen that on this dataset, KerGMI and FGM achieve the best performance, and are

slightly better than BPFG when outliers exist, i.e., (n1, n2) = (20, 30).

76

10 20 30 40 50 60 70 80 90 100

gap

0.2

0.4

0.6

0.8

A
c
c
u

ra
c
y

10 20 30 40 50 60 70 80 90 100

gap

0.8

0.85

0.9

0.95

1

o
b

je
c
ti

v
e
 r

a
ti

o

10 20 30 40 50 60 70 80 90 100

gap

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

10 20 30 40 50 60 70 80 90 100

gap

0.925

0.95

0.975

1

o
b

je
c
ti

v
e
 r

a
ti

o

(20, 30) (20, 30)

(30, 30) (30, 30)

Figure 5.7: Comparison of graph matching on the CMU house dataset.

77

The Pascal dataset [104] has 20 pairs of motorbike images and 30 pairs of car images. For

each pair, the detected feature points and manually labeled correspondences are provided.

Following [3, 83], we randomly select 0:2:20 outliers from the background to compare different

methods. For each node, vi, its attribute, pi, is assigned as its orientation of the normal

vector at that point to the contour where the point was sampled. Nodes are connected by

Delaunay triangulation [103]. For each edge, eij, its attribute ~qij equals [dij, θij]
T , where dij

is the distance between vi and vj, and θij is the absolute angle between the edge and the

horizontal line. For all methods, the node affinity is computed as kN(pi, pj) = exp(−|pi−pj|).

The edge affinity is computed as kE(~q1ij, ~q
2
ab) = exp(−|d1ij−d2ab|/2−|θ1ij−θ2ab|/2). Fig. 5.8 (a)

shows a matching result of KerGMI. In Fig. 5.8 (b), we report the matching accuracies and

CPU running time. From the perspective of matching accuracy, KerGMI, BPFG, and FGM

consistently outperforms other methods. When the number of outliers increases, KerGMI

and BPFG perform slightly better than FGM. However, from the perspective of running

time, the time cost of BPFG is much higher than that of the others.

5.7.3 Protein-protein Interaction Network Dataset

The S.cerevisiae (yeast) PPI network [105] dataset is popularly used to evaluate PPI

network aligners because it has known true node correspondences.

It consists of an unweighted high-confidence PPI network with 1004 proteins (nodes) and

8323 PPIs (edges), and five noisy PPI networks generated by adding 5%, 10%, 15%, 20%,

25% low-confidence PPIs. We do graph matching between the high-confidence network with

every noisy network. To apply KerGM, we generate edge attributes by the heat diffusion

78

(a)

0 2 4 6 8 10 12 14 16 18 20

outliers

0.2

0.4

0.6

0.8

A
c

c
u

ra
c

y

0 2 4 6 8 10 12 14 16 18 20

outliers

0

100

200

300

400

500

600

700

800

900

ti
m

e
 (

s
)

(b)

Figure 5.8: (a) A matching example for a pair of motorbike images generated by KerGMI,
where green and red lines respectively indicate correct and incorrect matches. (b) Compar-
ison of graph matching on the Pascal dataset.

79

5% 10% 15% 20% 25%

Noise level

0

0.2

0.4

0.6

0.8

1

N
o

d
e
 a

c
c
u

ra
c

y

Figure 5.9: Results on PPI networks.

matrix [106, 50],

Ht = exp(−tL) =
n∑
i=1

exp(−λit)~ui~uTi ∈ Rn×n, (5.53)

where L is the normalized Laplacian matrix [50], and {(λi, ~ui)}ni=1 are eigenpairs of L. The

edge attributes vector ~qij is assigned as

~qij = [H5(i, j),H10(i, j),H15(i, j),H20(i, j)]
T ∈ R4. (5.54)

We use the Fourier random features (5.34), and set D = 50 and γ = 200. We compare

KerGMII
10 with the state-of-the-art PPI aligners: TAME, GHOST, and MAGNA. In Fig. 5.9,

we report the matching accuracies. Clearly, KerGMII significantly outperforms the baselines.

10To the best our knowledge, KerGM is the first one that uses Lawler’s graph matching formulation to
solve the PPI network alignment problem.

80

Especially when the noise level are 20% or 25%, KerGMII’s accuracies are more than 50

percentages higher than those of other algorithms.

5.8 Chapter Summary

In this work, based on a mild assumption regarding edge affinity values, we provided KerGM,

a unifying framework for Koopman-Beckmann’s and Lawler’s QAPs, within which both two

QAPs can be considered as the alignment between arrays in RKHS. Then we derived convex

and concave relaxations and the corresponding path-following strategy. To make KerGM

more scalable to large graphs, we developed the computationally efficient entropy-regularized

Frank-Wolfe optimization algorithm. KerGM achieved promising performance on both image

and biology datasets. Thanks to its scalability, we believe KerGM can be potentially useful

for many applications in the real world.

81

Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this dissertation, we focused on developing algorithms for graph-structured data analysis

based on the kernel theory. It consists of three parts: graph kernels, vector embedding of

graphs, and graph matching.

We began by introducing the basic concept of attributed graphs and kernels and the corre-

sponding reproducing kernel Hilbert spaces. We then proposed a new and effective graph

kernel, RetGK, which is developed through two-step embeddings: the node embedding and

the Hilbert space embedding of graphs. In the node embedding step, we proposed the node

feature vector, RPF, which characterizes the “structural role” of nodes. The sth element of

RPF is just the s−step return probabilities of random walks defined on the graph. We ana-

lytically proved that RPF is not only isomorphism-invariant but also informative about the

topological structure of the graph. In the Hilbert space embedding step, we represented the

graph in a reproducing kernel Hilbert space. To do this, we constructed the empirical distri-

bution from the RPF vector set and employed the kernel mean embedding to represent the

82

distribution in RKHS. To reduce the time complexity, we used the random Fourier features

to approximate the shift-invariant kernel, and as a result, we can represent the graph with a

multi-dimenisonal tensor. We also conducted extensive graph classification experiments and

made comprehensive comparisons to demonstrate the effectiveness of RetGK.

We next proposed an Euclidean vector embedding algorithm for graphs with both node and

edge attributes. The motivations are that RetGK requires to compute the all pairs of kernel

values between graphs, which is not scalable to the dataset with large number of graphs.

On the other hand, RetGK can consider only the node attributes while ignoring the edge

attributes. To tackle the above issues, we extended the work of “RetGK” and developed

SAGE, a scalable attributed graph embedding algorithm. We employed the “D2KE” frame-

work, which can naturally generate the scalable embedding of graphs when integrating with

the return probabilities features. In order to consider the edge attribute information, we took

advantage of the adjoint graph, which can convert the node attributes to the edge attributes.

Moreover, such a strategy opens a door to involving edge attributes information for all the

related algorithms that are based on the node attributes.

Finally, we proposed a very efficient algorithm, KerGM, for attributed graph matching. We

considered the Lawler’s quadratic assignment problem (QAP). We showed that if the edge

affinity can be characterized by a kernel function, then the Lawler’s QAP can be written as

the Koopmans-Beckmann’s alignment between Hilbert arrays, which gives an unifying view

for the Koopmans-Beckmann’s QAP and the Lawer’s QAP. We did it by properly defining

the H−operations in Hilbert spaces. The new form of the Lawler’s QAP has two advantages.

(i). It allows us to avoid computing the huge affinity matrix of the size n2×n2. (ii). The new

form inspires a natural way to develop the convex and concave relaxations and the path-

following strategy. We also used the random Fourier features to further reduce the time

83

complexity. As a result, both of the space and the time complexity of Lawler’s QAP have

the same order of magnitude as those of the Koopmans-Beckmann’s QAP. Furthermore,

we proposed, EnFW, an entropy-regularized Frank-Wolfe algorithm for solving QAP. We

analytically proved that EnFW has the same convergence rate as the original FW algorithm

while dramatically reducing the computational burden for each outer iteration. We tested our

method on various types of dataset, including synthetic random graphs, images, and protein-

protein interaction networks. On these datasets, KerGM achieved promising performance in

both the matching accuracy and scalability.

6.2 Future Directions

In the future, we can potential extend our research to the following directions:

Dynamic graph-structured analysis Throughout the dissertation, we assume that the

graphs are static. However, it is common in real world that the topological connectivity and

the attributes of graphs are changing with respect to the time. For example, during biological

experiments, the connectivity of brain networks of subjects keep changing, because human

attentions are intrinsically dynamic, with focus continuously shifting [107]. An interesting

problem is how to formulate and solve the graph comparison, graph learning, and graph

matching problem in the dynamic case. We need to consider not only the attribute and

topology information at a specific time, but also the temporal correlation among graphs

across different times.

Deep graph matching In the applications of matching landmarks between images, both of

the edge attributes and the node attributes are manually generated. These attributes maybe

84

not representative/complex enough to describe the characteristics of the landmarks and their

interactions. To solve the concern, one interesting idea is that we can automatically extract

the features of node and edges with a convolutional neural network(CNN) [108]. We may

design structure of CNN based on [109], which can generate the hypercolumn descriptors for

landmarks. One existing problem is how to define the loss function for training the neural

network. A straightforward idea is to use the minimized Lawler’s quadratic loss function.

However, in that case, the optimization process for graph matching will be nested in the

procedure for training the neural network. Therefore, developing a feasible training strategy

becomes the key challenging part of deep graph matching.

85

Bibliography

[1] K. M. Borgwardt, “Graph kernels,” Ph.D. dissertation, IMU, 2007.

[2] G. Nikolentzos, G. Siglidis, and M. Vazirgiannis, “Graph kernels: A survey,” arXiv
preprint arXiv:1904.12218, 2019.

[3] F. Zhou and F. De la Torre, “Factorized graph matching,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 127–134.

[4] A. Calderone, M. Formenti, F. Aprea, M. Papa, L. Alberghina, A. M. Colangelo, and
P. Bertolazzi, “Comparing alzheimer’s and parkinson’s diseases networks using graph
communities structure,” BMC systems biology, vol. 10, no. 1, p. 25, 2016.

[5] J. K. Morrow, L. Tian, and S. Zhang, “Molecular networks in drug discovery,” Critical
ReviewsTM in Biomedical Engineering, vol. 38, no. 2, 2010.

[6] L. Carpi, P. Saco, O. Rosso, and M. G. Ravetti, “Structural evolution of the tropical
pacific climate network,” The European Physical Journal B, vol. 85, no. 11, p. 389,
2012.

[7] L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas, “Characterization
of complex networks: A survey of measurements,” Advances in physics, vol. 56, no. 1,
pp. 167–242, 2007.

[8] T. A. Schieber, L. Carpi, A. Dı́az-Guilera, P. M. Pardalos, C. Masoller, and M. G.
Ravetti, “Quantification of network structural dissimilarities,” Nature communications,
vol. 8, p. 13928, 2017.

[9] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, “Graph
kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1201–1242, 2010.

[10] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer School on
Machine Learning. Springer, 2003, pp. 63–71.

[11] B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regu-
larization, optimization, and beyond. MIT press, 2001.

[12] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in
International conference on artificial neural networks. Springer, 1997, pp. 583–588.

86

[13] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance:
A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Advances in neural information processing systems, 2002, pp. 585–
591.

[15] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph representations,”
in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[16] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal,
“graph2vec: Learning distributed representations of graphs,” arXiv preprint
arXiv:1707.05005, 2017.

[17] L. Wu, Z. Zhang, A. Nehorai, L. Zhao, and F. Xu, “Sage: Scalable attributed graph
embed-dings for graph classification,” The International Conference on Learning Rep-
resentations Workshop on Representation Learning on Graphs and Manifolds, 2019.

[18] S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in social net-
works,” in Social network data analytics. Springer, 2011, pp. 115–148.

[19] C. H. Ding, X. He, H. Zha, M. Gu, and H. D. Simon, “A min-max cut algorithm
for graph partitioning and data clustering,” in Proceedings 2001 IEEE International
Conference on Data Mining. IEEE, 2001, pp. 107–114.

[20] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social networks,”
Journal of the American society for information science and technology, vol. 58, no. 7,
pp. 1019–1031, 2007.

[21] R. S. Lee and J. N. Liu, “An oscillatory elastic graph matching model for recognition
of offline handwritten chinese characters,” in 1999 Third International Conference on
Knowledge-Based Intelligent Information Engineering Systems. Proceedings (Cat. No.
99TH8410). IEEE, 1999, pp. 284–287.

[22] B. Banerjee, F. Bovolo, A. Bhattacharya, L. Bruzzone, S. Chaudhuri, and K. M. Bud-
dhiraju, “A novel graph-matching-based approach for domain adaptation in classifi-
cation of remote sensing image pair,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 53, no. 7, pp. 4045–4062, 2015.

[23] M. Zaslavskiy, F. Bach, and J.-P. Vert, “Global alignment of protein–protein inter-
action networks by graph matching methods,” Bioinformatics, vol. 25, no. 12, pp.
1259–1267, 2009.

[24] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph matching in
pattern recognition,” International journal of pattern recognition and artificial intelli-
gence, vol. 18, no. 03, pp. 265–298, 2004.

87

[25] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[26] T. C. Koopmans and M. Beckmann, “Assignment problems and the location of eco-
nomic activities,” Econometrica: journal of the Econometric Society, pp. 53–76, 1957.

[27] E. L. Lawler, “The quadratic assignment problem,” Management science, vol. 9, no. 4,
pp. 586–599, 1963.

[28] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai, “Retgk: Graph kernels
based on return probabilities of random walks,” in Advances in Neural Information
Processing Systems, 2018, pp. 3964–3974.

[29] Z. Zhang, Y. Xiang, L. Wu, B. Xue, and A. Nehorai, “Kergm: Kernelized graph
matching,” in Advances in Neural Information Processing Systems, 2019, pp. 3330–
3341.

[30] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American mathe-
matical society, vol. 68, no. 3, pp. 337–404, 1950.

[31] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[32] A. Gretton, “Introduction to rkhs, and some simple kernel algorithms.”

[33] I. J. Schoenberg, “Metric spaces and positive definite functions,” Transactions of the
American Mathematical Society, vol. 44, no. 3, pp. 522–536, 1938.

[34] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in Ad-
vances in neural information processing systems, 2008, pp. 1177–1184.

[35] W. Rudin, Fourier analysis on groups. Wiley Online Library, 1962, vol. 121967.

[36] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics New York, 2001, vol. 1, no. 10.

[37] D. Haussler, “Convolution kernels on discrete structures,” Technical report, Depart-
ment of Computer Science, University of California, Tech. Rep., 1999.

[38] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt, “Efficient
graphlet kernels for large graph comparison,” in Artificial Intelligence and Statistics,
2009, pp. 488–495.

[39] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borgwardt,
“Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, vol. 12, no.
Sep, pp. 2539–2561, 2011.

88

[40] G. Da San Martino, N. Navarin, and A. Sperduti, “Tree-based kernel for graphs with
continuous attributes,” IEEE transactions on neural networks and learning systems,
vol. 29, no. 7, pp. 3270–3276, 2017.

[41] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on graphs,” in Fifth IEEE
international conference on data mining (ICDM’05). IEEE, 2005, pp. 8–pp.

[42] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results and efficient
alternatives,” in Learning theory and kernel machines. Springer, 2003, pp. 129–143.

[43] N. Kriege and P. Mutzel, “Subgraph matching kernels for attributed graphs,” arXiv
preprint arXiv:1206.6483, 2012.

[44] F. Orsini, P. Frasconi, and L. De Raedt, “Graph invariant kernels,” in Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[45] P. Yanardag and S. Vishwanathan, “A structural smoothing framework for robust
graph comparison,” in Advances in neural information processing systems, 2015, pp.
2134–2142.

[46] J. Kandola, T. Graepel, and J. Shawe-Taylor, “Reducing kernel matrix diagonal dom-
inance using semi-definite programming,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 288–302.

[47] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast feature learning
on graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 88–98.

[48] E. Cinlar, Introduction to stochastic processes. Courier Corporation, 2013.

[49] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM re-
view, vol. 51, no. 3, pp. 455–500, 2009.

[50] F. R. Chung and F. C. Graham, Spectral graph theory. American Mathematical Soc.,
1997, no. 92.

[51] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching node embeddings for
graph similarity,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[52] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-
sample test,” Journal of Machine Learning Research, vol. 13, no. Mar, pp. 723–773,
2012.

[53] Z. Szabó and B. K. Sriperumbudur, “Characteristic and universal tensor product ker-
nels,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 8724–8752, 2017.

89

[54] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann, “Benchmark data
sets for graph kernels,” 2016, http://graphkernels.cs.tu-dortmund.de.

[55] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2015, pp. 1365–1374.

[56] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-enzymes
without alignments,” Journal of molecular biology, vol. 330, no. 4, pp. 771–783, 2003.

[57] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Han-
sch, “Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro
compounds. correlation with molecular orbital energies and hydrophobicity,” Journal
of medicinal chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[58] C. Helma, R. D. King, S. Kramer, and A. Srinivasan, “The predictive toxicology
challenge 2000–2001,” Bioinformatics, vol. 17, no. 1, pp. 107–108, 2001.

[59] J. Kazius, R. McGuire, and R. Bursi, “Derivation and validation of toxicophores for
mutagenicity prediction,” Journal of medicinal chemistry, vol. 48, no. 1, pp. 312–320,
2005.

[60] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt, “Scalable
kernels for graphs with continuous attributes,” in Advances in Neural Information
Processing Systems, 2013, pp. 216–224.

[61] C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel, “Faster kernels for graphs with
continuous attributes via hashing,” in 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 2016, pp. 1095–1100.

[62] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.
Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21, no.
suppl 1, pp. 147–156, 2005.

[63] J. J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting with a genetic
algorithm: A method for developing classification structure- activity relationships,”
Journal of chemical information and computer sciences, vol. 43, no. 6, pp. 1906–1915,
2003.

[64] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for
graphs,” in International conference on machine learning, 2016, pp. 2014–2023.

[65] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning ar-
chitecture for graph classification,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

90

[66] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector machines,” ACM
transactions on intelligent systems and technology (TIST), vol. 2, no. 3, p. 27, 2011.

[67] L. Wu, I. E.-H. Yen, F. Xu, P. Ravikumar, and M. Witbrock, “D2ke: From distance
to kernel and embedding,” arXiv preprint arXiv:1802.04956, 2018.

[68] G. J. Székely, “E-statistics: The energy of statistical samples,” Bowling Green State
University, Department of Mathematics and Statistics Technical Report, vol. 3, no. 05,
pp. 1–18, 2003.

[69] C. Ionescu, A. Popa, and C. Sminchisescu, “Large-scale data-dependent kernel approx-
imation,” in Artificial Intelligence and Statistics, 2017, pp. 19–27.

[70] H. Whitney, “Congruent graphs and the connectivity of graphs,” in Hassler Whitney
Collected Papers. Springer, 1992, pp. 61–79.

[71] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fi-
dler, “Skip-thought vectors,” in Advances in neural information processing systems,
2015, pp. 3294–3302.

[72] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A library
for large linear classification,” Journal of machine learning research, vol. 9, no. Aug,
pp. 1871–1874, 2008.

[73] H. Almohamad and S. O. Duffuaa, “A linear programming approach for the weighted
graph matching problem,” IEEE Transactions on pattern analysis and machine intel-
ligence, vol. 15, no. 5, pp. 522–525, 1993.

[74] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,”
IEEE Transactions on pattern analysis and machine intelligence, vol. 18, no. 4, pp.
377–388, 1996.

[75] Y. Kushinsky, H. Maron, N. Dym, and Y. Lipman, “Sinkhorn algorithm for lifted
assignment problems,” SIAM Journal on Imaging Sciences, vol. 12, no. 2, pp. 716–
735, 2019.

[76] C. Schellewald, S. Roth, and C. Schnörr, “Evaluation of convex optimization tech-
niques for the weighted graph-matching problem in computer vision,” in Joint Pattern
Recognition Symposium. Springer, 2001, pp. 361–368.

[77] H. Maron and Y. Lipman, “(probably) concave graph matching,” in Advances in Neural
Information Processing Systems, 2018, pp. 408–418.

[78] J. Maciel and J. P. Costeira, “A global solution to sparse correspondence problems,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 2, pp. 187–199,
2003.

91

[79] A. Chinchuluun, E. Rentsen, and P. M. Pardalos, “A numerical method for concave
programming problems,” in Continuous Optimization. Springer, 2005, pp. 251–273.

[80] M. Zaslavskiy, F. Bach, and J.-P. Vert, “A path following algorithm for the graph
matching problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 12, pp. 2227–2242, 2008.

[81] Z.-Y. Liu and H. Qiao, “Gnccp—graduated nonconvexityand concavity procedure,”
IEEE transactions on pattern analysis and machine intelligence, vol. 36, no. 6, pp.
1258–1267, 2013.

[82] T. Wang, H. Ling, C. Lang, and S. Feng, “Graph matching with adaptive and branch-
ing path following,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 12, pp. 2853–2867, 2017.

[83] T. Wang, H. Ling, C. Lang, and J. Wu, “Branching path following for graph matching,”
in European Conference on Computer Vision. Springer, 2016, pp. 508–523.

[84] T. Yu, J. Yan, Y. Wang, W. Liu et al., “Generalizing graph matching beyond quadratic
assignment model,” in Advances in Neural Information Processing Systems, 2018, pp.
853–863.

[85] R. Zass and A. Shashua, “Probabilistic graph and hypergraph matching,” in 2008
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008, pp.
1–8.

[86] J. Lee, M. Cho, and K. M. Lee, “Hyper-graph matching via reweighted random walks,”
in 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2011,
pp. 1633–1640.

[87] J. Yan, J. Wang, H. Zha, X. Yang, and S. Chu, “Consistency-driven alternating opti-
mization for multigraph matching: A unified approach,” IEEE Transactions on Image
Processing, vol. 24, no. 3, pp. 994–1009, 2015.

[88] J. Yan, X.-C. Yin, W. Lin, C. Deng, H. Zha, and X. Yang, “A short survey of re-
cent advances in graph matching,” in Proceedings of the 2016 ACM on International
Conference on Multimedia Retrieval. ACM, 2016, pp. 167–174.

[89] Y. Aflalo, A. Bronstein, and R. Kimmel, “On convex relaxation of graph isomorphism,”
Proceedings of the National Academy of Sciences, vol. 112, no. 10, pp. 2942–2947, 2015.

[90] M. Leordeanu, M. Hebert, and R. Sukthankar, “An integer projected fixed point
method for graph matching and map inference,” in Advances in neural information
processing systems, 2009, pp. 1114–1122.

92

[91] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T.
Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe, “Fast approximate quadratic
programming for graph matching,” PLOS one, vol. 10, no. 4, p. e0121002, 2015.

[92] F. Zhou and F. De la Torre, “Factorized graph matching,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 9, pp. 1774–1789, 2015.

[93] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research
logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[94] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in
Advances in neural information processing systems, 2013, pp. 2292–2300.

[95] M. Cho, J. Lee, and K. M. Lee, “Reweighted random walks for graph matching,” in
European conference on Computer vision. Springer, 2010, pp. 492–505.

[96] F. Pedregosa, A. Askari, G. Negiar, and M. Jaggi, “Step-size adaptivity in projection-
free optimization,” arXiv preprint arXiv:1806.05123, 2018.

[97] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex optimization.” in 2013
International Conference on Machine Learning, 2013, pp. 427–435.

[98] T. Cour, P. Srinivasan, and J. Shi, “Balanced graph matching,” in Advances in Neural
Information Processing Systems, 2007, pp. 313–320.

[99] R. Patro and C. Kingsford, “Global network alignment using multiscale spectral sig-
natures,” Bioinformatics, vol. 28, no. 23, pp. 3105–3114, 2012.

[100] S. Mohammadi, D. F. Gleich, T. G. Kolda, and A. Grama, “Triangular alignment tame:
A tensor-based approach for higher-order network alignment,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics (TCBB), vol. 14, no. 6, pp. 1446–
1458, 2017.

[101] V. Saraph and T. Milenković, “Magna: maximizing accuracy in global network align-
ment,” Bioinformatics, vol. 30, no. 20, pp. 2931–2940, 2014.

[102] B. Bollobás and O. M. Riordan, “Mathematical results on scale-free random graphs,”
Handbook of graphs and networks: from the genome to the internet, pp. 1–34, 2003.

[103] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a delaunay triangu-
lation,” International Journal of Computer & Information Sciences, vol. 9, no. 3, pp.
219–242, 1980.

[104] M. Leordeanu, R. Sukthankar, and M. Hebert, “Unsupervised learning for graph
matching,” International journal of computer vision, vol. 96, no. 1, pp. 28–45, 2012.

93

[105] S. R. Collins, P. Kemmeren, X.-C. Zhao, J. F. Greenblatt, F. Spencer, F. C. Holstege,
J. S. Weissman, and N. J. Krogan, “Toward a comprehensive atlas of the physical
interactome of saccharomyces cerevisiae,” Molecular & Cellular Proteomics, vol. 6,
no. 3, pp. 439–450, 2007.

[106] N. Hu, R. M. Rustamov, and L. Guibas, “Stable and informative spectral signatures
for graph matching,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 2305–2312.

[107] A. Kucyi, M. J. Hove, M. Esterman, R. M. Hutchison, and E. M. Valera, “Dynamic
brain network correlates of spontaneous fluctuations in attention,” Cerebral cortex,
vol. 27, no. 3, pp. 1831–1840, 2017.

[108] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[109] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Hypercolumns for object seg-
mentation and fine-grained localization,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 447–456.

[110] L. Zadeh and C. Desoer, Linear system theory: the state space approach. Courier
Dover Publications, 2008.

[111] L. L. Pennisi, “Coefficients of the characteristic polynomial,” Mathematics magazine,
vol. 60, no. 1, pp. 31–33, 1987.

[112] H. L. Royden and P. Fitzpatrick, Real analysis. Macmillan New York, 1988, vol. 32.

[113] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and doubly stochastic
matrices,” Pacific Journal of Mathematics, vol. 21, no. 2, pp. 343–348, 1967.

94

Appendix A

Proof of the Informativeness of RPF

Before proceeding to the main proof, we first present some useful lemmas.

Lemma A.1. (Cayley-Hamilton Theorem, see[111, 110]) Let A be an n×n matrix, and let

P (λ) = det(λIn −A) be the corresponding characteristic polynomial of A, then P (A) = 0,

i.e.,

An + cn−1A
n−1 + · · ·+ c1A+ (−1)ndet(A)In = 0, (A.1)

where cn−k = (−1)k
k!

Bk

(
s1, (−1)s2, 2!s3, · · ·, (−1)k−1(k− 1)!sk

)
, and Bk is the Bell polynomial

and si = trace(Ai). In particular, det(A) = 1
n!
Bn

(
s1, (−1)s2, 2!s3, · · ·, (−1)n−1(n− 1)!sn

)
.

Remark. We observe that all the coefficients in (A.1) are determined by trace(A), trace(A2),··

·,trace(An).

Corollary A.1. Let A and B be two n × n matrices. If trace(Ak) = trace(Bk), k =

1, 2, · · ·, n, then A and B have the same eigenvalues set.

Proof. Let PA(λ) and PB(λ) be the characteristic polynomials of A and B respectively, and

let cAn−k and cBn−k, k = 1, 2, · · ·, n − 1 be the corresponding coefficients. Since trace(Ak) =

trace(Bk), k = 1, 2, ···, n, we have that cAn−k = cBn−k, k = 1, 2, ···, n−1, and det(A) = det(B).

95

Therefore, the roots of PA(λ) and PB(λ) are the same, which is equivalent toA andB having

the same eigenvalues set.

Corollary A.2. Let A and B be two n× n matrices. If As(i, i) = Bs(i, i), s = 1, 2, · · ·, n,

i = 1, 2, · · ·, n, then As(i, i) = Bs(i, i), s = n+ 1, n+ 2, · · ·, i = 1, 2, · · ·, n.

Proof. It is easy to obtain trace(As) = trace(Bs), s = 1, 2, · · ·, n. Then based on the lemma

A.1, the characteristic polynomials of A and B are same. Moreover,

An = −cn−1An−1 − cn−2An−2 − · · · − c1A− (−1)ndet(A)In. (A.2)

Multiply As−n, s ≥ n+ 1 on both sides, and we have

As = −cn−1As−1 − cn−2As−2 − · · · − c1As−(n−1) − (−1)ndet(A)As−n. (A.3)

Immediately, for any i = 1, 2, · · ·, n,

As(i, i) = −cn−1As−1(i, i)− cn−2As−2(i, i)− · · · − c1As−(n−1)(i, i)− (−1)ndet(A)As−n(i, i).

(A.4)

From the iterative formula (A.4), we can see that As(i, i), s = n+ 1, n+ 2, · · · are uniquely

determined by {A(i, i),A2(i, i), · · ·,An(i, i)}. Similarly, Bs(i, i), s = n + 1, n + 2, · · · are

uniquely determined by {B(i, i),B2(i, i), · · ·,Bn(i, i)}. Combining with the fact As(i, i) =

Bs(i, i), s = 1, 2, .., n, we obtain the desired result.

Now we prove theorem 1.

96

Proof. (1). Let Π be the permutation matrix induced by τ , i.e., Π(i, j) = δj=τ(i). Then we

have ∀i, j = 1, 2, · · ·, n, PH(τ(i), τ(j)) = (ΠPHΠT)(i, j). Since P s
G(i, i) = P s

H(τ(i), τ(i)) =

(ΠP s
HΠT)(i, i) = (ΠPHΠT)s(i, i), ∀vi ∈ VG, and ∀s = 1, 2, · · ·, n, by Corollary A.2, we

have P s
G(i, i) = (ΠPHΠT)s(i, i) = P s

H(τ(i), τ(i)), ∀s = n + 1, n + 2 · · · +∞. Now, the first

conclusion has been proved.

(2). The second one can be directly concluded from corollary A.1.

(3). Let DG and DH be the degree matrices of graph G and H, respectively. Then by

Proposition 3.2

DG(i, i)

Vol
= lim

s→+∞
P s
G(i, i) = lim

s→+∞
P s
H(τ(i), τ(i)) =

DH(τ(i), τ(i))

Vol
. (A.5)

So

DG(i, i) = DH(τ(i), τ(i)),∀vi ∈ VG. (A.6)

LetAG andAH be the adjacent matrices of G and H respectively, and write PG = D−1G AG =

D
− 1

2
G (D

− 1
2

G AGD
− 1

2
G)D

1
2
G. Let BG = D

− 1
2

G AGD
− 1

2
G =⇒ PG = D

− 1
2

G BGD
1
2
G =⇒ P s

G =

D
− 1

2
G Bs

GD
1
2
G =⇒ P s

G(i, i) = Bs
G(i, i). BG is a symmetric matrix, and has the same eigen-

values as PG. Write the orthonormal eigen-decomposition of BG as BG =
∑n

k=1 λk~uk~u
T
k ,

then

P s
G(i, i) = Bs

G(i, i) =
n∑
k=1

λsk~uk(i)
2, (A.7)

where ~uk(i) denotes the ith component of the eigenvector ~uk. Similarly, we have

P s
H(τ(i), τ(i)) = Bs

H(τ(i), τ(i)) =
n∑
k=1

µsk~vk(τ(i))2 =
n∑
k=1

λsk~vk(τ(i))2, (A.8)

97

where ~vk(τ(i)) denotes the τ(i)th component of ~vk, and ~vk is the kth eigenvector of BH =

D
− 1

2
H AHD

− 1
2

H . The last equality of (A.8) holds because {λ1, λ2, ..., λn} = {µ1, µ2, ..., µn}.

Next, we use mathematical induction to show that |~uk(i)| = |~vk(τ(i))|, ∀vi ∈ VG, ∀k =

1, 2, · · ·,m.

Step1: For k = 1, PG~1 = ~1 ⇔ BGD
1
2
G
~1 = D

1
2
G
~1 ⇔ ~u1 = ±D

1
2
G
~1/
√

Vol. Similarly, we have

~v1 = ±D
1
2
H
~1/
√

Vol. Since ∀vi ∈ VG, DG(i, i) = DH(τ(i), τ(i)), we have |~u1(i)| = |~v1(τ(i))|,

∀vi ∈ VG.

Step2: We show that if the first k eigenvectors satisfy, |~u1(i)| = |~v1(τ(i))|, |~u2(i)| =

|~v2(τ(i))|,· · ·, |~uk(i)| = |~vk(τ(i))|, then |~uk+1(i)| = |~vk+1(τ(i))|,∀vi ∈ VG,∀k = 1, 2, ...,m−2.

We suppose that ∃vi∗ ∈ VG, such that |~uk+1(i
∗)| 6= |~vk+1(τ(i∗))|. Without loss of generality,

we assume that ~uk+1(i
∗)2 − ~vk+1(τ(i∗))2 = ε > 0. Write

P s
G(i∗, i∗)− P s

H(τ(i∗), τ(i∗))

=
n∑
l=1

λsl ~ul(i
∗)2 −

n∑
l=1

λsl ~vl(τ(i∗))2

=
m∑
l=1

λsl ~ul(i
∗)2 −

m∑
l=1

λsl ~vl(τ(i∗))2

=
m∑

l=k+1

λsl ~ul(i
∗)2 −

m∑
l=k+1

λsl ~vl(τ(i∗))2

=λsk+1

[
~uk+1(i

∗)2 − ~vk+1(τ(i∗))2
]
−

m∑
l=k+2

λsl
[
~ul(i

∗)2 − ~vl(τ(i∗))2
]

=λsk+1

(
ε−

m∑
l=k+2

(
λl
λk+1

)s
[
~ul(i

∗)2 − ~vl(τ(i∗))2
])
,

(A.9)

where the second equality holds because |λ1| > |λ2| > ... > |λm| > 0, |λm+1| = ... = |λn| = 0.

With the fact that |~ul(i∗)2− ~vl(τ(i∗))2| ≤ 1
(

since 0 ≤ ~ul(i
∗)2, ~vl(τ(i∗))2 ≤ 1

)
, and | λl

λk+1
| <

98

1, we have that there is a positive integer, M , such that,

ε−
m∑

l=k+2

(
λl
λk+1

)2M
[
~ul(i

∗)2 − ~vl(τ(i∗))2
]
> 0. (A.10)

Therefore, P 2M
G (i∗, i∗)− P 2M

H (τ(i∗), τ(i∗)) > 0, contradicting the fact that

P s
G(i, i) = P s

H(τ(i), τ(i)),∀vi ∈ VG,∀s = 1, 2, ...,∞. (A.11)

So |~uk+1(i)| = |~vk+1(τ(i))|,∀vi ∈ VG.

Step 3: We show that if |~u1(i)| = |~v1(τ(i))|, |~u2(i)| = |~v2(τ(i))|,···, |~um−1(i)| = |~vm−1(τ(i))|,

then |~um(i)| = |~vm(τ(i))|,∀vi ∈ VG. Since

0 = P s
G(i∗, i∗)− P s

H(τ(i∗), τ(i∗)) = λsm
[
~um(i∗)2 − ~vm(τ(i∗))2

]
, (A.12)

and λsm 6= 0, we immediately have that |~um(i∗)| = |~vm(τ(i∗))|.

Combining all these three steps, we obtain the desired result |~uk(i)| = |~vk(τ(i))|, ∀vi ∈ VG,

∀k = 1, 2, · · ·,m.

Since PG = D
− 1

2
G BGD

1
2
G, we have the fact that (λk, ~uk) is an eigenpair of BG if and only

if (λk,D
− 1

2
G ~uk) is an eigenpair of PG. The above implies that ~ψk = D−1G ~uk, and similarly

~ϕk = D−1H ~vk. Now, ∀vi ∈ VG, ∀k = 1, 2, ...,m, we have

| ~ϕk(τ(i))| = D−1H (τ(i))|~vk(τ(i))| = D−1G (i)|~vk(τ(i))| = D−1G (i)|~uk(i)| = | ~ψk(i)|. (A.13)

99

Appendix B

The Description of Datasets for

Graph Kernels

The statistics of the benchmark graph datasets used in the paper are reported in Table B.1.

Next, we describe in these datasets in detail.

Remark. “DA” is short for “discrete attributes” and “CA” is short for “continuous at-

tributes”.

B.1 Non-attributed (Unlabeled) Graphs

COLLAB [55] is a scientific collaboration dataset that consists of the ego-networks of 5,000

researchers from three scientific fields: High Energy Physics, Condensed Matter Physics,

and Astro Physics. The task is to determine the field of each researcher based on their

ego-networks.

IMDB-BINARY [55] is a movie collaboration dataset that consists of the ego-networks of

1,000 actors/actresses who played roles in movies in IMDB. In each graph, nodes represent

100

Table B.1: Statistics of the benchmark graph datasets

Datasets graph # class # average node # average edge # DA CA (Dim)
COLLAB 5000 3 74.49 2457.78 × ×

IMDB-BINARY 1000 2 19.77 96.53 × ×
IMDB-MULTI 1500 3 13.00 65.94 × ×

REDDIT-BINARY 2000 2 429.63 497.75 × ×
REDDIT-MULTI(5K) 4999 5 508.52 594.87 × ×
REDDIT-MULTI(12K) 11929 11 391.41 456.89 × ×

MUTAG 188 2 17.93 19.79
√

×
DD 1178 2 284.32 715.66

√
×

NCI1 4110 2 29.87 32.30
√

×
PTC-FM 349 2 14.11 14.48

√
×

PTC-FR 351 2 14.56 15.00
√

×
PTC-MM 336 2 13.97 14.32

√
×

PTC-MR 344 2 14.29 14.69
√

×
FRANK 4337 2 16.90 17.88 ×

√
(780)

SYNTHETIC 300 2 100 196.25 ×
√

(1)
Synthie 400 4 95.00 172.93 ×

√
(15)

ENZYMES 600 6 32.63 64.14
√ √

(18)
PROTEINS 1113 2 39.06 72.82

√ √
(1)

BZR 405 2 35.75 38.36
√ √

(3)
COX2 467 2 41.22 43.45

√ √
(3)

DHFR 467 2 42.43 44.54
√ √

(3)

actors/actress, and there is an edge between them if they appear in the same movie. These

graphs are derived from the Action and Romance genres.

IMDB-MULTI [55] is generated in a similar way to IMDB-BINARY. The difference is

that it is derived from three genres: Comedy, Romance, and Sci-Fi.

REDDIT-BINARY [55] consists of graphs corresponding to online discussions on Red-

dit. In each graph, nodes represent users, and there is an edge between them if at least

one of them respond to the other’s comment. There are four popular subreddits, namely,

IAmA, AskReddit, TrollXChromosomes, and atheism. IAmA and AskReddit are two ques-

tion/answerbased subreddits, and TrollXChromosomes and atheism are two discussion-based

subreddits. A graph is labeled according to whether it belongs to a question/answer-based

community or a discussion-based community.

101

REDDIT-MULTI(5K) [55] is generated in a similar way to REDDIT-BINARY. The

difference is that there are five subreddits involved, namely, worldnews, videos, AdviceAni-

mals, aww, and mildlyinteresting. Graphs are labeled with their corresponding subreddits.

REDDIT-MULTI(12K) [55] is generated in a similar way to REDDIT-BINARY and

REDDIT-MULTI(5K). The difference is that there are eleven subreddits involved, namely,

AskReddit, AdviceAnimals, atheism, aww, IAmA, mildlyinteresting, Showerthoughts, videos,

todayilearned, worldnews, and TrollXChromosomes. Still, graphs are labeled with their cor-

responding subreddits.

B.2 Graphs with Discrete Attributes

MUTAG [57] consists of graph representations of 188 mutagenic aromatic and heteroaro-

matic nitro chemical compounds. These graphs are labeled according to whether or not they

have a mutagenic effect on the Gramnegative bacterium Salmonella typhimurium.

DD [56] consists of graph representations of 1,178 proteins. In each graph, nodes represent

amino acids, and there is an edge if they are less than six Angstroms apart. Graphs are

labeled according to whether they are enzymes or not.

NCI1 [39] consists of graph representations of 4,110 chemical compounds s screened for

activity against non-small cell lung cancer and ovarian cancer cell lines, respectively.

PTC [58] consists of graph representations of chemical molecules. In each graph, nodes

represent atoms, and edges represent chemical bonds. Graphs are labeled according to

102

carcinogenicity on rodents, divided into male mice (MM), male rats (MR), female mice

(FM), and female rats (FR).

B.3 Graphs with Continuous Attributes

FRANK [59] is a chemical molecule dataset that consists of 2,401 mutagens and 1,936

nonmutagens. Originally, nodes are associated with chemical atom symbols. The most

frequent atom symbols are mapped to MNIST digit images. By doing this, the original atom

symbols can be recovered through the high dimensional MNIST vectors of pixel intensities,

which are treated as the continuous attributes on graphs.

SYNTHETIC [60] consists of 300 random graphs. The continuous node attributes are

sampled from the distribution N(0, 1). There are two classes, A and B. Class A has 150

graphs, which are generated by randomly rewiring five edges and permuting ten node at-

tributes. Class B has 150 graphs, which are generated by randomly rewiring ten edges and

permuting five node attributes.

Synthie [61] consists of 400 random graphs, all of which are variants of two Erdos-Renyi

graphs. The nodes are associated with 15-dimensional continuous attributes. All graphs are

divided into four classes. The generation process of these graphs is described in [61].

B.4 Graphs with Discrete and Continuous Attributes

ENZYMES and PROTEINS [62] consist of graph representations of proteins. Nodes

represent secondary structure elements (SSE), and there is an edge if they are neighbors

103

along the amino acid sequence or one of three neareset neighbors in space. The discrete

attributes are SSE’s types. The continuous attributes are the 3D length of the SSE. Graphs

are labeled according to which EC top-level class they belong to.

BZR, COX2, and DHFR [63], [43] all are chemical compound datasets. Still, in each

graph, nodes represent atoms, and edges represent chemical bonds. The discrete attributes

correspond to atom types. The continuous attributes are 3D coordinates.

104

Appendix C

Gradient Computation for KerGM

C.1 Proving Proposition 5.2

Before proceeding to the main proof, we first present two useful lemmas.

Lemma C.1. 〈Ψ,Ξ�X〉FH = 〈ΞT ∗Ψ,X〉F, and 〈Ψ,X �Ξ〉FH = 〈Ψ ∗ΞT ,X〉F.

Remark. In our paper, we only consider the kernel values. That is, the inner product values

are real numbers. So 〈ψ, ϕ〉H = 〈ϕ, ψ〉H, ∀ψ, ϕ ∈ H.

Proof. (1).

〈Ψ,Ξ�X〉FH =
n∑
i=1

n∑
j=1

〈Ψij, [Ξ�X]ij〉H =
n∑
i=1

n∑
j=1

〈Ψij,
n∑
k=1

ΞikXkj〉H

=
n∑
i=1

n∑
j=1

n∑
k=1

〈Ψij,ΞikXkj〉H =
n∑
k=1

n∑
j=1

Xkj

n∑
i=1

〈Ψij,Ξik〉H

=
n∑
k=1

n∑
j=1

[ΞT ∗Ψ]kjXkj = 〈ΞT ∗Ψ,X〉F. (C.1)

105

(2).

〈Ψ,X �Ξ〉FH =
n∑
i=1

n∑
j=1

〈Ψij, [X �Ξ]ij〉H =
n∑
i=1

n∑
j=1

〈Ψij,

n∑
k=1

XikΞkj〉H

=
n∑
i=1

n∑
j=1

n∑
k=1

〈Ψij,XikΞkj〉H =
n∑
i=1

n∑
k=1

Xik

n∑
j=1

〈Ψij,Ξkj〉H

=
n∑
i=1

n∑
k=1

[Ψ ∗ΞT]ikXik = 〈Ψ ∗ΞT ,X〉F. (C.2)

Lemma C.2. Ψ ∗ (Ξ �X) = (Ψ ∗ Ξ)X, (X �Ψ) ∗ Ξ = X(Ψ ∗ Ξ), and Ψ ∗ (X � Ξ) =

(Ψ�X) ∗Ξ.

Proof. The proof procedure is very similar with Corollary 5.1.

Now we prove the equality (5.23).

Proof. (1). We first rewrite the function Jα(X) as

Jα(X) = −〈KN ,X〉F + (1− α)J1(X)− αJ2(X),

where J1(X) = 1
2
‖Ψ(1) �X −X �Ψ(2)‖2FH and J2(X) = 1

2
‖Ψ(1) �X +X �Ψ(2)‖2FH

We first compute the gradient of J1(X). We employ the following fact:

∀E ∈ Rn×n, 〈∇J1(X),E〉F = lim
t→0

J1(X + tE)− J1(X)

t
. (C.3)

106

J1(X + tE)− J1(X)

=
1

2
‖Ψ(1) � (X + tE)− (X + tE)�Ψ(2)‖2FH −

1

2
‖Ψ(1) �X −X �Ψ2‖(2)FH

=
1

2
t2‖Ψ(1) �E −E �Ψ(2)‖2FH + t〈Ψ(1) �X −X �Ψ(2),Ψ(1) �E −E �Ψ(2)〉FH

(C.4)

Immediately, 〈∇J1(X),E〉F = 〈Ψ(1) �X −X �Ψ(2),Ψ(1) �E −E �Ψ(2)〉FH .

We can rewrite the above formula as

〈Ψ(1) �X −X �Ψ(2),Ψ(1) �E −E �Ψ(2)〉FH

=〈Ψ(1) �X −X �Ψ(2),Ψ(1) �E〉FH − 〈Ψ(1) �X −X �Ψ(2),E �Ψ(2)〉FH

=〈Ψ(1) ∗ (Ψ(1) �X)−Ψ(1) ∗ (X �Ψ(2)),E〉F − 〈(Ψ(1) �X) ∗Ψ(2) − (X �Ψ(2)) ∗Ψ(2),E〉FH

=〈(Ψ(1) ∗Ψ(1))X − 2(Ψ(1) �X) ∗Ψ(2) +X(Ψ(2) ∗Ψ(2)),E〉F,
(C.5)

where the 3rd equality holds because of Lemma C.1 and both Ψ(1) and Ψ(2) are symmetric,

and the last equality holds because of Lemma C.2. Therefore,

∇J1(X) = (Ψ(1) ∗Ψ(1))X − 2(Ψ(1) �X) ∗Ψ(2) +X(Ψ(2) ∗Ψ(2)).

Similarly, we have

∇J2(X) = (Ψ(1) ∗Ψ(1))X + 2(Ψ(1) �X) ∗Ψ(2) +X(Ψ(2) ∗Ψ(2)).

Finally, substituting ∇J1(X) and ∇J2(X) into ∇Jα(X) = −KN + (1 − α)∇J1(X) −

α∇J2(X), we obtain the result (5.23).

107

(2). For the first term Ψ(1) ∗Ψ(1), we have

[Ψ(1) ∗Ψ(1)]ij =
n∑
k=1

〈Ψ(1)
ik ,Ψ

(1)
kj 〉HK =

∑
e1ik,e

1
kj∈E1

〈ψ(~q1ik), ψ(~q1kj)〉HK =
∑

e1ik,e
1
kj∈E1

kE(~q1ik, ~q
1
kj).

(C.6)

For the second term Ψ(2) ∗Ψ(2), we have similar explanations.

For the third term (Ψ(1) �X) ∗Ψ(2), we have

[(Ψ(1) �X) ∗Ψ(2)]ia =
n∑
c=1

〈[Ψ(1) �X]ic,Ψ
(2)
ca 〉HK =

n∑
c=1

〈
n∑
k=1

Ψ
(1)
ik Xkc,Ψ

(2)
ca 〉HK

=
n∑
c=1

n∑
k=1

〈Ψ(1)
ik Xkc,Ψ

(2)
ca 〉HK =

∑
e1ik∈E1,e2ca∈E2

Xkc〈ψ(~q1ik), ψ(~q2ca)〉HK

=
∑

e1ik∈E1,e2ca∈E2

Xkck
E(~q1ik, ~q

2
ca). (C.7)

C.2 Proving Proposition 5.3

Proof. (1). We first prove the equality (5.32). It suffices to show that the (i, a) term in the

left part equals to the (i, a) term in the right part.

Let e1ik1 , e
1
ik2
, ..., e1ikDi

be the edges incident to the node vi in graph G1, where Di is the degree

of the node vi. Without loss of generality, we assume the assigned directions of these edges

are, for some 1 ≤ s ≤ Di,

vi → vk1 , vi → vk2 ,, vi → vks and vks+1 → vi, vks+2 → vi, ..., vkDi → vi. (C.8)

108

Considering the ith row, G1(vi, :) and H1(vi, :), of the matrix G1 and H1, we have

G1(vi, e
1
ik1

) = G1(vi, e
1
ik2

) = ... = G1(vi, e
1
iks) = 1, (C.9)

and H1(vi, e
1
iks+1

) = H1(vi, e
1
iks+2

) = ... = H1(vi, e
1
ikDi

) = 1. (C.10)

Any other item in the ith row of the matrix G1 and H1 is zero.

Let e2C1a
, e2C2a

, ..., e2CDaa be the edges incident to the node va in graph G2, where Da is the

degree of the node va. Without loss of generality, we assume the assigned directions of these

edges are, for some 1 ≤ t ≤ Da,

vC1 → va, vC2 → va, ..., vCt → va and va → vCt+1 , va → vCt+2 , ..., va → vCDa . (C.11)

Considering the ath row, G2(va, :) and H2(va, :), of the matrix G2 and H2, we have

G2(va, e
2
Ct+1a

) = G2(va, e
2
Ct+2a

) = ... = G2(va, e
2
CDaa

) = 1, (C.12)

and H2(va, e
2
C1a

) = H2(va, e
2
C2a

) = ... = H2(va, e
2
Cta) = 1. (C.13)

Any other item in the ath row of the matrix G2 and H2 is zero.

109

We first consider the first term H1(G
T
1XG2 ◦KE

12)H
T
2 in (Ψ(1) �X) ∗Ψ(2) (see (5.32)),

[H1(G
T
1XG2 ◦KE

12)H
T
2]ia (C.14)

=[H1(vi, :)](G
T
1XG2 ◦KE

12)[H2(va, :)]
T (C.15)

=
Di∑
α=1

Da∑
β=1

H1(vi, e
1
ikα)H2(va, e

2
Cβa

)[GT
1XG2 ◦KE

12](e
1
ikα , e

2
Cβa

) (C.16)

=
Di∑

α=s+1

t∑
β=1

[GT
1XG2 ◦KE

12](e
1
ikα , e

2
Cβa

) By the definition ofH1(C.10),H2(C.13) (C.17)

=
Di∑

α=s+1

t∑
β=1

[GT
1XG2](e

1
ikα , e

2
Cβa

)× [KE
12](e

1
ikα , e

2
Cβa

) (C.18)

=
Di∑

α=s+1

t∑
β=1

[KE
12](e

1
ikα , e

2
Cβa

)
[
G1(:, e

1
ikα)TXG2(:, e

2
Cβa

)
]

(C.19)

=
Di∑

α=s+1

t∑
β=1

XkαCβ [KE
12](e

1
ikα , e

2
Cβa

), (C.20)

=
s∑

α=1

Da∑
β=t+1

XkαCβk
E(~q1ikα , ~q

2
Cβa

). (C.21)

where G1(:, e
1
ikα

) is a column of G1, corresponding to the edge e1ikα , and G2(:, e
2
Cβa

) is a

column of G2, corresponding to the edge e2Cβa. By the definition of G1 (C.9) and G2

(C.12), G1(vkα , e
1
ikα

) = 1, since the direction of edge e1ikα is assigned as vkα → vi, for α =

s+1, s+2, .., Di. We also have G2(vCβ , e
2
Cβa

) = 1, since the direction of edge e2Cβa is assigned

as vCβ → va, for β = 1, 2, ..., t. All the other terms in G1(:, e
1
ikα

) and G2(:, e
2
Cβa

) are zero.

The above discussion explains why the equality (C.20) holds.

110

Similarly, we can prove that

[H1(G
T
1XH2 ◦KE

12)G
T
2]ia =

Di∑
α=s+1

Da∑
β=t+1

XkαCβk
E(~q1ikα , ~q

2
Cβa

), (C.22)

[G1(H
T
1 XG2 ◦KE

12)H
T
2]ia =

s∑
α=1

t∑
β=1

XkαCβk
E(~q1ikα , ~q

2
Cβa

), (C.23)

[G1(H
T
1 XH2 ◦KE

12)G
T
2]ia =

s∑
α=1

Da∑
β=t+1

XkαCβk
E(~q1ikα , ~q

2
Cβa

). (C.24)

Adding (C.14), (C.22), (C.23), and (C.24), we can obtain

[
H1(G

T
1XG2 ◦KE

12)H
T
2 +H1(G

T
1XH2 ◦KE

12)G
T
2 +G1(H

T
1 XG2 ◦KE

12)H
T
2 +

G1(H
T
1 XH2 ◦KE

12)G
T
2

]
ia

=
∑

e1ik∈E1,e2ca∈E2

Xkck
E(~q1ik, ~q

2
ca) = [(Ψ(1) �X) ∗Ψ(2)]ia,

(C.25)

where the equality holds because of the fact that e1ikα ∈ E1, α = 1, 2, ..., Di, and e2Cβa ∈ E2,

β = 1, 2, ..., Da.

We finish the proof of the equality (5.32)!

(2). For proving the equality (5.30) and (5.31), we can write

Ψ(1) ∗Ψ(1) = (Ψ(1) � I) ∗Ψ(1) and Ψ(2) ∗Ψ(2) = (Ψ(2) � I) ∗Ψ(2), (C.26)

and directly apply the proved equality (5.32).

111

Appendix D

Proof of the Convergence Rate of

EnFW

Before proceeding to the main proofs, we introduce a lemma.

Lemma D.1. The generated objective function value sequence, {Fα(Xt)}t=0, satisfies

Fα(Xt+1) ≤ Fα(Xt)− (Gt −
L

n
s)s, ∀s ∈ [0, 1]. (D.1)

Proof. Since H(X) is convex, we have

∀s ∈ [0, 1], λH
(
Xt + s(Yt −Xt)

)
≤ λH(Xt) + s

(
λH(Yt)− λH(Xt)

)
. (D.2)

Write the quadratic function Jα(Xt + s(Yt −Xt)) as

Jα(Xt + s(Yt −Xt)) = Jα(Xt) + s〈OJα(Xt),Yt −Xt〉F +Q(Xt,Yt)s
2. (D.3)

112

Adding (D.2) and (D.3), and reordering the resulting inequality, we have

Fα(Xt+s(Yt−Xt)) ≤ Fα(Xt)+s
[
λH(Yt)−λH(Xt)+ 〈∇Jα(Xt),Yt−Xt〉F

]
+Q(Xt,Yt)s

2.

(D.4)

Since λH(Yt) + 〈∇Jα(Xt),Yt〉F = minY ∈Dn 〈OJα(Xt),Y 〉F + λH(Y) (See the 4th line in

Algorithm 4), we have

Gt = g(Xt) = −
[
λH(Yt)− λH(Xt) + 〈∇Jα(Xt),Yt −Xt〉F

]
, (D.5)

which is based on the definition of g(X) (5.50) and Gt (See the 5th line in Algorithm 4).

Substituting (D.5) into (D.4), we have

∀s ∈ [0, 1], Fα(Xt + s(Yt −Xt)) ≤ Fα(Xt)− (Gt −Qts)s. (D.6)

Set s = st (See the 6th and 7th line in Algorithm 4), we have

Fα(Xt+1) ≤ Fα(Xt)− (Gt −Qtst)st.

Now we consider the function

At(s) = (Gt −Qts)s, s ∈ [0, 1].

We discuss the maximizer of At(s) for s ∈ [0, 1]. Considering that Gt is nonnegative (this is

because of the definition of g(X)), we have

1. If Qt ≤ 0, then At(s) achieve its maximum at s = 1,

2. If Qt > 0, then At(s) achieve its maximum at s = min{Gt/(2Qt), 1}.

113

Therefore, our stepsize st is just the maximizer of At(s). That is

Fα(Xt+1) ≤ Fα(Xt+1) ≤Fα(Xt)− (Gt −Qtst)st = Fα(Xt)− max
s∈[0,1]

(Gt −Qts)s

≤Fα(Xt)− (Gt −Qts)s ∀s ∈ [0, 1].

(D.7)

Since

Qt = Q(Xt,Yt) =
1

2
vec(Yt −Xt)

T∇2Jα(Xt)vec(Yt −Xt) ≤
L

2
‖Xt − Yt‖2F,

and

‖X − Y ‖2F ≤
2

n
,∀X,Y ∈ Dn,

we have Qt ≤ L
n

.

Combining (D.7) and the fact Qt ≤ L
n

, we obtain the desired result.

D.1 Proving Theorem 5.1

Proof. We consider the inequality (D.1) in Lemma D.1.

If Gt >
2L
n

, then (Gt − L
n
s)s is maximized at s = 1. So

Fα(Xt+1) ≤ Fα(Xt)− (Gt −
L

n
) ≤ Fα(Xt)−

Gt

2
,

where the last equality holds because L
n
≤ Gt

2
.

114

If Gt ≤ 2L
n

, then (Gt − L
n
s)s is maximized at s = nGt

2L
. So

Fα(Xt+1) ≤ Fα(Xt)− (
Gt

2
)
nGt

2L
.

In summary,

Fα(Xt+1) ≤ Fα(Xt)−
Gt

2
min{1, nGt

2L
} (D.8)

(I). Since Gt ≥ 0 by definition (5.50), we have Fα(Xt+1) ≤ Fα(Xt), i.e., {Fα(Xt)}t=0 is a

decreasing sequence. Fα(X) is continuous on the compact region Dn, which implies that

Fα(X) is bounded below. So the sequence {Fα(Xt)}t=0 will converge [112].

(II). Taking the sum of (D.8) over t = 0, 1, 2, ..., T , we obtain,

Fα(XT+1)− Fα(X0) ≤ −
T∑
t=0

Gt

2
min{1, Gtn

2L
}. (D.9)

Let

G∗T = min
0≤t≤T

Gt = min
0≤t≤T

G(Xt).

Considering the additional fact that −40 , Fα(X∗) − Fα(X0) ≤ Fα(XT+1) − Fα(X0), we

have

40 ≥
T∑
t=0

Gt

2
min{1, Gtn

2L
} ≥ (T + 1)

G∗T
2

min{1, G
∗
Tn

2L
}.

(a). If
nG∗T
2L
≥ 1, then 40 ≥ (T + 1)

G∗T
2
⇐⇒ G∗T ≤

240

T+1
≤ 240√

T+1
;

(b). If
nG∗T
2L

< 1, then 40 ≥ (T + 1)(
G∗T
2

)
nG∗T
2L
⇐⇒ G∗T ≤

√
4L40

n(T+1)
.

In summary, we have G∗T ≤
2max{40,

√
L40/n}√

T+1
.

115

D.2 Proving Theorem 5.2

Before proceeding to the main proof, we introduce another lemma.

Lemma D.2. If Jα(X) is convex, and let X∗ is a global minimizer of problem (5.45), then

g(Xt) ≥ Fα(Xt)− Fα(X∗).

Proof.

g(Xt) = 〈OJα(Xt),Xt〉F + λH(Xt)− min
Y ∈Dn

〈OJα(Xt),Y 〉F + λH(Y). (D.10)

= max
Y ∈Dn

{
〈∇Jα(Xt),Xt − Y 〉F + λH(Xt)− λH(Y)

}
(D.11)

≥ 〈∇Jα(Xt),Xt −X∗〉F + λH(Xt)− λH(X∗) (D.12)

≥ Jα(Xt)− Jα(X∗) + λH(Xt)− λH(X∗) (D.13)

= Fα(Xt)− Fα(X∗), (D.14)

where the inequality (D.13) holds because Jα(X) is convex.

Now we prove Theorem 5.2.

Proof. We still need the inequality (D.1) in Lemma D.1.

Fα(Xt+1) ≤ Fα(Xt)− (Gt −
L

n
s)s

≤ Fα(Xt)−
[
Fα(Xt)− Fα(X∗)

]
s+

L

n
s2, ∀s ∈ [0, 1], (D.15)

116

where the inequality (D.15) holds because of Lemma D.2. Reordering (D.15) yields

[
Fα(Xt+1)− Fα(X∗)

]
≤ (1− s)

[
Fα(Xt)− Fα(X∗)

]
+
L

n
s2. (D.16)

We set s = 2
t+1

, and multiply t(t+1)
2

on both sides. Then we have

t(t+ 1)

2

[
Fα(Xt+1)− Fα(X∗)

]
≤ t(t− 1)

2

[
Fα(Xt)− Fα(X∗)

]
+
L

n

2t

t+ 1

≤ t(t− 1)

2

[
Fα(Xt)− Fα(X∗)

]
+

2L

n
(D.17)

Taking the sum of (D.17) over t = 1, 2, ..., T , we have

T (T + 1)

2

[
Fα(XT+1)− Fα(X∗)

]
≤ 2TL

n
⇐⇒ Fα(XT+1)− Fα(X∗) ≤ 4L

n(T + 1)
. (D.18)

We obtain the desired result.

117

Appendix E

Implementation Details of EnFW

The Sinkhorn-Knopp algorithm [113, 94] is used to solve the problem

min
X
〈D,X〉F + λH(X) s.t. X ≥ 0, X~1n = ~a, and XT~1n = ~b, (E.1)

where ~a and ~b satisfy
∑n

i=1 ~ai =
∑n

j=1
~bj = 1. In our case ~a = 1

n
~1n and ~b = 1

n
~1n.

The algorithm is shown in Algorithm 5. The detailed derivations can be found in [94]. In

Algorithm 5 The Sinkhorn-Knopp optimization algorithm for minimizing (E.1)

1: Initialize ~r = 1
n
~1n, t = 0, and RelativeError = 1, and write C = exp(−D

λ
) (pointwise).

t < MaxNumSinkhorn and RelativeError > Tolerance

2: ~rnew = (1
n
~1n)./

{
C
[
(1
n
~1n)./(CT ~r)

]}
.

3: RelativeError = ‖~rnew−~r‖2
‖~r‖2 .

4: t = t+ 1
5: end
6: ~s = (1

n
~1n)./(CT ~r), X∗ = diag(~r)Cdiag(~r).

7: Output the solution X∗.

our experiments, we set MaxNumSinkhorn = 10000, and set Tolerance = 10−6.

118

Vita

Zhen Zhang

Degrees Ph.D., Electrical Engineering, Washington University in St. Louis,

Missouri, USA, December 2019

M.S., Electrical Engineering, Washington University in St. Louis,

Missouri, USA, May 2017

B.S., Electronic Engineering and Information Science, University of

Science and Technology of China, Hefei, China, June 2014

Professional

Memberships

The Institute of Electrical and Electronics Engineers (IEEE)

IEEE Signal Processing Society

Publications Journal Publications:

Z. Zhang, M. Wang, and A. Nehorai, “Optimal transport in repro-

ducing kernel Hilbert spaces: theory and applications,” to appear in

IEEE Trans. on Pattern Analysis and Machine Intelligence.

Y. Huang, G. Liao, Z. Zhang, Y. Xiang, J. Li, and A. Nehorai,

“Reweighted Nuclear Norm and Reweighted Frobenius Norm Mini-

mizations for Narrowband RFI Suppression on SAR System,” IEEE

Trans. on Geoscience and Remote Sensing, Vol. 57, No. 8, pp. 5949-

5962, Aug. 2019.

M. Wang, Z. Zhang, and A. Nehorai, ”Grid-less DOA estimation us-

ing sparse linear arrays based on Wasserstein distance,” IEEE Signal

Processing Letters, Vol. 26, No. 6, pp. 838-842, June 2019.

M. Wang, Z. Zhang, and A. Nehorai, “Further results on the Cramér

Rao bound for sparse linear arrays” IEEE Trans. on Signal Process-

ing, Vol. 67, No. 6, pp. 1493-1507, Mar. 2019.

119

M. Wang, Z. Zhang, and A. Nehorai, “Performance analysis of

coarray-based MUSIC in the presence of sensor location errors,”

IEEE Trans. on Signal Processing, Vol. 66, pp. 3074-3085, June

2018.

Y. Huang, G. Liao, Z. Zhang, Y. Xiang, J. Li, and A. Nehorai,

“Fast narrowband RFI suppression algorithms for SAR systems via

matrix-factorization techniques,” IEEE Trans. on Geoscience and

Remote Sensing, Vol. 57, No. 1, pp. 250-262, Jan. 2019.

Y. Huang, G. Liao, Z. Zhang, Y. Xiang, J. Li, and A. Nehorai, “SAR

automatic target recognition using joint low-rank and sparse multi-

view denoising,” IEEE Geoscience and Remote Sensing Letters, Vol.

15, No. 10, pp. 1570-1574, Oct. 2018.

Conference Publications:

Z. Zhang, Y. Xiang, L. Wu, B. Xue, and A. Nehorai, “KerGM:

Kernelized graph matching,” to appear in Advances in Neural Infor-

mation Processing Systems (NeurIPS), Vancouver, CA, Dec. 8-14,

2019.

L. Wu, I. Yen, Z. Zhang, K. Xu, L. Zhao, X. Peng, Y. Xia and

C. Aggarwal, “Scalable global alignment graph kernel using random

features: from node embedding to graph embedding,” Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining(KDD), Anchorage, USA, Aug. 4-8, 2019.

L. Wu*, Z. Zhang*, A. Nehorai, L. Zhao, and F. Xu, “SAGE: Scal-

able attributed graph embeddings for graph classification,” The In-

ternational Conference on Learning Representations (ICLR) 2019

Workshop on Representation Learning on Graphs and Manifolds. (*

indicates equal contribution.)

Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai, “RetGK:

Graph kernels based on return probabilities of random walks,” Ad-

vances in Neural Information Processing Systems (NeurIPS), Montréal,

CA, Dec. 3-8, 2018.

120

Z. Zhang, M. Wang, Y. Huang, and A. Nehorai, “Aligning infinite-

dimensional covariance matrices in reproducing kernel Hilbert spaces

for domain adaptation,” IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Salt Lake City, USA, June 22–28,

2018.

Z. Zhang, M. Wang, Y. Xiang, and A. Nehorai, “Geometry-adapted

Gaussian random field regression,” Proc. 42nd IEEE Int. Conf.

Acoustics, Speech, Signal Processing (ICASSP), New Orleans, LA,

Mar. 5-9, 2017.

M. Wang, Z. Zhang, and A. Nehorai, “Direction finding using sparse

linear arrays with missing data,” Proc. 42nd IEEE Int. Conf. Acous-

tics, Speech, Signal Processing (ICASSP), New Orleans, LA, Mar.

5-9, 2017.

M. Wang, Z. Zhang, and A. Nehorai, “Performance analysis of

coarray-based MUSIC and the Cramér Rao bound,” Proc. 42nd

IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),

New Orleans, LA, Mar. 5-9, 2017.

December 2019

121

Kernels for Analyzing Graphs, Zhang, Ph.D. 2019

	Kernel Methods for Graph-structured Data Analysis
	Recommended Citation

	tmp.1580144763.pdf.wQPpo

